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INTRODUCTION

Cavitation bubbles in hiquids have been of interest to scientists since 1754, when
Leonhard Euler {1] first suggested the possibility of cavitation in connection with his study
of turbine theory. With the recognition of cavitation as the chief mechanism of erosion
damage in ship propellors, turbines. pumps and other hydraulic machinery in the early
1900's came an increase in both experimental and theoretical studies of the phenomenon.
Perhaps the first significant theoretical work dealing with the dyvnamics of bubbles was that
of Lord Rayleigh (2] in 1917 describing the collapse of a sphencal cavity.

Beginning in the 1950's, the response of such bubbles 1o applied acousne fields
was the subject of much theoretical work. Papers by Hsieh [3]. Plesset [4], Nolungk and
Neppiras [5,6], Poritsky [7]. and Hickling [8] greatly advanced the theory, resulting in
a description of the radius of a bubble as a function of time involving a single. <econd-
order 1:onlinear differential equation. A more refined treatment of the problem [9] has led
1o still more complicated expressions involving partial differenual equations descnbing the
internal pressure and temperature of the bubble coupled to the radial equation of monon.
However, the most important variable (upon which most of the ohservable effects of
cavitation depend) remains the radius as a function of time. There 15 a plethora ot
numerically generated radius vs. time (R(1)) curves fromn different models, but, until now .
there has been no direct experimental verification of any of these predictions for single.

stably oscillating bubbles.
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There are a number of other groups whose interest in bubble dynamics is
increasing. These include: ship wake researchers [10], who study the persistence of
bubbles in wakes and their passive and active contributions to underwater sound
propagation; ocean ambient noise researchers [11], who have recently presented evidence
of the significant role of oscillating bubbles as an ambient noise source; and biomedical
rescarchers [12,23], who are currently debating the possible side-effects (both harmtul
and helpful) of acoustic cavitation in the use of diagnostic and therapeutic ultrasound. Each
of the phenomena studied by these researchers depends directly on the response of a bubble
to an applied pressure; i.c., the R(1) curve for the particular driving pressure.

A third community sharing an interest is the nonlinear dynamics community
[13,14,, which includes mathematicians, physicists, economists, biologists, engineers,
and others. They share a basic interest in the time-evolution of nonlinear svstems, and the
wide variety of (sometimes unexpected) responses exhibited by driven, dissipative
systems, whose time-evolution can be modeled by ordinary (ODE's) and parual (PDE'S)
differential equations. Most of the research in the field is theoretical and numencal, and
relatively few expenmental systems have been found to venfy the predictions of chaotie
responses which are elicited from the computer. A pressure-forced bubble 15 a highly
nonlinear system, and there are numerical and analytical results for some bubble models
which exhibit the universal features of nonlinear dynamical systems [18,29-32). There
are also some expenmental results indicating chaotic behavior for cavitation bubble ficlds
(30,33}, but none for single bubbles.

Thus, the motivation for this study was the need to experimentally produce the
radial response of a single bubble to an applicd acoustic field. This has been done. and the

focus of this dissertation will be the experimental method emploved to accomplish the task.
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Along the way, however, [ observed what I call "complex” bubble motion, which may not
necessarily be radial in nature, and may well have one or more chaotic components.
Although the scattering method breaks down in terms of providing a direct relationship
between the scattered intensity and the radius, the intensity /() still contains, in principle.
all the dynamical information about the bubble’s motion. Thus, some results are presented
which exceed the reach of current bubble dynamics models, and provide a stimulus for
further research.

Chapter I contains the theoretical aspects of the problem. Part A introduces
(without derivation) theoretical models for radial bubble oscillations. Numerical results are
presented for comparison with the experimental results presented in Chapter IIl. Part B
describes the theory of optical scattering from a dielectric sphere for the relevant size
parameter (ka) range, usually known as Mie scaitering {15]. Numenical results for the
scattered intensity as a function of both the scattering angle and the radius of the scattering
bubble are presented.

Chapter II contains the details of the experiment. Part A describes the general
method used, independent of specific apparatus. Part B describes the particular apparatus
used in each phase of the experiment. Part C describes the methods of calibrating (1) the
pressure in the center of the cylindnical transducer cell, and (2) the output current of (and
hence the scattered light intensity incident on) the photodetector. Calibration data are
presented for the pressure in the cell and the scattered light intensity. Part D describes the
experimental procedure followed in order to obtain /(1) curves and response curves as a
function of equilibrium bubble radius.

Chapter III contains the results. Part A presents the results for purely radial

motion, containing both R(t) curves and response curves over a range of equilibnum radii.
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Part B details complex bubble motion, and describes some of the methods of analysis used
for such cases.

Chapter IV concludes the dissertation with a discussion of the results, their validity,
and a comparison with numerical results for the equations presented in Chapter I. Ideas for

further work, both expenimental and theoretical, are also presented.




Chapter |
Theory

A. Bubble oscillations

1. Introduction

It may be argued that the ultimate aim of any theoretical treatment of acoustic
cavitaton is the attainment of an equation of motion describing the oscillations of the cavity
volume, or, more specifically, the motion of the gas/liquid interface. The general problem
is to find the pressure and velocity fields of the two phase medium. The starting point for
any such undertaking must be the solution of the conservation equations for mass.
momentum and energy, subject 1o suitable boundary conditions at the bubble interface.

For the most general case when no symmetry is invoked. the problem can be almost
intractable in terms of obtaining any useful information abuut the motion. An excellent
treatment of this more general problem can be found in Hsieh's 1965 work [3]. and the
interested reader is referred to his paper for more details.

The imposition of spherical symmetry reduces the complexity of the problem
somewhat. Although this is the next logical step, it is not typically the next step in
theoretical studies, since it includes shape oscillations of all sorts. What is normally done

is to obtain an equation of motion for a purely spherical interface, and then express the




solution as a superposition of spherical harmonics. For details of the stability analysis, see
{34-36]. If the driving pressure ficld is isotropic over the length scale associated with the
bubble, then surface modes can only be excited parametrically, and hence should only
appear as a threshold dependent quantity. Eller and Crum [37] give an interesting
treatment of the threshold calculation for different modes in the pressure-radius plane. and
also present data for the onset of “dancing” motion of single bubbles. Perhaps the most
important information for the purposes of this study is the presence of a very low (0.05
atm) theoretical pressure threshold for the existence of shape oscillations for bubbles with

Ro = 75 um and driving frequency f = 26 kHz (37-39]. The frequency of this shape

oscillation is f/2. The implications of this behavior as regards the appearance of

subharmonics in the Fourier spectra and the phase space will be discussed later.

Finally, if one requires the shape of the interface to remain purely spherical, one
can then obtain a single, second-order, nonlinear ordinary differential equation descnibing
the motion of the bubble wall, with the radius R as the dependent vaniable and time ¢ as the
independent varniable. The crux of the problem then becomes that of determining the
internal pressure p of the gas inside the bubble. which is a function of both R and 1.

There are two ways of dealing with the intemnal pressure. The first and most widely

used {5,6,16-22] method is the polytropic relation.

Roh
Pp=po R

h
where p is the pressure of the gas in the bubble, R is the radius. x1s the polytropic index.
and the subscript zero refers to equilibrium values. The index x can range from |

(isothermal oscillations) to the ratio of specific heats y(adiabatic oscillations).




There are a few problems associated with the use of the approximation (1). First,
appropriate criteria governing the proper value of x exist only for small-amplitude, linear
oscillations [24,25]. Second, for nonlinear oscillations, it is shown in an ad hoc fashion
[26] that x itself must vary nonlinearly. Third, the integral over a cycle of p dv vanishes,
resulting in no net energy loss associated with the heating and cooling of the gas (9]
Since thermal damping has been shown to be the dominant form of dissipation for a wide
range of equilibrium radii and frequencies [21], this is, as it were, the third strike for (1)
Attempts to incorporate an effective thermal damping coefficient into the viscosity term to
remedy the situation [21] have met with only limited success.

The second method of modeling the internal pressure consists of applying the
conservation laws 1o the interior of the bubble. This has been done by Flynn [27].
Hickling {28], and Prosperetti et al. [9] in different fashions. For companson with the
radial results presented here, the formulation of Prosperetti et al. is used.

I. A. 2. Radial oscillations

For a detailed derivation and description of the equations of motion. along with
some numerical results, the interested reader is referred to [9]. For the motion of the

bubble wall, Prosperetti ef al. use an equation of motion criginally denved by Keller (20]:

Ldpa(l)

dr
P . ()

‘l -l—:_-)RR + %Rz‘l-%)s 1 +'—§-,-‘:—[p,(f) -p,(u%) -p_} +
L




where R is the radius of the bubble, c is the speed of sound in the liquid, p, is the density
of the liquid, and p;s is the time-varying driving pressure. Dots dcnote time derivatives.

The liquid pressure outside the bubble, pp(1), is related to the internal bubble pressure p(1)

by

20 4u.R
p(l)-pB(R.l)+T+ R 3

where 4, is the viscosity of the liquid. and G is the surface tension of the liquid.

