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Abstract

The modified Cholesky factorization of Gill and Murray plays an important role in optimi-
zation algorithms. Given a symmetric but not necessarily positive definite matrix A, it computes
a Cholesky factorization of A +£, where E=0 if A is safely positive definite, and E is a diagonal
matrix chosen to make A+E positive definite otherwise. The factorization costs only a small
multiple of n? operauons/ more than the standard Cholesky factorization. We present a new algo-
rithm that has tnese same properties, but for which the theoretical bound on [|E []| is substan-
tially smaller. It is based upon two new techniques, the use of Gerschgorin bounds in selecting
the elements of E, and a new way of monitoring positive definiteness. In extensive computa-
tional tests on indefinite matrices, the new factorization virtually always produces smaller values
of [|E || than the existing method, without impairing the conditioning of A+E. In some cases
the improvements are substantial. The new factorization may prove useful in optimization algo-

rithms.




1. Introduction

The modified Cholesky factorization was introduced by Gill and Murray [1974], and subse-
quently refined by Gill, Murray, and Wright [1981]. Given a symmetric, not necessarily positive
definite matrix 4 € R"*, it calculates a Cholesky (i.e. LLT, or equivalently .DLT) factorization
of A+E, where E is Q0 if A is safely positive definite, and £ is a non-negative diagonal matrix for
which A+E is positive definite otherwise. When A is not positive definite, there is an a prior
error bound on how large £ can be as a function of A; the practical intent is that £ not be much

larger than is necessary to make A +E positive definite. The factorization uses only about n2/2
. . . . 3
more operations than the normal Cholesky factorization, which costs approximately %— each

multiplications and additions.

The modified Cholesky factorization has become very important in optimization algo-
rithms. Its primary use is in line search methods for unconstrained optimization, where it is used
to gencrate a descent search direction when the Hessian matrix is not positive definite (see e.g.
Gill, Murray, and Wright [1981]). It is also used in line search methods for constrained optimiza-
tion problems (Gill, Murray, and Wright [1981]), and in some trust region methods (Dennis and

Schnabel [1983)).

This paper presents a new modified Cholesky factorization algorithm that is intended for
the same purposes as the current method. The new algorithm still costs only a small multiple of
n? operations more than the standard Cholesky factorization. It possesses a much smaller a
priori bound on the size of the diagonal matrix E, and in extensive computational tests, || E ||
almost never is larger, and in many cases is ccnsiderably smaller, than that generated by the algo-
rithm of Gill, Murray, and Wright. In fact, when A is not positive definite, |[E |] is usually
close enough to the negative of the smallest eigenvalue of A that the new algorithm may be a

uscfui. inexpensive way to estimate this eigenvalue.




The remainder of this paper is organized as follows. Scction 2 contains a brief summary of
the motivation and uses for the modified Cholesky factorization in optimization algorithms. Sec-
tion 3 summarizes the goals of this factorization and the basic challenges that it presents, and sec-

tion 4 briefly describes the Gill, Murray, and Wright [1981] algorithm.

In Section 5 we present the new algorithm. It contains two main novel features, the usc of
Gerschgorin bounds in determining both the pivot sequence and the elements of E, and a new
two-phase strategy for determining when a matrix is not positive definite and needs to be per-
turbed. In Secticn 6 we present the results of an extensive computational comparison of the
behavior of the new and old factorizations on indefinite test matrices of dimensions 25 to 75.

Section 7 contains some brief conclusions.

Throughout the paper we consider the Cholesky factorization, i.e the factorization into
LLT, where L is lower triangular, as opposed to the LDLT factorization, where L is unit lower
triangular (ones on the diagonal) and D is a positive diagonal matrix. The conclusions of the
paper are true for either factorization. We use the Cholesky because we believe it makes the
exposition simpler. We use the version of the Cholesky factorization that makes a rank one
change to the remaining submatrix at each iteration (analogous to Gaussian elimination), rather
than the version that delays the changes to any element until it is in the pivot column (analogous
to Crout reduction). The use of the first version will be seen in Section 5 to be important to our

algorithm.

An important piece of notation, used throughcut the paper, is that we use A; to denote the
principal submatrix that remairns to be factored at the start of the j# iteration of the factorization.
Thus, A; is an n+1-j X n+1—j matnx, consisting of the valucs that reside in rows and columns j
through n at the st of the j* iteration. For consistency, A is the original matrix A. This

notation 1s expanded in Section 3.




2. The Use of the Modified Cholesky Factorization in Optimization Algorithms

The modified Cholesky factorization was introduced by Gill and Murray [1974] in the con-

text of a line search method for solving the unconstrained optimization problem
minimize f :R*" 5 R .
x € R~

Unconstrained optimization methods generally base each iteraton upon the quadratic model of

f (x) around the current iterate x.
m(xe+d)=f(x)+Vf(x ) d+%d"H . d , 2.1

where H. is the Hessian matrix V2f (x.) or a symmetric approximation to it. If H, is positve
definite, then the step d, = ~H_Vf (x.) is the minimizer of (2.1) and also a descent direction for
£ (x), so that a satisfactory next iterate x, always can be found by choosing x. = x, —A.d. for
some A, > 0. If H, has one or more negative eigenvalues, however, then the model (2.1) is
unbounded below, and the direction d. = -H!Vf (x.) may or may not be a descent direction for
f (x). In this case, Gill and Murray [1974] suggested calculating d, = «(H.+E.)"'Vf (x.) as the
search direction, where H.+E, is positive definite, and again choosing x, = x. — A.d, for some
A. > 0 by a line scarch procedure. By standard convergence results, if |[H, || is uniformly
bounded above, || E. || is bounded above as a function o |{H, ||, and the condition number of
H_.+E. is uniformly bounded above, then the sequence of iterates generated by a standard line
search method that uses such search directions will be globally convergent in the sense that the
limit of the sequence of gradients converges to zero. If E = 0 when H is positive definite, then
the method will also be quadratically convergent in the neighborhood of a strong local minimizer.

(See Dennis and Schnabel {1983] for a summary of these results.)

