AVF Control Number:

AVF-VSR-151.0888
87-11-12-G0OU

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 880523W1.09056
Gould, Inc.
APLEX Ada Compller, Version 2.1
Gould NP1 Model 4050 and Gould CONCEPT/32 Model 6780

Completion of On-Site Testing:
25 May 1988

Prepared By:
Ada Validation Facility
ASD/SCEL -

Wright-Patterson AFB OH U45433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

v REPORT DOCUMENTATION PAGE READ DISTRUCTIONS

BEFORE COMP._ETEING FORV.
1. REPORT NUMBER f2. GOVT ACCESSION NC. §3. RECIPIENT'S CATALOG NUMBER
4. TITLE (anoSubtitie) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: Gould, In':. 25 May 1988 to 25 May 1989

APLEX:Ada Compiler, Version 2.1, Gould NP1 Modei 4050 and
Gould CONCEPT/32 Model 6780 (Host, Target), (880523W1.0905kY,"EROMMING DRG- REPORT NUMBLR

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

9. PERFORMING ORGANIZATION AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Ada Jcint Program vffice 25 May 1988

United States Department of Defense hr—woeerr—or RGeS

Washington, DC 20301-3081 38 p

14. MONITORING AGENCY NAME & ADDRESS(!f different from Controliing Office) 15. SECURITY CLASS (of this report)
UNCLASSIFIED

Wright-Patterson Air Force Base, 153. RECEASS]FICATION/DOWNGRADING

Dayton, Ohio, U.S.A.

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstractenteredin Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

18. XEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRALT (Continue on reverse side if necessary and 1dentify by block number)

Gould, Inc., APLEX Ada Compiler, Version 2.1, Gould NP1 Model 4050 under UTX/32, Revision
3.0, to Gould CONCEPT/32 Model 6780 under MPX-32, Revision 3.4 (Target), ACVC 1.9.

DD 'U" 1473 ep1vion OF 3 NOV 65 1S OBSOLETE
1388 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

Ada Compiler Validation Summary Report:

Compiler Name: APLEX Ada Compiler, Version 2.1

Certificate Number: 880523W1.09056

Host:
Gould NP1l Model U050
under UTX/32,
Revision 3.0

Target:
Gould CONCEPT/32 Model 6780
under MPX-32,
Revision 3.4

Testing Completed 25 May 1988 Using ACVC 1.9

This report has been reviewed and is approved.

f?—- -/ ’
.41/ C¥en ;2’-"/ /}/&é{
Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH U45433-6503

O L M

£a Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

1
!
0

(i
| B
: =
i; ”“‘CLL"

e e e e TS
1

o
Ada %oint Prograﬁ Office - ”>E
Virginia L. Castor . - —
Director "« X |
Department of Defense \“ i
Washington DC 20301 . i
Al |
— >
RESA
1 :;';‘&O
*

CHAPTER 2

CHAPTER

L]
NNV EWN -

APPENDIX B

APPENDIX C

APPENDIX D

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT

USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ v o o & &
DEFINITION OF TERMS . . « « &« « ¢ &
ACVC TEST CLASSES '+ ¢ &+ & o = o « &

CONFIGURATION INFORMATION

CONFIGURATION TESTED + « & o o « « &
IMPLEMENTATION CHARACTERISTICS . . .

TEST INFORMATION

TEST RESULTS ¢ « ¢ ¢ o o o o o o o
SUMMARY OF TEST RESULTS BY CLASS . .
SUMMARY OF TEST RESULTS BY CHAPTER .
WITHDRAWN TESTS . ¢ s ¢ ¢ ¢ o o o &
INAPPLICABLE TESTS « ¢« « ¢ o o o & &

* o

TEST, PROCESSING, AND EVALUATION MODIFICATIONS
ADDITIONAL TESTING INFORMATION ¢ « ¢ o o o o o
Prevalidation . « ¢ ¢ ¢ ¢ ¢ o o o ¢ o o o o
Test Method .« & ¢« ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o &«
Test SIte & & o 4 ¢ 4 ¢ ¢ ¢ ¢ o o o o o o o

DECLARATION OF CONFORMANCE

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

2-2

. 3=1

3=1
3-2
3-2
3-2
3-4
3-5
3-5
3-5
3-6

{

~glven in this report.

