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Abstract
I3
o

We describe a branch and bound algorithmffor solving the axial three-

index assignment problem. The main features of the algorithm include a

Lagrangian relaxation incorporating a class of facet inequalities and solved
by a modified subgradient procedure to find good lower bounds, a primal
heuristic based on the principle of minimizing maximum regret plus a variable
depth interchange phase for finding good upper bounds, and a novel branching
strategy that exploits problem structure to fix several variables at each node
and reduce the size of the total enumeration tree., Computational experience
is reported on problems with up to 78 equations and 16,376 variables. The
primal heuristiecs were tested on problems with up to 210 equations and 343,000

variables.
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1. INTRODUCTION
In this paper we present an algorithm for the axial three-index

assignment problem (AP3). AP3 can be stated as a 0-1 programming problem as

follows:
Min z Z C. . X.
iel JeJ kek -JK1JK
sub ject to
Y x, . =1 Vi ¢ I
jed kex K
DT Vjed
il kek ¥
}x.. =1 Vk ¢ K
el Jeg K
X © (01 Wi, gkb e T xJ K
where I, J and K are disjoint sets with |I| = [J| = [K[ = n. We will
sometimes use the notation S=1IxJ xK, and write seS for

{i,j,k} ¢ I x J x K.

AP3 is a close relative of the (axial) 3-dimensional transportation problem
(TR3), in which the right-hand sides of the constraints can be any positive
integers, the sets I, J, K are not necessarily equal in size, and the
integrality constraints are relaxed. This is in turn a generalization of the
well-known transportation problem, a special case of which is the simple
assignment problem. This and other formulations of TR3 were first studied by
Schell [15]. For references concerning these problems see [3].

Applications of AP3 mentioned in the literature include the following
(Pierskalla [14,13]):

« In a rnlling mill, schedule ingots thrcugh soaking pits (temperature
stabilizing baths) so as to minimize idle-time for the rolling mill (the

next stage in the process).




* Find a minimum cost schedule of a set of capital investments (e.g.,
warehouses or plants) in different locations at different times.

* Assign military troops to locations over time to maximize a measure of
capability.

* Launch a number of satellites in different directions at different altitudes
to optimize coverage or minimize cost.

In [3], AP3 is shown to be equivalent to the problem of finding a minimum-

weight exact clique cover in a complete tripartite graph.

AP3 is known to be NP-complete [8]. Obviously, AP3 is a special case of
the set partitioning problem (SPF):

Max {cx: Ax = e, x ¢ (0,139} (n
where A is a matrix of zeros and ones and e is a vector of ones. For
properties of (SPP) see the survey [2].

Among the early algorithms and heuristies for this problem are those of
Pierskalla (14,13] and Leue [11] (the latter is related to the Hungarian
algorithm for the (two-index) assignment problem, and to an algorithm by Vlach
{17] for the planar three-index assignment problem). A primal-dual algorithm
is described by Hansen and Kaufman in [9]. The exact algorithms described in
the literature share a branching strategy based on fixing single variables to
zero or one, These algorithms dJo no: use any results from polyhedral
combinatorics; in fact there have bee~ -0 oolyhedral studies of this problem
in the literature before ([3]. Furzrerrore, aside from [14], no study of
heuristics for this problem has been .rdertaken. The study presented here
differs from the earlier papers in al. of these respects.

The main features of the algoric-m gescribed are:

+ Instead of the LP-relaxation, bounds are computed using a Lagrangian
relaxation which incorporates facets of the AP3 polytope. This relaxation

is solved by a modified subgradient optimization procedure,.




* New, efficient primal heuristics are used to obtain successively improved

approximate solutions.

* A new branching rule is applied which produces smaller search trees,
Instead of completely specified primal solutions, the terminal nodes are
two-dimensional assignment problems.

The first two features are modeled after the set covering algorithm of Balas

and Ho [1].

In Section 2 we describe the overall flow of control in the algorithm. A
study of primal heuristics is presented in Section 3. The maximum-regret
heuristic is shown to produce better solutions than several others, and a
variable-depth interchange heuristic brings further improvements. Sections U
and 5 describe a Lagrangian relakation of AP3 and a modified subgradient
optimization algorithm for solving the relaxation, The relaxation
incorporates one class of facet inequalities described in [3]. Section 6
describes a greedy-plus-interchange heuristic for generating lower bounds. In
Section 7 we describe the branching strategy, i.e. the rules for generating the
subproblems to be solved at each node of the enumeration tree, and for
backtracking. Finally, Section 8 presents the results of computational
experiments with an implementation of the algorithm. Our program is shown to
compete effectively with the algorithm of Hansen and Kaufman, the only other

procedure for which more than anecdota. experience is available.

2 OUTLINE OF THE ALGORITHM

The algorithm begins with the original problem on the list of unsolved
subprchblems, It proceeds to apply two primal heuristics and subgradient
optimization on the Lagrangian dual. If it is unable to prove that the

heuristic solution is optimal, the algorithm replaces the original problem




with two subproblems, each of which has fixed to zero one of two mutually
exclusive, jointly exhaustive subsets of the variables in the support of a
pair of rows of the constraint matrix. One of these is selected to be the
next problem é?amined and the process is repeated (sometimes using a dual
heuristic instead of subgradient optimization). If a subproblem can be shown
to have no solution better than the best primal feasible solution found so
far, that problem is discarded. All unsolved problems are then examined; if
any can be discarded, they are deleted, and a "most promising" subproblem is
selected to be examined next. wWhen all outstanding subproblems have been
deleted from the list, the current best solution is optimal.

The branching strategy is designed so that when enough biocks of
variables are fixed, the remaining subproblem is a (two-dimensional)
assignment problem, and can be solved to optimality in 0(n3) time. These
subproblems are the terminal nodes of the enumeration tree.

