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ABSTRACT

This thesis is devoted to analyzing the problem of masking a reflected radar signal,
in order to degrade the radar receiver’s performance. This is to be accomplished by ap-
propriately choosing the Power Spectral Density (PSD) of a power constrained colored
noise interference to be generated either by the target itself or by pre-positioned
“friendly” noise makers. The goal in either case is to generate interference signals that
result in decreased receiver probability of detection, P,, for a given receiver probability
of false alarm, P;. Efforts to identify appropriate PSD’s of the power constrained in-
terference were carried out by evaluating the receivers’” P, as a function of P, for two
specific target models. The performance results for the various receivers investigated
demonstrate that the noise interference generated by the noise makers can achieve sig-
nificant levels of degradation, while the target gencrated noise interference tends to im-
prove rather than degrade the radar receiver’s performance. In all cases considered, the

sinc squared shaped noise interference PSD is more effective at degrading the receiver
performance than any other kind of PSD analyzed.
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I. INTRODUCTION.

Two of the interesting practical problems dealing with the degradation of radar re-
ceivers used for detecting targets in the presence of additive noise interference are in-
vestigated in this thesis and described below in greater detail.

The first problem is pictorially described in Figure 1 on page 2. A target, recog-
nizing that it is being illuminated by a radar, generates and transmits a colored noise
interference signal, which is received in conjuction with the radar echo and the back-
ground noise as well as the thermal noise interference by the radar receiver. Henceforth
this problem will be referred to as “Problem 1. This would be done in order to help the
target hide its presence by eflectively degrading the receiver performance, namely by
decreasing the receiver’s probability of detection (Pp). The target clearly cannot produce
a noise interfercnce with unbounded total power. Thus, the choice of noise interference
that minimizes the radar receiver’'s P, . subject to a total interference power constraint.
1s an important practical problem.

The second problem is pictorially shown in Figure 2 on page 3. Assuming that the
arca where the target is likely to be detected by a radar has been penetrated by near
stationary “friendly” noise makers just prior to the target entering the zone of radar de-
tection, the basic question becomes, what interference produced by the friendly noise
makers will most effectively minimize the receiver's Pp, subject again to a total power
constraint. Therefore. on the basis that the friendly noise makers do not have the ability
to produce noise interference with unbounded total power, the choice of noise interfer-
ence subject to a total power constraint that maximally degrades the radar receiver's
performance in order to mask the presence of the target is a practical problem. Hence-
forth. the problem described above and shown in Figure 2 on page 3 will be referred to
as "Problem 2".

It is clear that it would be diflicult for the target or the noise makers to decide about
the kind of noise interference that must be generated in order to best mask the target
without any prior knowledge of the tyvpe of receiver that is being used for radar de-
tection. In any case, it must be assumed that the receiver has been optimized for its
target detection function under the assumption of no masking signal present. While not
completely realistic, it is also of interest to analyze these two problems under the as-

sumption of complete knowledge on the part of the radar receiver about the masking
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(interference) signal being produced. The results would then vield a minimum level of
effectiveness that can be expected to be gained by using masking (interference) tech-
niques. The case in which knowledge exists about the type of receiver implemented is
the only one considered in this thesis. Yet the results have demonstrated that there are
situations when the target-produced noise interference (i.e., problem 1), instead of hiding
its presence by degrading the receiver performance (i.e., reducing Pp), actually improves
it. The transmission of the noise interference by the target itself is not effective, and can
be rather harmful in essentially all the cases investigated. In constrast, the transmission
of noise interference by noise makers, in all cases analyzed, proved to be effective and
to cause significant receiver performance degradation.

The analysis and results associated with investigation of the above described prob-
lems are presented in the five subsequent chapters.

In Chapter 2, the basic information that already exists in the literature pertaining
to the problem under discussion here is presented, along with a mathematical description
of the problem to be considered in chapters 3 and 4.

In Chapter 3, a simple target model, which from now on will be referred to as
“Target Model A", is used to investigate the effect of various kinds of noise interference
generated by the target (i.e., Problem 1). For this particular target model, the situation
in which noise makers generate interference (i.e.. Problem 2) has been investigated by
Bukofzer [Ref. 1], so that pertinent results are presented in this chapter for completeness
sake. However. the case where the noise is transmitted by the target when realizing that
it has been illuminated by a radar (corresponding to Problem 1 described above) is in-
vestigated in detail. The performance of the receiver, which is optimum under conditions
to be stated in the sequel, is obtained and presented in terms of the Receiver Operating
Characteristics (ROC’s).

Chapter 4 1s devoted to analyzing the basic problems previously described, assuming
a more sophisticated target model 1s applicable. The so-called Slowly Fluctuating Point
Target model, where the reflected radar signal is modeled as a complex Gaussian random
process whose envelope 1s a Ravleigh random variable, which henceforth will be referred
to as “Target Model B”, is utilized to investigate two specific cases. The first such case
involves a receiver designed to be optimum for detecting targets observed in the presence
of Additive White Gaussian Noise (AWGN) interference. The performance of this re-
ceiver, operating under the scenarios shown in Figure 1 on page 2 and Figure 2 on page
3, 1s investigated and evaluated in terms of the ROC's under various interference condi-

tions generated cither by the target itself, or the prepositioned noise makers. The second




case considered assumes that the receiver has prior knowledge of the kind of noise in-
terference produced by the target or noisc makers and therelore is designed to operate
optimally in the presence of such noise interference. For such a receiver its performance
under the scenarios shown in Figure 1 on page 2 and Figure 2 on page 3 is investigated
and results are presented in terms of the ROC's.

In Chapter 5, based on the results presented as mathematical expressions of ), as
a function of Py in Chapters 3 and 4, the performance of the receiver analvzed in each
case is evaluated using numerical methods and various signal and noise power parame-
ters. The effect of the masking signal on the receiver's detection probability Pp is dis-
played for representative values of the Signal-to-Noisc Ratio and the Jamming-to-Signal
Ratio.

A summary of the results obtained and the conclusions that can be drawn [rom
these are presented in Chapter 6. Additionally some of the mathematical manipulations
that are necessary to the derivation of certain results are presented in the appendices.

A descriptive summary of the problems investigated and described above. is shown
in Table 1 below where ACGN and PSD stand for additive colored Gaussian noise and
power spectral density, respectively.

Table 1. SUMMARY OF PROBLEMS INVESTIGATED
TARGIET MODIELS

A’ B
I. Correlator Receiver Optimum for AWGN Inter-
ference
Quadrature H. Correlator Recciver Optimuim for ACGN Inter-
ference
#l (CX;?&?‘Z?J) a.Bandlimited Constant Amplitude PSD

b.Sinc Squared Shaped PSD
c.Butterworth Shaped PSD
d. Triangular Shaped PSD

1. Correlator Recetver Optimum for AWGN Inter-
ference

Optimum specrum
Analyzed in I1. (."orrclator Receiver Optimum for ACGN Inter-
#H2 [Ref2 ] ference

) a.Bandlimited Constant Amplitude PSD

b.Sinc Squared Shaped PSD
c.Butterworth Shaped PSD
d. Triangular Shaped PSD

PROBLEMNIS




II. MATHEMATICAL PRELIMINARIES

A. GENERAL

A conventional pulsed radar transmits a signal which consists of a sequence of
pulses. If a target is present, part of the transmitted signal is reflected. Depending on
the type of target model assumed, some of the characteristics, such as amplitude, fre-
quency, or phase of the reflected signal will change with respect to those of the trans-
mitted signal.

The basic radar detection problem involves examining the reflected signal in the
presence of noise and other forms of interference, and deciding whether or not a target
is present . The source of uncertainty inherent in the problem, stems from the fact that
the radar receiver does not know a-priori whether or not a target is present, and from
the fact that depending on the type of target present, reflected signal parameters such
as amplitude, phase, and frequency, may not be known to the receiver either. The sim-
plest possible radar detection problem involves a target modeled as producing a com-
pletelvy known signal return, received in the presence of additive white Gaussian noise
(AWGN) interference.

B. TARGET MODEL A.

The first simple target model treats the reflected signal as a sinusoid of known am-
plitude and frequency, but having a random phase. This radar detection problem has
been addressed extensively in the literature under various assumptions of additive noise
interference.

1. Additive White Gaussian Noise (AWGN) Under Both Hypotheses.

Van Trees (Ref. 3] provides an extensive intoduction to the principles of radar
detection, treated as a hypothesis testing problem. Defining H, as the hypothesis that
the target is present and H; as the hypothesis that the target is absent, the above de-
scribed problem is mathematically expressed as

H, : r{t) = J2E, fit) cos[wt + (1) + 8] + w(1) 0<1<T

21
Hy © (1) = i) (2.)




where E, is the actual received signal energy, 6 is a random variable (r.v.) uniformly
distributed over [0, 2], and w{f) is a sample function of a zero mean white Gaussian
noise process with power spectrai density (PSD) S, (@) =.Vy/2. The amplitude and
phase modulations, f{r) and ¢(r), respectively, are deterministic and f{r) is assumed to
satisfv

T2
L Inl*dr =1 (2.2)

It is demonstrated in Van Trees [ Ref. 3] that decisions about two hypotheses
are optimally given by the threshold test

H,
L2y (2.3)
Hy
where
L=s1}+1} (2.4)
and
T _
L, = J V2 (@) flt) cos[w,r + ¢(1)] dr (2.5)
0
r _
L, = J‘ v2 () i) sinfw,r + ¢(1)] di (2.6)
0

The threshold of the test, denoted by y in Equation 2.3, is normally set by specifving an
operating value for Py, the probability of false alarm.

