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ABSTRACT

A statistical analysis of the output signals of an acousto-optic spectrum analyzer
(AOSA) is performed for the case when the input signal is a continuous-wave (CW).
To this end, a statistical model of these output signals is presented as a basis for the
different analyses along with some numerical algorithms to calculate the deterministic
components on a digital computer.

Using this model, the optimum test for the detection of a known frequency is
derived and its performance is analyzed. To deal with the unknown frequency situation,
a scheme which is easily implemented with a finite impulse response (FIR) filter
is presented and its performance degradation as compared to the case of a known
frequency is analyzed.

The frequency estimation problem is also analyzed and the Cramér-Rao lower
bound on the variance of any unbiased estimator is calculated. Since the Cramér-Rao
bound indicates that any unbiased estimator would exhibit undesirable characteristics,
the performance of the peak-detecting estimator is analyzed. It is shown that this latter
estimator is biased but has the desired characteristic of having a zero average bias.

Finally, the power estimation problem is analyzed under the assumption that
the frequency of the input signal is known. Under this assumption, it is found that
the maximum likelihood (ML) estimator is an efficient estimator which means that
its variance is the lowest possible variance of any unbiased estimator. The effects of
inaccuracies in the frequency assumption on the performance of the ML estimator are
also analyzed.

RESUME

Une analyse statistique des signaux générés par un analyseur de spectre acousto-
optique est effectuée pour des ondes continues. A cette fin, on présente un modele
statistique des signaux servant de base aux différentes analyses ainsi que des algorithmes
pour le calcul des signaux en l’absence de bruit.

En utilisant ce modéle, on obtient le test décisionnel optimale pour la détection
d’un signal dont la fréquence est connue et on analyse sa performance. Pour traiter
du cas dont la fréquence est inconnue, on présente une solution qui est facilement
exécutée par un filtre digital dont la réponse a une impulsion est finie et on analyse sa
performance dégradée par rapport au cas dont la fréquence est connue.

Le probléme de 'estimation de la fréquence est également analysé et la limite
Cramér-Rao pour la variance minimale d’une estimation non-biaisée est calculée.
Compte tenu des charactéristiques indésirables d'une estimation non-biaisée mises en
lumitre par la limite Cramér-Rao, on calcule la performance de 1'estimation qui consiste
a détecter le pic. On démontre que cette derniére estimation est biaisée mais qu’elle a
I'heureuse charactéristique d’un biais moyen nul.
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En dernier lieu, le probleme de ’estimation de la puissance est analysé en assumant
que la fréquence du signal soit connue. Pour ce dernier cas ou la fréquence est connue,
on démontre que |'estimation a probabilité maximale est efficiente, ce qui veut dire que
la variance de cette estimation non-biaisée est minimale par rapport & n’importe laquelle
des estimations non-biaisées. Les effets de 'inexactitude de notre connaissance de la
fréquence sur la performance de ’estimation a probabilité maximale sont également
analysés.
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EXECUTIVE SUMMARY

DREO is investigating the use of Bragg cell receivers for the development of Radar
Electronic Support Measures (RESM) systems for the armed forces. Perhaps the most
mature Bragg cell receiver at the present is the one-dimensional configuration which has
come to be commonly known as the acousto-optic specirum analyzer (AOSA). In this
report, we are concerned with the processing of the output signals from an AOSA for the
case when the input signal is a continuous-wave (CW).

To this end. we present a statistical model of the system along with some numerical
algorithms to calculate the outputs on a digital computer. Using this model, we
obtain a detection algorithm which is easily implemented and we also characterize
its performance. Next, we consider the frequency estimation problem and we show
that an estimator of any significance would have to be biased especially for certain
system configurations. In order to provide a viable solution to the frequency estimation
problem, we propose the peak-detecting algorithm and we characterize its performance.
Finally, we consider the power estimation problem and we show that the maximum-
likelihood (ML) estimator is optimum when the frequency estimate is accurate and we
also analyvze the effects of inaccuracies in the frequency estimate on the performance of
the ML estimator.

This report is a major step in the development of post-processing algorithms for
the AOSA. Although we have confined our analysis to the case of CW signals, the
derivations could be applied to other signal types and system configurations. This
report contributes to a better understanding of the critical issues and tradeoffs that
are involved and in this way provides a basis for the development of an optimal or
suboptimal solution to the general problem which is more complex.
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1.0 INTRODUCTION

1.1 Background

Over the last century, electronic systems have grown to predominance in
the command, control and communications area of military logistics. Besides the
development of communications and radar systems for military applications, the desire
to disrupt the enemy’s electronic systems has fostered the development of a new area
called electronic warfare (EW). The purpose of EW is to make use of electromagnetic
energy to determine, exploit, reduce or prevent the enemy’s use of the electromagnetic
spectrum, while insuring the friendly use of this spectrum. In electronic warfare
applications, receivers can be used to intercept signals from enemy transmitters, while
jamming transmitters are used to generate false information or noise to modify the
signal received by the enemy. The intercepted information could be used to identify
and evaluate the threat associated with an emitter or to detect the parameters of the
transmitter which would help in a jamming operation. In this context, although some
information on the transmitter is available, the transmitter parameters cannot be used
in the design of the receiver since the radiating sources are noncooperative. Under
such conditions, the intercepting receiver must be designed somewhat independently
of the transmitter so that it is able to receive a variety of different signals and extract
the desired information. For that reason, the design of such receivers is complex and
requires a good understanding of the signal environment in which the receiver must
operate.

Microwave electronic warfare receivers for this kind of operation can be divided
into the following groups according to their structures: crystal video receivers,
superheterodyne (“superhet”) receivers, instantaneous frequency measurement (IFM)
receivers, channelized receivers, compressive (also called microscan) receivers, and Bragg
cell receivers. For electronic warfare applications, the performance of the latter three
types of receivers is expected to be far better than that of the former three types in
terms of the width of the spectrum that can be dealt with, the signal levels that could
be sucessfully intercepted and the number of signals that could be simultaneously dealt
with by the receiver [1, pp. 3]. The full potential of these receivers has not yet been
reached due to various technical difficulties and most of the research and development
presently underway in this area is aimed at overcoming these difficulties.




1.2 Acousto-Optic Spectrum Analyzer

In this report, we will solely be concerned with the most mature Bragg cell
receiver configuration which has come to be commonly called an acousto-optic spectrum
analyzer (AOSA). In this receiver, input electrical radio frequency (RF) signals are
first transformed into spatial patterns which modulate a light beam, generating a
spatial distribution of the light intensity which is sensed by a photodetector array. This
spatial distribution depends on the parameters of the signals received and can be used
to discern the needed information. While many modulation techniques can be used
in optical processors (e.g., thermo-plastic deformation and electro-optic modulation),
Bragg cell receivers use acousto-optic modulation. In this case, the electrical signal is
converted into an acoustic wave which propagates through an optically transparent
material (Bragg cell). Through the elasto-optic effect, the acoustic wave produces a
spatial modulation of the refractive index in the Bragg cell. When a coherent light wave
1s passed through the Bragg cell, the refractive index modulation (and hence the electric
signal waveform) is impressed onto the optical wavefront as a spatial phase modulation.
A suitable optical lens system is used to convert the modulated optical wavefront into
a spatial intensity modulation corresponding to the power spectrum of the Bragg cell
input signal. The transformed signal is read and converted back to electrical form using
a linear array of photodetectors. Since each photodetector, due to its physical size,
provides an output which is proportional to the integral of the spectrum over a narrow
portion, we can describe the AOSA as a form of channelized receiver.

Although the principles discussed above have been known for many years, it was
only fairly recently that the requisite technologies have become sufficiently developed to
make Bragg cell optical processors feasible. Of particular importance is the development
of lasers with adequate output levels since high intensity in the optical wave is essential
to achieve satisfactory performance. Other significant technological advances over the
last decade include the achievement of large (> 100) time-bandwidth products in Bragg
cells and the development of large photodetector arrays. While much work remains to be
done, especially in the areas of dynamic range and output rate of detector arrays, these
recent developments in optical processor technology have encouraged the exploration of
Bragg cell processors for microwave receiver applications.

The most attractive aspect of using the Bragg cell as a microwave receiver is its
potentially extremely small size and low cost. Theoretically, a Bragg cell receiver can
perform as a conventional channelized receiver without the hundreds of filters required in
such a receiver. The Bragg cell receiver can have a maximum time-bandwidth product
of approximately 1000 which is equivalent to a channelized receiver with 1000 filters. [1,
pp. 150]. Furthermore, the development of integrated optical circuits (I0Cs) makes the
integration of the laser source, the Bragg cell transducer, output detector arrays, and the
optical lens system on a single chip possible. An integrated optical Bragg cell receiver
could have a volume as small as 0.1 x 2 x 6 cm® [2]. These developments make the Bragg
cell approach the most attractive electronic warfare receiver for airborne applications [1,
pp. 150].