To describe the pressure of the gas inside the bubble as a function of time, one has

or

p'=[—3-(r- l)Kﬂ | m]
R R

(4
where ¥ is the ratio of specific heats of the gas (assumed perfect) inside the bubble. K 1s
the thermal conductivity of the gas, T is the temperature, and the expression is evaluated at
r=R.

The conservation of energy is expressed by

254.._‘!.-_1_2. _a_r-.a—z y ar—Dr): D‘V-f
o pR-\dy ady ' ! oy R (5
where the variable 7is defined by
T
t=f K(6)dé
T. . (6)




and a moving boundary is used by defining y = r/R(1). The Laplacian is taken with respect
to the variable y, and the thermal diffusivity D for a perfect gas is given by

K(T) =)"l KT
CoppD v 7 7

D(p.T) =

Of the major assumptions used to derive these equations [9], two seem especially
important: (a) The pressure is spatiaily uniform inside the bubbie; (b) There is no mass
diffusion across the bubble wall.

The first assumption requires the Mach number of the bubble wall (calculated with
respect to the speed of sound in the gas) to be small. Care must be taken when calculating
violent collapse cases which occur in some subhammonic oscillations and transient events.
This can become complicated, since the heating of the gas during the collapse changes the
speed of sound in the gas. The second assumption is only a problem if one is interested in
time scales much greater than the typical oscillatory period of a bubble. such as would be
needed to study chaotic oscillations [14,29-31].

Using a program written by Gaitan {41] following the methods outlined in [9). |
have obtained numerical results for comparison with the data in chapter IIl. As an
overview of the expected response of bubbles driven at different pressures as a function of
their equilibrium radius, Fig. 1 plots a family of theoretical resonance curves for pressures
0.03, 0.05, ... up to 0.37 atmospheres, with a driving frequency fof 24.4 kHz. In
addition to the main resonance expected for linear oscillators, there are also peaks at Ry R,
= (0.5 and 0.33, corresponding to harmonic resonances with frequencies of 2f and 3f.

respectively. R, is defined in this case as the equilibrium radius of a bubble whose lhinear
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resonance frequency fp equals the driving frequency f. Also apparent is a bending of the
peaks towards lower values of Rg/R,., typical of a "softening” nonlinearity. A final
feature of this figure is the appearance at sufficiently high (> 0.15 atm.) pressures of a
discontinuity in the main resonance curve. The resonance peak has doubled over, so that
for a given value Ro/R,. in this region, the solution will be triple-valued, with the middle
value corresponding to an asymptotically unstable oscillation. Which solution one attains
depends on the initial conditions. For sufficiently high pressures, each resonance peak will
show this hysteresis phenomenon. This has important implications for attempts to measure
such a family of curves, for it implies different results depending on which direction
Ro/R, s is varied if the pressure is sufficiently high. In Chapter 11, experimental resonance
curves are presented for different pressures and compared to these numerically generated
curves.

Equations (2), (4), and (5) are solved numerically in {9], and some typical
oscillatory solutions are presented for the particular numerical implementation outlined in
the appendix of {9]. Recently, Kamath and Prosperetti have introduced a more time-
efficient and stabie method for solving the system [40] utilizing a spectral technique.
Initial results indicate that this method could be more useful for long-time integrations. In
addition, Fowlkes has recently incorporated rectified diffusion into the equations (2), (4),
and (5) [87), using a method proposed by Eller and Flynn [95). This method was also
incorporated into Flynn's bubble model {27] by Church [88]. These developments
should greatly aid the attempts to model the (possibly chantic) large-amplitude oscillations
for large driving pressures and long times.

Radius-time curves have also been numerically generated with parameters specific

to particular data sets, and they are presented in chapter [II for comparison with the data.
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I. B. Optical Scattering

1. Introduction

Optical scattering of one form or another has been the only successful technique for
obtaining experimentally the time-varying size of a bubble in a liquid. In the past.
however, this approach has been limited to high-speed photography [42,43). holography
and holo-cinematography [(44-49] by Lauterborn er al.. with no work done on single
periodically-driven gas bubbles, but rather on transient cavities or bubble fields. An
interesting light-transmission experiment on a bubble field was also performed [57],
cliciting, however, only the spectral characteristics of the motion.

Recently, Hansen {50] used laser scattering on single. stably oscillating bubbles as
a means of sizing such bubbles. His work, along with some work by Marston [§1,52].
suggested the possibility of using laser scattering to observe the time-dependent behavior ot
a bubble. This section presents the theoretical aspects of the scattering of monochromatic.,
linearly polarized plane light-waves incident on a spherical gas bubble in a liquid. The
numerical technique used to solve for the scattering amplitudes, and some numernical results
for relevant cases are also presented.

The question of scattering in the presence of shape oscillations is not theoretically
treated, largely because of the lack of any comprehensive treatment of the problem of
optical scattering from a dynamically oscillating shape. Amott and Marston {89] have
looked at time-averaged backscattering to ascertain spherical asymmetry (oblateness) in
freely rising bubbles, but the method is not suitable for instantaneous observation. In

practice, the scattered intensity, even at a single angle, will be dynamically modulated by

. g, N2 4 o
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the shape oscillations. Model-independent analyses should thus be expected to yield some
information, and the results of applying such methods are presented in chapter III.

I. B. 2. Mie theory

The problem at hand is determining the scattered intensity as a function of spatial
coordinates for the case of plane, monochromatic, linearly polarized light waves incident on
a dielectric sphere. An excellent textbook treatment of the problem is given in Kerker
[53], chapters 3-5, and I will use his notation in this section. No derivation of the
scattering amplitudes will be given here. For a complete denvation beginning with
Maxwell's equations, see [$4].

If one defines the scattering plane (¢ = 0 plane) as that plane containing the incident

(8 = 0) direction and the direction of the scattered wave vector, then the scattered intensity

is given by
., 2 2
]9: 22!3:,(’05@
dn r . (8)
2
2.2
Iy = zzjs,jsuub
dxr . (9)

where /g is the component of the scattered intensity parallel to the scattering plane. /4 1s the

component perpendicular to the scattering plane, r is the distance from the bubble center
(r >> R), ¢ is the azimuthal angle, and A is the wavelength of the light in the surrounding

medium. The scattering amplitudes S; and S; are given by
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2n+1]
S, = 251_::_17 a,,:rn(cose)i- b,,tn(cosﬂ)]

n=1 , (1)
< 2n+1
Sy= z’ln—a—m a,,thosO)* b,,xn(cose)]

(1

where @ is the scattering angle, and forward scattering corresponds to 6 = 0. The angular

functions are given by

{1
P 2]
. (cost) = Pn 058}
sinG . (12)
de(cnsG,
¢ (cose) = Lricos®!
de i (11

and the P‘,,”(cose) are the associated Legendre functions. The coefficients a,, and b, are

found from

azuhwmrmwmwm
¢faly fB) - my [BC () s

o _mvialvipl- viplv ol
" m(Ja)VJﬁ) - VJﬁ)CJa)' (15

where m = k;/k; = m;/m; is the relative index of refraction. Subscript | refers 10 the

bubble interior, while subscript 2 refers to the medium surrounding the bubble, & is the

wave number, m; and m; are the indices of refraction, @ = 2zxm:R/A, is the <ize




parameter, Ay is the wavelength of the incident light in vacuum, 8 = am, and primes

denote differentiation with respect to arguments. The functions
vial= oifa) a6,

{2
¢ o) = anila) 0
are the Ricatti-Bessel functions with j,(a) and h',,z(a) the ordinary spherical Bessel
functons of the first and third kind, respectively.

For comparison with the current experiment, the incident beam is now restricted to
being polarized with the electric ficld vector paraliel to the @ = 0 plane, thus restricting
interest to /g Further, the relative intensity /,,; is defined as

in .’2 Ie

N N
I'd = — =»S:y ('(75.0

A (1%

For the rest of the paper, the calculations refer to -+, = 1.00. m> = 1.33, and m = 075,
these being the relevant param~ters for an air bubble in water. Ao will be either the red He-
Ne line (632.8 nm), or the green Ar-1 line (488.0 nm), depending primanly on the

chronology of the data set.
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I. B. 3. Calculations

Numerical calculations to obtain /,,; were carried out using a modification of a
program developed by Wiscombe {S5]. Several checks of the numerical accuracy were
made against results found in [50-53,56]. All of the theoretical resuits were obtained on
a DEC Microvax Il running in single precision Fortran. Typical run times ranged trom 30
minutes for an /,,; vs 8 curve to 15 hours for a solid-angle integration calculating i1, de
do¢ vs R.

Figure 2 is a plot of /,,; vs 6 for 0 to 180 degrees for a size parameter of 661,
corresponding to a bubble of radius 50 pm for A5 = 632.8 nm, and 38 um tor 4, = 38K.0
nm. It is not immediately obvious from this graph where the optimal angular location, 1n
terms of maximum intensity and minimum diffraction structure, for a photodetector should
lie, if indeed there is an optimal choice. It is at least clear that one would like to be at some
6 < 90 degrees, since the intensity drops an order of magnitude from 70 to 100

Figures 3 and 4 show 7, vs R for § = 66 and 70 degrees respectively. for A, =
632.8 nm. These angles were chosen corresponding to the locations for various
photodetector combinations used in the experiments. At face value, netther of these 1s veny
desirable as a transter function, since the inverse ransfer function R ¢/ 1s muttuple-valued.
On the suggestion of Marston [$8), and following the example of Hansen [S4],
calculations were made at 6 = 80 degrees, close to the cntical angle [36] Fig S shows
l,e1 vs R for 8 = 80°, with 4y = 488.0 nm. Ignoring fine structure, the intensity nises
regularly with increasing radius, and R (/} is single-valued.