There are two kinds of errors which can be made. If the receiver decides a signal
(1.e., target) is present when in fact it is not, an error of the first kind is made. That is,
we choose H; when H, is actually true. Denote this probability P(D,/H, ), which in
the radar terminology corresponds to Pg, the probability of false alarm , and it is
mathematically expressed as

Pr = P(Dy/Hp) = f " fyy(LIHo) dL (2.7
)2




where f}!ﬂo(L/Ho) is the probability density function of the r.v. L, conditioned on the
hypothesis that H; is true.

On the other hand, if H; is chosen when H; is actually true, an error of the
second kind is made. The probability of an error of second kind denoted as P(Dy/H,),
in the radar terminology is called the probability of a miss , and is mathematically ex-

pressed as

Py = POQHY = | fypg (LIH)) dL 8)

Often Pj is used, which is the probability of choosing H, when H, is actu-
ally true. This corresponds to 1 — P(Dy/H,), and in the radar terminology is called the

probability of detection . Mathematically it is expressed as

Pp = PDYH) = | fym (LIHy) dL 2.9
Y

The realization of the optimum receiver for the hypothesis testing problem
discused above is shown in Figure 3 on page 9, and it is known as a quadrature
correlator receiver.

The performance of this receiver, in terms of P, and Pp is given by
. 7
Pp=exp(— <)
<10

/ GE 5 (2.10)
PD=Q\,/".\—-0's,/'E)

where y and E, have been defined above, and

2+2

Q. f) = J zexp( - S5 Iy(or) dz (2.11)
B

is the so-called Marcum’s Q function. The [y(x) function is defined by
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2z
Ip(x) = 3‘1— L explx cos(e — £)]de (2.12)

and it is known as the modified Bessel function of zero order.

Observe that Pp can be written in terms of Py as

2E,
PD=Q< / - /21n7}F) (2.13)

so that Pp can be plotted as a function of P for different values of E,/N,. Such a piot

results in the so called Receiver Operating Characteristics (ROC’s).

2. Additive Colored Gaussian Noise (ACGN) Under Both Hypotheses.

The performance of the optimum receiver shown in Figure 3 on page 9, which
has been designed for the signal and noise model of Equation 2.1, can be evaluated when
an additional source of interference is present, namely additive colored Gaussian noise
(ACGNXN). that 1s statistically independent of the AWGN (7). It is obvious that this
receiver is no longer optimum for the assumed signal and noise model. Bukofzer [ Ref.
2] has investigated this problem which can be mathematically expressed as the hyvpoth-

esis testing problem

H, : r(t) = V2E, fi1) cos[w,t + (1) + 8] + n (1) + w(r) 0<r<T )14
Hy (1) = n (1) + w(i) (219)

where again E, is the actual received signal energy, 6 is a random variable (r.v.) uni-
formly distributed over [0, 2z] and n(r) and w(r) are zero mean indepcident Gaussian
random processes with PSD Sy (w) (as yet unspecified) and S, (w) = Np/2, respectively.

The performance of the receiver shown in Figure 3 on page 9, under the above

stated hypotheses and the assumption that ¢(r) =0, is given as

i
P =exp<———>
F 2 2

=’ ~ (2.15)
/E iy
PD=Q< wor , \a/ )

10




where, using the notation Var{./.} to denote the conditioned variance of a r.v.,

o’ = Var(L/H, ,6) = Var{(LJH, , 6}

= Var{LS/HO} = Var{Lc/Ho} (2.16)

"\'0 2

=2t

with
i, = f S (@) Fo(w) | doo 2.17)
Also F/{w) is the Fourier Transform of f(r) , where

S5y = fl) cos w, .z (2.18)

A direct relationship between P, and P can be obtained, namely

py=of |~ [frm-L (2.19)
b N 2 Pg

2+o

C. TARGET MODEL B.
Van Trees [Ref. 1] derives analytically the target model for this particular case, with

the assumption that the radar transmits a continuous cosine wave

s(1) = \"2—1‘7 COS w.t = V"?Re{v"P_, exp(jwct)} —00 £ 1< 00 (220)

Assuming that there is a zero-velocity target at some range R from the transmitter,
whose physical structure consists of several reflecting surfaces, then the reflected signal

can be written as

K
s(1) = V‘?Re{\f'F’I_Zgi explio t — 1) + 9,.]} (2.21)

=1

where g, represents the attenuation of the signal due to the two-way path loss, the radar

cross section of the i-th reflecting surface while also including the effects of transmitting

1t




and receiving antenna gains, ¢; is a random phase angle introduced by the reflection
process, and t is the signal round trip delay time to and from the target.

Assuming that all ; are statistically independent, that the g; have equal magni-
tudes and that K is sufficiently large, and then using the central limit theorem, one ob-

tains
5(0) = J2 Re{JP, b expljo (1 — )]} (2.22)

where b is a complex Gaussian random variable. The envelope, | 6 |, is a Rayleigh ran-

dom variable, whose moments are
Pl [T y
Elb1)=J%a (2.23)
and

E{|b [’} = 263 (2.24)

The value of ¢ includes the antenna gains, path losses, and radar cross section of
the target.
The reflection process associated with this target model is assumed to be frequency-

independent and linear . That is, if

s(1) = \.-"-2—Re{\.-’7’,_ expjw.t + j(ut)} (2.25)
1s transmitted,
() = VZRe{JP b expljlo, + o)t — 7]} (226)
1s received, while if
s(1) = 2 Re{VE £ (¢) expliw,1)} (2.27)
1S transmitted,
5(0) = V2 Re{VE b explioo (1 — D) (1 — 7)) (2.29)




is received. Since b has a uniform phase, the exp(jw,r) term, can be absorbed into the
phase, so that

5{0) = 2 Re{E, b (1 = 1) explo1)} (2.29)

where the function f(z) is the complex envelope of the transmitted signal, which is as-
sumed to be normalized, in the sense that

I 17| = 1 (2.30)
Thus, from Equation 2.27, the transmitted signal energy is E, and the expected
value of the received signal energy is
T — “ 2 “ 1
Er= “Elcb (&...)l)

Considering now a target with constant radial velocity v , the target range R(r) can
be written as

R(1) = Ry— vt (2.32)

where R, is the target range at 1=0.
Under these conditions and assuming that the transmitted signal is the one given in
Equation 2.27, the reflected signal becomes

=~ _ 9
s(0) = 2 Re{\, E b=+ 22 0 explo(r + 2 z)]} (2.33)
where ¢ is the velocity of the light. Furthermore, from the assumption

0T
=<

1 -
TG (2.39)

where W is the bandwidth of f(t), the reflected radar signal can be mathematically de-
scribed as

540 =vZ Re{VE, b f(1 = 1) expliwt +jwpr)} 0<i<T (2.35)

where

13




quwc(%U-) (2.36)

is the shift in the carrier frequency called Doppler Shift .
Then, the total received waveform, in which additive Gaussian noise is accounted
for, can be written as

r(1) = v2 Re{JE, b f(t — 1) expljw,t + jop} + 2 Relii(r) expljw ]} (2.37)
or more compactly

r(t) = 2 Re{F (1) expliow 11} (2.38)

where
F(1) = 6 VE (1 — 1) expliwpt] + A (1) (2.39)
The total noise interference »(f) can be expressed as
n(t) = 2 Re{n(r) expljo, 1]} (2.40)

which represents the actual Gaussian noise that is added to the received signal. Since
the detection problem in this case is limited to a particular value of range and Doppler
shift, the corresponding parameters 7 and wp without loss of generality can be set to
zero for algebraic simplicity, and the binary hypothesis testing problem can be math-

ematically described as

Hy s re) = V‘?Re{[z? EF0)+70)] exp[jwcl]} 0<:i<T
(2.41)

Hy () VERe{E(r) expljo, 1]}

so that the detection problem can be explicitely formulated for the two different Kinds

of additive Gaussian noise.
1. Additive White Gaussian Noise (AWGN) Under Both Hypotheses.

In this case, the complex envelopes of the received waveform under the two
hypotheses are

14




Hy : 7(0)=vE b )+ w(t 0<t<T
1 ~() vE SO +w() (2.42)
Hy : r(t)=w(n)
where w(r) is a zero mean white complex Gaussian random process with
ELW(0)w% ()] = Nod(t — u) (2.43)

Thus the transmitted signal energy is E, and the expected value of the received
signal energy is

E,=2E.} (2.49)

Van Trees [Ref. 2] proves that optimal decisions about the two hypotheses in
Equation 2.42 are given by the threshold test

~ 5 1NNy + 203E) 263E
2. MM T ~Oply “Ohlyg
|R|* 2 5 {(Iny+In(l+——)) =7 (2.45)
I{O ZGbEI -0
where 7‘, is a sufficient statistic given by
T
m EJ P (D (2.46)
0

which is implemented by the receiver shown in Figure 4 on page 16 (see point labeled
1), or equivalently, by the receiver shown in Figure 3 on page 17 (actual receiver). Note
that the test threshold ; depends on 5. which itself depends on the prior probabilities of
the two alternative hypotheses and the decision costs.

The performance of these receivers has been evaluated in [ Ref. 2], in terms of
Pp and P and demonstrated to be given by

Pr = exp(—ﬁ;)

(2.47)
. 7
Fo = e‘\p<_ E + 2, >

In terms of ROC's, the performance of the optimum receiver is given by

15




Figure 4.  Correlation Receiver Using Complex Signals.
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‘r

A=-— 2.49

I'rom Cquation 2.48 it is clear that increasing 4 always improves the perform-

ance ol the receiver in the sense that for fixed Pp. Pp increascs as A increases.