CHAPTER 1

INTRODUCTION

7™

2
This Validation Summary Report “%4VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of _testing this compiler using the Ada Compiler
Validation Capabilityﬂzzzbve+f An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

“Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristies of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are

-

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validatior testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to ideniify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 25 May 1988 at Gould, Inc. in Ft.
Lauderdale, FL.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (S
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

QOUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH U45433-6503

12

B

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1986.

4, Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard

Applicant

AVF

AVOQ

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines.

The Ada Vaiidation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVQO provides administrative and technical

1-3

INTRODUCTION

support for Ada validations to ensure consistent practices.
Compiler A processor for the Ada language. In the context of this

report, a compiler is any language processor, including

cross~-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the 1language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Target The computer for which a compiler generates code.
Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, anc L. The first letter of a test name identifies
the c¢class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

1-4

INTRODUCTION

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. FEach test ir this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test 1is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it 1is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, 1f a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it 1is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it 1s rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests fo-
chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE Is
checked by a set of executable tests. These tests produce messages that
are examined ¢to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

1-5

INTRODUCTION

place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is

provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that 1is
inapplicable for one validation 13 not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, i3 not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:
Compiler: APLEX Ada Compiler, Version 2.1
ACVC Version: 1.9
Certificate Number: 880523W1.09056
Host Computer:
Machine: Gould NP1 Model 4050

Operating System: UTX/32,
Revision 3.0

Memory Size: 64 Mbytes

Target Computer:

Machine: Gould CONCEPT/32 Model 6780
Operating System: MPX-32,
Revision 3.4
Memory Size: 16 Mbytes
Communications Network: thernet
2=1

CONFIGURATION INFORMATION

2.2 TIMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E teats specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

. Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 1levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests DS55A03A..H (8
tests), DS6001B, D640OSE..G (3 tests), and D29002K.)

« Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See tests
D4ACO2A, DUAOO2B, DHAOOLA, and DHAOOUB.)

. Predefined types.

This implementation supports the additional predefined types
LONG_INTEGER and LONG_FLOAT in the package STANDARD. (See tests
BB6001C and B82001D.)

. Based literals.

An implementation is allowed to reject a based 1literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E241014.)

. Expression evaluation.
Apparently some default 4initialization expressions for record
componen.s are evaluated before any value is checkxed to belong to
a component's subtype. (See test C32117A.)

Assigrments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2=2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test

€359034.)

Sometimes NUMERIC_ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test CU5232A.)

No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. {(See test CU52524A.)

Apparently underflow is not gradual. (See tests CU55244..2.)

Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests CU60124..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests CH60124..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
CHAO1T4A.)

Array types.

An implementation 1is allowed to raise NUMERIC_ERROR or
CONSTRAINT ERROR for an array having a 'LENGTE that exceeds
STANDARD. INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX_ INT components raises NUMERIC_ERROR. (See test
C36003A.)

No exception is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC_ERROR 1s raised when 'LENGTH is applied to an array type
with SYSTEM.MAX INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array type is declared. (See test
€¢52103%.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC_ERROR when the array type is declared.
(See test C52104Y.)

CONFIGURATION INFORMATION

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERIC_ERROR when
the array type is declared. (See test ES2103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in 1its entirety
before CONSTRAINT ERROR 1s raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A4.)

. Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E381044.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

« Aggregates.

In the evaluation of a multi-dimensional aggregate, index subtype
checks appear to be made as choices are evaluated. (See tests
C43207A and CU43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test EY3212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

. Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause .s used by a test in a way that violates a
restriction, then the implementation must reject it.

CONFIGURATION INFORMATION

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502I..J, C3550M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests (C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are not
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported with the requirement that the alignment is maintained.
(See test A39005B.)

Length clauses with STORAGE_SIZE specifications for access types
are supported. (See tests A39005C and C8TB62B.)

Length clauses with STORAGE_SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A3900S5E and C87B62C.)

Record representation clauses are supported with the exception
that the record component's alignment must be maintained. (See
test A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is not supported for library units. (See tests
LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA300LF.)
Input/output.

