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INTRODUCTION

Background

The ultimate objective of this effort is to study the hypersonic flow
field associated with a shaped charge jet. Of concern will be how and to
what extent perturbations of the jet are caused by interactions of the flow
field with various target geometries. This report details the first part of
the effort to develop an axisymmetric fluid dynamics code: the derivation of
applicable equations and the development of a one dimensional code. Many
basic relationships applicable to both codes are derived here.

Considerable research has been conducted in the fields of jet formation
and jet penetration, but little effort has been devoted to studying the
aerodynamic forces that influence the jet. At typical jet velocities of
greater than Mach 20, an extremely strong flow field is developed which may
cause severe perturbations in the jet. For example, an extremely strong bow
shock wave is formed. As the jet flies through the hole in a guidance
package, or through the hole in a skirting plate made by the leading portion
of the jet, the bow shock is reflected back to impinge on a trailing portion

of the jet, applying potentially disruptive forces. Another potentially
disruptive force results from the strong wake behind a jet particle. The

subsequent particles must fly through this turbulence. The situation may be
even more severe for particles farther back in the jet.

The problem is studied by numerical solution of the equations of motion
utilizing a method developed by S. K. Godunov, a Russian mathematician.
This first order inviscid method is suitable to hypersonic flow regimes. It

has been used by the Launch and Flight Division of the BRL to solve a
geometrically similar problem of a projectile's flight through a muzzle

brake. This problem, however, involved only one projectile at less than
hypersonic velocities. The code will be validated by solving some problems
with known solutions. Then a cylindrical hole of circular cross section
will be studied. These calculations will be experimentally verified.
Finally, more complex geometries may be numerically studied.

In the first phase of .his study, reported here, the necessary equations
are derived and a one-dimensional code is written for an inviscid, perfect
gas. Theoretical and experimental verifications are carried out which show
that the technique accurately predicts those flow phenomena critical to this
study: shock and expansion wave formation, wave reflection, and wave/wave
collisions.

The Godunov Technique

The one-dimensional scheme developed by Godunov is explained and

expanded to two dimensions (and axi-symmetric) in a 1961 paper in the
Russian Journal of Mathematics and Mathematical Physics (Ref 1). The

principal advantage of the method lies in the physically realistic approach
used to obtain the mathematical solution of the equations of fluid motion.
That the solution technique can be so well expressed in physical terms is



fascinating, and a fine comment on the beauty with which mathematics
expresses the physical laws of nature. In fact, Godunov (Ref 2) derives all
the necessary equations (except the conservation equations) purely from
mathematical considerations. As a final step, he indicates that his
equations are the same as those that would result from consideration of a
physical system. The physical system will be the basis of the equations
derived here.

The physical system referred to above is the one dimensional fluid
discontinuity, sometimes called the Riemann problem (after the German
mathematician who was the first to attempt to calculate shock properties) or
the shock tube analogy. To see how this Riemann problem helps in the
solution of the equations of fluid motion, consider a one dimensional fluid,
divided into finite cells and at initial time to containing the pressure
distribution as shown in figure la. Similar curves can be imagined for the
other dependent variables, velocity (u), density (p), internal energy (e).
The problem being addressed here is one of unsteady flow, so these
quantities will be functions of time as well as functions of x.

Thus the gas s divided into one-dimensional regions of thickness Ax.
Some appropriate average values for p, u, p, e are chosen for each layer
(at say, t - r). These are denoted by pm-1 /2 ' um-1 /2 ' etc. Consequently,

the values in neighboring layers may not be the same, as seen in figure lb.
Because of the incremental nature of the assumed form of the pressure
distribution, a pressure discontinuity exists at the boundary between cells.
This is analogous to the classical shock tube problem, which considers the
solution of the Riemann problem, as depicted in figure 1c. Of course in the
present case the diaphragm is imaginary. It is imagined to rupture by
unfreezing the time variable and permitting the discontinuities in pressure,
density and velocity to seek equilibrium. The discontinuities at x are

thus resolved into a shock wave, expansion wave and contact discontinuity
(or some other combination), propagating from the cell boundary at x , orm

simply m, toward its neighbors at m-l and m+l.

The conditions behind these waves are well known from shock tube theory,
and can be computed from the known initial conditions on the two sides of
the diaphragm. More importantly, the conditions behind the waves are
constant. The essence of the Godunov technique is to utilize these constant
conditions at the cell boundaries to compute the flux of properties into
each cell during the time step. The conservation equations are used to
compuIte new average properties in each cell and the entire process is
repeated in the next time step. The integral form of the conservation
equations must be used if the solution is to be valid for flow fields
containing discontinuities (shock waves).

The equations which constitute the general solution of the Riemann
(shock tube) problem are nonlinear. For weak (sonic) waves, the equations
can be linearized. Figures la and lb show that the magnitude of the
discontinuities in each individual Riemann problem (which result from the
approximation to the continuous distribution) are governed in part by the
size of the increment 6x. Thus the resulting waves can be guaranteed to be
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weak waves by selection of a sufficiently fine grid. The consequential
linearized Riemann system is valid in all cases except the one in which a
discontinuity in the flow field (e.g. bow shock wave, reflected wave, etc.)
actually passes through one of the two cells.

To insure validity of the Riemann model when approximating continuous
flow, the fluid properties at the point x must remain constant during the

time step; they must not be disturbed by the waves propagating from the
neighboring points xMI and x 1 . That is, the properties at xm must only

result from the resolution of the discontinuity at x . The fact that the

region between points x and x 1 (or x and Xm-1) is complicated by the

presence of additional waves emanating from x 1 (or x 1) is of no

consequence to the properties at x . The properties computed for point xrn m
will remain valid until the waves from the neighboring points arrive at x .

Thus the time interval At must be less than the time required for the wave
to traverse the distance Ax. If W is the wave speed relative to the fixed
coordinate frame,

SAxAt < AX
W

is the physically required relationship between the step sizes. Godunov
also derives this criterion from a purely mathematical stability analysis,
again demonstrating the harmony between physical and mathematical
descriptions of nature.

General Approach to Solving the Fluid Dynamics Problem

The Godunov technique requires the solution of two fluid dynamics
problems. The primary problem involves use of the conservation laws to
update the properties in each cell based on the flux of each property across
the cell boundaries. Since dicontinuities may exist in the flowfield, the
integral form of the conservation equations must be used.

The secondary fluid dynamics problem to be solved is the Riemann problem
at the cell boundaries. The fluid condition behind the waves constitutes
the solution, and these conditions are used in the conservation laws (the
primary problem) to determine fluxes and hence new average cell properties.

Figure 2 shows a schematic of the conditions in the Riemann problem.
For simplicity, the subscript 4 denotes conditions in cell (m-1/2) and
subscript i denotes conditions in cell (m+1/2). The negative running wave
and positive running wave may also fall in the same quadrant (either one),
but by definition the positive running wave has the more positive absolute
(i.e. relative to the fixed cell boundary) velocity. The location of each
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wave (left or right quadrant) will depend on the initial fluid velocities in
the two cells, and the resultant wave velocity relative to the fluid.

From classical shock tube theory, the pressure and velocity of the gas
on either side of the contact discontinuity are known to be equal and
constant; hence the terminology p0 and u0 in the regions behind the waves,
regions 2 and 3. Similarly, the density is known to be different on the two
sides of the contact discontinuity, but to be constant in each of the
regions 2 and 3. That is, the density is discontinuous across the contact
discontinuity. p1 , u, , p, , and P4 , u4 , P4 are the known and constant
conditions of the gas prior to the passing of the wave. Note that a
compressive wave is characterized by a higher pressure behind the wave than
in front ( p0 > p, or po > p4 ) while an expansion wave leaves a lower
pressure behind ( po < p, or P0 < P4 )'

Since the integral equations must be used for discontinuties in the flow
field, they will be used to derive the conditions behind the shock wave. The
expansion wave is not a discontinuity in the flow, so the less awkward
differential form of the equations of fluid motion will be used to derive
the conditions behind the expansion wave.

4



Chapter 1

THE EQUATIONS OF INVISCID FLUID MOTION

The conservation equations (or equations of motion) are.used three times
in the following chapters: in Chapter 2 for the derivation of the finite

difference equations that are used to compute the flux of properties into
the cell during the time step; in Chapter 3 to derive the shock wave
equations for the Riemann problem; and again in Chapter 3 to derive the
expansion wave equations for the Riemann problem.

To derive these conservation laws using a Lagrangian approach is

aesthetically more satisfying than using an Eulerian approach. In the
Lagrangian approach, a particular element of fluid is studied as it flows.

The control volume in this case is that which encloses the element of fluid
under study. It can change size and shape as it moves along in the flow
field, but unlike the Eulerian control volume, the mass within it is
constant. For this reason the Lagrangian approach seems more naturally

suited to the derivation of conservation laws.

Both the differential and the integral form of the conservation
equations are derived in this chapter. To arrive at the differential form

of the conservation equations, total derivatives of volume integrals are
expressed in Eulerian terms (the differentiation is moved inside the

integral) by use of the Reynold's Transport Theorem. This form is then used
to generate the finite difference equations (which compute the flux of

properties into each cell during the time step), and to derive the expansion
wave equations for the Riemann problem. The derivation of the shock wave

equations for the Riemann problem is facilitated by use of the integral form
of the conservation equations. This form results directly from a Lagrangian

derivation, as detailed in the latter portion of this chapter.

The Differential Equations of Motion

The Reynold's Transport Theorem is required for the derivation of the
differential equations of motion. In deriving the Reynold's Transport
Theorem, use is made of the Gauss Divergence Theorem. it relates a surface

integral to a volume integral and is written (ref 3):

f s 
'-
d a  - {v 7 .wdr

where w is any vector function of time and position, da is a scalar

element of surface area, f is a unit vector normal to du and directed
outward, and dr is a scalar element of volume. Replacing iido with dS

and dr with dV (also a scalar), the Gauss Divergence Theorem is written

J .dS - V. d

S V (100)
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For a scalar function of time and position (w), the Gauss Divergence Theorem
is (ref 3, eq. 9.124)

dS - $V dV (102)

Reynold's Transport Theorem

In the Lagrangian approach (figure 3), the moving mass of fluid being
studied is imagined to be enclosed by a moving control volume that may
change size and shape, but always contains the same mass; i.e. no mass
crcsses its surface. An observer ioviiig with thi Lagrangian control volume
can detect no change in a fluid property a with respect to any spatial
coordinates, since to him the control volume and any mass within it are
stationary. But the property a is changing as time passes, so in the
Lagrangian sense, a - a(t) only.

Of interest is the integral of the property a over the volume V:

I(t) - a(t) dV
V(t) (103)

Furthermore, the time rate of change of this integral is desired:

dI(t) d tdt - dt J a(t). dV
v" dt (104)

The fundamental theorem of the differential calculus is used to expand
eq. 104 to the following form.

d a 1 -C i(t+t) dV - (t)1dV
(t) a A v(t+At) V(t) (105)

The geometry of figure 3 is used to modify this expression to the following
intermediate form of the Reynold's Transport Theorem.

d J a(t) dV - ft (t)dV + a(t) [.S
v(t) M(t) s(t) (106)

Note that the time derivative of the quantity I(t) (eq. 103) at a certain
time t has been expressed in terms of quantities evaluated at the same time.
This has important implications for the explicit finite difference technique
being derived.
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The Gauss Divergence Theorem (eq. 101) converts the surface integral
into a volume integral, and eq. 106 becomes the following.

d V ~t d -f(t) [ Ict d
(t) at (107)

Equation 107 is the Reynold's Transport Theorem. It accomplishes two
things. Mathematically, it moves the differentiation inside the integral.
Physically, it relates Lagrangian terms on the left hand side to Eulerian
terms on the right hand side.

Conservation of Mass

In a Lagrangian frame of reference, the mass within the control volume
does not change. An element of mass within V is written pdV. The total
mass of fluid within V is

m - f pdV
Jv(t)

Since the mass does not change with time, the time derivative of the
integral must be zero.

dm - d pdV - 0

With the Reynold's Transport Theorem (eq. 107), eq. 111 becomes

d-f t V_ fv)[ 3o+;. ] dV_ o
(t) d ~ at+Vpv]d-

and since the volume is arbitrary (see also ref 4, pg 153), the only way for
the integral to be zero for all control volumes V is if the integrand itself
is zero at every point in V.

+- 0
at (112)

Equation 112 is the general differential form of the continuity equation in
the three dimensional case. For a one dimensional problem, it reduces to

+ a (pu) -

(
at ax7 (113)



Conservation of Momentum

The resultant force acting on the fluid within the control volume is
equal to the time rate of change of momentum.