2. Additive Colored Gaussian Noise (ACGN) Under Both Hypotheses.
In this case. the complex envelopes of the received signal under the two hy-

potheses are

~ o~

7 y=E b )+ n) 0<t<T

~ ~ 2.50
Iy r(t)=n(1) ( )

The additive noise z(z) is a sumple function from a zero mean nonwhite com-
plex Gaussian process. It is assumed here that n(r) contains two statistically inde-

pendent Gaussian components, namely
n(1) = n 1) + w(r) (2.51)
where the covariance of n(f) is given by
Eln(nn 0] = K () = KEC“'“) + Npd(t—uw) 0<r,u<T (252
Van Trees [Ref. 2 ] derives the optimum threshold test for the hypothesis testing

problem of Equation 2.50, which is given by

T\ — 1,
F(2)g :)d:|2 >y (2.53)
Hy

Y

where g(1) is the solution to the integral equation
-

-~

S0 = | Kx3wde + N2 0<t,u<T (2.54)
h bl
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T
) = J K’,;C(z) gu)du + Ngg(r) 0<r,u<T (2.54)
0

The optimum receivers for this case are shown in Figure 6 on page 20 (con-
ceptual operation using complex signals) and in Figure 7 on page 21 (actual receiver).

A particularly simple solution to this problem is obtained when () can be
modeled as a stationary process and the observation interval is nearly infinite, leading
to the so-called Stationary Process, Long Observation Time, or SPLOT problem. Then

Fourier Transforms can be used to solve Equation 2.54, to yield

G o) =2 T 259)
Syw)  Ng+ S;C(w)

where It'(w) . §,~1(w) and .5:,; (w) are the Fourier Transforms of f(z) . I:’,;(t.u) and
1:',; (t,u) respectively. N
The performance of the optimum receiver in terms of ROC'’s is also given by the

functional form of Equation 2.48, which in this case can be expressed as

T
A<E j F02 (e (2.56)
0

For the SPLOT problem, A can be evaluated by using the inverse Fourier
Transform of Equation 2.55 in Equation 2.56, while allowing 7T — oo for computational

simplicity.

19
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IIlI. RECEIVER PERFORMANCE ANALYSIS BASED ON THE TARGET
MODEL A.

The binary detection problem addressed in this chapter involves discriminating be-
tween the two alternatives

H, : Signal is present

H, : Signal is not present
under somewhat more complicated conditions due to uncertainty in the received signal,
expressed by a random phase angle imposed on the signal during the reflection process.

The hypothesis testing problem is mathematically described as

Hy : r(t) = V2E, f1) cos[w 1 + ¢(1) + 6] + n(r) 0<r<T

Hy : (1) = n(1) -1

where E, is the received signal energy, s(r) is a sample function of a zero mean white
Gaussian, or a combination of a white and colored Gaussian noise process, and ¢ is a

random variable (r.v.) uniformly distributed over [0,27]. The amplitude and phase
modulations, f{r) and ¢(r) respectively, are deterministic, with f{z) assumed to satisfy

T 2
L | dr =1 (3.2)

The case in which

[

n() = w(r) (

.3)

where w(r) is a white Gaussian random process, has been addressed extensively in the
literature | Ref. 2 | and the basic results have been presented earlier in Chapter 2. The
basic performance equation in terms of ROC's, is given by Equation 2.13 and repeated

here for completeness, namely

P 2L, 1
p=¢ N, 2m?; (3.4)




-

In the case where the additive Gaussian noise is other than white under both hy-
potheses, the receiver shown in Figure 3 on page 9 is no longer optimum and the per-

formance of this receiver will no longer be given by Equation 3.4.

. A. PROBLEM 1.

In this case the hypothesis testing problem is mathematicaly described as

Hy : r(t) = J2E, fit) cos[w t + (1) + 1 + n (1) + w(1) 0<1<T

Hy @ r(t) = w(r) (3:5)

where E, is the received signal energy, 8 is a random variable (r.v.) uniformly distributed
over [0,2r], and n(7) and w(7) are zero mean independent Gaussian random proc-
esses with PSD S, (w) (as vet unspecified) and S,(w) = No/2, respectively. The per-
formance of the receiver shown in Figure 3 on page 9, having input r() given by
Equation 3.5 is now evaluated.

The signal at the output of the receiver can be mathematically described as

- L=12+1} (3.6)
. where
r _
L.= J 2 r(0) A1) cos[w t + ¢(r)] dt (3.7
0
T _
L, = J V2 r() fln) sinfw 1 + (1)) dr (3.8)
0

In order for the performance to be evaluated, the probabilities Pp and Prp must
be specified. To this end, the probability density function (p.d.f.) of the r.v. L at the
output of the receiver, conditioned on both hypotheses, is required. This can be ac-
complished by observing that both L. and L; are conditionally Gaussian r.v.’s.

Using the notation E{./.} to denote conditional expectations, the conditioned

means of the r.v.’s L. and L; can be obtained from
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E{L /H,,0} =
= E{ fOTﬁ[Jﬁ,"ﬂr) cosfwt + ¢() + 61 + w(0) + n ) 1) cos[ w1 + ¢(z)1dr} (3.9)
= JE, cosé
E{L({H, ,08}=
= E{ fOTJ?[VfTEﬂz) cos[w,t + d(1) + 01 + w(?) + n () Jfl2) sinfw,s + ¢(z)]dz} (3.10)
=~ JE, sin6

Obviously, since both #.(z) and w(r) are assumed to be zero mean processes,

E{L,/He} = E{Lj/Ho} = 0 (3.11)

Bukofzer [Ref. 2] shows that, under the assumption of ¢(1)=0

hY
Var(LJH, , 6} = Var(L/H) , 6} = —=*+0, (3.12)

where o7 is defined as

o = o L $. (@) | Fi(w) | 2deo (3.13)

and F(w) is the Fourier Transform of the f(r), where
JA) = fl)cosw,t (3.14)

Under the hypothesis H;, the conditional variances of L. and L; can be evaluated

as
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T _
Var{L,|Hy} = Var{LJHy} = E{U JZ W) fir) cos[w,t + ()] dtjlz}
0

' (3.15)
= 2J I: TE{w(r)w(t)}f(f)f(r) cos[w,t + ¢(1)] cos[w,r + ¢(1)] d,:l de = i\zg_
0

0

Bukofzer [Ref. 2] shows that L, and L; are uncorrelated, and since the conditional
r.v.’s are Gaussian, Whalen [Ref. 4 ] shows that the corresponding conditional p.d.f.’s
can be written as

| L+E JVEL
j},’Hl(L/Hl) = T 5. exp I S Iy —i_—_- u(L)
(4\0 + 26’;6) (\0 + 20”6) -0 0’; )
‘ (3.16)

= Leg(-2L
f,/HO(L/HO) = e,\p\ N >u(L)
where u(.) is the unit step function, a,z,c is defined in Equation 3.13 and /y(x) is the
modified Bessel function of zero order, defined by Equation 2.12.
As a result of this, we can express the probabilities Pp, and Py as

Pp=Pr{i>y/H} = f, L/H)dL
=y L+E, JEL
= 5 apl —————— | b B u(l)dL
\q + 2 y :
, Ng + <Oy, (\0 + 2G"c) (_20_ + 0,’216)
= 2, 2 (3.17)
f x exp|: - ;—a } Ip(ox) dx
‘\’ \0 +-l’
- 0 2
=t %,

where




E
ol s —— (3.18)
.\‘0/2 + O’;C

and Q(a, B) is the so-called Marcum’s Q function.

Furthermore

o0
Pp="Pr{l>yHo} = | fyn(LIHodL
¥

- J -—\‘.—exp<—-7\L,—)u(L) dlL (3.19)
Y0 90,
)
= exp(—.';.,
AV
Solving for y vields
y = Npln—— (3.20)
Pr

and a direct relationship between P, and Pp can be obtained, namely

E, - .‘\‘0 In PF
= _ - —_— 39
o ~( N2 T N 2 (-2
> + op, N +0n

This result specifies the performance of the receiver shown in Figure 3 on page 9,
under the assumptions stated in Equation 3.5. In order for the Pp to be evaluated as
a function of Pp and the parameters making up Equation 3.21, it is necessary to specifv
the type of signal envelope that is transmitted and the colored noise interference PSD

with which to mask the reflected signal.




1. Signal.
A simple model is chosen to specifv the signal envelope, that is
1 .
—— 011

0= VT (3.22)

0 otherwise

so that the transmitted waveform can be mathematically expressed as

— cos(w,!) 0t T
VT 3.23
St = 02

0 otherwisc
The Fourier Transform of the transmitted waveform f (1) . denoted [ (w), can
be shown to have a magnitude squared given by

sin[(w - w,) 4] sin?(o + w) -]

2

-1
2

|F(w)] +—§é (3.24)

(@ - 0) =7 [0+ 057
under the assumption that w. .7 > 1.
2. Noise. '

Since the noise power alfecting the recciver performance (sce Liquation 3.21)
depends on the PSD of the additive colorcd Gaussian noisc, it is necessary to specify
such ACGN PSD before performance evaluations are possible. Attempts to extremize
Pp as a function of o},t have not proved succesful. Therefore, four different PSD’s
were chosen for n,(f) on the basis of simplicity and suiiability as "uscful” PSD shapes
that could significantly degrade receiver performance. Therefore in Appendix A, the
evaluation of Equation 3.13 for four diflerent ACGN PSD shapes is presented, since as
pointed out, it is apparent that the extremization of P, for [ixed Py under a power
constraint on n.(¢), is not possible. Common to all those cases is the fact that the total
power of n (1) is constrained and set equal to P, . The evaluation ol Appendix A yield

the general result

2 I
oy = kTP, (3.

14
[ 9]
¥,
N




a. Bandlimited Constant Amplitude PSD
The bandlimited constant amplitude PSD is mathematically described as
T 27
e P,,C lw+ o] <o .; 20
S (@) = :