The package SEQUENTIAL_I0 cannot be 1instantiated with
unconstrained array types and record types with discriminants

without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT IO cannot be instantiated with unconstrained
array types and record types with d.scriminants without defaults.
{See tests AE2101H, EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO. (See
tests CE2102D and CE2102E.)

2=-5

CONFIGURATION INFORMATION

Modes IN_FILE, OUT _FILE, and INOUT FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL_IO and DIRECT_IO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL IO and DIRECT IO. {See tests CE2106A and CE2106B.)

Overwriting to a sequential file ¢truncates the file to last
element written. (See test CE2208R.)

An existing text file can be opened in OUT_FILE mode, can be
created in OUT _FILE mode, and can be created in IN_FILE mode.
(See test EE3102C.)

Only one internal file can be associated with each external file
for text I1/0 for both reading and writing. (See tests CE3111A..E
(5 tests), CE3114B, and CE3115A.)

Only one internal file can be associated with each external file
for sequential I/0 for both reading and writing. (See tests
CE2107A..D (4 tests), CE2110B, and CE2111D.)

Only one internal file can be associated with each external file
for direct I/0 for both reading and writing. (See tests
CE2107F..I (5 tests), CE2110B, and CE2111H.)

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file
cannot be deleted for SEQUENTIAL IO, DIRECT IO, and TEXT IO. (See
test CE2110B.)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are not
deleted when they are closed. (See tests CE2108A and CE2108C.)

. Generics.
Generic subprogram declarations and bodies can be compiled in
separate compilations only 1if the body is compiled before any
instantiations. (See tests CA1012A and CA2009F.)
Generic package declarations and bodies can be compiled in

separate compilations only if the body is compiled before any
instantiations. (See tests CA2009C, BC3204C, and BC3205D.)

2-6

CONFIGURATION INFORMATION

Generic unit bodies and their subunits can be compiled in separate

compilations. (See test CA3011A.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 280 tests were inapplicable to this implementation. A1l
inapplicable tests were processed during validation testing except for 215
executable tests that use floating-point precision exceeding that supported
by the implementation and 20 executable tests that use file operations not
supported by the implementation. Modifications to the code, processing, or
grading for 12 tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L
Passed 106 1048 1586 17 13 45 2815
Inapplicable b 3 267 0 5 1 280
Withdrawn 3 2 21 0 1 0 27
TOTAL © 113 1053 1874 17 19 46 3122
3~1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 1%

Passed 189 489 529 244 166 98 141 327 132 36 234 3 227 2815
Inapplicable 15 83 185 4% 0 ©0 2 0 5 0 0 O 26 280
Withdrawn 2 1% 3 0 0 1 2 0 0 0 2 1 2 21

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A C35904B C3T7215E c453324 CC1311B
E28005C C35403E C37215G ci5614C BC3105A
c3uo0ua C35403R C37215H ATY4106C AD1AO1A
C3550zP C37213H c38102C c850188 CE2U401H
A35902C C37213J ci1402a C87BOUB CE3208A
€35904A C37215C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 281 tests were inapplicable for the
reasons indicated:

. C35508I..J (2 tests) and C35508M..N (2 tests) wuse enumeration
representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1). These
clauses are not supported by this compiler.

. C35702A wuses SHORT_FLOAT which i1s not supported by this
inmplementation.

TEST INFORMATION

A39005B uses a form of length clauses with SIZE specifications for
enumeration types which are nct supported by this compiler.

A39005G uses a form of record representation clause which is not
supported by this compiler.

The following tests use SHORT_INTEGER, which is not supported by
this compiler:

Ccls5231B C45304B C45502B C45503B CU5504B
CHS50LE C45611B Cl5613B Clus5614B C45631B
C45632B BS2004E C55BOTB B55B09D

C45231D requires a macro substitution for any predefined numeric
types other than INTEGER, SHORT_INTEGER, LONG_INTEGER, FLOAT,
SHORT_FLOAT, and LONG_FLOAT. This compiler does not support any
such types.

C45531M, CU5531N, CUS532M, and CU5532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

C4s5310, CU5531P, CU55320, and CUS5532P use coarse U48-bit
fixed-point base types which are not supported by this compiler.