EF - dM
dt (114)

Neglecting body forces (gravitational, electro-magnetic) and viscous
shear forces (inviscid fluid), the only force acting on the fluid within V
is due to the pressure acting on the surface of V.

Z-F - f p(-dS)
S (115)

Here the negative sign is required since dS is positive outward, but the
resultant force is to be positive inward.

The fluid within the control volume V changes momentum due to changes in
velocity resulting from its unsteady motion or its flowing around objects.
The momentum of an element of this fluid is (pdV)v. The momentum of the
entire volume of fluid is

V dV

Substituting this and eq. 115 into eq. 114,

- p -S _d p dV

The surface integral may be converted to a volume integral by use of the
scalar form of the Gauss Divergence Theorem, eq. 102.

- ;p dV - d a :c d

- dV dt (116)

The integral on the right hand side of eq. 116 can be converted to Eulerian
terms by the Reynold's Transport Theorem (eq. 107). Since a(t) in eq. 107
is a scalar, the quantity pv in eq. 116 must first be written in scalar
form. That is, the vector momentum equation will have to be rewritten in
its three equivalent scalar components first. For the present work, only
the x-momentum equation is of interest. Thus eq. 116 becomes

8



- dV _d frpudJ x tv

With the Reynold's Transport Theorem (eq. 107), this becomes

Since V is arbitrary,

F -(Pu) + V -puv + ap 10
a8t ax (117)

Equation 117 is the general differential form of the x-momentum
equation. Note that it is a scalar equation. For a one dimensional
problem, it reduces to

a i_ (Pu2) .
at (pu) + ax " - x (118)

This can be expanded to the following form.

U + (pu) + _u+ u ax - " x
PLI t ax " Ot ax P ax

But the term in brackets is zero by the continuity equation (eq. 113).
Thus the one dimensional momentum equation is:

au+ u I a
Ot x pax (119)

Conservation of Energy

The principle of conservation of energy states that the rate of change
of energy of the fluid within the control volume V is equal to the rate at
which heat is added plus the rate at which work is done on the fluid. The
energy balance is written:

Irate at which heat [rate at which work [rate of change ofi

is added to fluid + is done on fluid - energy of flui d] (120)
writhin V ithin V [within V d

Heat conduction and radiation in the fluid will be neglected. This is
permissible for the very short times being computed (milliseconds). Since
no mass enters or leaves the Lagrangian control volume, no heat can be
convected across S, the surface of V. Thus the first term in the energy
balance is zero.

9



The work in the second term is done by forces; since body forces and
shear stresses are being neglected, the only active force is due to the
pressure on S, pdS._ The rate of work done by this force on a fluid moving
at velocity v is pdS-v. The total rate of work done by the pressure
exerted on the fluid within V is

W ~ pv.dS
s 

(121)

where the negative sian is required to make W positive for pressure acting
inward, since p and dS are positive in opposite directions.

The specific energy of a mass of fluid is its specific internal energy
e, plus its specific kinetic energy, v2/2, where v2 = v.v, a scalar.
All other forms of energy (potential, chemical, etc.) have been neglected.

Since the mass of an element of fluid within V is pdV and its specific
energy is (e + v2/2), the total energy of the fluid within V is

E - rJ p[e + v2 /2] dV
V (122)

Substitute eq's. 121 and 122 into eq. 120, recalling that the first term in
eq. 120 is zero.

-f p -dS - d ,f p[e + v2/2] dV

The term on the left hand side is converted to a volume integral by the
Gauss divergence Theorem (eq. 101).

- f -Vp dV - d f p[e + v 2/2] dV

- V Vt

The term on the right hand side is simplified by the Reynold's Transport
Theorem (eq. 107). After rearranging, the following equation results.

{ ,, [ e + v2/2] + 7.p[e + v2/2]v + V.pv] dV - 0

Since V is arbitrary,

[ a- p[e + v2/2] + V.p[e + v2/2] + V.pv 1 - 0
at -(123)

10



Equation 123 is the general differential form of the conservation of energy.
For a one dimensional problem, it reduces to the following.

a p[e + u2/2] + ax pule + u2/2 + p] - 0
a pux e +(124)

The Integral Equations of Motion

In the Lagrangian approach, we consider a certain body of fluid as it
moves along in the flowfield. The integral equations are simplified by this
approach since the mass of the fluid element under study does not change
with time. As seen in figure 4, this fluid occupies a region of the x axis
from a0 (t) to al(t), and contains a discontinuity (shock wave) at x = (t).
Note that subscript 0 denotes conditions behind the shock wave, and
subscript 1 denotes conditions ahead. This is consistent with figure 2.

Conservation of Mass

In this one dimensional analysis we consider a unit area in the
direction of flow (i.e. perpendicular to the x axis). The mass of an
element of this fluid is then

dm - p(x,t) [ldx]

and the total mass of this body of fluid is

m - J p(x,t) dx
a0(t)

The mass of this fluid is constant; this is implicit in the Lagrangian
approach. The principle of conservation of mass follows directly:

d' a(t) p(x,t) dx - 0

--ao(t)

(125)

Conservation of Momentum

The momentum of an element of the fluid is

dM - p(x,t) [ldx] u(x,t)

so the total momentum of the body of fluid is:

11



1 Mii
M - J p(xt) u(x,t) dx

ao(t)

The only forces acting on our one-dimensional fluid mass are the
pressures at the ends, l.Po and -l.pl, where 1 is the area of each end.
Body and shear forces are neglected. Combining the fluid momentum, pressure
forces, and Newton's Law yields the principle of conservation of momentum:

d a j M p(xt) u(x,t) dx = po- p ,

ao(t)
(126)

Note that both velocity and pressure-force have been considered positive in
the +x direction.

Conservation of Energy

If the body of fluid is not undergoing any chemical reactions and has no
heat transferred in or out, we may assume it changes energy only because of
the work done by the external forces, lpo and l-pl. The rate at which work
is done (power) must be equal to the rate at which the energy of the body of
fluid is increasing. This is the conservation of energy.

Po does positive work at the rate of l.pou o
P, does negative work at the rate of l.plul

If e(x,t) is the specific internal energy and u(x,t)2/2 is the specific
kinetic energy, and all other forms of energy are neglected (chemical,
potential, etc.), then the total energy of an element of the fluid is

dE - [e(x,t) + u(x,t) 2 /2] p(x,t) [ldx]

and the total energy of the entire fluid mass is

fal(t)
E - J [e(x,t) + u(x,t) 2 /2] p(x,t) [idx]

am(t)

Finally, the conservation of energy follows.

d aict)

dt J [e(x,t) + u(x,t) 2 /2] p(x,t) dx = p 0 u 0 - plul
ao(t)

(127)
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Chapter 2

THE FINITE DIFFERENCE EQUATIONS

The following differential equations of motion for one-dimensional
inviscid fluid flow problems were derived previously.

a [P ]  + a [pu] = 0
ax (113)

a [pu] + Lx [P+pU2 ] = 0
at ax(118)

p(e + -)] + L pu(e +-+) = 0
[p e+ 2 ax 12 P -(124)

These equations are valid at any point in the flow field (and at any time)
provided the flow variables are changing continuously at that point (and
time). If points (times) exist in the flowfield at which the flow variables
are changing discontinuously, the differential equations of motion must be
integrated over some arbitrary but finite area containing the discontinuity.
In this way the discontinuity is made mathematically continuous.

For example, consider the pressure discontinuity in space (i.e. shock

wave) shown in figure 5. The derivative d is clearly infinite at x=b,

owing to the pressure discontinuity at that point. This difficulty would
made an equation like eq. 118 meaningless. However, if the derivative is
integrated over some finite interval containing the discontinuity, the
result is well behaved. The discontinuity can be written mathematically
with the help of the Heavyside step function (ref 3).

H {-) 1 x> b
H~x-) - 0 x < b

Thus the pressure function pictured in figure 5 is written as follows.

P(X) - P 1 + [P 2 - p1 ] H(x-b)

The derivative of this discontinuous function is of concern. The derivative
is integrated over a region containing the discontinuity, say x=a to x=c.

13



di dx - [Cd[ -,)~xb ' H dx
dx dxL I

- (P 2 -pl) If H'(x-b) dx
a

Notice that p, and P2 are constant in the region of integration. Since the
integral of a derivative of a function is simply that function, the integral
above is simply the Heavyside function evaluated at x=c minus the function

at x-a (1 and 0 respectively, by definition). The original integral is
rewritten, showing that the discontinuity has been mathematically avoided:

d) dx - (P2 -Pl)dx

Since discontinuities in the flow field can exist in either time or
space, the differential equations of motion must be integrated twice.

Consider an arbitrary flow variable O(x,t) (density, momentum, or energy) as
shown in figure 6. Notice in the figure that the letters f and F are used
to indicate the value of the fluid property 0 on the boundaries of the cell.

These will be discussed in greater detail below. The derivatives of the
property 0 are integrated over the x-t region shown in figure 6.

tf1 x1 ax dx dt - [ x a dx] dt

t - x tx

n m n m

f 'n1 (X ,t) _ (X ,t ) ] dt

t
n 

(201)

Here O(x ,t) is the instantaneous value of 0 at the point x , so O(x ,t) is am
function of time only. It is now assumed to be constant over the time step
(from tn to t n+1), although it may vary from one time step to the next. A

similar assumption is made about O(x 1 t). Denote these values by F and Fn 1 m m.1"
These two values are defined by the following expressions.

Fm - f nt (Xmt) dt

t
n (202)

F f -
n 1 (x 1,t) dtFM+ " rr. "

t
n (203)
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That is F is a time averaged value (over a single time step) taken along the
beginning or ending cell boundary. Henceforth, all upper case variable
names (R for density, U for velocity, E for energy) will represent such time
averaged values. They are also the fluid properties behind the waves that
are imagined to emanate from the cell boundaries due to the discontinuities
in fluid properties that exist there. They are found by solving the Riemann
problem at the boundary, which is detailed in chapter 3. Substitution of
eqs. 202 and 203 into eq. 201 yields the desired result.

f t1 x 1 1 dx d t  r F F ]

t x ax - F I
n m 

(204)

The time derivative of 4 is integrated in an analogous manner.

fM1 tn+1 U dt dx - a [ t n dt dx

x t x ft at
m n m n

I J x M+1 I O(xt 1n) - O(xt)I dt

x
m ~(205)

Here O(x,tn) represents the value of 0 at any point at the time t ; that

is O(x,t ) is a function of x only. It is now assumed to be constant overn
the srace step (the I-D analogy of the 2-D computational cell) xm to x

although 4 may vary from one position (space step) to the next. A similar

assumption is made about O(x,t n+). These average values are denoted by

f 1/2 and flfl+/2 (see figure 6). In this notation, the m1/2 denotes tha

average value over the x interval from m (i.e. x ) to m+1 (i.e. x ), the
superscript denotes an average taken at the end of the time step, n+1, and

the subscript denotes an average taken at the beginning of the time step, t

The average value of a property may be written in the following manner. n

f,+1/ 2 1- 1 (X,t 1 ) dx

"X m (206)

f 4/2 - 1 0(x, tn) dx

m (207)
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Thus f is a space averaged value (over a single space step) taken at either
the beginning or end of the time step. Henceforth, lower case variable
names (p for density, u for velocity, and e for energy) will be used to
denote the fluid properties that exist within the cell. They have been
assumed to be constant within the cell. Notice that the spatial averaging
procedure forces any discontinuities in the flow field to be displaced to
the border of a computational cell. Substitution of eq. 206 and eq. 207
into eq. 205 yields the desired result.

fxJ 1 tn+1 -1 dt dx - h [f f/2 ]
x ft atM12

m n (208

Conservation of Mass

As previously noted, the differential equations of motion must be
integrated over time and over space in order to be valid for flow fields
containing shock waves. Equations 204 and 208 provide tools for performing
numerical integrations of these equations. Begin by integrating eq. 113.

fl x ] + 8 [Pu dx dt - 0

ft --X
n M

t x p 1 dt dx + tx [pu] dx dt = 0-X -t t x

m n n m

Note that reversing the order of integration for well behaved (constant)
functions presents no mathematical difficulty. With the help of eqs. 204
and 208, eq 113 is reduced to the finite difference form.

P m1/2 P [RU] [RU]mm112 - I h [R[ ] 1 (209)

This relates the density in the space step (x to x M) at time (tn+ 1) toknown values in the space step from the previous time step (t).

Conservation of Momentum

Integrating eq. 118 leads to the following.

Jt + 1 X~ [xM [jPu] + i- [p+pu 2 ] J dx dt - 0

t x
n 1

16



rt 1 [pu] dt dx + n M [p+pu2] dx dt = 0
f at [ 2 d x c itx

x t t X
m n n m

Again eqs. 204 and 208 are used to reduce this to the finite difference
form.