0 otherwise

where o is a scalar. Based on the results of Appendix B for a similar case, & was

evaluated for a =1, which results in the maximum cilective noise power, viclding
k= 0224 (3.27)

b. Sinc Squared Shaped PSD

The PSD in this case can be mathematically described as

TP, [ sinfl(@+w)5]  sin’{(w—w) =]
S @) =— < T*‘Z + 1.“‘7 —on<w<on  (3.29)
[(w+ w,) —2'(')—] [(w—aw,) 55 ‘

where J is a scalar. Ford = 1, which results in a noise bandwidth equal to the signal's

main lobe width, k& was evaluated as
k = 0.3333 (3.29)
c. Butterworth Shaped PSD
The PSD in this case can be mathematically described as

Pnc(ﬂws) I-‘nr(/{(”_()

+ ' 5 —00 < w <o (3.30)

S"c(w) = 2 2 2
(Bwy)” + (o + w,) (Bw)” + (v — w,)

where w; is half power point of the spectrum and f8 is a scalar. Bascd on the results
of Appendix B for a similar case, & was evaluated for f = I. which results in the max-

imum effective noise power, yielding

k = 0.304 (3.31)




" d. Triangular Shaped PSD
In this case the PSD is mathematically described as

P, lw—e .| "
C 3
2ewg 1 - T, ) lw+w.| < ewy
Sp (@) = (3.32)
p, lw+ w, |
28(;0 (l m— < ) low—w.| < twy

where ¢ is a scalar. Based on the results of Appendix B for a similar case, k was
evaluated for ¢ =1, which results in the maximum effective noise power, viclding

k = 0.051 (3.33)

Defining the Signal-to-Noisc Ratio to be (the unitless quantity)

SNR L (3.34)
SN2 '
and the Jamming-to-Signal Ratio to be (the unitless quantity)
rr,
JSR = - (3.39)
L,

the actual performance of the receiver operating under the four types of colored noise

interlerence described above can now be specilied. The results arc all of the general form

- ."\‘0 ln Pr
PD Q 1) ‘\'” )
R kTP, -+ kTP,
\/ SR \[ ~2In Py
=9 1+ kSNRJISR "N 1+kSNRJISR

where the value of & is specified by Equations 3.27, 3.29, 3.31 and 3.33 for the four
kinds of ACGN\ PSD shapes considered.

These results will be analyzed in more detail and presented via ROC's in
Chapter 5.

(3.36)




1V. RECEIVER PERFORMANCE ANALYSIS BASED ON THE TARGET
MODEL B.

The problem of discriminating between the two alternatives being addressed here,
namely

H, : Signal is present

H,, : Signal is not present
has been presented in Chapter 2, with the pertinent equations describing this problem
given as Equations 2.50 to Equation 2.54.

Since the final goal is to mask the signal with an optimally shaped colored noise
PSD, prior knowledge of the type of the receiver used for signal detection is very im-
portant. Depending on the type of additive Gaussian noise that is assumed to be pres-
ent, there are two optimum receivers that can be used. The first one is a receiver designed
to be optimum in the presence of additive white Gaussian noise, and which from now
on will be referred to as Receiver I . On the other hand. the receiver can be designed
to be optimum in the presence of additive colored Gaussian noise, which from now on

will be referred to as Receiver I] .

A. PERFORMANCE OF RECEIVER 1.
For this case, the problem has been presented in Chapter 2, with the pertinent
equations describing the problem given by Equations 2.42 through Equation 2.46.

The performance of the receiver shown in Figure 4 on page 16 and Figure 5 on
page 17, which has been designed for the signal and noise model of Equation 2.42, can
also be evaluated when the additive Gaussian noise process is colored, or a combination
of white and a colored Gaussian noise process. It is obvious that these receivers are no
longer optimum for the assumed signal and noise model. Depending on the colored

noise PSD considered to be present, two cases are investigated below.
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1. Problem 1.
The complex envelopes of the received signal under the two hypotheses are

Hy:7(0)=JE, b @)+ 0<i<T @1

where the additive noise #(r) is a sample function from a zero mean nonwhite complex
Gaussian process assumed to contain two statistically independent components, namely

n (1) = n (1) + w(1) (4.2)

The covariance of n(¢) is again given by

~

ER (7 ()] = Ktru) = K (r4) + Nod{r—) O<r,u<T (43

The receiver whose performance is to be evaluated under such conditions corresponds
to the one shown in Figure 3 on page 16, and in Figure 5 on page 17 while this receiver
1s no longer optimum its performance can be evaluated by obtaining the probability
density function of the r.v. at the receiver output conditioned on both hypotheses. The
correlator output 1s a complex Gaussian r.v. whose probability density function can be

mathematically expressed once the mean and variance of r, have been determined.

Since
T
= TS
0
-~ (4.9
= E b +n, when Hj is true
=) when Hj is true
where
T
W= | WS W (&.5)
0
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and

T
%=fMMmm
0

(4.6)

Due to the fact that both #(r) and w(r) are assumed to be zero mean processes

and g 1s a zero mean Gaussian r.v.,
E{r\/Ho} = E(r/H,} = 0

Denoting

2

Var{r|Hy} = 20y

Var(ny/Hy} = 20},

the variances can be evaluated as

(' 1
%%—HMﬁ%hﬁfJ$mmev@mwj
0

Y0

TprT
=f J Nodt = wf (1) f (u)drdu = N
0 Y0

Also

32

4.7)

(4.8)

(4.9)

(4.10)




T

2C’rzu = E{’71|2/H1}=E{ n’z—:gjv ;(1)/7‘(1)611 + (1) 2}
0

— (4.11)
= Elb P+ [m]°
E 4+ Np+ ol
= ’ + AO + a’nc
where
TprT
a,zxc = j j K,;c(t,u)f(t)f (u) dr du (4.12)
0 vo
and using Parseval’'s Theorem, o%c can be expressed as
2 1 [>=z ~ iy |
o = 3 ) Sie) |G| do (4.13)

Since 7, is a complex Gaussian r.v., the p.d.f’s of 7, conditioned on the two

hypotheses can be written as

~ 1 ( [&|?
f?i (R /H)= expy — = (414)

T m"rzn 1 26;1\
i 1 f |§1|2} (4.15)
FHy R Ho) = exp{ - a.15

11, (Ri/Hy > :

rilHg 2nop, 1 207,

where

El = R+ /R, (4.10)
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and R, and R; are zero mean, equal variance, uncorrelated Gaussian random variables.
Using the transformation

M=RI+RY= |R (4.17)
the p.d.f.’s can be written as
1 M
Sy (MIHY) = —5 exp{-— > }u(m) (4.18)
20y, 20,xl
: 1 M
Sty (MIHp) = —=—expy ——— ru(m) (4.19)
Gno Gno

Then the required probabilities can be expressed as

o0

y
Prp = f fm,'HO(M/HO) dm =1 —J-Ofm,Ho(.\l/Hg) am
y

.

=1-(1- exp( — 26’10 ) ) (41.20)
= exp(~ —5-)
206

ng

and furthermore

¥

(4.21)
. Y/
= exp( — —5—)
20y,
A direct relationship between P, and Py can be obtained, namely
2 4y 2
PD = (PF)ZO',,O/20,,1
(4.22)

(—o
= (PF) E,.+ .\’0 +G)21£
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In this case the performance of the optimum receiver will be evaluated for four

different kinds of noise interference.

a. Bandlimited Constant Amplitude PSD.

Assuming a single sided bandwidth of w, the colored noise PSD is given by

where P, is the colored noise power. Then o2 can be evaluated as

1 | % >
on, ~3 ) S;C(w)ll’(w)lzdw
W smz(w-l)
- _1.__7"-p T 2 dw
27? w fe ( 1)2
— @ 2
= 0438 TP,
(4

Therefore Pp can be written as

1
Pp = P‘F 1+SVR+0.448 SNR /SR

)

where
SNR E’
TN
TP,
JSR = —=
EI’

b. Sinc Squared Shaped PSD.
In this case the colored noise PSD is mathematicaly described as

w
S;c(w) = TP,,C — 75 —00 < W <

35

(4.23)

(4.24)

(4.25)

(4.26)

@.27)

(4.28)




Then o} can be evaluated as

o2 =Lr° $;@)| Fjo)|? do

—0C

00 cin2p L .2 T
1 sin (w—z—) sin (w—z-) 29
= =— TP, T dw (4.29)
o @T)? (L)
—o0 2 2
= 0.666 TP,
(4
Therefore Pp can be written as
‘ )
Pp = P}1+s..\'R+o.666 SNRJSR (4.30)
¢. Butterworth Shaped PSD.
In this case the colored noise PSD is mathematicaly described as
S;w) = 2P, — —o0 < © < o0 (4.31)
o tw
where « is the half-power point of this spectrum. Then o2 can be evaluated as
2 1 {72 o 112
oy, =-E';r'f S;C(a))lf(lw)l dw
oo .2 T
sin“{w —=)
= "2]_'2Pn T 5 % > = 2 dow (4.32)
Tr ) dte (w-?)2
= 0.608 7P,
Therefore Pp can be written as
( 1 )
Pp = Pp1+SNR+0.608 SNRJSR (4.33)
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d. Triangular Shaped PSD.