The algorithm of Gill and Murray [1974] for choosing E, saiisfies all the aforcmentioned

conditions on E.. It also is very efficient in that it calculates either the Cholesky factorization of




H. if it is positive definite, or the Cholesky factorization of H.+E. otherwise, at barely a higher
total cost than a standard Cholesky factorization, without knowing a priori whether A is positive
definite or not. For these reasons, it has become a standard technique in line search methods for
unconstrained optimization problems. The algorithm was refined somewhat subsequent to its
introduction, and a modem version, that has performed very well, is given in Gill, Murray, and

Wright [1981].

The modified Cholesky factorization is also used in some line search methods for solving
constrained optimization problems. Some algorithms for solving such problems also generate a
sequence of unconstrained quadratic models, and if the Hessian of any such model is not positive
definite, the same techniques are applicable. For more details, sce e.g. Gill, Murray, and Wright

[1981].

Some trust region methods for optimization problems also use the modified Cholesky fac-
torization. While we will not elaborate upon these methods here, in some of them it is useful to
have an upper bound on the most negative eigenvalue A; of H., and the norm of the matrix E,
from the modified Cholesky factorization serves this purpose. Dennis and Schnabel [1983] dis-
cuss trust region mecthods that incorporate the modified Cholesky factorization, and Shultz,
Schnabel, and Byrd [1985] show how to construct efficicnt and globally convergent trust region
methods if a satisfactory upper bound on A, is available. The methods described in this paper

produce bounds that are satisfactory in this sense.

Our general reasons for pursuing a new modificd Cholesky factorization algorithm were
given in Section 1 and are elaborated further at the end of Section 4. In addition, from an optimi-
zation perspective, the new method may lead to a new cfficient and simple implementation of

trust region methods. We discuss this possibility briefly in Section 7.




3. Goals and Challenges of the Modified Cholesky Factorization

Given a matrix A € R™* that is symmetric but not necessarily positive definite, the objec-
tive of the modified Cholesky factorization is to construct a Cholesky (LLT) factorization of a
positive definite matrix A+E, where E is a non-negative diagonal matrix. More specifically, the
factorization has the following four goals : 1) If A is safely positive definite, £ should equal O ;
2) If A is indefinite, ||E || should not be much greater than —A;(4), where A;(4) is the most
negative eigenvalue of A; 3) A+E should be a reasonably well conditioned matrnix, and 4) the
cost of the factorization should only be a small multiple of n? operations more than the cost of

the normal Cholesky algorithm.

One obvious way 1o select E would be to find A(A), and, if Aj(4) < 0, let E equal
[-A(A)+ €]/, for some small positive £. This would satisfy the first 3 goals, but the expense of
finding the eigenvalues of a matrix exceeds the cost requirements specified in our final goal by at
least an order of magnitude. Thus the major challenge in developing a modified Cholesky factor-
ization is to satisfy the first 3 goals while not increasing the cost by more than O (n2). Among

other things, this implies that a one pass algorithm is essential.

There is a basic tradeoff in deciding upon the size of each of the diagonal elements of the
matrix E. Let the n+1—j x n+1—j principal submatrix remaining to be factored at the j* itera-

tion, consisting of the current elements in rows j through » ind columns i through n, be denoted

T
%

4,

a )

where o, e R is the current j™ diagonal clement, a;e R™~ is the current vector of elements in
column j below the diagonal, and AﬂjeR""/)"(”‘!’). (We will use the convention that the sub-
scripts of the elements in the vector @; are { = j+1 through n, so that (a;); = A;,, i=j+1, - .n).

Then at the j* iteration, the normal Cholesky factorization algorithm computes L, = vEJ_. L; =




6
(@))/L)j,i=j+1, - ,n,and (assuming the changes to the remaining elements are not deferred)
T
- ia

Q;

In the modified Cholesky factorization, the computations are instead Lj; = voy+d;, L;; =

(aj)"/L”', [=j+l. -+ -,n,and

A A - ajal
where §; is greater than or equal tc zero and is the j** diagonal element of the matrix E. The

tradcoff between making §, large or small leads to the following dilemma. If o, is negative and

8, is chosen so small that o, +8; is barely greater than 0, then (—;1;% will be large, and A}, will
have large negative eigenvalues, implying that the elements of £ in some remaining iterations
will need to be large. On the other hand, if &, is large, then we have alrcady added a large amount
to the diagonal. The challenge lies in adding the appropriate amount to the diagonal of A at the
appropriate time in the algorithm. This requires that the algorithm consider more information
than just the value of &; in chosing 6;. It will be seen in Sections 4 and 5 that considering the

values of @, as well as o is sufficient to produce effective modified Cholesky factorization algo-

rithms in boih theory and practice.

4. The Modified Cholesky Factorization of Gill, Murray, and Wright

Gill, Murray, ard Wright {1981] give a modified Cholesky factorization algorithm that is
designed to satisfy the four goals stated at the start of Section 3. Given a symmetric but not
necessarily positive definite matrix A € R***, it computes an LDLT factorization of a matrix
A+E, where E is a non-negative diagonal matrix. In this section, we briefly review their method.

To be consistent with the remainder of the paper, we restate their algorithm in terms of the




Cholesky (LLT) decomposition. This does not change any of the important propertics of the

algorithm that we discuss.

At each itcration, the algorithm of Gill, Murray, and Wright first selects the maximum (in
absolute value) diagonal element in the remaining principal submatrix A;, and pivots it to the top
left position by interchanging its row and column with the pivot (j**) row and column, respec-

tively. Then, if A; is now the pivoted principal submatrix, with

o; af
A, =7 "4 , 4.1
J {aj A”jl 4.1)
where o is the diagonal element in the pivot column and a; is the remainder of the pivot

column, the elements of the ne> . principal submatrix A, are computed by

a; al

Ajg=A- :
T H;

4.2)

The value of §, at each iteration is chosen to be the smallest non-negative number such that

<
0< |la; |la <B .
(IJ+01

where 3>0 is an a priori bound sclected to minimize a worst case bound on |[E || If ;<0

and this value of 8 is less than —=2¢;, then §; = —2a;; instcad.