[pulM 1 /2  - [pul [P+RU2 ] [P+RU2 ]
m+1/2 h [PM+.1 - R 1 (210)

Equation 210 relates the momentum in the space step at time (t+) t9

known values in the space step from the previous time step (t).

Conservation of Energv

To obtain the finite difference form of the Conservation of Energy

equation, begin by integrating eq. 124.

t X 2  2jue )
t 1  [ [p(e+i )] + [pu(e+2 +2 dx dt = 0

ft -x at +2 ax 2 p
n m

I +1 n1 a[ u 2 )tn+1Xm+1 a U2+D
f t[P at ] + IX x[PU(e+ - +)] dx ct 0X t t X

M n n M

Again, eqs. 204 and 208 are used, with the following result.

p(e+2 2 ) ] -W /2  -. [p(e+2 ))

- "[[RU(E+ -] - [RU(E+l
h U2 PR 2 R

Equation 211 relates the energy in the space step at time (t )to known

values in the space step from the previous time step (t).
n

Equations 209, 210, and 211 form the basis of the finite difference
technique utilized. Recall from figure 6 that the lower case letters
indicate space averages at a particular instant, and the upper casec

indicate time averages at a particular location.

The same results can be obtained more formally (but less physically) Iv

use of the two-dimensional Green's Theorem, which relates a surface integral
to a contour integral.

17



Chapter 3

COMPUTATION OF THE RIEMANN PROBLEM

The essence of Godunov's method lies in the technique used to estimate
the assumedly constant properties on the cell boundaries, as depicted by
upper case letters (e.g. F in figure 6). Each boundary is considered as a
Riemann Problem (or shock tube analogy) as discussed in the Introduction
above. The equations describing the constant (in time) fluid properties
behind the vaves resulting from the resolution of the discontinuities at the
cell boundaries will now be derived. The two types of waves that may result
(expansion and compression, or shock) will be considered separately.

Shock Wave Equations

Recall that each computational cell is assigned an average value for
each property, and this average value is considered constant throughout the
cell. The difference in value from one cell to the next results in a dis-
continuity at the common cell boundary. If the resolution of the discon-
tinuity (the rupturing of the diaphragm in the shock tube analogy) results
in a shock wave, its properties may be computed using the integral equations
of motion, equations 125, 126, and 127, as shown below. (ref 5 and ref 6).

Note that the three integral equations of motion involve integrals of
the following form.

a 1(t)

I(t) - f f(x,t) dx
Ja Ot)

(301)

where f(x,t) represents p, pu, or p(e+u
2/2), and is discontinuous at x (301

as shown in figure 7. Note also that the subscript I denotes conditions
ahead of the discontinuity, while subscript 0 denotes those behind. The
conservation laws require evaluation of the derivative of eq. 301.

d I ~ pa1(t)
dt J f(x,t) dx

-- dt ao(t)
(302)

Since f(x,t) is discontinuous at x , the integral is split as follows.

d- I t ) " _ 1 . fm a (t) 6
dt ~ { lym f(x,t) dx + f(x,t)[({+E)-( -E)]

dt dta
0 (t)

f a (t) ,f( t) dx]

18



where f(x,t) is (by the mean value theorem) some value between the minimum
value of f(x,t) (fl) and the maximum value (f0 ) in the interval [±e]. That
is, f(x,t) is finite. Since the term in the large curly brackets above is
a limit of the sum of three well behaved functions, the order of the
operations may be reversed and the sum of three limits may be substituted.

d-l(t) - d1 [ |r f(x,t) dx + li 2ef(x,t)
dt e-m d {ao(t)

'a 1(t)

+ I [~ ,f(xt) dx]}

Since f(x,t) is finite, the second limit term is zero. Furthermore,

r r (t)-E 1 f[(t)
1- L f(xt) dxJ- f(x,t) dx

ao(t) ao(t)
a it) 1a(t)

li f(x,t) dx f(x,t) dx

So eq. 302 may be written:

d_ d ( ) d g[a1(t)
d- (t) - a0(t) f(x,t) dx + dt f(x,t) dx
dt dJ Jt d

(303)

Leibnitz' rule (ref 3) states that if

J(t) - falf(x,t) dx
-a o~t)

then

dt ( - d f(x,t) dx

_ ao(t)

al(t) 8f(x.t) dx + f(alt) - f(a t)

at dt ' dt
ao(1t)
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With this, eq. 303 becomes

d )- F(t) af(x.t) dx + fo(,t) f(a o t)d 0TI f (t) at t0r
ao(t)

+ a (M af(x.t) dx + f(alt)d _ f I t)d t

+ (t) at dt ' t

where fo( (t),t) and f,( (t),t), or more simply fo and fl, are shown
in figure 7. Also,

dao  . daO I di l
dt u  

' dt -u, ' dt

Note that W is the wave velocity, measured relative to the fixed frame of
reference (the x axis), and make the following substitutions.

dI(t) - (t a dx + at a dx
--ao(t) f (t)

+ foW - f(aoMt,t)u + f(a 1 (t),t)u, - fjW

Now shrink the interval so that it contains only the discontinuity. Thau.
is, let ao - and a, - . Note the following limits:

lim a dx - 0aet f "ao M at

limJ af(x.t dx - 0

lim f f(ao(t), t) ] fo

lim f f(a, (t), t) ]-f,

a i't I

With these substitutions, the integral equation is reduced to an algebraic
equation.
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dt
dl(x,t) - 0+ 0 + f0W - foUo + flu 1  f1W

dt
tl(x,t) - f1(u1-W) - fo(u 0-W)

Combine this with eq. 302 to obtain the following result.

d (t)
dt tf(x,t) dx - fl(u 1 -W) - fo(uo-W)

(304)

Recall that subscript 1 denotes conditions on the leading edge of the
shock wave, and 0 denotes those on the trailing edge. W is the velocity of
the shock wave relative to thc fixed frame. Equation 304 may be used to
reduce the integral equations of motion (eq's. 125, 126, and 127) to
algebraic equations relating the flow parameters across the discontinuity.

First combine eq's. 125 and 304 to obtain the continuity equation in
algebraic form.

p1 (u1 -W) - po(uo-W) - 0

Define

w - W - U l

(305)
as the velocity of the wave relative to the fluid into which the wave is
propagating. With this substitution, the continuity equation becomes

p1[u1 -(w+ul)] po[uo-(W+U1 )] = 0

j91 i i + Ul- 1
P 1w Pi Po I 1

P1JW [ I I + E uI - 0
(306)

The square brackets in eq. 306 indicate the change in a discontinuous
quantity across the shock wave. For the case of a positive running wave
(W is positive), let the mass velocity of the wave (the mass of fluid swept
over by the wave in a unit time per unit area [ref 7]) be denoted by b,
where

b - plw

(307)
so that eq. 306 becomes

b [1 ] + [u] (38
1(308)
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For the case of a negative running wave (W is negative), the mass velocity
is denoted by a, as follows.

a - -plw
(309)

Substituting into eq. 306 yields the conservation of mass for the negative
running wave.

a [-] - [u] -0
p (310)

Comb-ning eq. 126 and eq. 304 yields the momentum equation in algebraic
form.

plu 1 (ul-W) - poUo(Uo-W) - Po-Pi

Substitute eq. 305.

P 1u[u1-(w+u 1 )] - poUo[Uo-(W+U1 )] - (Po-Pl)

Rearrange:

-Plw(u1 -uo) + (pi-Po) - -poU 0  P1w i -Pl ] + (ujuo)}

The quantity in curly brackets is zero by the continuity equation (eq. 306).

Plw(u1-uo) - (Pi-Po) - 0
(311)

For a positive running wave, substitute eq. 307.

b(ul-uo) - (PiPo) - 0

or with the bracket notation,

b[u [p] - 0
(312)

For a negative running wave, substitute eq. 309.

-a(u1-uo) (pi-Po) - 0

or with the bracket notation,

a[ u ] + [ p ] - 0
(313)
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Finally, combining eq. 127 and eq. 304 yields the energy equation in
algebraic form.

2 u
2

p 1 (e1+')(u,-W) -po(eo+I°)(uo-W) - (poUo-plul)

For simplicity, let

U
2

and substitute eq. 305.

P1fI[u1-(w+uI)] - pofo[uO-(w+u1 )] = (pouo-plul)

Rearrange:

Piw(ei-o) - (plul-pouo) = Po6o p w ]+ (u-u)

Again the term in the curly brackets is zero by the continuity equation,
eq. 306.

piw(e1 -60 ) - (plul-poUO) - 0

(314)

For a positive running wave, substitute eq. 307. With the square bracket
notation, the energy equation is written

uL
2

b[ e + 2 -] [ p J 0 (315)

For a negative running wave, substitute eq. 307. With the square bracket
notation, the energy equation is written

a[ e + 2- + [ pu ] 0 (316)

The shock wave equations are summarized in Table 1. The square brackets
denote jump conditions across the wave, and now subscripts are as denoted in
figure 2.
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Positive Running Wave Negative Running Wave

br] + [u] -o a[ u] - [u 0

b[u] p ]-0 a[ u ] + [p ]=0

be+ ] [pu] -0 a[e+ ] + PU 0

b -p 4 w a - -plw

Table 1. Equations relating flow parameters across a discontinuity.

The next task is to evaluate a and b. To do so, the positive running
wave and the negative running wave must be considered separately. A
negative running compression wave (figure 2) is characterized by Po > p,.
Equations 310 and 313 are combined to eliminate the velocity by solving
Eq. 310 for [u] and substituting the result into eq. 313.

a[a(i)] + [p] - 0
p

[P 4 -po 1/2

a - -1l-J

(317)

For an ideal gas (see Appendix A),

1 - [ 0-- ±)lo + (-1+)P, 1
P3 (+l)Po + (-l)P 4  P4

When this is substituted into eq. 317 and the terms rearranged, the result
is the following equation for the mass velocity of the negative running
compression wave.

a- yp4~o 1 - -Y [ 1 R 0o 112

(318)

The positive running compression wave (figure 2) is characterized by

PO >pI. The above steps are repeated, this time using equations 308 and
312. Equation 308 is solved for [u] and the result is substituted into
eq. 312. When the actual pressures and densities from figure 2 are used in
place of the bracket notation, the result is the following.
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[ p1 "Pol11/2

a- - - 1

(319)

For an ideal gas (see Appendix A),

1 - [ 7-1)31 + (+l)Po 1
P [ (7+l)p1 + (7l)PO P2

When this is substituted into eq. 319 and the terms rearranged, the result
is the following equation for the mass velocity of the positive running
compression wave.

b - /-p 1p 1  2-y- PI [1 i P ] 12
I (320)

Expansion Wave Equations

The differential equations of motion are valid across an expansion wave.

To reiterate, these are:

a(p) + (pu) -0
(113)

au+ u 1 a
at ax pax (119)

a [p(e + )(e +-+ ) 0
at L 2 J ax 2P (124)

Equation 124 will not be used in this form. It will be replaced by the
isentropic gas law,

- - constant

(321)

since flow across an expansion wave is adiabatic and reversible. From eq.
321, p-p(p) only, so

ax dp ax (322)

Also, one can show (e.g. ref 4) that for weak waves, u = u(p) only, so
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at du at (323)

and
ag do au
ax du ax 

(324)

so that eq. 322 becomes

- dn d. au

ax dp du ax (325)

Substitute eq. 325 into eq. 119.

au + au 1 ! do auat + u x "p dp du ax(36 (326)

Now expand eq. 113,

2_2 + Ua'x + Pau -0
at ax ax

and substitute eq. 323 and eq. 324.

d au + Udu + Pa-u
du at dx I 

0

d[ au au] au
du at ax ax

Now substitute eq. 326.

d.g E1 R~ d
du [ dp duX + x

ax p dp [du j

But d_ # 0, so the quantity in curly brackets must be zero. That term is
dx

set equal to zero and rearranged, with the following result.

22
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Since flow across an expansion wave is isentropic, d - c2 , where c is the

speed of sound (ref 4). Substituting this, taking t e square root of each
term and rearranging results in

du - ± C dp
P (327)

where the positive sign indicates the wave is moving in the positive
direction (ie positive running wave), and the negative sign indicates the
wave is moving in the negative direction (ie negative running wave).

Equation 327 must be integrated to find the conditions within the
expansion wave. First, substitute for the speed of sound of a perfect gas,

c - J-p/p

so that eq. 327 becomes

- ± I 1/2

L 3 d(328)

From eq. 321,

R Pi

- constant - --
P P1

Whcre the known conditions ahead of the expansion wave (subscript 1 in the
case of a positive running wave as shown in figure 2) have been used to
evaluate the constant. Solving for p and substituting into eq. 328,

du } dp

Now integrate over the whole expansion wave in order to relate the
conditions behind it (subscript 0) to those ahead (subscript 1).

