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ABSTRACT

This thesis estimates the frequency response of a network where the only data is the
output obtained from an Autoregressive-moving average (ARMA) model driven by a
random input.

Models of random processes and existing methods for solving ARMA models are
examined. The estimation is performed iteratively by using the Yule-Walker Equations
in three different methods for the AR part and the Cholesky factorization for the MA
part. The AR parameters are estimated initially, then MA parameters are estimated
assuming that the AR parameters have been compensated for. After the estimation of
each parameter set, the original time series is filtered via the inverse of the last estimate
of the transfer function of an AR model or MA model, allowing better and better esti-
mation of each model's coeflicients. The iteration refers to the procedure of removing
the MA or AR part from the random process in an alternating fashion allowing the
creation of an almost pure AR or MA process, respectively. As the iteration continues
the estimates are improving. When the iteration reaches a point where the coeflicients
converge the last MA and AR model coefficients are retained as final estimates.
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I. INTRODUCTION

In this thesis, an iterative approach is presented to estimate the frequency response
of a network where the only data is the output obtained from an Autoregressive-moving
average (ARMA) model driven by a random input. The AR parameters are estimated
initially, then the MA parameters are estimated assuming that the AR parameters have
been compensated for..

To find the frequency response of an ARMA network two problems have to be ad-
dressed. One is due to the shortness of the observed data (time limitation) and the re-
sulting distortion of the estimated correlation function. The second problem is due to
the nonlinear combination of the coefficients of the MA part as they appear in the esti-
mate of the correlation function.

To achieve this, we estimate coefficients of MA part and AR part iteratively. We
use the Yule-Walker Method for AR coefficients estimation and the Cholesky decom-
position for MA part estimation. We assume that the ARMA network output, i.e., the
observed signal is produced by white Gaussian noise driving the network. Three differ-
ent methods are used to estimate the AR coefficients. To minimize the effect of the
MA part in the correlation function, correlation lags greater than the correlation length
of the MA part are used in estimating the initial AR coefficients. The iteration refers
to the procedure, which removes estimated MA or estimated AR contribution from the
output of the ARMA model in an alternating fashion. This allows better and better es-
timates of the AR and MA coefficients as the iteration continues. For the iterative AR
coeflicient estimation three methods can be used, denoted bv method 1, method 2 and
method 3. Method I, 2 and 3 use correlation lags starting at p+ 1, 0, and O respectively,
where the first two methods use a square matrix inverse and the third method uses a
Pseudo matrix inverse.

Introduction to models of random processes is presented in Chapter I1. Existing
techniques to solve for the parameters of ARMA models are presented in Chapter II.
Chapter 1V includes simulation results. Simulation studies emploved the Matlab pack-
age on the IBM PC/AT. Conclusions and recommendations are presented in Chapter
V.




1. MODELS OF RANDOM PROCESSES

A. AR PROCESS MODEL
We say that x(n) is an autoregressive process of order p, or simply an AR(p) process

if it satislies the diflerence equation,
x(n) + apx(n— 1) + ... + apx(n — p) = e(n) 2.1

where ¢, a,, ...., a, are constant cocflicients, and g(n) is a pure random process |Ref. 1}.

Equation (2.1) may be written in the following form,

r

X) = = ) gz — k) + e(n) (2.2)

k=1

A realization of Eq.(2.2) is illustrated in Figure 1.

£n) +>® AR process x(n)

2

sessesesese z - Z

Figure 1.  Autoregressive Model of Ovder p

The system transfer function 11(z) between the input ¢(r) and the output x(n) for

the AR modecl shown in Figure | is




—

1 1
A@) Vg tar i+ a2’

H(z)= (2.3)

It is required that A(z) has all its roots within the unit circle in the z-plane which

guarantees that H(z) is a stable and causal filter.

The form of equation (2.3) illustrates that AR models have finite poles but no ze-
roes. Hence, this model is sometimes called an A4{l-Pole model. Because an AR model
has no poles outside or on the unit circle, it has the strict minimum-delay property and
hence is always invertible. In general, minimum delay means that the transfer function
must have no poles outside the unit circle, but can have poles on the unit circle. Strictly
minimum delay means that the transfer function has no poles outside or on the unit
circle.

The AR model is also called an Infinite Impulse Response (I1R) filter. According
to definition (2.2), output x(n) depends on past values of the output and on the present
input. Because of this, it is also referred to as a Pure Feedback system.

The power spectral density for AR models is given by

- 2

a&
Pyrl)=——""7 (29

A2

where

P
AH =1+ Zake-j"/kr
k=1

and T is the sampling interval [Ref. 2].

B. MA PROCESS MODEL
The sequence x(n) is said to be a moving average process of order q (denoted by

MA(q)) if it satisfies the difference equation,
x(n) = boe(n) + big(n — 1) + ... + bye(n - q) (2.5)

where by, b,, ...., bare coefficients, and &(n) is a pure random process [Ref. 1].

. Equivalently, we may write,




q
x(n) = ) bye(n — k) (2.6)
k=0
We may say that the output of an MA model depends only on present and past
values of the input, i.e., there is no feedback in an MA model.
A realization of Eq. (2.6) is illustrated in Figure 2.

E(n) . 1

MA process x(n) >

Figure 2.  Moving Average Model of Order q

The system transfer function H(z) between the input ¢(n) and the output x(n) for
the MA process is

H@)=B@) =by+ bz + bz 2+ ..+ b2 ™7 2.7)

This transfer function has q finite zeroes, but no poles. Hence, the MA model is
also called an All-Zero model. MA models are invertible if and only if B(z) has no zeroes
outside the unit circle, nor on the unit circle.

MA models are also called Finite Impulse Response (FR) filters.

The power spectral density for an MA model is given by

PyalN = 2| B()I? (2.8)

where




q
B(f)=bo+ ) by
k=1

and T is the sampling interval.

C. ARMA PROCESS MODEL
We say that x(n) is an autoregressive-moving average process of order (p,q) or

simply an ARMA(p,q) process if it is satisfies the difference equation,
x(n) + ayx(n = 1) + ... + ax(n ~ p) = bpe(n) + bye(n — ) + ... + be(n—p)  (2.9)

where, again, q,, ...., 4,, by, ...., b, are coefficients and &(n) is a pure random process [Ref.
1].

Equation (2.9) may be written as,

p

q oo
x(r) == ) apx(n—K)+ Y bye(n—K)= 9 hye(n— k) (2.10)
k=1 k=0 =0

The assumption b, = [ can be made without any loss of generality because the input
¢(n) can always be scaled to account for any filter gain [Ref. 2].

A realization of Eq. (2.10) is illustrated in Figure 3.

The system transfer function for the ARMA process is given by

B 1462 4 bz 2+ +b,270
H(Z): (Z) = ! 2 g

= - - @2.11)
AQ) 4 ar v ar i+ az"

where A(z) is the z-transform of the AR part and B(z) is the z-transform of the MA part.
Both polynomials A(z) and B(z) are assumed to have all of their zeros within the
unit circle of the z-plane to- guarantee that H(z) is a stable minimum-phase invertible
filter.
The power spectral density for ARMA models is given by [Ref. 2)

B
Al)

2

Pirual) = 03 (2.12)




£(n -1 : -1

[

'2' ARMA process x(ru

Z z

Figure 3.  Autoregressive-Moving Average Model of Order (p,q)

D. RELATIONSHIPS OF RANDOM PROCESSES

The Wold decomposition theorem [Ref. 3] relates the AR, MA and ARMA models.
It shows that, if the Power Spectral Density is purely continuous, any AR or ARMA
process can be represented by a unique MA model of infinite order.

Another important theorem which is stated by Kolmogorov [Ref. 4] says that any

ARMA or MA process can be represented by an AR process of infinite order.




To illustrate these theorems, we model [Ref. 5] an ARMA(1,1) process by an
AR(oc0) or by an MA(oo) process. From equation (2.11), the system transfer function for
the ARMAC(1,1) process is

If we use AR(o0) process to represent ARMA(1,1) process, where

|
1+ C<lZ_1 + sz_

H(Z) = T

and
< 14 a2z
-k 1
C2)=1 +§lckz =—IT;;_T
By using synthetic division we find that
Clz)=1+(a; = b))z + (b} — b))z + (b — ;692> + . ...

Hence inverse z-transform of az™" is ad(k — m) [Ref. 6] and

1 if k=0
O(k) =
0 else,

the inverse z-transform of C(z) is
cp = 8(K) + (@, — 6,)6(k — 1) + (b7 — a,6,)0(k = 2) + (b5 — a,b1)0(k — 3) + . ..

or

1 if k=0
Cy, =
7 Vay - b)) =b)*! if k=1

If we use a finite order AR(p) we should choose p to satisfy ¢,.,=0 or, equivalently
b =0.

Therefore, a high-order AR model will be required when the zero of the ARMA
process gets closer to the unit circle.




In a similar way if we use an M.A4(oo) process to represent an ARMA(1,1) process,
let

HZ)=dy+diz +dyz ™2 + ...

where

— ., 1+bgz!
D)= ) da ™t = ——L
P 1+a;z

By using synthetic division as we did above, the inverse z-transform of D(z) will be

4 1 if k=0
£ (bl"‘al)(—al)k-l if k=1

If we use a finite order MA(q) model, we should choose q to satisfy d

=0 or,

equivalently aj=0.
Therefore, a high-order MA model will be required when the pole of the ARMA

process gets closer to the unit circle.

E. RELATIONSHIP OF AR, MA, AND ARMA PARAMETERS TO THE
AUTOCORRELATION SEQUENCE

In this section, we will present the relationship of the model parameters to the
autocorrelation sequence [Ref. 2].

If we multiply Eq. (2.10) by x*(n — m) and take expectation, the result will be

p q

E{x(n)x*(n —m)} = — ZakE{x(n ~ k)x*(n — m)} + ZbkE{s(n — k)x*(n— m)}(2.13)

k=1 k=0

where the superscript * is used to denote the complex conjugation.