CU56514 declares a fixed-point type which is not representable by
this implementation.

C52008B declares a record type with four diseriminants of type
integer and having default values. The type may be used in the
declaration of unconstrained objects, but the size of these
objects exceeds the maximum object size of this implementation,
and NUMERIC_ERROR is raised.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT 1is dependent on the package
TEXT I0.

CA2009C and CA2009F contain instantiations of generics in cases
where the body is not available at the time of the instantiation.
As allowed by AI-00408/07, this compiler creates a dependency on
the missing body so that when the actual body is compiled, the
unit containing the instantiation becomes obsoclete.

CA3004F, EA3004D, and LA30O4B use the INLINE pragra for 1library
units, which is not supporied by this compiler.

3-3

TEST INFORMATION

. AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL_IO with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

. AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT_I0 with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

. CE2107A..I (9 tests), CE2110B, CE2111D, CE2111H, CE3111A..E (5
testa), CE3114B, and CE31154 are inapplicable because multiple
internal files cannot be associated with the same external file.
The proper exception is raised when multiple access is attempted.

. CE3605A exceeds the maximum output 1line length of this
implementation, which is 253 characters.

. The following 215 tests require a floating-point accuracy that
exceeds the maximum of 14 digits supported by this implementation:

C24113K..Y (15 tests) C35705K..Y (15 tests)
C35706K..Y (15 tests) C35707K..Y (15 tests)
C35708K..Y (15 tests) C35802K..Z (16 tests)
CU5241K..Y (15 tests) C45321K..Y (15 tests)
C4s5421K..Y (15 tests) CU5521K..Z (16 tests)
C4552UK..Z (16 tests) CU5621K..Z (16 tests)
CUSEH1IK..Y (15 tests) CU6012K..Z (16 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonsatrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 11 Class B tests and 1 Class E test.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B27005A BT1001K BA30064 BA3007B BA3008B
BA1101C BA30068B BA30084 BA3013A
34

TEST INFORMATION

B28001R, B28001V, and E28002D were modified by adding "PRAGMA LIST(ON);" as
the first 1line of each file. If the first legal occurrence of a LIST
pragma has the parameter ON, then the implementation does not generate any
listing until the pragma occurs. The Ada Standard states that it is
implementation-dependent whether the initial listing state is ON or OFF.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the APLEX Ada Compiler, Version 2.1 was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the APLEX Ada Compiler, Version 2.1 using ACVC Version 1.9 was
conducted on-site by a validation team from the AVF. The configuration
consisted of a Gould NP1 Model 4050 host operating under UTX/32, Revision
3.0, and a Gould CONCEPT/32 Model 6780 target operating under MPX-32,
Revision 3.4. The host and target computers were linked via Ethernet.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were 1loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was complled and linked on the Gould NP1 Model U050, and all executable
tests were run on the Gould CONCEPT/32 Model 6780. Object files were
linked on the host computer, and executable images were trancferred to the
target computer via Ethernet. Results were printed from the host computer,
with results being transferred back to the host computer via Ethernet.

The compiler was tested using command scripts provided by Gould, Inec. and
reviewed by the validation team. The compiler was tested using all default
option settings except for the following:

TEST INFORMATION

Option Effect
-C Qutput listing file %*.list
-1 Enable PRAGMA INLINE

Tests were compiled, linked, and executed (as appropriate) using a single
host computer and a single target computer. Test output, compilation
listings, and job logs were captured on magnetic tape and archived at the
AVF. The 1istings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at Gould, Inc. in Ft. Lauderdale, FL and was
completed on 25 May 1988.

APPENDIX A

DECLARATION OF CONFORMANCE

Gould, Inc. has submitted the following Declaration of
Conformance concerning the APLEX Ada Compiler, Revision
2. 1 -

A-1

Validated May 88 (NP1-MPX)

DECLARATION OF CONFORMANCE

Compiler Implementor: TeleSoft, Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: APLEXTM Ada Compiler Revision: 2.1
Host Architecture ISA: Gould NP1 OS&VER #: UTX/32
Model 4050
Target Architecture ISA: Gould CONCEPT/32 OS&VER $#: MPX/32
Model 6780