2du - ± [[ p(,' 3 )/ 2 dp

0 -- P1 2
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Rearrange this and substitute the isentropic gas law (eq. 321) in the
following form:

[- P-1 /
P1 Pi

to obtain

- + -T [ ypl ]112 [1 - [ ]( )/' ]
When the right hand side is multiplied by

121-"vol
(Pi-Po)

and the terms rearranged, the equation reduces to the following simplified
form,

± K(u 1-u0 ) - (P-po) - 0
(329)

where

-y l [pO/p 1)/27} (330)

Again, the positive sign in eq. 329 is associated with the positive running
wave and the negative sign is associated with the negative running wave.
From figure 2, conditions ahead of the positive running wave are denoted by
subscript 1, while conditions ahead of the negative running wave are denoted
by replacing the subscript 1 in eqs. 329 and 330 with a subscript 4. The
pressure and velocity behind either wave is denoted by subscript 0. Using
the square bracket notation to represent conditions across the expansion
wave, eq. 329 can be rewritten

± K[u] - [p] - 0

(331)

Finally, let a - -K and b - +K. This is done so that the equations are
similar to the momentum equations for the shock wave, eqs. 312 and 313.
This substitution will simplify the final computer program.
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For the negative running expansion wave (p,>po),

a[u] + [p] -0
(332)

where

a - 271 4[Po/p ](
2-y4 l[Po/P1 71/2-1

j (333)

and for the positive running expansion wave (pi>po),

b [u] - [p] - 0
(334)

where

b~ ~ ~ -Y-[PO/ip]

2-yp [PO/pi(335)

Generalized Conditions Behind a Wave

Attention is now turned to the practical problem of using the equations
derived above to solve the Riemann problem at a particular cell boundary.
Notice that the momentum equation for the negative running expansion wave,
eq. 332, is identical in form to that of the negative running compression
wave, eq. 313. The only difference is in the equation used to evaluate the

mass velocity a. Thus any numerical scheme used will have to test to see if

p4 is greater or less than Pa and then use the appropriate equation to
compute a. A similar arguement can be made for the positive running waves

and the value of b. With these differences in mind, the different forms of
the variables a and b are momentarily disregarded. Thus for the negative

running wave, expansion or compression,

a[u] + [p] - 0

or

a(u 4-uo) + (P4 -Po) - 0
(336)

and for the positive running wave, expansion or compression,

b [u] - [p] - 0

or

b(u1 -uo) - (Pl-Po) - 0
(337)
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Solve eq. 336 for Po-

P0 - au4 + p4- auo
(338)

Solve eq. 337 for uO .
1

uo- (PO-pi) + u1 b (339)

Now substitute eq. 339 into eq. 338.

Po = au4 + P4 - b (PoPl) au,

After rearranging,

bp4 + ap, + ab(u 4 -ul)

Fo " a + b 
(340)

Now substitute eq. 340 into eq. 339 and rearrange to obtain the following.

au, + bul + (p4-pl)
U° - a + b (341)

Equations 340 and 341, when combined with the equations for a and b,
are highly nonlinear. They must be solved iteratively for p0 , a and b,
after which uo is found easily. The iterative technique used in this work
is discussed in detail in Appendix B.

In the case of weak (sonic) waves, approximate formulae may be used to
compute Po and u0 . These approximate formulae eliminate the need for
iteration and significantly reduce computer time. Experience has shown that
the full nonlinear equations need only be used when the cell is in proximity
to an actual shock wave in the flow field. A comparison of the magnitudes
of pressure in the two adjacent cells suffices to determine the need for the
nonlinear equations when computing the Riemann problem on any particular
boundary.

Weak waves result from the resolution of the discontinuity at a cell
boundary when the fluid conditions (velocity, density, pressure) in the left
and right cells are nearly equal. In most cases the grid cell size can be
chosen small enough that the average properties in any two adjacent cells
are nearly equal. In this way, the approximate formulae may be used
everywhere except in the neighborhood of a discontinuity in the actual
flowfield. In this case large differences in properties will exist across
boundaries of adjacent cells. Note that the distinction between expansion
and compression waves is unimportant for weak waves.

The essence of the approximation lies in the assumption that weak waves
will travel at the local speed of sound. Thus the velocity of the negative
running wave is
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w - vp4/P4

In terms of the mass velocity a (eq. 309) this is

w - a/p 4

Equating the two forms yields

a - /-yp 4p4
(342)

for a sonic wave. The pressure and density in the negative-most cell can be
written

P4 + P1  P4 P1

P4 - 2 + 2

P 4 + P1  P4 - P1

P4 2 + 2

For small differences in pressure and density, the second term in each
expression is seen to be much smaller than the first, and may be neglected.
Substituting the remaining expressions into eq. 342 gives the mass velocity
of the negative running sonic wave.

P4 + P1 P4 + P1

f (343)

For the positive running wave, the mass velocity is

b - yp p 1

where the pressure and density in the positive-most cell may be written as

P1 + P 4  P1 - P4

P1 - 2 + 2

Pi + P4  PI P4

P1 2 + -2
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Again the second terms are neglected, and the remainders used in the
expression for b.

b { [ P P 4 + P1

(344)

So for small differences in the fluid properties in the two cells, the mass
velocities of the two waves are considered equal. This is valid because the
density and pressure are nearly equal in the two cells. Combining eq. 343
and eq. 344,

~FP4 + PI P4 + P1a zb jYL 2 ][ 2

f (345)

With a - b, the momentum equations for the negative and positive

running weak waves are:

a[u] + [p] - 0 (negative running wave)

a[u] - [p] - 0 (positive running wave)

With the subscript notation of figure 2, these are written

a(u 4 -Uo) + (P4 -Po) - 0
(346)

a(u 1-uo) - (Pl-Po) - 0
(347)

Equation 347 is subtracted from eq. 346 and the result rearranged to obtain

Pi + P4 u 4 - U1

PO 2 + a 2 (348)

Equation 347 is added to eq. 346 and the result rearranged to obtain

ul + U4 iP4 -P1

u° - 2 +a 2 (349)

In summary, the linear approximations to the solution of the Riemann problem
at a cell boundary are:

Pi + P 4  u4 - U1

PO 2 + a 2
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(348)

ul + u 4  IP4 P

u 0 " 2 + a 2 (349)

P4 +  Pl P4 +  P1

(345)

These equations apply to weak waves, whether they are expansion or
compression, negative running or positive running. Unfortunately, the
situation is slightly more complicated for determination of density. As
seen in figure 2, the density behind the waves is different on each side of
the contact discontinuity. The density behind the negative running wave
(expansion or compression) is (see Appendix A)

F ( o +p (v-I)4 1
S(7_l)Po + (7+l)p 4 J

(350)

and the density behind the positive running wave (expansion or compression)
is (see Appendix A)

P2 (-Y+)Do +1 (351)
S (7-1)Po + (7+l)pl 3

The Computational Scheme

A typical Riemann situation is shown in figure 8. The discontinuity at cell
boundary m has resolved itself into two waves. The conditions ahead of the
waves are known from the previous time step. The conditions at the cell
boundary (denoted by uppercase letters) are sought, so that fluxes across
this boundary may be determined. Four possible outcomes exist, depending on
the direction of propagation of each wave. The fluid properties behind the
wave are given in Table 2 for each case. In all cases, the energy is found
from the equation of state. Using the subscript notation of figure 2, and a
and b for the mass velocities, the absolute velocities of the waves are

+ b
w - ui +h Pi(positive running wave)

(352)

- 4  awae

u4  -- (negative running wave)P4
(353)
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Case 1. w and w are both positive.

N N t U -u

3 --- 2  R p,

4 1 P- P

x

+

Case 2. w and w are both negative.

t i U u o
3 I 2

4~ 1 P34 IP - Po

x

Case 3. w and w have different signs; u0 is positive.

tU - Uo

-+ R - P2

P - Po

Case 4. w and w have different signs; uo is negative.

Table 2. Fluid properties behind the waves emanating from the cell
boundary for all four possible conditions.
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Chapter 4

SAMPLE PROBLEM 1
Shock Wave Reflection from a Wall

Theoretical Study

The reflection problem may be stated as follows. Fluid flows steadily
in a one dimensional pipe at a velocity of ul - V, as shown in figure 9a.
At x - 0 and t - 0, an ideal valve is instantaneously closed, stopping the
fluid motion at that point. The problem is to determine the resulting fluid
motion (figure 9b).

Nature reconciles this seemingly impossible situation by creating a
compressive wave in the incoming fluid. This wave travels into the incoming
fluid, and is precisely of the proper strength required to leave the fluid
behind itself motionless (the same velocity as the wall).

In deriving the equations describing this process, a positive sense is
assumed for both the incoming fluid and the reflected wave, even though they
must be of opposite sense in any real problem. As with all derivations, the
proper technique is to assume positive for the derivation, and substitute
positive or negative quantities (as the case may require) into the resulting
equations. The benefit of this in the present case is to allow a single
derivation for both reflection problems: the wall at the left (incoming
fluid velocity is negative and reflected wave velocity is positive) and the
wall at the right (incoming fluid velocity is positive and reflected wave
velocity is negative).

The following notation applies to the flow field. The variables are
shown schematically in figure 9b.

Subscript 1: conditions ahead of the wave
Subscript 0: conditions behind the wave

u: absolute velocity of the fluid
W: absolute velocity of the shock wave
v: velocity of the fluid relative to the wave

Equation 305, relating fluid velocity relative to the wave, will be required
in the following forms.

V - U O - W

(400)

V i - u1 - W

(401)
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From Appendix A, the conservation equations relating conditions across a
shock wave are:

pivi - poVo
(501)

Pi + PiV2 - Pa + poV2

(502)

el + P- + v2 - eo +P° + v2
P1  

P0

(503)

Also from Appendix A, the equation of state of a perfect gas is:

1- P (511)

From figure 9b, u, - V and u0 - 0, so the fluid velocities relative to
the wave (eqs. 400 and 401) are as follows.

V 0 - -W
(402)

vi - V - W
(403)

The conservation equations (eqs. 501 through 503) can be reduced to a
more useable form, as follows. Begin by substituting eqs. 402 and 403 into
eq. 501 and rearranging.

Po - Pi(l - V)
W (404)

Substitute eq. 402 and eq. 403 into eq. 502 and rearrange, then substitute
eq. 404 to obtain the following.

PO - Pi + PIV 2 (l - W) V (405)

To modify the energy equation (eq. 503), substitute eqs. 402 and 403. The
equation of state (eq. 511) is written twice (once for subscript 0 and once
for subscript 1) and substituted into eq. 503. Next, eqs. 404 and 405 are
substituted, with the following result.

2-1 P ] + 2-WV +V
2 -2WV = 0

Finally, divide through by V, since V # 0 (trivial solution), multiply by

(V-W), and rearrange to obtain the following quadratic equation in W.
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-, V] W - 1-P 2 I2 -0

The solution of the quadratic equation is

- = [ ( V)2 + -Yl V2 + 7P

(406)

For the present, wave reflection from a wall at the left is to be computed.
For this case, the incoming velocity is negative, and we are looking for a
positive wave velocity. For this example problem, the following values are
given (ref 8):

V - -428 m/s (to the left)

P1 - 1.225 kg/m
3

P1 - 101,300 n/m
2

- - 1.4

When these values are substituted into eq. 406, the wave velocity is either
of the following.

+255 m/s

W - -590 m/s

Consistent with the problem statement, the positive velocity is selected.
This is substituted into eqs. 404 and 405 to obtain the remaining properties
of the reflected wave.

W - 255 m/s

P0 - 3.280 kg/m3

P0 - 459,400 n/m
2

Numerical Study

The reflection problem stated above was solved by the Godunov method in
order to test its ability to predict shock wave reflection from a wall.
This phenomenon plays an important part in the problem which ultimately will
be solved; a hypervelocity jet travelling through a cylinder.

The one dimensional computational grid is shown in figure 10. It shows
the left and right boundaries, and a typical cell boundary (m). Each fluid
property in the domain (velocity, density, pressure, energy) is discretized
by assigning some average value in each cell. These values are constant
throughout the cell, and are denoted by lower case letters (u,p,p,e). As a
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result of this discretization, a discontinuity exists at each cell boundary.
The discontinuity is resolved by expansion or compression waves that emanate
from the boundary. The constant fluid properties behind each set of waves
(i.e. at the boundary) are denoted by upper case letters (U,R,P,E). Sub-
scripts for average cell properties (u,p,p,e) are denoted by the letter i,
while subscripts for boundary values (U,R,P,E) are denoted by the letter m.