The general form of Figs. 3-5 is explicable in terms of the physical optics

approximations in [§1,56]). The coarse structure in Figs. 3 and 4 is due mainly 1o the

e, ) aaaa \1)
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interference of the reflected and refracted rays with an optical path length difference that is
small compared to R, resulting in an interference pattern that vanes siowiy with radius.
The fine structure, evident in Figs. 3-5, is due to the interference of the refracted, intemally
reflected ray and the coarse structure pattern. These rays have optical path length
differences which are on the order of the bubble diameter, and hence the interference
pattern is very sensitive to changes in the bubble size. At 80", the reflected ray dominates
the coarse structure as edge diffraction (50].

For a given photodetector combination, the finite solid angle subtended by the
apparatus will have to be taken into account by an integration over the appropriate limits in
6and ¢. In general, this will have the cffect of eliminating the fine structure and minganng
the coarse structure, depending of course on the size of the angle. These calculations.

which are detector-specific, will be presented in Chapter Il in conjunction with the

particular experimental arrangement.
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Chapter 11

Experiment

A. Method

To a large extent, this dissertation is a report of the success of an optical scattering
method in obtaining R(1) for a driven, stably oscillating bubble. As previously indicated.
this is, though a significant step in bubble dynamics, merely a natural extension of
Hansen's work in bubble sizing (54]. Although a variety of detection schemes have been
employed, the method has remained constant throughout the course of the expenments.
Figure 6 is a generalized schematic of the apparatus used in the experimental
measurements, and serves as a guide for the discussion throughout this chapter.

An acoustic levitation technique [§9-62] was used to obtain a single. stably
oscillating air bubble in water contained in a resonating cell. Only bubbles with R, < R,,.
could be obtained by this technique. In practice, this meant that bubbles ranging from
about 20 10 100 um could be obtained.

Once a suitable bubble was obtained, a linearly polarized laser beam was scattered
from the bubble, whose position in the beam was maintained by pressure adjustment and
micropositioner stages upon which the levitation cell was mounted. For purely radial
bubble motion, the scattered intensity /(1) at some angle from the forward is related to the
radius R(t) in a nonlinear fashion for which a transfer function I(R) is calculable from Mie

theory. For other symmetric motions (shape oscillations), /(1) is related to the motion of

22
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the interface in some more complicated fashion; nevertheless, suitable methods of analysis
of 1(:) should elicit information about the motion.

The scattered intensity /(t) was measured using three different detection schemes
which are described in the next section. Each of these detection schemes converts the
incident light intensity to a photocurrent iy(¢) which is linearly proportional to the input
intensity /.xp(¢), and this current is converted to a voltage which is recorded for later
analysis and graphical output. The next section describes in detail the different apparatus

used in each phase of the experiment.

B e
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Piezoceramic HV/Preamp

Manipulator
Rz

Transducer Power Supply

Bubble

( Laser

Photo-

Detector
A 4
Manipulator Amplifier/
Txyz Filter
{
»
! '
. Power Spectrum Digital
Amplifier Analyzer Oscilloscope

l _ ¥
Waveform V AXstation I/
: Generator Rt MNC 11/23 A/D, 1M Buffer

Generalized schematic of the experimental apparstys. Shading indicates a
variable component of the system.
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I1. B. Apparatus

1. Base equipment

The unshaded components of Fig. 6 comprise the basic apparatus needed to levitate
a bubble and analyze the data. This section describes these basic components.

In the center is the levitation cell. It consists of two 3" diameter, cylindrical
piezoceramic (PZT-4) transducers, poled to be driven primarily in the thickness mode. The
transducers are joined concentrically by a 3" long glass tube. Watertight coupling is
ensured by the use of a silicone glue. A Plexiglas disc is glued to the bottom transducer,
and the resulting container is filled to a specified level with distilled, filtered (1.0 um
particulate filter) water.

The cell is mounted on a three degree of freedom transiation stage. providing
0.001" resolution and 1" travel in each direction with the use of manual micrometer drives.
This arrangement allowed the positioning of the bubble anywhere in the plane
perpendicular to the laser's axis of propagation. In addition. a 360" rotation stage with
0.01° resolution was mounted independent of, but concentric with the cell. This stage
provided a variable, calibrated mount for the photodetectors. The entire apparatus,
including the laser head and necessary optics, was mounted on a 4’ x 6’ optical table with
self-leveling pneumatic supports for vibration isolation.

A frequency synthesizer/function generator coupled into a 75-watt power amplifier
was used to drive the levitation cell with a periodic, sinusoidally-varying voltage. The
driving frequency f was determined by the desired resonant mode of oscillation of the cell
[64). For all of the calibrated experiments, an (r,6.z) mode of (1,0.1) was used. with f =
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24.4 kHz. Additionally, some of the complex I(t) traces were taken using a different cell
operating in the (1,0,3) mode. The amplitude and frequency of the function generator were
manually modulated.

Once the data were collected and stored in some buffer memory, they were
transferred to a DEC VAXstation Il for analysis and plotting using GGPLUS_V3 (63].

Completed graphs were stored to disk as Postscript files, and output to a laser printer.

II. B. 2. Detection schemes

a. RCA avalanche photodiode/lens combination

This first detection scheme utilized a 7 mW He-Ne laser operating at 632.8 nm in
the TEMgo mode. The output had a 500:1 linear polarization ratio and 1/e? beam waist of
1.0 mm. The laser was mounted so that the electric field vector was parallel to the
scattering plane defined by ¢ = 0, and chosen parallel to the plane of the optical table.

The photodetecior was a combination of a RCA model C30957E silicon avalanche
photodiode and a 1.5" diameter, +14D fused silica lens placed such that the bubble was
located at +2f, and the active area of the photodiode at -2f. The photodiode was reverse-
biased at V, = 217 volts, and a 1M£Q load resistor was placed in series with the photodiode
to convert the photocurrent iy to a voltage measured across R, The output voltage was then
amplified 40 dB and passed through a 100 H2-200 kHz bandpass filter 10 improve the
signal-to-noise ratio. The signal was split, with one terminus being an analog oscilloscope,
and the other a KSC digitizer/memory module sampling at | MHz with 10-bit resolution
and 1 M-word record length buffer. A MNC PDP 11/23 was used to control the CAMAC
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crate in which the digitizer resided, and to retrieve the data from the buffer and transfer it to
the VAXstation 1.

All components were situated so that their center axis lay in the ¢ = O plane, with 6
= 70.0°. Fig. 4 shows the theoretical scattered relative intensity /,,; vs R at 6 = 70.0".
Only the S; component is shown, corresponding to polarization of the incident electric field
vector parallel to the scattering plane.

Although the active area of the photodiode was small (= 1.0 mm?), the lens
subtended a large (6, = +/- 10°) solid angle. To match this experimental condition, the
integral J/ I,e1 (R) dB d¢ was performed for the limits 60° < 6 < 80°, and -10° < ¢ < 10"
The 6 integration was performed by Gaussian quadrature after subdividing the 20° 6
interval into S00 partitions and calculating /,(R) for each partition. The ¢ integral was
evaluated directly. Fig. 7 shows the results of the integration. The fine structure apparent
in Fig. 4 has been eliminated, and the coarse structure has been diminished to such an

extent that the inverse transfer function R(/) is single-valued.

II. B. 2. b. Thorn/EMI photomultiplier tube

The second detection scheme also utilized the 7 mW He-Ne laser, but the detector
employed was a Thom/EMI model 9956KB photomultiplier tube (pmt). Negative high
voltage (300 volts) was supplied to a standard voltage divider network located in the base
of the pmt. A 100-kHz load resistor was placed just before the anode output, converting
the anode current iy, into an output voltage. Negative supply voltage was chosen so that
there was no need for an isolation capacitor at the output anode, thus enabling the

observation of DC output voltage due to the constant light intensity associated with the
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time-averaged scatter from the bubble. For linear osciilations, this time-averaged scattered
intensity (and hence the DC voltage component) corresponds to the bubble's equilibrium
radius R ; i.e., <lexp(R1V> = [o0p(Rp).

For some data sets, the output voltage was sampled and stored by the KSC crate
described in section B.2.a. of this chapter. For others, the output voltage was fed directly
into a LeCroy 9400 digital oscilloscope with a variable sampling rate, ahd 8-bit resolution.
The pmt was sensitive enough even at the relatively low supply voltage to detect optical
noise in the form of light from the bubble which was multiply-refiected from the cell walils.
This noise dominated the signal for small-amplitude oscillations. Due to its origin, the
noise was modulated at the driving frequency, and therefore frequency filtering techniques
were useless. However, the phase of the noise with respect to the bubble osciilation was
random, and simple continuous averaging of the signal resulted in an increase in the signal-
noise ratio of 2-3 orders of magnitude. These averaged data sets were stored in local
memory buffers, and then were transferred to the computer via an IEEE-488 interface.