What remains to be described is the choice of B. Let § =the maximum magnitude of the
off-diagonal elements of the original matrix A, and y= the maximum magnitude of the diagonal

clements of A. Gill and Murray [1974] produce an error bound on || E |} as a function of B for

their algorithm, and show that it is minimized when B° =&/ Vn?~1. For that choice of B,

[HE |lw<2(Na2-1+(n-1)) & +2y, (4.3)
or roughly
HE [1=<4nl+2y (4.9)

for moderate to large n. However this choice of § may causc positive definitc matrices 4 1o be




perturbed, so the selection of B is adjusted in order to avoid this. Gill and Murray [1974] also
show that the choice B 2 V¥ guarantees that E = 0 for positive definite A. Thus their algorithm
assigns B2 to be the maximum value of ¥, &/ Va2-1, or machine epsilon. If y> &/ Vn2-1, the

usual case, then the error bound for this adjusted P becomes
HE e < (n241)y+2(n=-1)E + Yy, 4.5)

which is larger than (4.3).

The modified Cholesky factorization algorithm of Gill, Murray, and Wright [1981] has pro-
ven to be an effective factorization in the context of optimization algorithms, and as will be seen
in Section 6, does quite a good job of fulfilling the four goals stated at the beginning of Section 3
(The cost of the algorithm is approximately n? comparisons, and O (n) arithmetic operations,
more than the standard Cholesky factorization.) It should be noted that while the diagonal pivot-
ing employed by the alzorithm of Gill, Murray, and Wright does not affcct the analysis described

above, it is very important to its good practical performance.

There appear to us to be two important ways in which the algorithm of Gill, Murray, and
Wright [1981] might still be improved. First, the bounds (4.3) and particularly (4.5), which are
attained by the algorithm for particular matrices A, are far from optimal, as will be discussed in
Section 5. Sccondly, the results of Section 6 show that in practice, the value of ||E || pro-
duced by the algorithin is somectimes many times too large. The new method described in Sec-
tion 5 primarily attempts to improve upon the algorithm of Gill, Murray, and Wright in these two

regards.




5. The New Modified Cholesky Factorization

Our new modified Cholesky factorization algorithm incorporates two main new techniques.
The first involves using Gerschgorin Circle Theorem bounds to determine the elements in the
non-ncgauve diagonal matrix £ that is added 1o an indefinite matrix A in order to make it posi-
tive definite. The second is a new technique for assuring that one does not perturb an already
positive definite matrix, i.e. that E=0if A is positive definite. In Section 5.1 we describe the
new technique that uses Gerschgorin bounds to decide how much to add to the diagonal, and
show that it leads to an improved upper bound on || E ||~ In Section 5.2 we describe the new
technique for assuring that a positive definite matrix is not perturbed, and show that unlike the
stratcgy of Gill, Murray, and Wright [1981], it can be incorporated into a modified Cholesky
decomposition algorithm without causing the bound on || £ || to grow significantly. In Sec-
tion 5.3 we describe our full new algonithm, which integrates these two techniques, discuss its
theoretical propertics, and give a simple example comparing it to the method of Gill, Murray, and

Wright [1981].

5.1 Using Gerschgorin Circle Theorem bounds to determine the amounts to add to the

diagonal

In this scction, we introduce our basic strategy for choosing a non-negative diagonal matrix
E such that A+E is positive semi-definite. (The exposition and theory are cleaner if we allow the
possibility that A +E is positive semi-definite; the changes to assure that it is stricly positive
definite are small in practice and theory, and are described in Section 5.3.) The strategy described
in this section may result in £ having some positive elements even if A is positive definite; the

modifications we make to avoid this are described in Section 5.2.

The Gerschgorin Circle Theorem states that if A € R**” is a symmetric matrix with eigen-

values A;< - €A, theneach Ay € (GWGoL - - UG, ), where
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.3 n
C, = A - Aiil VA + A; Q[GIOW',GU ;] ,i=1,--,n
L j; I j 1; I _/l ] i D (5]1)
J# J®
Thus, since A —Ay/ is positive semi-definite, an upper bound on the amount that must be added to
the diagonal of A to make A +£ positive semi-definite is

Maxadd -GCT 2 max {0, -Glow;} . (5.1.2)

An objective of the ncw modified Cholesky factorization is to find E for which A+E is positive

semi-definite and for which we can guarantee
[1E |le £ Maxadd-GCT , (5.1.3)

at least in the case when we are not concerned about perturbing a positive definite matrix. This
bound is easily achieved as indicated by the following lemma and theorem. Note that since,

using the notation of Section 4,
Maxadd-GCT £ y+(n-1)§ , (5.1.4)

(5.1.3) is guaranteed to be stronger than (4.3).

Lemma 5.1.1. Let A € R"** have the Gerschgorin Circle Theorem bounds G;, i=1, - - -, n given

T - - - T
in (5.1.1). Denote A = {g‘ ‘f{] . where 0eR, aeR™™, A e RO-IXA-D Let A = A - &4

o+d
have Gerschgorin Circle Theorem bounds G;, i=2, - - - ,n, where
Gi=1Au=- 3 18,1 A+ 314,11 & (Glow, .Gupi) , i =2,
Ja 1

Then if

d2max{0, |lal|~-a} , (5.1.5)

Proof. Note that (5.1.5) guarantees a+06 2 0, with equality possible only if a=0. If a=0, we may




11

assume that we set A = A so that the lemma is trivially true. For the remainder of the proof, we

assume a+d > 0.

Let us again use the convention that the subscripts of the vector a are i = 2 through n, so

that g, = A;,,i=2, - - - ,n. Then we have

Cof A ala; .
rowi of A = rowi of A -WS‘- ,i=2.n .

Thus
& 1 3 N (lally=1la;1) |a;|
L& Al g Mg TS oz - (5.16)
VES i
Also,
Ay —Ai = a‘% . (5.1.7)

Combining (5.1.6) and (5.1.7), recalling that the term A;; = g; is present in G; but not in G;, and

using 82 [la ||~ =~Glow,, we get

[la fhlail
l_.

Glow; - Glow; 2 |a; =

= Lol @+ -llann) = 4L G+6iowy 20,
i =2, -+, n. Similar calculations show that

Eup‘._Gup‘- < —%%—(54"6[0%’14‘2'01'[) <0.