In this case the colored noise PSD can be mathematically described as

S,TC(CO) ='ﬁ (1 —'—"') —wy £ 0 < w (4.34)

where P, is the available colored noise power. Then o2 can be evaluated as

2 1 1222, 15 012
a,,c=—27j S;C(w)IF(w)I dw

.2 T

P “o sin“(w =—
L o] 2 135
= 5= & Tf (1 g ) (w—)2 dw ( )

= 0.103 TP,
Therefore Pp can be written as
( 1 )

Pp = Pr1+SNR+0.103 SNRJSR (4.36)

2.  Problem 2.
The problem addressed here is described by the Equation 2.50 in Chapter 2.
Due to the similaritics of this case to the problem previously investigated, use
may be made of the development of Equations 4.7 through Equation 4.22. The differ-
ence between the present case and that previously considered is that the variance of the

correlator output is given by
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T T
207 = E{||%iHo) =E{ J J AR w0 (W r du}
¢ vo

T rT
R (4.37)
J J\ Kx(t, u)f () f () dt du
0 Yo

2 .
= Unc + 1\'0

and

.
2} = E{|71|2/Hl}=E{[ JE b f £ @) de + ﬁl(r)}}
0

- (4.38)
= E b P+ |m|?
- . 2
= Er + .\0 + G;;C
where 6'21: is defined in Equation 4.13. The performance now is obtained as
2 5 2
PD = (PF)26"0/20”1
(4.39)
©
= (Pp)
where
bd 2
1\0 + 0
@= s (4.40)

E +Ng+ o,z,c

From Equation 4.39 it is obvious that as @ increases, P, always decreases.
Observe furthermore that © is a monotonically increasing function of of,t as can be seen
from the fact that
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- 2
4o E’+1\0+0nc—1\0—0nc
a’(a,’? ) (E.+ Ny +op )2
¢ _ (4.41)
E,
= >0

This means that as 0,2,c increases, Pp always decreases for fixed Pp.

Using Equation 4.13 and the Cauchy-Schwarz inequality, we have that

2 o ~ <. 1 [ poo , ~ L
J‘ 5,7;(‘0) |F(w)|2da) < [J S'%c(w) dw} 2 [J |F(w)l4 a'wjl 2 (4.42)

—o0 -
—on

with equality if and only if

~

S; (@) = p |F)|? (4.43)

ne

where p is an arbitrary constant.

Integrating both sides of of Equation 4.43, vields

j 556(0)) dw

—00

i

P, = j " | F)|? do (4.44)

so that

P

e

p = p— (4.43)
j IF(w)lzdw

and the optimum solution for §;(w), which satisfies both the minimization of Pp and
£

the power constraint of the noise interference, denoted as S2(w) , can be written as
(4
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I —

- P, |F(w)]?

53 (w) =——
¢ [ ]
J lF\u))l dw

(4.46)

This means that the optimum noise interference PSD, depends on the envelope
f(r) that is transmitted.
Assuming that the complex envelope of the transmitted signal is given by

Equation 3.22 the corresponding Fourier Transform can be written as

~ . sin(w—z; . -
Flw) =T T exp( —jw =) =) (4.47)
wT)
and
- sinz(w-;
2 2
|Fl)|? = T——5 (4.48)
(w=5)"

sm.,(w—.,t-)
P"cT b?
~ (w%)'
$2(w) = —mm——= (4.49)
‘ f ‘F(w)lzdw
Since
T~ 12 1[5 2
L |F )] ar =-ﬂ-'|. | Flw)]? dw =1 (4.50)

the optimum noise interference PSD is simply given by

2, T
~, sin (a)T)
S;c(w) = P,,CT——-—— 4.51)

(L)
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so that

L[,
or =57 ) S;c(w)‘F(w)‘zdw
, * sinX(w —21 ) sind(w % )
= 5-7TP, T = —~— do (4.52)
i o (60-2—)2 (“"2_)2

= 0.666 TP,
¢
Therefore the performance of the receiver under signal and interference condi-
tions described above, is given in terms of P and P, as

1+0.666 SNRJSR__
Pp = P}1+S.\'R+o.6os SNRIJSR (4.53)

where S\R and JSR are defined in Equation 4.26 and Equation 4.27, respectively.
These results will be analyzed in more detail and presented graphically as RNOS’s

in Chapter 3.

B. PERFORMANCE OF RECEIVER II.
The problem addressed here, has been mathematically described by the Equations
4.1 to Equation 4.3.

The optimum threshold test has been given in Chapter 2 by Equations 2.53 and 2.54
and the performance of the receiver that implements this test is given by Equations 2.48
and 2.36. The so-called SPLOT problem introduced in Chapter 2 vields a simpler sol-
ution for the optimum receiver and its performance as given by Equations 2.55 and 2.56.
Specific performance evaluations can be carried out for the SPLOT problem under the
assumption that the signal envelope takes the mathematical form given by Equation
3.22.

Now, based on the type of additive Gaussian noise PSD considered to be present

under the two hypotheses, two cases are investigated below.
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1. Problem 1.

The performance of the receiver shown in Figure 6 on page 20, and Figure 7
on page 21, which has been designed for the signal and noise model of Equation 4.1, can
be evaluated when the additive noise is different under the two hypothesis, namely
ACGN under the H; hypothesis and AWGN under the f; hypothesis. It is obvious
that these receivers are no longer optimum f{or the now assumed signal and noise model.

In this case, the complex envelopes of the received wavefurm under the two

hypotheses can be mathematically described as

H :7a)=E, b f()+ () 0<:1<T

~ ~ (4.59)
Hy : r(D=w(n

where 5 is a complex Gaussian random variable, which models the target and whose
moments are given by Equation 2.23 and Equation 2.24, }(r) is the complex envelope
of the transmitted waveform, 7(s) is a zero mean Gaussian random process defined in
Equation 4.2, and w(s) is a zero mean white Gaussian process. independent of the col-
ored noise n (1) .

In order to evaluate the performance of the receiver shown in Figure 6 on page
20, and Figure 7 on page 21, the probability density function of the signal at the receiver
output conditioned on both hypotheses must be determined.

The correlator output is a complex Gaussian random variable, which defined
by Equations 4.3 through Equation 4.6.

Obviously, since both n(r) and w(s) are assumed to be zero mean processes,

and recalling that b is a zero mean Gaussian r.v.,
E{r|/Hy} = E{rj/H} =0 (4.55)

and using the definitions introduced by Equations 4.8 and 4.9 the appropriate variances

can be evaluated as




/‘

Tprr
J W) w (W) g (u)dr du}
JO 0

rT
=Ny | e *ar

(4.56)

and since

Trr
j AR WE (g (W du}
0

T prT |
= J J 7;(1,14)5(1) g "(u)di du
0 Yo

rT T
=| g ‘(l) l:J‘ ~’;(I , u) g (Wdu } dt
‘JU 0

rT

=| fog wd
Y0

(4.57)

then
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|

L

2an = E(IT) /1)

T
—~ ~ - ~ 2
JE b f Sg W)yde + (1) }
0

T
Jﬂ&bm
0

T
Jﬂ&hm
0

Since #, is a complex Gaussian r.v., the p.d.f.'s of r, conditioned on the two

f

Elb P

.
2. J fwz'md  (4.58)
0

=L,

i
2+Jﬁ&hm
0

hyvpotheses can be written as

2
. R,
Zrzall] l 20}11
o N L |
SRy 1) = T—expq — > (4.60)
"/l 20, L 24,
et ”0 Jno

The procedure carried out in Equations 4.14 to Equation 4.19 can be utilized

here to obtain alternative expressions to the above p.d.fi’s. This yields

Smjn (M) = 12 cxpj— “g }u(m) (4.61)
20,,[ [ 20"1

SPIYT R SR B Yo |
%, 20y,

where the r.v. m is defined by Equation 4.17.  Similar to the steps carried out bty
Equations 4.20 to 4.22, we obtain
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.

y
Pp =exp(——5~)

26,10
and
Pp = exp(———)
20;‘:1
so that
202 /20’2
Pp = (PF)~ npt =Ty (4.65)

Using Equation 4.56 and Equation 4.58, the exponent of Equation 4.65 can be

written as

T >
W[ ol
ny 0

oo B T r
" ZU F0E War }2 + f F08 wa
0 0

From Equation 4.65 and Equation 4.66, we observe that as I' increases Pp

h—]
{H
|

(4.66)

decreases for fixed P so that the analysis of ROC’s can be equivalently replaced by
analvzing the behavior of T.

Thercfore the performance in terms of the parameter I of the receiver shown in
Figure 6 on page 20 and Figure 7 on page 21, for the SPLOT problem and under the

above stated hypotheses will be evaluated for four kinds of colored noise interference
PSDs.

a. Bandlimited Constant Amplitude PSD.

In this case the jamming noise PSD is given in Equation 4.23. Then

(Em(jw) from Equation 2.55, becomes
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T 2
~ Choy
G (w) = - ~w<wsw
No + 5P
[ 0 W n
(4.67)
_ sinlwL) .
VI ——F— exp(~jw=>)
(@-5)
= T W< —w, 0>w
N
The Inverse Fourier Transform of gw(w) is obtained from
— . T
- JT I ¥ sin(w T) _ T
gy = — T, 2n 7 exp[/w(t—-—z-)] do +
Yot S e @5)
JT (" v sin(w—%— -
2N | oL, Cruel Ty de + (4.68)
v 2
T (*>° cm(c)—z;) T
+ 5% “— exp[jw(t — =5 )] do
e (@) -
Since

o [or sinw L) .
50 (:——-—T‘—— exp[jw(t——-i-)]:l do =1 0<t<T (469

(w-é')

~—o0

g(r) becomes

46




gn= \ = [u(t) —u(t - T)] -
0\
— T (4.70)
JT sm(w 3 ) ‘ T
- N - \0 ry J " _) expljo(r — 5 )]dw

so that

— W . T
JT P, !  Sinle5) . T
- [CVESY D) T T —expl ~jot =5 )Jdw @t (4.71)

2n \0(—‘/_%'.\0"'1) . (w—z—)
P w sinz(w—T—)
_ 2 ; )
AY: 2 N (2N 4 p T @
ol 7 No+ Pp) . @)

(4.72)

is a scalar. and changing variables, the integral in Equation 4.71 becomes

where o
w2 T «
sin“(w =-) o = 2m [ sin 7x ]2 dx = 2Z n(o) (4.73)
———'—"—( I—) 7 nX T i
—w @73 -
where
o .
o= [ [54 J
-
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therefore

f Tf 0 " dr= =L P )
Ng Ndt= — — ——
; Vo No( No+Py)

(4.75)

N 2%+ SNRJSR

Since the problem being analyzed assumes a long observation time, use of
the approximation