-
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1.3 Problem Statement and Report Organization

In this report. we are concerned with the problem of processing the output signals
of an AOSA when this receiver is used to monitor the electromagnetic environment in
an effort to detect the presence of radar signals and measure their respective parameters.
Such EW receivers must be able to cope simultaneously with many different radar
signals. In addition to radar, other types of signals may be present including beacons
and transponders, jammers, missile guidance signals, data signals, altimeter signals,
navigation emission:, and identification friend or foe (IFF) signals (3, pp. 1]. This means
that there is a large variety of signals that we can expect to intercept. Since a statistical
analysi> dealing with all of these signals at once would be extremely complex and likely
mtractable, we will limit our analysis to the case when we are receiving continuous-wave
+CW) signals. In the case of a CW signal, once we have detected its presence, there are
rwo parameters that we are interested in estimating: its frequency and its power. We
feel that this is a good place to start as it will contribute to a better understanding of
the critical 1ssues and tradeoffs and provide a more rigorous and systematic foundation
npon which optimal or suboptimal algorithms can be derived for the solution of the
whole problem. We will therefore address the problem of finding efficient algorithms for
the processing of the outputs of an AOSA in order to fulfill the tasks of detecting the
presence of CW signals and estimating their respective frequency and power.

To begin the analysis of this problem, we present in section 2.0 a statistical model
' of the output signals from an AOSA which will form the basis of the statistical analyses
performed in the subsequent sections. Using this model, we then consider the detection
problem in section 3.0. the frequency estimation problem in section 4.0, and the power
estimation probler in section 5.0. Finally, in section 6.0 we summarize the results and
discuss the needs for further research.

2.0, THE SYSTEM “iODEL

(W]

1 Introduction

In order to perforus o ~turl ical analysis of the performance of any given system,
we st first obtain a watheniecal 1nodel of the signals and the noise for that system.
[nn this section, we present o odel for the signals and the noise at the output of an
aconsto-optie spectrum analyzor + AOSA ). This section is fundamental to this report as
all the following sections will be based on it. Indeed, the detection, frequency estimation
atd power estimation aualyses perfornied in the subsequent sections will be based on the

caodel presented in this sectien

[ the next subsection, we present a model for the signals at the output of an
AOSA assuning the noiseless sitnation. To this end, we present the AOSA configuration
thiat will be analyzed in this report along with a first-order theory of operation. Next,
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we present a mathematical model that can be used to represent the signals and we
give some numerical algorithms that can be used to calculate the outputs on a digital
computer.

In the third subsection of this section, we give the noise model that will be used in
this report along with a discussion of why it was chosen. Finally, in the last subsection
of this section we conclude by giving the complete signal plus noise model that will be
used in the subsequent sections for the different statistical analyses.

o
o

Signal Model

2.2.1 AOSA Configuration

A block diagram of the AOSA configuration of interest in this report is shown
in Figure 1. The first component of this system is the laser which is the source of the
optical wave. Since the beam provided by the laser is usually relatively small, a beam
expander is required so that a plane wave commensurate with the physical size of the
Bragg cell is obtained. This is usually accomplished with a series of lenses which are also
used to improve the quality of the light in terms of getting a plane optical wave.

The key component of this system is the Bragg cell which acts as an input device
by transforming the input electrical signal into an acoustic wave that propagates in a
transparent medium and therefore interacts with the optical wave. The phenomenon
by which this interaction takes place is called acousto-optic diffraction. The mechanism
through which acousto-optic diffraction takes place is due to the fact that when an
acoustic wave propagates in a transparent medium, it induces localized refractive index
variations via the elasto-optical effect. The acoustic wave acts like a moving phase
grating which may diffract portions of an incident light beam into one or more beams
which are referred to as the different diffracted orders. Provided the Bragg cell is tilted
by the proper angle g (the Bragg angle) then it is possible to obtain onlv one diffracted
order. The proper value for g depends on the frequency of the optical wave and the
frequency of the acoustic wave. (The reader in search of an intuitive understanding
of acousto-optic diffraction can consult [4], while a more rigorous derivation from
the funde...ental Maxwell’s equations is given in [5].) An important characteristic of
acousto-optic diffraction is that the diffracted light wave will be phase modulated by the
phase of the acoustic wave with the result that it will be diffracted at an angle directly
proportional to the frequency of the acoustic wave. The Fourier transform lens will
then map the two-dimensional Fourier transform of this diffracted wave onto its focal
plane. For that reason, we will henceforth refer to this plane as the frequency plane .
(The reader who desires an understanding of how a lens can perform a two-dimensional
Fourier transform can consult (6, pp. 77-87].) Since we assume that the incident optical
wave to the Bragg cell and the acoustic wave in the cell are both plane waves, then one
dimension of the frequency plane will simply be the one-dimensional Fourier transform
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of the input signal and this will be the same as we move along the other dimension of
the frequency plane.

In order to convert the result of this optical processing to electrical form, we
place a linear array of photodetectors in the frequency plane (which is the focal plane
of the Fourier transform lens). These photodetectors perform a spatial averaging of the
light intensity which represents the power spectrum of the input signal. In this report,
we will also assume that these photodetectors are of the time-integrating type. This is a
reasonable assumption as many practical devices operate in that way, which means that
they periodically integrate, sample and dump the light intensity (the power spectrum of
the input signal).

2.2.2 Mathematical Model

From the standpoint of the above description concerning the AOSA configuration
of interest in this report, we will now proceed to do a step by step derivation of a
mathematical mode] that is often used to calculate its output signals. Using this
approach, we will introduce some additional practical issues and show how these are
incorporated in the model. -

As a starting point, if u(¢) is the input signal, then its Fourier transform is

Uw) = /_oo u(t) exp(—i27 ft)dt.

Now, any physical Bragg cell would have a finite size and it is clear that the light in the
frequency plane can only represent the spectrum analysis of that portion of the signal
which has not entirely propagated through the Bragg cell at the particular point in time.
In effect, this means that the AOSA has a finite time aperture over which to perform
spectrum analysis and this determines its fundamental limit in spectral resolution.

To account for this, we can model the amplitude and phase of the light wave in the
frequency plane as a sliding window spectrum which for a given time ¢t is

/ " w(B)u(t - B)exp(~i2nfB)d8

where w(3) is a rectangular function to account for the fact that the Bragg cell has a
finite size and hence the input signal u(t) will appear to experience truncation in time.

It turns out that this window function w(f) can also be used to account for
some other practical issues concerning the Bragg cell and the laser beam. For instance,
the window function can be used to account for the fact that the acoustic wave will be
attenuated as it propagates in the cell. We usually account for this by changing w(4)

s
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from a rectangular function to a truncated exponential decaying function. The extent
to which it will be important to account for this attenuation of the acoustic wave as it
propagates through the cell will depend on the Bragg cell, the frequency band and the
specific system design that is used.

Still another practical issue that the window function w(8) is able to incorporate
is the uniformity of illumination on the Bragg cell. Most practical lasers have a
Gaussian shaped profile and this fact can be used to obtain a windowed spectrum
analysis with lower sidelobes. This effect can be incorporated in the model through the
function w(f) to which we add a Gaussian component. The extent to which it will be
important to account for this practical issue will depend on the laser and the specific
system design that is used.

Yet another component of our AOSA system which will affect our mathematical
model is the linear array of photodetectors that we use. First, we should note that these
photodetectors are sensitive to the light intensity which corresponds to the squared
magnitude of the optical wave. Hence, in our model we will use a sliding window power
spectrum which for a given time ¢ is

0o 2
| wioyutt - ) exp(~iznsp)is]

Secondly, we should note that the array does not contain an infinite number of
photodetectors and nor are these of infinitesimal size. Since the photodetectors have
a certain width, they will spatially integrate the light intensity which corresponds to
a frequency integration of the power spectrum of the input signal. We can therefore
represent the output of an individual photodetector as

oo 0o 2
/_ H(f ~ fu) / w(BYu(t — B) exp(—i2n fB)dB| df

where H(f) describes the spatial response of that photodetector. Usually, it is assumed
that H(f) is a rectangular function and the bandwidth that it represents is analogous
to the bandwidth of a filter in a channelized receiver. However, if we know which array
of photodetectors will be used and there is some data available concerning the profile of
t 1€ individual detector elements, then H(f) can be used to take this into account. The
frequency that corresponds to the center of a photodetector element is called fx and we
will sometimes refer to that frequency as the frequency associated with the kth detector.

Thirdly, as we mentioned earlier, we will assume in this report that the
photodetectors are of the time-integrating type. In that case, we get that the ouput of
an individual photodetector can be represented as

/j i’m [ au-p

o0 2
/ w(B)u(t — B) exp(~i2x fB)dB| df dt

— Q0
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where [ is the integration time of the photodetectors.

To summarize, if we assume that an integrating photodetector array is placed
in the frequency plane, then a mathematical model that can be used to describe the
signals produced by the AOSA and the one that will be used throughout this report is
represented by the following equation

Xk = /:H)I /_: H(f - fr)

9] 2
| w@ute - pexs(-iznspras| grée )

where X ;i is the voltage produced at the output of the kth detector for the jth
integrated time frame. Basically, this equation implies that the instantaneous light
intensity distribution shining on the array of photodetectors is the magnitude squared
Fourijer transform of the part of the signals that are contained in the Bragg cell at that
time, windowed by the function w(8). In addition, it implies that each photodetector in
the frequency plane spatially integrates this light intensity distribution and converts it to
currents which are integrated and sampled at periodic intervals of duration I.

In [7] we find a comparison between an extended version of this model and some
experimental results, which serves to validate our model. It should be noted that the
model that we will use in this report is often used [8][9] to perform analyses on the
output signals of an AOSA.

