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ABSTRACT

This constitutes the final report on the Phase I SBIR Contract, “Stability and
Control of Hypervelocity Vehicles”. In this research effort the general class of
problems associated with the flight dynamics of hypervelocity vehicles and their
control is investigated. After an examination of typical vehicles, flight environment,
operating conditions and trajectories, a general analytical theory is developed to
solve the significant problems. Based on typical flight scenarios, the dynamics are
appropriately formulated to fit the situation in question. Thus the flight dynam-
ics are investigated on a variety of trajectories, including re-entry and flight on
constant- latitude minor circles at constant altitude. Re-entry dyamics are analyzed
along steep, shallow and arbitrary trajectories. Asymptotic analytical solutions are
developed by the Generalized Multiple Scales (GMS) method, in which the clock
functions are necessarily nonlinear and complex quantities in order to solve the
nonlinear and time varying dynamics. Re-entry dynamics along arbitrary trajecto-
ries are solved simply and accurately by the GMS method.

Another class of trajectories along which the dynamics are analyzed concemns
flight at constant altitude along minor circles of different radii. The GMS method
enables us to solve for the dynamics in the longitudinal and lateral-directional mo-
tions, for flight with acceleration and deceleration. For accelerating flight the usual
short period, phugoid, Dutch Roll and roll/spiral modes show nonlinear phase
changes. The frequencies are variable and additional damping results from the
changing flight conditions. Fast and slow aspects of the dynamics are system-
atically separated by the GMS method. The accuracy of the GMS solutions is
extremely good. Indeed, the GMS solutions are indistinguishable from the nu-
merical solutions. The GMS theory is applied to a generic hypersonic vehicle
in typical situations. The re-entry case is validated by application to the Space
Shuttle. Minor circle flight is illustrated by application to a generic delta-winged
hypersonic vehicle. Stability criteria including the critical altitude during re-entry
are developed by the GMS method, followed by solutions to the problem of sen-
sitivity of the dynamics to parameter variations. Sensitivities of the Space Shuttle
to typical parameter variations are calculated. An error analysis follows, and strict,
sharp error bounds are given. Finally a control analysis and design methodology
and framework are developed by means of the GMS method.
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1 INTRODUCTION AND OVERVIEW

The advent of the Space Shuttle vehicle (or the space transportation system) has
sparked great interest in an entirely new class of vehicles capable of being operated
in a conventional way in the atmosphere but also of achieving orbital motion. This
necessitates the ability of the vehicle to operate at hypersonic speeds, in addition to
flight at low speeds. The dynamics of a flight vehicle at low speeds is understood
quite well. However, the dynamics of flight at hypersonic velocities are not fully
understood and present a number of qualitative and quantitative difficulties. The
trajectories flown by the vehicle can be quite varied. For example, the re-entry
motion might be along a steep trajectory or a shallow one. On the other hand, the
vehicle could also be required to perform steady tums. Thus the actual trajectories
could be several different great circle paths. It would appear that the new hyper-
sonic flight vehicles would normally fly along great circles, but would change the
trajectory, perhaps to a new great circle. This might be the case if a different land-
ing site became necessary during the flight. The new transition trajectory might be
along a minor circle or a series of minor circles. Steady hypersonic flight might be
for, say 5,000 miles, the total range being up to 10,000 miles. Both military and
meteorological surveillance missions would require flight along such trajectories,
where a restricted region of the earth must be flown over.

The organization and overall problem formulation ar: as follows. The first class
of problems considered is that of re-entry at hypersonic speeds. The conventional
approach involves entry along steep, ballistic trajectories. Earlier theoretical results
are available for basically two types of entry trajectories - (1) steep ballistic entry,
and (2) shallow entry. The dynamic equations are developed after making appro-
priate assumptions for a particular flight scenario. The early approach by Friedrich
and Dore [1] and Allen [2] neglected gravity compared to aerodynamic drag along
the trajectories, i.e., where deceleration is high. In this case, at hypersonic speeds,
the longitudinal dynamic response is described by zeroth order Bessel functions
[2]. Stability criteria can be developed based on these solutions. When the flight
path is approximately parallel to the earth’s surface, the dynamics can be described
in terms of damped Mathieu functions from an inhomogeneous equation (8].

However, in considering the operational scenarios of a shuttle type vehicle and
more general hypersonic flight vehicles, it is clear that the actual trajectory is likely
to be neither the steep ballistic one, nor the shallow (or flat) trajectory, but one
which is between these two extreme cases. Therefore, a unified approach is highly
desirable, in order to investigate a variety of re-entry situations and for a general
type of hypersonic vehicle. The difficulty in developing such a unified formulation
rests on the fact that different transformations are called for in converting real time
to another suitable variable, for different trajectories. Thus, for the case of ballistic
entry, altitude, instead of time is the appropriate independent variable [2]. On the
other hand, mean anomaly along the average flight path has been used instead of
time, for the case of shallow gliding entry [8]. Combining these two approaches,
use of the distance along the trajectory as the independent variable leads to a unified
equation in angle of attack variations along the trajectory [8]. However, solution
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of this equation was attempted only along steep and shallow entry trajectories. For
these two limiting .ases the solutions approach the earlier descriptions in terms of
Bessel functionis and damped Mathieu functions. The general problem of motion
along arbitre-y trajectories was solved by Ramnath [15]}, using the technique of
Generalized Multiple Scales (GMS). By using a nesting of transformations - first
transforming time to distance along the trajectory and then by means of multiple
scaling of the distance variable, he derived highly accurate asymptotic general
solutions to the unified equation.

Another important class of dynamic problems is that dealing with flight at
hypervelocities along the minor circle. Although one can point to a relatively
smaller number of earlier studies on this class of problems, it is growing in interest
because of mission requirements. Early work by Loh [18], Arthur and Baxter {19],
involves minor circle trajectories including descent of gliding and maneuvering re-
entry vehicles. Work on the stability and dynamics at steady flight on minor circles
is quite sparse. Etkin [20], Rangi [21] considered the longitudinal dynamics of
vehicle in a circular orbit. Laitone [S] and his associates considered short period
and phugoid oscillations at hypersonic speeds. However, the study of lateral-
directional dynamics at hypervelocities is, for the most part, not reported in the
literature. The main exceptions are the qualitative analysis of Nonweiler [22] and
the detailed work of Drummond [23]. However it is important to note that most of
these deal with the analysis of the dynamics at steady flight. The case of variable
flight conditions, as in transition trajectories of minor circles, especially dealing
with lateral-directional dynamics, is almost totally lacking.

In this report an approach is developed extending the earlier work of Ramnath
[15], for the analysis of the general motion and control of a class of hypervelocity
flight vehicles. With particular emphasis on the dynamics of a hypervelocity vehicle
during variable flight conditions, two broad categories of flight are analyzed:

(1) Re-entry dynamics on steep, shallow, or intermediate entry trajectories

(2) Flight dynamics on minor circle trajectories at constant altitude and constant
(or variable) latitudes.

Reflecting this view, the report is organized as follows. In Section 2, the prob-
lem formulation is developed for both re-entry and minor circle flight. It includes
such considerations as the flight scenario, physical aerodynamic and vehicle prop-
erties in each situation, and development of the appropriate equations of motion.
In Section 2.1 the re-entry dynamics are formulated and examined by means of
a unified mathematical model valid for general re-entry trajectories. Section 2.2
consists of the formulation of the mathematical and physical model reflecting the
flight dynamics on minor circles, at constant and variable flight conditions, the lat-
ter being descriptive of accelerating flight. Section 3 consists of an outline of the
general analysis method, namely the Generalized Multiple Scales (GMS) method.
In Section 4, the GMS method is applied to the re-entry dynamics. Asymptotic so-
lutions are developed by the GMS method exhibiting the separation of the fast and
slow motions during the re-entry deceleration. For general re-entry trajectories and
a vehicle represented by the Space Shuttle, the GMS solutions are compared with
the numerical solutions of the equations of motions, showing excellent accuracy.

2
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Next, Section S presents an application to the flight dynamics on minor circles.
Again, asymptotic solutions are developed by the GMS method for the case of
accelerating flight on minor circles, showing excellent agreement with numerical
solutions. New phenomena of rurning points and bifurcations are discovered for
this class of flight. In Section 6, some major peculiarities of time varying systems
are presented, and simple and useful stability criteria for re-entry dynamics are
developed, including an estimate of the critical altitude below which the dynamics
could become unstable. Next, Section 7 presents an outline of an analytical asymp-
totic theory of parameter sensitivity by the GMS method. The sensitivity of the
flight dyanmics to parameter variations is developed in a separable form reflecting
the fast and slow dynamics, and applied to the re-entry case. In Section 8, a brief
error analysis is presented, relating to the errors caused by the GMS approach.
Of particular interest is the powerful error theorem showing the strict and sharp
bounds on the errors. Section 9 consists of the development of a new general
framework for control analysis and design for time varying systems by the GMS
methodology. Transfer functions are systematically developed in a separable form
showing the fast and slow contributions. This representation, which is valid and
acccurate for time varying systems, includes the time-invariant case as a special
case. Main limitations of linear time-invariant(LTI) control theory are presented.

A top level control design procedure using the GMS approach is also presented.
This will obviate the usual limitations of the LTI approach resulting in a more
satisfactory control design procedure. Further work is outlined in Section 10,
followed by summary and conclusions in Section 11.




2 PROBLEM FORMULATION

2.1 Features of Hypervelocity Vehicles

The use of transatmospheric vehicles travelling at hypersonic velocities has
been studied by the Air Force and other organizations with increasing interest,
being motivated by a need for a more economical access to space. Such vehicles
are eventually envisioned to be similar to aircraft with enormously enhanced flight
envelopes. Ability to take-off and land from airfields and having short turnaround
times are some important considerations. The large flight envelope imposes severe
requirements on the hypervelocity vehicle. The need to operate at low speeds
during take-off and landing and also at hypersonic speeds at some other times
leads to complications in the stability and control characteristics of the vehicle. For
example, at subsonic speeds the aerodynamic center is near the quarter-chord point
whereas it moves to half-chord at supersonic speeds. Thus the vehicle may have
weak static stability (or even instability) at subsonic speeds, but may be statically
too stable at supersonic speeds. As the subsonic speed increases the overall trend is
one of forward movement of the aerodynamic center as Mach number M approaches
unity, and then rearward movement at supersonic speeds. The extent of this shift
depends greatly on aspect ratio, planform, etc. The largest change occurs for (i)
high aspect ratio and (ii) rectangular planform. The hypersonic vehicle is likely to
have low aspect ratio and triangular wing planform and so probably has the least
shift in aerodynamic center. Even a small shift could conceivably have a noticeable
effect on the static stability of the vehicle.

The effects of power on the stability and control characteristics of the vehicle
depend on the vehicle configuration, power plant type and flight condition. The
effects of power can be categorized as follows:

(i) Balance of forces along the flight path. Usually these belong to performance
studies and not to the discipline of stability and control.

(ii) Effect on lift. These effects are small even for propeller aircraft and are
definitely negligible for jet aircraft.

(iii) Effect on pitching moments. They influence the way in which the vehicle
is trimmed and for determining allowable range of movement of the center
of gravity.

The effects of power which depend on the change in angle-of-attack for jet
engine driven vehicles are contained in the parameter dCy, /dC], for both steady
flight conditions and for pull-ups. Thus both the neutral point Ng and the maneuver
point Ny, are influenced by the power effects.Trim changes due to power are also
worthy of consideration but these are important mainly at low speeds where the
power effects are large. The power-on power-off effects would include (i) static
stability, and (ii) initiation of transients. These effects would be relatively small
and tractable at steady flight conditions. However, their effect during accelerated
flight would be tractable by the asymptotic eigenfunction expansions developed by
the GMS theory later.
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An important consideration of flight at hypersonic speeds is that of aerodynamic
heating of the vehicle. Transatmospheric vehicles using air breathing propulsion
systems for long periods at hypersonic speeds are exposed to severe aerodynamic
heat fluxes. The thermal protection of these vehicles is an important consideration
in the design of the vehicle. The heat load depends on the vehicle shape, attitude,
speed, density etc. (largely trajectory-dependent). The problem of determining
optimal trajectories leading to minimum thermal protection system weight has been
studied by some investigators. However, we do not consider this problem in this
study.

Density variations with altitude are considered, using an exponential decay with
altitude, with the standard adiabatic or isothermal lapse rate. This model is used
to develop analytical solutions to angle-of-attack variations along a steep entry
trajectory (Chapter 4). However, in generating GMS solutions to the Space Shuttle
dynamics, density variations using the Space Shuttle data base were used (Fig 8).
Flowfield characteristics were considered. The principal effects are captured in the
movement of the acrodynamic center with Mach number change. In any case, the
changes caused by this effect are within the applicability of the GMS theory.

The dynamics of the hypervelocity vehicle are formulated along basically two
different classes of trajectories. Each scenario is the consequence of different
mission requirements, as discussed earlier. First we will consider the re-entry
class of trajectories and later, flight on minor circle paths. During the course of
these investigations, we will consider longitudinal motions and lateral-directional
dynamics as well.

2.2 Re-Entry Paths

In this section we will consider the longitudinal stability of hypervelocity flight
vehicles. Only motion in the plane of symmetry is considered, under the action
of aerodynamic forces and moments. We assume a spherical earth and that the
vehicle experiences lift but does not roll. The axis system is chosen so that it
rotates about the center of mass of the vehicle and that the x-axis is always tan-
gential to the instantaneous flight path (Figure 1). The equations of motion for
arbitrary flight paths and no thrust, involve inertia, gravity and aerodynamic forces
and moments. Drag and lift along the tangent and normal to the flight paths are
considered in the force equations. The pitching moment equation considers the
balance of aerodynamic, inertial and gravity torques.
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Fig. 1. Axis System and Nomenclature (Re-Entry).

