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The Definition and Calculation of Q from Phase Angle

and Hysteresis Loop Attenuation Measurements

Karl B. Coyner

New England Research, Inc.
P.O. Box 857, Norwich, Vermont 05055

Abstract. An inconsistency in the interpretation of

experimental stress-strain data for Q determinations is

investigated. Attenuation factors (Q-1) calculated from the
integrated areas of plotted hysteresis loops depend on the

location of the origin for the hysteresis loop relative to the
definition of maximum strain energy. This origin can be

mislocated at one end of the hysteresis loop, as opposed to the
center, resulting in Q-' factors approximately a factor of 4

less than those calculated from the phase angle o measured
between cycled stress and strain (Q-'=tano). Attenuation

factors calculated from the ratio of hysteresis loop areas must

be carefully interpreted before application to seismic wave
propagation.

Introduction

The most seismologically relevant laboratory determinations

of rock attenuation and moduli involve the direct measurement Wi

of stress-strain data with an applied periodic stress. Seismic

frequencies between approximately 0.01 and 500 Hz and strain rNSPccr~ o

amplitudes between 10- 7 and 10- 3 have been attained with this
technique. The material properties for evaluating high strain,

nonlinear attenuation (Minster and Day, 1986), and the

interpretation of the physical mechanisms of attenuation.

particularly frequency dependence (Toks6z et al., 1987), must

eventually rely on expeiimental data collected with this

method. There is only a limited set of laboratory data
available. Much of it is contradictory and often improperly
interpreted.

Q factors may be calculated from either the phase angle o v Codes

between cycled stress and strain (Spencer, 1981; Jackson et Ind/or
al., 1984) or else from the hysteresis loops generated by cialAI . .
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plotting the stress versus strain data (Gordon and Davis, 1968;
Walsh et al., 1970; McKavanagh and Stacey, 1974; Brennan,
1981; Liu and Peselnick, 1983). A comparison has not been made
between the two methods. Presumably, they should duplicate
each other since the accepted equivalency is Q-1 = tan o =
6W/2iW, where 6W is the amount of strain energy W dissipated
during a cycle. The area of the hysteresis loop is
proportional to 6W and the area under the increasing load
portion of the loop is proportional to W. Q values are
calculated by integrating these respective areas of the
hysteresis loop.

An examination of the two procedures indicates a potential
inconsistency. Q values calculated from hystersis loops can be
approximately four times greater than those from the phase
angle. In the analysis section of this paper the source of
this inconsistency is shown to be the definition of maximum
strain energy and the relative location of the origin for zero
stress and strain for the hysteresis loop. The accepted
definition, from which the equivalency is derived, is
appropriate for sinusoidal signals centered about zero stress
and strain, i.e., a rock undergoing both compression and
tension, for which the origin is at the center of the
hysteresis loop. Maximum strain energy calculated for the
compressive portion of the loop is approximately 1/4th of the
overall peak to peak energy function.

Laboratory measurements, however, are normally biased by a
pre-stress. If the origin is taken at the point of lowest
stress and strain the measured value for maximum energy stored
under the hysteresis loop is approximately a factor of 4
greater than the above definition. This results in a Q factor
overestimated by a factor of 4. An accounting of this factor
of 4 is significant in comparing various experimental results
that have utilized either of the two techniques.

Hysteresis Loop Analysis

The time-varying stress o(t) and strain E(t) functions for
a linear anelastic material deformed by a steady-state
sinusoidal stress of frequency w and amplitude ao is given by

o(t)=aosin(wt) and E(t)=Jcosin(wt-o).
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Since the material is anelastic the strain lags stress in time
by the phase angle o. The strain function may be expanded,

i(t) = J, acoso sin(wt) - J2 o0 sino cos(wt)

to yield "in-phase", sin(wt), and "out-of-phase", cos(wt),
strain components of magnitude Joo=Jcosoco and J2 oo=Jsino 0o,
respectively. The ratio of the components is tan0 = J . In
the absence of anelasticity the linear stress-strain
relationship is E=JC, where J is a compliance.

A plot of the stress-strain relationship described by these
functions is an ellipse with the origin centered at zero stress
and strain. This is often referred to as a hysteresis loop.
In Fig. 1 is shown a hysteresis loop that was generated by
introducing a phase angle of 0.0628 radians between two sine
waves. The maximum and minimum stresses and strains are ±o
and ±J0o, respectively, and the hysteresis loop is traced out
in a clockwise direction.