An outline of the algorithm in mock Pascal form follows. Text in braces
{...} is commentary. Text in italics summarizes steps that are elaborated
later or do not require further elaboration. The value of the best known
primal solution is z,- The best known lower bound at the current node is

z,.
Algorithm AP3;
begin
initialize;
while unsolved nodes remain do {main loop}
if current node not terminal then begin
apply primal heuristics;
update z  and current solution;

if z >z -1 then
L u
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backtrack
else begin
apply subgradient or dual heuristics;
update 2z ¢
if z >zu-1 then

%
backtrack

else
create subproblems and branch
end
end
else begin {current node is terminal}
solve the terminal subproblem;

update z . ar . current solution;

u
backtrack
end
end.

The algorithm as implemented is designed to solve problems with
nonnegative integer costs. Some features of the algorithm rely on this
assumption, particularly in the dual procedures. We will point out these
dependencies as they arise. Note that any problem with integer costs can ve
"reduced” to a problem with nonnegative integer costs by adding a positive

amount to each cost in the support of any row. This transformation does rot

affect the optimal solution. Initialization of the lower bound to zero Is

-
Ui

valid only for nonnegative costs. The bounding test z, > z, - 1

dependent on the assumption of integer costs.




3 PRIMAL HEURISTICS

3.1 Constructing a Solution

Several primal heuristics were considered and tested for use in the
primal phase of the algorithm. In this section we describe the heuristics and
the results of computational tests.

We tested four heuristics. The first, DIAGONAL, is to simply set
Xii{i © 1 for i = 1,...,n, and set all other xijk = 0. This is analogous to
the Northwest Corner rule for starting the Transportation Simplex Algorithm
(see, e.g., [10]), and for randomly generated problems (such as those tested
here) is equivalent to randomly selecting a solution.

The second rule tested was the GREEDY heuristic: The variable with
smallest cost is selected, the three rows thus covered (and the variables in
their respective supports) are deleted, and the process is repeated.

The third rule, REDUCED-COST, performs reductions on the costs,
subtracting the largest cost in each row (i.e. the largest of the costs of
variables in the support of each row) from all costs in that row. Then the
element with the most negative reduced cost is selected, and the process is
repeated. This rule is analogous to Russell's approximation method for
starting the Transportation Simplex Algorithm (see, e.g., [10]).

Finally, we have the MAX-REGRET heuristic: The difference between the
two smallest costs associated with variables in the support of each row is
calculated (the regret for that row, so called because it represents the
minimum penalty for not choosing the smallest cost in the row). The element
with smallest cost in the row with largest regret is selected, and the process
is repeated. This method is analogous to Vogel's approximation for starting

the Transportation Simplex Algorithm (see, e.g., [10]).




The heuristics were tested on sets of randomly generated problems, twenty
problems to a set, for n = U4, 6,...,20. Costs were generated from a uniform

distribution of integers, 0 100. The results are summarized in

< ciJk <
Table 1. The results demonstrate that the MAX-REGRET heuristic dominates
the others, in terms of average solution quality (the columns labeled Mean in
Table 1) and frequency with which it produced the best solution (the columns
labeled Wins). In terms of computation time, the three "smart" rules were
each implemented as o(n*) procedures. The REDUCED-COST rule took
approximately 3.5 times longer than GREEDY, and the MAX-REGRET rule took
approximately 8.75 times longer than GREEDY (DIAGONAL took an
insignificant amount of time in all cases). The average time for MAX-
REGRET with n = 4 was 10 milliseconds; with n = 20, MAX-REGRET averaged 3
seconds (implemented in VAX C on a DEC VAX 11/780 under VAX/VMS). GREEDY
and MAX-REGRET can be implemented in 0(n3log n) time by sorting the
variables by cost beforehand, but the constant factor associated with sorting
is comparatively high. We tested a sorted-cost version of MAX-REGRET using
QUICKSORT, and this version finally overtook its O(nu) counterpart at

around n = 19. Our algorithm does incorporate a sorting phase. The cost of

sorting is not a problem in our case, first because the heuristic is to be

DIAGONAL GREEDY RED-COST MAX-REGRET

n Wins Mean Wins Mean Wins Mean Wins Mean
4 0 210.65 7 80.45 10 69.40 12 68.80
6 0 276.50 2 90.05 6 75.00 14 55.15
8 0 391.75 4 92.15 3 90.75 13 58.45
10 0 504.20 3 78.50 3 81.10 14 60.15
12 0 646.45 3 90.85 4 83.00 13 51.95
14 0 663.25 4 89.20 2 83.55 14 50.05
16 0 795.15 2 85.30 1 73.95 17 42.00
18 0 892.60 3 79.00 2 76.10 15 45.35
20 0 1036.45 1 77.00 4 68.70 15 39.25

Table 1: Results of Comparative Tests of Primal Heuristics




applied several times to the same problem, so the sort need only be done'once

(each iteration of each heuristic is quite fast on sorted data); and second,
because the heuristics are a relatively inexpensive part of the algorithm.
The heuristics can be applied in a straightforward way to the subproblems in
the enumeration tree, although it is possible that they will fail to find a
feasible solution. To minimize this possibility MAX-REGRET was modified so
that if only one element is left in a row at any time, that element is always
selected. If the heuristic still fails to find a solution, the step is

abandoned, and the value ¢i the heuristic solution set to infinity.