In order to develop the equation describing the motion in the plane of symmetry,
we assume that the center of mass of the vehicie travels along a known trajectory.
In general it may be prescribed from other considerations, being optimal according
to some criterion. For example, the trajectory resulting in the minimal thermal
protection system weight was considered in an earlier work [15]. Any particular
trajectory may be considered. In the present case a typical trajectory flown by
the Space Shuttle as obtained from NASA-JSC is considered. It is neither the
steep ballistic trjectory nor a very shallow one. Indeed, the theory and approach
developed in this work are applicable to any trajectory. Now as the vehicle center
of mass travels along this trajectory, we address the problem of analyzing the
vehicle dynamics about the trajectory. We assume that the perturbed motion about
the trajectory does not affect the trajectory. As a consequence, the perturbation
equations are nonautonomous and have time varying coefficients.

The equations of motion for symmetric motions are [3-6, 42]:

V = —pSCpV?%/(2m) — gsin~ (2.1)
._pSCv: V2
Vi=—"—=-(9——)cosy (2.2)
_ pSLCmV? 3¢ I -1, .
g = 2T, 2r( T, ) sin 26 (2.3)
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and by the kinematic relations

0 =q+ (V/r)cosy (2.4)
f =V siny (2.5)
b=v+a (2.6)

where the dot denotes differentiation with respect to time. We assume that the
slope of the lift curve is approximately independent of the flight speed and Mach
number in high supersonic flight and linearize the aerodynamic coefficients about
the nominal trajectory.

From the above relations, we can derive the following nonlinear differential
equation for @ by eliminating the V and 6 variables [8]. That is,

d’a SCLVdp  pSVdCy N pSLCmVZ

@2 Tom & 2m @t 2,
3g Iz - Iz . —
2r( I )sin 2(y + @)
+(§ - 22) sin 2y — pSCp cosy — ”—zﬁc CV2=0 (2.7)
;" 25 v om J €087 am2 ~D¥L '

We now change the independent variable from t to a distance variable £ (i.e.
distance along the reference trajectory) according to

LE(t) = V(1) (2.8)

where L is the reference length for the vehicle. Thus the new independent variable
§ is interpreted as the number of reference lengths traversed along the reference
trajectory by the hypervelocity vehicle. By virtue of (2.8) we can write

d d d¢ Vd
E()=EE( E"'_,jgg() (2.9)
and
2
;ﬂ() (V) dfz() z(dV/dE) d/dg( ) (2.10)
Further, let
7
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Following [8,42], we assume, for small variations in o

Cp=Cp,+Cp,a

Cr=CL,+C
where o = @ — a, = perturbation angle of attack and that

L..
Cm = Cmaa + Cmad + Cmq(v)o

(2.11)

(2.12)

(2.13)

Combining (2.7) - (2.13), the angle of attack oscillations can be seen to satisfy

the equation

2
j—g +w1(e)§‘§ +wo(€)a = F(€)

where

Vl
1(€) = 8(Cz, — o(Crg + Cimg)] +
| gL ! V!
wo(€) = =86(cCm, + WCD“ cosvy)+6Cr_ + 5VCLQ

~ 6%[CL,(0Cm, +Cp,) + (CL,CD,)]

3L gL
+ T(Vi)v cos 2(y + ap)
L V2
1(8) = 8(73)[Cp, — 0Cmy(1 - Slleos 1 —8Cy,

gL. 3L gL .
+ 5201,0(0&J +0Cm,) — (‘—/-5)[(7- - 75) sin 24

3L
+ 5 vsin 2(y + ao)]

(2.14)

(2.15)
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Equation (2.14) is time-varying and inhomogene~s. The coefficients of this
equation are known in terms of the trajectory at the cemcr of mass. In general, it
cannot be solved in closed form. It is important to note that the time-to-distance
transformation of eq.(2.8) enables us to preserve the aerodynamic nonlinearity in
the equations of motion. As consistent with standard theory, only linear dependence
of the aerodynamic parameters Cp, C;, and Cy, on variables such as angle of attack
are assumed.

For special cases of trajectories, the coefficients have particular known forms. In
these cases the motion can be approximated by well-known functions of mathemati-
cal physics. They include, for example, Bessel functions, confluent hypergeometric
functions and Mathieu functions [15,37].

2.3 Flight Along Minor Circles

In this section we will consider the dynamics of a generic hypervelocity vehicle
on minor circles. As discussed earlier, this class of trajectories may be dictated
by certain mission requirements. Flight at a constant altitude and latitude (minor
circle) might be required because of military or meteorological reasons. A new
landing site might become necessary midway in the hypersonic flight. Steady tumns
from a great circle and the trajectories for the other situations in the general class
discussed above are all likely to be on minor circles.

The formulation of the problem of dynamic analysis of a hypervelocity flight
vehicle traveling along a minor circle is based on [23]. Following Drummond [23],
we consider the vehicle on a minor circle of radius r (Figure. 2) about an axis
passing through the center of the earth. The axis system is given in Figure 3. We
consider a spherical, nonrotating earth and flight at constant altitude h above the
earth surface. The velocity of the center of mass of the vehicle is V, directed along
the x axis. The thrust vector T is in the 22 plane and at an angle ~ to the x axis.
With the usual definitions of z,y, 2, the angle of attack a, bank angle ¢ at zero
side slip, and with this notation and specification of the problem, the equations for
force balance in the z,y, and z directions are:

Tcosyr—D=0

2

mgsin ¢ — (sin Be cos ¢ — cos B sin¢) = 0 (2.16)

V2
(sin Bcsin @ — cos B cos¢) =0

m
—L —Tsinyr —mgcos¢ —

Using the local circular velocity ,/gr, and the earth’s radius Re, the speed V
and the radius r of the minor circle are nondimensionalized by
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Fig. 3. Forces and Axis System (Minor Circle).
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s=V/\/gR, (2.17)

and

r=r/R, (2.18)

Physically, if 8. = 0, the flight is on a great circle (a special minor circle),
leading to

V2
mg = m-— (2.19)
the weight being exactly counterbalanced by the centrifugal force. Now the vehicle
is in a circular orbit, with the bank angle ¢ being indeterminate. If 8. = 90°, the
radius of the minor circle ¥ = 0, and ¢ = 90°. This situation is physically not
meaningful and is unrealizable. But large lift is required for small radius tumns.

Flight on a minor circle is possible at different speeds. These are parameterized
by the speed ratio s, whose value lies in the range s = 0.2 to s = 1.4. The value of
s = 1 corresponds to orbital velocity. At this flight condition the centrifugal force
counteracts the weight and aerodynamic lift is not required to maintain flight. In
general, flight on a minor circle is possible at different altitudes. For a small radius
circle, large aerodynamic lift is required. For small values of the speed ratio, the
centrifugal force is small and aerodynamic lift is needed to balance the weight. For
supercircular flight on a minor circle it is necessary to add a downward component
of lift, thus countering the additional centrifugal force. This leads to bank angles
greater than 90°. For tight turns (i.e. small radius) the bank angle ¢ ~ 90°. For
flight on minor circles of large radius, ¢ is near 0° for subcircular speeds and ¢
is near 180° for s > 1. It has been suggested [23] that a candidate hypersonic
vehicle might have a delta-wing configuration with a sweep angle of about 75°
leading to temperatures in flight of about 3500-4000°F. It is felt that the highest
temperatures will be attained for the minor circle of the smallest radius (F = 0.1)
and lowest altitude. Just as we may consider a nominal re-entry trajectory as the
one for the minimal thermal protection system weight, we may consider, as the
nominal case, the minor circle of the smallest meaningful radius which < likely to
produce the highest temperatures. .

2.3.1 Dynamics of a Vehicle Flying on a Minor Circle

We now consider the dynamics of the hypervelocity flight vehicle as its center
of mass travels along a minor circle. This problem formulation closely follows the
development by Drummond [23]. Using a spherical nonrotating earth model and
body-fixed stability axes, the exact nonlinear equations are developed by balancing
terms arising from inertia, gravity and aerodynamics. We note that in the model
used we neglect the small contributions due to Coriolis and centripetal accelerations
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as well as earth’s oblateness effects and gravity gradient effects at the operating
altitude. The nonlinear equations of motion are then linearized in the usual way
about the reference flight condition.

As usual the aerodynamic forces and moments are expanded in a Taylor’s series
representation in u,v,w,p,q,r, and z and only first order terms are retained. As
shown in [23], the linearized equations of motion in this case have additional terms
due to flight on a minor circle, in comparison with the standard linear equations
of motion at steady flight for a conventional aircraft. Therefore, a strict separation
of the longitudinal and lateral-directional motion on a minor circle may not be
achievable because of coupling terms. However, such a coupling may be weak
enough to warrant neglecting it in many cases of interest.

In an effort to retain connection with the dynamics of conventional aircraft at
steady flights, we will treat the dynamics as symmetric motions and antisymmetric
motions. Therefore the symmetric motions will consist of Short period and Phugoid
modes. The lateral-directional dynamics of Dutch Roll and the usual roll and
spiral modes will constitute the remaining modes of motion. In addition to these,
Drummond discusses a new symmetric mode which he calls the u, z;, 23 mode.
This involves z; the coordinate of mass center of the vehicle relative to the minor
circle in the flight direction. The frequency of this oscillatory mode is independent
of the new minor circle radius but varies inversely with the sped ratio s. This mode
is relatively of lesser importance than the others and so it will not be discussed
further.

The development of the equations of motion of a hypersonic vehicle flying on a
minor circle at constant velocity and other flight conditions is given by Drummond
[23]. He then develops solutions to these equations in terms of the basic modes of
motion such as Dutch Roll, Short Period, etc. This solution process is valid only
when the flight conditions are steady. In this case the differential equations have
constant coefficients. The system eigenvalues are then constant. The linearized
equations of motion given by Drummond [23] are of the vector-matrix form

Z=FZ

where Z is the vector of state variables and F is the matrix of system coefficients.
Drummond then considers a separation of the longitudinal (i.e., symmetric) mo-
tions and the lateral-directional dynamics. As usual each of these modes leads to
a constant-coefficient linear differential equation. In the longitudinal mode, the
familiar phugoid and short period motions combine with a new symmetric oscilla-
tory “u, zy, 2;” mode. The lateral-directional motions involve the usual roll, Dutch
Roll, and spiral modes. Following Drummond, the decoupled homogenous equa-
tion describing the symmetric motions in the variables (u, o, ¢, 0, 21, 21) can be
written in the scalar form

6 .
3 420 =0 (2.20)
1=0
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“where Ag = 1 and z(¥) = d¥z/d¢}

The coefficients A; are determined by the radius of the minor circle and the
flight condition. In the case of flight on a particular minor circle at a specified
flight condition, the coefficients A; are constant. In this simple case the general
symmetric motion is described by the familiar short period and phugoid modes,
and the new symmetric u, 1, 21 mode. The characteristic equation

6 .
Y AN=0 (2.21)
s
can be factored into
(A2 + aspA + bsp) (A% + appd + bpp) (A2 +wl ;. . ) =0 (2.22)
where the short period roots are given by
A2+ asph+bsp =0 (2.23)
and the phugoid roots by
A+ app 4 bpp =0 (2.24)
The roots given by
Mtwl, =0 (2.25)

constitute the new symmetric u, 1, 2; mode.

Similarly in the lateral-directional dynamics, we identify the classical Dutch
Roll oscillations and the roll-spiral nonoscillatory mode. The Dutch Roll mode is
a damped oscillation involving all the lateral variables.

The decoupled differential equation is of the form

4 .
3 Bizl) =0 (2.26)
1=0

where B4 = 1 and z() = %’-.

Again, the characteristic equation can be written as

(A2 + aged + bgr) (A2 + arsh + brs) =0 (2.27)
In this case the Dutch Roll oscillations are represented by the complex roots
13




A+ agd+by =o0 (2.28)

The roll-spiral roots, both being real, are given by
Az + arsA + brs =0 (2.29)
Using this basic approach, we will now go to on to consider the linearized

equations of motion of the hypervelocity vehicle flying on a minor circle, while its
velocity changes continuously.

2.3.2 Accelerating Flight on a Minor Circle

With the usual notation [39], the linearized equations of motion are as follows.
The longitudinal equations are,

- Xyu— (Xag+9)a+gsg=0 (z)
Zy . Lo .
-7 + & — V.o =0 (¥7) (2.30)

~Myu — Maa — My + 6 ~ My = Mgb  (iii)
Similarly the linearized lateral-directional equations are

- Yyu+Vr—gé=0 (4)
—Lyv - Lyr + ¢ — Lpé = Lg b4 () | (2.31)

—Nyv + # = Nyr — Npd = N b + N5 6, (3%9)

These are the basic linearized equations of motion of the flight vehicle over a
flat earth. However, slight modifications due to minor circle trajectories are made,
in accordance with Drummond’s [23] analysis. For instance, for minor circle flight,
¢ depends not only on p but also on § and . Further, ¢ depends on ¢ and ¢ as
well as r. These points are discussed in detail by Drummond [23]. Modifications
to the stability derivatives and to the equations of motion are given in [23]. We use
Drummond’s model, after further introducing the variable velocity. In this case all
stability derivatives such as Xy, M,, etc. are dependent on flight velocity — i.e.,
Xu(V), Mq(V)... With a particular acceleration profile, these parameters vary
with time, thereby leading to time varying differential equations.