T oo
INECIRCE NI @76
0 0

is made so that by Parseval’'s Theorem, the integral in the numerator of Equation 4.66
can be evaluated

LITNY: T 1 wSinz(w_ZT—)
f e dr~ — do +
0

: 20 2
alieey [(1 = (%)) + nle) ( 20 + s.\g'R JSR ) ]

Y
Therefore
2
(I = n(e)) + ”(“)( 35T SNRUSK )2
r= SNRISR SNRJSR (@78
) MR 2 :
SR (1 =% 3 SNRJSR ) * (‘ ") 24+ SNRJSR )

As shown in Appendix B, the worst receiver performance occurs for
« =1, so that evaluating Equation 4.78 with o =1 results in
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2 2
0.1 +°'9( 2+ S\RJSR >

r =
. SYRISR_ \2 _ SYRJSR
SR (‘ —09 F7SVRISR ) + (‘ 0.9 STSVRJSR )

(4.79)

b. Sinc Squared Shaped PSD.
In this case the jamming noise PSD is given in Equation 4.28. As a result

of this

_ sin(w—g— T
VT exp( —J'OJT)
~ (w-5)

Goo(w) = = (4.80)

” smz(wI—

)

\U + TP,, T "_,

(=)

Evaluating now the Inverse Fourier Transform of G, (w) results in

sin(w—g—) T
expljo(r — 5]

T (e ’
gu) = o [ T :la'w 0<:<T (48]

oo ) sin (w—z—)

."\‘0 + TP”c T

(@)
Therefore
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T
f F(02 " (ndr =
0

. T
sin(w =) T
explio(t — 5]

— pT oo T
JT 1 (03)
T T2n T 2T do | dt
™ sin (wT)

No + TP,

(L)

- do

A change of variables results in

T

~ ~ * I

0§ (di= =D,
vo

where

. 2
sin“(7x)

Dz = 2 dx
sin“(mx)

—0o~ 1+ SNRJSR -

(mx)”

and SN\R and JSR are given in Equation 4.26 and Equation 4.27, respectively.
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Using Parseval’'s Theorem and the approximation of Equation 4.76 vields

T SlnTtY 2
[HEorax J - - ]dx
0 N 1+S\RJSR sin AL 2L

nx (4.85)
|
= .’\2
;\'02
where
00 sin(mx)
2
N, = = dx (4.86)
i sin“(nx)
—oo~ 14+ SNRJSR ———
(mx)”
so that
|
.'\-0 A\Z 1\‘2
r = = = — (4.87)
\Y SRR
0
¢. Butterworth Shaped PSD.
In this case the jamming noise PSD is given in Equation 4.31. As a result
of this
sin{w L )
= 2 . T
VI ———=— exp(—jo5)
T 2
~ (w5)
G (w) = 2P, (4.88)
N +
o + w?
. and via inverse Fourier Transformation
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T e e

gl) = T [ : 7-PnC°‘ dw 0 1< T (489
—oc Ny +
a2 + aF
Therefore
T
jf(l);; (1)dr =
0
Sin(w-I-)
2 . T
- <——T—— ekp(lw'z—)>
1 ©5) T .
= 5 . 3P - L exp( —jwnd: | | dw
) No + 3
o+ w
( Sinz(nx) ) (4.90)
= -—1— l: (sz)z } dY
o p 7en | 20
—o0 1+ SNRJSR T T
a2+ 4%2 2
sin’(7x) d
_ 1 (nx)? o
Ny (oL oy B
oo 1+ SNRIJSR 3
b+ x
= -1
AV bs
where
o= B l}f— 4.91)

and § is a scalar, SNR and JSR are defined in Equation 4.26 and Equation 4.27, re-

spectively and




sin>(nx)
> (nx)
D, = - dx (4.92)
3 J i ]
—oo 1+ 57 SNRJSR S
B +x

Using Parseval’s Theorem and the approximation of Equation 4.76 yields

sinz(nx)
T > 2
~ 12 ] (nx)
J;) g di= ) J ) ; dx
¥p -
—oo| 1 +=—SNRJSR ———
( T 54 > (493)
= 1., :\73
NG
where
sinz(rrx)
oo 2
Ny = J (rx) 3 dx (3.94)
o [1 +LsvrRisR L= |
b5+ x
Therefore
1 .
o 3 N
r=— - oo (4.95)
“r 2 1 N 3 +
—~z D3+ Ds S
.\0 0
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d. Triangular Shaped PSD.

In this case the jamming noise PSD is given in Equation 4.34. Then

sin(w =) T
/ [ — jey ——
VT T e‘\p( Jw 2 )
~ (w5~
G (w) = = -w<Swsw
Ny + i (1 @] )
i 0 -_——
@0 @0 (4.96)
sin(w =)
~ T e‘p( —Jw —j—)
(05
= = - 0w —w,w=w
o
and via inverse Fourier Transformation, we obtain
sin(w TT ) T
) — explio(r—5)]
— 0 ——
- \’:'T (0) > )
gl = 3 7 - do +
n i ne o]
- ayg Ng + @0 (1——(0—6->
J— - .
\',T ’ Sm(w —2_ ) . T
+ ¥ —F — explot—5)] do + (4.97)
s . 0 (w __) -
—so 2

T °°sin(co—T')
F— 2 expljo—-L)] do
27 N L) *P 2

@p 2

From Equation 4.69, g(1) becomes
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~ _ ] _ _
80 = =00 -ue- 10 +
L,

sin(w
<—Z;—Tg)— expliw(r - "2T- )] )

Z dw

+ N
n i P,,C w|
- wy Ng + o 1 - @y

Therefore

where
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T . ..
SNRJISR(Z—-1)  sin¥(ax)
D3 = AP x > |4x
2ne + SNRJSR(1 ~)  (nx)

¢ is a scalar related to w, according to

wg =& = (4.101)

and SNR and JSR have been defined by Equations 4.26 and 4.27 respectively.
Again, from the approximation of Equation 4.76 and using Parseval’s The-

orem to evaluate the appropriate integral, we obtain

T , 1
f lg)|*dr =5~ = dw +
‘-n 1 il
0 ne |l \ |2
- \0 +—w0 1 - @0 .
1 v cmﬁ(a)—g;)
+ 3 T s dow +
o J_ 0 (eF) (4.102)
I o sinz(w—g—)
+ 3 T——T‘>— dw
27'[.\0 " (w_z__)..
_ L 1y
== -nlE]+—35N;
.\0 i 0
where
.2
sin“nx
c Sin 7x
N; = LES dx (4.103)
1 . lxI\ ]2
|l +=——SNRJSR{]1 ——
£ 27e 2

and n(.) is defined in Equation 4.74.
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Therefore
=1~ ne) + N3]
)
E, 2 T, 1,2
‘,\_g [1+'7TD3] +E‘L1+?D3]

(1 —n(e) + N3]
S\R[l +45 ;P +[1+4 D]

(4.104)

As shown in Appendix B, the worst receiver performance occurs for ¢ =1

and therefore Equation 4.104 becomes

0.1+ N3)
SNR[1 +0.636D;1° + [1 + 0.636D;]

r=

2. Problem 2.
The problem which is mathematically described in Equation 4.1 and the corre-
sponding performance of the receiver shown in Figure 6 on page 20 and Figure 7 on
page 21, specified by Equation 2.48 and Equation 2.56, is now evaluated for four differ-

ent Kinds of colored noise PSD.

a. Bandlimited Constant Amplitude PSD.

Using the results in Equation 4.75, A becomes

P, E
A= L — ne)
=0 "\- _\0 nf)
L, L, S\RJS
= ) o ISR (4.106)
o 0 L8 T4+SNRISR

JSR (SNR)?
= S3R = nle) === R SNR

where SNR and JSR are defined in Equation 4.26 and Equation 4.27, respectively.
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Appendix B is devoted to investigating how A behaves as a function of .
It 1s demonstrated there that when a =1 A is minimized, which results in the worst re-

ceiver performance. Therefore evaluating A when o =1 results in

, JSR (SNR)?
A= SNR = 09 5~ (4.107)

Furthermore, it can be proved that P, is a non-increasing function of
JSR. Thatis

Py = (T3 (4.108)

and taking the first derivative we have

1
d
dPp dA(JSR) 1 1+A )
dJSR) = “ausk) (Fpi+a In(Pp) ah
SNR(2+ JSRSNR) — JSR(SNR)® 1
— 0.9 AR 1= (SAR) (PP T+3 In(Pp) ——  (H109)
(24 JSRSNR)” (1+ 4y
1.8(S\NR)? 0 S
= In(Pp) 5 (PR 1+d ——
2+ JSR SNR)* (1+A)

For 0 < Pr<l, In(P) <0 , and (PF)—I-:T = 0, this demonstrates

that

P,
dJUSR) =

(4.110)

so that indeed Pp is a non-increasing function of JSR, which means that as JSR
grows, Pp can at best remain constant, but is most likely to decrease. This clearly
shows that increasing the colored noise power transmitted by the noise makers, the

performance of the receiver is degraded.
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b. Sinc Squared Shaped PSD.

Using the result in Equation 4.83, A can be evaluated as

sinz(nx)

e (mx)?
A = SAR — dx (4.111)
ool + SNRJSR S0 ()

(mx)

where SN\R and JSR have been defined in Equation 4.26 and Equation 4.27, respectively.
The mathematical form of A and its dependence on JSR make it simple to prove that
Pp is a non-increasing function of JSR.