The phase angle and the hysteresis loop are both equivalent
expressions of the same anelastic process through which energy
is absorbed. A dimensionless measure of anelasticity is the Q
factor, which is an analogue of the Q used for characterizing
the efficiency of voltage transfer in electric circuits. The
inverse of Q may be called the attenuation factor (Q-1 ), two
expressions for which are

Q-1 = tan o and Q-1 = 5W/2rrW.

The first expression is the "loss tangent" and refers to
the tangent of the phase angle between stress and strain. In
the second expression relative attenuation is obtained from the
ratio of 5W, the energy dissipated during one cycle, to the
maximum strain energy W introduced into the sample during one
cycle.

For the sinusoidal stress and strain time functions,
representative of a linear anelastic material, the two
definitions are equal. This can be easily shown by considering
the hysteresis loop in Fig. 1. Stress times strain is strain
energy, hence the areas within the hysteresis loop plot contain
all of the necessary information for calculating the relative
attenuation energy ratio. The maximum energy W supplied to the
material is the shaded area of Fig. 1, corresponding to the
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by 0.01 cycles, or 0.0628 radians, centered at zero stress and
strain. The shaded area is the maximum energy W introduced

into a unit volume of sample during one cycle, corresponding to
the path from A to B on the hysteresis loop. The interior area
of the hysteresis loop 6W is the energy dissipated per unit
volume during one cycle. The attenuation factor is
Q-1 = 6W/2nW = tan(.0628).

deformation between points A and B, or the integral

W odE.

The dissipated energy 6W is the cross-hatched area contained
within the hysteresis loop, or the surface integral

6W = a dE.
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The integrals can be easily solved by noting from Fig. 1 that
W is approximately the area of a triangle with sides oo and
Joo , and 6W is the area of an ellipse with semimajor axis along
the slope 1/J and semiminor axis along the slope -1/J. The
lengths of the axes can be calculated from the intersections
with the equation for the ellipse obtained from the
stress-strain relation. The two integrals can therefore be
geometrically computed for small attenuations as

W % JIo 0  and 5W z ntan J1oo 2

Substituting for the ratio W/6W, it is found that

Q-1 = 5W/2TW = tan o

and the definitions are thereby equivalent. For the hysteresis
loop in Fig. 1, Q-'=0.0629 (Q = 15.9).

For nonlinear materials and large attenuations the
hysteresis loop becomes nonelliptical and nonsymmetrical, with
cusped ends (McKavanagh and Stacey, 1974). In this instance it
is necessary to integrate the areas of the hysteresis loop
directly and to calculate the relative attenuation Q-' from the
energy ratio. The loss tangent or phase angle between stress
and strain is not singularly defined.

Although the analysis of hysteresis loops is well-known
(see, for example, Lorrain and Corson, 1970), an essential
point is that the stress and strain functions are AC-signals,
that is, centered about zero with equal positive and negative
excursions and a hysteresis loop centered on the origin.
Consequently, the maximum strain energy (=%J 0 0 2) is attained in
only one-half of the overall peak-to-peak stress and strain
amplitudes (2oo and 2Joo , respectively).

If the sinusoidal stress and strain time functions are
DC-biased, i.e., offset so that they are continuously positive,
the definitions of maximum strain energy W, relative
attenuation (Q-1=6W/2nW), and the identity of the hysteresis
loop origin can become somewhat confusing. In Fig. 2 the same
hysteresis loop as in Fig. 1 is replotted with the origin at
zero stress and strain. The stress and strain time functions
for this hysteresis loop have been shifted by +oo and +J00 ,
although with the same peak-to-peak amplitudes of 20o and 2Jco.
The energy dissipated during a cycle is still the area of the
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Fig. 2. Same hysteresis loop as in Fig. 1 but centered at
+o stress and +Jao strain. The shaded area is the maximum
energy introduced per unit volume during the hysteresis loop
cycle, but this gives an incorrect relative attenuation factor
(%Q- 1 ) for the material at stress +oo and +Joo strain, for
which this hysteresis loop is representative (see text).

ellipse, as in Fig. 1, or rtanoJio 2. Maximum strain energy,
however, or the shaded area under the loading portion of the
hysteresis loop in Fig. 2, is

W = % (2o0) (2J oo) 2Ji o0 2

a factor of 4 times greater than before. Accordingly, when 6W
and W are substituted into the relative attenuation definition,
the result is

= 5W/2nW = X tano.