Derived Compiler Registration

Derived Compiler Name: APLEXTM Ada Compiler Revision: 2.1

Host Architecture ISA: Gould NP1l OS&VER §#: UTX/32
Model 40XX
Target Architecture ISA: Gould CONCEPT/32 OS&VER #: MPX-32
Model 97XX

Derived Compiler Registration

Derived Compiler Name: APLEXT™ ada Compiler Revision: 2.1

Host Architecture ISA: Gould NP1 OS&VER #: UTX/32
Model 40XX
Target Architecture ISA: Gould CONCEPT/32 OS&VER #: MPX-32
Model 67XX

TMAPLEX is a trademark of Gould Inc.
A-2

Revision

Revision

Revision

Revision

Revision

Revision

3.0

Implementor's Declaration

I, the undersigned, representing TeleSoft, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-18l5A
in the compiler listed in this declaration. I declare that Gould Inc.
is the owner of record of the Ada language compiler listed above and,
as such, is responsible for maintaining said compiler in conformance
to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler listed in this declaration shall be made only in the
owner 's corporate name.

Date:_ .29 —1 a.\t‘ 198 %

TeleSoft, Inc.
Ray Parra, Director of Contracts/Legal

Owner's Declaration

I, the undersigned, representing Gould Inc., take full responsibilit:
for implementation and maintenance of the Ada compiler listed above,
and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office. I declare that
all of the Ada language compilers listed, and their host/target
performance are in compliance with the Ada Language Standard ANSI/MIL-
STD-1815A. I have reviewed the Validation Summary Report for the
compiler and concur with the contents. I also affirm that the NP1l
computer architectures listed herein (40XX) are of eguivalent
architecture to the NPl described in the documentation attached
hereto. I also affirm that the CONCEPT/32 computer architectures
listed herein (97XX and 67XX) are of egquivalent architecture to the
CONCEPT/32 as described in the documentation which was submitted with
our 1.8 validations.

-_—

. i .
/ }Kﬁ/l//{',ﬁ v 1& ‘kw-félﬂ Date: %MJ&//‘ L9 / 7&/;'/
S A " J

Gould Inc.; .
Mary F. Macomber, Senior Manager, Major Corporate Agreements

A-3

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent ccnventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation c¢lauses. The implementation~dependent characteristics of
the APLEX Ada Compiler, Version 2.1, are described in the following
sectionas, which discuss topics in Appendix F of the Ada Standard.
Implementation-specific portions of the package STANDARD are also included

in this appendix.

package STANDARD is

type INTEGER is range -(2%##31) ,, (2%##31) -~ 1;
type LONG_INTEGER is range -(2%#63) .. (2%#63) - 1;

type FLOAT is digits 6 range -7.23698E+75 .. 7.23698E+75;
type LONG_FLOAT is digits 14

range -7.2370055773320E+75 .. T.2370055773320E+75;
type DURATION is delta 2#1.0#E-1l4 range -86_U400.0 .. 86_1400.0;

end STANDARD;

B-1

APPENDIX F OF THE LANGUAGE REF=RENCz MANUAL

Implementation Dependent Pragmas
Implementation Depencent Attributes
Specification of Package SYSTEM

Restrictions of representation ciauses
Implementation dependent naming

Interpretation of expressions in address clauses
Restrictions on unchecked conversions

I/O Package Characteristics

o~NOOLEAEWN

(1) Implementation Dependent Pragmas
The following pragmas are supportec:

COMMENT
ELABORATE
MAGES
INTERFACE
INLINE
usST
LINKNAME
PACK .
PACE
PRIORITY
SHARED
SUFPFRESS

e & e © o o o 6 o ¢ o

The implementation-defined pragma COMMENT embeds the text of a strin
literal within the object file of the compilation unit containing the pragma. The
syntax is:

pragma COMMENT ("ext of the comment”);

This pragma may appear at any location within the source ccde of an Ada
unit. There is no restriction on the number of comments that may be used.