The mathematical model of the vehicle dynamics for the accelerating case is
developed starting from Drummond’s model for the case of steady flight [23]
on minor circles. In this case we consider the vehicle to fly on a minor circle
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with a slowly increasing velocity, i.e., the velocity increases slowly from s = 0.2
to s = 1.4. We consider a linearization of the equations of motion about this
slowly varying velocity. Thus the linearization is about a nominal or prescribed
variation or time history in velocity, instead of a constant velocity. Drummond’s
model is still valid, but his solution based on constant coefficient model is no
longer valid. In our approach, we use Drummond’s model involving a generic
hypersonic vehicle, linearization of the equations and the nominal velocity profile.
However, we introduce an acceleration profile to correspond to the velocities in
Drummond’s model [23]. This results in a time varying model. We solve this
set of nonautonomous differential equations by the GMS method. It is useful to
note that this constitutes a time varying model as an extension and developed from
Drummond’s constant coefficient model which is only valid at steady flight.

The dynamic equations describing the motion on a minor circle are written
separately in terms of the symmetric and the antisymmetric parts. We note that
eq.(2.30) is written in a coupled form, coupling the variables u,a and 6. If this
equation is decoupled by cross-differentiation and elimination, a single equation
of fourth order would represent the dynamics of each of the variables. Similarly
the decoupling the lateral-directional equations (2.31) by the same process, another
equation of fourth order is obtained for each of the variables v,r and ¢. Each of
these decoupled equations in the longitudinal or lateral-directional motions can be
written in the general form

4 )
) w;z() =0 (2.32)
rd

The coefficients w; depend on the minor circle radius and the flight condi-
tion. We will now consider that the vehicle is accelerating (or decelerating) while
continuing to fly on the minor circle. This is best treated by parameterizing the
coefficients w; by the speed ratio s, which is the ratio of the actual vehicle speed to
the orbital speed. Physical constraints on the type of power plant and acceleration
capability indicate that the velocity of the vehicle changes slowly compared to the
important time constants of the motion. Thus the coefficients w; vary on a slow

time scale ¢ = et, while the aircraft dynamics vary on the normal time scale ¢. The
physical problem is, therefore, to describe the dynamics of the vehicle as its center
of mass accelerates (or decelerates) on the ¢ time scale. The differential equation
can, therefore, be written as

24: wi(H)z() =0 (2.33)

1=

The formulation assumes that only short period and phugoid modes are treated
in the longitudinal case and the Dutch roll and roll-spiral motions in the lateral case,
each leading to an equation of the above form, the highest order being four. The
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additional symmetric modes and the resulting two characteristic roots can easily
be included in this general formulation.

These equations are now time varying and cannot be solved exactly. We develop
asymptotic solutions by the GMS method.
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3 ANALYSIS APPROACH

3.1 General Remarks

The dynamics of hypervelocity flight vehicles are characterized by the high
speeds at which they operate. Taking this fact into consideration the dynamics
can be analyzed in two situations - (1) at steady flight conditions and (2) variable
flight conditions. The case of steady flight presents no great problems in regard
to the analysis of small perturbation motion about a prescribed flight condition.
However special situations such as steady flight on minor circles introduce special
considerations and are treated in the literature [23]. However, the case of variable
flight conditions is interesting but is difficult to analyze. We will investigate this
class of problems by the GMS method.

The steady flight case arises as a special case of the more general result, as
will be clear later. However, in both cases, i.e., steady and variable flight condi-
tions, it is convenient to treat the flight dynamics from the point of symmetric and
antisymmetric motions. These are the familiar longitudinal and lateral-directional
motions of conventional aircraft at steady flight. In our approach an effort is made
to keep these notions in analyzing the dynamics of hypervelocity vehicles. For in-
stance, when the flight conditions are steady, the oscillatory motions are typically
described by mathematical functions of the form

f(t) = C) exp(—at) sin(wt) + Cy exp(—at) cos(wt) (3.1)

where exp(—at) represents the damping (or decay) of the oscillation and w is
the frequency of the oscillation. The arbitrary constants C; and C, are fixed
by the initial or boundary conditions on the motion. The important point is that
when the flight conditions are constant, the exponent (—at) of the damping term
exp(—at) is linear in the variable t. Similarly the phase of the oscillatory motion
which is given by wt is also linear in ¢ and the frequency w is constant. Because
of these simple relations the characteristic motions of the flight vehicles are well
understood. However these notions are no longer valid if the flight conditions
change continuously. In this case, the damping and phase of the oscillatory motion
are no longer linear in ¢. The frequency is not constant and varies nonlinearly with
t. Further the damping is not even an exponential of the form exp(—at) which
occurs in the steady flight case. All these complications are introduced by the
changing flight conditions. Further, the prediction of system stability also becomes
extremely difficult due to the inadequacy of the conventional steady flight analysis.

In this case of variable flight conditions, the linearized equations of motion are
time-varying. The behavior of such systems can be extremely complex and counter-
intuitive. However, in the dynamics of flight vehicles, it is possible, under certain
conditions, to represent the motions in terms of simple characteristic functions
such as elementary transcendental functions and algebraic functions however, with
nonlinear arguments, by means of asymptotic theory. For instance, the short period
motion can be represented by mathematical functions of the form
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0(t) = C; exp(a(t)) sin(w(t)) + C2 exp(a(t)) cos(w(t)) (3.2)

Unlike the steady flight case, the terms a(t) and w(t) are now nonlinear func-
tions of t. This complexity is essential in time-varying and nonlinear systems.
This means that the frequency is not constant and varies nonlinearly. These repre-
sentations for the amplitude and phase (or frequency) are developed by the GMS
theory.

In developing the asymptotic analytical representations of the complex dynam-
ics, two important properties must be kept in mind,- (1) variable flight conditions
leading to time varying systems, and (2) separation of fast and slow motions. The
nature of variable flight conditions has been discussed above. The mixture of rapid
and slow motions present in most dynamic systems, renders the analysis very dif-
ficult in a manner quite defferent from the complexities due to the variable flight
conditions. The properties (1) and (2) stated above are independent properties and
co-exist in a particular dynamic system. We note, for example, that the hyperveloc-
ity flight dynamics are characterized by a mixture of rapid and slow motions. The
simplest such examples are found even in the steady flight case. The short period
oscillations with high frequency and large damping are fast compared to the slower
phugoid oscillations with low frequency and small or zero damping. Sometimes the
phugoid can even be unstable. Similarly in the lateral-directional case, the Dutch
Roll oscillations lie between the fast roll mode and the slow spiral mode, the later
two being nonoscillatory. When considering changes in flight conditions (speed in
particular), the frequencies are no longer constant. The behavior is nonautonomous
and complex. Nonetheless, there is an inherent separation implicit in the fast and
slow variations in the dynamics of the vehicle. For instance the nonlinear phase
changes in one “mode” occur more rapidly than similar changes in other “modes”.
A systematic separation of such motions is highly desirable, as it leads to great sim-
plification in the dynamic analysis. This, in tumn leads to greater insight, improved
constructive procedures for computation, analysis and design. Such a systematic
separation is the raison d’etre of the Generalized Multiple Scales (GMS) method.
By means of this method, asymptotic solutions are developed systematically, for
several classes of flight dynamic problems. In particular, the GMS method leads
to accurate asymptotic representation of the vehicle dynamics for re-entry trajec-
tories as well as constant altitude minor circle trajectories at hypersonic speeds.
The GMS method is briefly outlined as follows. It has been developed relatively
recently and has led to a large number of applications.

3.2 Generalized Multiple Scales (GMS) Method

This technique is particularly useful in the study of phenomena which exhibit
a mixture of rapid and slow motions. The inherent time constants present in the
dynamics of such systems are systematically separated leading to simpler represen-
tations. Such a separation of the fast and slow motions is achieved by employing
a number of independent “observers”, each using a “clock” which counts time at
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a different rate. Each observer perceives a different aspect of the phenomenon. A
combination of the different aspects yields a composite description of the dynam-
ics. The method is fairly recent in its development but has already been applied
to study a great variety of phenomena, with considerable success.

The technique consists of enlarging the domain of the independent variable
time, into a space of higher dimension by means of “clocks” or scale functions.
The differential equations describing a dynamic phenomenon are extended into a
set of partial differential equations. A small parameter ¢ (<& 1) is identified as
the ratio of the fast and slow time constants. By means of this parameter the
extended equations are solved order by order and lead to asymptotic solutions.
Thus the concept of transformations forms a particular case of this general process
of extension.

There are many dynamic phenomena where the choice of linear scales is in-
adequate. Examples are those which are described by time varying and nonlinear
differential equations. In such cases, the solution process by the GMS method
requires greater freedom in the choice of scale functions. The method was gener-
alized by Ramnath and Sandri [13,44] to include nonlinear and complex scales.

This generalization is tantamount to the use of “accelerating” or “decelerating”
clocks, i.e., time is counted at an increasingly faster or slower rate, depending on the
phenomenon. By this means, simple and uniform representations of the dynamics
are obtained. These ideas have been developed and elaborated by Ramnath through
theoretical developments and applications to a variety of aerospace applications [9-
17]. Therefore, the GMS technique will not be treated in depth in this report.
Rather, we will invoke the principal results of the GMS technique to the problem
of hypervelocity flight dynamics.

The main idea of the GMS method is to extend the independent variable into
a new space. The dependent variable is also suitably extended. The problem is
solved in the new space and the solutions are expressed in the original problem
variables. The general concept can be usefully described in an abstract framework
as follows.

Consider a class of single-valued mapping functions ® with a domain 6 and a
range p (Figure 4). This may be the differential equation of motion

®: L{z(t),t,e} =0 (3.3)

Here t and z are defined on the sets § and p respectively and L is a differential
operator. The small parameter € (0 < € < 1) is the ratio of the fast and slow
time constants. We now consider new mappings E5 of § onto the set I; which
is included in a larger set of §. Thus I is the image of § . The dimension of
6 > dimension of é and § is defined as the extension of § . Now we consider the
mapping ® of § onto a set p which includes p. We define the mapping @ as the
extension of ¢ if and only if

QoEs=9 (3.4)
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That is, we seek the extensions of the domain and the mapping such that
their composition yields the original mapping ®. In other words, the solution of a
differential equation is sought by first extending it into a new space and then solving
it in the new space. The solution to the original problem is directly obtained by
restricting the extended solution to the original problem variables.

In a practical sense we can also define extension as:
EXTENSION

Given a function f(t,€) and another function F(r,€) of the n independent
variables 7 = 74,7, ...Tn (each of which can be an n-dimensional vector), we say
that F(z) is an extension of f(t) if and only if there exists a set of relations

T = T,'(t, ,6) (3.5)

i.e.,

7, = { n(t,€), (L, €)y...tn(t,€) } (3.6)

such that, when inserted into F(z,¢) yield F(z(t,¢€),¢e) = f(t,€).
In applications we extend

t — {r0,71,...} (3.7)

z(t,€) — z(70,71, ...y €) (3.8)

where 7; = 7; (¢, €) are the time scales and are chosen to yield accurate asymptotic
solutions.

The development of solutions using the GMS method depends on the presence
of a small parameter ¢, where and how it appears in the mathematical model of a
system. Indeed these factors determine whether a problem is singular or secular
in regard to perturbations and approximate solutions. The “clock” functions are
appropriately chosen to render the asymptotic solutions uniformly valid. In general,
we extend the variables as shown above. A fairly general class of these extensions
is given by

o=t =¢" / k(t)dt (3.9)

where k(t) is the “clock” function and the exponent m determines whether the
technique solves singular or secular perturbation problems. The precise value of
m is determined from the Principle of Minimal Simplification and its extensions
[16,41]. For a given problem, Ramnath has shown [16] that there is a correct
choice of m for a proper asymptotic analysis, based on the Kruskal diagram.
Having determined m, then the clock k(t) can be determined from the governing
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differential equation of motion. This again, will change, according to whether the
perturbation is singular or secular.

Singular and Secular Perturbation:

These terms are used in asymptotic analysis to describe the nature of nonunifor-
mity in the perturbation solution. In developing an approximate representation of
a complicated function (for example, the solution of a nonautonomous differential
equation) z(t, €), one writes,

z(t,€) ~ zo(t) + ez1(t) + 2x(t) + ... (3.10)

In this asymptotic expansion, the successive terms decrease rapidly in magnitude.
In this case, the accuracy of the approximation increases dramatically by consid-
ering terms of higher order. Thus, most of the contribution to the solution is
contained in the first term, and the second term is a small correction. The third
term is an even smaller correction, and so on. Often however, in real problems,
this may happen in one part of the domain of interest and break down in another
part. This is termed a nonuniformity in the perturbation expansion. If this nonuni-
formity occurs for small or finite values of the independent variable (for example,
for t = 0), then it is termed a singular perturbation. If it occurs for large values of
the argument (for example, { — o0), then it is a secular perturbation. These and
related points are discussed in detail in [9,13,44] and other works on asymptotic
analysis and perturbation theory. The interested reader may refer to these works
for further details.

In the present class of problems dealing with hypervelocity flight dynamics,
Ramnath [9-17] shows that, in general the clock functions are not only nonlinear,
but complex quantities.

Application of GMS Technique

The GMS theory has been developed in a very general context on a large variety
of mathematical models, including ordinary and partial differential equations. It
has been particularly useful in analyzing systems described by ordinary differential
equations occurring in dynamic systems analysis and control. Hypervelocity flight
vehicle dynamics belong to this area. In order to facilitate an understanding of
the mechanics of applying the GMS theory, application of the GMS technique to
simple problems is illustrated in Appendix B. The presentation is based on Ram-
nath’s[9,13] work on the GMS theory. The theory and applications thus illustrated
can be extended to higher order systems. The reader interested in the GMS analy-
sis of distributed parameter systems and partial differential equations may consult
[10,11] by Ramnath and Jenie.