Thus G, <G;. O

Lemma (5.1.1) shows that the choice (5.1.5) causes the Gerschgorin intervals to contract.
Thus it is almost immediate that if we make this choice with equality at each iteration of the

modificd Cholesky factorization, we will satisfy (5.1.3).
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Theorem 5.1.2. Let A € R*** have the Gerschgorin Circle Theorem bounds (5.1.1), and let
Maxadd-GCT be defined by (5.1.2). Suppose that at each iteration of the modified Cholesky

factorization, the remaining principal submatrix 4; € R **+1=/>(+1)) i given by (4.1), (4 1=4 ),
6j = max{O. Ha,- Ih-a,-] , (5.1.8)

and A;,; € R/~ is calculated by (4.2). Let E = diag{d,, - --,5,). Then A+E is positive
semi-definite and (5.1.3) is true. Furthermore, if any diagonal pivoting strategy is used at each

iteration (i.e. rows and columns { and j are swapped for some { > ), (5.1.3) remains true.

Proof. The proof is almost immediate from Lemma 5.1.1. Let (G/);, i=j,- - - ,n denote the Ger-
schgorin interval obtained from row i of A;, and let (G/low ); denote the lower bound of (G/);.

From Lemma 3.1.1, the choice (5.1.8) assures that
(G/*Mlow); < (Gl low); , 1Sj<i<n . (5.1.9)
From (5.1.8), (5.1.9), and (5.1.2),
8; <~(G/low); £ -Glow; < Maxadd-GCT .

This completes the proof of the first part of the theorem. Since diagonal pivoting of a symmetric
matrix only permutes its Gerschgorin intervals but does not alter them, and since Lemma 5.1.1
and the above part of this proof make no use of the ordering of the Gerschgorin intervals, the

theorem is unaffected by any diagonal pivoting strategy. O

Our algorithm makes one further modification to the strategy (5.1.8) for selecting ;. It is
that we require the amount that is added to the diagonal at iteration j to be at least as great as the
greatest amount that has been added to the diagonal at any previous iteration. That is,

o; = max{0, |la; |~ 81} . (5.1.10)

It is straightforward that Theorem 5.1.2 remains true with (5.1.10} in place of (5.1.8), because by

induction this choice stll satisfies (5.1.3), and trivially it still satisfies (5.1.5).
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The rationale for this modification is as follows. At any iteration, suppose §; given by
(5.1.10) is larger than that given by (5.1.8) i.e. max{0, |la; | |1—o;} < 8;_1. Then the new
choice (5.1.10) doesn’t change the value of ||E || at this point in the algorithm, because 8,- =
3;-1. It may cause subsequent values of §; to be smaller, however, because it results in a larger
aj+8, and hence a smaller multiple of aja,T is subtracted from A',-. which means that 4;,, has
larger or identical eigenvalues than it would have using (5.1.8). This reasoning does not imply
that the final value of || E || will be smaller using (5.1.10) than using (5.1.8), but it makes this
seem likely, and in practice the modification appears to be helpful in some cases and virtually

never harmful.

The total additional work required by the modifications to the Cholesky factorization
described so far in this section is approximately n2/2 additions, for the computation of | laj |11 at
each iteration. In comparison, the additional work for the algorithm of Gill, Murray, and Wright

[1981] is approximately n%2 comparisons, because it computes ||4; | | .

Finally, as noted in Section 4, it is imporant in practice to use a diagonal pivoting strategy,
even though it does not affect the theoretical results given above. We could simply pivot based
on the maximum diagonal element, as is done by Gill, Murray, and Wright {1981]. However,
recall that the amount we add to the diagonal at iteration j will be at least the negative of the
lower Gerschgorin bound of the pivot row for that iteration. This suggests that we instead select
as pivot row (and column) the row (and column) for which the lower limit of the Gerschgorin
interval is largest. If this Gerschgorin bound is positive, then we will not increase ||E || at this

iteration, and the Gerschgorin intervals will contract.

This pivoting strategy assumes that the Gerschgorin bounds for each remaining row are
available at cach iteration. This would require a total of approximately n3/2 additional additions,
which is too high. An altemative is to pivot based on the estimates of the Gerschgorin bounds

that result from the proof of Lemma 5.1.1. If we let (g/); denote the estimate of the lower bound
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of the Gerschgorin interval of row i of A;, then from the proof of Lemma (5.1.1),

i+1y. = (pJ 3. Ila; Il i1
@/ =@l + [(a;)i | {I—Eisj—l} , i=j+1, N

For the entire algorithm, this requires approximately n%/2 each additional multiplications and
additions. To begin this process, the Gerschgorin bounds of the original matrix A must be calcu-
lated, which costs an additional n? additions. Thus the total costs of the modifications to the

Cholesky factorization discussed in the section are 2n2 additions and n2/2 multiplications.

We should mention that the strategy for preserving positive definiteness that we discuss in

Section 5.2 will often cause the additional costs given in this section to be reduced considerably.

5.2 The Strategy for Not Perturbing Positive Definite Matrices

In this section we introduce our strategy for assuring that our modified Cholesky decompo-
sition does not perturb an already positive definite matrix, while still guaranteeing that if the
matrix is not positive definite, then the amount that is added to the diagonal is not too large. The
strategy is quite simple. We divide our decomposition algorithm into two phases. In the first
phase, we apply the standard Cholesky decomposition (the version described in Section 3 where
we make a rank-one modification to the remaining submatrix at each iteration) for k£ 20 iterations,
stopping at the first occasion that the next, £+1% iteration would cause any diagonal element in
the next remaining submatrix A, to become non-positive. At this point we know that the
current submatrix A,,;, as well as the original matrix A, is not positive definite. We then switch
to the second phase, where we apply the modified Cholesky decomposition algorithm described

in Section 5.1 for the remaining n— iterations of the decomposition.

If the original matrix A is numerically positive definite, then this strategy results in the nor-
mal Cholesky decomposition being performed throughout. If A is not positive definite, then this

stratcgy results in the nomal Cholesky decomposition being performed for k € [0,n-2]
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iterations,

followed by the application of the modified Cholesky decomposition to A, which results in the
Cholesky decomposition of Ag,;+E for some non-negative diagonal matrix £. The overall result
is the Cholesky decomposition of A +E, where E is E augmented with zeroes in the first £ diago-

nal positions (modulo pivoting).