The window of the pmt covered a large (8,. = +/- 23°) solid angle centered at 66°
from the forward direction. Fig. 3 shows /., vs R at 66°, and the solid curve in Fig. 8
shows the results of integrating /,.; over the limits 43° < 6 < 89", and -23° < 9 < 23" The
calibration data points were obtained by a method to be described in section C. of this

chapter.

I. B. 2. ¢ Oriel photodiode

The final detection scheme, and the one which proved casiest to calibrate, used a 3

W Ar-1 laser operating at 488.0 nm with a single line power of 440 mW in the TEMq,
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mode. A rotating polarizer mounted on the laser ensured a 1200:1 linear polarization ratio,
and the beam had a 1/e2 width of 1.0 mm nominal. The water-cooled head and power
supply required a filtered flow rate of 2 gallons/minute, and the plasma tube current at 440
mW output was 18 A nominal in light-control mode. The polarizer was rotated so that the
electric field vector was parallel to the scattering plane, which was also chosen parallel to
the surface of the optical table.

The detector used was an Oriel model 7080-1 photodiode/preamp module with an
integral optical transmission filter for the 488.0 nm line (Oriel model 52630) 1o reduce
random light noise. The semiconductor active surface was very large (100 mm2), and for
this reason a lens was not needed to get adequate light input. The trade-off was a rather
large rise-time (1100 ns) which limited the bandwidth to = | MHz. The photodiode was
operated in the photoconductive mode [65), with the resulting photocurrent i, input to the
inverting input of the integral preamp. A feedback resistor Ry = 100 k{2 connected the
preamp output to the inverting input. and thus the output voltage of the preamp was V /1) =
i(t)R; This voltage was fed into the 1 MQ DC input of the LeCroy 9400 for observanion
and temporary storage before being transferred to the VA Xstation il.

The photodetector was placed at a center angle of 80°. Fig. 5 shows /,,; vs R for 8
= 80°, Ap= 488.0 nm. Fig. 9 shows the results of integrating over the sohid angle
subtended by the photodetector, 6, = +/- 4.81°. The functional form is approximately
R2. as one would expect from physical optics approximations {S1]. All of the calibrated

R(1) results in Chapter 11 are made with this detection scheme.
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II. C. Calibration

1. Cell pressure

The method used to calibrate the cell pressure is outlined in [26,66]. Since it
necessarily involves some assumptions about the bubble motion, a brief description of the
theoretical derivation of the condition for equilibrium of the bubble position is presented
here. The procedure followed is then described. The technique involves levitating a
bubble in the cell, measuring its equilibrium position with respect to the measured pressure
gradient in the cell, measuring the equilibrium radius, and using the equation expressing the
balance of the acoustic force and the bouyant force to solve for the pressure . It is a null
method, and should be very sensitive to small changes in pressure.

The acoustic radiation force on a bubble in a standing wave field is given by

Fjri= - <VM VPlr.rl>‘ (19

where angle brackets denote time average, V(1) is the instantancous volume of the bubble

and P(r,1) is the pressure field. For the cell used in Fig. 6, the pressure 1s given by

P(rt)=P_- A sin(k2) costw) o0

where P..is the ambient pressure, @ is the angular driving frequency. : is the vertical

coordinate along the axis of the cell, and &k = 2x/A is the experimentally determined

wavenumber of the standing wave field (k is not ayc since @ is below the cutoff frequency

— - P PPTRED . S .
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of the cell). The wavelength A is determined experimentally by measuring the distance

from node to node of the stationary pressure field using a probe hydrophone constrained to

move along the z axis, with a spatial resolution of 0.0lmm. For a spherical bubble of

equilibrium radius Ry and instantaneous radius R(1), the magnitude of the acoustic force is

Fa=$7R; lAkeos |kz»< Rid)’

cos (an)>
. 2

Equation (21) is the levitation force which balances the bouyancy force

Fg=31Rop <(R"’ >
. 22

where p is the liquid density and g the acceleration of gravity.

For calibration purposes, only bubbles oscillating linearly were used. Monitoring
the uncalibrated output of the photodetector on an oscilloscope and a spectrum analyzer was
sufficient to ascertain the linearity of the oscillation, and bubbies which exhibited any

significant harmonic or subharmonic component were not used for calibration. Thus, to

cvaluate the time averaged quantities in (21) and (22). we can use a lincarized treatment of

the bubble oscillations, following Prosperetti IZIi. The pressure in the bubble is treated
with the polytropic relation, equation (1), and the radial equation is lincarized by writing R
= Roll + x(1)], and expanding x in a power series, retainitg only linear terms.

The condition for equilibrium is the equality of (21) and (22). Using the above
assumptions, the expression for the amplitude of the driving pressure A is
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- Pg
A= 3t cos (kD) IO 23)

where all the quantities on the right-hand-side can be evaluated experimentally. In the
absence of a calibrated light detection system, the quantity <x> must be determined
theoretically, and the result is given in [26].

The procedure is straightforward. First, the pressure gradient is obtained via an
external hydrophone probe mounted on a micropositioner with 50 mm vertical travel and
0.01mm travel resolution. This measurement also gives &, the wavenumber. For f= w/2n
= 24.4 kHz, and the (1,0,1) resonant mode, k& = 0.6 cm'!. Next, a bubble was levitated
and monitored via the scattered light to ensure linear oscillations. The position of levitation
and the equilibrium radius Rp were measured for a range of input cell voltages. Rpwas
measured via a rise-time technique [54). The data were entered into the computer to
calculate the calibration constant in volisyys / atm for the input dniving voltage as read from
the frequency synthesizer. The value <x> was calculated theoretically. The calibration
constant thus determined was 1.7 £ .05 voltsy, / atm. The precision of the constant was
determined by the standard deviation of the estimated values of the constant for each data
point. Typical pressure values determined using this constant and the dnving voltage as
recorded for average data runs were on the order of 0.05 atm.

Unfortunately, numenical results calculated using the expenmentally determined
pressure values for particular data sets gave an unrealistically low oscillation response.
Comparison with previous results for a similar cell with f = 23 kHz indicated that typical

pressures should be around 0.2 atm, and numerical results calculated with the higher
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pressures gave reasonably good fits. Accordingly, the pressures given for the graphs in
chapter Il are the results of fitting experimental response curves with numerically
generated response curves using the model in [9]. The choice of the best fit was
determined by the goodness of fit in the off-resonance regions, since the height of the
resonance peaks is critically dependent on the nonlinear damping, and hence the resonances
would be the first places where any discrepancies between theory and experiment should
show up.

In previous studies [25,26,62], and in an carly version of this experiment, the
pressure was calibrated with respect to the voltage output of a pill ransducer mounted on
the outside of the glass cylinder. The glass was assumed to oscillate in phase with the
liquid. The output impedance of such a transducer is > 10 MQ, and this caused loading ot
the signal when attempts were made to measure the output of one such transducer with the
KSC digitizer. To remedy this situation, it was determined to calibrate with respect to the
driving voltage, using the 50 Q parallel output of the driving oscillator as a signal source.

The problem with this approach, and the apparent reason for the failure of the
calibration results, is that the input voltage is an inaccurate measure of the power delivered
to the cell. Recall that the levitation cell is itself a resonant system, and is sensitive to
temperature and frequency changes. Although the cell was maintained at resonance, tuning
was accomplished only at sporadic (between data points, for example) time intervals, and
discrete frequency intervals, since a digital frequency synthesizer/function generator was
used. To determine the value for the resonance frequency, the position of the bubbie as
measured in a microscope was minimized (and hence the acoustic radiation pressure was
maximized) by varying the frequency with a preset resolution, always 0.1 kHz. Although

this was more than adequate frequency resolution with respect to the ratio Ry/R,,,. which




PO

L 4]

37

was limited by the accuracy of the rise-time measurements, it was not accurate enough to
sufficiently resolve the resonance peak of the cell, which was a weakly damped system.
Therefore, measurements of the driving voltage were made assuming a resonant
condition. If indeed this was not the case, then, although the driving voliage would remain
constant, the power delivered to the cell would be less than at resonance, since the
impedance of the cell wouid increase away from resonance. Additionally, the ratio of the
piessure output to the power input would decrease, since the stationary wave resonance
condition would not be fully realized. The calibration constant thus obtained would be 100
large, and the pressures calculated with it 100 small, and this inaccuracy is apparently the
reason for the disparate values for the pressure obtained. For future measurements, plans
call for either the reintroduction of an external transducer combined with a suitable
impedance buffer, or the use of a power meter between the amplifier and the cell, as the

reference signal for the pressure calibration.
II. C. 2. Photodetector current

The method used for calibrating the photodetector current was the same for each
photodetector. The general method will be outlined here.

The electric signal to be measured is Vp(R.1) = Gip(R.1IR., where G is the total
gain factor of the intermediate electronics, Ry is the load or feedback resistance, and iy, is
the photocurrent.  The photocurrent ip(R.1) = AR/ exp(R.t), where X is the total
responsivity of the photodetector in amps/watt, and A is the area of the photo-sensitive
surface. Finally, lep(R,1) = Ip M 1et (R(1)) d6 d¢, where the limits on the integral are
detemined by the particular photodetection scheme used. Thus, V(R0 = @ [[1,4 (R(1))
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d6 d¢, where @ = GR ARy is an apparatus-dependent constant to be determined
empirically.