Equation (2.13) may be written as,

P

q
rem) == D are(m — k) + ) byrg(m — k) 2.19)

k=1 k=0

The cross correlation between the input and the output can be written as,




rea) = E{e(n + Dx*(n)} = E{e(n + o[s*(n) + ) htetin - k)jl}

k=1

el = 1D+ ) hr (i + &) (2.15)

k=)

where h, = 1 by definition (Eq. 2.10).
If we assume that the driving sequence is a white noise process of zero mean and

variance o? then [Ref. 2]

0 for [>0
roh=1 o for [=0 (2.16)
oih*_y  for 1<0

When we substitute Eq. (2.16) in Eq. (2.14), we get final relationship between the
ARMA parameters and the autocorrelation sequence.

rex(m) =

Fex 5 (—m) for m<0

p q
=D aram =K+ Y bty for 0<m<gq

(2.17)
k=1 P k=m

- Zaerx(m — k) for m>gq
k=1

L

The relationship between the autocorrelation sequence and a pure autoregressive

model may be written by setting ¢ =0 in Eq. (2.17)

-

»
- Zaerx(m — k) for m>0

k=1
(2.18)

rex(m) = P
~ Y aro~K+02  for m=0
k=1

e (—m) for m<0

The relationship between the autocorrelation sequence and a pure moving average

model may be written by setting p =0 in Eq. (2.17)




0 for m>gq
q
rxx(m) = GEZbkb*(k_”» for 0 sm< q (2 19)
k=m
| T (—m) for m<0

In this case we should note that

hk=bk for lSkSq
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III. TECHNIQUES TO SOLVE FOR THE PARAMETERS OF ARMA
MODELS

The estimation of the parameters of ARMA processes is a classical problem which
is still being investigated by statisticians. Methods to find the parameters for purely AR
processes are well known, but for ARMA processes some problems remain.

There is a nonlinear relationship between the ARMA parameters and the
autocorrelation of process x(n). The nonlinear equation (2.17) presents the difficulty of
estimating the ARMA parameters, even when we know the autocorrelation sequence
exactly. Techniques based on iterative maximum likelihood estimation (MLE) can be
used to find the ARMA parameters. These techniques require complex computations
and are not guaranteed to converge, or theyv may converge to the wrong solution.
Therefore they are not practical for real time series. For AR parameters, techniques
based on the least squares criterion lead to solutions of linear equations and hence re-
duce the computational complexity. Unfortunately, the moving average parameters of
an ARMA model cannot be found easily by solving a set of linear equations. The MA
parameters are convolved with the impulse response coefficients h(k) which causes a
nonlinear relationship between the autocorrelation sequence and the filter coeflicients.

In section I11-A and I11-B, we will discuss the methods of AR and MA parameter
estimation, and in section ITI-C we will present an iterative approach to find the pa-

rameters.

A. AR PARAMETER ESTIMATION

In this section, we present three widely used methods of extracting the model pa-
rameters from a given block of measured data x(n).
These methods are:

1. The autocorrelation, or Yule-Walker method
2. The covariance method

3. Burg’s method

All three methods of estimating AR parameters are based on least-squares minimization

criteria obtained by replacing the ensemble averages by appropriate time averages {Ref.
7).
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The criteria for the optimal forward ( ¢;(n) ) and backward ( e;(n) ) predictors are

obtained by minimizing

E{ef(n?]  and E[e;(m*]
where ¢;(n) and ¢;(n) are the result of filtering x, through the prediction-error filter as
given by

+
e (M) =Xy + X, | + @ Xp_3 +eiieennn, + @pXn_p

ey (n)=Xp_p+ ayXp_pyy +AXp_pyg Fevernninn.

The autocorrelation method is the most obvious and straightforward one. Equation
(2.18) may be evaluated for the p+1 lag indices 0 < m < p and put into the following

matrix form

- —

10 1ol =1 7l =2) (=) 171 .2
rxx(l) rxx(O) rxx(—l) ’xx( -p+ l) a 0:
red2) (1) rxx(0) red =P+ 2 [ =] 0 (3.1)
o) =1 ralp= 0 L) [ 0]
By noting that
re —k) = ry(k)
Eq. (3.1) can be written as
(10 ) e ) 117 [o2]
rl) a0 (1) ra=D{la| |o
re(2)  re(1) 7+x(0) =2 [l %2|=]0 (3.2)
redd) TP =1 ralp—2) re® |L%] [0

From Eq. (3.2)

P
03 = erx(l)a, where  ay=

i=0




We can replace the autocorrelations r,(k) by the corresponding sample
autocorrelations (biased estimate) computed from the given block of data, where

N=1-k

P k) = % z Xooxn for O0<k<p (3.3)

n=0

We use the biased autocorrelation estimator because the unbiased autocorrelation
estimates may result in autocorrelation matrices that are not positive semidefinite, which
means certain matrix equations have no solution. On the other hand, the autocorrelation
matrices formed from the biased autocorrelation estimate will always be positive semi-
definite [Ref. 21].

By solving the normal equations, we can obtain estimates of the model’s parameters
{a,. a, ay.....,a,.062}. Equation (3.1) is known as the AR, Yule-Walker or Normal
Equations . The autocorrelation matrix of this equation is both Toeplitz and Hermitian
because

r —K) = ro (k)

The solution of the Hermitian Toeplitz equations can be computed with the
Levinson Algorithm. This algorithm is a lattice realization for linear prediction filters.
We illustrate the prediction-error sequence in Figure 4.

The p* prediction error is given by
ep(in) = x, + ApXp |+ @ Xy yt .o + ap,x (3.9
Looking at the first two prediction errors
e,(n) =x, + ay,x,_,
ex(n) = x, + a3 x,_y + aypx,_,

where (1, a,)), and (1, a,, a,,) represent the best predictors of orders p=1 and p=2, re-
spectively. The extra index is used to indicate the order of the predictor.
In the autocorrelation method the ensemble average in minimization of the forward

prediction error is replaced by the least-squares time average criteria ¢ as follows
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X - X - X _2 X _ X
P o 3 Y on-1 &
a 11 1 e1(n)
a,, a 54 1 e2(n)
n
333 432 24 1| &M
[ ] [ L ]
L J [ ] [ ]
[ ] [}
a e (n
8 pp eereeeereenes @ g a o b1 1 p( )
Figure 4.  Prediction-error Sequence
Nep—1
b=y 2. lgml’
N4p~1 ’ 2 (3_5)
= z% x, + Z“pkxn—-k
k=1

n=0
where it is assumed that the data x,, x,, ......, X5_, are observed and x, = 0 for outside the
range 0 < n < N — 1. The minimization of the time-average criteria with respect to the
real and imaginary part of the a, s will lead exactly to the same set of Yule-Walker
Equations (3.1). One way to solve these equations is via the Levinson recursion which
is an iterative technique that extracts the next order predictor {rom the previous one.
The Levinson algorithm can be summarized as follows [Ref. 7}:

1- Initialize the recursion at p=0, by setting
Agf2) =1 and  Ey=ry(0) = E[x;]

where A4,(z) is the prediction-error filter and E; is the mean-squared predic-
tion error at the zero stage. So, initially we have no prediction. At stage p,
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the prediction-error filter will be 4,(z) and the mean-squared prediction er-
ror will be E,.

2- Compute Y., which is called the reflection or PARCOR coeflicient:
- »
Zap,r(p +1-1)
. Y, = =0 . (3.6)
Zaplr U]
=0
3 ﬁec(ugsively determine the (p + 1)* order prediction-error filter polynomial
1(2):
Apir(2) = Af2) = X, 1, 2704, 7" (3.7)
4- Update the mean-squared prediction error:
En=0-Y.)E (3.8)
5- Continue the iteration until the final desired order is reached.

If the process x(n) is AR(p), then iteration will continue up to order p. It will pro-
vide the AR coefficients a,,, ay,, ....... » a,, which are also the best prediction coeflicients.
If we continue iteration after p, all prediction coeflicients of order higher than p will be
close to zero [Ref. 7).

Although the autocorrelation method is the most obvious and efficient one, and the
resulting prediction-error filter is guaranteed to be minimal phase, it suffers from the
effect of prewindowing the data sequence x(n) by padding it with zeros to the left and
to the right. This reduces the accuracy of the method, especially when we have short
data records.

In the Covariance method the ensemble average in minimization of the forward pre-

diction error is replaced by the time average as follows

N-]

14
2
b= N‘_p z Snt D By | (3.9)
k=1

n=p

The only difference between this method and autocorrelation method is in the limits
of the summation. In the covariance method we observe all the data points needed to
. compute ¢. Since we do not need the data outside the range 0 <n< N — | we do not
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need to set x, explicitely to zero. For that reason the covariance method seems to be
more realistic.

If we perform the minimization, we find the AR parameter estimates as the solution
of equations (3.10) [Ref. 5].

Cxx( l 4 1) Cxx( l ,2) cxx( l ,.p) a] Cxx( l !0)
e (2,1)  ¢,.(2,2 (2, a €,x(2,0
xx(: ) xx(: ) u(: P) i xx(: ) (3.10)
cxxld5])  exedps2) cxlpp) |L% Cxx{p,0)
where
N-1
. 1 *
CxxUk) = N—p an-jxn—k
n=p

Note that c,,(j,k) is an estimate of r,,(j — k) . The c,(j,k) uses the sum of only N\-p
lag products to estimate the autocorrelation function for each lag even more lags are
available. In contrast in the estimation of r,,(0) the autocorrelation method uses all data
point, while the covariance method uses only N-p data points in the summation. The
minimization gives us a non-Toeplitz ¢, (j,k) matrix. This implies that we can not use
the Levinson algorithm to solve Eq. (3.10). The equations may be solved by using the
Cholesky decomposition which will be computationally more expensive. The estimated
poles using this method are not guaranteed to lie within the unit circle. As an example,
consider a first order predictor (p=1) and a length-three (N'=3) sequence [Ref. 7]. The
time-average criteria will be

2
N 2_ 1 2 2
b=t Y et =L (e + @ + G+ e
n=1

When we minimize ¢ by differentiating it with respect to a,, and setting the deriv-
ative to zero , we have

() + a1 x0)xg + (x5 + ayyxy)x; =0
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Note the denominator does not depend on the variable x, and if x, is large enough
we might have magnitude of a,, greater than one. In this case we do not get a
minimum-phase prediction-error filter which is sometimes not desirable in practice.