Higher Order Equations

The simple examples in Appendix B illustrate the mechanics of applying the
multiple scales theory on differential equations of first order. A similar approach
is taken even with higher order equations. For time-varying equations of second
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and higher order, even when they are linear, it is impossible in general to derive
exact analytical solutions. Therefore, for general classes of systems, asymptotic
solutions are obtained by the GMS method as shown by Ramnath [9-17].

The precise form and nature of the GMS solutions would depend on whether
the problem is of the singular or secular perturbation type, and the nature of the
extension chosen. These are matters of detail which are discussed in [9-17) on
various types of systems. For example, in second order linear systems, the GMS
theory recovers the WKBJ solutions under certain conditions [13]. The equations
of motion of hypervelocity flight vehicles are of fourth order. The GMS technique
is employed on this class of systems to generate asymptotic solutions following
the approach developed in [13].

Thus the equations corresponding to say, the Dutch Roll, short period, or
phugoid mode are suitably extended into multiple time scales and solved in the new
space Application to the re-entry problem, however, involves a nesting of trans-
formations in terms of a distance variable. In this case the GMS technique leads
to multiple space scales (instead of time scales). This approach is now presented
in the next section.
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4 APPLICATION TO RE-ENTRY DYNAMICS

In Section 2.2 a unified equation describing the angle of attack variations was
derived. This involves a transformation from ¢ to a distance variable £, defined as
the number of reference lengths traversed by the vehicle. We will now consider
variations in angle of attack as described in this unified Equation (2.14), and applied
to the space shuttle vehicle.

In the early stages of re-entry the Space Shuttle may have high angles-of-
attack. However, in order to develop some degree of insight, we may choose to
study some special trajectories. A well-studied class of re-entry problems are those
along ballistic trajectories. For a ballistic entry the gravity terms are much smaller
than the aerodynamic drag and are therefore neglected. Only the drag force is
retained. Further, considering straight line ballistic trajectories in accordance with
standard practice [8,15], the terms C',/ and Cp_ are neglected. This is based on
the rationale that when the flight path angle is high enough such that the descent
is ballistic, the lift can be neglected and the drag is independent of a. Under
these conditions, as the vehicle center of mass travels along a ballistic trajectory at
hypersonic speeds, the angle of attack variations are described by the equation

o + 6(Cr, —Cp, — OCmq)a'

4.1

—6[Cma +5CLQ(Ucmq+CDo) +6’CLa]a = 0 ( )
where the prime denotes differentiation with respect to €. Considering the atmo-
spheric density variation to be represented by

p = ps exp(—Bh) (4.2)

where ps, h are the density at sea level and altitude of vehicle respectively and
B a constant, the coefficients of (4.1) can be determined as a function of the
trajectory. Employing several transformations and algebraic manipulations [2,8], it
can be shown that Equation (4.1) is expressible as Kummer’s equation. Solutions
can then be developed in terms of confluent hypergeometric functions. The actual
vehicle parameters and the trajectory determine the values of the coefficients in
Equation (4.2). Let us define new parameters

-— 68 '
Ky = 2BL sin v, (€10 = Cpy = oCrm,| ®)
8o . ..
He=- (BL sinv,)? (6Cm, + BLCL,, sin 7o) () (4.3)
Koo _83C1,(0Cm, + Cp,) (151)
8= B2L2 sin v,
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These are now defined by the vehicle parameters and the trajectory. When the
nondimensional density p = La is much less than the ratio

P
K1+K22
K
E= K- K;
that is,
P << Kp (4.4)

it can be shown that the angle of attack variations can be described by Bessel
functions [2,8].

a(h) ~ exp(K1p(h) {Crlo(n(W) + Coo(n(k) ) (45)

where C'1,C9 are constants and

n(h) = 2/K; + Kz p(h) (4.6)

and Jg, Yp are the zeroth order Bessel functions of the first and second kind
respectively. This agrees with the results of Allen [2] and Vinh and Laitone [8].

However, when the condition stated in (4.4) is not satisfied, and the parameters
Ky, K3, K3 are not constant and vary rather rapidly with the trajectory, then the
solution (4.5), is not valid. In this case, the more general solution in terms of
confluent hypergeometric functions [8] must be used. Indeed, Vinh and Laitone
state that small changes in the constants K; can produce a profound change in
the character of the solutions. When K are not constants, as in our problem, the
Vinh-Laitone approach through Kummer’s equation cannot be used. Against this
rather complicated background, we will develop solutions by means of the GMS
method.

4.1 GMS Solutions

The complex nature of the angle of attack variations in re-entry demand, even
in specialized cases, a representation in terms of higher transcendental functions
such as Bessel functions and confluent hypergeometric functions. Even then, a
simple description of the dynamics in terms of stability, frequency, damping and
control analysis is difficult. Recognizing that the motion of the vehicle exists on
different scales — i.e., fast and slow, we appeal to the GMS method and develop
the solutions as follows.

The basic solution of the re-entry dynamics by the GMS method was developed
by Ramnath [15], and illustrated by using the space shuttle 049 vehicle. In the
present context, a different vehicle and trajectory are used. Instead of addressing
the re- entry equations in specialized cases, we consider the general Equation (2.14)
for angle of attack. The GMS solution is derived as follows. The coefficients of
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equation (2.14) vary “slowly” in that the characteristic time constant of the solution
is much smaller than the time constants of the variation of the coefficients. Thus
the coefficients w; and wq are parameterized by a small parameter €(< 1) as
wy (€€) and wo(e€) and if necessary, f(ef). Invoking GMS theory, we extend

T~ bk 6=F = [ X (4.7)

€

where

? = Cf and a(f, C) - a(an fl)
According to the GMS theory, the fast or dominant solution is given by [15]:

2 4
of(€) = cxp[—%/wl(f)df]{cl sin(/(wo - &%)idf

w2 1
+C; cos ] (wo — “)1)dg} (4.8)

The slow solution is given by:

wf -1/4
as(€) =| wo — 1 | (4.9)
The complete GMS solution is given by:

&(&) = as(€)ay(§) (4.10)

The principal results of the GMS theory and its application are developed in [9-
17]. However, the current application involves a different vehicle, environment and
parameters. Therefore, additional analysis is required to ensure the applicability
of the GMS theory as presented in references [9-17] and its accuracy on the new
class of systems. This involves such technical considerations as magnitudes and
rates of variation of the coefficients, etc. These factors have been fully taken
into consideration in our investigation of the hypervelocity flight dynamics and the
necessary technical conditions have been satisfied. The theoretical and application
results as embodied in this report represent a useful and satisfactory validity of the
technical conditions.
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4.2 Application

The theory discussed above is applied to a recent Space Shuttle vehicle and
its trajectories. (Figures 9-27). The data for the vehicle, the trajectories and
the environment are all obtained from NASA-JSC. For one class of vehicles, the
ratio K p is computed along the trajectory (Figure 27). The GMS theory is not
limited to a specific trajectory (e.g., steep, ballistic entry) or to a specific vehicle.
The trajectory parameters are shown in Figures 8-18. The coefficients and the
complex scale functions are also shown (Figures 19-22). Based on these, the fast
and slow GMS solutions are computed and compared with numerical solutions
for the same set of initial conditions (Figures 23-26). In these figures displaying
the solutions, it must be noted that the numerical solutions are shown by solid
lines and the corresponding GMS solutions by broken lines. Further, the ordinate
represents a scaled value of the dependent variable(ie, angle of attack). As the
governing equations are linear and time-varying, the solutions scale directly with
the size of the input or the initial conditions. Therefore, the plots show mainly the
eigenfunctions.

It is seen that the GMS-fast solution represents the frequency extremely well,
but shows a small error in the amplitude peaks. However, this error is corrected by
introducing the slow variation of a(€). The GMS-total solution is extremely ac-
curate and is, in fact, indistinguishable from the numerical solution. This excellent
agreement is seen for other initial or boundary conditions as well.

Figure 23 shows the angle-of attack oscillations against distance along the re-
entry trajectory. Two solutions, - (1) numerical and (2) GMS-fast solutions are
displayed superimposed, for the initial condition of a(0) = 0 and &(0) = 1. The
phase change and frequency are nonlinear and this point is reflected in the figure.
Indeed the frequency increases monotonically as shown by the increasing prox-
imity of the zero-crossings. This is due to the fact that as the vehicle penetrates
into the atmosphere, the aerodynamic spring becomes tighter, - i.e., the spring con-
stant increases, thereby increasing the frequency. However, this frequency change
has a subtle effect on the damping of the oscillation as well, - i.e., the damping
increases. This elusive effect cannot be predicted by overly simplistic approxima-
tions such as the frozen solution. The GMS-fast solution, on the other hand, picks
up the frequency variations extremely well as seen by the zero-crossings which
coincide with those of the numerical solutions. In addition, it also picks up the
subtle variation in damping, but has a slight error in the amplitude representation.
This is not surprising, as the fast solution is designed to describe mainly the fast
variations of the solution, and this is done with great accuracy. The slow part of
the GMS solution is designed to (and does indeed) represent the slow variations
of the solution accurately. By combining the fast and slow parts of the GMS
solution, a highly accurate analytical description of the fast and slow aspects of
the solution are obtained by the GMS-total solution. The great advantage is that
the GMS solutions are analytical. Therefore, they can be used for a variety of
purposes such as parameter trade-off studies. Figure 24 shows a comparison of
the numerical and the GMS-total solutions for the same initial conditions. It is
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clear that the GMS-total solution represents the true behavior extremely accurately
in that it is indistinguishable from the numerical solution. The effect of changing
initial conditions on the accuracy of the solution is examined by generating the
solutions, (1) numerical, (2) GMS-fast and (3) GMS-total, for a different set of
initial conditions, a(0) = 1, &(0) = 0. Even in this case, the GMS-fast solution
represents the frequency extremely well, but has a slight error in amplitude. Again,
the GMS-total represents both the frequency and amplitude of the true solution ex-
tremely accurately, as evidenced by the comparisons with the numerical solutions.
The result of the increasing spring constant due to the increasing aerodynamic
density is shown very clearly by the solutions. It is important to note that the high
accuracy and ease of applicability of the solutions are preserved even when initial
conditions are changed.

Typical trajectories may be steep, ballistic ones along a straight line, spirals at
shallow angles, or those between these extremes. Allen derived approximate solu-
tions using Bessel functions, Vinh and Laitone considered the above two extreme
trajectories. An arbitrary trajectory between these extremes cannot be treated by
either approach. Our GMS solutions are derived for an arbitrary trajectory and are
extremely accurate. In the case of limiting trajectories, the GMS solutions recover
the Bessel or confluent hypergeometric behavior for steep trajectories and that of
the damped Mathieu functions for shallow spiral trajectories.

In the next section, we develop the GMS solutions to the dynamics of hyperve-
locity vehicles flying on minor circles. In particular, the effect of acceleration on
the vehicle dynamics is investigated. Analytical solutions by the GMS theory are
developed. This presentation then leads to an analysis of the stability of motion of
the hypersonic vehicles in Section 6.
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5§ HYPERVELOCITY FLIGHT DYNAMICS ON A MINOR CIRCLE

5.1 General Remarks

In this section we will analyze the dynamics of the vehicle traveling at hyper-
sonic speeds at constant altitudes on minor circle trajectories. The steady flight
case leads to a conventional interpretation in terms of the usual modes of motion of
an aircraft, such as Dutch Roll, Short Period, phugoid, roll and spiral modes. This
case, including deviations from the standard modes because of the minor circle
geometry and related issues are discussed in [23]. The more complicated case of
accelerated flight on minor circles has not been treated in the literature. In this sec-
tion we will first develop asymptotic solutions by the GMS method. The approach
is then applied to a generic vehicle flying on extreme minor circle radii as are
realistic and meaningful. The GMS solutions are compared with direct numerical
solutions for the different geometries and are seen to be highly accurate. The fast
and slow solutions of the GMS approach show a clear separation. These solutions
are discussed in detail. The peculiarities and counter-intuitive behavior of the ve-
hicle on some trajectories are recognized as due to the tumning point phemonenon
and are discussed later..

5.2 Development of the Solution

It is clear that the dynamic equations for the longitudinal and lateral-directional
modes of the hypervelocity vehicle on a minor circle can be written in the form

4

Y wit)zt =0 (5.1)

t=0
Depending on the acceleration (or deceleration) profile of the vehicle, the coef-
ficients w; vary on a slow t time scale, where ¢ = €t,e being a small parameter
(0 < € << 1). Indeed € is the order of the ratio of the time constant of the
dynamics to that of the acceleration change. That is, we assume that the dynamics

change much faster than the acceleration change. In this case we can re-write the
differential equations of motion as

1 . L d'z
E ewi(t)—= =0 (5.2)
t=o0 dt!
We have now expressed the dynamics by a singularly perturbed time varying equa-

tion. In order to solve it we invoke the theory and technique of Generalized
Multiple Scales [9-17].

In accordance with the concept of multiple scales, we extend the domain of the
independent variable, time, as follows:
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t — {z} with £ = (7o,71,...Tn) (5.3)
The variables 7o, 7y, ...7n are functions of { and e. The space of {ro,71,...7n}
constitutes the extended domain. The solution z(t,€) is also extended as
z(t,€) = z(r,¢€).
We also have the freedom to expand z(z,¢) i.e.,

z(1,€) = zo(z) + €21(z) + ...