When u(t) is a pure sinusoid (which corresponds to the case where the input
signal is a continuous-wave), the mathematical model represented by equation (1) can
be rewritten in a more convenient form. To see this, we note that equation (1) can be
rewritten as

GG+DI  poo oo oo
Xje = / 1 /_ ) j_ ) /_ _H(f = fopu(awt Bu(t - au'(t = )
exp [—i27 f(a — B)]dadB df dt. (2)

If
u(t) = Acos(27 fot + ¢) (3)

then

u(t — a)u*(t — B) = Acos[27 fo(t — a) + 4] - Acos 27 fo(t — B) + ¢) (4)
2

= éQ_{Cos [47 fot — 27 fo(a + B) + 2¢) + cos [27 fo(a — ﬂ)]} (5)




Thus
A2 fUHDI poo oo poo
= 9 /1 /; ./— /; H(f - fk)w(a)w*(ﬂ){cos [27rf0(a — [3)]
+cos[an fot — 2r fo( + B) + 26] } exp[~i2nf(a - B)] dadfdf dt  (6)
2 oo o0 %)
- 47/_00 /_oo/_ H(f ~ fr)w(a)w*(B)exp [~i2n f(a ~ B))]

(J+1I
/ {cos 27 fo(a — B)] + cos [47 fot — 27 fo(a + B) + 2¢]}dt dadpdf. (7)
j

In practical situations we can expect that I > 1/4nfy (the mtegratlon time of the
system is over several periods of the CW signal) so that

(G+1)1I
exp [—127 f(a — B)] /1 {cos (27 fo(a — B)] + cos [dn fot — 27w fo(a + B) + 2¢]}dt

= exp [~127 f(a — B)] {cos [27 fola — B)] I
U+n)I

sin [4x fot — 27 fo(a + B) + 2¢)
* [ 4 fo iI } ®)
~ exp [—i27 f(a — ()] cos 27 fola — B)) I (9)
= 7 exp[-i2n f(a — B)] {exp i2r ol — )] + exp [~i2n fo(a — B)]}
= 3{expl-i2n(a = )(f = fo)l + expl-i2n(a = B)f + foll} (10)

Substituting (10) in (7) we get that for I > 1/4x f,

Xum 2L [ [ [7 H( - fowtarer @) iznta - 57 - 7o)

+exp[—i2n(a — B)(f + fo)l }dadBdf. (11)

If we define

2
(12)

G(f) & /_ ” w(t) exp(—i2x ft)dt

o0

- /_ " w(a) exp(—i2r fa)da / w*(B) exp(i2n f B)dB

—00

- /_ ~ /_ % w(ayw*(B)exp[—i2n f(a — 8)) da B (13)
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then

G(f+ fo) = /—°° /_°° w(a)w*(B)exp [~i2r(a — B)(f + fo)]dadp (14)
and similarly

G(f — fo) —/ / w(a)w*(B)exp [-i2n(a — B)(f — fo)] da dp. (15)

Substituting (14) and (15) in (11) we get

2
Xpn 2L / H(f - 1) [G(f — fo) + G(f + fo) df. (16)

Now if we assume that H(f) is symmetrical about f = 0, then
[ - 10605+ a1 = / Z H(fs - F)G(S + fo)df
= [ HU=( + 50+ G + e
- / °°°° H(fi + fo~ £)G()df = H(fi + fo),  (17)

where

= [ T H(f - £YGU (18)

which is the convolution between the functions G(f) and H(f). Clearly this is a
function centered about the origin with bandwidth equal to the sum of the bandwidths

of G(f) and H(f). If we note that

M fo) = [ T H(f = fO)G( - fo)df (19)
then by substituting (17) and (19) in (16) we get that
2
X 2L (M(f— o) + M+ o)) (20)

But since the passband of a practical Bragg cell for this application would normally be
at frequencies which are high with respect to the bandwidth of H(f), then H(fi + fo)
will be very small compared to H( fx — fo), and thus we have that for I 3> 1/4r f,

2
X n EH( - fo) (21)
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We shall adopt this mathematical model throughout this report and use

2
X = EMf— 1o, (22)

where H(f) is the convolution between the functions G(f) and H(f),

"= [ Z H(f - f)C(f)df’ (23)

with G(f) the magnitude squared of the Fourier transform of the window function

oo 2
G(f)= ’/; w(t) exp(—1i2n ft)dt| . (24)

2.2.3 Numerical Calculations

When the input signal is a CW, u(t) = Acos(27 f,t + ¢) and the output for
the kth photodetector element X ;i can be obtained by appropriately sampling H(f)
and multiplying by a scale factor, as can be seen from equation (22). In turn, samples
of H(f) can be obtained by integrating portions of G(f) as can be seen from equation
(23). If H(f) is a rectangular function, then samples of H(f) can be obtained by simply
integrating G(f) over the appropriate intervals and if not, then we need to window G(f)
according to H(f) before we integrate.

In most of the cases of interest, there is no closed form solution to equation
(23) and hence we must evaluate H(f) numerically. In fact, most of the time it is even
difficult to obtain a closed form solution for G(f) as defined in equatica {24).

The derivations performed in the subsequent sections will be general and could
be applied to any system configuration. However, for the numerical calculations in these
sections we will always assume that H(f) is a rectangular function of unit amplitude
and width B Hz, symmetrical about f = 0. This is probably a reasonable assumption as
it is unlikely that any practical H(f) will affect our calculations to any great extent. In
any case, the calculations could easily be redone for any H(f).

In addition, the numerical calculations performed iu the subsequent sections will
only consider the case where w(t) is a rectangular function of unit amplitude over the
interval [0, 7]. This truncation effect due to the finite size of the Bragg cell is certainly
the most important factor to take into account. However, as it was mentioned in the
previous subsection, there are other effects which may or may not need to be taken
into account depending on the system configuration and the specific components that
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are used in the system. The fact is that there could be many possibilities for w(t),
depending on the application.

Since there is such a large variation in w(t), in this report we have chosen to
do the numerical calculations only for the most basic case where w(t) is a rectangular
function. We assume that the reader interested in the calculations for another specific
w(t) will redo these calculations to see if they are very different from the calculations
periormed in this report. However, to give an appreciation of the effect of w(t) on the
signals produced by an AOSA, we will show how G(f) can be calculated for some of the
other specific cases of w(t) and how this will affect the function H(f).

2.2.3.1 General case

A family of window functions w(t) that is found to be useful [10] is given by

2
w(t) = exp [—a(fo)t — 4T? (; - %) ] rect (i - %) : (25)

T

where a (in nepers/sec) accounts for the acoustic amplitude attenuation and is a
function of the input signal frequency, T accounts for the profile of practical laser beams
and is the ratio of the truncated aperture over the e~? intensity width of that Gaussian
profile, and 7 (in seconds) is the truncated aperture which is related to the physical
length of the Bragg cell.

If & = 0 (that is, if we assume that there are no propagation losses in the Bragg
cell), we have that w(t) is a truncated Gaussian profile. To see the effect of the acoustic
attenuation on that window function, we can transform equation (25) into the following

form \
gzt Ll o\, (ar)® ot i_i)
4T (r 5t8r) T 2|\ 7 T2 (26)

where we can see that the acoustic attenuation causes a shift in the peak position of the
Gaussian profile as well as a decrease in the peak amplitude. However, the general shape
of the window function is preserved.

w(t) = exp

In general, there is no closed form solution to the Fourier transform of equation
(25). So unless some simplification or approximation is done, we cannot obtain a closed
form expression for G(f). Once we have obtained G(f), we can easily obtain H( f)
by numerically integrating G(f) over finite periods since we assume that H(f) is a
rectangular weighting function.

We can estimate G(f) numerically using the rectangular rule as

M-1 2

G(f) ~ Ga(f) = |At Y w(mAt)exp(—i2r fmAt)| . (27)

m=0
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If we let At = 7/M, where M is the number of points from w(t) that will be used to
calculate one sample of G(f), then

2

M-1
T (M7 —12w fmT
Gl =177 mz; w(Fr) e (T) (28)
Defining v = fr, we get
r N mr —12Tum ’
Ga(U/T)': Xf—mzﬂ)w(_ﬁ) exp( M > (29)
or if we express the complex component in rectangular coordinates, we get
Ga(v/7) = [TK(v)[® (30)
where _
K’(v)_: Em:o [w(!nﬁr) Cos(zwm)—lw(%) SIH(ZT‘;m)] (31)
M
and hence
Ga(v/7) = 7 {[Re(K)}* + [Im(K)*} (32)
To consider the error associated with the approximation of (32), let
M-1
Xa(f) = At Y w(mAt)exp(—i2r fmAt). (33)
m=0
It is easy to see from (27) that
Ga(f) = | Xa( ). (34)
—127 ftg i

We note that the Fourier transform of a delayed Dirac delta function §(t —tp) is e
Thus we may regard (33) as the Fourier transform of At E,A:__jol w(mAt)6(t — mAt), that
1S