Burg's method estimates the reflection coefficients and then uses the Levinson
recursion to estimate the AR parameters. Burg's minimization criteria is to minimize
both the forward prediction error ¢;(n) and the backward prediction error ¢;(n):

N~-1

b= Ll + 0]

n=p

The computational steps are summarized below [Ref. 7]:

1- Initialize, by setting ;
ey (n) = e; (n) = x, for 0<n<iN-1 (3.11)
and
N-1
L) 2
k= N /)
n=0
At stage p-1, the prediction-error filter will be A4,_,(z) which is the Z trans-
form of the sequence {1, a,,,,a, 3.....ers @y ,;} - The mean-squared error
willbe E,_\. e;_i(n), and e, ,(n) can be calculated forp—1<n< N -1
2- Compute the reflection coefTicient:
N-1
2Ze:_1(n)e__,(n -1
n=p
Y,= poe (3.12)
Ze;_l(n)z +e (n—1)?
n=p
To guarantee the minimum-phase property, Y, must have a magnitude less
than one.
3- Compute 4,(z) using the Levinson recursion given by:
1 [ 1] [ 0 ]
@ 1,1 Gp—1 p—1
9,2 G122 A1 p—2
A IR B I (3.13)
% p-1 Ap—),p-) Gpy,1
a
L PP A L 0 . L 1 .y
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4- Compute ¢;(n) and e;(n) forp<n< N — 1.
e (n) = ey_y(n) = Y ye,_y(n) (3.14)
e, (M) =e,_(n~1)= Y e} (n) .
5- Update the mean-squared error as follows:
E,=(1-Y,)E,_, (3.15) )
6- Continue the iteration until p equals the model order.

The Burg’s method estimates the poles which are on or inside the unit circle. This
is due to the property | Y,| < 1. Therefore, care must be taken to deal with the situation
when | Y,| =1, as this causes the prediction filter to become non-minimum phase.

B. MA PARAMETER ESTIMATION.

The most obvious approach to estimate the MA parameters would be to solve the
nonlinear equation (2.19) using the autocorrelation sequence. Solutions of Eq. (2.19)
involve difficult spectral factorization techniques [Ref. 8].

There is another approach called Durbin’s method which is related Kolmogorov’'s
theorem [Ref. 4] and is based on a high order AR approximation of the MA process.
The AR process allows results using only linear operations. Let

q
BH=1+) b

k=1

represent the system transfer function of an MA(q) process, and

A()=1+ Zakz_k
k=1

represent the system transfer function of an AR(oo) process that is equivalent to the
MA(q) process. Therefore, we have

1

P9=70

B(2)A,(2) =1 (3.16)

The inverse Z-transform of the Eq. (3.16) is: .
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q
1 for m=0
Om + Zb"a'"—" =4(m) = {O for m=12,..49 (317
n=l

where a, = 1 and a, = 0 for k < 0. Therefore, the MA parameters can be determined from
the infinite-order AR model by solving (3.17).

In practice, one can calculate high-order AR(M) parameters, where M > ¢ . Based
on these parameter estimates (1, @,{1), @\(2), ...., a(M)) , an error in the MA part is
computed [Ref. 2].

epralm) = Burm) + ) b, — ) (3.18)

n=1

According to Eq. (3.17) the error should be zero for all m except for m=0. Butin
practice, the error will not be zero when using finite data, so MA parameter estimates
are obtained by the minimization of the squared error power, given by

A ey (m)1?
po= -J4T{__ (3.19)
m=0

This estimation procedure is an approximate maximum likelihood estimate (MLE).
The approximate MLE procedure using Durbin’s method for MA parameters results in
the following estimation [Ref. 5).

b=—R2%, (3.20)
where
M~ |i~j|
R 1 A A f 12
[ aa]lj—m_l- anan+|i-—j| or L, )= 1,2, .o ' q
n=0
M-l
A l AN .
[raa]l = m‘l— za"a”” for i=1,2, . ]
n=0
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Again the Levinson algorithm may be used to solve Eq. (3.20) for the b parameters.
The estimated zeros of B(z) will be inside the unit circle by the minimum-phase property
of the autocorrelation method.

In summary, Durbin’s method first uses the data x,, x,, ..., Xy, to find a large order
AR(M) model using the autocorrelation method. Then using these AR parameter esti-
mates (1, a,, a,,..., 4, as the data, (b,, by, ..., l;,) is found.

Another technique for estimating the MA parameters is to use the MA spectral
estimator [Ref. 5] which is given by Eq. (3.21) based on sample correlation values.

q

Py = Z&x(k)e'ﬁ””‘ (3.21)

k=—q

Since theoretically Eq. (3.21) is equal to o2 | ém lz, the MA parameters can be found
by using the Spectral factorization theorem [Ref. 9]. This theorem shows that any ra-
tional power spectral density of a stationary signal x, can be factored into a minimum-

phase form
Po(z)= o} B(z)B(z™") (3.22)

C. ITERATIVE ARMA PARAMETER ESTIMATION
Let us consider the modelling of ARMA transfer function as given in Figure 5.
The computational steps are summarized below for the iteration assuming know-
ledge of the model order:

1- Form the sample correlation of the time series y(n) by using the biased
autocorrelation estimator.

2- Get the AR coeflicients using the correlation lags > ¢ (to minimize the MA
influence).

3- Inverse filter the original time series y(n) via the inverse of the AR filter (use
the AR coefficients of step 2) to get x,(n)

4- Form the sample correlation of the time series x,(n) by using the biased
autocorrelation estimator.

5- Get the MA coefficients using the sample correlation of x,(n) .

6- Inverse filter the original time series v(n) via the inverse of the MA filter

(use MA coefficients which are estimated in step 5) to get x,(n). We assume
that the MA coefficients are of minimum phase (all roots are inside the unit
circle).

20




(n)

— AR(p) —1 ol MA@ — y(n)
X,(n)
—— MA(q) A - AR(p) |——— y(n)

Modelling of ARMA transfer function.

Form the sample correlation of time series x,(n) by using the biased
autocorrelation estimator.

Get the AR coeflicients using ol lags or lags > ¢ depending on the method
used.

Inverse filter the original y(n) series using the AR coeflicient estimates
which are obtained in step 8, to get x,(n).

Get the sample correlation of x,() by using the biased autocorrelation es-
timator.

Compute the MA coeflicients using the sample correlation of x,(n) .

Compute the error in the AR and the MA parts as given below
p q

—1 —1
error(j— 1) = Z(af— a V+ Z(b,j— 5P for j=23,.,1003.23)

=] i=)

where superscript j is used to denote the number of iteration. The upper
count of j is experimentally chosen. Iteration continue up to 10 if the co-
eflicients do not converge.

If error > A, then go to step 6, else exit the program using the last updates
of the filter coefficients. 1f j> 10 terminate with an error message. Note 2
1s a small experimentally chosen number.
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The AR coeflicients can be obtained via a pseudoinverse from the modified Yule-
Walker equations [Ref. 2]. Equation (2.17) may be rewritten for the p lag indices
g+1<m<q+p,and put into matrix form

[N 0) redg—1) rdg—p+1) a, redg+1)
rn@+l) m{ﬂ uﬁq7p+2) ? __ uﬂf+m (3.24)
ralg+p+ 1) redg+p+2) rede) (L% realq + )

We can compute the autocorrelation sequence for lags q-p+1 to q+ p, therefore
the AR parameters are found as the solution of Eq. (3.24) where the MA parts influence
is minimal. The autocorrelation matrix is of Toeplitz form.

The Moore-Penrose pseudoinverse 4= of an m x n matrix A provides the minimum-

norm least squares solution to Ax =b. The solution is given by
x=A"

where x is a n x 1 vector that simultaneously minimizes the squared equation error, for
a given m x 1 vector b [Ref. 2}. If m=n and rank A is n (i.e., A is nonsingular), then the
pseudoinverse becomes the square matrix inverse A*=A4-\. If m>n (i.e., more

equations than unknowns) and rank A is n, then
A= 4" and

x=(A"%4)7 4"

The superscript H is used to denote the Hermitian transpose operation. This is the
least squares solution for a set of overdetermined equations.

In step 2 of the iteration, we will use correlation lags greater than q while in step
8 either all lags or lags greater than q are used depending on the method.

For MA coefficients estimation the Cholesky decomposition is used. If the matrix
A is square and Hermitian, then the usual triangular factorization takes on the special

form

A=RRY (3.25)
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where R is a lower triangular matrix with nonzero real principal diagonal elements. This
decomposition is called the Cholesky decomposition [Ref. 2.
For the MA part, the statistical autocorrelation is given by

q— k|

. Re(k) = o Z bt ibn (3.26)
n=0

Let B be the lower triangular Toeplitz matrix where the matrix elements 4, are given
in terms of the impulse response of the filter B(z) [Ref. 7]:

by = by
and let the autocorrelation matrix of x, be
Rix(iyJ) = Ryx(i ~J)
Then, the transpose matrix B¥ will have matrix elements
(B} = i
and Eq. (3.26) can be written as

g 1~/
Redind) = Rili=) = 6% D bpprbn

n=0
Rus(i ) = o (BB")y
Thus, in matrix notation
Ry = o’BBY (3.27)
which is related to Eq. (3.25) with the assumption that
ol=1

[4

Therefore, an approximation of the MA parameters can be found from the Cholesky
decomposition of the correlation matrix R,,.
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1V. SIMULATION RESULTS

In this chapter, computer simulation results are presented to show how three dif-
ferent estimation methods work on various ARMA models. Two ARMA(2,2) models
which differ in pole-zero locations, an ARMA(2,3) model and an ARMA(3,4) model are
used as test models. In addition two realizations for each ARMA process are utilized.
Two hundred data points are used in computing the sample autocorrelation values. The
three different AR estimation methods are explained below.