In general the asymptotic behavior with respect to € is represented as some
power m of €. We have two degrees of freedom in developing approximations —
(1) expansion of the dependent variable and (2) use of more scale functions. This
freedom is utilized in getting a simpler and smoother description with respect to .
The correct behavior in ¢ is obtained by choosing a proper exponent m of ¢. This
choice is facilitated by the application of the Principle of Minimal Simplification.
According to this principle, a compromise must be made between completeness and
simplicity in developing a correct and useful asymptotic approximation. Because
an approximation is made basically by neglecting some terms in a mathematical
model, it is of utmost importance to

(1) neglect only the proper terms in a certain asymptotic limit
(2) retain as many terms as possible and not neglect too many terms.

This is because, each term contains information and neglecting terms results in a
loss of information. However, unless some terms are neglected, the system cannot
be simplified. Therefore, in view of these conflicting requirements, the Principle
of Minimal Simplification enables us to neglect the proper terms consistent with
completeness and simplicity. It was first enunciated by Kruskal [41] and was
refined and extended by Ramnath[16], who then applied it to a variety of aerospace
dynamic systems. A detailed discussion of this technique is beyond the scope of
the current effort and relevance. The interested reader may consult [16]. In the
context of the GMS approach this principle can be applied as follows. Using two
time scales 7, and 7; defined as

t— {r0,71}; 70 = i, = cm/ k(i)dz (5.4)
The time derivative operator d/dt be extended as
i 8 ., 8
L0 el .
dt - a7, te on (5-54)

Higher order derivatives can be similarly extended. The extension of the nth
order derivative operator was given by Ramnath(44]. The proof is by induction.
The problem now is to find the asymptotically correct value for m.
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In the case of the longitudinal and lateral directional equations of the hyper-
velocity vehicle, we have considered the mathematical model to be of order four.
In this case the extension of the fourth order derivative operator is obtained as
follows:

. 8 3
4 m 4
dt/dit — (—61'0 +e k——arl) (5.5b)

By means of the binomial theorem the operator can be expanded in powers of €™
as:

404 (9 om 2m
d*/dt —v(-éTg-)+e ()+e™()+ ... (5.6)

By using arguments of the Principle of Minimal Simplification [16], the best value
of m is found to be

m= -1 (57)

It should be noted that in general, several choices can be made for m. Indeed,
the value of m leading to the proper ordering depends on the kind of asymptotic
problem. However, for the class of problems involving slowly varying coefficients,
m = -1 is the optimal choice. This is particularly true for the dynamics of
hypervelocity flight vehicles along different trajectories studied in this report.

Other choices for m will lead to asymptotically inappropriate forms as shown by
Ramnath [16]. Using the correct value for m, we can develop the asymptotic
solutions for the vehicle dynamics in a multiplicatively separable form on the time
scales 7o, and ;. Thus the solution is given by

~ a~ ~

x(t’e) ~ zfast(t) : zslow(t)'" (5'8)
where
Tfast = zjast(fl) (5.9)
and
Zslow = Zslow(To) (5.10)

The development of the specific solutions is illustrated in the actual application
to the dynamics of a representative vehicle.
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5.3 Application to a Generic Vehicle

The theory of Generalized Multiple Scales is now applied to the dynamic analy-
sisof a representatlve vehicle [23] as it flies at hypersonic speeds on minor circles.
The generic vehicle used to illustrate the GMS approach is the vehicle configu-
ration of Drummond [23] given in Appendix A. In our model, we consider this
vehicle configuration and parameters. However, the velocity of the vehicle flying
on minor circles is allowed to change continuously, correspondmg to an accelera-
tion profile. Following [23] we consider flight along three minor circles, defined
by the normalized radius ¥ = R"

(i) ¥ = 1.0 (ii)F = 0.5 and (iii) ¥ = 0.1 (5.11)

In parucular the two extreme radii ¥ = 1. and ¥ = 0.1 are considered, with
¥ = 0.5 being an intermediate case. However, the nature of the dynamics for
the intermediate case is bounded by the two extreme cases, both qualitatively and
quantitatively and offered no special insight. Therefore, data and discussions are
presented only for the two extreme cases. On each minor circle, we consider
accelerated flight, with the speed ratio s = V/ VvVoR ranging from s = 0.2 to
s = 1.4 in a linear fashxon The independent variable, ¢ (time), is first transformed
to aerodynamic time, t* given by

= (2V/L)t (5.12)

where t* is in airseconds, t in real seconds L is the scale length of the vehicle
(= 150 ft) and V is the vehicle velocity. Therefore, when the speed ratio is s = 0.2,
the vehicle velocity is about 5000 ft/sec, being about 0.2 X orbital speed. In this
low speed range, the relation between real time and aerodynamic time is given by

1 real second & 70 airseconds (5.13)

The acceleration capability of the power plant of the vehicle will determine
the rate of change of the speed ratio s. This would depend on the ability to burn
hydrogen at supersonic speeds and the related technology. For example, assuming
the vehicle to have an average acceleration capability of 2g over the speed range
of s = 0.2 to s = 1.4, the time over which this speed change takes place can be
calculated to be about 500 real seconds. At the low speed this would correspond to
about 35000 airseconds, as the lower limit. From these considerations, the variation
of speed ratio with aerodynamic time is determined as

s = s(et') = ap + ayet* (5.13)

where 1074 < € < 1073, This is an example of a suitable value of €. Indeed, the
theory is valid for any e << 1. The smaller e is, the more accurate is the theory, as
consistent with asymptotic analysis. The actual variation of s(t*) is shown in Fig.
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28. Therefore this is now a situation where the hypervelocity vehicle accelerates
from an initial velocity of s = 0.2 to a final velocity of 8 = 1.4, while flying on
a particular minor circle. In this case the equations of motion are parameterized
by the small parameter e. The GMS theory is now invoked to yield asymptotic
solutions.

Starting from an initial constant velocity of 8 = 0.2 the dynamics of the vehicle
are characterized by the usual modes of motion - i.e., Dutch Roll, short period,
phugoid, roll-spiral modes. Of these the modulus of the Dutch Roll mode is
dominant, followed by the short period mode and then the others. As the vehicle
accelerates (or decelerates) slowly, these modes will change continuously and the
conventional time-invariant theory is no longer applicable, both with respect to
stability analysis and response prediction. We appeal to GMS theory to develop
asymptotic solutions.

In accordance with the GMS approach, the “clock” functions k(t) = k(et*)
are not only nonlinear functions of t*, but are also complex quantities. In the
limit of constant velocity (say s = 0.2) the clocks yield the Dutch Roll (and other)
characteristic roots. However, as the speed ratio changes continuously, the clocks
also change continuously and nonlinearly with t*. The solution is then obtained in
a separable form with respect to fast and slow variations.

We consider the dimensions of the representative vehicle, the operating minor
circle geometry (¥ = 1.0,0.5 and 0.1) and the acceleration profile as discussed
above. Asymptotic solutions are developed by the GMS method, for each mode
starting with the Dutch Roll. In each case two sets of linearly independent boundary
conditions are chosen. Three kinds of solutions were computed:

(1) Direct numerical solution
(2) GMS - fast solution
(3) GMS - total (fast and slow) solutions.

All these are computed for the same initial and boundary conditions. They are
plotted together on the same plot to show a comparison of the relative accuracy.
Then the entire set of computations and plots are repeated for other minor circle
radii. All the relevant plots for the minor circle case are shown in Figures 28-72.
In all the figures displaying a comparison of the numerical and the GMS solutions,
it should be noted that the numerical solutions are depicted by solid lines and the
GMS solutions by the broken lines.

Again, it is important to note that the scales of the ordinates in the responses
are not specified. The model investigated is a linear time-varying system and the
plots represent the characteristic solutions (i.e., eigenfunctions). The exact scales
are not important to study the system properties such as stability, frequency and
damping. The shapes of the solutions would be directly scaled according to the
scale factor.
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5.4 Discussion of the GMS Solutions

As the velocity of the hypersonic vehicle increases linearly, an examination of
the stability derivatives and the characteristic roots shows that they vary highly
nonlinearly with respect to the speed ratio, and aerodynamic time. At the flight
condition represented by the initial constant velocity, the Dutch Roll frequency is
higher than that of the short period mode. However, as the vehicle accelerates,
one cannot even speak of the “frequency” of a mode, but only of nonlinear phase
changes. Even in this situation, the nonautonomous “Dutch Roll”phase changes
faster than that of the time varying short period. Further, within a particular mode
the phase change gets less rapid as the vehicle accelerates. These points can be
noted from the responses. The GMS solutions exhibit the following features. The
GMS-fast solution, Z, represents the fast part of the behavior - i.e., the oscillatory
aspect very well. This is evidenced by the fact that the zero-crossings of the GMS-
fast ((t*)) and the numerical solution are the same (to within the resolution of the
plots). However, the amplitude representation is initially very accurate, but a small
error in amplitude can be noticed (see figures) as t* increases. By combining
the fast and slow behaviors, we obtain the “GMS-total” solution, z(t*). From
the figures we see that this solution is highly accurate with regard to both phase
and amplitude. Indeed, the GMS-total solution Z(t*) is indistinguishable from the
numerical solution. The slow behavior introduces corrections to the amplitudes
precisely at the right times and by the right amounts. The amplitude and phase
variations are quite unlike the dynamics at steady flight. This general pattern can
be seen for the many cases of solutions for both the “Dutch Roll” and the “short
period” modes, - at different initial conditions, different minor circles. In fact,
when attempting a numerical integration using a step size which is not small, it is
found that there is a numerical instability leading to a spurious “damping”and a
complete misrepresentation of the dynamics (Figure 39). Further, it is seen that,
starting from a given initial velocity, the same acceleration leads to more rapid
oscillations and faster damping for flight on minor circles of smaller radii. These
remarks are true for both the “Dutch Roll” and the “short period” modes. The
effect of changing the radius of the minor circle trajectory is shown in Figures
48,49,56 and 59. The Dutch Roll mode is shown in Figures 48 and 49 and the
Short Period oscillations are shown in Figures 56 and 59. The increase in the
nonlinear phase changes and the amplitude decay due to the smaller radius of the
minor circle are clearly seen in these figures.
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“Phugoid”and “Roll-Spiral” Modes

Continuing the analogy with the standard modes of motion of conventional
aircraft, we note that the phugoid and the roll-spiral motions are quite different
from the Dutch Roll and short period modes. Taking the “phugoid”mode first,
we sec that there is a qualitative difference between the minor circles defined by
¥ = 1. and ¥ = 0.1 as seen from the root variations. For ¥ = 0.1, the nonlinear
phase change of the “phugoid” oscillation is monotonic and real. However, for the
case r = 1.0 the “phase” becomes imaginary after some time into the acceleration
and the dynamics are nonoscillatory. That is, at some point in the flight envelope,
there is a turning point. At this point the asymptotic solutions must be continued
into the complex plane to account for the dominant and subdominant contributions
as they interchange their roles. This phenomenon will be discussed later.

However, for flight on the minor circle ¥ = 0.1, the phugoid oscillations show a
continuously decreasing “frequency”. In this case, even with no explicit damping,
the oscillations are implicitly damped, engendered by the nonlinear phase change.
This damping is different from the familiar dynamics of a constant linear system
where the damping is an exponential of linear phase. These points are clearly dis-
played in the phugoid oscillations. Again, the GMS solutions are highly accurate.
The GMS-fast solution represents the zero-crossings very well and the GMS-total
solutions are accurate in both phase and amplitude.

5.5 Turning Point Phenomenon

The dynamics of the hypervelocity vehicle for flight on the minor circle ¥ = 1.0
are far more complicated. In particular, the phugoid mode and the roll, spiral modes
lead to very complex behavior. Considering the phugoid mode first, the dynamics
at low speed are characterized by oscillatory behavior. As the vehicle accelerates,
to high speeds near or exceeding supercircular speeds, the oscillations disappear
and the motion becomes completely nonoscillatory. This change in the essential
qualitative behavior in the dynamics is termed a turning point or transition point
phenomenon. The point which separates the two kinds of behavior is the turning
point or the transition point. This kind of complex behavior cannot be represented
by a simple function. In particular, accurate asymptotic solutions can be developed
on either side of the turning point, but they cannot be easily continued to the other
side. Indeed such a continuation requires the use of higher transcendental functions
such as hypergeometric functions. Solution of this problem is facilitated by a study
of the related Stokes’ phenomenon and analytic continuation of the solution into
the complex plane. Solutions can be effected by developing the specifiable but
intricate connection formulae analogous to the well known technique of Jeffries in
physics. These sophisticated approaches are beyond the scope of the current effort
and are not treated in this report. However, a comparison of the numerical and
GMS solutions shows excellent accuracy in phase and amplitude from the start up
to a neighborhood of the turning point (which is about 6.6 x 10* airseconds). The
solutions become unstable as the vehicle continues accelerating beyond this point..
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The amplitude would still be correct beyond the turning point, although, in general,
there would be a phase error, unless this problem is addressed and corrected. The
plots (Fig. 68) are valid only in the range 0 to 4 x 10* airseconds.

“Roll-Spiral” Mode

The dynamic behavior of the phugoid is complex because of a tuming point in
the domain of interest. The roll-spiral dynamics are even more complex because
in this case, there are two tumning points in the flight envelope, one between 2 x 10‘{
and 3 x 10* airseconds, and the other between 7 x 10% and 8 x 10* airseconds.
The problem in this case is much more difficult. Although in principle, such a
multiple turning problem can be solved, such a solution is not attempted in this
effort. Without considering such a sophistication, the numerical and GMS solutions
are displayed as before, and clearly shows the turning point phenomenon.