Since the DC-bias has not changed the phase angle between
stress and strain, the "loss-tangent" definition of attenuation
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remains Q-1 = tan$. The immediate and perplexing result is
that the attenuation factor calculated from the hysteresis loop
areas is 1/4th of that calculated from the tangent of the phase
angle.

This apparent inconsistency can be resolved by re-examining
the maximum strain energy W relative to the origin of the
hysteresis loop in Fig. 2. From the external perspective of
the sinusoidal stress driving the material the maximum strain
energy is indeed 2J1 0.22. For the material, however, the state
of stress and strain appropriate for the hysteresis loop and
energy calculation is not at the origin of zero stress and
strain in Fig. 2, but at the center of the hysteresis loop,
i.e., as in Fig. 1. Although stress and strain are
continuously positive, the material at +ao stress and +Joo
strain is being cyclically deformed by stress and strain
functions with amplitudes of ±ao and ±Joo . Once this reference
at the center of the hysteresis loop in Fig. 2 is adopted, the
maximum strain energy is reduced to what it was for the
hysteresis loop in Fig. 1, YJ,0 0 2 . The attenuation factors
from the relative energy attenuation ratio and loss tangent
then agre_, T-!W/2nW=ta.,. This attenuation factor must be
associated with the material at its stress and strain condition
in the center of the hysteresis loop, +ao and +Joo.

Discussion

Although the clarification of hysteresis loop analysi3 for
Q determination is straightforward, the inconsistency in
interpreting hysteresis loops has propagated through much of
the available experimental stress-strain data available,
particularly at high strain amplitudes. Therefore an
accounting of this factor of 4 is significant, and tends to
resolve at least one outstanding discrepancy while decreasing
(by a factor of 4) typical Q's for rock at high strain
amplitudes.

There are two techniques to measure and interpret
attenuation from low-frequency streqs-strain data. Eicr the
phase angle is measured directly (Spencer, 1981; Jackson et
al., 1984) or else the hysteresis loop is plotted out and the
areas integrated (Gordon and Davis, 1968; Walsh et al., 1970;
McKavanagh and Stacey, 1974; Brennan, 1981; Liu and Peselnick,
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1983; Coyner, 1987). Hysteresis loop integration of the areas
shown in Fig.2 and discussed in the analysis section leads to a
relative attenuation Q factor that is greater than the loss
tangent Q (tano) by a factor of 4. Therefore, in most
instances the Q factors obtained by analyzing the areas of
hysteresis loops have to be decreased ty a factor of 4. This
is particularly true if they are to be interpreted and compared
with the Q factor results of other experimental techniques
(field observations, resonant bar, ultrasonic).

In Table 1 is a tabulation of experimental Q factors from
previous, low frequency, stress-strain results on room dry and
vacuum dry rocks that were measured with either the phase angle
or plotted hysteresis loop technique. The list of "reported" Q
factors is collected from the respective references. The list

of "corrected" values is suggested from the analysis results of
this paper, i.e., reported Q's divided by a factor of 4. Only
Spencer (1981) and Jackson et al. (1984) measured the phase

angle directly and, consequently, their results do not require
correction (References 5 and 7). For all of the others
(Table 1) either the plotted hysteresis loops or a statement of
procedure indicates that maximum strain energy was integrated

under the entire loop, therebye resulting in an overestimation
of Q by a factor of 4. Walsh et al. (1970), however, report
their attenuation results as relative attenuation, 6W/W, and
not as Q factors. Nevertheless, in order to interpret the
results as Q the relative attenuations still need to be divided

by 4 * 2n.

The strain amplitude dependence of attenuation changes
quite dramatically if large strain amplitude Q factors are
reduced by a factor of 4. Coyner (1987) found that hysteresis
loop attenuation data at large strain amplitudes (>10-

4 ) was
essentially equal to that from the ultrasonic pulse technique.
After the correction by a factor of 4, however, the hysteresis
loop attenuation factors are the largest (Q's the lowest).
This is a far more plausible result, and indicates the
significance of strain amplitude on attenuation.

At high strain amplitudes nonlinear friction dominates
attenuation, and Q factors are extremely low, on the order of 2
to 50 (Table 1, references 1, 2, 3. and 8). In this group the
Q factors for typical microcracked granites cluster in the
range from 9 to 12.5 (references 1, 2, 8). The Q of 2 is for a
friable, weathered, Cedar City diorite (Walsh et al., 1970).
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TABLE 1. Reported and Corrected Hysteresis Loop Q Factors.