Method 1

The AR coefficients are obtained via a square matrix inverse using the modified
Yule-Walker equations. Correlation lags greater than q are used to minimize the MA
part influence at the first calculation. For the remainder of the iteration the same cor-
relation lags are used to minimize potential influence from the MA part. A Cholesky
factorization is used to find the MA part coefficients.

Method 2

The AR coeflicients are obtained via a square matrix inverse using the modified
Yule-Walker equations. Correlation lags greater than q are used to minimize the MA
part influence at first calculation. For the remainder of the iteration the correlation lags
starting from zero are used assuming the MA part contribution has effectively been re-
moved. The Cholesky factorization is used to find the MA part coeflicients.

Method 3

The AR coefTicients are obtained via a pseudoinverse instead of a square matrix
inverse using the correlation function starting at the zero lag after first calculation. This
allows the use of all important correlation lags. The Cholesky factorization is used to
find the MA part coeflicients.

In addition, observation noise is added to one of the ARMA models and the re-
sulting noisy sequence is processed via the three different methods. The observation
noise is independent of the driving noise. It is white Gaussian noise with zero mean and
unit variance. The signal to noise ratio (SNR) is about 15 dB.

The computer program computes the differential errors in the AR and MA parts
as given in Eq.(3.23), and then compares it with a small experimentally established value

/ (i.e., 2=0.0001). If the error is less than / the program is terminated. If the error is
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larger than Z the program is reentered at step 6. Also, if the coeflicients do not converge
the program will stop after nine iterations.

Comparisons of the true and estimated coeflicient differences, of pole-zero lo-
cations, of distances between the true and ecstimated pole-zero locations and of radial
diflferences between the true and estimated pole-zero locations are presented to show
- how well the three methods work. Also the spectra of the ARMA models are plotted by

using the true and estimated coeflicients.

A. THE ARMA(2,2) MODEL-A
The pole-zero locations for this.model are illustrated in Figure 6.

1

0.8

0.6

0.4

0.2

L

0 0.5 1

Figure 6. The ARMA(2,2) Model-A, Pole-zero Locations

1. METHOD 1
a. Noise Realization 1

The coeflicients converge after two iterations. Tables | and 2 present the

results.
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Table 1. ARMA(2,2) MODEL-A, METHOD 1,
COEFFICIENTS COMPARISON,
REALIZATION 1.

Coeff. True Estimated Difference
a, -1.80 -1.8412 -0.0412
a, 0.85 0.8972 +0.0472
b, 1.00 1.3053 +0.3053
b, 0.80 0.6439 -0.1561
b, 0.80 0.0572 -0.7428

Table 2. ARMA(2,2) MODEL-A, METHOD 1, POLE-ZERO COMPAR-
ISON, REALIZATION L

Poles- True Estimated Distance Radial Diff.
Zeros
P 09 + 0.2 0.9206 + 0.2230; 0.0308 0.0189
J 0.9-0.2 0.9206 - 0.2230; 0.0308 0.0189
3 -0.4 + 0.8j -0.3771 0.8003 1.1071
2z -0.4 - 0.§] -0.1162 0.8488 1.1071

b. Noise Realization 2
Using a different noise realization, the coefficients still converge after two
iterations. Tables 3 and 4 present the results.

Table 3. ARMA(2,2) MODEL-A, METHOD 1,
COEFFICIENTS COMPARISON,
REALIZATION 2

Coeff. True Estimated Difference
a -1.80 -1.8712 -0.0712
a, 0.85 0.9167 +0.0667
b, 1.00 1.1083 +0.1083
b, 0.80 0.5071 -(.2929
b, 0.80 0.1502 -0.6498
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Table 4. ARMA(2,2) MODEL-A, METHOD 1, POLE-ZERO COMPAR-
ISON, REALIZATION 2

Poles- True Estimated Distance Radial Diff.
Zeros
2 0.9 + 0.2 0.9356 + 0.2033j 0.0358 0.0047
P2 0.9 - 0.2 0.9356 - 0.2033j 0.03358 0.0047
z -0.4 + 0.8j -0.2288 + 0.2884j 0.5394 0.2070
Z -0.4 - 0.8j -0.2288 - 0.2884; 0.5394 0.2070

The Spectra using the true and the estimated network coefficients are
plotted in Figure 7.
2. METHOD2
a. Noise Realization 1
The coefficients converge after two iterations. Tables 5 and 6 present the

results.

Table 5. ARMA(2,2) MODEL-A, METHOD 2,
COEFFICIENTS COMPARISON,
REALIZATION 1.

Coeff., True Estimated Difference
a, -1.80 -2.00635 -0.2065
a, 0.83 1.0544 +0.2044
b, 1.00 1.3866 +0.3866
b, 0.80 0.6467 -0.1533
b, 0.80 -0.0178 -0.8178
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Table 6. ARMA(2,2) MODEL-A, METHOD 2, POLE-ZERO COMPAR-
ISON, REALIZATION 1.

Poles- True Estimated Distance Radial Diff.
Zeros
A 0.9 + 0.2 1.0032 + 0.2189j 0.1049 0.0038
D 0.9 -0.2j 1.0032 - 0.2189 0.1049 0.0038
A -0.4 + 0.8j -0.4924 0.8053 1.1071
2z, -0.4 - 0.8j 0.0261 0.9064 2.0344

b. Noise Realization 2

Using a different noise realization, the coefficients still converge after two
iterations. Tables 7 and 8 present the results.

Table 7. ARMA(2,2) MODEL-A, METHOD 2,
COEFFICIENTS COMPARISON,
REALIZATION 2.

Coeff. True Estimated Difference
q, -1.80 -1.9267 -0.1267
a, 0.85 0.9729 +0.1229
b, 1.00 1.0982 +0.0982
b, 0.80 0.4598 -0.3402
b, 0.80 0.0902 -0.7098

Table 8. ARMA(2,2) MODEL-A, METHOD 2, POLE-ZERO COMPAR-
ISON, REALIZATION 2.

Poles- True Estimated Distance Radial Diff.
Zeros
Py 0.9 + 0.2 0.9634 + 0.2118; 0.0644 0.0022
P2 0.9 -0.2 0.9634 - 0.2118; 0.0644 0.0022
2, -0.4 + 0.8; -0.2094 + 0.1958) 0.6335 0.3553
z, -0.4-0.8; -0.2094 - 0.1958;j 0.6335 0.3553
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The spectra using the true and the estimated network coefficients are plot-
ted in Figure 8.
3. METHOD3
a. Noise Realization 1
The coeflicients converge after two iterations. Tables 9 and 10 present the

results.

Table 9. ARMA(2,2) MODEL-A, METHOD 3,
COEFFICIENTS COMPARISON,
REALIZATION 1.

Coeff. True Estimated Difference
a, -1.80 -1.8375 -0.0375
a, 0.85 0.8948 +0.0448
by 1.00 1.3062 +0.3062
b, 0.80 0.6482 -0.1518
b, 0.80 0.0657 -0.7343

Table 10. ARMA(2,2) MODEL-A, METHOD 3, POLE-ZERO COM-
PARISON, REALIZATION 1.

Poles- True Estimated Distance Radial Diff.
Zeros
j 2 0.9 + 0.2 0.9187 + 0.2253) 0.0314 0.0218
P 0.9 - 0.2 0.9187 - 0.2253j 0.0314 0.0218
Z -0.4 + 0.§; -0.3542 0.8013 1.1071
z -0.4 - 0.8j -0.1421 0.8405 1.1071

b. Noise Realization 2
For a different noise realization, the coefficients still converge after one it-

eration. Tables 11 and 12 present the results.
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Table 11. ARMA(2,2) MODEL-A, METHOD
3, COEFFICIENTS COMPAR-
ISON, REALIZATION 2

Coeff. True Estimated Difference
a, -1.80 -1.8545 -0.0545
a 0.85 0.9043 +0.0543
by 1.00 1.1144 +0.1144
b, 0.80 0.5272 -0.2728
b, 0.80 0.1808 -0.6192

Table 12. ARMA(2,2) MODEL-A, METHOD 3, POLE-ZERO COM-
PARISON, REALIZATION 2

Poles- True Estimated . Distance Radial Diff.
Zeros
3 0.9 + 0.2j 0.9272 + 0.211]3 0.0293 0.0051
P 0.9 - 0.2 0.9272 - 0.2111 0.0293 0.0031
b -0.4 + 0.8j -0.2365 + 0.3260j 0.5014 0.1639
3 -0.4 - 0.8j -0.2365 - 0.3260; 0.5014 0.1639

The spectra using the true and the estimated network coefficients are plot-
ted in Figure 9.

In summary, the estimated coefficients converge after two iterations in all
three methods. For both noise realizations, the third method gives the best result in
terms of the coefficients and pole-zero locations. For the noise realization 2, the coefli-
cients converge after one iteration using method 3.

In each method the AR part coeflicients of the ARMA(2,2) model tend to
be more accurate than the MA part coefficients.

B. THE ARMA(2,2) MODEL-B
The pole-zero locations for this model are illustrated in Figure 10.
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1. METHOD 1
a. Noise Realization 1
The coefficients converge after three iterations. Tables 13 and {4 present

the results.