~

Y

The implementaticn cefined pracma images controis where the code to
support the ™images” attribute for an enumeration type is generated. The syntax
ist

pragma IMAGES (<enum_name>, "DEFERRED" | "IMMEDIATE");

<enum_name> must be the name of a previously defined enumeraticn type.
This pragma must appear in the same package specification or declarative pan as
the type definition. If the "Immediate” parameter is used, the coce for the
“images” attribute is generated in the compilation unit where the type definiticn
appears. This is the default. If "Deferred” is specified, the code is generated in
any compilation unit which references the “images” attribute. Note that if no
references are made to the ™images” attribute, no code is ever generatecd.

Pragma LINKNAME is used to assodiate a string with the name of a routine
in the object ccde. The syntax is:

pragma LINKNAME (<aca_name>, <string>);

The <ada_name> must be the name of an Ada routine which previously
appeared in a pragma INTERFACE. The effect of this pragma is to use the <string>
as the name for the routine in the objest code for the unit. Thus,

function Hyperbolic_Sin (X: Fleat)

return Float;
pragma INTERFACE (Assembly, Hypertolic_Sin);
pragma LINKNAME (Hyperbolic_Sin, ":HSIN:");

would cause the compiler to use the string ":HSIN:" in the object coce
whenever referring to the Aca routine "Hyperbolic_Sin".

When interfacing to C, Fortran, or Pascal, the compiler still forces the
name in the cbject code to correspond to the apgrepriate convention. Thus, for C,
the first characer of the name has an underscore substituted, Fortran has an
underscore acced in front of and hehind the name, and Pascal has an undersccre
acded in front and two underscores added tehind the given name.

The ON parameter of pragma SUFFRESS is not suczarted.

Pragma Iniine is not supported feor library units.
(2) Impiementation Dependent Attributes -

There are no implementation-defined attricules.

3-3

(3) The specification of package SYSTEM:

package SYSTEM is

Powemode/NPL

type ADDRESS is private;
type NAME is (Gould_UTX, Gould_MFX);
SYSTEM_NAME : constant NAME := Gould_UTX;- for

- or :
SYSTEM_NAME : constant NAME := Gould_MPX;- for Ccncept

. STORAGE_UNIT : constant := 8;

MEMORY_SIZE : constant := 2°°24-1; — for Cbncept/Powemoc‘e
- or
MEMORY_SIZE : constant = 2°°30-1; -~ for NPL

~System-Dependent Declarations

subtype BYTE is INTEGER range 0 .. 278-1;
subtype INTEGER_16 is INTEGER range -2°°15 .. 2°°15-1;
subtype INTEGER_32 is INTEGER; — range -27°31 .. 2°°31-1;

~System-Dependent Named Numbers

MIN_INT : constant := -{2°"63);

MAX_INT : constant := (2°°863)-1;

MAX_DIGITS: constant := 14;

MAX_MANTISSA: constant = 31;

FINE_DELTA: constant := 1.0/2.0"(MAX_MANTISSA);
TICK: constant := 1.0/(2.0°"14);

~QOther Systemn Dependent Declarations
MAX_OBJECT_SIZE : constant := MEMORY_SiZ=;
MAX_RECORD_COUNT : constant := MAX_INT;
MAX_TEXT_IO_COUNT: constant := MAX_INT-2;
MAX_T=XT_IC_FELD: constant := 1000;
subtype PRIORITY is INTEZER range Q .. 283;

NULL_ADDRESS : constant ADDRESS;

private

type ADDRESS is new INTEGER_Z32;
NULL_ADDRESS : constant ADDRESS = 0;

end SYST=,

e ——

(4) The list of all restrictions on representation ciauses.

The compiier supports the folloewing representation-clauses:
Length Clauses for types 'Size (LRM i3.2(a))

Length Clauses for collections 'Sterage_Size (LRM 13.2(t))

Length Clauses for tasks 'Storage_Size (LRM 13.2(c))

Length clause for fixed point types (LRM 13.2(d)).

Enumeration representation clauses (LRM 13.3) are supported with the

restriction that they cannot be used to alter values of the predefined type
BOCLEAN.

Record representation clauses (LRM 13.4) are supported. The maximum
significant value for the expression following "at mod” is 8. .

Only records whose components are all statically sized may be the
subject of a representation specification, i.e., those containing dynamically sized
components may not be the subjects.

A composite type used as a component of a representation specified reccrd
must be aligned to preserve the alignment of its consituent components.