First, a stably oscillating bubble is obtained in the cell and moved into the beam.
The output voltage V (R,t) is monitored on an oscilloscope. The time average V ,(Ro)
= <V gp(R.1)> is recorded. Only linearly oscillating bubbles are used, since Ry = <R(1)>
only for linear oscillations, and hence </ ,(R.t)> = [.,(Rp) only for linear oscillations.
As V o(Rp) is being recorded, an independent measurement of R, is made using a rise-
time technique similar to that used by Crum [25] and Hansen [50]. In this fashion a set
of calibration data points is accumulated spanning the widest possible range of equilibrium
radii. The data were also taken for a range of driving pressures to ensure there were no
spurious effects due to rf noise. The calibration constant @ was then determined by taking
the unweighted average over all data points (and hence a wide range of R) of the ratio of

the experimental voltage to the relative intensity, i.e.,

i¢ - Vexp,(R())
o = e [ La(R=Ryd8do
N . (24

where N is the number of data points. Multiplying @ by the photodiode output V(R 1)
gives the experimental relative intensity, which can then be used to find the radius R(1).
Multiplying @ by the calibration data V,,,(Ry) and plotting these data on the same
graph as the theoretical integrated relative intensity // I,;, (R) d8 d¢ gives an indication of
the accuracy of the calibration. The data points in Fig. 8 are an example of this me:hiod of
calibration applied to the pmt. The units for the y-axis are lumens, and represent the actual,

~————
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not relative intensity. The reason for this is that R was supplied by the manufacturer in
units of amps/lumen.

Fig. 10 shows the calibration data versus radius for the Oricl photodiode described
in section B.2.c. of this chapter. These data were taken over a period of two weeks, with a
temperature variance of +/- 1° C maximum between any two runs. The solid curve is the
integrated relative intensity obtained in Fig. 9. The increased scatter for large bubble sizes
is attributable to two factors. First, the rise-time measurements become more difficult to
make with larger bubbles due to the speed of their ascent. Thus the spread in the value of
R becomes greater. Second, larger bubbles are harder to center in the laser beam, causing
some variance in the value of the intensity. A maximum estimate for the error in a radius
value determined using this calibration is about 9% for large bubbles (R > 80 um), and
about 4% for small (R < 40 um) bubbles.

As an indication of the error introduced by taking calibration data for nonlinearly
oscillating bubbles, Fig. 11 shows <V, (R.1)> for all data sets taken with the Oriel
photodiode. The x-axis is plotted as a ratio of the equilibrium radius to the resonance
radius. This is done to illustrate the fact that one expects deviations due to nonlinearities in
the response to be greatest at the resonances (see the family of resonances in Fig. 1), As

expected, a noticeable variation occurs at Ry/R,,, = (0.5, the second harmonic resonance.
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II. D. Procedure

1. Introduction

This section will describe briefly the procedures used to obtain the data presented in
chapter IIl. In all cases, distilled, filtered (0.1 pm) water was introduced to the cell. A
pre-set height of the water in the cell was maintained, determining the resonance frequency
/. An inital bubble was obtained by increasing the pressure amplitude until cavitation
occurred, and decreasing the pressure until the bubble was siably levitated. The cell was
then tuned, i.e., ,the driving frequency was swept while monitoring the bubble's levitation
position to find the resonance frequency. This was determined as described in 11.C.1. by
minimizing the bubble's position in the z-direction. In this fashion, the resonance
frequency was maintained to within +/- 0.1 kHz for all the data sets.

Using the micropositioners, the levitation cell was moved relative to the laser beam
until the bubble was centered in the beam. This position was determined by monutonng the
maxirrum DC component of V_,,(R.t) on an oscilloscope. With the bubble in the beam

center, the system was ready for data acquisition.

II. D. 2. I(t) curves

Once a record length was established, the bubble was observed until an event or
region of interest was attained. The digitizers were then manually tnggered. typically
(though not aiways) sampling at a rate of 1 Msample/sec, depending of course on the

particular detection system employed. With the RCA photodiode/lens combination, the
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filtered, amplified signal was directly digitized by the KSC system. With the pmt, small-
amplitude oscillz ions were continuously summed and averaged to eliminate random optical
noise, and the averaged signal was stored on the digital oscilloscope. For large-amplitude
oscillations, the pmt output was fed directly into the KSC system. With the Oriel
photodiode, voltages were continvously averaged to uncover the signal bur'ed in the
random electrical noise, then the averaged signal was stored.

The stored V,(R.t) data were input into a program which multiplied the voltage by
@ to obtain /p(R.1). The Ip values were then compared with the contents of a two-
dimensional array containing the pairs (// 1, (R) d8de . R). If Iexpft) matched a tabulated
value, then R(t;) was written. If not, then linear interpolation was performed to find a
suitable R(1;). Analysis and plotting, to be discussed in chapter II1. were then performed.
If the behavior was sufficiently complex, then V,,, was left as a relatve intensity for

analysis.

II. D. 3. Response curves

For the response data, once a suitable bubble was in the beam. then three data
values were recorded: Vi,V mia, and either V,,, or ¢, the rise ume. for determining R,
R was varied in one of two ways. The first, applied if the driving pressure was low and
the gas concentration in the liquid was undersaturated, was to stant with a large bubble and
let it dissolve, taking data as it dissolves. It took approximately 1-2 hours to obtain a range
of data from Ry ~ 80 to Ry = 30 um. The second. applied if the dniving pressure exceeded
the threshold for rectified diffusion [61,67]. was to start with a small bubble and let it

grow towards resonance size. This took about 30 min to | hour. The three voltages were
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then converted to radii using the look-up table described above, and a response measure

(Rmax - Rmin)/2R¢ was plotted against Ry/R, ..
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Chapter 1

Results

A. Radial motion

1. Response curves

To compare with Fig. 1, Fig. 12 plots a family of resonance curves for three
different driving pressures. The discrete points are experimental data, and the solid curves
are numerical results generated using equations (2), (4), and (5) for best-fit pressures of
0.14, 0.2 and 0.24 atm. in ascending order. The data, though sparse. show good
agreement with the theory. The salient feature is the presence of the second harmonic
resonance (corresponding to a response with a frequency component of 2f), which has
been seen indirectly by Crum er al. [25,26,61], but never before measured.

Figs. 13 through 19 show resonance curves for increasing values of the driving
pressure, from 0.12 to 0.24 atm. All show, to a greater or lesser extent, the second
harmonic resonance. For some data sets, notably Figs. 14 and 16, an inexplicable
difference in the height of the peak is seen. Also, Fig. 13 shows an anomalous data point
well above the top of the second harmonic peak. The pnint corresponds to a subharmonic
oscillation of periodicity 2, that is, of basic frequency f/2. where f is the driving frequency.
These differences in data and theory are also seen in the R(1) results of the next section, and

a full attempt at explanation follows in chapter IV.

45
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III. A. 2. R(:) analysis
a. Graphical presentation

The R(t) results are presented in four-part graphs in order to minimize space. The
upper left graph plots the driving pressure P(1). The radius R(1) is plotted in the lower left.
The normalized Fourier power spectrum of R(¢) is plotted in the upper right. The grey-
scale curve in the lower right is referred to as the continuous phase portrait. It depicts the
motion in the classical mechanical phase space (68], assuming that the motion has only a
single degree of freedom, corresponding to the radial coordinate for purely spherical
motion. The discrete points in the lower right comprise the surface of section (14],
sometimes called the Poincaré section, after the pioneering mathematician. For the
particular case of a periodically driven dissipative system, the Poincaré section consists of
those points (R(t = nT), p(t = nT)) in the R-p plane, where n = 0,1,2.3,.. N. T is the
period of the driving pressure, and N is the number of cycles of the driving pressure for
which the operation is to be carried out. Thus, the periadicity of the motion can be deduced
by merely counting the number of discrete points in the section, as long as noise and

transient oscillations are absent.

IN_. A. 2. b, Radial oscillations

Figure 20 is the first in a series of five cxpcn'm{:mal R(t) curves spanning the range

0.4 SRo/R,¢; S 0.67 of the second harmonic resonance for a constant driving pressure and

i, T PPN . W
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frequency. Figures 25-29 show R(t) curves calculated numerically for the same parameters
in Figs. 20-24 for comparison. Figures 30 and 31 show subharmonic responses.

Figure 20 presents the oscillation of a 51.5 um bubble, below the second harmonic
resonance. The amplitude of its response is only about 4%, and the trace is visibly noisy.
This noise is apparent not only in the R(¢) curve, but also in the spectrum and the phase
portrait. For clarity, the section points in Figs. 20-24 were averaged, since it was known g
priori that the periodicity would be 1. Note that even away from the resonance there is a
2nd harmonic component in the spectrum. Figure 21 shows a 61 um bubble, R¥R,,, =
0.47. The pronounced secondary collapse in the R(tj response gives rise to a secondary
loop in the phase portrait, the position of which is sensitive to the relative phase of the 2nd
harmonic component.