The crucial question is "how large is | |If || and hence |]E ||&?". Section 5.1 gives a
bound for | IE | | - that depends on the sizes of the elements of A.,;. In Theorem 5.2.1, we show
that our two-phase strategy assures that no element in A,y has grown by more than the value of
the largest diagonal element element in A. This in tumm means that our decomposition still

achieves a good bound on || E || in terms of the original matrix A .

Theorem 5.2.1. Let A e R, and let Y = max
{l1Ai 1., 1si<sn},E=max{]A;|,1<i<j<n}. Suppose we perform the standard Chole-
sky decomposition as described in Section 3 for & 21 iterations, yielding the remaining principal

submatrix Az € R *~%)x(=4) (whose elements are denoted (Ax+1);; . k+1<i,j <n), and let y=
max (] (Agspi | k+1Si<n )andE=max { | (Aes))y |, k+1<i<j<n}.  Then if

(AgsD)u 20,k +1<i <n, theny<yand E<E+7.

T

,where B e R** ,C e Rr-b)xk | g R(r-k)x(n=k)  After k itcrations

BC
Proof: Let A = CF

of the Cholesky factorization, the first & columns of the Cholesky factor L have been detcrmined;

denote them by L{'J where L e R¥*k is triangular and M € R %)%k Then

B=LLT,C=MLT ,andF =M MT +A;.,. (5.2.1)
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From (5.2.1), F; = || M,on; sz +(Ag+1)i » k+1<i <n , so that from Fj; <vand (Ag4)i 20,
| Myowi 11225 y. (5.2.2)
Thus for any off-diagonal element of A4, (5.2.1), (5.2.2) and the definition of § imply

(Ak+1)ij < Fij _(Mrow i)(Mrawj)T S§+Y (523)

which shows é< E+v. Also for all the diagonal elements of Ay, (Axe1)ii 20, (5.2.1) and the

definition of yimply
0<(Ap+1)i SF; <v. (5.2.4)

which shows ¥ < v and completes the proof. [

We note that the result of Theorem 5.2.1 is independent of the diagonal pivoting strategy
that is used. We also note, however, that the technique of proof of Theorem 5.2.1 actually shows
that the largest off-diagonal element in A, is at most equal to the largest off-diagonal in F plus
the largest diagonal in F, where F, as defined in the proof of Theorem 5.2.1, is the diagonal sub-
matrix of A that corresponds to A,.;. Thus a pivoting strategy that uses the larger diagonal ele-
ments as pivots in the first phase will limit the growth in the off-diagonal of A;,; even more than
is indicated by Theorem 5.7 *. Our phase one algorithm pivots the largest remaining diagonal

element to the top, and thus is likely to have this effect of further limiting element growth.

The possibility of incorporating this two-phase strategy into the method of Gill, Murray,

and Wright [1981] is discussed in the next section.
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5.3 The Complete New Algorithm

We have now presented all the main parts of our new modified Cholesky decomposition
algorithm. An oudine of the complete algorithm is given in Algorithm 5.3.1, and a fully detailed
description is given in Appendix I. To summarize, the first phase of the algorithm applies the
standard Cholesky decomposition, using a diagonal pivoting strategy that pivots the largest
remaiining diagonal element to the top left. This phase ends when the next iteration of the stan-
dard Cholesky decomposition would cause any diagonal element in the remaining submatrix to
become non-positive. In the second phase, the modified Cholesky decomposition described in
Section 5.1 is applied to the remaining submatrix. This phase determines what to add to the diag-
onal at each iteration from the lower Gerschgorin bound of the pivot row, and pivots based upon

estimates of these lower Gerschgorin bounds.

Three additional, relatively minor features have been incorperaied into Algorithm 5.3.1 to
guard against the resultant A +E being singular or very ill-conditioned. First, the switch to phase
iwo 1s made when any diagonal element of the remaining submatrix would become less than T,
rather than less than zero as is discussed in Section 5.2. Here ¥ is again the maximum diagonal of
A, and tis a small constant (we choose T = (macheps)!). This means we may perturb a positive
definite matrix if its condition number is greater than 1/t. Second, in phase two, to assure that
A+E is positive definite rather than positive semi-definite, we set (using the notation of Section

S5.1) each
8, =max (0, —o; +max{ [fa; [ 11,77}, 8;-}
where the T term is new. This causes the bound (5.1.3) on }{E || to increase a tiny bit, to
HE |lo € Maxadd-GCT + 1Y . (5.3.1)

but in conjunction with the preceding change, allows us to bound the condition number of A +£.
Finally, at the final itcration of phase two, when only a 2x2 submatrix A, ..} remains, we use a dif-

ferent strategy : we calculate the eigenvalues A, and Ap of A,-y, and if Ay, < Tmax {An .Y}, wWe
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Algorithm 5.3.1 -- Modified Cholesky Decomposition

Given A € R**" symmetric and 1 (e.g. T= {macheps)!?),
find factorizaton L LT of A+E , E 20

Y= max [As | 5 j=1
(* Phase One, A potentially positive definite *)
While j <n do
Pivot on maximum diagonal of remaining submatrix
2

. Aif
Ifjgy;n& {Ai 7/”_— } <ty
then go to Phase Two
clse perform j* iteration of standard Cholesky factorization and increment j
(* Phase Two, A not positive definite *)
k :=j =1 (* k =number of iterations performed in Phase One *)
Calculate lower Gerschgorin bounds of A,
Forj :=k+lton-2do
Pivot on maximum lower Gerschgorin bound estimate
Calculate E;; and add to A
(* Ejj =min{ 0.—Ajj +max { i-;l | Ajj Ty}, Ej_1’j_1 }*)
update Gerschgorin bound estimates
perform j* iteration of factorization
complete factorization of final 2x2 submatrix using its eigenvalues

choose 8,-; so that the /5 condition number of A,_;+8/ = 1/1 (we also require A;, +8,_; 2 T7).

This generally gives a smaller value of §,-; than the Gerschgorin circle theorem based strategy

would, and in theory it is straightforward to show that
[8n-1] S =g + IL-—I (Ani =hio) € Maxadd-GCT + % Y (5.3.2)
since =&, < Maxadd—GCT and Ap; =X, <2 (Maxadd-GCT +7).