Using Equation 4.108 and 4.111, and taking the first derivative we have

1
dPp _ dA(JSR) p ;l p d( 1+A>
A0SR~ Tdusg) (Ppi=a In(Pp) aa
- _S\R sin4(nx)
(7:.\*)"' re(P )__i__l (P —= 1
= SA\R ‘ — |dx(PpT+a In(Pp) ———— 1y
o sinfE P+ Ay (4.112)
Veort [ 1+ JSR SNR ————
(rmx)”
sin4(ﬁx)
(o7 (rx)? )
= In(Pp) 1(5.\ R) S dx (Pr) 1+A ——TJ
IN“{7x) \a 1+ A)°
o (1 + ISR SR ) (+4)
(mx)”
It is obvious however that
sin4(rz.r)
~ " ()
— > 0 (4.113)
o [1+JSR sA\‘R—SM’;i 2
(rx)

Since (P,)‘;i—_\ > 0 and In(Pp) < 0 for 0 < Pr < 1, it can be seen that
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dP
il
dJSR)

(4.114)

and therefore Pp is a non-increasing function of JSR. This clearly shows that in-
creasing the colored noise power transmitted by the noise makers, the performance of

the receiver i1s degraded.

¢. Butterworth Shaped PSD.

Using Equation 4.90, A can be evaluated as

sin(rx)
| (nx)? )
A = S\NR - dx (4.115)
I += SNRJSR ———
"4+ x

In Appendix B the behavior of A as a function of § is investigated. It is
shown therein that for =1, A is minimized and therefore the receiver performance
becomes worst, so that evaluation of Pj as a function of Py is carried out for f=1.
Furthermore, it is now proved that P, is a non-increasing function of JSR. Taking

the first derivative we have,

I
dPp  dAJSR) » 1n(P d( 1+A>
ATSK) = dusRy PP T P Ry
in‘(zx) B
_ —7_1.—5.\'R sin”(mx b
. ‘ (nx)” - +x° 1 -
=54\Rf ™) B A o In(Pp) ——— (4.116)
[1+ L JSRS\R—ﬂ—;}z (1+4)
f7+x
sin’ (7x) I
- 5 B
(ex) B+ < 1
= In( S\R)J O Frx dx (PR)T+a ——'—,}
oo JSRS\R—z-é—T}z (1+4)
fo+x
Since

60




1 sinz(nx)

1 B
f (nx)* B+ x
oo [1 +LisrsyR—E—
g5+ x

2

-

J de >0 (4.117)

and (P73 > 0 while In(Py) < 0 for 0 < Py < 1, results in

4Pp <0 4.118
dJSR) = (4.118)

Therefore P, is a non-increasing function of JSR. This clearly shows that increasing

the colored noise power transmitted by the noise makers, the performance of the receiver
is degraded.

d. Triangular Shaped PSD.

Using the result in Equation 4.99, A can be evaluated as

£ - X 2
SYRISR(Z-1)  «inn.
A = SNR + 2S\R e 7 () ax (@119)
2z + SNRJSR(1 ~=)  (7x)”

&
The behavior of A as a function of ¢ is investigated in Appendix B. As be-
fore. performance will be evaluated for ¢ =1, which is shown to minimize A and there-

fore vields the worst receiver performance. Furthermore, the next few steps prove that

Pp is a non-increasing function of JSR, by evaluating
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1
d
dapP dA(JSR 1 ( 1+A )

dJSR)  d(JSR) dA
2
sin“{n:
: —2ns[(1—;'§-)(—;’—;)—1 ]
. nx PR S 1
= 2(S\NR)? dx(PP)1+4 In(Pp) ———
J [ 2en — SNRJISR(1 — )1 ] F P+ ay (4.120)

.2
dmef(1 — X ) ("; )

_ m(Pp){ £ (sa\'RfJ [ — ]dxtppﬁi‘i‘ —‘—;}
L [2re - SNRUSR(L - )T (1 +A)

Since

Sin:(ﬂ.’.\‘)
: 2na[<1—%>—(——)2—]

— }dx > 0 4.121)
| L [2re = SNRUSR(1 =)

whereas (PF)‘ﬁ) > 0and In(Pp) < 0 for 0 < Pp < 1, results in

wp_ (4.122)
dJSR) ~

so that P, is a non-increasing function of JSR. This clearly shows that increasing the
colored noise power transmitted by the noise makers, the performance of the receiver is
degraded.

These results will be analvzed in more detail and presented graphically as
ROC’s in Chapter 3.




V. RESULTS

A. TARGET MODEL A.
1. Problem 1.

Given that P, as a function of Py is given by Equation 3.36, the ROC's for
the suboptimum receiver can be obtained, using numerical methods.

In Figure 8 on page 64, Figure 9 on page 65, Figure 10 on page 66, and
Figure 11 on page 67, the ROC’s are presented for four different values of SNR, the
Signal-to-Noise Ratio, namely 0dB. 5dB, 10 dB and 15 dB, respectively. In each figure,
the ROC'’s are plotted for three different values of JSR, the Jamming-to-Signal Ratio,
namely 0, 0dB and 10 dB. The first value of JSR, corresponds to the absence of noise
interference for comparison purposes.

Observe that for low to moderate values of SNR, anv amount of jamming noise
power actually improves the performance of the receiver. As the Signal-to-Noise Ratio
increases (Figure 10 on page 66). some amount of performance degradation is achieved.
but again as JSR is increased, which corresponds to more target generated noise power
at the input of the receiver, the performance is improved. The limited amount of per-
formance degradation achieved is more evident for higher values of SNR (as demon-
strated by Figure 10 on page 66). for which SNR takes a value of 15 dB. Therefore,
there are cases where an optimum value of JSR exists that achieves the maximum pos-
sible receiver performance degradation, for given values of SNR and Pr. However. even
in the case where 1s some performance degradation is achieved, the receiver still operates
with a relatively high value of P, with corresponding values of Pp in the order of
10=3 | which is still high for a radar receiver.

Since the noise interference power that is needed in order to degrade the per-
formance of the receiver is a function of both Pr and SN\R, and the target attempting
to generate this noise interference has no prior knowledge of those values. it is apparent

that this form of receiver performance degradation is not very effective or practical.
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B. TARGET MODEL B.
1. Receiver L.
a. Problem 1.

Given that Pp as a function of Pp is given by Equation 4.30, the ROC’s
for the suboptimum receiver can be evaluated using numerical methods.

In Figure 12 on page 69, Figure 13 on page 70, Figure 14 on page 71, and
Figure 15 on page 72, the ROC's are presented for four different values of SN\R, the
Signal-to-Noise Ratio, namely 0 dB, 5 dB, 10 dB and 15 dB, respectively. In each figure,
the performance is shown for three different values of JSR, the Jamming-to-Signal Ra-
tio, namely 0, 0 dB and 10 dB. The first value of JSR, corresponds to the absence of
noise interference for comparison purposes.

Observe from the plots that the addition of colored Gaussian noise inter-
ference always improves the performance of the receiver. Since the receiver is designed
to be optimum in the presence of just white noise interference. this performance im-
provement occurs becatse the colored noise becomes associated with the target reflected
signal rather than the noise, and thercfore the colored noise is seen by the receiver as a

reinforcement of the reflected signal rather than as additive noise interference.
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Figure 12,

Optimum White Receiver, /1, Colored I, White SNR=0 dB.
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b. Problem 2.

Given that P, as a function of Pp is given by Equation 4.53, the ROC's
for the suboptimum receiver can be evaluated. using numerical methods.

In Figure 16 on page 74, Figure 17 on page 75, Figure 18 on page 76. and
Figure 19 on page 77, the ROC's are presented for four different values of SNR, the
Signal-to-Noise Ratio, namely 0 dB, 5 dB, 10 dB and 15 dB, respectively. In each figure,
the performance is shown for three different values of JSR, the Jamming-to-Signal Ra-
tio, namely 0, 0 dB and 10 dB. The first value of JSR. corresponds to the absence of
noise interference for comparison purposes.

Observe that, for every value of SNR considered, there is a significant
amount of receiver performance degradation corresponding to the amount of noise in-
terference present (as determined by the JSR value), and is quite large for high values
of SNR (as shown in Figure 19 on page 77).

This case considered, demonstrates significant receiver performance degra-
dation which is achieved under the assumption that the ability to generate and transmit
colored noise interference continuously (under both hypotheses), when the target is

within the radar detection range, 1s indeed valid.
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2. Receiver 11.
a. Problem 1.

Given that Pp as a function of Py is given by Equation 4.87, the ROC'’s
for the suboptimum receiver can be evaluated, using numerical methods.

In Figure 20 on page 79, Figure 21 on page 80, Figure 22 on page 81, and
Figure 23 on page 82, the ROC’s are presented for four different values of SNR, the
Signal-to-Noise Ratio, namely 0 dB, 5 dB, 10 dB and 15 dB, respectively. In each figure,
the performance is shown for three different values of JSR, the Jamming-to-Signal Ra-
tio, namely 0, 0 dB and 10 dB. The first value of JSR, corresponds to the absence of
noise interference for comparison purposes.

In Figure 20 on page 79, which corresponds to an SNR value of 0 dB, there
1s a clear performance improvenment for any amount of noise interference power present.
A somewhat stmilar occurence is visible in Figure 21 on page 80, which has been plotted
with an SNR value of 5 dB. For JSR=10 dB there is a slight performance degradation,
however for JSR=0 dB, therc is an actual receiver performance improvement. This
means that there is a unique value of JSR, which for a specific value of SNR, vields the
largest receiver performance improvement. Clearly, the noise generating target must not
only avoid producing such a JSR value at the receiver, but it must attempt to cause the
largest performance degradation.

In Figure 22 on page 81, and Figure 23 on page 82, which correspond to
SNR values of 10 and 135 dB, respectively, there is a significant amount of receiver per-
formance degradation in relation to the amount of noise interference power present.

This performance degradation increases with increasing SNR values as the figures show.
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b. Problem 2.

Given that P, as a function of Py is given by Equation 4.108 and
Equation 4.111, the ROC'’s for the suboptimum receiver can be evaluated, using nu-
merical methods.