M-1
X.(f)=F {At Y w(mat)s(t - mAt)} . (35)

m=0

Since w(t) is zero outside the interval [0, 7], we may rewrite (35) as

X,,(f):f{w(t)-m 3 6(t—mAt)} (36)

m=—0o
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which can be transformed, using the well known property for the Fourier transform of
multiplied time functions, to the following

m=-—0o0

X.(f) = W(f)*}'{At i 5(t —mAt)},

which becomes

Xo(H)=W(H)x 3 6(f- %)
which finally becomes
X.(N=3 w(f-5) (37)

m=-—00

So we see that the approximation of equation (32) is in fact an aliased version of
G(f). We also see that G,(f) is periodic with period 1/At, hence there is no point in
calculating G,(f) outside the range of frequencies

M _ . M
o ST <3

since At = 7/M. Or if we use the normalized version G,(v/7), then the range of
frequencies is

—M<v<M
2 2°

In summary, we have shown how the rectangular rule for numerical integration
can be used to obtain an aliased version of G(f). The resulting normalized numerical
equation is

Ga(v/7) = 72 {[Re (K (o) + (Im (K@)}, (38)
where v = f7 and
M-1 mr rvm) _ ;o) (MBI gin (27um
K(U) — Zm:O [w (T'l_) Cos (&FA_J) ( ) ( M )] , (39)

where M is the number of sample points from w(t) that will be used to calculate
one sample of G(f). We see that the above algorithm is closely related to the DFT
algorithm except for the fact that it can be used to obtain samples of G(f) at any
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frequency instead of obtaining those for a fixed set of frequencies. Normalizing w(t) to
the following equation

[ . 1\? 1
w(rr) =exp |—Lr — 4T (:c - §> rect (:c - 5) , (40)

where L = at and r = t/7, makes it easy to calculate equation (38). G,(v/7) is periodic
with a period of M with respect to v, so it should only be used to calculate samples

of G(v/7) for the range _TM' <v< -‘5’- Since G,(f) is an aliased version of G(f), M
should be made large enough to make this error insignificant and we should not attempt
to calculate samples of G( f) which are lower than a certain value. The value of M and
the lowest value of G(f) that we attempt to calculate using G,(v/7) depend on G(f),

so determining this may require some trial and error. When o = 0 and T = 0, w(t) is
simply a rectangular window and G(f) is a squared Sinc function. For that case, the
sidelobe level is down approximately 50 dB from the peak at a frequency of 100/7. For
all other cases, the sidelobes will decrease even more rapidly.

Figure 2 shows the window function w(t) for the case of ar = 0.5, T = 1.
Figure 3 shows the function G(f) calculated from equation (38) using M = 200 for the
saine case of ar = 0.5, T = 1. Finally, Figure 4 shows H(f) for that same case assuming
the photodetectors have a bandwidth of B = 1/7. It should be noted that H(f) is
symmetrical about f = 0 even though this is not shown on Figure 4. This last figure is
the result of numerically integrating the function G(f). For that reason it is useful to
have a numerical algorithm that can calculate samples of G(f) at any frequency because
most numerical integration programs require a function which can do that.

2.2.3.2 Untruncated Gaussian windowing

We have showed how the output of the AOSA could be calculated using an
algorithm which has calculations similar to those encountered in the direct evaluation of
the DFT. But it has long been recognized that the DFT is computationally expensive.
In fact it is presumed that Carl Friedrich Gauss, the eminent German mathematician,
developed an algorithm that could simplify its calculation as early as the year 1805 [11].

It is therefore worthwhile to note that if we assume a = 0 and the Gaussian
shaping is not truncated by the physical size of the Bragg cell, then we can get a closed
form expression for G( f). Harms and Hummels have used this result in [9] and have
calculated the transform of w(t) by means of a line integral in the complex plane.

_aT? (; - %)2] (41)

In this case we have that

w(t) = exp
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so that

s —71'2’02
G(U/T) = T2ZT'—2CXP (W) (42)

where again v = fr. This greatly simplifies the calculation of H{f) but it should only be
used when T is large. (In [9] this approximation for T' = 1.63 is used and it is claimed
that the resultant error is negligible.)

Figure 5 shows the window function, w(t) for the case of T = 2 while Figure 6
shows the function G(f) calculated using equation (42). Finally, Figure 7 shows H(f)
for that same case assuming the photodetectors have a bandwidth of B = 1/7.

2.2.3.3 Truncated exponential windowing
If we assume that T = 0, that is if we assume that the laser has no Gaussian

shaping but we still want to take into account the fact that there is attenuation of the
acoustic wave as it propagates through the Bragg cell, then w(t) is given by

w(t) = exp(—at)rect (; - %) (43)
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and so

1 — 2e~L cos(2mv) + e72L]

v/T =T2[
G(v/7) L7 1 (270)°

(44)

Figure 8 shows the window function w(t) for the case of ar = 0.5 while Figure 9
shows the function G(f) calculated using equation (44). Finally, Figure 10 shows H(f)
for that same case assuming the photodetectors have a bandwidth of B = 1/7.

2.2.3.4 Rectangular windowing

As it was mentioned earlier, if we ignore the acoustic loss of the Bragg cell and
the Gaussian shaping of the laser, then w(t) is simply a rectangular window whose
duration is determined by the physical size of the crystal or the width of the light wave
impinging on the cell. For that case it is easy to show that w(t) is as shown in Figure 11
and G(f) is given by the foliowing equation

‘02
o sin“(2w fr/2)
= 77— 45
G(f) =7 25 e (45)
which is shown in Figure 12. The resulting function H(f) for B = 1 is shown in

Figure 13,
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2.3 Noise Model

In the previous subsection, we presented the AOSA configuration of interest in this
report along with a mathematical model to calculate the deterministic component of
the photodetector output. In addition to the deterministic component due to the input
signal, the photodetector output is corrupted by noise from a variety of sources. Among
the possible noise contributors we can include the laser, the microwave front-end, the
photodetectors, vibration and scattered light.

In the application that we are considering, we are always striving to design
receivers with high dynamic range and good sensitivity. When designing an AOSA for
this application, we usually find that the photodetectors are the bottleneck in terms of
those requirements. This means that the photodetector noise is dominant among the
other sources of noise.

In [12] we performed experimental measurements on the noise of an avalanche
photodiode (APD) array. This array is of special interest for the design of systems
to monitor the electromagnetic environment because of its high sensitivity. The
measurements were done using an analog amplifier which would typically be used for
this application. It was found that the distributions governing the noise present in the
photodetector element outputs were Gaussian or normal distributions. The means of the
probability density functions were found to vary significantly from element to element
although their variances were roughly the same.

In light of these findings, we will assume in this report that the signal components
of the detector elements are corrupted by additive Gaussian random variables
independent of each other but having identical variances. In addition, we will assume
that these random variables have zero means since in practice these noise offsets would
most likely be subtracted out. Hence, the noise model that will be used in this report is
that each photodetector output will be corrupted by independent, identically-distributed

zero-mean Gaussian variables with variance o2.

2.4 Signal Plus Noise Model

Having presented the signal model and the noise model that will be used in this
report. we will now present the complete signal plus noise model which will be used in
the subsequent statistical analyses. To this end, let us first define

RZ{TI,TQ,T‘:;,...,TN} (46)
as the received vector which is used to represent the photodetector outputs after any

integration time frame. We will sometimes refer to the photodetector outputs as the
pizcl ontputs since this is an expression which is often used in this field.
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We note that R is a vector in an N-dimensional space where N is the number of
photodetector elements used in the linear array. We also note that

ri=mi(f01A)+nia i=1’2’3""’N (47)

were the n,’s are zero-mean, independent identically-distributed random variables
with variance o2. It is important to realize that m; = X jk in equation (1). We have
chosen to henceforth use the later notation (i.e. m;) to reflect the fact that the signal
components of the r;’s are actually the means of these random variables. It is equally
important to note that the m,’s are completely defined once we know the frequency f,
and the amplitude A of the input signal.

In the following sections, we will use this signal plus noise model and proceed to
perform statistical analyses in an effort to obtain efficient post-processing algorithms.
We will look at the detection as well as the frequency and power estimation problems.

3.0 DETECTION

3.1 Introduction

The first problem that we face when processing the output signals of an AOSA is
the detection problem. That is, we must first make a decision as to whether one or more
signals are present before we try to estimate their respective frequency and power.

In order to find an optimal solution for this problem, we must first define a criteria
upon which this optimality is to be decided. One criterion that is commonly used in
classical detection theory is the Bayes’ criterion. The use of this criterion requires the
existence of a priori statistics of the observed signal. This criterion cannot be used in
the present circumstance since no meaningful a priori statistics can be assigned. The
standard method of dealing with such situations is to use the Neyman-Pearson criterion.

The Neyman-Pearson criterion considers the conditional probability of deciding
that a signal is present given that there is in reality no signal present (the false alarm
probability Pr) and the conditional probability of deciding that a signal is present given
that there is indeed a signal present (the probability of detection Pp). In applying the
Neyman-Pearson criteria, we like to design a test which minimizes Pp and maintains Pp
as large as possible. These turn out to be two conflicting objectives and so a tradeoft
must be made. A specific aim in applying the Neyman-Pearson criterion is to maximize
Pp while maintaining Pr less than a specified amount ¢, that is maximize Pp subject to
Pr < €. This is the criterion that we will use in the remaining subsections of this section
in dealing with the detection problem we face.