3.2. Local Improvement

It is possible to apply local interchange heuristics to a feasible
solution, which may succeed in finding a "nearby" solution with a better
objective function value. For any pair of elements in a solution, xiOJOkO and
xi1j1k1 there are three possible pairwise interchanges, replacing these two
elements with elements with interchanged i-, j- or k-indices. If the sum of
the costs of the two new elements is lower that the sum of the costs of the
two original elements, then the exchange is carried out (if more than one
interchange yields an improvement, the one that gives the maximum improvemen:
is applied). The process can be applied repeatedly until no interchange takes
place. This procedure may be applied after every successful application of
the heuristic, after solving the assignment problem at each terminal node, and
any time a primal-feasible solution is generated in the subgradient
optimization procedure.

There are three extensions to the pairwise interchange heuristic that
deserve mention. First, triple interchanges, etc., can be defined analogously to

pairwise interchanges, though the computational burden becomes exponential.y




heavier. Second, there is the concept of simulated annealing investigated by
Burkard and Rendl [4] for the Quadratic Assignment Problem, and by Skiscim and
Golden {[16] and others for the Traveling Salesman Problem.

The algorithm we have implemented includes a third type of interchange
heuristie, based on the Lin-Kernighan heuristic for the traveling salesman
problem [12]. In the context of AP3, this variable-depth interchange heuristic
works as follows: Start with a feasible solution, and set the total gain to G
= 0. Select arbitrarily a variable that has the value 1 in the solution, say
xiOJOkO' For each of the remair.ing variables xiJk = 1, evaluate the possible
interchanges of xioJoko’ namely those formed by setting xiOJOko = Xy * 0 and
either xiOJORO = xi]ko = 1, xiOJOkO = xijok = 1, or xiJoko = xiojk = 1,
Select the variable xilj1k1 that maximizes the gain, defined as g((iq,Jy,Kqg),
(i,1,k)) = ciOJORO - min{ciojok, ciOJkO' cijoko}. If the sum of the gain and
total gain is positive, evaluate the cost of the solution with the interchange
performed. If the new solution is an improvement over the current solution,
then record the new one and continue. Set xioJoko = 0 and the variable for
which the gain is maximized to 1 (suppose this variable is X11J0k0)' Set G to
the sum of G and the gain. Repeat the process, setting Xi,j1k1 = 0 and
considering interchanges between the other variable in the interchange
(xioj1k1’ for example) and variables that have not been selected before.
Continue as long as the sum of the gains is positive. If no improved solution
is found starting with xiOJOko' then try sequences starting with each of the

other variables in the solution in turn. Repeat the entire process as long as

improvements are found.




3.3 Computational Tests with Primal Heuristics

Table 2 shows the results of the initial application of the primal
heuristics on the problems solved to optimality. The optimal solution (z*)
and the results of applyiﬁg GREEDY (28), MAX-REGRET (zh) and MAX-
REGRET followed by VARIABLE-DEPTH INTERCHANGE (zi) are displayed.
The column labeled int. indicates the number of interchanges considered in all
sequences. For each value of n, the average of each value over five problems
solved to optimality is given (three problems for n = 26).

In our initial tests, the full algorithm spent roughly three times as
long in the VARIABLE-DEPTH INTERCHANGE phase as in the MAX-REGRET

phase.

h i ;
n 2* 8 z z Int.

4 |} 422 536 526 432 3

6 || 40.2 90.2 760 454 106

8 || 23.8 814 596 336 144
10 19.0 844 508 408 174
12 |} 15.6 87.0 402 240 220
14 10.0 864 640 224 392
16 10.0 782 588 250 550
18 6.4 624 218 176 152
20 4.8 774 758 274 802
22 4.0 934 478 188 328
24 1.8 91.0 591 140 710
26 1311073 360 157 420

Table 2: Primal Heuristic Performance on Problems Solved to Optimality

4., THE LAGRANGIAN DUAL

A valid lower bound for a minimization problem can be found by solving to
optimality a relaxation of the problem, with some of the constraints
deleted. In general integer programming, frequently the integrality
constraints are relaxed and the solution to the LP-relaxation is used as a

bound. For problems with special structure, a useful alternative is to relax
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some or all of the linear constraints by taking them into the objective
function with Lagrange multipliers. The multipliers can then be given values

such that the solution to the relaxation with the Lagrangian objective

function gives the same bound as the LP-relaxation. The advantage of this
Lagrangian relaxation, sometimes called Lagrangian dual, is that a good
approximation to this bound can often be computed with much less effort than
that involved in solving the LP. One technique for solving the Lagrangian

relaxation is subgradient optimization.

4.1 A Lagrangian Relaxation of AP3
We considered four "natural” relaxations of AP3:

1. All of the original problem constraints (except for integrality
constraints) are taken into the objective function. An optimal solution to
the relaxation (for fixed values of the multipliers) is obtained by setting
to one each variable for which the reduced cost is negative, and setting the
remaining variables to zero.

2. All constraints (except integrality) are taken into the objective
function and replaced by the single constraint that exactly n variables be
set to one. An optimal solution to this relaxation is obtained by simply
setting to one the n variables with smallest reduced cost, and setting all
others to zero.

3. The two sets of equations corresponding to the ground sets J and K are
taken into the objective function. An optimal solution to the relaxation is
constructed by setting to one, for every iel, the variable in the support

of row i Wwith the smallest reduced cost.

4, The set of equations corresponding to the ground set [ is taken into the

objective function. An optimal solution to this relaxation is constructed

_




by solving an assignment problem over the ground sets J and K, with the cost
for each (j,k)-pair given by the minimum reduced cost among all triplets
containing the pair (j,k) (i.e. the minimum is taken over 1iel).