In Figure 24 on page 84, Figure 25 on page 85, Figure 26 on page 86, and
Figure 27 on page 87, the ROC's are presented for four different values of SN\R, the
Signal-to-Noise Ratio, namely 0 dB, 5 dB, 10 dB and 15 dB, respectively. In each figure,
the performance is shown for three different values of JSR, the Jamming-to-Signal Ra-
tio, namely 0, 0 dB and 10 dB. The first value of JSR, corresponds to the absence of
noise interference for comparison purposes.

Observe that, for every value of SNR considered there is a significant
amount of receiver performance degradation corresponding to the amount of noise in-
terference present (as determined by the JSR value).

This case considered, demonstrates significant receiver performance degra-
dation which is achieved under the assumption that the ability to generate and transmit
colored noise interference continuously (under both hypotheses), when the target is

within the radar detection range, is indeed valid.
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VI. CONCLUSIONS

The problem of masking a radar signal return by sclecting the power spectral density
(PSD) of an externally generated power constrained noise interference has been consid-
ered under two sets of assumptions. In the first one, the radar receiver is assumed to
have no prior knowledge of the actual noise present, and thus it has been designed to
be optimum when additive white Gaussian noise (AWGNXN) is the only source of inter-
ference. In the second one the radar recciver is assumed to have prior knowledge of the
noise present, so that it has been dcsigned to be optimum in the prescuce ol the actual
noise, which will be assumed to be additive colored Gaussian noise (ACGN) that con-
tains an AWGN component. In both these cascs, the external noisc interference s as-
sumed to be generated and transmitted by either the target itscll or by noise making
devices present in the area being penctrated by the target.

Using first a simple target model, that is assumed to only introduce a random phasc
to the transmitted sinusoid upon reflection whenever the target generates and transmits
the noise interference while illuminated by a radar, a modest amount of receiver per-
formance degradation was shown to be achievable. Such performance degradation was
demonstrated to depend .on the specific values of JSR and Pp. and to yield only a
moderate decrease in the receiver’s probability detection, 7. Taking into account the
fact that any performance degradation eflccts depend on parameters over which the
target has no control, one must conclude that target generated interference is not an ef-
fective method for masking the radar signal return.

Using the second target model which takes into account the reflectivity of the target
so that the radar signal return is modcled as a Gaussian random process, the perform-
ance degradation results depend on the type of recciver that is being analyzed.

If the radar receiver used is designed to be optimum in the presence of only AWGN
interference, then any noise interference transmitted by the target (when it realizes that
it has been illuminated by a radar) is added to the reflected signal and consequently helps
the receiver to identily the target’s presence.

On the other hand, if noise making devices uscd to gencrate and transmit ACGN,
the results clearly show a recciver performance degradation that is proportional to the

amount of noise interference present.
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If the radar receiver used is designed to be optimum in the presence of ACGN that
contains an AWGN component. (this would implyv that the receiver has prior knowledge
of the kind of noise being generated either by the target or the noise making devices).
the use of noise making devices to generate and transmit noise interference causes a
significant receiver performance degradation. The same receiver undergoes limited per-
formance degradation when the noise interference is transmitted by the target itself. At
low values of Signal-to-Noise Ratio, the receiver performance is actually improved.
Since the receiver performance degradation is a function of SNR, a parameter over
which the target has no control, it appears that again, target generated interference is
not an effective way of masking the radar signal return.

From the cases investigated, it is clear that the choice of PSD shape associated with
the colored noise interference generated, strongly depends on the tyvpe of signal trans-
mitted by the radar. Furthermore. such ACGN interference is best generated by friendly
noise making devices present in the area that the target penetrates. This appears to be
the only effective method of significantly degrading the radar receiver performance, thus

allowing a target to penetrate an area with low probability for being detected.
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APPENDIX A. EVALUATION OF T, FOR FOUR PSD CASES.

Equation 3.13, defines o,z,t , Which is repeated here for convenience

op = TIEJ Sn ) | Fofw) PPduw (A1)

where S, (w) is the PSD of the colored noise n(1) . and | F{w)|? is defined in Equation
3.24.

The quantity of can be evaluated under a total power constraint on (i) for four
different PSD shapes of S, ().

A. BANDLIMITED CONSTANT AMPLITUDE PSD.
The PSD of the bandlimited white neise is mathematically described as

n
¢ [+ .| < =L

]
Snw) = (4.2)

0 otherwise

Assuming that the power of #(¢) is P, , then ¢ must satisfy

2z 2=
- w,+ .+ =
—;;;I ’j cdw + —’ln—J. ‘ ’_I cdo =P, (A.3)
-w,— 'r © w, = =
therefore
7
C = T I,"c (/l“)
and
5
%P”c |(L)-_+_-(nc| < -%
Snc(‘“) = (1.5
8] otherwise
9()




As a result of this, we obtain

oh = f 5, (©) | Fi(w) | deo

(A4.6)

2x 2%
1°p, l: rc T sin’l(0 - 0) 1] j‘ w7 sin[(w + wg) 5 ]
= dw +

— dw
T,z temeo T 2z lo+e)T?

¢T°T T®eTT

Changing variables we obtain

TP (A4.7)

]

—
Jl A
o

B. SINC SQUARED SHAPED PSD.
The PSD in this case can be mathematically described as

T
> )

) sin[(w - o)

+c

.2
sin“[(w + w,)

Sp(w) = ¢ —o0 < W < oo (4.8)

o
(9]

[+ o) =] [(© - o) =]

Under a similar power constraint, ¢ can be evaluated as

< I°°
27

-0

T +

[ sin’f(o+w) L1 sn'flo-w) L]
(0+o) =1  [w-o)L)

} dw= P, (4.9)

therefore

c= 2 (4.10)
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Assuming that .7 is sufficiently large so that

sin’[(0 — wg) =] sin’[( + wp) ]

0
[0-w0)TP?  [0+w)+T
and since
TP, [ sin’l(0+ )21 sin’l(©~w0) =]
Splw) = 76[ 5t = ] —o<w< oo
) [o+w)5 1 (o —w) 5]

] f” sin*[(0 — wg) &1
dw + "’ :ldw
lo+ow)=T

wl-\i

C. BUTTERWORTH SHAPED PSD.
The Butterworth shaped PSD can be mathematically described as

C C

S, (w)= +
e o + (0 + coc)2 o + (w0 — a)c)2

and under a similar power constraint, ¢ can be evaluated as
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1 c c
B3 _w[ CH@tw) o+ (w-w) j} =
so that
¢ = oP,
thus
obP, aP,
Snc(a))= - T+ = —00 £ W L0

>
o* + (w+ w,) o? + (0—wy)"

and as a result of this
2

a
n.

=% J S ) | Flw) Pdw

de o)

1P, [ , sin’{(@ ~ w) -]
= [ jj ’ o dw

e, [~ , sin2[(w + w,) '%-‘]
tT I: PN 2 ] T4
7 2 + (0 + w,) [(w+wc)7]

o, = - dx
e 2 (7:2 + xz)
hade o]
= 0.304 TP,,C
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D. TRIANGULAR SHAPED PSD.
In this case the PSD is mathematically described as

P,,C [w—w,]
3o 1— oy lw+w.| £ wgy
S, (@) =
P, jo+w,|
(4 4
20q (1— @ ) lw—-w.| £ wy
so that
21 |7 2
O =3 J Sp ()| Fo(w) |"dw
TP T @t @0 sin*{(0 + 0, = ]
n, | o+ W, | S ¢
B 8zwy - ®o I 42 do
- w, — wy [(U)+(,JC)7]
+ 2 T
7P, we + @ lw—w, |\ sinl(e=-o, T] |
, 1 - 3 dw
Srwy Wo T2
o — [(© = w) 5]
. oz . .
Assuming o, = -'—T— and changing variables

= 0051 TP,
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APPENDIX B. BEHAVIOR OF A AS A FUNCTION OF NOISE
BANDWIDTHS.

In this Appendix the behavior of A as a function of the interference noise bandwidth

for various types of noise PSD shapes is investigated.

A. BANDLIMITED CONSTANT AMPLITUDE PSD.
It is shown in Chapter 4, Equation 4.106 that

A= S\R - dx (B.1)

JSR(SNR)? " sin¥(zy)
2% + JSRSNR o)

In Figure 28 on page 96 and Figure 29 on page 97. A has been plotted as a function
of o for JSR=0 dB and JSR=10 dB respectivelv. SNR values of 0 dB, 10 dB and 15
dB have been chosen in each plot.

From the pictures it is clear that the smaller A , which vields the worst receiver

performance, corresponds to 2 =1.
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B. BUTTERWORTH SHAPED PSD.
It is shown in Chapter 4, Equation 4.115, that

sinz(nx)
oo —5
. (mx)”
A = SNR T (B.2)
oo | ¥+ SNRUSR ——
B+ x

In Figure 30 on page 99 and Figure 31 on page 100, A has been plotted as a func-
tion of 8 for JSR=0 dB and JSR= 10 dB respectivelv. SNR values of 0 dB, 10 dB and
15 dB have been chosen in each plot.

From the pictures it is clear that the smaller A , which vields the worst receiver
performance, corresponds to f=1.

The overshooting in Figure 31 on page 100 resulting in slightly negative values for
A is due to limitations in the computer plotting package used, rather than due to erro-

neous numerical results.
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C. TRIANGULAR SHAPED PSD.
It is shown in Chapter 4, Equation 4.99, that

& - X .2
SNRISR(X-1) :
A = SNR + 2SNR R (";) dx  (B.3)
L 2ne+ SYRUSR(1-%)  (w)

In Figure 32 on page 102 and Figure 33 on page 103, A has been plotted as a
function of ¢ for JSR=0 dB and JSR =10 dB respectively. SNR values of 0 dB, 10 dB
and 15 dB have been chosen in each plot.

From the pictures it is clear that the smaller A , which vields the worst receiver
performance. corresponds to e=1.
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