35




6 STABILITY ANALYSIS

The stability of a hypervelocity vehicle as it moves along a prescribed trajectory
is a complex matter to analyze. The difficulty stems mainly from the fact that the
system is nonautonomous. The usual approach in stability and control analysis of
such flight vehicles is first to “freeze” the system at a particular operating point.
This is based on the assumption that the system is “slowly” varying. The resulting
constant linear system is analyzed from the point of stability and control, using the
standard methods. Although this approach is not rigorous, it works reasonably well
sometimes. The results are eventually validated by computer simulation. However,
sometimes, such a simplistic approach can lead to a total misrepresentation of
the temporal behavior, both in regard to stability and control. It is, therefore, of
primary importance that a proper and rigorous stability analysis be carried out.

Nonautonomous systems often exhibit behaviors that can be totally counter-
intuitive. Some of these peculiarities can be enumerated as follows [34,35].

6.1 Peculiarities of Dynamics through Variable Flight Conditions

(a) System stability is not necessarily given completely by the location of the
eigenvalues. For instance, a system may have its eigenvalues with negative
real parts and have an unstable response. However, a system may be stable
even when its eigenvalues have positive real parts.

(b) Eigenvalues on the imaginary axis do not necessarily imply neutral stability.

(c) Eigenvalues on the imaginary axis do not necessarily imply oscillatory re-
sponse.

(d) In a coupled system, the different variables may have different stability
characteristics.

(e) Response of a periodic system may not be periodic.

Because of these and other properties, the methods of constant linear systems
cannot be applied directly. A careful analysis is required to interpret the dynamics
properly.

Recognition of these peculiarities is not easy as they lie buried in the abstruse
recesses of mathematical systems theory. Identification and prediction of these
effects is even more esoteric as they demand a fundamental understanding of such
complex nonautonomous behaviors. Often such an insight into system behav-
ior is possible only through exact mathematical solutions which constitute a rare
event. As a consequence, the applied engineers as a class are generally unaware of
these important but counter-intuitive (and certainly not obvious) nonautonomous
effects. Ordinarily, references are relatively obscure or incomplete in regard to a
clear exposition of these peculiarities. Ramnath [34] has distilled a comprehensive
enumeration of these effects from the standpoint of systems theory.
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6.2 Stability and Response During Re-Entry

It is known that [44] that an equation of the form

o' +wio! + wpa =0 (6.1)
can be written in the form
Z'+Qz=0 (6.2)
where
= zezp(—/wldt/2) (6.3a)
and g .
w w1
Q=wp-2L_“1 .
wWo 4 2 (6 36)

From the GMS solutions for a and z it can be shown that the angle of attack
oscillations would decay in amplitude if

/9 > —2w; (and Q> 0) (6.4)

A more detailed mathematical analysis of the stability and response of such
systems would involve a separation of the nonoscillatory and oscillatory cases.
Such questions have been pursued at great length in the mathematical literature
[40,44).

For the present, we are mainly interested in deriving simple criteria for stability
and critical altitude for the hypervelocity vehichle descending into the atmosphere.
The nature of the criteria become particularly simple in the case of ballistic trajec-
tories, analyzed as follows.

The equation for the angle-of-attack oscillations of a Shuttle type vehicle has
been shown to be of the form eq.(2.14). Assuming that the atmosphere is isother-
mal (typical at re-entry into earth’s atmosphere), the density p is modeled as an
exponential decay with altitude. A stability criterion for arbitrary trajectories can
now be developed. However, for purpose of illustration, we will present an outline
of the development of the stability criterion for steep trajectories, as it leads to a
simple result in terms of aerodynamic parameters. Also it must be noted that a
rigorous theory of stability would require an examination of the nonoscillatory and
oscillatory cases separately. We will treat the oscillatory case as it is of greater
interest. The density is taken to vary exponentially with £, and

p = poezp(A£) (6.5)
where
po = CePhe (6.6)
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h, is the altitude above sea level and

A = —fBLsin~g
and ~g is the initial descent angle (< 0). Also let

6 = bpexp(A¢f)
where

b0 = poSL/(2m)

(6.7)

(6.8)

(6.9)

Typical values for the above constants, as_per the International Standard Atmo-
sphere (ISA) are given as: C ~ 2kg/m3, B ~ 1.6 x10~%. The asymptotic
solutions developed by the GMS theory enable us to develop a stability analysis of
the shuttle vehicle during re-entry. The fast and slow solutions are asymptotically

ordered as the dominant parts of the actual dynamics.

The GMS solution for the angle of attack variations during re-entry is given by:

a(€) =| w} — 4w, |71/4 {exp(——;-/wldf)}[Cl cos(-l—/€(4wo - wf)%df

2Jo

2
The a-equation can now be written as:

+Cy sin(l /;6(4w0 - wf)%df)]

d?a da

a2 + (91506“)3— + (g260e¢ + g362e*48)a =0

where
g1 = CLa - CDT - U(Cmd + Cmq)

g2 = —(BLsin "yoc'La + UCma)

93 =—CL,(Cp; +0Cm,)
and Cp,, is the drag coefficient at trim.
The stability condition (6.4) leads to

g2 A
6o exp(AE)(g3 — 71) > (g2 - 591)
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(6.11)

(6.12)
(6.13)

(6.14)
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Now for a conventional hypervelocity vehicle configuration (e.g., Space Shuttle)

A
92> 591 (6.16)
and
g2=0(1) (6.17)
Now (6.15) leads to
g3 1
(71 —g3) < ';eXP(Af) (6.18)

This condition is satisfied for a conventional vehicle. Therefore a(¢) response
is stable if (6.4) holds.

Now
2 g3 Agy
2= & exp(24¢)(g3 — =) + Soexp(A&) (92 — =) (6.19)
It can be shown that
Q'/0~24 (6.20)
Therefore the condition (6.4) leads to
A > —bog, exp(Af) (6.21)

Now A = —fBLsinv, > 0 for descent (i.e., Yo < 0). The condition (6.21) is
satisfied if

Therefore, for stability,

g1 = CLa - CDT - O'(Cmd + Cma) >0 (6.23)
Such conditions have been discussed in [8]. However, the present approach,
interpretation and conclusions stem from the GMS theory.
Critical Altitude
From the solutions obtained by the GMS theory and the stability criterion dis-
cussed above, an estimate can be of the critical altitude, k.. This is the altitude at

which the angle of attack oscillations could potentially become unstable, leading
to amplitude divergence. We note that the condition for stability is that
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Q’ / Q> “2(4)0
This leads to the relation

A(€) > —bog1 exp(AL) (6.24)

Defining £, as the critical distance at which the strict inequality of the stability

condition is violated, i.e., £ = & where A(&;) = —8o91 exp(Aé.), the critical
distance £, may be estimated as

6 = Ztn(~4/(5001)) (6:25)

For a ballistic straight line trajectory in which the altitude h varies linearly with
distance, i.e., h ~ £, the critical altitude h. is estimated as

he = —I-Zn SLC

B (Z,BL sin '70) (6.26)

For altitudes less than k. the oscillations may be unstable.

These criteria are to be used mainly as guidelines. As we have considered
asymptotic approximations by the GMS theory, only dominant contributions have
been taken into account and the results can be used as indicators of the poten-
tial problems such as instability, when the criteria are violated. The resuits are
qualitatively similar to those in [8], but are derived by the GMS theory. Further,
although the simple criteria have been demonstrated for ballistic trajectories, the
GMS theory is itself valid for other general trajectories, and lead to variations on
the form of the stability criteria and critical altitudes.
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7 PARAMETER SENSITIVITY

7.1 General Remarks

An important problem in system dynamics is the effect of parameter uncertain-
ties or variations. The exact values of the parameters are never known and there is
always a certain degree of uncertainty. When the parameters are constant the effect
of changes in the parameters can be described by means of conventional sensitivity
theory. We can illustrate the difficulty as follows. Consider a linear time-invariant
(LTI) system

t = A(p)z (7.1)

where p is a particular parameter which assumes constant values. The sensitivity
of the solution z with respect to small changes in the parameter p can be described
in terms of the first order sensitivity S defined as

=— (7.2)

The sensitivity can also be defined as the fractional change in the solution due
to a fractional change in the parameter.

Assuming some technical conditions to be satisfied, the sensitivity function is
given by the equation

S=AS + Apz (7.3)

where Ap = -aa%. Consider a mathematical model of flight vehicles at hypersonic

speeds given by:

z=A(t,p(t))z (7.4)

where z is an n-vector, A is an nxn matrix of elements which are functions of
t and a variable parameter p(t), the sensitivity of the solution z with respect to
a variable parameter p(t) is rigorously treated as the variation éz of z due to a
variation §p of p. In the context of GMS theory, we develop asymptotic solutions
z such that

z(t) ~ z(t) (7.5)

Here the symbol ~ denotes that “ Z(t) is asymptotic to z (t) ” ; i.e., Z(t)
approaches z(t) more and more closely and the error E = z(t) - Z(t) is of thc order
of the highest power of the small parameter ¢ to which the asymptotic expansion is
carried out. In other words, Z (t) is the best approximation to the exact solution z(t).
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Similarly, if S is the exact sensitivity of the dynamics to variations in a particular
parameter, we will generate an asymptotic approximation to the sensitivity, % by
the GMS method. This is because, the exact or true sensitivity function S cannot be
determined, in general, because of the nonautonomous nature of the system. This
problem can be addressed in the context of asymptotic theory. Indeed, a highly
accurate asymptotic approximation for the sensitivity function can be deyeloped
by means of GMS theory. we define the asymptotic sensitivity function 3 as the
first variation of the asymptotic solution z with respect to a parameter p. When
the coefficients are constants, we can write,

§=—= (7.6)

. The exact sensitivity of the solution is represented by an asymptotic expansion
S such that

~

§~8 (7.7)

The asymptotic sensitivity S is developed by the GMS method [36]. In general,
special care is needed in rendering (7.5) and (7.7) compatible. In most cases of
practical interest, including our problem of flight dynamics, such a procedure is
justified, as there are no pathologies in the system dynamics. The asymptotic sen-
sitivities are developed by the GMS approach by means of variations in z(t, p(t))
due to variations in p(t). In particular the GMS theory enables us to express the
sensitivity S systematically separated on the fast and slow scales 7; and 7.

Asymptotic sensitivity is determined as follows:

(1) Identify state variable z and parameter p(t)

(2) Develop equations of motion

(3) Develop GMS solution z

(4) Develop first variation of Z with respect to p(t). This is the asymptotic first
order sensitivity S.

7.2 Application to Re-Entry

This approach is now illustrated in the case of the angle-of-attack variations in
re-entry. The response is developed by GMS method in the form

(&) ~ a{&o(€), £1(€)} (7.8)
and
&(&o, €1) = @s(&o) - &f(fl) (7.9)
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where the subscripts s and f denote the slow and fast parts of the solution respec-
tively.
Defining the first order sensitivity S as a variation in the fractional change

in a(€,p(€)) due to a variation in the parameter p(§), it can be shown that the
sensitivity S can be written as

S ~5;+35, (7.10)

where, again, the subscripts f and s denote the fast and slow parts of the fractional
changes in the asymptotic sensitivity function. That is, Sy is the fractional change

of the fast part of the asymptotic solution & with respect to the parameter and Ss
is the fractional change in the slow part of the asymptotic solution, .

Rigorously, the sensitivities vary with the argument £, and are complex quan-
tities, with the amplitude and phase varying with £. This theory is now applied
to the Space Shuttle entry for purposes of illustration. The parameters chosen are
Cr,Cp and Cy, along the re-entry trajectory. The sensitivity of the magnitude
of a with respect to each of these parameters as they are all changing along the
trajectory is analytically derived as shown above. The results are plotted as seen
in Figures 73-81.

The sensitivity function is a complex quantity, indicating the real and imagi-
nary components typical of oscillatory dynamic systems. The absolute value of
the sensitivity represents the total magnitude, without following the real and imag-
inary contributions. Using the GMS solutions, the sensitivity has been computed
with the GMS-fast solution only or combining the fast and slow solutions in the
GMS-total solutions. The sensitivity computed from both of these indicates that
the fast solution yields most of the contribution to the sensitivity. It is therefore
quite simple to incorporate the GMS- fast solution only, in the sensitivity analysis,
being the dominant contribution. It is clear that this approach provides the means
by which parametric studies of parameter uncertainties can be systematically car-
ried out, using analytical methods. We note that a simple and direct approach is
possible by the GMS theory on a class of difficult nonautonomous problems such
as hypervelocity vehicle dynamics through variable flight conditions.
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8 ERROR ANALYSIS

8.1 General Remarks

In any system of approximations, it is of great interest and importance to carry
out a proper analysis of the errors. This subject is itself very deep and has oc-
cupied many mathematicians for a long time because of the inherent difficulties
in this process. The greatest difficulty is due to the fact that the knowledge of
the approximation and the exact error at every point, implies knowledge of the
mathematically exact solution. This is impossible in general, and therefore, it is
impossible to evaluate the error exactly at every point. However, because we are
dealing with asymptotic soluticns the errors may be estimated.

It is useful to recall the standard definitions of the Landau order symbols [38],
using the given functions f(t) and g(t).