Table 13. ARMA(2,2) MODEL-B, METHOD
1, COEFFICIENTS COMPAR-
ISON, REALIZATION 1.

Coeff, True Estimated Difference
a, -1.20 -1.2014 -0.0614
a, 0.52 0.4143 -0.1057
by 1.00 1.0518 +0.0518
b, 0.50 0.d045 -0.0955
b, 0.3125 -0.1317 -0.4442
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Table 14. ARMA(2.2) MODEL-B, METHOD 1, POLE-ZERO COMPAR-
ISON, REALIZATION 1.

Poles- True Estimated Distance Radial Diff.
Zeros
j 0.6 + 0.4 0.6307 + 0.1285j 0.2732 0.3870
P2 0.6 - 0.4 0.6307 - 0.1285; 0.2732 0.3870
z -0.25 + 0.5 [-0.5950 0.6074 1.1071
2z, -0.25-0.5; 0.2104 0.6796 2.0344

b. Noise Realization 2
For a different noise realization, the coefficients converge after two iter-

ations. Tables 15 and 16 present the results.

Table 15. ARMA(2,2) MODEL-B, METHOD
1, COEFFICIENTS COMPAR-
ISON, REALIZATION 2

Coeff. True Estimated Difference
q, -1.20 -1.6704 -0.4704
a, 0.52 0.7879 +0.2679
b, 1.00 1.1018 +0.1018
b, 0.50 0.1188 -0.3812
b, 0.3125 -0.3508 -0.6633

Table 16. ARMA(2,2) MODEL-B, METHOD 1, POLE-ZERO COMPAR-
ISON, REALIZATION 2

Poles- True Estimated Distance Radial Diff.
Zeros
J2 0.6 + 0.4 0.8352 + 0.3006] 0.2553 0.2425
P 0.6 - 0.4 0.8352 - 0.3006j 0.2553 0.2425
2z -0.25 + 0.5 |-0.6207 0.6224 1.1071
Z -0.25 - 0.5j 0.5129 0.9121 2.0344
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The spectra using the true and the estimated network coefficients are plot-
ted in Figure 11.
2. METHOD 2
a. Noise Realization 1
The coefficients converge after six iterations. Tables 17 and 18 present the
results.

Table 17. ARMA(2,2) MODEL-B, METHOD
2, COEFFICIENTS COMPAR-
ISON, REALIZATION 1.

Coeff. True Estimated Diftference

a -1.20 -1.1531 +0.0369

a, 0.52 0.5013 -0.0187

| b, 1.00 1.0174 +0.0174
b, 0.30 0.4732 -0.0268

b, 0.3125 0.1202 -0.1923

Table 18. ARMA(2,2) MODEL-B, METHOD 2, POLE-ZERO COMPAR-
ISON, REALIZATION 1.

Poles- True Estimated Distance Radial Diff.
Zeros
y2 0.6 + 0.9j 0.5766 + 0.4110j 0.0258 0.0312
P 0.6 - 0.4 0.3766 - 0.4110j 0.0238 0.0312
o -0.25 + 0.5; [-0.2326 + 0.2532; 0.2474 0.2793
Z -0.25 - 0.5; -0.2326 - 0.2532j 0.2474 0.2793

b. Noise Realization 2

For a different noise realization, the coefficients converge after five iter-

ations. Tables 19 and 20 present the results.
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Table 19. ARMA(2.2) MODEL-B, METHOD
2, COEFFICIENTS COMPAR-
ISON, REALIZATION 2

Coeff. True Estimated Difference
a, -1.20 -1.5914 -0.3914
a, 0.52 0.7540 +0.2340
b, 1.00 1.0610 +0.0610
b, 0.50 0.1301 -0.3699
b, 0.3125 -0.2894 -0.6019

Table 20. ARMA(2,2) MODEL-B, METHOD 2, POLE-ZERO COMPAR-
ISON, REALIZATION 2

Poles- True Estimated Distance Radial Diff.
Zeros
) 0.6 + 0.4 0.7957 + 0.3477; 0.2025 0.1760
J & 0.6 - 0.9 0.7957 - 0.3477; 0.2025 0.1760
I -0.25 + 0.5; ] -0.5872 0.6030 1.1071
A -0.25-0.5; 0.4645 0.8720 2.0344

The spectra using the true and the estimated network coefficients are plot-
ted in Figure 12.
3. METHOD 3
a. Noise Realization 1
The coefficients converge after four iterations. Tables 21 and 22 present

the results.
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Table 21. ARMA(2,2) MODEL-B, METHOD
3, COEFFICIENTS COMPAR-
ISON, REALIZATION 1.

Coeff. True Estimated Difference
q, -1.20 -1.1818 +0.0182
a, 0.52 0.5245 +0.0045
by 1.00 1.0030 +0.0030
b, 0.50 0.4436 -0.0564
b, 0.3125 0.1015 -0.2110

Table 22. ARMA(2,2) MODEL-B, METHOD 3, POLE ZERO COMPAR-
ISON, REALIZATION 1.

Poles- Irue Estimated - Distance Radial Diff.
Zeros
22 0.6 + 0.4 0.5909 + 0.4187] 0.0207 0.0284
Ps 0.6 - 0.4; 0.5909 - 0.4187; 0.0207 0.0284
4 -0.25 + 0.5) |-0.2211 + 0.2286j 0.2729 0.30.0
z, -0.25 - 0.5; -0.2211 - 0.2286j 0.2729 0.3050

b. Noise Realization 2
For a different noise realization, the coefficients converge after two iter-
ations. Tables 23 and 24 present the results.

Table 23. ARMA(2,2) MODEL-B, METHOD
3, COEFFICIENTS COMPAR-
ISON, REALIZATION 2.

Coeff. True Estimated Difference
aq, -1.20 -1.5105 -0.3105
a, 0.52 0.6962 +0.1762
b, 1.00 1.0488 +0.0488
b, 0.50 0.1827 -0.3173
b, 0.3125 -0.2154 -0.5279
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Table 24. ARMA(2,2) MODEL-B, METHOD 3, POLE-ZERO COMPAR-
ISON, REALIZATION 2.

Poles- True Estimated Distance Radial Diff.
Zeros
D 0.6 + 0.4 0.7553 + 0.3547j 0.1617 0.1489
P 0.6 - 0.4; 0.7553 - 0.3547j 0.1617 0.1489
z -0.25 + 0.55 |-0.5486 0.5823 1.1071
2 -0.25-0.5; 0.3744 0.7999 2.0344

The spectra using the true and the estimated network coeflicients are plot-
ted in Figure 13.

In summary, under each noise realization the method 3 gives the best result
in terms of the coefficients and pole-zero locations.

For each method, the spectrum of the ARMA(2,2) model using estimated
coefficients indicates reasonably accurate pole locations but the zero locations of the
spectrum do not follow the original ones. This means that the AR part coefficients of

the ARMA model tend to be more accurate than the MA part coeflicients.

C. THE ARMA(3,4) MODEL
The pole-zero locations for this model are illustrated in Figure 14.
1. METHOD 1
a. Noise Realization 1
The coefficients do not converge in nine iterations. Because of oscillations
about two values, the average of the two values is used as an estimate of the coeflicients

in the comparison. Tables 25 and 26 present the results.
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ARMA(2,2) Model B, Method 2, Realization 1
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Table 25. ARMA(3,4) MODEL, METHOD 1,
COEFFICIENTS COMPARISON,
REALIZATION 1.

Coefl. True Estimated Dilference
a, -1.60 -1.5275 +0.0725
A 2.18 1.5642 -0.6158
a -1.36 -1.0165 +0.343§
a, 0.7225 0.4656 -0.2369
by 1.00 3.30589 +2.3059
b, 0.40 [.3473 0.9473
b, 0.48 -1.6482 -2.1282
by -0.32 -2.4187 -2.0987
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Table 26. ARMA(3,4) MODEL, METHOD 1, POLE-ZERO COMPAR-
ISON, REALIZATION 1.

Poles- True Estimated Distance Radial Diff.

Zeros
P 0.2 + 0.9 0.0718 + 0.8101; 0.1565 0.1302
P2 0.2-0.9 0.0718 - 0.8101;j 0.1563 0.1302
Ds 0.6 + 0.7 0.6919 + 0.4745j 0.2435 0.2610
Ds 0.6 - 0.7 0.6919 - 0.4745) 0.2435 0.2610
z -0.4 + 0.8;j -0.6754 + 0.5652j 0.3619 0.4103
2 -0.4 - 0.8; -0.6754 - 0.5652j 0.3619 0.4103
5 0.4 0.9433 0.5433 0.0000

b. Noise Realization 2
Using a different noise realization, the coefficients still do not converge in
nine iterations. Because of oscillations about two values, the average of the two values

1s used as an estimate of the coefficients in the comparison. Tables 27 and 28 present

the results.

Table 27. ARMA(3,4) MODEL, METHOD 1,
COEFFICIENTS COMPARISON,
REALIZATION 2.

Coeff. True Estimated Difference
a, -1.60 -2.0479 -0.4479
a, 2.18 2.2690 +0.0890
a, -1.36 -1.4743 -0.1143
a, 0.7225 0.9468 +0.2243
b, 1.00 2.6176 +1.6176
b, 0.40 0.8737 +0.4737
b, 0.48 -1.2400 -1.7200
b, -0.32 -1.7033 -1.3833
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Table 28. ARMA(3,4) MODEL, METHOD 1, POLE-ZERO COMPAR-
ISON, REALIZATION 2.

Poles- True Estimated Distance Radial Diff.