Address Clauses (LRM 13.5) are supponéd for objects.
Address clauses for entries are supported for Bare Machine targets only.
The following representation clauses are not supported:
Address clauses fcf subprograms, packages, and tasks.
(5) The conventions used for any implementation-generated name
denoting impiementation-dependent components.

There are no system genersted names for implementation-depencent
components.

(6) The interpretation of expressions that appear in address ciauses.

Exporessions that acpear in acddress specifications are interpretec as the
first stcrage unit of the object. -

(7) Any restriction on unchecked conversions

Unchecked canversions are ailowed between variables of types (cr
suctypes) T4 and T2 provided that: ‘

. they have the same stalic size

. they are not unconsirzineg array types
they are not private (uniess they are subtypes of, or are cerives
fram the private type System.Adcress.)

B-5

\

. (8) Any implementation-depencent characteristics of the input-output packages.

Instantiations of DIRECT_IO and S:QUENT TAL_IQ are sugpported with the
following excepticns:

. unconstrained array types

. unconstrained types with discriminants without default values,
on UTX and MPX targets only.

. multiple internal files opened to the same external file may only
be opened for reading on UTX oniy

. multiple intemal files may not be operied to the same exiemnal filz

on MrX or BMA.

In package DIRECT_IO:
type COUNT is range 0 .. MAX_INT;

in package TEXT_IOC:
type COUNT is range 0 . MAX_INT-2;

In package TeXT7_lO:
subtype FIELD is INTEGER range 0 .. 1000;

- * The line length limit for MPX is 253 characters.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG_ID1 (1..199 => 'A', 200 => *1')
Identifier the size of the
maximum dinput line 1length with
varying last character.

$BIG_ID2 (1..199 => 'A', 200 => '2')
Identifier the asize of the
maximum input line length with
varying last character.

$BIG_ID3 (1..100 | 102..200 => 'a', 101 => '3')
Identifier the size of the
maximum input line 1length with
varying middle character.

$BIG_ID4 (1..100 | 102..200 => 'A', 101 => '4r)
Identifier the size of the
maximur input line 1length with
varying middle character.

$BIG_INT_LIT (1..197 => '0', 198..20C => "298")
An integer 1literal of value 298
with enough leading zeroes so
that 1t 1is the size of the
maximum line length.

TEST PARAMETERS

Name and Meaning

Value

$BIG_REAL_LIT
A universal real 1literal of
value 690.0 with enough leading
zeroces to be the size of the
maximum line length.

$BIG_STRING1

A string 1literal which when
catenated with BIG_STRINGZ2
yields the image of BIG_ID1.
$BIG_STRING2
A string 1literal which when
catenated to the end of
BIG_STRING1 yields the image of
BIG_ID1.
$BLANKS

twenty
size

A sequence of blanks
characters 1less than the
of the maximum line length.

$COUNT_LAST
A universal integer
literal whose value is
TEXT_IO.COUNT'LAST.

$FIELD_LAST
A universal integer
literal whose value is

TEXT_IO.FIELD'LAST.

$FILE_NAME_WITH_BAD_CHARS

An external file name that
either contains invalid
characters or 1is too long.

$FILE_NAME_WITH_HILD_CARD_CHAR
An external file name that
either contains a wild card
character or is too long.

$GREATER_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

(1..194 => o', 195..200 => "69,.0E1")

(1..100 => "p")

(1..99 => 'A', 100 => "1')

(1..180 > ! ')

(2%#63) - 3

1000

(1.;257 => 'D')

(1..257 => 'Cc")

100_000.0

Name and Meaning

TEST PARAMETERS

Value

$GREATER_?HAN_pURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL_EXTERNAL_FILE_ NAME1
An “external file name which
contains 1invalid characters.

$ILLEGAL_EXTERNAL_FILE NAME2
An “external file name which
is too 1long.

$INTEGER_FIRST
A universal
whose value 1is

integer 1literal
INTEGER'FIRST.

$INTEGER_LAST
A universal
whose value is

integer 1literal
INTEGER'LAST.

$INTEGER_LAST PLUS_1
A universal integer 1literal
whose value is INTEGER'LAST + 1.

$LESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN_DURATION_ BASE FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

$MAX IN_LEN
Maximpum input line length

permitted by the implementation.