Rock Frequency Strain QE QF Reference
(Dry) (Hz) (10-b) Reported Corrected

Granite .0005-.05 102-103 50 12.5 1

Quartzite .0005-.05 102-103 200 50 1

Granite <.05 103-104 8-11 2-3 2
(Cedar City)

Granite <.05 500 45 11 2
(Westerly)

Granite, .003-.1 1-10 100 25 3
basalt, and
sandstone

Basalt .001-.5 1.7 525 (Qs) 130 4

Granite .001-.5 1.1 266 (Qs) 67 4

Sandstone .001-.5 1.2 75-125(Q.. ) 19-31 4

Sandstone, .004-.4 0.1 >500 >500 5

granite, limestone
(vacuum dry)

Granite .01-1 .01-.1 >450 >112.5 6
(Westerly)

Granite .33-.003 0.6 400-2000(Qs) 400-2000 7
(P >10 MPa)

Granite 0.1 10-103 36-50 9-12 8
(Sierra White)

References: 1, Gordon and Davis, 1968; 2, Walsh et al., 1970;

3, McKavanagh and Stacey, 1974; 4, Brennan, 1981; 5, Spencer,

1981; 6, Liu and Peselnick, 1983; 7, Jackson et al., 1984 8,
Coyner, 1987.
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One discrepancy that is resolved when hysteresis loop Q
factors are reduced by a factor of 4 is the convergence of Q
data of Liu and Peselnick (1983) compared to that of Spencer
(1981). Both experimentally measured low frequency, low strain
amplitude (<10-6 strain), stress-strain data on cylinders of
granite sinusoldally loaded at low pressure. A major concern
with the results of Liu and Peselnick, however, is a large Q
(>456) for room dry Westerly granite. This is a saturation
condition that contrasts with the large Q (500) observed by
Spencer for vacuum dry Oklahoma granite.

These similar results seem unusual since the work of
Tittmann (1973) and Clark et al. f1980) has underscored the
substantial decrease in Q caused by the presence of volatiles,
particularly water. Resonant bar measurements by Coyner (1987)
on room dry Sierra White granite found Q factors of
approximately 125, similar to those found by Winkler et al.
(1979) for Sierra White and Tittmann (1984) for Westerly
granite. Therefore the Liu and Peselnick data point appears
anomalous because the Q factor is so high for a roorn-dry rock
at zero confining pressure. If the hysteresis loop data of Liu
and Peselnick are re-interpreted, and the Q factor decreased by
a factor of 4, to Q>112, the room condition Q's for granite all
fall within the same range (Q's from 67 to 125). (It must be
noted, however, that several different granites are involved,
and Liu and Peselnick do not show any plots of hysteresis
loops.) Large Q's for typical icrocracked granite are
therefore preserved for vaccuum conditions (Spencer, 1981) or
samples under confining pressure (Jackson et al., 1984).

Although modern experimental technique and digital signal
analysis favors the direct measurement of phase angle in these
experiments, the hysteresis loop shape is still necessary for
correct interpretation of linear behavior, i.e., elliptical
versus cusped hysteresis loops. Brennan and Stacey (1977)
;ieasured the transition of loops from cusped to elliptical
shapes as the strain amplitude fell to around 10- 6 but do not
show any plots of loop data. It seems reasonable tc expect
that hysteresis loops should be plotted in tandem with phase
angles. The lack of this information makes it difficult to
assess exactly how the attenuation from hysteresis loops has
been calculated, and fails to document the hysteresis loop
shape, which contains information on the nature of frictional
attenuation.
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Conclusions

It has been shown that direct stress-strain calculations of
attenuation can lead to inconsistent results when comparing
phase angle with hysteresis loop measurements. Quality factors
(Q's) derived from the areas of hysteresis loops must be
multiplied by a factor of 4 in order to be comparable to those
from the phase angle, if the maximum strain energy is taken as
the entire area under the loading portion of the hysteresis
loop. Previous experimental data must be interpreted and
compared in light of this correction factor. In particular, the
strain amplitude dependence of Q is greater than previously
realized, and room dry granite can have Q's as low as 2 to 30
at amplitudes greater than 10 microstrain.
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