The first thing to note about this detection problem is that we are dealing with
a composite hypothesis situation. This is because we seek to detect the presence of a

-
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signal of which we do not know the frequency or the amplitude. We sometimes refer to
these unknown parameters of a composite hypothesis problem as unwanted parameters
since we do not care about them for the purposes of detection; we simply want to decide
whether one or more signals are present irrespective of these parameters.

Iis the next subsection, we simply assume that these parameters (the frequency
and the amplitude) are known and we go about deriving the optimum test and its
performance. This is a logical thing to do because in certain instances, by assuming the
unwanted parameters are known, we obtain a test which turns out to be independent
of these parameters. We refer to such a test as a uniformly most powerful (UMP) test.
It turns out. as we will show in the next subsection, that the optimum test we obtain
is in fact independent of the amplitude of the input signal. However, it is dependent
on its frequency. In the third subsection, we deal with this by using the test obtained
in section 3.2 to decide on the presence of a number of possible frequencies within the
bandwidth of our receiver. We obtain a scheme which has a good performance and
which is easily implemented.

3.2 Detection of a Known Frequency

In this subsection we will find the optimum detection test under the Neyman-
Pearson criterion for the situation where we want to decide whether a CW signal with a
given frequency is present or not. To this end, we let

R: {7‘1,7‘2,7‘3,...,7'1\]}

be the received vector where the r;’s are the pixel output values for a given frame. We
can consider this problem as a binary hypothesis test where Hj is the hypothesis that no
signal is present and H; is the hypothesis that a signal is present and hence we can write

Hy:ri=n

. (48)
HIIT‘,‘Zm,‘(fO,A)-FTL,‘, 1=1,2,3,...,.N

where the n,’s are zero-mean, independent identically-distributed Gaussian random
variables with variance o2, the m;’s are the signal components, N is the number of
pixels in the photodetector array and fo, A are respectively the frequency and amplitude
of the input signal as defined in equation (3). Referring to equation (1), we have that
my = Xk, but we will henceforth use this latter notation to denote the fact that the
signal components are the means of the Gaussian random variables at the output of the
AOSA. From (22) we have that

2
m; = %iH.' (49)

where it is understood that the H,’s are the samples of H( f) corresponding to the
freqrency and pixel under consideration (i.e. H; = H(fi — fo)).
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It is well known (13, pp. 34] that the optimum test according to the Neyman-
Pearson criterion is satisfied by the likelihood ratio test

— Hl
A(R) Z A (50)
Hy
where the likelihood ratio test is defined as
2 p(R|Hy)
MR = R Ho) ®!

where p(R | H;) is the conditional probability density function of the received vector R
given that hypothesis H, is true and ) is some threshold depending on the constraint
Pp < €. This latter quantity can be determined from noting that

Pr= A " HAR) | Ho)dA(R). (52)

It is easy to show that for our problem as it is defined in (48), the above
conditional probabilities are as follows
1 —r?
53
27ra2 (20 2 ) (53)

21 exp [ (r‘z;;”‘)z] (54)

::_'12

p(R| Ho) =

i=1

p(R|H)) =

,’:jz

=1

and hence the likelihood function can be written as

N N s 2
A(R) = exp (Ei:l r? — Zi=l(r‘ ‘) ) (55)

202

N N
= exp (221':1 Tim,; — Zi:l m?) . (56)

202

But because the natural logarithm is a monotonic function and both sides of
equation (30) must be positive, the likehood ratio test is equivalent to the test

H,
In{A(R)} 2 In(}) (57)

Hp
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which is very useful given the form of A(R) as shown in equation (56).

Indeed. we can say that a test satisfying the Neyman-Pearson criterion for our
problem is as follows

N N H
2 Zi:l Ty — Ei:l m? >1 ln()\)

58)
202 < (
20 H,
This is equivalent to the test
N Hy
Yormi 2o, (59)
=1 Ho

where 4 1s some constant.

It should be noted that hypothesis H; is a composite hypothesis because it contains
the unwanted parameter A and the test of equation (59) cannot be used unless we know
the value of 4. However, since

A?T
mi = M

we can reduce the above test to the following

N Hy
e 2 A (60)
i=1 Hop
because A2 is a positive quantity. If we let
N
Y = Z T,'H,‘
=1
then the above test becomes a
1
Y 2 4 (61)
Ho
and
o0
Pe= [ oY | Hojay (62)
7'

The above test is what is called a uniformly most powerful (UMP) test because
it is completely defined (including threshold) for a given Prp without knowledge of the
parameter A, which is the amplitude of the input signal. Of course, the performance of
this test will be a function of this parameter as will be shown shortly.
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In order to find the performance of this test, we note that if Hy is true then Y is a
Gaussian random variable with zero mean and variance

N
h =S 1
i=1
And similarly, if H, is true then Y is a Gaussian random variable with mean

N
?:Zmﬂ'{i = %ZH?
=1

and variance

From this we have that

oo 1 —z2
Pr = —)d 63
. / . ,_%exp(w) 2 (63)

or
1 ¥ )
Pr = ~erfc [ —— 64
FE gt <\/§0'Y (64)
where -~
erfc(t) = %/ exp(—t®)dt (65)
t
and ( ?)2
>~ 1 —(z —
Pp = dz 66
> / e [ o ] (66)
or _
1 v~ Y) ~
P = = !'f . 67
D 2 €ric ( \/EO'Y ( )

Figure 14 shows the performance of the test of equation (60) as a function of the
parameter

(68)
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which serves as a figure of merit. Indeed = is the S/N ratio times the integration time of
thie photodetectors (I) times a factor which quantifies the performance gain due to the
matched filter. We can see that the performance gain due to the matched filter depends
on the number of pixels that are used in the algorithm. In Appendix I we calculate
\__:;\:1 H? for different values of the constant 7B. Of course, in practice we would not
wse .V values of the H,'s in equation (60) to implement this test because some of these
values will be insignificantly small. Using Figure 14 and equation (68) we could find a
reasonable number of H,’s to use in our test for a given system configuration.

3.3 Detection of an Unknown Frequency

In the previous subsection, we looked at the optirnum detection test using the
Nevinan-Pearson criterion for the case of a signal with known frequency. We have found
that the optimum test for that case is the matched filter and we have also characterized
its performance. However, for our application which is to use an AOSA to monitor the
clectromagnetic environment, we are not only interested in testing for the presence of
one known frequency, but rather we are interested in testing for the presence of a range
of unknown frequencies.

We can approach this problem by dividing the bandwidth of our receiver into a set
of possible frequencies such that the resultant sequence forms a fine mesh over the whole
bandwidth. Having done this, we can then use the matched filter to sequentially test for
the presence of each one of these possible frequencies. We know that this test will be
optimum if the input signal frequency corresponds to one of the possible frequencies that
we lLiave selected for our set.

A natural and convenient spacing for this set of possible frequencies is B, the
frequency width of each photodetector. The reason for this is that, once we have
selected the length of the matched filter, let us say n pixels, then we can simply slide
the matched filter over the whole array, comparing its output against a threshold. This
is simply a Finite Impulse Response (FIR) filter algorithm and is easily implemented as
photodetector arrays often use serial output structures.

The advantage of this scheme is that we need not change the threshold value that
we have selected according to the false alarm probability that we are willing to live with.
Of course. something different will have to be done for the frequencies near the edge of
the array. We could simply not consider the edge frequencies if the value of n is small
or we could change the value of the threshold for these edge frequencies. When a strong
signal is present, the output of the FIR filter will likely exceed the threshold for more
than one frequency, but this is acceptable since we are using this scheme to detect the
presence of signals and not to estimate the frequencies of those signals.

This scheme will optimally detect the presence of all the frequencies selected 1n
onr set of possible frequencies under the constraint of a given false alarm probability.
We might want to know how this detection scheme performs for the frequencies that

—EEEEE—E—E—————————————
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are not included in this set; we cannot, after all expect to have a frequency line up
with a photodetector center frequency. To answer this question, let us consider the
more general case of how the performance of the test of equation (60) is affected when
the H,’s used in the test are different from the H;’s that correspond to the signal.
This could happen when the frequency of the input signal is different from the one we
assumed with the H,;’s of the filter or when the window function w(t) that we used to
calculate the H,;’s was not accurately measured or for any other reason.

To calculate this effect on performance let

N N . H,
Y = Z riH; g 5! (69)
=1 0

be the test, where the H,’s are used in the test but do not actually correspond to the
‘H.'s of the signal. In this case, if Hy is true, Y is a Gaussian random variable with zero

mean and variance
N
0 =o? E HE.
1=1

L

But if H, is true, then ¥ is a random variable with mean

. N . Arr N
E{Y} = ZHimi = TZHiHi

and variance

It is easy to show that the performance of the test of equation (69) is the same as the
performance of the UMP test as shown in Figure 14 except that for this case

AUyl Am,

gy Zfil 7:(:2

We can therefore take the ratio of equation (70) an (68) to find the degradation
in detection performance when the input signal frequency is between two pixels but
the matched filter used is designed to test for the case when the input signal frequency
corresponds to one pixel. Figure 15 shows this degradation for different values of the
constant 7B assuming rectangular windowing. We have used a matched filter with

z (70)
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25 taps to calculate the curves of Figure 15 and this assures us that all the H,;’s that
were dropped were insignificantly small. In Figure 15, we have only calculated the
degradation over one period since the degradation is periodic with period B. As an
illustration of how to interpret Figure 15, a degradation of 1 dB means that the input
signal power would have to be 1 dB higher to obtain the same probability of detection
as if the input signal frequency corresponded to the frequency of a pixel, everything else
being the same.