The theoretical properties of our full algorithm are summarized in Theorem 5.3.2.

Theorem 5.3.2. Lct A, v, and € be defined as in Theorem 5.2.1, suppose we apply the modified
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Cholesky factorization algorithm in Appendix I to A, resulting in the factorization LLTof A+E.
If A is positive definite and at each iteration, Lj; 221v, then E =0. Otherwise, £ is a non-

negative diagonal matrix, with
| E =< Gersch + Tz—lf (Gersch +7) (5.3.3)

where Gersch is the maximum of the negative of the lower Gerscheznn bounds of A, that are

calculated at the start of Phase Two. If k=0 then
Gersch = Maxadd—GCT <y+(n-1)§ (5.3.4)
where Maxadd ~GCT is given by (5.1.1-2), otherwise
Gersch < [n —(k+1)] (Y+&). (5.3.5)

Proof: Immediate from Theorem 5.1.2, Theorem 5.2.1, and equations (5.3.1-2). [

It is also possible to produce an upper bound on the condition number of A +E, of the same
sort that is provable for the Gill, Murray, and Wright [1981] algorithm. The key properties
needed for this are that | |E ||, and hence max{L;; }, is bounded above, that min{L;; } is bounded
below (by wcc_*}), and that |L;; | <L;; forall 1j<i<n. (The final property comes from diagonal
pivoting and the look-ahead property in phase one, and from the Gerschgorin bound strategy for
choosing &, in phase two.) The bound on the condition number that one can obtain is of mainly
theoretical interest, since it is exponential in n; the computational results of Section 6 show that

the condition number of A is bounded above by about 1/7 in practice.

We note that our two phase strategy could also be incorporated into the method of Gill,
Murray, and Wright [1981], and that this would result in a significant improvement in their upper
bound on {|E ||.. This could be done by using the same two phase structure, and replacing our
phase two by their modified Cholesky decomposition. If this were done, their algorithm could

——

simply choose B2 = £ V(n—k)2-1 in phase two, rather than the maximum of this quantity and y

(where i and { are defined as in Theorem 5.2.2) because it would know that it is dealing with a

-
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non-positive definite matrix. Hence the resultant method would achieve the bounds (4.3-4) if it

switched to phase two immediately, and
IIE [lw S 4(n=k)§+27 S 4(n-k) G+Y) +27

otherwise. This would be a significant improvement over the current bound (4.5), although it is

still inferior to (5.3.3-5).

Our new algorithm meets our goal of not significantly increasing the cost of the standard
Cholesky decomposition, which is about n3/6 each additions and multiplications. The additional
costs of the modificd factorization are (n—k)? additions to calculate the Gerschgorin bounds of
Ag,p at the start of phase two, (where & is the number of iterations performed in phase one),
(n—k)*/2 additions to calculate the /, norms of the pivot rows during phase two, and at most
(n—k)*2 each multiplications and additions to update the Gerschgorin bounds during phase two.
In addition there is a small multiple of n—k additional work. (The strategy for precalculating the
new diagonal during phase one, in order when to determine when to switch to phase two, only
costs a small multiple of n operations as long as the precalculated values are stored and used
when phase one is continued.) Thus the total additional cost of the modified Cholesky decompo-
sition at most 2n? additions and n%2 multiplications, in the case when phase two is started
immediately (k=0). In many cases in our experience, & is close to n so the additional costs arc

very small.

Finally, we include a small example to demonstrate the performance of the new modified

Cholesky algorithm. Consider the matrix used by Gill, Murray, and Wright [1981] to illustrate

112
A= 1 )
231

Our ncw algorithm will procced as follows. At the first itcration, no pivoting is performed in

their modificd Cholesky factorization,

"

phase one, and then the algorithm immediately switches to phase 2 because A 33 — ﬁﬂ < 0. The
1
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Gerschgorin intervals of A are
[-2,4],[-3,5] and [-4, 6] .

The row with the maximum lower Gerschgorin bound is also row 1, so no pivoting is required in
this iteration for phase 2 either. The modified Cholesky algorithm then choses =2 = -(Ger-

schgorin lower bound of row 1), and after the elimination step,

23 73
A= [5/3 —1/3] :
and the estimated Gerschgorin bounds are unchanged. The algorithm now enters the final, 2x2

submatrix stage. The eigenvalues of A, are (-2.2196, 2.5538), so that &, =2.2196 and droral

=2.2196. Thus for the new algonithm,

E

and !||E |].=2.22. Thisis 1% greater than the most negative eigenvalue of A which is -2.2109.
(If we had continued the Gerschgorin strategy for A, rather than use the eigenvalue strategy, &-

would be 2.67)

Using the same matrix A, the Gill, Murray and Wright algorithm computes

277 1
E = 5.01 .
{ 2.24]

with ||1E ||»=5.01.




6. Computational Results

We have compared the performance of our new modified Cholesky factorization (Algo-
rithm 5.3.1 and Appendix I) to the algorithm of Gill, Murray and Wright [1981] on a number of
indefinite test matrices. The measures we used to assess the performance of the algorithms are the
ratios ||E |le/ |A1(A)], termed relative maxadd, which reflect how well the algorithm has
satisfied the goal of adding as little as possible to the diagonal of A, and the condition numbers of
A+E. We alrcady know that the other two goals stated at the beginning of Section 3, low cost

and not disturbing safely positive definite matrices, are satisfied by both algorithms.

We tested both algorithms on matrices of dimension 25, 50 and 75, with eigenvalue ranges
of {-1,10000], [-1, 1], and [-10000, —1]. For each combination of dimension and eigenvalue
range, 10 matrices were creatcd. Thus (the same) 90 test problems that were used to test each
algorithm. Each test matrix was created by forming the product Q10203D (21Q:Q3)T, where

each O, is a Houscholder matrix of the torm

:
_— 2 T
["I- . . ’

Q {llwnzww}

and cach component of each w is randomly generated from a uniform distribution in the range
[-1, 1]. Each D is a diagonal matrix whose elements were randomly generated from a uniform
distnbution in the desired eigenvalue range, with the exception that for the set of test matrices
with cigenvalue range [-1, 10000], one element of D was generated from the range [—1, 0], thus

guarantceing at least onc negative cigenvalue in the test matr zes of that range.