O_Symbol
A function f(t) is said to be O(g(t)) in the limit ¢t — 2, if
t

lim -& = M = Constant < co

t—to g(t)
o Symbol
A function f(t) is said to be o(g(t)) in the limit ¢t — t,, if

im L&) _ ¢
t—to g(t)

Thus, consistent with Poincare’s definition of asymptotic expansions, the error
magnitude is of the order of the first term that is neglected in the expansion. If

n

Y edilt)

1=0

is an asymptotic expansion of n‘# order for a function f (t,€), then the error is
estimated as

n

| £(t,€) = 3 €4it) |= O(e™ 1) (8.1)

1=0
where ¢;,7 = 1,2, ... is an asymptotic sequence.

Indeed, this is how Poincare defined an asymptotic expansion. It is one of the
most attractive reasons for using asymptotic methods such as the GMS method.
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The magnitude of the error at any order is estimated as that of the first term that is
neglected. Because the successive terms decrease rapidly, the error becomes very
small after only the first few terms.

8.2 Strict Bounds

While the asymptotic error estimates are useful, it is possible to develop strict
and sharp error bounds in some cases. Ramnatn [15] has derived such bounds
on the GMS solutions for several general classes of nonautonomous differential
equations. These are similar to Olver’s bounds. See [15] for details. These
bounds are similar to those of Olver. See[15,44] for details.These are applicable to
several problems in flight dynamics, including the re-entry and minor circle flight.
For the re-entry problem, Ramnath’s error theorem yields:

| E |=| a(§) — agms(§) |

Bl DX exp(- [ Dag)exp(] [ Im(e) [dED -1 (82

where
D(¢) =| 4w, — w% ]
and
1, . d? 1
m(§) =D ‘(6)3&7(0 (£))

From this powerful theorem we can see that as the re-entry trajectory changes,
the terms in (8.2) also change. But their effect is easily analytically tractable. The
case of constant flight arises as a natural limit. In this case the error completely
vanishes and the GMS solutions recover the known exact solutions. However, the
real advantages and usefulness of this theorem are in studying different vehicles,
trajectories and variable flight conditions. In these cases, the GMS solutions are
asymptotic to the exact solutions, with the errors as bounded by (8.2).

45




9 CONTROL CONSIDERATIONS

9.1 General Remarks

The complex dynamics of a hypervelocity vehicle have been investigated in a
variety of significant situations. They include re-entry trajectories at steep angles
and at shallow angles involving rapid deceleration. Another class of trajectories
analyzed include minor circles as the vehicle flies at constant altitude. In partic-
ular the dynamics are investigated as the vehicle accelerates from subcircular to
supercircular velocities on the minor circles of different radii. Highly accurate
asymptotic solutions are developed by the GMS method. Stability of the mo-
tion has also been analyzed by this method leading to simple, rigorous and useful
criteria. 'We now consider control implications in connection with this class of
problems. In particular we consider control analysis and design techniques by the
GMS approach.

In carrying out this phase of research our philosophy was to identify and treat
most of the important aspects of the dynamics of a generic hypervelocity vehicle.
Such an approach would uncover the areas needing modification of the system
response, i.e., control. The effort to follow would consist of the actual development
of the control system analysis and synthesis.

Concurrently however, we have continued to develop the theoretical framework
for such control-theoretic investigations. The time varying nature of the hyperve-
locity flight mechanics precludes even the availability of some basic relationships
such as the transfer function. However, these questions are answered by invoking
the GMS method.

Both the classical control methods and the modern approach are amenable to
the GMS technique. Considering the classical approach the procedure for control
design is usually practiced as shown in Figure 82. The flight vehicle system is
linearized about an operating flight condition, and a control system is designed
using an approximate transfer function at the “frozen” point, and standard methods
such as root loci and Bode plots. The same procedure is followed at a different
flight condition, and another one yet, and so on until the whole range of variation
is covered. The procedure is tedious, not accurate, and can potentially lead to a
complete misrepresentation of the system stability and response. While there is a
useful role for this approach (backed by computer simulation), there is clearly a
need for a better analysis and design method. The GMS method fills this need.

The GMS theory of variable systems is developed by Ramnath [9-17]). The

elements of this theory can be illustrated by considering a class of general linear
time varying systems in the scalar form

ai(r)x(i) = Ku(t) (9.1)
0

n
1=
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where z() = (d'z/dt') and a; are slowly varying coefficients. At this point a
brief discussion of what is slowly varying might be useful. This is a concept that
is used often by practising dynamics and control engineers rather unrigorously.
Conceptually, a system varies slowly if the variation of the coefficients is much
smaller than the variation of the dynamics, - i.e., the solutions. However, this calls
for knowledge not yet available, - i.e., the nature of the solutions. Therefore, a
rigorous approach to the definition of a slowly varying system involves parameter-
izing the coefficients in terms of a small parameter, ¢ << 1. In this way, one can
conclude that if the e parameter is very small, the system is slowly varying: the
smaller €, the more slowly varying system.

By appealing to the GMS method the variables can be extended as

t— {r0,T1}; To =t
n=[ 204

and z(t) — z(ro,71). The dominant contribution to the system response can be
described by [9].

9.2)

L ,-dix
Z a,-('ro)k ETT = Ku(rl) (93)
1=0 1

Now considering a Laplace transform with respect to 7y,

o0
X (70,8) = / z(ro, 1) exp(—sr1)dry (9.4)
o
we can write the dominant transfer function of the system in the form

~ X(S, To) K
G(s,70) = = —
(s,70) U(s) S ay(ro)siki
1=0

(9.5)

where the coefficients a; vary on a slow scale 7,. When the input-output relation
is of the more general form.

n

Y aif)z(s) = K i bjull) (9.6)

=0 J=0

The GMS method leads to the dominant transfer function
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G(s, 7o) = —2=2 _ (9.7)

The response to an input U(s) is given by

X (8,70) = G(8,76)U(5) (9.8)

where U(s) is the Laplace transform of U (7o, 71) with respect to ;.

. The dominant response in time is given by the inverse Laplace transform of
X (s, 7o) by evaluating the complex line integral

z(70,71) = —I—/Br é’(s,‘ro)U(s) exp(s,1)ds (9.9)

2m

where Br is the Bromwich contour given by the line ¢ — 200 to ¢ + 200 on the
complex s-plane, where c is a suitable positive real number. This line integral may
be evaluated by means of the poles and zeros in the s-plane and Cauchy’s theorem.
Stability can be analyzed by inverse Laplace transformation and restriction along
the trajectories 7;(t,€).

We have thus achieved a rigorous system representation in the form of the
dominant contribution to the transfer function. This is a true extension of standard
classical control theory (Figure 83).

In a similar manner several important problems in modem control theory can
also be solved by the GMS method. For example, the time varying linear quadratic
optimal control problem was solved by Ramnath by the GMS method [43]. An-
alytical asymptotic solutions yield highly accurate representations of the optimal
control.

Research is continuing on the development of the GMS method to the control
analysis and design techniques in both the classical and modem approaches. Actual
implementation and refinement of the techniques to the problems of hypervelocity
flight is to be performed.

It should be noted that this methodology is very general and presents a novel
approach. By this means the asymptotic transfer functions for a general class of
time varying systems can be systematically developed. The approach is new and
includes the case of constant coefficients as a special case. In particular the
transfer functions thus derived, readily recover the transfer functions for the time-
invariant case. Thus it represents a true and natural extension of the standard control
design methodology. Having developed this general framework, we are about to
further develop the control design procedures for the hypervelocity vehicle through
the variable flight conditions.
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9.2 Control System Design

The implications of the peculiarities of linear time varying (LTV) systems on
control systems analysis and design can be quite subtle. The standard performance
measures of a linear time-invariant (LTI) system such as bandwidth, rise time, gain
margin, phase margin cannot be directly carried over to the LTV systems. Even
in the relatively simple case of slowly varying systems, such notions have to be
dealt with carefully. An overly permissive prescription for extending these ideas
to LTV systems could lead to serious misrepresentations. At the very least, the
LTI performance measures are necessarily parameterized by time, i.e., the instant
at which such a simple representation is made.

For slowly varying systems, the standard practice is to “freeze” the LTV systems
at an operating point ¢; and consider the LTI system at ¢; to approximate the LTV
system at t = t;. A control system is designed based on LTI control theory. The
system is then allowed to vary and frozen at a different time £ = {3. Analysis and
control design are carried out at this time again, by LTI methods. This procedure
is repeated at a number of frozen points and a sequence of parameter values and
gains are incorporated within a prescribed control structure and a “gain scheduling”
is implemented accordingly.

Some limitations of such a simplistic approach are:

(1) System stability and response can be seriously misrepresented, as outlined
in Section 6.

(2) The “frozen” model should be used only in a very small neighborhood of
the operating point.

(3) A uniformly valid continous solution cannot be obtained, as the “frozen”
solutions need to be patched.

(4) The larger the number of frozen instants, the better is the approximation.
However, stability predictions, in general, are beyond the scope of the frozen
model, however closely spaced the frozen instants.

The control design approaches derived from GMS theory, help obviate most of
the above difficulties. We will now present an outline of control design procedures
based on the GMS methodology.

Control Design Procedure

The great generality and accuracy of the GMS theory enables us to develop
a systematic control design procedure for a general class of time-varying systems
exemplified by the hypervelocity flight vehicles. It should be noted that the GMS

theory offers us at least three approaches to control systems design. These can be
stated as:

1. Extended Classical Approach

2. GMS Control in Extended Space

3. Vector-Matrix (or Multivariable) GMS Approach

In what follows, we will mainly consider the first approach listed above. The
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other two will only be briefly touched upon. We will present an enumeration of the
various steps in a top level control design procedure based on the GMS approach.

At the outset a recognition must be made of the differences in a heuristic or
quasi-heuristic approach and a “mechanical” approach. The heuristic approach is
mostly by trial-and-error and is intuitive, with a considerable degree of “art” in the
process. The “mechanical” approach, such as the use of functional optimization
techniques, allow the designer little freedom other than choosing the specifications
or the cost functional. A compromise is therefore desirable, consisting of a com-
bination of largely heuristic design steps and largely “mechanical” analysis steps.
Such a combination allows for the injection of insight while not making it manda-
tory. The designer is allowed to use the simplifying but incorrect assumption that
the system function (i.e., transfer function) of a cascaded system is the product of
the system functions of its subsystems. The subsequent procedure is so chosen as
to enable the designer to identify the errors and compensate for them in successive
analysis and design stages until the residual error is negligible. With this in mind
we may consider the design sequence as follows:

1. System Description. The differential equations accurately representing the
hypervelocity vehicle dynamics are found. These are assumed to be lin-
earized and usually have time-varying coefficients.

2. Introduction of an Expansion Parameter. The slowness of coefficient varia-
tion is examined to ensure the accuracy of the GMS solutions. The system
is then parameterized in terms of a small parameter, €, as the expansion
parameter.

3. Open-Loop Specifications. Specifications are examined in the time dmain
and frequency domain and correlated. Also, specifications in the closed
loop and the open loop are similarly treated, using relations between the
two forms of system fuanctions. One approach to multi-loop systems is to
treat them one feedback loop at a time. A suggested guideline is to treat the
specifications at the level of the outermost loops first, while compensation is
designed for the innermost loops first. As a consequence the design involves
finding a forward-loop or feedback loop cascade compensators which result
in an acceptable open-loop function.

4. Zeroth-Order Analysis. The transfer function of the plant to O(1) is calcu-
lated by the GMS theory.

5. A compensator is designed such that the composition of its transfer function
and the zeroth order GMS transfer function of the plant (calculated in step
four) is acceptable. This would call for a judicious use of standard design
techniques for the performance measures and the methods are parameterized
by time.

6. System Performance Analysis. The performance of the system is examined
to see whether the specifications are met. If they are, the design process is
completed. It remains only to verify that the closed loop system satisfies
the closed loop specifications. If not, then one would proceed as follows.

7. First Order Analysis. In this step the first order correction to the GMS
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transfer function of the plant is developed leading to a more accurate rep-
resentation. Using this transfer function a more accurate compensator is
designed.

8. Performance Verification. Again, this step would ensure that the system
performs as required. If it does, the design process is complete. If not, then
higher order compensation would be resorted to.

9. Higher Order Compensation. This step would involve the development of
a more accurate GMS transfer function by including higher order correc-
tions. A compensator is designed at this stage. For instance, a kth order
compensator would ensure that the errors are of the order elk+1), leading
to a very accurate representation. In principle, this would be followed by
performance verification, and if necessary, a (k + 1)tk order compensator.
This whole design process is shown in Figure 84.

In regard to the structure or configuration of the control system, compensators
can be designed either as cascade or feedback compensators. In time-varying
systems, transposition of the transfer functions is not commutative. In other words,
if G1 and G4 are the time-varying transfer functions, then

G1G; # GoGy (9.10)

Similarly, the closed loop transfer functions cannot be derived directly as in the
time-invariant case. In spite of these difficulties, the GMS theory enables us to
develop useful relations for both cascade and feedback compensators from open
loop transfer functions.

An important point to note is that because the GMS procedure is asymptotic,
the errors decrease very rapidly as the order of the design increases. Therefore, for
most purposes, it is envisioned that a satisfactory design could be developed with
only one or two (rarely three) levels of control design.

The approach entitled “GMS Control in Extended Space” is an alternative
approach. Instead of extending the classical methods of control design, it is a
variation on the theme and exploits the special forms and relationships that are
derived from the GMS theory. For example, it deals with such issues as multiple
Laplace transforms with respect to the multiple, nonlinear scale functions 7, 7y,
etc., the Laplace variables being sg, 81, etc. In this formalism, determination of a
proper control gain profile would be governed by solution of appropriate differential
inequalities. Thus, new insights into system representation, transfer functions and
control design are obtained by this approach. Details of this approach is beyond
the present scope.