As the bubble moves through resonance, the loop will rotate clockwise in the R-p
plane through approximately 180°. This phase shift 1s seen by Crum er al. in their
levitation number studies, and is also predicted theoretically {25.26]. where the phase of
the component goes from 180° to 0°. Likewise, the section point in this region rotates
counterclockwise through approximately 90°. This behavior seems plausible, since linear
oscillation theory predicts a phase change from 0° to 180° as the oscillator is caused to go
through its resonance [70]. Note also that the signal-noise ratio increases for increasing
response.

Figure 22 shows a 64.2 um bubble, oscillating near the peak of the 2nd harmonic
resonance Ro/R,., =0.5. Note the oscillation response has reached a maximum, and the
ffo = 2 spectral line is roughly equal in power to the fundamental. The harmonic loop has
shifted further clockwise. Figures 23 and 24 show bubbles with RyR,.; = 0.54 and 0.67

respectively. The 2nd harmonic component is decreasing as the bubble approaches the
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main resonance, and the loop actually disappears in the phase portrait, although there
remains a spectral component at fifp =2.

Figures 25-29 are the theoretical analogues of Figs. 20-24. The relevant equations
(2), (4), and (S) were integrated to generate R(1). The data sets thus generated were then
analyzed using the same algorithms used on the experimental data sets. In general, the
same features are seen, such as the appearance of the second harmonic response and the
rotation of its loop in the phase plane, and the counterclockwise rotation of the section point
(even though the absolute position of the point is different).

Some differences are apparent, however. First, there is obviously no noise on the
theoretical curves, and it is easier to resolve higher harmonic components in the spectrum
(up to0 fifo = 8). Second, the magnitude of the 2nd harmonic oscillation is noticeably (both
in the spectrum and the phase space) smaller than the experimental values. This same
phenomenon is scen in a different way in Figs. 14 and 16. There. it was the maximum
response at resonance that was underestimated by theory. This is essentially the same
problem as that previously encountered for the 2nd harmonic response in comparing the
results of an carlier theory with data taken by Crum [69]. The theory overestimated the
value of the nonlinear damping in the 2nd harmonic region. It secems apparent that the
current theory, though better accounting for the thermodynamics of the bubble intenor, also
overestimates the nonlinear damping. Certainly, more data of this type need to be taken 10
quantify the discrepancy.

Figures 30 and 31 present subharmonic radial responses for two bubbles with R =
88 um, with the base frequency of the response being /2. Ryp/R,e; = 0.66 for both
bubbles, corresponding to a non-resonant solution for steady-state conditions at the

pressure of 0.25 atm, according to Fig. 1. These figures are a little more difficult 1o
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interpret, since the averaging technique was not employed due to the relatively short period
of existence of the oscillations. Thus, the presence of noise complicates the analysis. The
broad peak at fifp = 2.5 is due to electrical noise. This noise was present in every data set
taken, but averaging reduced the height of the peak to the noise floor of the spectrum, an
indication of the random phase of the origin of the noisc peak. The spectral lines at 1/2, 1,
372, 2, and 5/2 are clearly visible, and relatively sharp, indicating that there is probably
nothing chaotic about R(¢), regardless of the appearance of the R(t) curves. The phase
portraits are smeared over a relatively large region, and the section points also show some
scatter, although it is apparent that the penodicity is two. The smear is most likely due 10
the noise.

The procedure used to obtain these two curves was slightly different than that used
for Figs. 20-24, and bears mentioning. A bubble was obtained, oscillating stably at the
parameter values indicated. The pressure was then incremented slightly (<1%) upwards
until the period-doubling was seen. Typically, the subharmonic oscillation would decay
into the previous singly-periodic oscillation within a few seconds, indicating that the
period-two oscillation was a transient. The pressure was “bumped” in this fashion unul the
subharmonic oscillation lasted approximately 30 seconds (= 6 x 10° cycles. a long-lived
transient!), and then R(r) was digitized and stored. Attempts to get the oscillation o remain
stable for longer periods of time were thwarted by the onset of noticeable shape

oscillations, followed by rapid growth and breakup of the bubble.
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II1. B. Complex motion

1. Introduction

The observation of complicated /(z) behavior necessitated some rethinking about the
best way to analyze and present the data. "Complicated” implies that the /(1) trace exhibits
high or no periodicity, multicomponent and/or broadband spectrum, and may not be the
result of purely radial motion. This complex motion could be "chaotic”, that is, the
complexity is generated via certain universal nonlinear mechanisms from only a few (or
one) degrees of freedom [76,77], or it could be “stochastic”, denving from the
contributions of many degrees of freedom.

The first resort was the FFT calculation to give the power spectrum, some results ot
which are presented in section 2. The spectrum gives information conceming frequency
components, but sheds no light on the source of the spectral lines. Indeed. if interpreted
traditionally, the broadband spectra would require the conclusion of stochastic behavior of
a bubble, where stochastic is defined above. This is contrary to numerical results for
bubble models [29-31,40), which show that just the single radial degree of treedom can
give rise to a broadband spectrum.

The problem was, given a single-variable time series, how could more information
about the underlying dynamics be extracted? In some cases, the methods of phase space
analysis and phase space reconstruction provided some insight into the motion. They are
described in section 3, along with the resuits of the application of the analysis 1o complex
/(1) data sets.
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III. B. 2. Fourier analysis

Figure 32 shows a subharmonic shape oscillation with a basic frequency f/2,
usually referred to as a period-two response. The FFT spectrum looks qualitatively similar
to the subharmonic radial results of Figs. 30 and 31. In fact, nothing in this case (other
than a priori observational knowledge) indicates the presence of shape oscillations. This
and the other graphs that follow are uncalibrated results, and hence the units for relative
intensity are arbitrary.

Figure 33 shows a period-four (f/4 basic frequency; response. Again, since this is
a perfectly reasonable result in terms of the universality of period-doubling cascades in
single degree of freedom systems [76,77], the visual observation of precession is the only
confirmation of the presence of shape oscillations. Interestingly enough, this could belong
to the first period-doubling of the f/2 shape oscillation, although preliminary experiments
indicate that simple period-doubling cascades will be difficult to observe in any case.

Figure 34 shows an oscillation with a strong f//6 component, but also with
numerous intermediate peaks indicating cither chaotic motion or higher dimensional thigher
degree of freedom) behavior, although the motion is still apparently smooth and near-
periodic.

While perhaps not the worst-case scenario, since there was no translational motion,
Fig. 35 does serve as an example of the potential of a bubble 10 exhibit verv complex
dynamical behavior. Not only does the spectrum show broadband behavior, but also the
local maxima discernible seern to bear no relationship to the fundamental. Clearly. nore
information or better analysis of existing information is needed to determine more about the

dynamics.
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As a final spectrum example, Fig. 36 depicts a somewhat less radical departure
from simple periodic motion. Observationally, there was no apparent shape oscillation,
although the pressure was well beyond the theoretical threshold for the onset of shape
oscillations [37]. A dominant 1/2 line is seen, as well as resolution of peaks as high as
fifo = 5. For various reasons, not the least of which was a strong hunch, the data in Fig.
36 provided a good test case for application of methods of phase space analysis, as outlined

in the next section.

III. B. 3. Phase space analysis

Figure 37 plots the continuous phase portrait in the lower nght, and the Poincaré
section in the lower left for the data set (same as Fig. 36) shown at the top. The bounded.
plane-filling nature of the continuous phase portrait make it a good candidate for a strange
attractor [14), but (although there is evidently structure) the plane-filling nature of the
section argues for the consideration of higher modes contnbuting to the motion [78]. The
implication is that, for whatever reason, the 2N-dimensional (V is the number of degrees of
freedom, and the notion of an N-dimensional state space 1s useful here) phase space needed
to describe the motion of the system point is, in this instance. greater than 2. More to the
point, the number of degrees of freedom N needed to descnbe the motion 1s at least greater
than one, and the graphs in Fig. 37 are merely projecticns into a plane of the true attractor
in the full phase space.

The problem then becomes one of eliciting the other independent coordinates when
only one variable has been measured. A powerful method for yielding the intninsic degrees
of freedom has been developed by Grassberger and Procaccia [73] based on a result by
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Takens [74) and Packard er al. [758]. It involves calculation of a "spatial correlation
integral” whose power-law behavior is used to estimate the "correlation dimension” D> of
the attractor, which is usually interpreted as a measure of the effective number of degrees of
freedom of the system. The particular implementation used is a modificaton of the method
of Grassberger and Procaccia due to Theiler [79], and is better equipped to handle
autocorrelated data.

The data to be analyzed are in the form of a time series of relative intensity values
lesplkts). k = 1. ..., N, where the sampling time 1, is typically | ps, and the number of
data points N varied from a minimum of 8192 to a maximum of 16384, For the
reconstruction of the state space, Takens suggested creaung a set of m-dimensional vectors
v, whose components are the time-delayed values of the intensity: vy = {/ 00kt
Loxptkty + T). lexptkty + 2T), .. lexp(kts + (m - 1)T)j  An optimal choice for the ume
delay T is the time 1y of the first zero of the autocorrelation function of the data. This
ensures the independence of the basis (or Takens) vectors v,

For T.m << N. there are almost as many vectors v, as there are data potnts. Thu,.
the temporal dynamical information in the one-dimensional data has been “converted” to
spatial information in the m-dimensional set {79]. Takens proved that the metric properties
of the reconstruction v, in the m-dimensional embedding space are the same as the onginal
(unknown) attracting set in the original phase space of the system generating the time
series. For m sufficiently large, a system possessing a D>-dimensional attractor in 1ts
phase space will have its Takens vectors v; lying on a D;-dimensional subset of the
embedding space &™.