The relative maxadds for the 90 tests of each algorithm are shown in Figures 1A,C.E.
2A.CE and 3A.C.E in Appendix II. In summary, the relative maxadds for the new algorithm
were always small. and sometimes considerably supcrior to those for the Gill, Murray, and

Wrnight algorithm, although this algorithm's performance was also good in most cases. The
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relative maxadds for the new algorithm ranged from 1.06 to 2.5, and was below 1.71 for all but §
of the 90 cases. The relative maxadds for the Gill, Murray, and Wright aigonthm ranged from
1.6 to 77.8, distributed as follows among the various groups of test matrices. For the matrices
with eigenvalues in the [-1, 10000] range, the relative maxadds ranged from 2.1 to 5.6. In the
{=1, 1] eigenvalue range, the relative maxadds wecre in the range 4.9 to 77.8, and in the final
[-10000, ~1] eigenvalue range the relative maxadds ranged from 1.6 to 5.1. Comparing on a
problem by problem basis, the new algorithm performed from 3.5 to 60.9 times better than the
Gill, Murray and Wright method in terms of the relative maxadd for the problems with the [-1,1]

eigenvalue range, and from 1.3 10 4.2 times better for the remaining test cases.

Figurcs 4A-41 show the relative maxadds for the new algorithm only, to illustrate more
clearly the how close ||E || is to Aj(A) for this method. Also inciuded in Figures 4A-4[ are
the results for a version of the new algorithm that differs only in that bases its pivots at each itera-
tion of phase two upon the actual Gerschgorin bounds rather than their estimates. The additional
cost of calculating these bounds is about (n—k )33, or at most n3/3, additional additions. The
results in Figure 4 show that pivoting on the exact Gerschgorin bounds leads to some improve-
ment in the size of relative maxadd, but we do not consider the improvements sufficient to war-

rant the extra cost in general.

The condition numbers of A+E for the two methods are given in Figurcs 1B,D,F, 2B,D,F
and 3B.D/F in Appendix II. Basically, both methods produced acceptably conditioned matrices
in all cases. The conditions numbers for the matrices produced by the new method varied from
10! 1o 10%, whereas the condition numbers for the Gill, Murray and Wright method varied from
10! 1o 108, The condition numbers for the new method are sometimes directly related to the final
step of the algorithm, which, if it increases ||E ||., does so by the amount necessary to make
the final 2x2 submatrix positive definite with condition number 1. In our test cascs, the tolerance
T was (macheps )'3, or roughly 10752 on the Sun 3/75 used for these tests. This accounts for the

condition numbers of almost 10° in all the cases where the final step increased [[E |]o.
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Decreasing this tolcrance gencrally was found to decrease the condition number, usually without

appreciably increasing || E || .

Interestingly, in the cases where the new algorithm produced the most significant improve-
ments in relarive maxadds , the test problems with the [-1, 1] eigenvalue range, it also produced
much better conditioned matrices than the Gill, Murray, and Wright algorithm. For this test set,
the ratios of the Gill, Murray and Wright condition numbers to the condition numbers of the new
algorithm were between 102 and 104 for n = 25, between 10% and 10° for n = 50, and between 105
and 107 for n = 75. For the other two eigenvalue ranges, the ratios of the condition numbers pro-
duced by the two algorithms all varied by at most 2 orders of magnitude, with the condition
numbers for the new algorithm consistently higher for the test problems in the [-1, 10000] eigen-
value range, and the Gill, Murray and Wright condition numbers usually higher for the test prob-

lems in the [-10000, —1] range.

Finally, Figures SA,B in Appendix II contain the test results for a different set of matrices
of dimension n =25 with eigenvalue range [-1, 10000). The difference between these test
matrices and the ones used in figures 1A,B is that these matrices were created to have at least 3
negative eigenvalues, whereas the original test problems in the [-1, 10000] range were created
with at least 1 negative cigenvalue. What is interesting about the results of this new test set is
that on one particular matrix out of the 10, the new algorithm performs significantly worse than
the Gill, Murray and Wright algorithm. (This phenomenon did nor occur with the test sets of size
50 or 75 in this range with 3 negative eigenvalues, so we have not included this data). The poor
behavior occurred when the algorithm was at the (n—4)* iteration, so we created a 4x4 matrix

with similar characteristics that illustrates the problem even more markedly

The matrix
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1890.3 -1705.6 -315.8 3000.31
-1705.6 1538.3 2849 -=2706.6
-3158 2849 525 -5012
3000.3 -2706.6 -501.2 4760.8

- P

has eigenvalues -0.378, -0.343, -0.248, and 8242.869. The first few steps performed by the new

algorithm are as follows:

1. Interchange row and column 4 with row and column 1, because A 4 4 is the maximum diagonal

element.

2. Switch to phase 2 because A3 3 — %—% <0.

3. Calculate the lower Gerschgorin bounds {-1447.3, -3158.8, -1049.4, -3131.4}, and since

—Glows is the maximum value, interchange row and column 3 with row and column 1.
4. Add (-Glowpivorow ) = 1049410 Ay ;.

At this point in the computaton, the new algorithm has already added much more to the
diagonal than is necessary to make A positive definite. From this point on it doesn't increase
I1E |]e, so that the final value of ||E ||« is 1049.4. On the other hand, the Gill, Murray, and
Wright algorithm produces ||E || = 1.01. This behavior occurs because, at the first iteration,
the Gill, Murray, and Wright algorithm pivots on the maximum diagonal element and then adds
nothing to the diagonal, which after elimination results in a 3x3 submatrix all of whose entries
have absolute value less than 0.52. This is guaranteed to then lead to a small ||E ||.. (Indeed,
if our algorithm performed the same first step as the Gill, Murray, Wright algorithm and then pro-

ceeded as usual, it would produce ||E || =0.665.)