Boundary conditions are provided by virtual cells (shown dashed in
figure 10) at the wall and upstream. Reflection conditions at the wall (m -
0) are provided by assigning density, pressure, and energy in the virtual
cell to be equal to those of the first cell, while the velocity in the
virtual cell is set to the negative of the velocity in the first cell. This
antisymmetric condition guarantees that the fluid velocity at the wall will
be zero.

On the downstream boundary, free stream conditions are specified in the
virtual cell for all time. This boundary condition may cause a disturbance
to propagate into the computational domain. Consequently, the domain was
made large enough to insure that the disturbances would not reach the
computational region of interest for the length of time being computed.

The following initial values are provided to begin the computation.
The energy was found from the equation of state, eq. 511.

u. - -428 m/s

p- 1.225 kg/m
3

pi - 101,300 n/M
2

The flow chart for the one dimensional code is shown in figure 11. A
listing of the code is given in Appendix C (this is actually the code for
sample problem 2, the shock tube, so the boundary conditions are different).

Results are presented graphically in figures 12 through 15. The code
predictions are in excellent agreement with the theoretical determinations
made above. Figure 12 shows the fluid velocity at three different times
after reflection. At t - .001 s for example, the reflected wave is
about 0.25 m from the wall. The fluid velocity ahead of the wave is 428 m/s
(to the left), while the fluid velocity behind the wave is zero. The wave
propagates to the right at a velocity of 256 m/s (the theoretical value was
255 m/s). The shock is spread over one cell (0.10 m); the fluid velocity is
zero at x - 0.20 m and -428 m/s at x - 0.30 m. This typical result is the
best possible resolution with this finite grid.

The density shock wave is seen in figure 13. The predicted density in
the first cell is low by about 5%, but all other cells are within 1%. The
problem in the first cell is discussed by Godunov in ref 2 (paragraph 6).
He believes that the system "errs in entropy" in computing the unsteady
portion of the reflection process. No attempt was made here to correct the
problem, since it only affects the first cell. The pressure shock (figure
14) and the energy shock (figure 15) are also in excellent agreement with
theory (within 1%), although the energy curve shows a slight distortion at
the wall due to the density error there.
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Chapter 5

SAMPLE PROBLEM 2
The Shock Tube

Experimental Results

An experiment was conducted in the BRL 2-inch (51 mm) shock tube to
check the predictions of the one-dimensional code. Figure 16 is a
photograph of the shock tube and the instrumentation used. The main
components of the instrumentation shown in figure 16 are quartz pressure
transducers and a four channel digitizing oscilloscope. Dimensions of the
shock tube are given in figure 17. The ends of the shock tube were closed
in order to reflect the waves.

Each test began with air at atmospheric pressure and temperature in each
section of the shock tube. The two sections were separated by a 0.002 inch
(0.05 mm) mylar diaphragm. Pressurized air at room temperature was
introduced slowly into the driver secton until the diaphragm ruptured.
Figure 18 shows a typical diaphragm after rupture. A total of five tests
were done, but the results of the first were erratic so were disregarded.
The data from the remaining four tests was averaged and this average was
used to compare to the code prediction.

The table below gives the data that was manually recorded for each test,
and the averge value used in the code verification.

Test 2 3 4 5 AVG
Driver Pressure, psig 61.5 59.1 60.1 58.6 59.8
Room Temperature, °C 25.3 26.4 27.1 27.7 26.6
Atmospheric Pressure, psia 14.83 14.83 14.83 14.83 14.83
At2 3 , As 212. 215. 213. 216. 214.

The output from the pressure transducers was stored in the digitizing
oscilloscope. Immediately following each test, the data was reduced by a
microcomputer (shown in figure 19) and stored on tape for later plotting.
These plots are given in figures 20 - 23, the pressure-time trace for each
gage on each test. These data were also averaged, and plotted as the
circles in the graphs at the end of this section.

The utilization of the data in figures 20 - 23 begins in time with the
arrival of the first shock wave. This is of necessity t - 0, since the
oscilloscope does not trigger when the diaphragm breaks, but rather writes
continuously. Similarly, data after about 8 msec (station 1) or 9 msec
(station 2) is not useful, as it is altered by a small shock wave that is
reflected from the remains of the diaphragm (resulting from the main
reflected wave which is by this time travelling back into the driver section
after its reflection from the wall in the driven section). Data from
station 3 was not used in this evaluation.
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Experimental Chamber Pressure Correction

While the code assumes an ideal diaphragm rupture, in reality it never
is. Some of the energy of the gas in the driver (chamber) is consumed in
this non-ideal rupture. This pressure loss is well known to shock tube
researchers, having been discussed in 1950 by C. W. Lampson (ref 9) of BRL.
This loss can be corrected when predicting shock pressure by reducing the
measured chamber pressure by some amount, and then assuming a perfect
diaphragm rupture. To determine this "diaphragm opening coefficient",
theoretical shock pressures must be computed. (Other factors contributing
to inaccuracies are viscous effects, including the effect of the boundary
layer on the gage reading, and the finite volume of gas in the driver
section.)

To obtain an independent comparison, the following nonlinear equation
for shock pressure is taken from Anderson (ref 4).

24 P-0 1 - - a . P i1Pi Pi [27 [27+ (j+ I ) (20- ) ]p 1
PiP p 1 {

where P4 - initial absolute chamber pressure

p, initial absolute driven section pressure

Pa - pressure behind the resultant shock wave

Since the gas in both sections of the shock tube is initially at the same
temperature, the sonic velocities are equal: a, - a4 . For air (7 = 1.4) the
equation reduces to

P 4 - P 0  
1 (Po/Pi)

-J77+6((p0/pl)-l)]

For the problem at hand, p, is atmospheric pressure (.102 MPa during this
experiment).

To determine a theoretical curve of shock pressure (p.) vs chamber
pressure (P4), one needn't solve the above non-linear equation for po.
Instead, values of p0 are substituted and P 4 is computed. The results of
this are plotted in figure 24. Also shown is experimental data supplied by
G. Coulter of TBD, BRL. The difference is apparent. Close examination of
the curves shows that the experimentally determined chamber pressure should
be reduced by 5.5% (in the region .480 : p : .540 mpa) to account for losses
in the non-ideal diaphragm rupture. That is, in an experimentally
determined chamber pressure of P 4 , 5.5% of it is consumed by the diaphragm
rupture, leaving .945 P4 to form the shock wave. Consequently the chamber
pressure used in the code must be .945 p4 , where p4 is the experimental
chamber pressure, and .945 is the diaphragm opening coefficient.
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Theoretical Study

Definition of Terms. The following schematics illustrate the subscript
notation used. As can be seen, 4 denotes the driver (high pressure) side,
and 1 the driven side.

nitjat u4'P4'P4'e4 ulPl,Pl ez

di aphrag

Before 43u~o 2 [

Refection: IUoPo 2

exp wave contact surface incident shock

Reflect ion: r ]_ 52

reflected shock

Data. The following measurements were taken during the experiment.

T4 - 26.6-C T, - 26.6-C

p4 - 74.6 psia (.487 MPa) p, = 14.8 psia (.102 MPa)

In addition, the initial velocities in the two chambers are assumed to be
zero.

u4 - 0 u1 - 0

Computed Conditions. The following values are required for the theoretical
computations and as inputs to the computer code. A value of 287 J/kg-K was
used for R, and of course y - 1.4.

p4  4- - 5.66 kg/m 3

RT4

1 - - 1.19 kg/m 3

P1 " RT1

e - -i RT4 - 215,100 J/kg

1
e - -- RT, - 215,100 J/kg

-1
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Theoretical Computations

In order to avoid any biasing of the theoretical predictions in favor of
the code predictions, Anderson's equations (ref 4) will be used instead of
the relations derived in this report for the one dimensional code.

A. Speed of Sound in the Undisturbed Gas, a, and a4.

a, - 7,-RT - 347 m/s

a 4 - /7-R - 347 m/s

B. Pressure of gas behind the incident shock wave, po (ref 4, eq. 7.94).

(11 ) (P-i) 2/-

4 _O I i - p1
PP P I

Substitute y - 1.4 and a, - a 4 and rearrange:

0.4(po-p1 )

-2-2.8p1  2.4po+0.4p1

After substituting P, and P4, the above equation is solved by iteration with
the result:

Po0 .213 MPa

C. Velocity of incident shock, W (ref 4, eq 7.14).

. - [ v+l (P-I + I]

W - 482 m/s

D. Velocity of gas behind the incident shock wave, uo (ref 4, eq. 7.16).

Uo , A, (Po-i) +
Y Pi Po +

u0 ~ ~ ~ p -il) 0 Y+

u o - 194 m/s
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E. Density behind the incident stiock wave (P2) (ref 4, eq. 7.11).

1 + -Y+l P-

P 2  - P 1 { + + o

1Y~ + Ra

p2 - 1.991 kg/m
3

F. Pressure behind the reflected shock wave (P.). The velocity of the
incoming fluid, V = u0 , is positive in the current problem. Equation 406 is
now applied to a reflected wave travelling in the negative x direction (to
the left), thus requiring that W be negative. Equations 404 and 405 are
then used to compute the densityrand pressure behind the reflected wave. In
the current notation, eq. 406 is written as follows.

w 2 + -1 -V 2 +~~) Yp 0

W = -326.6 m/s (to the left)
r

W

PS = PO + P 2V
2 (l - )4

V (405)

ps - .414 MPa

G. Density behind reflected wave (ps).

PS - P 2 (l - V

r (404)

P5 - 3.174 kg/m
3

Numerical Study

The computational grid used for the shock tube problem is presented
schematically in figure 25. A complete listing of the code used to solve
this problem is given in Appendix C. The code results are presented
graphically in figures 26 and 27, and numerically in the summary of the
experimental evaluation that is given in Table 2 below.

Figures 26 and 27 show the pressure-time history at stations 1 and 2
respectively. The solid line shows the code prediction, while the circles
indicate experimental data. The code prediction is based on the corrected
chamber pressure in both figures. The circles represent averages of the
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data from the four tests (figures 20 - 23). Since the instrumentation did

not record the diaphragm rupture (i.e. t - 0), the experimental arrival time

of the incident shock was made to coincide with that predicted by the code.

In figure 26, the incident shock wave is seen to arrive at station 1 at

1.2 msec after diaphragm rupture. The constant pressure behind the shock
wave begins to drop at about 2.5 msec, as the expansion wave (reflected from

the driver end of the shock tube) arrives. At 4.5 msec, the reflected shock

(reflected from the closed end of the driven section) passes through the

expansion wave at station 1, causing a jump in pressure. The expansion wave

continues to reduce the pressure at station 1, when at 5.2 msec the head of

the expansion wave returns (after reflection at the closed end of the driven

section of the shock tube), causing a noticeably increased rate of pressure

decrease. At about 8.5 msec the experimental traces showed a reflection of

the reflected shock wave from the remains of the diaphragm, so no more

experimental results are plotted. The code, however, shows the main driver

end r(.lection of the reflected shock wave, which arrives at 9.3 msec.

In figure 27, the incident shock wave is seen to arrive at 2.4 msec,

followed quickly by the reflected shock (2.9 msec), and the expansion wave

(that was reflected from the driver end) at 3.6 msec.

Both figures show general agreement between the code and the experiment.

The pressure behind the incident wave is predicted by the code to be a

constant .213 MPa at both stations, while it actually was .215 MPa at

station 1 and .212 MPa at station 2. The code predicts the pressure behind

the reflected wave to be .413 MPa, while it actually was .407 MPa.
Collision of waves is similarly well predicted, as can be seen in figures 26

and 27. Verification of this fact was a principal goal of this study.

Digital output from the code was used to compute the velocities of the

incident (w) and reflected (w) shock waves between stations 1 and 2.

,1684m - 0.6096m - 486 m/s
- 00237s - .00122s

W- *6906m - 1.1684m - -358 i/s (to the left)
r 00446s - .00290s

The incident wave speed was experimentally determined by measuring with an

electronic counter the wave's time of passage between stations 2 and 3.

W.- .2700m - 1.1684m - 475 m/s
I 214,as

No direct measurements were made for the reflected wave speed, but it can be

obtained from the pressure-time traces in figures 20-23. The average
velocity of the reflected wave is

- 0.6906m - 1.1684 m 339 /
r .00122+.00332)s - (.00237+.00052)s
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T:.e expansion wave properties were not predicted as well as the shock
wave properties and the wave velocities. This is common in shock tube
predictions (for example, see ref 10 and 11) and is believed to be the
result of the interaction of the cold (expanded) gas from the driver section
with the hot (compressed) gas in the driven section. Although the code does
not consider this effect, the wave shapes in figures 26 and 27 are accurate,
and the magnitudes of the pressure predictions are within 10%, and usually
much less than that.