Zeros
) 0.2 + 0.9 0.0518 + 0.8258j 0.1657 0.1560
Ds 0.2-0.9j 0.6518 - 0.8258; 0.1657 0.1560
P 0.6 + 0.7 0.9722 + 0.6618; 0.3741 0.2644
Pa 0.6 - 0.7 0.9722 - 0.6618; 0.3741 0.2644
z, -0.4 + 0.8j -0.6316 + 0.5489; 0.3415 0.3916
2 -0.4 - 0.8j -0.6316 - 0.5489; 0.3415 0.3916
z 0.4 0.9294 0.5294 0.0000

The spectra using the true and the estimated network coefficients are plot-
ted in Figure 15.
2. METHOD 2
a. Noise Realization I

The coefficients converge after nine iterations. Tables 29 and 30 present the

results.

Table 29. ARMA(3,4) MODEL, METHOD 2,

COEFFICIENTS
COMPARISON.REALIZATION 1.
Coeff. True Estimated Difference
a, -1.60 -1.6186 -0.0186
a, 2.18 2.2093 +0.0293
a, -1.36 -1.3948 -0.0348
a, 0.7225 0.7366 +0.0141
b, 1.00 1.1463 +0.1463
b, 0.40 0.2664 -0.1336
b, 0.48 -0.0262 -0.5062
b, -0.32 -0.3386 -0.0186
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Table 30. ARMA(3,4) MODEL, METHOD 2, POLE-ZERO COMPAR-
ISON, REALIZATION 1.

Poles- True Estimated Distance Radial Diff.

Zeros
D 0.2 + 0.9 0.2033 + 0.9077; 0.0083 0.0016
I 0.2-0.9 0.2033 - 0.9077j 0.0083 0.0016
P, 0.6 + 0.7j 0.6060 + 0.6957j 0.0073 0.0079
Ps 0.6-0.7) 0.6060 - 0.6957; 0.0073 0.0079
z, -0.4 + 0.8) -0.4197 + 0.5572j 0.2435 0.1819
2 -0.4 - 0.8; -0.4197 - 0.5572; 0.2435 0.1819
Z4 0.4 0.6070 0.2070 0.0000

b. Noise Realizatioi 2
Using the second noise realization, the coefficients converge after nine it-

erations. Tables 31 and 32 present the results.

Table 31. ARMA(3,4) MODEL, METHOD 2,
COEFFICIENTS COMPARISON,
REALIZATION 2,

Coeff. True Estimated Difference
a, -1.60 -1.6668 -0.0668
a 2.18 2.3643 +0.1845
a, -1.36 -1.5282 -0.1682
a, 0.7225 0.8527 +0.1302
by 1.00 0.9923 -0.0077
b, 0.40 0.1274 -0.2726
b, 0.48 0.2222 -0.2578
b, -0.32 -0.1221 +0.1979
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Table 32. ARMA(3,4) MODEL, METHOD 2, POLE-ZERO COMPAR-

ISON, REALIZATION 2.

Poles- True Estimated Distance Radial Diff.

Zeros
D 0.2 + 0.9 0.2063 + 0.9315) 0.0321 0.0007
P 0.2 - 0.9; 0.2063 - 0.9315j 0.0321 0.0007
Ds 0.6 + 0.7 0.6271 + 0.7372j 0.0460 0.0037
Ps 0.6 - 0.7 0.6271 - 0.73724 0.0460 0.0037
z 0.4 + 0.8; -0.2286 + 0.5674; 0.2889 0.0806
2 -04 - 0.8j -0.2286 - 0.5674j 0.2889 0.0806
Z3 0.4 0.3287 0.0713 0.0000

The spectra using the true and the estimated network coefficients are plot-

ted in Figure 16.
3. METHOD 3

a.

results_.

Noise Realization 1

The coeflicients converge after six iterations. Tables 33 and 34 present the

Table 33. ARMA(3,4) MODEL, METHOD 3,
COEFFICIENTS COMPARISON,
REALIZATION 1.

Coeff. True Estimated Difference
aQ, -1.60 -1.5821 -0.0179
a, 2.18 2.1352 -0.0448
a; -1.36 -1.3329 +0.0271
a, 0.7225 0.7023 -0.0202
b, 1.00 1.1733 +0.1733
b, 0.40 0.3140 -0.0880
b, 0.48 -0.0604 -0.5404
by -0.32 -0.3978 -0.0778
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Table 34. ARMA(3,4) MODEL, METHOD 3, POLE-ZERO COMPAR-
ISON, REALIZATION 1.

Poles- True Estimated Distance Radial Diff.

Zeros
2 0.2 + 0.9j 0.1913 + 0.9; 0.0087 0.0092
Ps 0.2-0.9 0.1913 - 0.9 0.0087 0.0092
s 0.6 + 0.7 0.5997 + 0.6855j 0.0145 0.0101
Pa 0.6 - 0.7 0.5997 - 0.6855j 0.0145 0.0101
2, -0.4 + 0.8j -0.4533 + 0.5691j 0.2369 0.2089
2, -0.4 - 0.8 -0.4533 - 0.5691j 0.2369 0.2089
2, 0.4 0.6406 0.2406 0.0000

b. Noise Realization 2
Using the second noise realization, the coefficients converge after four it-

erations. Tables 35 and 36 present the results.

Table 35. ARMA(3,4) MODEL, METHOD 3,
COEFFICIENTS COMPARISON,
REALIZATION 2.

Coeff. True Estimated Difference
a, -1.60 -1.5671 +0.0329
a, 2.18 2.2062 +0.0262
a, -1.36 -1.4003 -0.04035
a, 0.7225 0.7728 +0.0503
by 1.00 0.9932 -0.0068
b, 0.40 0.2049 -0.1951
b, 0.48 0.2119 -0.2681
b, -0.32 -0.1654 +0.1546
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Table 36. ARMA(3,4) MODEL, METHOD 3, POLE-ZERO COMPAR-
ISON, REALIZATION 2.

Poles- True Estimated Distance Radial Diff.

Zeros
2 0.2 + 0.9 0.1876 + 0.9336; 0.0358 0.0203
P 0.2-0.9 0.1876 - 0.9336; 0.0358 0.0203
P 0.6 + 0.7 0.5959 + 0.7051; 0.0065 0.0069
Ps 0.6 - 0.7] 0.5959 - 0.7051; 0.0065 0.0069
2, -0.4 + 0.8j -0.2937 + 0.5923j 0.2333 0.0033
2 -0.4 -0.8;j -0.2937 - 0.5923; 0.2333 0.0033
23 0.4 0.3810 0.0190 0.0000

The spectra using the true and the estimated network coeflicients are plot-
ted in Figure 17.

When using method 1 the coefficients do not converge. Thev oscillate
about two sets of values in an alternating fashion, hence the average of the two sets is
used as the estimate of the coeflicients in the comparison. The parameters of the first
realization converge after nine iterations using method 2, and after six iterations using
method 3. The parameters of the second realization converge after four iterations using
method 3. Method 3 provides the best results in terms of the coefficients and pole-zero
locations for both noise realizations. The coefficients converge also earlier when using
method 3 compared to the other two methods. Method 2 performs not as well but gives
also reasonable results.

The spectrum due to the poles of the ARMA(3,4) models using the esti-
mated coefficients closely resembles the original spectrum. The AR part coeflicient es-
timates are more accurate than the MA part coefficient estimates.

D. THE ARMA(3,4) MODEL WITH OBSERVATION NOISE

Observation noise is added to the ARMA(3,4) model and resulting noisy sequence
is processed via the three different methods. The observation noise is independent of the
driving noise. It is white Gaussian noise with zero mean and unit variance. The signal
to noise ratio is about 15 dB.

This model is illustrated in Figure 18.
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Figure 18. The ARMA(3,4) Model with Observation Noise

1. METHOD 1
The coeflicients do not converge in nine iterations. Because of oscillations
about two values, the average of the two values is used as an estimate of the coeflicients

in the comparison. Tables 37 and 38 prescnt the results.

Table 37. ARMA(34) MODEL WITH OB-
SERVATION NOISE, METHOD 1,
COEFFICIENTS COMPARISON.

Coeff. True Estimated Difference
a, -1.60 -2.0285 -0.4285
a 2.18 1.9241 -0.2539
a -1.36 -1.4285 -0.0085
a, 0.7225 0.8145 +0.0920
by 1.00 4.5732 +3.5732
b, 0.40 1.7315 +1.3315
b, 0.48 -2.4570 -2.9370
by -0.32 -3.3648 -3.0448
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Table 38. ARMA(3,4) MODEL WITH OBSERVATION NOISE,
METHOD I, POLE-ZERO COMPARISON

Poles- True Estimated Distance Radial Diff.

Zeros
P 0.2 + 0.9j 0.0147 + 0.8350; 0.1963 0.2010
Pz 0.2-0.9 0.0147 - 0.8350; 0.1963 0.2010
Dy 0.6 + 0.7 0.9995 + 0.4109; 0.4931 0.4721
Pa 0.6 - 0.7] 0.9995 - 0.4109j 0.4931 0.4721
2 -0.4 + 0.8; -0.6723 + 0.5565j 0.3652 0.4157
Z -0.4 - 0.8;j -0.6723 - 0.5565; 0.3652 0.4157
Z 0.4 0.9660 0.5660 0.0000

The spectra using the true and the estimated network coeflicients are plotted
in Figure 19.
2. METHOD 2
The coefficients do not converge in nine iterations. Because of oscillations
about two values, the average of the two values is used as an estimate of the coefficients

in the comparison. Tables 39 and 40 present the results.

Table 39. ARMA(3,4) MODEL WITH OB-
SERVATION NOISE, METHOD 2,
COEFFICIENTS COMPARISON.

Coeff. True Estimated Difference
q -1.60 -2.6027 -1.0027
a, 2.18 3.8805 +1.7063
a, -1.36 -2.8006 -1.4406
a, 0.7225 1.4933 +0.7708
b, 1.00 8.5983 +7.5983
b, 0.40 3.4234 +3.0234
b, 0.48 -3.2534 -3.7334
b, -0.32 -4.6219 -4.3019
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Table 40. ARMA(3,4) MODEL WITH OBSERVATION NOISE,
METHOD 2, POLE-ZERO COMPARISON

Poles- True Estimated Distance Radial Diff.