The essential characteristic of this example is that A is equal to a large symmetric rank one
matrix plus a smali indefinite matrix. Thus, if nothing is added to A ;; at the first iteration, the
remaining submatrix after the elimination has very small elements, and ||E || is small. The

Gill, Murray, and Wright algorithm will usually outperform ours on matrices of this type. We
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have experimented with modifications to our algorithm that perform well for this case, but all of
them resulted in degradation of our algorithm’s performance in other cases. Since the case only
occurred once in the 120 test cases discussed in this section, we would hope that it is not common

in practice.

7. Conclusions

We have presented a new modified Cholesky factorization algorithm that does a good job
of meeting the objeciives outlined at the start of Section 3. It is based upon two new techniques,
the use of Gerschgorin circle theorem bounds to decide how much to add to the diagonal, and the
use of a two phase structure to differentiate between positive definite and non-positive definite
matrices. Given a symmetric matrix A, the factorization produces a Cholesky factorization of a
positive definite matrix A+E. Its cost is at most 2n2 additions and n%/2 multiplications more
than the standard Cholesky factorization, and it does not perturb safely positive definite matrices
A. Its theoretical bound on ||E |] is a factor of n lower than for the Gill, Murray, and Wright
(1981] method. In computational tests on non-positive definite matrices, it virtually always pro-
duces a smaller |[E || than the method of Gill, Murray, and Wright, and the conditioning of
A+E is always quite acceptable. On the class of test problems where the Gill, Murray, and
Wright algorithm had t.e most difficulty, those with eigenvalue range [-1,1], the decreases in

}1E 1| and in the condition number of A +E are both substantial.

We have not tested the effect of substituting our new modified Cholesky factorization for
that of Gill, Murray, and Wright in optimization algorithms. The most common optimization test
problems have small 7 and few if any indefinite iterations, so probably there would be little effect
on these. The new algorithm might make a difference on problems where n is larger and there is

some indefiniteness. In our opinion, the biggest advantage of the new method for optimization
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purposes is its improved theoretical bound on |[£ || and the corresponding reduction in || £ ||
that has been observed in practice. These properties guard against overflows during the factoriza-

tion, and against steps (A +E )1V (x) that are far too small.

In addition, the new algorithm leads to an easy implementation of trust region methods for
optnizanon, because || £ || is generally within a facior of 1.5 of the smallest eigenvalue 2:(A)
of A. By first calculating E, then replacing A with A+( | E ||)I if E+#0, and then using the trust
region method for positive definite matrices, one will usually get the solution to the exact, possi-
bly indefinite trust region problem without using any other special provisions for dealing with
non-posiiive definite matrices. We have alrcady used the factorization successfully in this con-
text. If there are other computational algorithms where a crude estimate of the most negative
eigenvalue of a matrix is useful, either by itself or as a starting estimate of some iterative pro-

cedure, then this factorization may provide a good way to find it.

Acknowledgement

We than Eric Van Vleck for performing the early computational experiments with the new
method.




28

8. References

J. E. Dennis Jr. and R. B. Schnabel [1983], Nwmerical Methods for Nonlinear Equations and
Unconstrained Optimization, Prentice-Hall, Englewood Cliffs, New Jersey.

P. E. Gill and W. Murray [1974], "Newton-type methods for unconstrained and linearly con-
strained optimization", Mathematical Programming 28, pp. 311-350.

P. E. Gill, W. Murray, and M. H. Wright [1981], Practical Optimization, Academic Press, Lon-
don.

G. A. Shultz, R. B. Schnabel, and R. H. Byrd [1985], "A family of trust region based algorithms
for unconstrained minimization with strong global convergence properties”, SIAM Journal on
Numerical Analysis,22, pp. 47-67.




29

Appendix I -- Complete Modified Cholesky Decomposition Algorithm

Given A € R**» symmetric (stored in lower triangle) and 1 (e.g. 7= (macheps)!?),
find factorization L LT of A+E , E>0

phaseone := true
Y= max 14; |
Jj=1
(* Phase One, A potentially positive definite *)
While j <£n and phaseone = true do
(* Pivot on maximum diagonal of remaining submatrix *)
i :=index of max A

jSisa

if i #j , switch rows and columns iand jof A
. A2
lf}.ﬂg"g {Ai — ‘z# } <ty

then phaseone := false (* go to Phase Two *)
else (* perform jth iteration of factorization *)
ij = \/Z/_j * Lj/' overwriles Ajj *)
Fori:=j+1ton do
L = A,‘j /ij (* L;; overwrites A;j *)
Fork :=j+1to0i do
Ag = Au - L,'I' * ij
j=j+1
(* end Phase One *)

(* Phase Two, A not positive definite *)
If phaseone = false then
k :=j -1 (* k = number of iterations performed in Phase One *)
(* Calculate lower Gerschgorin bounds of A;4; *)
Fori :=k+1lton do
f R n
gi = ; FA; I+ ) VAi | -A
J=k+1 J=+l
(* Modified Cholesky Decomposition *)
Forj :=k+lton-2do
(* Pivot on maximum lower Ge: s2iigorin bound estimate *)
i :=index of max {g:}
jSisa
if i#J, switch rows and columns { and j of A
(* Calculate E; and add to diagonal *)
normj := ﬁ: [ A |
i=j+l1
3(* =E;; *)=min{0,-Aj; +max{ normj, 1y} ,Sprev )
if 8> 0 then
A,‘j = A”' +8
dprev ;=8 (* dprev will contain ||E |]= *)
(* update Gerschgorin bound estimates *)
If Aj; # normj then
normj _,
12
fori =j+1ton do
8 =g +|A;j|*temp
(* perform jth iteration of factorization *)
same code as in Phase One

temp =




(* final 2 x2 submatrix *)

_ An-1a-1 Ann-l
A, . Ax = eigenvalues of Ana-1  Anna

8 := max(0,-Ap +1* max { 71 (i —Aw) ¥}, Sprev)

if 8 > 0 then
An—l,n—l = Au—-l,u—l +9d
App = Aga +9d
Sprev = &

La-tn-t = VAa_1,Anq (* OVErwrites An-1,n-1 *)

Ln.u—l = Au,u—l /Lnol.n—l (‘ overwrites Au,u-l ‘)

Lll,l = (An,u _Ll.l-l 2)% (‘ OVCrWri[CS AI.R ‘)
(* End Phase Two *)
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