In all ;f the above relaxations the Lagrange multipliers are
unconstrained in sign, since they multiply equality constraints. As we
pointed out above, the exact optimum of the Lagrangian dual is equal to the
optimum for the LP relaxation in each case. In preliminary tests with the
subgradient optimization algorithm, all the relaxations converged at
comparable rates to a very close approximation of the LP optimum. Although
the overall complexity of each of these steps can be shown to be O(n3) (except
for relaxation 2, which requires O(n3logn)), the constant factor is lowest for
relaxation 3. Nevertheless, we chose to incorporate relaxation U4 in the
algorithm for reasons we will explain below. Our Lagrangian dual is

Max L(u) (2)
u

where

L(u) =Min ) § 7 (c Y u;

ijk'“i)xijk *

x iel jJed kekK iel
sub ject to
X, = 1 ¥j e d
iel kex 1K
2 X, = 1 ¥k ¢ K
iel jed 1)k
x1Jk e {0,1} Vi, 3,k
The costs for the assignment proc.2m over J and K are computed as
' - i -
e T Per(Ccyy)




4.2 Incorporating Facet Inequalities

The lower bound on the value of an integer program can often be
considerably strengthened by adding to the constriant set valid inequalities
that cut off solutions to the LP-relaxation. The strongest such inequalities
are the facets of the convex hull of integer solutions to the program.
Although for NP-hard problems such as AP3, the number of such facets may be
very large, they need not be added all at once; if the optimal LP solution is
known, it may be possible to detect a violated facet in a reasonable amount of
time. The violated facet can be added to the constraint set, and the LP re-
optimized. We have described several classes of facets for the three-index
assignment polytope {3]. In the algorithm presented here, we incorporate one
such class in the relaxation, namely the class of inequalities derived from
cliques of type 2, as defined in [3], of the intersection graph associated
with AP3. These cliques are defined as

Qz(il’J!'kl) =

{(i,j,k): 1 = i%*, j = j®or i = i* k = k® or j = j*, k = k*}.

The facet inequality is

xs < 1.
SCQZ(i S I, k")

These constraints can also be taken into the objective function with Lagrange
multipliers, but since there are n3 of them, the computational burden of
computi ¢ the reduced costs in an instance of the relaxation is heavy. Again,
only a subset of the inequalities is likely to be active (i.e. to have nonzero
dual multiplier value) at any point. We need to develop a method for
detecting the inequalities that are likely to be active and including them.

The Lagrangian function becomes:




1l
P ]

iel jed kéK it et iglui i SZTDS eQa(s)xt o )
where og 2 Of and T c S 1is the subset of the variables that generate
active clique constraints.

Which constraints should be chosen? Solving the LP-relaxation of AP3
would give us a basic solution having at most 3n - 2 non-zero variables, and
if this solution were fractional, we could look for inequalities violated by
it. In the subgradient technique, we do not have a primal feasible LP
solution at hand, so we cannot identify violated inequalities directly.
Instead we consider the solution to the relaxation corresponding to the best
bound generated by the subgradient procedure. Such a solution satisfies
exactly the constraints corresponding to the ground sets J and K, but may
under- or over-cover constraints corresponding to ground set I. Any pair of
variables equal to one in the solution which, taken together, over-cover a
constraint in ground set I, also violate exactly two type-2 facet
inequalities. Suppose two such variables are xiOJOkO = xioJ1k1 = 1. Then x
violates the facet inequalities corresponding to Q2(10,Jo,k1) and
Qz(io,J1,ko). These cuts are incorporated into the objective function, and

the subgradient procedure then continues as described below.

5. THE SUBGRADIENT OPTIMIZATION PROCEDURE
We use subgradient optimization to solve the Lagrangian dual problem,
which we restate as
Max L(w)

n
with

L(x) = min e(n)x + k(n).
xeF
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Here F is the set of feasible solutions to the constraint set of:(2). m is the
vector of dual variables, k(#) is a constant with respect to x for a given n,
and c(w) is the Langrangian objective coefficient vector of x. In the case of
our original rélaxation of AP3, = = u. When facet inequalities are added,
x = (u,p) and p 2 0 is required. We begin with 20 : 0 and iterate the
following steps (m is the iteration counter):

m

1. Solve min e(*™)x to determine L(s™) and a subgradient direction u™.

xeF
2. Determine a direction s™ based on u", and a step length t .

3. Set SLLR R N tmsm, m=m+ 1,

The procedure continues until some stopping criteria (described below) are
met. We have described in section 4.1 the procedure for solving the

relaxation. The remaining steps are discussed below. Finally we describe how

the procedure interacts w.th the branching process.

5.1 Choosing a Direction
The subgradient for the original relaxation is u, where
-1 - " : % : .
W = zjeJ zksK % for ie I and x* is the optimal solution to the
relaxation., When the relaxation includes facet inequalities, u = (uu,u°)
[ . .
z 4] <=1}, f
where M max {0, Z(i,J,k)eQZ(q)xljk } This is one candidate for the
direction (i.e. s® = u™). Another possibility, suggested by Camerini, Frat:a
and Maffioli [5], is a modified subgradient that takes into account the recent

history of directions to reduce the tendency of the subgradient to "zig-zag",

alternating between two directions without making significant progress towar:z

the dual optimum. The direction [5] is defined componentwise as
m m m-1 m . . .
sp = ”p + Bmsp where u" is the subgradient, and By is a scalar weight or

the direction from the previous iteration, defined as
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m-lm mim
-9 sm_1 3 if s u <0,
Bm =
0 otherwise.
The parameter o controls the angle between s™ 1 and s™, and must be between

zero and two. The value suggested in [5] is 8 = 1.5, which we used here. The
idea behind the choice of s® is that Bn is greater than zero when the actual

! form an

gradient direction u™ and the direction in the preceding step s™"
nbtuse angle, favoring the "persistent components™ of the subgradient over its
"alternating components”.