The designation D; indicates that the correlation is not the only dimension-type

measure available for analyzing complex time series. Indeed. D is but one member of an
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infinite-dimensional set D, of averaged, coordinate-invariant numbers termed “generalized
dimensions" {80-82] by which different motions can be distinguished.

To find D;, Grassberger and Procaccia [73] introduce the spatial correlation
integral C(r.N) = I/N? x [the number of pairs (i) for which lv; -v,! < r], where r is the
edge length of an m-dimensional cube. Following Theiler [79], a slightly modified
correlation integral was actually calculated

7 N Na

CUNW)== Z Z (r - Vienve |
=2~ : (25)
where H is the Heaviside step function, and W=/ corresponds to the original Grassberger-
Procaccia formulation [73]. This was cone in order to avoid problems associated with
autocorrelated data. It was necessary because the actual calculations were performed using
an optimized algorithm obtained from Theiler (83], where the delay time T was fixed and
equal to 1. To “decorrelate” the data, W was chosen 1o be > 10.

In the small r limit C = 0, since there will be a non-zero lower bound for the
distances Iv,, -v; . For r large C = | (normalized to N?), since all the computed distances
will be less than r. For sufficiemly large m and N, Cir N W) should scale as a power of r
for intermediate valuesof r : i.e

D,
C(f.N,W)ﬂfr “ (265

C in this case can be thought as some generalized volume of the reconstructed attractor.

hence the interpretation of D; as a dimension.
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Numerical calculations for C were carried on a pair of MS-DOS machines, a Tandy

3000 with a 80286 CPU and a Compaq Deskpro 386 running an 80386 CPU. A typical
calculation of the array (r,C) for N = 16,000, 1 < r < 1200, and m = 20 took 42 hrs on the
Tandy, and 20 hrs on the Compaq. A prototype version is in development for use on the
CYBER 205, which should significantly reduce run-time, which has been a bottleneck in
the data analysis.

To find the scaling region the following procedure is used: C(r.N.W) is calculated
for a large range of r, for some initial guess at m, which is always chosen greater than the
suspected dimension of the attractor. Then In(C(r N.W)) is plotted vs. [n(r), and a slope is
sought for intermediate r. If C scales as eq. (26) suggests. then there should be an
apparent lincar region in the log-log plot, with the slope = D;. If no scaling region is
observed, then m is increased, and the process repeated. until a scaling region is found. If
no scaling region is found, then little can be said about the motion, except that it is probably
high-dimensional.

Figure 38 plots In(C(r.N.W)) vs. {n(r) for the data 1n Figs. 36 and 37, for
| embedding dimensions m = 4,8,12,16, and 20. An obvious linear scaling region is seen
for intermediate 7 for m 2 12. Figure 39 expands the scaling region of Fig. 38. A best-fit
slope was calculated to estimate D for each of the embedding dimensions used. and the
results are shown in Fig. 40 as a function of m. D; levels off at about 3, indicating that at
least 3 independent variables are needed to describe this motion. What these vanables
could be is discussed in chapter IV,

Figure 41 shows a data set similar to Fig. 35, with a broadband spectrum. Figure
42 is a phase space projection of the data. Things are presty messy, and not much can be

said about the motion. Figure 43 shows In(C(7 N,W¥)) vs. In(r) for increasing values of
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the embedding dimension up to m = 30. No scaling region is apparent. From a
comparison of the spectra of the data for Fig. 42 with that for Fig. 38 (where D; ~ 3), a
higher dimension shoud be expected from Fig. 43, since the motion in Fig. 42 contains
more spectral components.

It should be noted that these data sets were not taken with dimension calculations in
mind, and they are certainly not optimal. N is relatively small, and 1, is also too small.
Theoretically, optimal values of N and 1, are N = e, and 1, = T, the period of the driving
pressure. Thus it is not necessarily surprising that some of the data should show a nuli
result. Figs. 44 and 45 show a data set, its spectrum, and the dimensional analysis up to
embedding dimension m = 24. Again, no scaling region appears.

A final phenomenon of interest is the behavior shown in Figs. 46-48. The signal
alternates between a relatively smooth (region A, Fig. 47) oscillation and a more violent.
irregular motion (region B, Fig. 48). Such bursting, or intermittency [82], has been
observed in some other experiments, both numerical and physical (83,84]. and is another
universal phenomenon associated with driven nonlinear systems. Dynamically, the
frequency of the bursting should increase as some parameter (the pressure. for instance)
approaches some critical value. The behavior shown is most probably Pomeau-Manneville
Type [ intermittency, generated by an inverse tangent bifurcation {85], although this is just
speculation without more data to analyze.

ek e PP\ 1
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Chapter [V

Discussion

One of the most striking features of this experiment is the visual appearance of a
bubble in a laser beam. Striking in one sense because there is a perhaps sophomoric appeal
in being able to discern physical phenomena with the naked eye. Stnking in another sense
because of the sheer magnitude of the intensity of the scattered light. [t is easily visible
with the room lights on, and never fails to attract the attention of visitors to the lab.
regardless of their scientific interest (if any) in the research. It seemed at the outset a tnviai
task to detect such copious amounts of light. Such pre-experimental naiveté was soon
replaced by three years of frustrating efforts at balancing the trade-off between signal-
noise, bandwidth, and ease of calibration.

When, with the third detection system, | tinaily gou ail thice icasonably well
balanced, I was understandably, though perhaps a bit prematurely, proud of the results. In
the first blush of excitement, | showed some response curves (Figs. 12-19) to A,
Prosperetti, who has struggled with improving the theory of bubble oscillations for almost
20) years. | won't soon forget his words upon seeing the first experimental response data
ever collected for a radially oscillating bubble: “"Well, that's a bloody mess, isn't it?"

My re-entry was short, and of course the point was well taken; namely, that the data
weren't good enough to distinguish between different bubble models. The reasons for this

imprecision are largely apparatus related. As already noted. the problems with the
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determination of the driving pressure make it difficult to compare the experimental results
with theory.

The independent method for determining R, for calibration puposcs was a rise-time
method, and an error due to reaction time and assumptions made to get a drag iaw easily
give rise to a 3 to 5% error in Ry  However, the fact that the peak response occurred so
close to Ro/R, s = 0.5 lends much credence 1o the method used. Previous reports of ertors
as great as 10% [50,54] for a large range of radii were not borne out by the results of this
study.

Probably the biggest problem was that of the gain-bandwidth product limitation ot
the detector. To obtain a bandwidth of = 100 kHz, | had to live with a signal-noise ratio <
I for small-amplitude, small bubble oscillations. As reported. continuous averaging
eliminated the noise to a large extent. However, the presence of bubble dissolunon or
growth by rectified diffusion could have introduced error in the AC oscillation amplitude as
well as the DC component used to determine R,

Nevertheless, [ am convinced that the amplitude response difference between theory
and experiment, especially near the 2nd harmonic resonance. is real and worth pursuing
further with better electronics. Figures 20-29 show clearly that, even when the overall
response amplitude is matched., the 2nd harmonic component differs signiticantly from the
theoretical prediction. Absolute and relative phase measurements as a function of Ra R,
could provide more insight into the damping, and future plans call for making such
measurements with the aid of a lock-in amplifier.

Somcwhat more intriguing are the subharmonic point in Fig. 13, and the
subharmonic curves of Figs. 30 and 31. The question is, where do these subharmonic

oscillations fit into the resonance scheme? Theoretically, at these amplitudes (see Fig. 1)
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there are not yet any subharmonic or ultraharmonic [18] responses in the region of 0.66 or
0.5, and the main resonance does not appear to have leaned over enough for the oscillations
to belong to the first period-doubling bifurcation off of the main resonance (71]. Also,
there is no large, discrete jump in amplitude, as would be apparent if the pressure
perturbation excited the bubble into the main resonance. Shape oscillations are only a
remote possibility. From expenience, the shape oscillation with a frequency f/2 is the first
10 appear. There is a discrete transition to this type of behavior. much like the jump to the
upper branch of the main resonance would exhibit. However, the scattered intensity from
the shape oscillation has an amplitude one or two orders of magnitude higher than the radial
period-one oscillauon. Furthermore, it precesses. The visual effect 1s that of a lighthouse.
and is immediately discermable. Videos were made of the oscilloscope trace showing the
period-two oscillation appearing and disappearing in a regular fashion, with a definable
period of precession over a short enough time. These subharmonic oscillations have a
much lower amplitude response, and show none of the symptoms of precession.