We can see from this figure that for a given 7B, the worst case degradation of the
matched filter occurs when the input signal frequency is exactly in the middle of two
fi's. We also see that this worst case degradation increases for larger values of 7B.
However, we should note that even for 7B = 3 the worst case degradation is less than
1.5 dB, a relatively small figure. Another important fact to note about Figure 15 is that
most of the degradation is concentrated in a relatively small frequency range. This can
be seen by the steepness of the curves at the point where the input signal frequency is
exactly in the middle of two fi's.

Hence we can see that the sliding matched filter scheme has a very good
performance for the detection of unknown frequencies. The worst case degradation is
relatively small and most of the degradation occurs over a relatively small frequency
range.
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4.0 ESTIMATION OF THE FREQUENCY

4.1 Introduction

The most important function of the AOSA receiver is to determine the frequency of
the input signals. In this section, we will consider the problem of processing the output
signals of the AOSA for the purpose of estimating the input signal frequency. We will
approach this problem using classical estimation theory as expounded by Van Trees [13].

Classical estimation theory is divided into two main branches: the first is random
parameters estimation and the second is nonrandom parameters estimation. Random
parameters estimation requires some knowledge of the a priori probabilities for the
outcome of the values of the parameters that we wish to estimate. In many cases,
and certainly in the case of a receiving system that monitors the electromagnetic
environment, it is unrealistic to treat the unknown parameter as a random variable.
When dealing with a nonrandom parameter situation, we must work with the a
posteriori density functions and evaluate the performance of different estimators by
considering their bias and variance.

A useful landmark for the nonrandom parameter situation is the Cramér-Rao
bound which gives us the lower bound on the variance of any unbiased estimator. In
the next subsection, we present this bound and show its dependence on basic system
design parameters. We shall see that this bound is useful since it shows us that, for this
problem, any practical estimator of any significance would have to be biased. Hence in
the third subsection of this section we present the performance of a practical estimator,
the peak-detecting estimator. This estimator is a biased estimator although it has the
desired characteristic of having a zero average bias.

The derivations in this section will be kept as general as possible and could be
applied to any system independent of the specific window function used. However,
the numerical calculations will be performed for the case of the rectangular window
function. These calculations could easily be done for any window function if we were
given the specifications of a particular system, but we have chosen to do them only
for the rectangular case to minimize the number of computations which are already
relatively extensive even for this latter case.
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4.2 (Crameér-Rao Bound

Using the model described in section 2.0, we will 1 this subsection present the
Crameér-Rao bound for the estimation of the input signal frcquency. To this end, we let

R: {T‘l.T‘Q,I’g,...,TN}

be the received vector where the r;’s are the pixel output values for a given integrated
time trame. We can write

r, =my(fo.A) +n,, :=1,23,....N (71)

where the n;’'s are zero-mean, independent identically-distributed Gaussian random
variables with variance o2, the m;’s are the signal components, N is the number

of pixels in the photodetector array and fy, A are respectively the frequency and
amplitude of the input signal as defined in equation (3). This means that the conditional
probability of the received vector R given that the frequency of the input signal is f, is

p(R ) H —exp () (

where it is understood that the m;’s are the corresponding signal components for an
input signal of frequency f, and amplitude A. The Cramér-Rao bound [13, pp. 66]

provides that
_ 2y \ !
Var(f,(R) ~ f,] >{ {[Qlﬂ})ﬁf#l] }} (73)

where f,(R) is any unbiased estimate of f,.

~1
[SV]

Taking the natural logarithm on both sides of equation (72) we get

N N2
In(p(R ) fo)) = —A’ln(\/Q_Tra)—Z(_r'_Ea_zmi’ (1)
=1
<o thiat i
Oinpllt] J) = %Z (ri =m; (75)

afs
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where m; = 9m,;/0f,. Squaring both sides of equation (75) we get

[Ohlpa——ﬁlfo ] - U4(Z(rm —my m!)2+z Z(rm mml)(rj —m;m 1)) (76)

i=1 j=1
J#i

and expanding the terms of equation (76) we obtain

Oln R o
N N

-%;

(rimir; m/, rimﬁmjm;- — mymir;m’ + mymim;m}). (77)

AMM

Now E(r;) = m; and E(rj) = m; and since r;, r; are independent provided that
1 # 7, then
E(rir;) = E(r{)E(r;) = mym,.

Also, it is easy to show that E(r?) = 6% + m?. Using these identities and simplifying
(77) we get that
dnp(R | f,) - (mi)?
E ——-—— 7
{ = -3 )

Combining equations (73) and (78) we get that the Cramér-Rao inequality for this
problem is

Var(fo(R) ~ f,] > m (79)

We have shown in section 2.0 that for a sinusoidal input u(t) = A cos(27 f,t + &),

2
me = ZLH( - 1) (50)

where H(f) is the convolution between the functions G(f) and H(f)

H(f) = / H(f - £)G(f)df (81)

and

(82)

oo 2
G(f)= '/_ w(t) exp(—i2 ft)dt

e
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As it was mentioned. we will use an H( f) which is a rectangular function of unit
amplitude and width B Hz symmetrical about f = 0 and a w(t) which is a rectangular
window whose duration is r, the time taken for the acoustic wave to travel across the
Bragg cell. For this case we have that

in?(2 2

Once we have obtained H( f) it becomes easy to calculate the outputs of the AOSA
because these two are related as shown in equation (80). As an example, the signal
components at the output of the AOSA are shown in Figure 16 and Figure 17. Figure 16
shiows the signal components when 7B = 3/4 and Figure 17 shows the signal components
when 7B = 6. Both of these figures show the output when f, corresponds to one f; as
well as when f, is ezactly in the middle of two fi’s.

Using numerical differentiation we can calculate the variance of the efficient
estimator, Vareg which 1s the equality case of equation (79). We are interested in
knowing how the efficient estimator varies with 7B and also how it varies as a function
of the frequency f,. In the latter case, we know that for a given 7B the efficient
estimator will be periodic with a period of B Hz provided that the frequency of the
input signal does not correspond to a frequency near the edge of the array.

Obviously, the number of pixel values that we include in our calculations does not
Liave to be IV, which is the number of photodetectors in the array. The reason for this is
that, for many of those pixels, the values of the m;’s are relatively small. Hence, we have
included in our calculations as may pixels as was required but not more since this would
increase the number of computations without any benefit, and we will call this number
n. Using 55 pixels, we find that for B = 1/4 the efficient estimator is quite constant as
we vary the input frequency and

4
v Vareg = 1.27———0—

T2A2]

whereas for 7B = 1/2 we find that it is also fairly constant except that in this case

Varon = 0.98—7_
Aler = 1. T2 42T

where /Vareg is the root mean squared (RMS) error for the efficient estimator which we
will heneeforth call RMSeg. Letting

A%IT
4o

K =
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FIGURE 18: RMS.g WHEN 7B = 3/4

figures 18 to 22 show RMS.q as a function of the frequency offset, which is the difference
between the input frequency f, and the corresponding frequency of the closest lower
pixel. When f, exactly corresponds to one of the fi’s then this frequency offset is zero.
In these figures we have only plotted RMS.g over one of its period because, as it was
mentioned earlier RMS.g as a function of frequency is periodic with period B Hz.

Since the input frequency f, could be any frequency, it is interesting to know what
is the average RMS.4. This can be done by averaging curves such as those in Figures
18 to 22. This has been done for several values of the constant 7B and the result is as
shown in Figure 23. We see from this curve that the average RMS.g is relatively small
when 7B is between (.25 and 1.25, but it increases exponentially as 7B is closer to
2. Figure 24 demonstrates this more clearly as it shows the average RMS.g for higher
values of 7B. It should be noted on this figure that the average RMS.g for values of the
constant 7B in the proximity of 2, 3 and 4 are actually off scale. The actual value of the
average RMS.q for 7B = 3 is 241/ Kt whereas for TB = 2 and 4 it is several] orders of
magnitude higher.

Since Figure 24 gives us a lower bound for any unbiased estimator, it is clear that
any such estimator would have a very undesirable performance for 7B greater than 1.75.
In fact, we could even doubt that an unbiased estimator even exists for some of these
values of 7B.
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FIGURE 20: RMS.g WHEN 7B =1.25
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1.5 Peak-Detecting Estimator

[ the previous subsection. we have presented the Cramér-Rao lower bound on the
vartanee of any unblased estimator for this problem. We have found that this hound
sereases expouentially as the value of the corstant 7B increases higher than 1.75 and
‘Lot Ir even peaks at extremely high values in the vicinity of certain values of 73, This
coenns that any unblased estimator for this problem would have a poor performance for
vilies of B ereater than 175 and. in fact it is probably impossible to find an unbiazed
c~ntror for this problem for some of these values of 7 B.

[:1 this subsection, in an effort to find a solution to the frequency estimation
sreden, we present the performance of the peak-deteeting estimator. That is, we
sre-cnt the performance of the algorithm that assumes that the frequency of the
iy stenal is the freguency that corresponds to the highest pixel value, "Ve want
wovestigare the performance of this estimator since it is very natural and simple to
cooweent. Inaddinond 1t requires no modification for a different value of B or for o
Geberens window funetion re(t), and 1t works equally well on linear or logarithmic data.