Zeros
j 2 0.2 + 0.9 0.3264 + 0.8586j 0.1330 0.1446
J A 0.2-0.9 0.3264 - 0.8586] - 0.1330 0.1446
P 0.6 + 0.7 0.9749 + 0.9052j 0.4273 0.1138
Ps 0.6 - 0.7 0.9749 - 0.9052; 0.4273 0.1138
z -0.4 + 0.8j -0.6152 + 0.5170j 0.3535 0.4082
2, -0.4 - 0.8 -0.6152 - 0.3170j 0.3555 0.4082
n 0.4 0.8323 0.4323 0.0000

The spectra using the true and the estimated network coeflicients are plotted
in Figure 20.
3. METHOD 3
The coefficients converge after four iterations. Tables 41 and 42 present the

results.

Table 41. ARMA(3,4) MODEL WITH OB-
SERVATION NOISE, METHOD 3,
COEFFICIENTS COMPARISON,

Coeff. True Estimated Difference
aq, -1.60 -1.4994 +0.1006
a, 2.18 2.1311 -0.0489
a, -1.36 -1.3224 +0.0376
a, 0.7225 0.7353 +0.0128
by 1.00 1.3898 +0.3898
b, 0.40 0.2875 -0.1125
b, 0.48 0.0298 -0.4502
by -0.22 -0.2462 +0.0738
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Table 42. ARMA(3,4) MODEL WITH OBSERVATION NOISE,
METHOD 3, POLE-ZERO COMPARISON

Poles- True Estimated Distance Radial Diff.

Zeros
2 0.2 + 0.9 0.1823 + 0.9331j 0.0375 0.0257
P 0.2 -0.9 0.1823 - 0.9331 0.0375 0.0257
Ps 0.6 + 0.7j 0.5674 + 0.7010j 0.0326 0.0281
Pa 0.6 - 0.7 0.5674 - 0.7010; 0.0326 0.0281
z, -0.4 + 0.8j -0.3481 + 0.4908; 0.3135 0.1532
2 -0.4 - 0.8j -0.3481 - 0.4908; 0.3135 0.1532
I 0.4 0.4893 0.0893 0.0000

The spectra using the true and the estimated network coefficients are plotted
in Figure 21. '

In summary, the estimated coefficients do not converge using method 1 or 2
but they do converge after four iterations using method 3. The spectra using method 1
and 2 are poor. But the method 3 gives results close to the actual ones. The spectrum
estimated with this method follows the original pattern except for the zero location.

This is believed to be partially due to the imprecise M A coeflicient estimation procedure.
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ARMA(3,4) Model with Obser. Noise, Method 2
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Figure 21.  The Spectra of ARMA(3,4) Models with Obser. Noise, Method 3
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V. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, an iterative technique to estimate the coefficients of ARMA models
driven by a random input is presented. The AR parameters are estimated initially, then
MA parameters are estimated assuming the AR parameters have been compensated for.
In an iterative fashion MA and AR contributions are removed from the original data
allowing improved AR and MA coefficient estimates. Three different AR estimation
methods are experimentally explored. The third method provides the best result in terms
of the true and estimated coefficients and pole-zero locations. This method uses the
pseudoinverse with correlation function values starting at the zero lag after removing the
MA influence. For models of real time data which have an odd number of poles, one
should address the issue of the DC component (i.e., remove it). Simulation resuits for
an odd ordered pole model is presented in Appendix C.

Also, by examining the spectra of the models, we can say estimation of poles is
obtained more accurately than the estimation of zeros. The Cholesky factorization is
used for the estimation of the MA part coefficients but it is an approximate solution.
For that reason, we do not expect superior results for the MA estimation part.

Further research should concentrate on improving the MA part coefficients esti-
mation.
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APPENDIX A. COMPUTER PROGRAM TO ESTIMATE

COEFFICIENTS
% dededededevededededesededede e dededededeiedededededdededededededede ke
% This program written by %
% Gurhan Kayahan for IBM PC/AT *
% Matlab package. *

Y edrkdrdededcdeded i dodedededokd Aok ottt
& dededededededededeedededdedededededdededededededededodedededededede
% GENERATION OF ARMA TIME SERIES *
U dededevedestiedededededeieiededeieedeiedededededdeieledeioloiodeied
i=sqrt(-1);
rootsl=[ -0.25+ 0.51f - 0.25-0.51];change zeros for each model
roots2= [U.6+0.47 0.6 - 0.471 0.8];change poles for each model
=poly(rootsl); find true coefficients of MA part
=poly(roots2); find true coefficients of AR part
=real(a);
t=1:1000;
y=t*0;
rand( 'normal'); generate random signal
stddev=sqrt(1l);
rnum=stdev¥*rand(t);
yl=filter(b,a,rnum); filter random signal through ARMA model
x= [ones(1,999)]; generate step signal .
y2=filter(b,a,x); find step response of ARMA model to discard transient response
y=y1(52:252);
%7’.'7':7'.-7':-.’:7'.-7':7'::'::’:*1‘::’=*=‘:*:’:=’::’:-.'.--.’f-.'e-.'.--.‘:-.':-.':-.'::’:-.’:-.’c-.’:-.’n‘:-k:’.-*-.'e-.'n':7‘::’t-.’r-.'.-a'\-z'.--.’.--.'.-v'e*7':****:'::’:
% CALCULATE AR COEFFICIENTS USING YULE-WALKER APPROACH *
%*7':%’:7':7‘:7‘::‘::‘::’f:’:*v‘.--.‘::’::'::'::’c:':*:’::‘r:’e:’::‘::’n‘::‘.—:’.-:'.-v‘::’r:’c:'n'::‘::'::’:-.‘r:’::'.-:’:-.'.--.’.-:’r*7’:*5':**:‘::':’.':3’:**
rl=xcorr(y);
r1=r1(201: 399);
r=£f1lipy(rl);
row=r(194: 196);
col=£1lipy(r(192:194));
a=toeplitz(col,row);
b=flipy(~-r(191:193));
c=b';
x=b*§nv(a); square matrix inverse
al=x';
% dedesededededededededededededieod dedededededodedededededededededeat Ve dedede ek dede dedededfede de de e e dede e
% CALCULATE MA COEFFICIENTS USING CHOLESKY FACTORIZATION *
%-.'n'n’:-.'r*-.’n’r-,’f*-!:*:’:-.‘r*-.':*s’::’:***s'r7’:**:’:*:’.--.'c*:':********-.‘:**-.‘c**:’r-.’r**********:’:
d= [1];
n= [1 al{l) al1(2) &81(3)];
z=filter(n,d,y);
z1=2(4:201);
rzl=xcorr(zl);
rz=rz1(198:395);
i=1;
while i<199
rz3(i)=rz(1i)/198;
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=i+];
end
rz2=rz3(1: 3);
rzt=toeplitz(rz2);
cho=chol(rzt);
bi=cho(1,:);
o dededededededeiedededededde e dedededededodededrdek el dededede e
% ROUTINE FOR ESTIMATION OF AR COEFFICIENTS *
o dededededeicfaiededeideiodrdedoioideiededeiedoloiedededefdoidodededodok dedededok
i=2;
while i<11
d= [by(1-1,1) bl(i-1,2) b1({i-1,3)];
n= [1];
zar=filter(n,d,y);
rar=xcorr(zar);
rl=rar(201: 399);
r=flipy(rl);
row=r(194:196); change correlation lags for each method
col=flipy(r(192: 194)); change correlation lags for each method
g=toeplitz(col,row);
e=f}ipy(-r(191:193));change correlation lags for each model
=e
x=f*inv($);square matrix inverse (replace with x=pinv(g) for pseudo inverse)
a(i,:)=x"; :
al= [al’, a(1i,:)’'];
O dededededededededeseiedededededtdededdededededa et dededdedededededede e e
% ROUTINE FOR ESTIMATION OF MA COEFFIGCIENTS *
% Fedededodededededrdededededede oo de e dededabatabdedede vkl dede ek de ook
d= [1];
n= [1 a{,l) a(1,2) a(i,3)];
z=filter(n,d,y);
z1=2(4: 201);
rzl=xcorr(zl);
rz=rz1(198: 395);
k=1;
while k<199
rz3(k)=rz(k)/198;
k=k+1;
end
rz2=rz3(1: 3);
rzt=toeplitz(rz2);
cho=chol(rzt);
bt(i,: )=cho(l,:);
bl= [(bl’, bt(i,: )],
e(i-1)=sum( (al(i,:)-a1(i-1,:)). A 2 )/3+sum( (bl(i,:)=-bl(i=~1,:)). A 2 )/3;
if e(i-1) < 0.0001
al=al;
bl=bl;
else
i=i+1;
end
end
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APPENDIX B.