Our early experiments confirm that, for our problem, this smoothed
subgradient direction is indeed an improvement over the subgradient alone. At
some nodes of the enumeration tree, the dual procedure using the subgradient
direction was unable to improve the bound given by the penalty function
(described below), within a fixed number of iterations. The modified

direction was often able to find an improvement in these cases within the same

number of iterations.

5.2 Computing a Step Length

The step length is defined as

where zY is the current upper bound and 2, is the value of the current
solution to the relaxation. In order to guarantee convergence (i.e. th + 0 as
m - =), the step length contains a multiplicative parameter 0 < X < 1 (see [5]
for justification) that shrinks over time. The rate at which A shrinks is an
important factor in determining the performance of the subgradient

optimization procedure. Too slow a rate may cause the procedure to run on




Wwithout improving the bound. Too rapid a rate may cause termination of the
procedure before the optimum is achieved. We use the following rule: Start
Wwith X = i, where

0.5 if 0.95 < zg/zu
A, =( 0.75 if 0.90 < z!/zu < 0.95 .

1.0 if zl/zu < 0.90
Halve A after some number of iterations since the last improvement in the
bound. The number of iterations is set to n at the start, After an
improvement of 1%, an additional n/2 iterations are allowed for additional
improvement. The idea behind this rule is that, if improvements are being
made in the bound, we want to continue to take longer steps and not force
early termination, After some time with no improvement, the step length
should be made smaller. Of course these rules are heuristic; although

important, the influence of rules controlling A is not well understood.

5.3 Stopping

The subgradient procedure is terminated if too many iterations occur
without an acceptable improvement. Specifically, we allow 2n iterations from
the start of the procedure to gain an improvement of at least 5%; subsequently
n/2 iterations are allowed after each 5% improvement. The procedure is also
terminated if a solution to the relaxation is found to be primal feasible or
(as a last resort) if the step length becomes too small (&, < 10’8). If a
primal feasible solution is detected, it is checked for optimality for the
subproblem, by testing complementary slackness conditions for the currently
active cuts. If the solution is optimal, the current node can be discarded.
In any case, the solution is improved with sequential interchanges and the

upper and lower bounds are updated.
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5.4 Generating Primal Feasible Solutions

Given a solution to the relaxation for some fixed w, a primal feasible
solution to APé can be generated in the same fashion as is done at a terminal
node in the enumeration tree. The variables set to one in the solution may be
taken to specify an assignment of the elements of J to the elements of K, J
and K being the two ground sets for which the constraints are satisfied. Once
this assignment has been specified, the optimal allocation of elements of I to
(J,k)-pairs is a (2-index) assignment problem.

After each call to the subgradient procedure, the relaxation solution
associated with the best lower bound is made feasible in this manner, and the
primal solution constructed is improved by applying to it VARIABLE-DEPTH
INTERCHANGE. If it is an improvement over the incumbent solution, the

incumbent is replaced.

5.5 Incorporating Facets

For the first application of the subgradient routine, all dual variables
are set to zero, and the direction vector is set to zero. Initially, no cuts
are active. After the first execution of the procedure, any type-2 clique
facets violated by the solution to the relaxation corresponding to the best
lower bound generated are added to the active list, with the associated
multiplier set to zero. The subgradient procedure is then applied again, with
the prior ending solution and direction used as the starting point.

After each subsequent execution of the subgradient procedure, the list of
active cuts is checked against the new solution to the relaxation. If any
cuts in the list are no longer active (i.e. have zero weight), they are dropped

from the list. If any of the dropped cuts were previously active (had
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positive weight), then the cut list is updated (i.e. any cuts violated by the
best-bour . solution are added to the list), and the subgradient procedure is
applied again. The strategy of not updating the active cut list unless a cut
is dropped rep;esents a compromise between the computational effort involved
in upda .ng the active cut list (O(n2 x number of cuts in the list)), and
the desirability of keeping the list as up to date as possible. The
subgradient procedure is then repeated. If no formerly active cuts are
dropped, the algorithm continues.

The performance of the subgradient optimization procedure with and
without the cuts is illustrated in Table 3 on the problem set described
earlier (at the root node of the search tree). Here z* is the value of the
optimal solution, z: and z: are the lower bounds obtained by the procedure

without cuts and with cuts, respectively, and the "% gap" |is

c o o
((zl-zz)/(z*-zz)) x 100,

(o
n 7+ zz 2f  %Qap # cuts

4 || 422 | 3996 4077 2696 1.

6 [| 402 | 3525 3575 39.12 S.

8 || 23.8 ( 1855 19.09 40.67 5.
10 190 | 1558 643 4301 8.
12 156 | 1363 1378 5219 152
14 10.0 6.67 7.20 4198 176
16 10.0 6.50 6.67 36.21 15.6
18 6.4 3.59 3.78 3546 152
20 4.8 1.49 1.88 28.37 256
22 4.0 1.45 1.70 3032 220
24 1.8 0.15 0.23 1747 224
26 1.3 0.11 0.19 9.60 51.3

AN

Table 3: Performance of Subgradient Optimization
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6. DUAL HEURISTICS

Because the subgradient procedure is expensive, we chose to alternate it
with some dual heuristies, according to criteria described in Subsection 7.4
below. In thi; section we describe the greedy and interchange heuristics used
as alternatives to the subgradient procedure.

The dual of the LP relaxation of AP3 is

Max 2 u, + vV, + z W
ier ! jed J kek k
sub ject to
u;, + VJ + "k < ciJk ¥iel, Jed, kek
The first phase of the procedure is a simple greedy heuristic. Let
cijk = ciJk -y - vj - wk. Then as long as there are free variables, find
the triplet (i,j,k) for which c is minimized and allocate to each free

ijk

variable in the (dual) row an equal fraction of ¢ This procedure is

ijk’
applied at the root of the enumeration tree, and at the interior nodes of the
tree as described below.