Note that a small error in arrival time of the reflected wave (at
station 1 for example) causes a large error in the prediction of expansion
wave pressures. In fact some of the error in the expansion wave predictions
seen in figures 26 and 27 may be due to viscous effects in the boundary
layer of the expansion wave. Any slowing of the wave would cause the
experimental points in the expansion wave to be shifted to the right with
respect to the code prediction.

The code predicts shock wave speeds to be slightly higher than the
experimentally determined val'tes with the wave travelling the farthest (the
reflected wave) being most in error. Also, a drop in the experiaental
pressure behind the incident wave is noticed between stations I and 2. Both
of these phenomena are attributed to viscous attenuation of the shock wave.
If viscous effects were included in the code, the predictions of wave speed
and pressure would be even better than those discussed above. However,
viscous effects are rightfully negligible in the hypervelocity problem
ultimately to be solved, so no attempt was made to modify the code. Some
quantification is possible, however, and is useful to the overall evaluation
of the code.

Emrich and Wheeler (ref 12) discuss shock attenuation due to wall
effects (mainly a turbulent boundary layer) and propose the following
empirical equation to predict the shock attenuation.

[20 1]P-0o 1 exp(-A-x)

where D - hydraulic diameter of the shock tube
x - distance the shock has travelled
A - an empirical constant
p0 - pressure behind the shock wave
p, - pressure ahead of the shock wave

They give examples of the use of this equation for shock strengths (p0/pl)
of 1 to 15. They also suggest a value of 0.0024 for A. The shock strength
in the experiment under study here is about 5. To evaluate the constant A,

measurements of p0 for the incident wave made at statiuns 1 and 2 are used.

station x/D Po Pi

1 12 .215 MPa .102 MPa

2 23 .212 .102
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These values are substituted into the equation, using (23-12) - 11 diameters
for the distance the shock has travelled. The result is that A = 0.00245.
Thus the general relationship is

.10 _02 - I exp(-.O0245 )

This method reconciles the difference between the experimental reflected
pressure at station 2 (.407 MPa) and the code prediction (.413 MPa), which
was close to the theoretical prediction (.414 MPa). However, the
experimental value for the pressure behind the incident shock at station 1
(.215 MPa) was actually higher than theoretical and code predictions (both
were .213 MPa). This is contrary to the effects of viscous attenuation and
must be attributed to experimental error (which includes the possibility of
inputting erroneous initial conditions into the code).

Attenuation of the expansion wave and its reflections was not
considered, due to uncertainty of the applicability of this method to the
pressure distribution within the expansion wave.

The experimental verification of the one-dimensional code is summarized
in table 2. The summary shows that the code predictions are in excellent
agreement with both theory and experiment for all flow parameters studied.

The code predictions were also checked against the predictions of a
Beam-Warming type of code used in the Terminal Ballistics Division of the
BRL to study and predict shock tube behavior. The BRL uses shock tubes
extensively in the study of explosive blast dynamics; how shock waves from
explosions affect structures, for example.

For this comparison, code predictions for velocity, pressure and density
as functions of position in the shock tube were plotted every millisecond
from 0 to 12 milleseconds. These plots are shown in figues 28, 29 and 30,
where the plot for t - 12 milleseconds is omitted due to space restrictions.
Looking at the pressure plots (figure 30) for example, one can see the
original shock wave travelling to the right, and the original expansion wave
travelling to the left at t - I millesecond. The expansion wave has already
begun its reflection from the left wall. At t - 3 milleseconds the shock
wave has reflected from the right wall. The two reflected waves collide
between 3 and 4 milleseconds, followed by reflection of the expansion wave
from the right wall beginning just prior to t - 4 milleseconds. The
reflected portion of the expansion wave interacts with the incident portion
in the t - .005 millesecond frame, and begins to chase the reflected shock
wave that is travelling toward the left wall. The two actually collide just
prior to impact with the left wall. The remaining frames show a
continuation of this process of reflection and collision.

One additional observation worthy of note is seen in the density plots
(figure 29). The contact surface is clearly seen at t = I millesecond
between the left running expansion wave and the right running shock wave.
This contact surface moves to the right, and its interaction with the
reflected shock wave is seen in the t - 4 millesecond and t - 5 millesecond
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Experimental Code Theoretical

Pressure behind incident .215/.212 .213 .213
Shock wave (Po), MPa
(station l/station 2)

Pressure behind reflected .407 .413 .414
Shock wave (ps) MPa

Speed of incident 475 486 482
Shock wave (W.) m/s

Speed of reflected 339 358 327
shock wave (W ) m/s

Velocity of gas behind the 193 194
incident wave (uo) m/s

Velocity of gas behind the - <0.01 0
reflected wave (u5) m/s

Density of gas behind the 1.99 1.99
incident wave P2 kg/m

3

Density of gas behind the 3.16 3.17
reflected wave ps kg/m3

Table 3. Summary of results showing a comparison between code predictions,
theoretical predictions, and experimental data.

frames. Following the collision, the contact surface moves to the left.
Notice that the code pzedicts a smearing out (or smearing) of this contact
surface with time.

Figure 31 shows the comparison of the predictions of the two codes.
Velocity, density and pressure are plotted as functions of position for
times of 4, 8 and 12 milleseconds. These are the same as the plots just
discussed. Predictions of the Godunov type code developed here are again
shown as a solid line. Superimposed on these plots are the results of the
Beam-Warming code, shown as circles. In every case the agreement between
the two codes is excellent.
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CONCLUSIONS AND RECOMENDATIONS

This effort was the first phase of a project to write an axisymmetric
fluid dynamics code and apply it to the hypervelocity problem of a shaped
charge jet within a cylindrical tunnel. In this phase of the project, the
necessary equations were derived and a one dimensional Godunov code was
written for an inviscid, perfect gas.

Theoretical and experimental verifications were done which showed that
the Godunov technique accurately predicted those flow phenomena critical to
this study: shock and expansion wave formation, wave reflection, and
wave/wave collisions. The details are summarized as follows:

1. Predictions of pressure were within 2% of the experimental values.

2. Predictions of velocities were within 6% of the experimental values.

3. Predictions of fluid densities were within 1% of theoretical values.

As a result of the techniques learned and verifications made, a
decision was made to expand the present code to include axisymmetric and
real gas considerations. This effort is reported on in ref 21.
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Figure 1. The Discretized Flowfield
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Figure 9, The One Dimensional Reflection Problem
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Figure 20. Shock Tube Pressure Data: Shot No. 2
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Figure 21. Shock Tube Pressure Data: Shot No. 3
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Appendix A

DENSITY RATIO ACROSS THE WAVE

In deriving the density ratio across a wave, the shock wave will be
considered first. Following that derivation, some comments will be made
regarding the applicability of using the same expression for computing the
density ratio across an expansion wave.

The shock wave equations for a negative or a positive running wave were
derived in Chapter 3 (eqs. 306, 311, and 314). Those equations relate the
conditions across the shock wave, and do so in terms of absolute velocities
of the fluid. The equations may be expressed in terms of fluid velocities
relative to a moving shock wave, since the conditions are invariant with
respect to shock wave translation (ref 13). This transformation is detailed
in ref 4, and the result is given here. The following notation is required.

Subscript 1: conditions ahead of the wave
Subscript 0: conditions behind the wave

u: absolute velocity of the fluid
W: absolute velocity of the shock wave
w: velocity of the wave relative to the fluid ahead

When expressed in terms of the above notation, the shock wave equations
become the following.

p1w - p0 (W-u0 )

(501)

Pi + PJw 2 = P0 + p0 (W-u0 )
2

(502)

el + P- + Jw 2 = e0 + Po + j(W-u0 )2

Pi P0
(503)

Equations 501 through 503 relate conditions behind a moving shock wave
(negative or positive running) to conditions ahead of the shock wave, and do
so in terms of fluid velocities relative to the moving wave. Notice that
(W-u.) is the velocity of the shock wave relative to the fluid behind, or
the negative of the velocity of the fluid behind the shock wave relative to
the shock. Similarly, w is the negative of the velocity of the fluid ahead
of the shock wave relative to the shock.

These equations are manipulated to obtain the density ratio across the
shock as a function of the pressure across the shock. Equations 501 and 502
are used to obtain expressions for the velocities u and (W'-uo), each in
terms of the pressures and densities of the fluid ahead of and behind the
shock wave. These expressions are then used to eliminate the velocities
from the energy equation, eo 503, with the following result.

82



el + 21 + A [Ri.:.uO] eo + ZO-1 P-1P- O]
P1 Pi LPi- Po] Po PO LP- Pol

(508)

The last step is to express the fluiid energy in terms of pressure and
density, leaving only pressures and densities in the equation. For a
calorically perfect gas,

p - pRT
(509)

e=cT

V (510)

where T is the absolute temperature in Kelvins. Equations 509 and 510,

together with the definitions

R -c -cp

-Y c P/c

can be combined to obtain the equation of state of a perfect gas.

- 1 p (511)

The equation of state is the closure equation for the system of equations
eq. 501 through eq. 503 (three equations, four unknowns). Equation 511 is

substituted into eq. 508, and after considerable rearranging, the desired

result is obtained.

__+-__o + (7-1)pl
Po (-l)p0 + (1+l)p i Pi

(512)

Equation 512 relates the density behind the shock wave to the density ahead

of the shock wave (presumeably a known quantity), in terms of the strength
of the shock wave (indicated by the pressures on either side of the shock
wave, p, and Po).

Even though the shock wave equations were used in deriving eq. 512, no

assumptions were necessary regarding the strength of the shock. Therefore,
eq. 512 is appropriate for any strength shock wave.

Equation 512 is known as the shock adiabat (ref 1,14). The correspond-

ing relation for an expansion wave is the Poisson adiabat (ref 1,14), or
isentropic gas law, eq. 321. It can be written in a form similar to

eq. 512:

p 0  [ 0 Pi1/Pi P

(513)
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In the accoustic approximation (i.e. for waves in which Po = p,), the two
expressions (eq. 512 and eq. 513) are approximately equal, since the density

ratio tends to unity in each case (as should be expected). Further, since
in the limit of an infinitely weak wave there is no distinction between
expansion and compression waves, use of eq. 512 for both types of weak waves
is appropriate. Godunov (ref 1) makes the assumption that eq. 512 can be

used also for strong expansion waves, making it the only equation required
to compute the density ratio across any wave. Experience here indicates
that this is a valid approximation for a perfect gas. Also, Peyret and
Taylor (ref 15) list an alternate expression for the density and state that
its results are consistent with eq. 512.
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Appendix B

ITERATIVE SOLUTION TO THE RIEMANN PROBLEM EQUATIONS

In most cases a basic iterative approach to the solution of the non-

linear equation for the pressure behind the waves emanating from the cell

boundaries is adequate. These equations are derived above, and are repeaued

here for convenience.

bp 4 + ap, + ab(u 4 -u1 )

P0 a + b (340)

The mass velocities of the two waves that emanate from the boundary under

study are a and b.

a- - l[Po/p4]1

2-y [PO/P ] 1 /2 - P o < P4(333)

a - 1f P P {- y P44l [ 1 PO P4  (318)

-- Po/p

b - - [po/p ](71)/22P P0 < P(

b - -yp1 pp 1[ P0 > Pi

(320)

For such nonlinear algebraic equations, of the form

P0 = f(p0 ) (601

convergence of the iterations is not always guaranteed. Godunov (Ref 2)

indicates the equation may not converge for a strong rarefaction wave, but

presents no supporting data. Considering the complexity of the equation,

his statement may have been based on actual numerical examples. In view of

this, an investigation of the conditions for convergence of eq. 601 is
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enlightening, and will lead to a modification to eq. 601 which will
guarantee convergence in all cases, and in general will speed up the rate of

convergence. A summary of the method used is given below, followed by a
detailed derivation of the method.

Summary of the Method

The condition for convergence of the iterations of the nonlinear
algebraic equation, eq. 601, is expressed mathematically by

If'(0)1 < 1
(610)

where is the solution of eq. 601. Computing the derivative of eq. 340 is
a horrendous task. Fortunately, modifications can be made to eq. 601 ;which
will guarantee convergence of any function, for any finite value of f', and
without any knowledge of the analytic form of f'. In one approach, Chorin

(ref 17) and Sod (ref 18) use the following iterating function in place of

(eq. 601).