COMPUTER PROGRAM TO CALCULATE TRUE AND
ESTIMATED SPECTRA

g iefeddededelrirdedniedededededndededededbe e dededednbededede e

% CALCULATION OF TRUE SPECTRUM

o dededededeededededevedoiedeiedeldeioioideiohededededoiedelelehdclok

a= [1 -1.20 0.523; change true poles for each models
b= [1 0.50 0.3125]; change true zeros for each models
al= [a zeros(1,123)]; zero padding

bl= [b zeros(1,124)]; zero padding

fal=fft(al); fast fourier transform of AR part
fbl=fft(bl); fast fourier transform of MA part
mfal=abs(fal). A 2;

mfbl=abs(fbl). A 2;

c=mfbl. /mfal;

a=max(c);

i=1;

while i<129
c(i)=c(i)/a;
i=i+];

end

spec=10%*logl0(c);

% Fedededesedededednfrrdideiededetededelededode s dededede e dededodeo

% CALCULATION OF ESTIMATED SPECTRUM

Yo dedededededededededededededededrdededededededidededededrdede e

a= [1 -1.1531 0.5013]; change estimated poles for each models

b= [1.0174 0.4732 0.1202]; change estimated zeros for each models
al= [& zeros(1,123)];

bl= [b zeros(l,124)];

fal=fft(al);
fbi=fft(bl);

mfal=abs(fal). A 2;
A 2;

mfbl=abs{ fbl).

c=mfbl. /mfal;

a=max(c);

i=1;

while i<129
c(i)=c(i)/a;
i=i+1;

end

3

spec7=10%1ogl0(c);
Y iedededededededededededededededededededededededridedvdodediveiedoetededede e ke ek

% PLOTTING OF TRUE AND ESTIMATED SPECTRUM
% FedeedededededededededededeiedededodedededededevedededededededeveieVedndede dodedodede

t=0: 127;
t=t';

plot(t(1:65),spec7(1:65),'*"' ,t(1:65),spec(1:65))
ticie({ "ARMA(Z,2) iudel, Method 3, Realization 1')
xlabel('Sample Number')

ylabel( 'Magnitude(dB)')

grid
text(25,-5,'~-=--

Using true coefficients')
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text(25,-9,'*¥** After 4 iterations')
delete specl.met
meta specl




APPENDIX C. SIMULATION RESULTS FOR AN ARMA(2,3) MODEL

For models with an odd number of poles, one of the poles must be located on the
real axis in the z-domain to generate real time data.
The pole-zero locations for this model are illustrated in Figure 22.
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Figure 22.  The ARMA(2,3) Model Pole-zero Locations

1. METHOD 1
a. Noise Realization 1
The coefficients do not converge in nine iterations. Because of oscillations
about two values, the average of the two values is used as an estimate of the coeflicients

in the comparison. Tables 43 and 44 present the results.
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Table 43. ARMA(2,3) MODEL, METHOD 1,
COEFFICIENTS COMPARISON,
REALIZATION 1.

Coeff. True Estimated Difference
a, -2.00 -1.9425 +0.0575
[ 1.48 1.4028 20.0772
a, -0.416 -0.3639 +0.0521
b, 1.00 1.0562 +0.0562
b, 0.50 0.5184 -0.0184
b, 0.3125 0.1681 -0.1444

Table 44. ARMA(2,3) MODEL, METHOD 1, POLE-ZERO COMPAR-
ISON, REALIZATION 1.

Poles- True Estimated Distance Radial Diff.
Zeros
) 0.6 + 0.4 0.6526 + 0.3809; 0.0559 0.0596
o3 0.6 - 0.9 0.6326 - 0.3809; 0.0539 0.0396
P 0.8 0.6373 0.1627 0.0000
z, -0.25 + 0.5) 1-0.2433 + 0.3145; 0.1853 0.1989
2 -0.25-0.5 -0.2454 - 0.3145; 0.1855 0.1989

b. Noise Realization 2

Using a different noise realization, the coefficients converge after seven it-

erations. Tables 45 and 46 present the results.
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Table 45. ARMA(2,3) MODEL, METHOD 1,
COEFFICIENTS COMPARISON,

REALIZATION 2,
Coeff, True Estimated Difference
a, -2.00 -2.8571 -0.8571
a, 1.48 2.7325 1.2725
a; -0.416 -0.9162 +1.3322
by 1.00 1.3418 +0.3418
b, 0.30 0.1291 -0.3709
b, 0.3125 -0.4401 -0.7526

Table 46. ARMA(2,3) MODEL, METHOD 1, POLE-ZERO COMPAR-
ISON, REALIZATION 2.

Poles- True Estimated Distance Radial Diff.
Zeros
J2 0.6 + 0.4 0.8301 + 0.2765j 0.2611 0.2664
J & 0.6 - 0.4 0.8301 - 0.2765) 0.2611 0.2664
Ps 0.8 1.1968 0.3968 0.0000
I -0.25 + 0.5) {-0.6229 0.6237 1.1071
2 -0.25 - 0.5; -0.5266 0.9236 2.034

2. METHOD 2
a. Noise Realization 1
The coefficients do not converge in nine iterations. Because of oscillations
about two values, the average of the two values is used as an estimate of the coefficients

in the comparison. Tables 47 and 48 present the results.
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Table 47. ARMA(2,3) MODEL, METHOD 2,
COEFFICIENTS COMPARISON,
REALIZATION 1.

CoefT. True Estimated Difference
a, -2.00 -1.6534 +0.3466
a, 1.48 0.9727 -0.5073
a, -0.416 -0.2044 +0.2116
b, 1.00 1.2677 +0.2677
b, 0.50 0.8274 +0.3274
b, 0.3125 0.3741 +0.0616

Table 48. ARMA(2,3) MODEL, METHOD 2, POLE-ZERO COMPAR-
ISON, REALIZATION 1.

Poles- True Estimated Distance Radial Diff.
Zeros
J2 0.6 + 0.4 0.5267 + 0.2515j 0.1656 0.1425
s 0.6 -0.9 0.5267 - 0.2515 0.1636 0.1425
P 0.8 0.6001 0.1999 0.0000
I -0.25 + 0.5 |-0.3203 + 0.4349j 0.1006 0.1807
> -0.25 - 0.5j -0.3263 - 0.4349j 0.1006 0.1807

b. Noise Realization 2
Using a second noise realization, the coeflicients do not converge. Because
of oscillations about two values, the average of the two values is used as an estimate of

the coefficients in the comparison. Tables 49 and 50 present the results.
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Table 49. ARMA(2,3) MODEL, METHOD 2,
COEFFICIENTS COMPARISON,
REALIZATION 2.

Coeff, True Estimated Difference
a, -2.00 -1.1005 +0.8995
a, 1.48 -0.11434 -1.5944
a, -0.416 0.3945 +0.8105
by 1.00 1.8387 +0.8387
b, 0.50 1.3064 +0.8064
b, 0.3125 0.4440 +0.1315

Table 50. ARMA(2.3) MODEL, METHOD 2, POLE-ZERO COMPAR-
ISON, REALIZATION 2.

Poles- True Estimated Distance Radial Diff.
Zeros
J2 0.6 + 0.9 0.8145 + 0.2883; 0.2418 0.2478
Ds 0.6 - 0.9 0.8145 - 0.2883j 0.2418 0.2478
P 0.8 -0.5285 1.3285 31415
b -0.25 + 0.5 | -0.3553 + 0.3395; 0.1919 0,3444
5 -0.25- 0.5 -0.3553 - 0.3395; 0.1919 0.3444

3. METHOD3
a. Noise Realization 1

The cocflicients converge after five iterations. Tables 51 and 52 present the

results.
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Table S1. ARMA(2,3) MODEL, METHOD 3,
COEFFICIENTS COMPARISON,
REALIZATION 1.

Coeff. True Estimated Difference
a -2.00 -1.1057 +0.8943
a, 1.48 0.2111 -1.2689
a, -0.416 0.0890 +0.5050
b, 1.00 1.8594 +0.8594
b, 0.50 1.4885 -0.9885
b, 0.3125 0.8320 -0.5195

Table 52. ARMA(2,3) MODEL, METHOD 3, POLE-ZERO COMPAR-
ISON, REALIZATION 1.

Poles- True Estimated Distance Radial Diff.
Zeros
P 0.6 + 0.4 0.6493 + 0.2 0.2059 0.2892
P 0.6 - 0.4 0.6493 - 0.2 0.2039 0.2892
J 2 0.8 -0.1928 0.9928 3.1415
b -0.25 + 057 1-0.4002 + 0.5360 0.0309 0.1777
Z -0.25 - 0.5 -0.4002 - 0.53060; 0.0309 0.1777

b. Noise Realization 2
Using a second noise realization, the coefficients do not converge. Because
of oscillations about two values, the average of the two values is used as an estimate of

the coeflicients in the comparison. Tables 53 and 54 present the results.




Table 53, ARMA(2,3) MODEL, METHOD 3,
COEFFICIENTS COMPARISON,
REALIZATION 2.

Coeff. True Estimated Difference
a, -2.00 -1.7973 +0.2027
a, 1.48 0.9959 -0.4841
a, -0.416 -0.9354 -0.5194
b, 1.00 1.2540 +0.2540
b, 0.50 0.6150 +0.1130
b, 0.3125 0.0151 -0.2974

Table 54. ARMA(2,3) MODEL, METHOD 3, POLE-ZERO COMPAR-
ISON, REALIZATION 2.
Poles- True Estimated Distance Radial Diff.
Zeros
. i 0.6 + 0.4 0.1263 + 0.7679; 0.5997 0.2564
P, 0.6 - 0.dj 0.1263 - 0.7679] 0.5997 0.2564
D3 0.8 1.5446 0.7436 0.0000
il 3 0.25 + 0.5] | -0.4643 0.5440 1.1071
z -0.25 - 0.5 -0.0239 0.5479 1.1071

Simulation results have shown that for the ARMA(2,3) model with one
pole on positive real axis, realization 2 gives poor results. This is because the DC com-
ponent for this realization is - 0.9017 while it is -0.0380 for realization 1. For parameter
estimations the DC component should ve removed. Therefore the data is filtered effec-
tively removing the pole on the positive real axis (i.e., DC component is removed and
the ARMA(2,3) model becomes ARMA(2,2) model). The results of this ARMA(2.2)
model was presented in chapter I1V-B. The ARMA(2,3) and . RMA(2.2) true and esti-
mated spectra using method 1 are presented in Figure 23. Method 2 results are pre-

sented in Figure 29 and method 3 results are presented in Figure 25. The simulation

shows that the method 3 gives good results as long as the DC component is small.
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The Spectra of ARMA(2,3) and ARNMA(2,2) Model-B, Method 1
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The Spectra of ARMA(2,3) and ARMA(2,2) Model-B, Method 2
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The Spectra of ARMA(2,3) and ARMA(2,2) Model-B, Method 3
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