Finally, the ‘“modern” approach to control design can be considered. This
deals with the system mathematical model in the vector-matrix formulation. Ram-
nath [43] has extended the GMS theory to this class of time-varying systems as
well. Therefore, systems of linear time-varying differential equations can be solved
asymptotically by this nethod. Related control problems such as the linear-quadratic
optimal control problems can be solved by the GMS method.
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Three control design approaches have been outlined in the above discussion.
What is needed, however, is an in-depth analysis of the relative merits of the
methods in regard to design and implementation. Such questions are beyond the
scope of the current effort and will be discussed in future work.
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10 FURTHER WORK

A general theory has been developed to investigate the stability, flight dynam-
ics and control of hypervelocity flight vehicles. A variety of trajectories including
re-entry at different angles and hypersonic flight at constant altitude and constant
latitudes ‘on different minor circles has been analyzed. Analytical solutions have
been developed for symmetric and antisymmetric motions by the GMS method.
Fast and slow aspects of the motion are systematically separated by means of the
fast and slow scales. It is essential that the clock functions are nonlinear and com-
plex quantities in order to describe the dynamics. This corresponds to accelerating
and decelerating clocks, counting time at different rates. This generalized approach
is necessary in order to study the effects of acceleration and deceleration on the
vehicle dynamics. The theory has been successfully applied to scenarios involving
accelerations from subcircular to supercircular velocities. Asymptotic sensitivities
to parameter variations have been developed. System stability during accelerating
or decelerating flight profiles has been analyzed. A sharp estimate of the critical
altitude marking the stability boundary has been developed for arbitrary re-entry
trajectories, derived from the GMS solutions.. A general error analysis has also
been presented for the GMS solutions. A general GMS methodology for the anal-
ysis and design of time varying control systems has been developed. This includes
the systematic development of transfer functions by the GMS theory. A top level
control design procedure has also been presented. Based on these developments
the stage is set for a more detailed and complete development of dynamics and
control analysis and design for hypervelocity vehicles. In particular the following
areas are identified as being useful and important in a continuation of the research
effort.

o Detailed analysis of candidate hypersonic vehicles
Mission/Scenario
Vehicle shape
Parameters
Environment
Trajectories
Constraints
o Analysis of flight dynamics during transitions on different minor circles
- at constant velocity
- during accelerations
- during decelerations
o Turning point analysis of phugoid oscillations
o Double turning point analysis of roll-spiral mode
o Complete longitudinal-lateral coupled dynamics during accelerations
o Lateral-directional motion during re-entry
o Complete longitudinal-lateral coupled motion during re-entry
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o Effect of parameter variations of complete set of longitudinal-lateral stability

derivatives
o Unusual flight situations, bifurcations in minor circle flight
- relaxed static stability.
o Detailed stability analysis during
(a) Re-entry — lateral directional motion
full longitudinal motion
(b) Accelerated flight on minor circles
(c) Transition trajectories on minor circles
o Classical control system development
- Fast and slow transfer functions, control law development
- time domain analysis
- frequency domain analysis
o Control design by multiple scales; Comparison with
conventional control design
o Control design in extended Laplace space
o Optimal control
- Trajectory optimization
- Linear quadratic optimal control
- Robust control - insensitive to parameter variations
o Computational considerations
Variable sampling
Algorithmic development
Implementation issues
Requirements of computer time and memory
o Simulation
Complete model of hypersonic vehicle
Development of 6 DOF simulation of complete model
Efficient simulation
Variable sampling
o Control implementation
Transformation to measurable flight parameters
Control implementation with respect to flight parameters
Compensational constraints
Component performance constraints
o Hardware in the Loop (HIL) simulation
o Pilot in the Loop (PIL) simulation
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11 SUMMARY AND CONCLUSIONS

In this investigation a general approach was developed to analyze the flight
dynamics and control of a hypervelocity vehicle. This approach, consisting of the
Generalized Multiple Scales technique, enables us to develop asymptotic approx-
imations to the complex flight dynamics. These solutions display a natural and
systematic separation of the fast and slow aspects of the dynamics.

The theory is illustrated by application to a generic hypervelocity vehicle flying
on typical trajectories. These include re-entry along steep and shallow spiral-
ing paths. Other trajectories involve flight on minor circles at constant altitudes.
Several minor circles of different radii are considered. Flight dynamics as the
vehicle accelerates from subcircular to supercircular speeds are analyzed by the
GMS method. In these situations the standard modes of motion of the vehicle
in the plane of symmetry and out of the plane of symmetry are systematically
analyzed, for flight on different minor circles. Two different solutions - (1) GMS
fast solution and (2) GMS slow and fast solutions are computed and compared
with numerical solutions, for each case. The comparisons show that the GMS fast
solution represents the true frequency extremely well, with a very small error in
amplitude. This error is corrected by including the slow scale correction. Thus the
total GMS solution is extremely accurate in both amplitude and phase. Indeed the
GMS solutions are indistinguishable from the numerical solutions. We note that
the dynamics during acceleration or deceleration lead to nonlinear phase variation
and variable frequency, which are not tractable by standard methods.

In the case of flight on minor circles, our analysis has shown that the phugoid
mode (for some radii) and the roll-spiral mode exhibits a turning point problem.
This is a situation where, for some particular velocity, the dynamics undergo a
significant topological change, from oscillatory to nonoscillatory behavior (or vice
versa). Even in these cases, the GMS fast solution leads to useful and accurate
description of the dynamics. However, a simple analysis is not sufficient to deal
with tuming point situations and careful analysis is necessary. This is beyond the
scope of this effort.

For motion along re-entry trajectories, we have derived from the GMS solu-
tions, a stability criterion in terms of the aerodynamic parameters. This leads to an
analytical estimate of the critical altitude below which the angle of attack oscilla-
tions might be unstable. Our approach towards such questions and the derivation
are novel as they stem from the GMS theory.

By means of the GMS solutions we also derive analytical expressions for the
sensitivities of the dynamics to parameter variations. This theory is illustrated for
the angle of attack variations along re-entry by computing the sensitivities to the
parameters Cp, , Cy, and Cyy, . This approach would be very useful in preliminary
design and to perform parametric studies. An error analysis is presented, including
not only asymptotic error estimates, but also strict and sharp bounds on the errors
in the general case. Finally a control methodology is developed by the GMS
approach, leading to a framework for analyzing control system performance and
design, for a class of time-varying systems. Hypervelocity flight vehicles belong
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to this class. Transfer functions are developed for the time-varying systems by the
GMS theory. This representation is rigorous and systematic, showing a separation
of the fast and slow aspects of the control dynamics. Further, a top level control
design procedure is presented, using the GMS methodology. This is a systematic
procedure ensuring that the design specifications are satisfied, order by order. It
should be noted that this addresses a problem in which even the basic notions
of what is desirable in regard to system response, are lacking. For example.
time-varying specifications such as rise time, bandwidth, etc are not available.
Indeed, three different approaches to the design of time-varying control systems
are outlined.

The methodology and technique are to be applied to develop an actual contro!l
system design for a hypersonic vehicle.

Finally, we note that with the GMS methodology, a large spectrum of problems
connected with hypervelocity flight mechanics ana control can be investigated. In
general, the effects of acceleration (or deceleration) on the vehicle dynamics can be
quite complex and non-intuitive. Many such effects cannot be predicted by extrap-
olating conventional theory, — either in flight dynamics analysis or control analysis
and design. The trends shown in our study indicate that when the frequency of the
motion increases, there is an increase in the apparent damping, which reinforces
the damping due to other effects. This happens to be true for both the Space Shut-
tle during re-entry and a generic hypervelocity vehicle flying on minor circles. In
the re-entry case, the critical altitude estimate is useful in studying different entry
trajectories and the rate of penetration into the atmosphere. In the case of minor
circle flight, the Dutch Roll mode is the most important, followed by the Short
Period and then the phugoid and roll-spiral modes. In the Dutch Roll and Short
Period modes, the effect of acceleration is to decrease the frequency and damping
of the motion. The phugoid and roll-spiral modes are more complicated. Essen-
tially new phenomena such as turning points and bifurcations are predicted for
these modes, depending on the rate of acceleration, radius of the minor circle, and
such considerations. Such a prediction is essentially due to the GMS methodology
which also offers us an approach to investigate and solve problems related to these
effects.

The basic thrust of the GMS methodology being analytical (or quasi-analytical),
the important areas of system dynamics analysis and control design such as response
predictions, stability analysis, performance and sensitivity analysis, error bounds
and control analysis and design, are all subsumed by the GMS approach. Study of
unusual dynamic phenomena is readily brought into the scope of the GMS theory.
In view of this consistent, cogent and unified theory, the dynamics and control of
hypervelocity vehicles constitute an ideal candidate for further investigation by the
GMS approach.
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A APPENDIX - REPRESENTATIVE VEHICLE

The generic hypervelocity vehicle flying on a minor circle is chosen following
Drummond [23]. The Generalized Mulitple Scales (GMS) theory is applied to the
analysis of the dynamics of this vehicle for purposes of illustration. Based on con-
siderations of (a) the right shape for hypersonic flight, (b) the right mission-dictated
size, (c) facilitating analysis but including important effects, and (d) available ex-
perimental data, the following model [23] is used.

The general shape is a highly swept delta wing of diamond cross section with
a spherical nose and cylindrical leading edges (Fig. A). The parameters are as
follows:

Sweep Angle = 75°
Reference Length = 150 ft

pan _b o371
Reference Area = S = 5550 ft2
Xcg = 1.375

Maximum Wing Loading = % = 58.5 Ib ft?

Minimum Wing Loading = 24.5 Ib ft?
Cruise Mach Number =M =51t0 8
Range = 5000 to 6000 miles

The data for the stability derivatives and related parameters are given by Drum-
mond [23] by separately considering the various contributions due to wing, flap,
fin, etc. Our model includes the same parameters and trajectories. However, the
specd of the vehicle is allowed to change as it flies along a particular minor circle.

-
2002121 -_// - a
7\.\
-~ ™ \\

Fig. A. Generic Vehicle Configuration (Drummond’s Model).
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APPENDIX B
Example 1

Consider a first order equation
t+ez=0; z(0)=1 (B1)
where 0 < € << 1. A direct perturbation expansion
z(t,€) = zo(t) +¢ z1(t) + - -
leads to the perturbation equations

zo =0 (B2)
] = —1xg (B3)
(B4)
Solving these order by order, we have,
z9=1 (B5)
zy = —t (B6)
zo = t2/2 (BT7)

Substituting these into the perturbation expansion we have,

z(t,e) ~ 1 —et + €2t /24 - (B8)

This expansion is seen to be secularly nonuniform (i.e., for ¢ > 1/e) as the cor-
rection term ceases to be small.

Multiple Time Scales (MTS)
The above problem can be solved by the MTS approach as follows. Let us

extend
t — {ro,71}; T0o=1t, 1 =¢€t (B9)
The time derivative operator is now extended as
d d d
—_— — 4 €— 10
dt - aTo +€3T1 (B )
61

S ———




Gl Bl G &N = EE e 1 -
.

and
z(t,€) — z(ro,71) (B11)
The differential equation becomes
oz dz
5;(;+E'a—r;+€x—0 (312)
Equating like powers of €, we have
oz
— 0
5 (B13)
oz
- =0
e +z (B14)
Solving these, we obtain
z(rg, 1) = A(m1) = cexp(—mn) (B15)

where ¢ is a constant.
Upon restriction of this extended solutions along the “trajectories”

70 = t, 7] = €t, the solution is obtained as
z(t,€) = cexp(—71)|r=et = cexp(—et) (B16)
which is not only uniformly valid, but is indeed the exact solution.

Example 2

Consider the time varying problem

z+ etz =0 (B17)

This is also a secular pertubation problem as the direct perturbation expansion is
secularly nonuniform (i.e., for ¢ > 1/¢). An attempt to uniformize this by the
MTS approach as in Example 1 will not be successful as (B17) is a time-varying
equation. This can be illustrated as follows. As before, the extension

t — {ro,71}; o=t,m=c¢t (B18)
leads to
o0z
— = 1
AT ' (B19)
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oz
= =0 B
5.t 0 (B20)
Thus the solution is obtained as
z(r9, 1) = A(n1) = cexp(—7om1) (B21)
Upon restriction
z(t,€) = cexp(—1071)|rp=t = cexp(-—etz) (B22)

71 =€l

While this is not a bad approximation an inconsistency can be seen in (B21).
Solution by GMS Theory

The reason for the lack of complete success with the MTS approach is that
only linear scales are employed in the MTS theory. In time-varying (and, in
general nonlinear) problems, it is essential that nonlinear scales are used. This was
demonstrated by Ramnath [9-17] who generalized the multiple scales technique and
called it the GMS theory. According to this generalization, we extend

t— {r,n}; nn=tn= e/k(t)dt (B23)
and

z(t,e) — z(rg, 1) (B24)

where k(t) is an undertermined “clock” function. The derivative operator now
becomes

- = 57—t ek— (B25)

and the extended perturbation equations are

oz
3r =0 (B26)
k— + 10z = 0 B27)
81-1 0% = (

The clock function k is chosen to be equal to the time-varying coefficient g
and this leads to the solution

63




z(rg, 1) = cexp(—7) (B28)
and
k(t) =t (B29)
et?
n1(t,€) = - (B30)

Therefore, upon restriction along the “trajectories” 79 = ¢, and
71 = €t2/2 the solution is obtained as

et?
z(t,€) = cexP(_Tl)I,I___st;_ = cexp(——2—) (B31)

This is not only uniformly valid, but is indeed the exact solution. This is possible
only by making the scale functions nonlinear in t.
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