The solution constructed by the greedy heuristic is improved using a
procedure similar to that proposed by Fisher and Kedia [6] for set
partitioning, but modified to take advantage of the special structure of
AP3. For each dual variable U i* ¢ I, the variables associated with the
other ground sets (J and K) are scanned to locate a maximal set of variables
vJ and Wi with the property that (i) none of the selected variables appear
together in a tight constraint; and (ii) none of the selected variables appear
in a tight constraint together with any u;, 1 = i*., The dual solution can
then be modified by decreasing the value of Uin and increasing the values of
each of the selected variables vJ and w_, by equal amounts until some new
constraint becomes tight. If the number of variables to be increased is m and

the amount of increase is § then the value of the dual solution is increased

by (m - 1)s6.
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7. BRANCHING AND SUBPROBLEMS

In this section we describe the rules for branching (defining the
constraints imposed and the subproblems generated when a branch is taken). We
also discuss the criteria for choosing a particular branch at a given node,

and the backtracking strategy.

T7.1. Subproblem Definition

The number of feasible solutions to an order-n axial AP3 problem is
easily seen to be (n!)2. The common branching strategies for general integer
programs, and all the branching strategies used in the published algorithms
for AP3, are designed so that a terminal node in the enumeration tree
represents a complete solution to the original problem. The number of
terminal nodes in the complete tree is thus (n!)2. In addition, branching
rules that specify setting a single variable to one typically require that
several subproblems be generated from the current subproblem when branching
takes place. The branching rules described in {14] and [11] produce (n-i+1)2
subproblems at level i in the tree, each of which is an AP3 problem of order
n - i. The maximum depth of such a tree is n - 1. The binary branching
scheme, in which a single variable is set to one in one subproblem and zero in
the other, produces a tree in which the depth ranges from n on a path where
all subproblems arise from setting variables to one, to n3 -nona path where
they arise from setting variables to zero.

For general 0-1 programming, branching on multiple choice constraints of the
form ZJEQxJ = 1 for a subset Q of the variables, is often done by splitting

the set Q in half and fixing the variables in each half to zero in the

respective branch. In the case of AP3, this strategy leads to an enumeration
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tree of depth O(n log n) with the same (n!)2 terminal nodes. The rule is
attractive because it keeps the tree depth relatively small by locking several
variables in each branch, but it does not exploit problem structure in any
way. '

The rule chosen for this algorithm also fixes several variables in each
branch, but does not split the support of a row evenly. Instead it exploits
problem structure in a way that complements the Lagrangian relaxation used in
the dual procedures and reduces the number of terminal nodes in the tree. The

2 .n depending on whether

depth of a path in the tree ranges fromn - 1 ton
each branch fixes the larger or smaller block of variables.

Let M, denote the support of row reR=1vJuK. Consider the
ground sets J and K. Any pair of indices JO e J and ko ¢ K specifies a
block of n variables, M(Jo,ko) = {xijoko: ieI}. In fact the row
corresponding to Jo consists of n such sets, one for each possible k,. Let P
be a permutation of {1,...,n} and let [j]p denote the element in position j of
P. If the variables in M(J,k):= (MJ v M) \ M(J,k) are fixed to zero for j
= 1,...,n, k = [}]p, the problem that remains when the columns corresponding
to these variables are deleted is a (2-1ndex) assignment problem, in which the
elements of I are to be matched :o (],k)-pairs. There are n! possible
assignment problems (corresponding to <re n! permutations of J), so our search
tree, when complete, has n! rather t~ain (n1)2 leaves. Each of these problems
can be quickly solved to optimality.

Our branching rule is to choose 1 . ,k)-pair, and set the variables in
M(j,k) to zero in one branch (the weak side branch), and those in M(j,k) to
zero in the other (the strong side branch). For any Jor ko» when the weak side

constraints corresponding to M(jo,k) have been imposed for all k #* k,, tae

strong side constraint corresponding to ﬁ(jo,ko) is imposed immediately,
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since 1imposing the weak side constraint for M(Jo,ko) would render the
subproblem infeasible. When n strong side constraints have been imposed, a
terminal node is reached, and the corresponding (2-index) assignment problem
is solved by tée shortest augmenting path method. (In our tests, no terminal

nodes were cver generated for any of the problems solved to optimality.)

7.2 Branch Selection

How should the next index pair for branching be selected? We use a two
level selection process. At the first level, we prefer to select from the set
of index pairs with the property that in both subproblems the lower bound can
be increased over that of the parent. The technique for finding this set, and
a penalty that can be calculated for each subproblem is described beluw.
Within this set, or if this set is empty, or if the penalty calculation cannot
be performed, we select the index pair identifying the block for which the
minimum cost of a free variable in the block is maximum. Note that variables
can to fixed to zero before branching at each node if their reduced costs
exceed the gap between the upper bound and the lower bound of the current
node. In case of ties, the block with the largest number of free variables is
chosen. The two subproblems corresponding to the selected (Jj,k)-index pair
are created and the weak side problem is selected next. This "depth-first"
strategy is pursued until a node on the path is discarded. Then a new problem
is selected from the list of unsolved problems, in a manner described below.

A child node that can be discarded based on a penalty is simply not created.