Pa - [l-c]p 0 + cf(P0 )
(614)

Notice caat the Pa on the right hand side represents the current value of
tie iterate, while the Pa on the Left hand side represents the new value.
Chorin and Sod assign arbitrary values to the constant c (but c 1) until
convergence is achieved. However, convergence of eq. 614 is guaranteed if

c satisfies the following equation.

1(617

Substituting eq. 617 into eq. 614 results in the following iterating
function.

fDo)-f'(C)Do
Po = 1 f'( ) 618)

With superscripts to denote sequential iterates, the derivative is
approximated in the following manner.

f(po 0 f(Po)

f'(
Po PO
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This is consistent with the accuracy of the finite difference method that is
being used to numerically solve the fluid equations of motion. Now eq. 618
is rewritten with iterative superscripts and eq. 621 is substituted, and the
following iteration function results.

i+1 f(p. )Ap0 Po Af1

POPAp o - pi

(623)

where
AP0  = i pi-I

PPo P0 Po

(E24)

Af - f(p ° ) f(pi 1

(625)

Equation 623 is the recommended iterating function. To begin the
computations, pg and p are required. These may be computed with

Pi + P 4

PO 2 (626)

1
PO - f(p )

(627)

Details of the Derivation

Derivation of the conditions for convergence of eq. 601 can be found in
most texts on numerical analysis (e.g. ref 16), and is summarized in the
following way.

The solution of eq. 601 is denoted by g. Then in eq. 601,

=f( )

(602)

In wtiat will be referred to below as the standard iteration technque, the
iterations are begun with an iniiial guess, pO The first revised valiue
is the result of substituting pg into eq. 601, and is written

PO f(pg)
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The revised value is then substituted into eq. 601 for a new revised value,
written p2 and so on. With the help of the mean value theorem, one can show
that the error in the nth iteration is a function of the derivative of
eq. 601, f', as follows.

nn - [ -p ] f f0(1 )
P0 ~0 n

(609)

Here n represents some value between the true root ( ) and the initial
guess p 00). Thus if the derivative of f in eq. 601 is less than one in the
neighborhood of the root , the right hand side of eq. 609 will include the
product of a series of n numbers, each of which is less than one. Thus the
error in the nth iteration,

n

will be less than the error in the initial guess,

and this error can be made as small as desired by increasing n. Notice that
the initial guess must be within the region near the root in which the
derivative is less than one. Also notice that the smaller (i.e. closer to
zero) that f' is, the faster will be the convergence.

The condition for convergence of the iterations of the nonlinear
algebraic equation, eq. 601, is expressed mathematically by

jf'(0)1 < 1
(610)

Computing the derivative of eq. 340 is a horrendous task. As mentioned
above, Godunov states that the iterations of eq. 340 may not converge for
strong rarefaction waves. Five numerical examples of strong rarefaction
waves were computed as part of this study, and in all cases standard
iteration of eq. 340 resulted in convergence in fifteen or fewer iterations.
Other investigators (ref 14,17,18) indicated they had encountered
convergence problems. Modifications can be made to eq. 601 which will
guarantee convergence of any function, for any finite value of f', and
without any knowledge of the analytic form of f'. Codunov (ref 2) proposes
such a modification, but without any supporting rationale. The origin of
his scheme is obscure. Although it apparently works, several authors (ref
14,17,18) have used alternate methods. The method presented here is similar
to Godunov's, and is an extension of the method used by Chorin (ref 17) and
Sod (ref 18). It is apparently similar to one proposed by Bedijn, as
referred to in appendix A of ref 14, but no paper by Bedijn on the subject
could be found.
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The first step in deriving the modified iterating function is to rewrite
eq. 601.

O(Po) " Po - f(Po)
(611)

The solution to eq. 611 is Po - , for which - f( ) (eq. 602 above), and

=0

(612)

Solve eq. 611 for f(po) and take the derivative:

f, df(v . 1
dpo

Substitute this into eq. 610

11 - O'(Po)l < 1

0 < -01 < 2
(613)

This is the condition for convergence of the iterating function, eq. 611.
It is the same as the condition (eq, 610) for the iterating function eq,
601, in that the function f in eq. 611 is still subject to eq. 610 in order
that eq. 613 will be satisfied. However, 0 in eq. 611 can be multiplied by
some non-zero constant c without changing the root in eq. 612. If c is
properly chosen, eq. 613 can be satisfied regardless of the value of f', A
new iterating function is written.

F(po) - po - cO(po)

- po - C[po-f(Po)]

Notice that at the root , the quantity in brackets is zero and F( )
converges to the root . Rearranging,

F(po) - [1-cJp o + cf(p0 )
(614)

This is the iterating function used by Chorin (ref 17) and Sod (ref 18).
More will be said about their application later.
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To study the conditions for convergence of the iterating function F, eq.
614 is differentiated and substituted into eq. 610.

F' - [1-c] + cf'

ft - [F'-l+c]c

and in eq. 610:

1c [F'-l+c]l < 1

IF'! <1
(615)

Not surprisingly, the requirement for convergence is the same as that
of f(p0 ). The improvement results from the arbitrary constant c, whose
value can be chosen such that eq. 615 is satisfied regardless of the value
of f'. An arbitrary requirement is now imposed to define the arbitrary
constant c, that in the neighborhood of the root ,

-0
(616)

Surely this will satisfy the convergence criterion eq. 615. It will in fact
provide the quickest convergence of the iterations, differentiate eq. 614,

F'(p 0 ) - [1-c] + cf'(po)

- [1-c] + cf'( ) - 0

c- 1-f'() (617)

Selection of c in accordance with eq. 617 will guarantee convergence of
F in eq. 614. By inspection of eq. 617, two restrictions on f'( ) are
apparent, but both are easy to accept without limiting the procedure.
First, since c P 0, f'(') must be finite. Second, since c must be finite,
f'( ) d 1. There is negligible chance of this occurring numerically (i.e.
f' - 1.000000 etc. or even close to it) in a function as complex as eq. 340.
A special algorithm for computing c can be invoked if f' is computed to be
too close to 1 for reliable computation of c. This was not a problem in the
present work. In any case the value of c can be controlled (limited to some
'7' ximu- -alue, for exi'ile) since there is some latitude in the choice of
the magnitude of F': it need only be less than one, not necessarily equal
to zero.
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The following cases are possible for eq. 617.

I. f'( ) < 0 - 0 < c < 1

Underrelaxation: eq. 614 produces a new value between Pa and f(p'o).

2. f'( ) - 0 - - c - 1

Equation 614 reduces to the original function, which converges unaided.

3. 0 < f'( ) < I - - c > I

Overrelaxation: new value from eq. 614 is outside interval pao to f(p 0).

4. f'( ) - i - - C O

Problem area: see above discussion.

5. f'( ) > 1 - - c < 0

Alternating : sign of(p - p ) is opposite that of (p, - Pa )-
convergencePO O0

Equation 617 can be substituted into eq. 614 to obtain a single
expression for the iterating function.

Po - F(Po) - f--i )f(C)D°
Po-f()) 1 (618)

Note that combining eq. 611 with eq. 618 leads to the Newton-Raphson method
(see, for example, ref 19). For clarity, let

(619)

so that

Po -F(Po) - f--IR )-av°
a 1 e (620)

This is the iterating function to be used in place of eq. 601. To verify
that the solution of eq. 601 is also a solution of eq. 620, substitute
P0 - f(po) = into eq. 620.

a( I -9
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For a final check, differentiate eq. 620, where a = f'( ) is not a function

of the variable po.

F'(po) - f-o a

and at the root p. - :

- ( C) - a -a a 0
1 - a 1 - a

Thus the iterating function F(p0 ) will converge rapidly.

Godunov (ref 2) proposes an iterating function similar to eq. 620, but
with a replaced by -a. The equation he gives for a bears little analytical
resemblance to -f'([), and no numerical resemblance. The derivation of his
scheme must differ from the above derivation in some way (perhaps many
ways), but since he makes no comments about the origin of his scheme, and
since the origin is by no means obvious, it must remain unknown for the
present. Thus a comparison of the method presented here with Godunov's
method is not possible. A discussion of the present technique for improving
convergence of the iteration may be found in ref 20.

Chorin (ref 17) proposed a method based on eq. 614. Sod (ref 18) also
used the method. In Chorin's method, eq. 614 is the iterating function, and
c is initially assigned a value of 1. Since this reduces eq. 614 to the
original iterating function (eq. 601), Chorin starts all iterations with the
original function. If this function fails to converge after twenty
iterations, he resets c to 1/2 and continues to iterate. If convergence
still does not occur in another twenty steps, he resets c to 1/4, and so on.
In practice, he states he never had to go beyond 1/4. Thus he is manually
imposing values for c that correspond to f'( ) 0 (cases I and 2 above, for
eq. 617). Theoretical justification of this approach is not discussed in his
paper, and is not easily obtained (if at all) from 340. Numerically,
however, the method apparently worked well for him as well as for Sod.

The difficulty with the method proposed above, and that which is avoided
in Chorin's method, is that the value of a = f'( ) is unknown, due to the
complexity of f(po) (eq. 340) and to the fact that the solution ( ) is not
known a priori. But since the iterations are simply a series of approx-
imations to the root , using a valid approximation to the derivative f'(g)
is quite consistent. Thus eq. 619 is written

f' df _ Af
dp0 ' A pdp po=

i Af f(p'O) f(p 0
1 )

Apo Po - PO
(6 21)
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Now rewrite eq. 620 with iterative superscripts:

i+1 f (p"' ) a' (p')

1 a (622)

Substitute eq. 621 into eq. 622 to obtain

i+1 f(P )Apo " P Af'
Po P OA p o i 0

(623)

where

i i i-1
P 10- Po - P0

(624)

Af - f(po ) - f(p0

(625

Equation 623 is the recommended iterating functiu,,. To begin the
computations, pg and pl are required. These may be computed with

Pi + P 4
0
Pa- 2 (626)

1
PO - f(pO)

(627)

Equation 626 is suggested by several authors as a good initial estimate. P1
and P4 are the pressures in the right and left cells prior to resolution of
the discontinuity at their common boundary. Equation 627 is simply the
first revised estimate based on the standard (unmodified) iterating
technique (eq. 601). Thus the first two iterates are the same as those of
both the standard method (eq. 601) and Chorin's method (eq. 614).

Van Leer (ref 14) notes that during the iteration large negative values
of [u 4 -u1 ] (i.e. u, >> u4 ) may lead to a negative value for p.. Hence he

i+1
suggests a minimum allowable (positive) value for po, say e, which is the
minimum meaningful pressure for the flowfield under study. If the next
iteration also results in a negative pressure, he suggests stopping the
iteration and setting po - e.

Chorin makes another numerical suggestion. He notes that erroneous
convergence occurs immediately if p, - P4 in eq. 626. Therefore he suggests
that his iteration scheme be carried out for at least two steps. This
requirement is guaranteed in the method presented here, since the first
iteration computed by equation eq. 623 is p2. This is the first iterate to
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be compared to its previous iterate to determine if the desired level of

convergence has been achieved.

Several numerical examples were studied using the four methods

discussed above: Unmodified iteration, Godunov's method, Chorin's method,

and the present method. The results in all cases substantiated the

conclusions drawn here regarding the actual convergence of the various

methods for different situations, as well as the rates of -cn':argence. In

all cases, the present method converged, and did so the fastest. The other

methods did not converge in every case.