$MAX_INT
A universal
whose value 1is

integer 1literal
SYSTEM.MAX_ INT.

$MAX_INT_PLUS_1
A universal integer 1literal
whose value is SYSTEM.MAX INT+1.

10_000_000.0

(1..257 => 'B")

(1..257 => 'A')

~(2%%31)

(22#31) - 1

(2%%31)

-100_000.0

-10_000_000.0

14

200

(2%%63) - 1

(2%%63)

TEST PARAMETERS

Name and Meaning

Value

$MAX_LEN_INT_BASED_LITERAL

A universal integer based
1iteral whose value 1is 2#11#
with enough leading zeroes in

the mantissa to be MAX IN_LEN
long.

$MAX_LEN_REAL_BASED_LITERAL

A universal real based literal
whose value is 16:F.E: with
enough leading zeroes 1in the
mantissa to be MAX_IN_LEN long.

$MAX_STRING_LITERAL

A string 1literal of size
MAX IN_LEN, including the quote
characters.

$MIN_INT

integer 1literal
SYSTEM.MIN_INT.

A universal
whose value is

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NEG_BASED_INT
A based integer literal whose

highest order nonzero Dbit
falls in the sign bit
position of the representation

for SYSTEM.MAX_ INT.

(10-2 => “2:“’ ..197 =z>
198..200 => "11:")

|0|,

(1..3 => "16:", 4.,196 => '0°',
197..200 => "F.E:")

(v => '™y, 2,.199 => 'A', 200 => tne)

-(2%#63)

NO_SUCH_TYPE

{6#FFFFFFFFFFFFFFFES

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"Al-ddddd" is to an Ada Commentary.

. B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

. E28005C: This test requires that "PRAGMA LIST (ON);" not
appear in a 1listing that has been suspended by a previous
"PRAGMA LIST (OFF);"; the Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

. C3U004A: The expression in line 168 yields a value outside
the range of the target type T, but there is no handler for
CONSTRAINT_ERROR.

. C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

. A35902C: The assignment in line 17 of the nominal upper
bound of a fixed-point type to an object raises
CONSTRAINT_ERROR, for that value lies outside of the actual
range of the type.

. C35904A: The elaboration of the fixed-point subtype on line
28 wrongly raises CONSTRAINT_ERROR, because its upper bound
exceeds that of the type.

+ C35904B: The subtype declaration that is expected to raise
CONSTRAINT_ERROR when its compatibility is checked against
that of various types passed as actual generic parameters,
may, in fact, ralse NUMERIC_ERROR or CONSTRAINT_ERROR for
reasons not anticipated by the test.

D=1

WITHDRAWN TESTS

. C35A03E and C35A03R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point type with a
null range, but the Ada Standard does not support this
assumption.

. C37213H: The subtype declaration of SCONS in 1line 100 1is
incorrectly expected to raise an exception when elaborated.

. C37213J: The aggregate in 1line 451 incorrectly raises
CONSTRAINT_ERROR.

. C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

. C38102C: The fixed-point conversion on 1line 23 wrongly
raises CONSTRAINT_ERROR.

. CU1402A: The attribute 'STORAGE_SIZE is incorrectly applied
to an object of an access type.

. CU5332A: The test expects that either an expression in 1line
52 will raise an exception or else MACHINE_OVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with 2 wider range than the
base type of the operands, and MACHINE OVERFLOWS may still be
TRUE.

. CU5614C: The function call of IDENT_INT in line 15 uses an
argument of the wrong type.

. A74106C, Cc85018B, C87BOUB, and CC1311B: A bound specified in
a fixed-point subtype declaration 1lies outside of that
calculated for the base type, ralsing CONSTRAINT ERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

. BC31054: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

. AD1AO%A: The declaration of subtype SINT3 raises
CONSTRAINT_ERROR for implementations which select INT'SIZE to
be 16 or greater.

. CE2401H: The record aggregates in lines 105 and 117 contain
the wrong values.

. CE3208A: This test expects that an attempt to open the
default output file (after it was closed) with mode IN_FILE
raises NAME ERROR or USE_ERROR; by Commentary AI-00048,
MODE_ERROR should be raised.