Wecan lee X0 XG0 X000 Xy be N oindependent Gaussian random variables witly
i variance a7 for which the means are X, X, X3... .. Xy respectively. This mecans
Lot rhe probability density funetions for these random variables are

. ] —{r; ~ X’,‘)? 4 _ . -
flo,) = ———exp | —————]. r=1.2.3...... N (S
) a2 202

wod ~mee these random variables are independent we can write their joint density

[N

DHLCTIO6 as

N %

N , 1 (= XY
f!.ll..lg..lg ...... l"\'):——*—————He:\p T . {

(o27)N

s
[\

i=1
It we define W, as the probability that the random variable X is larger than all the
orhers. then it can be evaluated by the following N integrals

T, o= pl N, < X Vi# )

(N —1) times

~ I, I, T, o .. (SG)
) / / / / / ‘f(.I'l..TQ..l‘j;.....J'_'\')

dridrydes - drj_ydrjpy - drydr,

whicn hroneh a change of variables can be rewritten

-0 N -
> 1 ] —(r, = X,)° 1 AT Y ‘ <=
'I'} = ./_ 0—7:(‘}1) <-——2—{’77—‘_ H :‘2‘ 1 +C‘If \/§U (1.1] (&i)
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where
2 4
erf(y) = —1-/ exp(—t2)dt. 88
Using equation (87) we get the RMS error for the peak-detecting estimator
N
RMSpx = | > _(fj — fo)2¥, (89)
—
and also the mean error for this estimator
(90)

N
Meanpy = Z(fJ ~ fo)¥;.

i=1

Figures 25 and 26 show RMSpx and Mean, respectively for the case of 7B = 0.5,
n =15, and K = A% /40 = 10.
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RMS ERROR OF THE PEAK-DETECTING ESTIMATOR

FIGURE 25:
(rB =05, n =15 K = 10)

Figures 27 and 28 show RMS,x and Meany respectively for the same case except
for I\ = 20. Again in these figures we have plotted only one period of these functions

since they are periodic with period B Hz.
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FIGURE 28: MEAN ERROR OF THE PEAK-DETECTING ESTIMATOR
(B =05, n =15, K = 20)

We see from figures 26 and 28 that the peak-detecting estimator is actually a
biased estimator of the input frequency. However, it has the desired characteristic of
having a zero average bias over many different input frequencies. This can be seen by
the symmetry of figures 26 and 28.

As we have done with the Cramér-Rao bound, we can obtain the average RMS
by averaging curves such as those of figures 25 and 27. This has been done for several
values of the constant 7B for a given K. Figure 29 shows the resulting family of
curves for several values of K. These curves have all been obtained by assuming
15 photodetectors in our calculations (i.e. n = 15) so that we could compare the
performance from a common basis. It should be noted that, for any given value of K
there is a value of 7B which is really the smallest that would be used in practice. This is
because the signal is so buried in the noise that the corresponding false alarm rate would
be exceedingly high. We have not plotted points beyond that point on Figure 29. We
see from that figure that the smallest useful 7B increases as we decrease the value of
K, which is in fact related to the signal to noise ratio (i.e. K = A%It/40). We also see
from Figure 29 that for any given value of K, there is an optimum 7B which gives the
smallest RMS error. As in the case of the smallest useful 7B, we see that this optimum
7B increases us the value of K decreases.

Finally, we note from Figure 29 that for any value of K the average RMS error
for the peak-detecting estimator asymptotically tends towards a straight line as we
increase the value of TB. So that we can see this better, we have plotted a straight line




_49_

0.3
K=9
K=10
K=11 ~
- 021 K=13 /
g
%) K=20 K=16
= K=3Q K=25
c
S,
gf n=15
w
>
< 01F
0 | ] | 1
0 0.2 0.4 0.6 0.8 1.0

7B

FIGURE 29: AVERAGE RMS ERROR OF THE PEAK-DETECTING ESTIMATOR




- 50 -
on Figure 29 that has a slope of 0.25/7 and that passes through the origin.

This behaviour is to be expected and to see why let us consider the case of no noise
or infinite signal to noise ratio. Figures 30 and 31 show the RMS error and the mean
error (or the bias) of the peak-detecting estimator for this latter case. It is easy to see
that the average RMS error in that case is B/4 and hence if 7B = a, then the average
RMS error will be B/4 = a/4r which is in agreement with Figure 29.
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FIGURE 30: RMS ERROR OF THE PEAK-DETECTING ESTIMATOR
WHEN K = o
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5.0 ESTIMATION OF THE POWER

5.1 Introduction

Another important signal parameter of interest when monitoring the
electromagnetic environment is the received signal power. This information can
be used to analyze the scan pattern of the transmitter or to obtain a gross estimate
of the distance to the emitter. In certain system configurations, the power estimate is
used for direction finding and in any case we can know if the emitter is approaching or
receding by comparing its relative power in consecutive time frames.

Since we have no knowledge of the a priori probabilities for the power of the input
signals, we are dealing with a nonrandom parameter estimation problem. This means
that we will have to work with the a posteriori density functions.




_,52_

[ this section, we will also assume that the power estimation is a secondary task to
the frequency estimation. That is, we will assume that the frequency estimation of the
signal has been done prior to the estimation of its power. This added information will
allow us to get a better estimation of the power and it will insure that we associate one
power estimation with one frequency estimation. The latter statement will be especially
important if, because of the system configuration used the energy of the input signal
spreads over several pixels.

Even though there are no general results on how to achieve an optimal estimator
for the nonrandom estimation situation, one estimator which is often used for these cases
is the maximum likelihood (ML) estimator. This estimator is based on the maximum
likelihood principle and more specifically it consists in choosing as our estimate the value
of the parameter that most likely caused the given value of the received signal.

An important property of the maximum likelihood estimator is that if it is
unbiased (i.e. the expected value of the estimate is equal to the true value of the
parameter of interest) then it will satisfy the Cramér-Rao lower bound with an equality
[14]. Any unbiased estimate that satisfies this bound with an equality is called an
efficient estimate because it is impossible to find any other unbiased estimate with a
lower variance.

In the next subsection we present the ML estimate of the power of the input signal
assuming that the input signal frequency f, is known. We also analyze the expectation
and the variance of this estimate. In the third subsection of this section, we analyze
the effects of inaccuracies in our estimate of f, on this ML estimate since in practice f,
would not be known, but would have to be estimated.

5.2 Maximum Likelihood Estimate

Using the model presented in section 2.0, we will in this section present the ML
estimate of the input signal power. To this end, we let

R.—_ {7‘1,7‘2,7‘3,...,7‘1\/}

be the received vector where the r;’s are the pixel output values for a given frame. We
can write

ri = mi( fo, A) + ny, 1=1,2,3,...,N (91)

where the n;’s are zero-mean, independent identically-distributed Gaussian random
variables with variance o2, the m;’s are the signal components, N is the number of
pixels in the photodetector array and f,, A are respectively the frequency and amplitude
of the input signal as defined in equation (3).
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We will assume that the frequency f, of the input signal is known and will let
S = A? be the parameter to estimate. This means that the conditional probability of the
received vector R given that the squared amplitude of the input signal is S will be

PR | f.,S) = — m'y}

N
D)
.']—:_—I\/27r—02_ e"p[ 207 (92)

where it is understood that the m,’s are the corresponding signal components for an
input signal of frequency f, and amplitude A.

Now to find the ML estimate of A2 we must solve

dln(p(R| S, fo)} _
aS

0. (93)

Substituting equation (92) in equation (93) and simplifying gives us

Bzil\;l(r,» —m;)? /202
a8

=0. (94)

Substituting for the m;’s as in equation (22) and simplifying we get

32?;1(54_[%‘ —ri)’ =
as

0. (95)

Differ~nueatin: and simnlifving we obtain

f: (%‘is - r,-'H,-) =0 (96)

=1

from which we get the desired ML estimate

A 42@.1 riH;
L= 2= T 97
ML= TSN o7

If we seek to find the mean of the ML estimate, we have that

42?;1 T,‘H,‘ } (98)

E{Su.} =E
5] {Iz?;m?
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which becomes
Bl = i 3 MR (99)
ISLH S
which can easily be calculated to be
E{Sur} = A?=S. (100)

Hence we see that Sy, is an unbiased estimate of the parameter A?. This is a very
important result because it means that Sy, is an efficient estimate of 4% and thus it is
impossible to find another unbiased estimate of A? which has a smaller variance than
the ML estimate of 42,

If we seek to find the variance of Sy, from equation (97) we have

&y = 4L rit
Va.r(SML) = Var (-j: m‘) (101)

but since the r;’s are independent random variables we have that

N
16 Y HVar(r;) (102)

Verlm) = S ey L

and since Var(r;) = o2 for all ¢ we get

1602

Var($ = —
(M) = L )

(103)

In Appendix I we have tabulated values of % M2 for different rB. From
Table I-1 and from equation (103) we can see how the system design parameters
affect the variance of the ML estimate of the input signal power. We see that the
integration time of the photodetectors I and the Bragg cell aperture time 7 are two
strong parameters. Increasing either of these parameters will reduce the variance in a
square law relationship. Increasing the value of 7B will reduce the variance according to
the relationship shown in Appendix I. Of course, if we reduce the noise variance we will
also reduce the variance of the ML estimate and tais is a direct linear relationship.
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5.3 Effect of Inaccuracies in the Frequency Estimate

In the previous subsection we obtained the ML estimate of the input signal power.
We saw that the ML estimate is unbiased in this case and this therefore implies that it is
an efficient estimate. This means that it is impossible to find another unbiased estimate
of 4% which has a smaller variance than the ML estimate of A2.