Two of the numerical examples are worth noting. The first was simply an

algebraic equation in which f' was clearly greater than one. This example

demonstrated non-convergence of both the standard technique (eq. 601) and

Chorin's method (eq. 614), and rapid convergence for the method presented

here (eq. 623). The second numerical example studied a strong rarefaction,

and all four methods (including Godunov's) converged. The method presented

here converged fastest.
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Appendix C

LISTING OF THE COMPUTER PROGRAM

PROGRAM DIAFRAM
C

C
C 10 APR 1985
C EXPERIMENTAL VERIFICATION OF ONE-D CODE
C HUBERT W. MEYER JR.
C
C **********************************************************************

C
LOGICAL L
INTEGER T,TT,STAISTA2
PARAMETER (MD-102,MR-423,MT-525,TT-2800,STA-305,STA2-491)
DIMENSION CU(O:MT,O:1),CR(O:MT,O:1),CP(O:MT,0:1),CE(O:MT,0:1)
DIMENSION U(O:MT+1,0"1),R(O:MT+1,O:1),P(O:MT+1,O:1),E(O:MT+1,0:1)
DIMENSION TIME(O:TT)
DIMENSION PCD (0:50),FPCD (0:50)
REAL MOMI,MOM2,MOM3,NRG1,NRG2,NRG3

C
T-O
TIME(O)-O.
H-.003
PMIN-1.
G-1.4
G1-(G-I)/(2.*G)

G2-(G+1)/(2.*G)
C
C GENERAL NOTES:
C 1. IN THE DIMENSIONED VARIABLES U(I,T), ETC, THE CURRENT
C TIME STEP IS DENOTED BY T-0 AND THE NEW (NEXT) TIME STEP BY T-1. THUS
C U(17,O) IS THE CURRENT (KNOWN) VALUE AND U(17,1) IS THE NEW VALUE
C BEING COMPUTED. THIS NOTATION APPLIES TO EACH TIME STEP IN TURN AS
C THE SOLUTION IS MARCHED OUT.
C 2. IN THE PROGRAM, I ALWAYS DENOTES CELL NUMBER, WHILE M ALWAYS
C DENOTES A CELL BOUNDARY NUMBER. SIMILARLY, U,R,P,E DENOTE AVERAGE
C CONDITIONS IN A CELL, WHILE CU,CR,CP,CE DENOTE CONDITIONS AT A CELL
C BOUNDARY, BEHIND THE WAVES RESULTING FROM THE DISCONTINUITY THERE.
C
C *********************************************************************

C
C INITIAL AND BOUNDARY CONDITIONS
C
C **********************************************************************

C
C INITIAL CELL PROPERTIES
C
C DRIVER SECTION PROPERTIES

DATA (U(I,O),I-1,MD)/MD*O./
DATA (R(I,O),I-I,MD)/MD*5.66/
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DATA (P(I,O),I-1,MD)/MD*.487E6/
DATA (E(I,0),I-1,MD)/MD*.2151065E6/

C
C DRIVEN SECTION PROPERTIES

DATA (U(I,0),I-MD+1,MT)/MR*O./
DATA (R(I,O),I-MD+I,MT)/MR*1.19/
DATA (P(I,O),I-MD+1,MT)/MR*.102E6/
DATA (E(I,O),I-MD+1,MT)/MR*.2151065E6/

C
NUM-0
L-. FALS E.

10 CONTINUE
I-0
WMAX-O.

IF (L) NUM-NUM+1
L-. FALSE.
RNUM-NUM
Z-RNUM/1000.
IF (TIME(T).GE.Z) L-.TRUE.

C
C CONDITIONS AT THE LEFT BOUNDARY (UALL) ARE REFLECTION CONDITIONS.
C

U(0,0)--U(1,0)
R(0,0)-R(1,0)
P(0,0)-P(1,0)

E(O,0)-E(1,O)
C
C CONDITIONS AT THE RIGHT BOUNDARY (WALL) ARE REFLECTION CONDITIONS.
C

U(MT+I1,O)--U(MT,O)

R(MT+1,0)-R(MT,0)
?(Ml*i,O)-P(MT,U)

E(MT+I,O)-E(MT,O)
C

IF ((MOD(T,50).EQ.O).OR.(T.LE.5)) THEN
WRITE (5,100) TIME(T)
WRITE (6.100) TIME(T)

CC WRITE (6,103) T,CU(O,O),T,CR(O,O),T,CP(nOn).T.CF(O 0)
WRITE (5,102) I,T,U(I,O),I,T,R(I,O),I,T,P(I,O),I,T,E(T,O)

END IF
C
C
C
C *
C
C COMPUTE THE GENERAL CONDITIONS BEHIND THE WAVES.
C
C **********************************************************************

C
C GENERAL NOTE: DUE TO THE APPROXIMATION OF A FINITE NUMBER OF CELLS
C WITH CONSTANT PROPERTIES IN EACH, DISCONTINUITIES EXIST IN THE
C PROPERTIES AT THE CELL BOUNDARIES. THE DISCONTINUITIES ARE RESGOVED

C BY WAVES (COMPRESSION OR EXPANSION) THAT ORIGINATE AT THE BOUNDARIES.

C
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C THE CONDITIONS BEHIND THESE WAVES ARE THE PRESSURE (P0) AND VELOCITY
C (UO) ON THE CONTACT DISCONTINUITY, AND THE DENSITY ON EITHER SIDE OF
C THE CONTACT DISCONTINUITY (R2 AND R3).
C
C
C COM4PUTE PO AND UO BY APPROXIMATE FORMULAE FOR WEAK WAVES.
C

I IF (ABS(P(I+1,O)-P(I,O)).GT.(P(I+1,0)/100.)) CO TO 2
IF (ABS(U(I+1,O)-U(I,O)).GT.ABS(U(I+1,O)/100.)) GO TO 2

B-A

UO=O.5*(U(I,0)+U(I+1,0))+0.5*(P(I,O)-P(I+1,O))/A
GO TO 6

C
C
C COMPUTE PO AND UO BY ITERATION OF FULL EQUATIONS FOR STRONG WAVES.
C

2 PCD(O)-(P(1,O)+P(I+1,O))/2.
N-0

8 IF (N.GT.5O) THEN
PRINT*, 'ITERATIONS FAILED TO CONVERGE IN 50 TRIALS'
PRINT*, ' N-',N,' I,,' T-',T
PRINT*,
PO-PCD (N)
GO TO 9
END IF
S-SQRi (G*P(I ,O)*R(I ,0))
S1-SQRT(G*P(I+1,0)*R(I+1,O))
PI-PCD(N)/P(I ,0)
PI1-PCD(N)/P(I+1 ,0)

IF ((PCD(N)+1.).GE.P(I,O)) THEN
A-S*SQRT(1. -G2*(l. -P1))

=2 E
A-Gl*S*(l.-P1)/(1. -(PI**Gl))

END IF
IF ((PCD(N)+l.).GE.P(I+1,0)) THEN

ELSE

END IF

* FPCD(N)-MAX(PMIN,F)
IF (N.EQ.0) THEN
PCD(N+1)-FPCD (N)
N-N-i-
GO TO 8
END IF
IF ((FPCD(N-1).EQ.PMIN).AND.(FPCD(N).EQ.PMIN)) THEN
PO-PMIN
PRINT*, 'NEGATIVE PRESSURE IN ITERATION WAS RESET TO PKIN.'
PRINT*, ' N-',N,' I'I' T-',T
PRINT*,'
GO TO 9
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END I F
DPCD-PCD(N) -PCD(N- 1)
DFPCD-FPCD(N) -FPCD(N- 1)
IF (ABS(DPCD) .LT.ABS(PCD(N)/1000.)) THEN
PO-PCD (N)
ELSE
PCD(N+1)-(FPCD(N)*DPGD-PCD(N)*DFPCD)/(DPCD-DFPCD)
N-N+l
GO TO 8
END IF

9 UO-(A*U(I,O)+B*U(I+l,O)+P(I,O)-P(I-1,O))/(A+B)
C
C
C COMPUTE DENSITY ON EACH SIDE OF THE CONTACT DISCONTINUITY.
C

6 R2-((G4-1.)*PO+(G-1.)*P(I+1,0))*R(1+1,O)/((G-I.)*PO+(G+I. )*P(I+1,O)

C 3(G1)P+G1)PIO)RIO/(-.*O(+.*(,)
C
C
C ***********************************

C

C COMPUTE CONDITIONS BEHIND WAVES AT THE LOCATION OF THE CELL BOUNDARY
C

C
M- I
WL-U(I,O)-(A/R(I,O))
WR-U(I+1,O)+(B/R(I+1 ,O))
WMAX-MAX(WMlAX,ABS(WL) ,ABS(WR))
IF(((WL.GT.O.).AND.(WR.CT.O.)).OR.((VL.LT.O.).AND.(WR.LT.O.)))THEN4

IF (WL.GT.O.) THEN
CU(M,O)-U(I,O)
CR(M,O)-R(I ,O)
CP(M,O)-P(I ,O)

ELSE
CU(M, O)-U(I+1, 0)
CR(M,O)-R(I+1 ,O)
CP(M,O)-P(I+I,O)

END IF
ELSE

IF (UO.GT.O.) THEN
CU(M, O)-UO
CR(M, O)-R3
CP(M, 0)-PO

ELSE
Cu(M,O)-uO
CR(M, O)-R2
CP(M, 0)-Po

END IF
END IF
CE(M,O)-CP(M,O)/((G-l. )*CR(M,O))
IF (((MOD(T,50).EQ.O).OR.(T.LE.5).OR.(T.EQ.399)).AND.((MOD(M,IO).E
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+Q.O).OR.(M.LT.1O))) THEN
WRITE (6,101) M,T,CU(M,O),M,T,CR(M,O),M,T,CP(M,O),M,T,CE(M,O)

END IF
I-I+1
IF (I.LE.MT) GO TO 1

C
C
C

IC

C
C COMPUTE LENGTH OF CURRENT TIME STEP.
C

IF(WMAX.EQ.O.) PRINT*, 'WMAX-O.'
TAU-.9HWA
TIME(T+1 )-TIME(T)+TAU
WRITE (8,105) T,TAU,TIME(T)

C
C
C
C
C
C UPDATE CELL PROPERTIES USING CONSERVATION EQUATIONS.
C
C **********************************

C
C GENERAL NOTE: THE FLUX OF PROPERTIES INTO EACH CELL IS DETERMINED
C BY CONDITIONS AT THE CELL BOUNDARIES DURING THE TIME STEP, COMPUTED
C PREVIOUSLY.
C

1-1
3 M-I

MOM1-R(I ,O)*U(I ,O)
MOM2-CP (M ,0)+CR (M, O)* (CU(M,0) **2 .)
MOM3-CP (M-1, 0) +CR (Md1, )*( CU (M-1. 0) **2. )

NRG1=R(4,0)*(E(M,O)+(U(M,O)**2. )/2.)
NRG2-CR(M,O)*CU(M,O)*(CE(M,O)+(CU(M,O)**2.)/2.±CP(M,0)/CR(M,O))

+/CR(M-1,0))

IF (((MOD(T,50).EQ.O).OR.(T.LE.5)).AND.((MOD(I,1O).EQ.O).OR (I.LT.
+10))) THEN

WRITE (5,102) I,T,U(I,O) ,I,T,R(I,O) ,I,T,P(I,O) ,I,T,E(I,O)
END IF
Y-1
IF (I.EQ.STAl) THEN
WRITE (17,104) Y,U(I,O),R(I,O),P(I,O) ,E(I,0) ,TIME(T)
END IF
Y-I
IF (I.EQ.STA2) THEN
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WRITE (27,104) Y,U(I,0),R(I,O),P(I,O),E(I,O),TIME(T)
END IF

C IF ((MOD(T,75) .EQ.O) .AND. ((MOD(1,1O) .EQ.O) .OR. (I.EQ.1))) THEN
C IF((T.EQ.O) .OR. (T.EQ.55) .OR. (T.EQ.109) .OR. (T.EQ.164) .OR. (T.EQ.218)
C +.OR.(T.EQ.273).OR.(T.EQ.328).OR.(T.EQ.382).OR.(T.EQ.437)
C +.OR.(T.EQ.492).OR.(T.EQ.546).OR.(T.EQ.598).OR.(T.EQ.648)) THEN

IF (L) THEN
IF (I.EQ.1) WRITE (7,106) TIME(T)

RI-I
X-RI/100.
WRITE (7,104) X,U(I,O) ,R(I,O) ,P(I,0) ,E(I,0) ,TIME(T)

END IF
I-I+1
IF (I.LE.MT) GO TO 3

C
C
C
C ***********************************

C
C UPDATE CELL PROPERTIES AND PROCEED TO NEXT TIME STEP.
C
C ***********************************

C
DO 7, I-1,MT

7 CONTINUE
T-T+l
IF (T.LE.TT) GO TO 10

C
C
C
C ***********************************

C
C FORMAT STATEMENTS
C
C ***********************************

C
100 FORMAT (1H1,'TIME-',F8.6/)
101 FORMAT(5X, 'CJ(' ,I3,',',13,')-' ,E16.9,6X, 'CR(' ,I3, ',',I3, ')-' ,E16.9

4-,6X, 'CP(' ,I3,',,,3,')-' ,E16.9,6X, 'CE(' ,13, ',',I3,')-' ,E16.9)
102 F0RMAT(5X,'U(',I3,',Pi3,')-',Fl6.9,7X,'R(',I3,',' ,I3,')-' ,E16.9,

+7X,'P(',I3,',',I3,')-',El6.9,7X,'E(' ,I3, ', ',I3,')-',E16.9)

103 FORMAT (5X,'CU( O,',I3,')-',E16.9,6X,'CR( 0,',13,')-',EI6.9,
+6X, 'CP( 0,' ,I3, ')-' ,E16 .9,6X, 'CE( 0,' ,13,')-', El6.9)

-.U4 FORMAT (1X,6(E14.7))
105 FORMAT (1X,I1O,2F16.1O)
106 FORMAT (1X,E14.7)

END
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