7.3 Backtracking and Subproblem Selection
If the current node is discarded or the weak subproblem is not created,

either because the branch is infeasible or because it is discarded based on




penalties, then a new subproblem must be selected from the rehaining unsolved
problems. Our algorithm uses a flexible backtracking strategy, in which the list
of subproblems is scanned for the '"most promising" subproblem, which is
selected next.. As a measure of promise for a subprobiem, instead of simply
using the lower bound, we use an adaptation of the best projection rule
described by Forrest, Hirst and Tomlin [7] for general integer programming.
The measure of promise is a projection from the lower bound of the current
subproblem to the lower bound at a terminal subproblem, defined as:

zp =z,
where z, is the current upper bound, 2y and zl are the lower bounds at the

root of the search tree and at the current node, respectively, do is a measure

+ d(zu-zo)/d0 (3)

of the distance from the root of the search tree to a terminal node, and d is
the same measure for the current node. To measure the distance to a terminal
node, we use the number of weak side branching constraints needed in order to
transform the current subproblem into a completely specified assignment
problem. For the original problem (at the root of the enumeration tree) this

number is do =n® -n. In general, the number is d = n?

- n - w, where w is
the number of weak side constraints required to form the current subproblem
from the origina. problem. (Each arc on the path from the root to the current
node signifies the imposition of a strong or weak side constraint. Each
strong side constraint may be thought of as imposing 2(n-1) weak side
constraints, some of which may duplicate constraints imposed at earlier levels
in the tree. These duplications are not counted in the distance calculation.)

The backtracking routine thus scans the entire 1list of unsolived
subproblems. If any node can be discarded (because the upper bound has been

updated since the subproblem was created), that subproblem is deleted from the

list. If the subproblem is still active, the projection of its lower bound is
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computed, and the problem with the best projection is made the new current

subproblem.

7.4 Applying éubgradient and Dual Heuristics at Subproblems

The bounds produced by the subgradient procedure are significantly more
accurate than the greedy bounds, but the improvement comes at a substantial
cost in terms of computational effort. As a compromise, we apply the
following strategy: At the first node in the branch and bound tree, both the
greedy-plus-interchange and subgradient procedures are applied, and the best
bound is used as the lower bound. At subsequent nodes either the dual greedy
or the subgradient procedure is applied, depending on the node's position in
the tree:

« If the node was generated in a strong side branch, then the subgradient
procedure is applied, using the solution of the nearest ancestor at which
the subgradient procedure was previously applied as the starting solution.
The same rule is applied after 2n - 1 weak side branches, since 2n - 1 weak
side branches fix the same number of variables as a single strong side
branch.

* At other nodes, the greedy-plus-interchange heuristic is applied, based cr
the original costs. (We also tried using the reduced costs including tre
cuts and associated weights from the nearest ancestor at which <tne
subgradient procedure was applied, but this did not seem to improve tne
overall performance of the algorithm.)

When branching, the best dual solution found for an ancestor of tre=
current subproblem is adopted as the starting solution to the subgradier~-

optimization procedure for the subproblem, and the initial direction vector :s

set to the last smoothed subgradient of the ancestor.
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In order to improve the lower bound on a child problem, and to determine
if the subgradient optimization procedure might lead to an improved bound for
the child, a penalty function is computed when the branch index is selected.
The penalty is-defined as the difference between the lower bound of the parent
node and the solution to the Lagrangian relaxation of the child problem using
the initial dual variable values. The penalty is clearly zero if none of the
variables in the best relaxation solution to the parent problem are excluded
in the child as a result of variable-fixing in the branching phase. In this
case, if the subgradient procedure has indeed converged at the parent node
then it is unlikely that any improvement can be obtained by continuing the
procedure on the child. Thus the dual procedure is not applied to the child
if the penalty is zero. If any variable set to one in the parent's relaxation
solution is fixed to zero by the branching procedure, then the penalty is
calculated as described above and the child's lower bound is set to the sum of
the parent's lower bound and the penalty. If the child cannot be discarded on
the basis of the penalty, it is placed on the unsolved problem list and the
algorithm continues. We note that the penalty calculation only takes into
account the variables fixed in M(j,k) or E(J,k), and not variables that may
be fixed by implication. It is thus possible that a variable actually is

excluded in the child problem but not considered in the penalty calculation.
8 COMPUTATIONAL EXPERIENCE

8.1 The Algorithm as a Whole
We have implemented the algorithm on a DEC VAX 8650 in VAX C (under
VAX/VMS). A set of random test problems was generated with the following

characteristics: five problems for each even value of n ranging from 4 to 24
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were generated with integer costs from a uniform distribution between 0 and‘
100. In addition, three with n = 26 with the same range of costs were solved
(the remaining two problems in this set could not be solved in 30 minutes of
CPU time each). The results of the tests are summarized in Table 4. The
column Secs displays the total CPU seconds required to solve each problem.
Nodes is the total number of nodes visited (i.e. subproblems solved by the
heuristic), and SGD 1is the total number of subproblems to which the
subgradient procedure was applied. Iter is the total number of subgradient
iterations. Depth is the maximum depth of the branch and bound tree. The
colurns % primal, % sgd and % dual represent the percentages of CPU time spent
in the primal heuristics, subgradient optimization and dual heuristics,
respectively. Most of the time in the subgradient procedure is spent forming
and solving the relaxations. In the primal heuristics, most of the time is
spent in the sequential interchange procedure. Each line in the table

represents the averages over the five problems in each set (three problems for

n = 26).
| n n Secs % primal %sgd %dual Nodes  SGD Iter Depth |
4 64 003 1286 4858 572 24 1.60 900 160
6 216 0.6 1266 5480 952 8.2 420 3880  5.00
8 512 084 820 7490 744 186 9.20 11120 620
10 1000 136 902 6874 946 216 8.80 12460 10.40
2 1728 219 632 7280 808 226 1060 12340 1240
14 27844 || 1195 778 6580 1532 1088  50.60 68740  24.40
16 4096 || 3990 834 6312 2092 2706 9820 1665.80  38.60
18 5832 || 5530 704 6656 1980 2774 8560 1830.80  34.00
20 8000 || 169.29 532 6780 2020 6252 22340 441220 49.40
22 10648 || 37152 498 6866 2118 10538  284.80 843200  73.40
24 13824 || 51452 446 7012 2054 11778 46600 1051280 7040
2% 17576 || 62400 427 6387 2800 12900 38167 1145633  98.00