However, these results were obtained under the assumption that the frequency of
the input signal f, was known. In practice, f, would not be known but would have to
be estimated. This means that there might be inaccuracies in our estimate of f,. In this
subsection, we analyze the effects of these inaccuracies on the ML estimate of the power
that we obtained in the previous subsection.

To this end, let
N -~
S = _;iyvl—ri (104)
I Ei:l H?

be our estimate of A? where the H;'s correspond to frequency f, which could be
different from f,. Equation (104) is the same as the ML estimate algorithm of equation
(97) except that it uses the H,’s instead of the H;’s to take into account the fact that
our estimate of the input signal frequency f, could be different from the actual input
signal frequency f,.

We are interested in knowing how inaccuracies in the input signal frequency will
affect the mean of the estimator defined by equation (104). To obtain this information,
we can take the mean on both sides of this equation

N .~.
E{g}zE{é-zZ:—‘Tvg%} (105)

which becomes

E{S} = IZ ¥ ZH E{r:} (106)
i=1 1 o1=1

which after substitution and simplification becomes

Zfil Hiﬂi

E{S} =A== =
Zi:l th

(107)

Hence, we see from equation (107) that the estimator of the power defined by
equation (104) is no longer unbiased when f, is different from fo. If we let f, correspond
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to an fi, which would be the case if we were using the peak-detecting estimator, then
the resulting bias would be as shown in Figure 32, where we have assumed rectangular
windowing. This figure shows the resulting normalized bias for different values of 7B
which represent different system configurations. We have not included the curves for

7B = 3/4 and 7B = 1/2 on that figure since they represent very little variation from the
curve for B = 1.

An important ovservation to make concerning Figure 32 is that inaccuracies in the
estimation of the input frequency will, on the average, cause us to under estimate the
power of the input signal if we use the estimator of equation (104). Small inaccuracies in
the estimation of the frequency will have negligible effects, but inaccuracies greater than
a certain value will have considerable effects.

[t 1s clear from Figure 32 that larger values of 7B present more robustness to
small inaccuracies in the estimation of the frequency. However, as it was shown in
section 4.0, larger values of 7B will also on the average cause us to make larger errors
in the estimation of the frequency thereby diminishing the advantage of larger values
of 7B. In Table 1, we have tabulated the normalized bias of the ML estimator when
the frequency inaccuracy is half a pixel, for different values of 7B. We can see from
this table that for the larger values of 7B (2,3,4), inaccuracies in the estimator of the
frequency of only half a pixel will cause us on the average to under estimate the power of
the input signal by almost 50% if we use the estimator of equation (104).

™B (fo— fo)T E{§}/A2
0.5 +0.25 0.90
0.75 +0.375 0.77
1 +0.5 0.63
2 +1 0.54
3 +1.5 0.53
4 +2 0.52

TABLE 1. NORMALIZED BIAS OF ML ESTIMATOR WHEN (f, — fo) = +B/2

We are also interested in knowing how inaccuracies in the input signal frequency
will affect the variance of the estimator defined by equation (104). To obtain this
information, we can take the variance on both sides of this equation

N .~A
Var(S) = Var é—z—:—'%‘ﬁi
1 Zi:] H?
N 12
_ 16 i

" (s, )
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E(S)/A?

FIGURE 32:

NORMALIZED BIAS OF THE ML ESTIMATOR
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and hence
~ 16 o?

Referring to Appendix 1. we see that inaccuracies in our estimate of the input
signal frequency for the application of the estimator defined by equation (104) could
either increase or decrease the variance of this estimator depending on what f, and f,
are relative to an fi. For example, if we use the peak-detecting estimator to estimate
the input signal frequency, then the variance of the estimator of equation (104) can
only be smaller or equal to the variance of the ML estimator defined in equation (97).
In fact, for that case if the input signal frequency is exactly between two fi’s then the
estimator of equation (104) will have a smaller variance than the ML estimator and this
effect will be more pronounced for larger values of 7 B.

Hence, we can conclude that the estimator of the input signal power defined by
equation (104) performs well if the inaccuracy in the estimation of f, is small. However,
if this inaccuracy is larger than a certain amount, then this estimator could under
cstimate A2 considerably. The variance of (104) could be larger or smaller than the
variance of the ML estimator, but this effect is not as important as the bias error.

6.0 CONCLUSIONS AND COMMENTS

6.1 Summary

We have presented a statistical model of the output signals from an acousto-optic
spectrum analyzer (AOSA) for the case where we are receiving continuous-wave (CW)
signals. Using this model, we have shown that the optimum algorithm for the detection
of a signal of known frequency is a discrete matched filter. In an effort to extend this
algorithm to the case of the detection of an unknown frequency, we have proposed a
sliding matched filter structure which can be implemented as a finite impulse response
(FIR) filter. We have investigated the performance of such a scheme and have found it
to be quite acceptable.

We also considered the frequency estimation problem by calculating the Cramér-
Rao bound which is a lower bound for the variance of any unbiased estimator of the
frequency. We saw that this bound had very undesirable characteristics for 7B > 1.75
therefore indicating the undesirability of using an unbiased estimator for these cases. In
an cffort to find a solution to this problem, we presented the peak-detecting estimator
and we investigated its performance. We saw that the peak-detecting estimator is a
biased estimator although it has the desired characteristic of having a zero average bias,
and we saw that its variance is relatively well behaved.

Finally, we considered the problem of estimating the power of the input signal.
We found it convenient to approach this problem by letting the power estimation be a
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sccondary task to the frequency estimation. That is, we assumed that the frequency
estumation of a signal would always be done prior to the power estimation of that signal.
Under this assumption, we obtained the maximum likelihood (ML) estimator of the
mput signal power and showed that it was in fact an efficient estimator, which means
that one cannot find another unbiased estimator with a lower variance. We investigated
how errors in our estimate of the frequency would affect the ML algorithm, and we
found that 1t would always cause us to undercstimate the power of the input signal. For
large errors. we saw that the underestimation could be quite serious. These errors in the
estimation of the frequency were also found to affect the variance of the ML estimator
but for the case when we are using the peak-detecting estimator, we saw that these
crrors would actually reduce the variance of the ML algorithm.

6.2 Suggestions for Further Research and Comments

The statistical analyses performed in this report were based on a system model
which was defined in section 2.0. However, since the field of acousto-optics is relatively
recent, we are still in the process of discovering new architectures which can have certain
advantages depending on the application. The system model for these new architectures
could be different from the one we have used and it would certainly be worthwhile to
redo our statistical analyses for these other systems.

As we stated in section 2.0, all our numerical calculations were done with the
assumption that the window function w(t) was a rectangular function, although we
mentioned how this function could be modified to account for some other practical
issues of the AOSA such as the attenuation of the acoustic wave or the profile of the
laser beam. It would certainly be worthwhile to redo our calculations for other system
configurations especially if we had some reasons to be interested in a specific system

design.

Finally, we have only analyzed the case when we are receiving a CW signal
although we mentioned that an EW receiver would have to deal with many different
types of signals. Perhaps the most important type of signal which could be analyzed
is pulse modulated signals including those with complex modulation within the pulse.
These signals are more complex since they present a larger number of parameters to be
analyzed each one of which possibly exhibiting a large variation from one transmitter to
the next. It is hoped that this report has contributed to a better understanding of the
critical issnes and tradeoffs that are involved and can therefore provide a basis for the
development of an optimal or suboptimal solution to this more complex problem.
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APPENDIX I

}:fil H?/7? FOR DIFFERENT VALUES OF rB
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In this Appendix we have tabulated a few values of the expression Efil H? for
different values of 7B since this expression appears in the performance calculations for
the detection in section 3.0 and in the variance calculations of the maximum likelihood
estimator for the power estimation in section 5.0. It should be noted that the result
of this summation is a periodic function of period B as we vary the input signal
frequency. We have used 25 terms to obtain these results since the remaining terms
were insignificantly small and we have assumed rectangular windowing. Two cases have
been considered, one where the input signal frequency f, corresponds to one of the f;'s
of equation (22) and the other where fy is exactly between two fi’s. The former case
represents a maximum for a given value of 7B while the latter represents a minimum.
The results of these calculations are shown in Table I-1.

ZiN=1 HE/T?
B fo corresponds fo between
to one fy two fi's
0.25 0.163 0.163
0.50 0.308 0.308
0.75 0.452 0.396
1.00 0.611 0.409
1.25 0.730 0.415
1.50 0.792 0.434
1.75 0.814 0.449
2.00 0.817 0.452
3.00 0.868 0.467
4.00 0.9G3 0.475
5.00 0.920 0.480
6.00 0.934 0.483

TABLEI-1: Y% #?/r? FOR DIFFERENT VALUES OF 7B
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