The most likely explanation for the behavior in Figs. 30 and 31 1 that it s a
transient precursor of a subharmonic resonance that will appear (become stable) at higher
pressure amplitudes ncar Ro/R,., = 0.66, namely. the 3/2 resonance [18). Roughly
speaking, the 3/2 designation means an oscillanion with frequency 1/3 of the bubble's linear
resonance frequency fp and 1/2 of the driving frequency f. In other words, the bubble has
three collapses every period T of the dnving pressure, and repeats its motion every 2T.
Transient oscillations are governed by the interaction of both the stable (non-resonant. in
this case) and unstable (resonant) solutions existing for a given parameter set. and
especially by the direction of the unstable manifold associated with the unstable solution.

since nearby trajectories in phase space will follow this direction [14]). Eventually, this
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unstable manifold becomes the stable manifold of the stable solution, and thus perturbed
trajectories eventually settle back into the available stable steady-state motion.

A generic scenario for the time of the transient oscillation for such a threshold-
dependent phenomenon is given by t, o< (P - P;y) ¥ [72], where 1, is the mean transient
lifetime, P is, in this case, the instantaneous pressure, Py, is the threshold for the stability
of the subharmonic resonance, and a is some constant such that 0 < @ < 1. Thus, the
mean lifetime of the transient increases as P approaches P, This occurs because, as P
approaches P, the stable, non-resonant solution becomes more and more weakly stable,
whereas the resonant solution approaches stability. At Py, the two solutions will, in etfect.
exchange stability. Mathematically speaking, the absolute value of at least one of the
eigenvalues of the lineanized Poincaré mapping of the non-resonant solution 1s approaching
unity, while the converse is true for the resonarnt solution. The stability exchange at P =
P.» occurs via a simple period-doubling (supercritical flip) biturcation {14}, These
observations also apply to the anomalous point in Fig. 13, though it 1s less clear in this case
which unstable resonance the point belongs to.

An interesting analytical treatment of transient subharmonic solutions tor the
Rayleigh-Plesset equation of bubble dynamics can be found in Prosperetu {98]. Using
the Bogoliubov-Krylov method of averaging [99), he showed that the nature of transients
in the region of the first (f/2) subharmonic resnnance is governed by the stable and unstable
singular points in a modified (Amplitude vs. phase of the resonant solution) phase space.
The length of the transients and the eventual final solution state were shown to exhibit. in
his words, a “sensitive” dependence on initial conditions. A schematic picture of the
intertwining of the "domains of attraction” of the different final solutions was presented. It

is perhaps unfortunate that these ideas were not pursued further in the context of bubbie
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oscillations, since it has recently been shown that this intertwining of domains (or "basins”,
to use the standard nomenclature of nonlinear dynamics) of attraction is a universal feature
of all nonlinear dissipative systems possessing multiple stable and unstable solutions [14].
It is precisely this sensitivity to initial conditions which limits the concept of predictability
for the final steady-state, since the basin boundaries in the phase space are not smooth
curves as Prosperetti indicated, but rather fractals [93]. This implies an uncentainty in the
prediction of the steady-state motion which increases exponentially with respect to the finite
imprecision in knowledge of the initial conditions (100,101].

This scenario is even further complicated when the effect of rectified diffusion
{61]. another threshold-dependent phenomenon (whose threshold is slightly exceeded for
these narameters), 1s considered. This results in Ry being a nonlinearly increasing
function of ume. Fortunately. the time-scale for rectified diffusion for these pressures and
near saturation is relatively long, and an estimate for the growth rate is about 0.05 pmy/s
{61]. As acheck for the data in Figs. 30-31, R was measured via the nise-ume technique
before the pressure was bumped and after the period-2 oscillation had decayed. with no
observable difference in Rp. Thus, the dynamical effects will be small, even though
rectified diffusion is a great aid in the experimental procedure, since it allows a more or less
passive method of covering a range of values Ry/R,.,

Perhaps conspicuous by its absence is the ubiquitous period-doubling
(subharmonic) cascade bifurcation culminating in chaos (13,76,77], which has been the
paradigm for nonlinear dynamical systems, and has also been observed not only in singie
bubble numerical models {31], but also in cavitation bubble fields [29.30,48). One
answer is that stcady-state phenor.ena, rather than bifurcation phenomena (which require

varying control parameters and involve transient responses), have been emphasized in this
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experiment. Period-doubled solutions are observed in Figs. 30, 31, and 32-34, but the
latter group contained shape oscillations in the motion, and these observations were made
with both P and Ry/R,,, different for different periodic responses, making the identification
of a smooth bifurcation curve impossible.

The other answer is that bifurcation phenomena, even for a single bubble, are going
to be very complex, since the simple instabilities leading to peniod-doubling in a single
degree of freedom will be overshadowed by instabilities of the radial shape and decoupling
of the internal pressure from the motion of the interface. The decoupling of the pressure
will manifest itself as a series of Hopf bifurcations [90], each bifurcation adding a new
frequency, and hence a new degree of freedom. One interpretation of the results of such
bifurcations is that the bubble will seem to gain one or more “nonlinear resonance
frequencies” f,.

The theoretical evidence for this route to higher dimensionality can be seen in the
fact that the modeling of the thermodynamic behavior of the bubble interior (Chapter I)
involves a partial differential equation. This makes the system, ¢ven ignonng shape
oscillations, infinite dimensional by virtue of the spectral theorem [14.82.90.91]. The
surface oscillation modes will also appear as Hopf-type bifurcations, but with an extra
complication. Since the frequency of the first shape oscillation is /2, its appearance could
be phenomenologically mistaken for a simple period-doubling (flip) bifurcation of the
radial mode.

Thus, the observation of high dimensional behavior of a single bubble in chapter Il
is hardly unexpected. The successive addition of new degrees of freedom is similar to the
Landau picture of turbulence, whereby the broadband spectrum observed in fluid
turbulence was the result of the successive addition of independent degrees of freedom with
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their corresponding frequencies [92]). Complicated behavior, according to this view, was
the result of a large, perhaps infinite number of degrees of freedom in the system, requiring
a doubly-infinite phase space for the description of the state of the system.

Fortunately, one of the great successes of nonlinear dynamical systems theory has
been to show that the dynamics of such technically infinite dimensional systems exhibiting
complex behavior can be described by a finite (usually small) number of degrees of
freedom, contrary to the Landau turbulence scenario. The motion in phase space contracts
onto a low dimensional surface, the "center manifold” [14]). Thus, numerical methods
such as a Galerkin expansion followed by truncation of the number of expansion modes is
guaranteed to yield all physically relevant properties of the true flow. Excellent
experimental examples of such "low-dimensional turbulence” can be found in the fluid
experiments of Sreenivasan and Meneveau [95]. Swinney [96]. and Mairaison et al.
(97], as well as the bubble field work of Lauterborn and Holzfuss [33]. For the present
experiment, we are assured that the number of surface modes that actually contribute to the
dynamics will be small, as will the number of internal pressure modes. because the
nonlinear interaction between the modes will prevent the potentially infinite series of Hopt
bifurcations from occurring. Although the picture of bifurcations just painted is complex. it
is finite and low-dimensional, and therefore tractable.

It is clear, however, that more work needs to be done in the analysis of the complex
/(1) motion. An independent method for determining the presence of shape oscillations
would greatly aid the analysis. One such method would be to place a second photodetector
centered at some angle 6, and then examine the ratio of the two intensities /(6;) / I(6) in

real ime. Precessing shape oscillations would be immediately detected. Additionally., if 6;
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and 6; were not symmetric with respect to the forward scattering direction, even non-
precessing symmetric shape oscillations should be detectable.

In this fashion, the number of modes due to shape oscillations could perhaps be
determined, and compared with D; obtained from the time series to determine the number
of pressure modes active, and thus obtain a useful picture of the full-blown dynamics of
single bubbles. Chaotic motion should be unavoidable, since the nonlinear coupling of
shape oscillations with the radial mode through surface tension and internal pressure will
limit the number of possible independent degrees of freedom, and this mixing is precisely
what is needed for the existence of a low-dimensional strange attractor in the phase space.

That being the case, the question naturally arises: “Are the motions depicted in
Figs. 34 through 48 chaotic?” Unfortunately, the answer at this stage must be: "I don't
know”. Two general criteria for chaos are presented here, representing the two easiest
measures to calculate for a time series. The appearance of a broadband FFT spectrum is a
necessary but not sufficient criterion for chaos -- we're batting 1000). so far. A non-integer
fractal dimensionality d [93) is. strictly speaking, neither necessary nor sufficient, but
merely customary for chaos (one of the most widely studied chaotic attractors, the Lorenz
artractor [94], has d ~ 2). The correlation dimension D3 calculated here is a lower bound
on d, and in practice, the two measures are always within 1 or 2% of each other [80). The
only dimension D; calculated was D; =~ 3, so we are neither helped nor hindered by D; in
identifying chaotic motion.

There do exist quantitative criteria to categorize and charactenize attractors as chaotic
(82). They can be divided into: (a) Metric properties (including the generalized
dimensions D, mentioned in chapter Il ), which give rise to static, geometric invanants

associated with the complex attractor in phase space regardless of its temporal evolution:
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and, (b) Dynamical invariants, such as the Kolmogorov entropy and the Lyapunov
exponents. | plan to carry out calculations of some of these quantities for bubble
oscillations in the near future, to determine whether chaotic motion has been or can be

observed in single bubble oscillations.
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