Table 4: Computational Results

These results may be compared with the results of Hansen and Kaufman (9],
reproduced in Table 5. It is difficult to compare actual computation times on

their CDC 6400 and our VAX 8650, and we do not have access to the problems
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they solved, although our problems are generated from the same-distribution.
They report times that increase by a factor of about six for each increase of
n by two (over the range n = 4,...,12). OQver the range n = 4,...24, our

1

algorithm shows an increase by a factor of about three. Also, the number of

nodes evaluated approximately doubles for each increase of n by two.

n___#problems CPUsecs |
= LT -t
4 5 0.59
6 5 2.75
8 5 10.59
10 5 60.27
12 5 359.77
16 1 674.69

Table §: Computational Results from Hansen and Kaufman

There are some other observations that we can make regarding the
performance of our algorithm. In particular, as the number of variables
(q = n3) increases, the ratio of the number of nodes of the search tree
visited to the number of variables increases slowly from about 4% to about 10%
over the range n = 4,...,24. Also, there are no instances in which the
algorithm was required to solve a terminal assignment problem. This indicates
that the bounding procedure is reasonably effective, and that the heuristics
are finding the optimal solution, although not necessarily at the first
application.

There is an observation that we made during the course of our preliminary

experiments that 1is not reflected in the results shown here, but that

! Since only one example of a problem larger than n = 12 is provided in (9],
it is impossible to gauge the performance of that algorithm on larger
problems.
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influenced design decisions during the development of the algorithm. That
observation is that the primal and dual procedures that gave the best bounds
at the root of the enumeration tree did not necessarily perform the best down
in the subtree.s. In particular, using these procedures often resulted in
enumeration trees with more nodes than the procedures we finally selected,
even though they gave better bounds at the start. Since the procedures that
gave better bounds often required substantially more running time per
application as well, the savings from not using them is increased still more.

The most expensive component of the algorithm is the relaxation solver in
the subgradient procedure. A3 we pointed out in Section 5, the factors
relating to the "optimal" number of subgradient iterations are not well
understood. In addition, the behavior of the method when used in a branch and
bound context, where it is started with a near-optimal solution to each
subproblem, has not been extensively investigated. As in most studies to
date, we have used ad hoc rules to determine the number of subgradient
iterations. This is an issue which merits further careful experimental
research, in the context of other classes of problems. Finally, some of the
new aspects of this algorithm (especially the way facets are handled in the

Langrangian dual procedure) can be employed in algorithms for other problems.

8.2 The Primal Heuristic as a Stand-Alone

We applied the MAX-REGRET and VARIABLE-DEPTH INTERCHANGE
heuristies to a collection of larger problems, ranging from n = 20 to n = 70
(up to 210 equations and 343,000 variables). In view of the larger number of
variables, these test problems were generated with costs ranging from O-
1000. Table 6 shows the results of these tests (averages over five problems

for each value of n). The column labeled 28 is the result of the GREEDY
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heuristic. The result of the MAX-REGRET heuristic is in the column labeled
2h. The VARIABLE-DEPTH INTERCHANGE procedure was applied to the
solution produced by MAX-REGRET, and the results are given in the 2!
column. The m,;mber' of interchanges is reported in the int. column. The times
reported (sec.) are CPU seconds for MAX-REGRET and V.-D. INTERCHANGE
together, this time on a VAX 8600 running VMS. For problems of this size, the
configuration of system memory has a significant impact on performance, i.e.,
paging gets to be expensive, especially on a system not carefully tuned for
memory-intensive applications. The lower bounds (zz) are the result of
applying the subgradient procedure described below.

Our conclusion that MAX-REGRET is superior to GREEDY continues to be
supported. Overall, MAX-REGRET gives values about 1/2 those of GREEDY.
VARIABLE-DEPTH INTERCHANGE brings the solutions down again by a factor
of roughly two. Over the 55 problems in the sample, GREEDY found a better
solution than MAX-REGRET only seven times. In only ten problems was
VARIABLE-DEPTH INTERCHANGE unable to improve on the solution found by
MAX-REGRET. In these problems. the average number of interchanges was

2u.4,

20 8000 || 823.0 569.6 266.2 9894 | 756 0.16
25 15625 871.8 4384 2054 7530 )| S0.6 0.38
30 27000 || 918.4 4162 1660 6398 | 99.6 0.82
35 42875 846.0 437.0 1950 4480 | 866 1.44
40 64000 [|1148.0 618.0 1752 40.60 |111.4 245
45 91125 || 988.0 420.2 186.8 34.00 | 1056 4.18
50 125000 || 910.6 369.0 229.0 24.38 | 156.6 5.88
55 166375 || 854.0 356.8 183.2 15.18 | 1874 9.16
60 216000 (| 1107.0 4034 1374 10.08 | 108.6 12.69
65 274625 || 1064.8 3548 1320 590 | 87.6 26.57
70 343000 || 865.8 477.2 167.6 3.88 | 301.0 6491

Table 6: Primal heuristic performance on large problems
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We conclude that the combined MAX-REGRET plus VARIABLE-DEPTH
INTERCHANGE heuristic is by itself a powerful practical approximation

method for efficiently solving very large problems.
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