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’ ABSTRACT

In the analog VLSI implementation of neural systems, it is sometimes con-
venient to build lateral inhibition networks by using a locally connected
on-chip resistive grid. A serious problem of unwanted spontaneous oscilla-
tion often arises with these circuits and renders them unusable in practice.
This paper reports a design approach that guarantees such a system will
be stable, even though the values of designed elements in the resistive grid
may be imprecise and the location and values of parasitic elements may be
unknown. The method is based on a mathematical analysis using Telle-
gen’s theorem and the Popov criterion. The criteria are local in the sense
that no overall analysis of the interconnected system is required for their
use, empirical in the sense that they involve only measurable frequency re-
sponse data on the individual cells, and robust in the sense that they are
not affected by unmodelled parasitic resistances and capacitances in the
interconnect network. S~
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I. Introduction

The term “lateral inhibition” first arose in neurophysiology to describe a
common form of neural circuitry in which the output of each neuron in some
population is used to inhibit the response of each of its neighbors. Perhaps
the best understood example is the horizontal cell layer in the vertebrate
retina, in which lateral inhibition simultaneously enhances intensity edges
and acts as an automatic gain control to extend the dynamic range of the
retina as a whole [1]. The principle has been used in the design of artificial
neural system algorithms by Kohonen {2] and others and in the electronic
design of neural chips by Mahowald and Mead [3,4].
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In the VLS! implementation of neural systems, it is convenient to build
lateral inhibition networks by using a locally connected on-chip resistive
grid. Linear resistors fabricated in, e.g., polysilicen, could yield a very
compact realization, and nonlinear resistive grids, made from MOS transis-
tors, have been found useful for image segmentation [4,5]. Networks of this
type can be divided into two classes: feedback systems and feedforward-
only systems. In the feedforward case one set of amplifiers imposes signal
voltages or currents on the grid and another set reads out the resulting
response for subsequent processing, while the same amplifiers both “write
to” the grid and “read from” it in a feedback arrangement. Feedforward
networks of this type are inberently stable, but feedback networks need not
be.

A practical example is one of Mahowald and Mead’s retina chips (3] that
achieves edge enhancement by means of lateral inhibition through a resistive
grid and temporal sharpening by comparing the present input with a ca-
pacitively filtered version. Figure 1 shows a single cell in a continuous-time
version of this chip, and Fig. 2 illustrates the network of interconnected
cells. Note that the voltage on the capacitor in any given cell is affected
both by the local light intensity incident on that cell and by the capaci-
tor voltages on neighboring cells of identical design. Each cell drives its
neighbors, which drive both their distant neighbors and the original cell in
turn. Thus the necessary ingredients for instability — active elements and
signal feedback — are both present in this system. Experiment has shown
that the individual cells in this system are open-circuit stable and remain
stable when the output of transamp # 2 is connected to a voltage source
through a resistor, but the interconnected system oscillates so badly that
the original design is scarcely usable! in practice [6]. Such oscillations can
readily occur in any resistive grid circuit with active elements and feedback,
even when each individual cell is quite stable. Analysis of the conditions of
instability by conventional methods appears hopeless, since the number of
simultaneously active feedback loops is enormous.

4 This paper reports a practical design approach that rigorously guaran-
tees these and related systems will be stable under certain conditions. The

1The later design reported in [3] avoids this problem altogether, at a small cost in per-
formance, by redesigning the circuits to passively sense the grid voltage in a “feedforward”
style as described above.
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work begins with the naivé observation that the system would be stable if
we could design each individual cell so that, although internally active, it
acts like a passive system as seen from the resistive grid. The design goal in
that case would be that each cell’s output impedance should be a positive-
real (i.e., passive) [7-9] function. This is sometimes possible in practice: we
will show that the original network in Fig. 1 satisfies this condition in the
absence of certain parasitic elements. Furthermore, it is a condition one
can verify experimentally by frequency-response measurements.

It is obvious that a collection of cells that appear passive at their ter-
minals will form a stable system when interconnected through a passive
medium such as a resistive grid, and that the stability of such a system is
robust to perturbations by passive parasitic elements in the network. The
contribution of this paper is to go beyond that ohservation to provide i) a
demonstration that the passivity or positive-real condition is much stronger
than we actually need and that weaker conditions, more easily achieved in
practice, suffice to guarantee robust stability of the linear network model,
and ii) an extension of the analysis to the nonlinear domain that further-
more rules out sustained large-signal oscillations under certain conditions.

Note that these results do not apply directly to networks created by
interconnecting neuron-like elements, as conventionally described in the
literature on artificial neural systems. The “neurons” in, e.g., a Hopfield
network [10] are unilateral 2-port elements in which the input and output
are both voltage signals. The input voltage uniquely and instantaneously
determines the output voltage of such a neural model, but the output can
only affect the input via the resistive grid. In contrast, the cells in our sys-
tem are I-port electrical elements (temporarily ignoring the optical input
channel) in which the port voltage and port current are the two relevant
signals, and each signal affects the other through the cell’s internal dynam-
ics (modelled as a Thévenin equivalent impedance) as well as through the
grid’s response.

II. The Linear Theory

This work was motivated by the following linear analysis of a model for the
circuit in Fig. 1. For an initial approximation to the output admittance of
the cell we use the elementary model shown in Fig. 3 for the amplifiers and
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simplify the circuit topology within a single cell (without loss of information
relevant for stability) as shown in Fig. 4.
Straightforward calculations show that the output admittance is

gmxgmsz
(+sR.C.) (1)

This is a positive-real admittance that could be realized by a network of
the form shown in Fig. 5, where

Y(s) = [gm, + R} + 3Co,) +

R, = (gﬂlz + R:gl)-ls R; = (g"ugmzROl )-l’ and L = C,, /gmxgmz' (2)

Of course this model is oversimplified, since the circuit does oscillate.
Transistor parasitics and layout parasitics cause the output admittance of
the individual active cells to deviate from the form given in eqs. (1) and
(2), and any very accurate model will necessarily be quite high order. The
following theorem shows how far one can relax the positive-real condition
and still guarantee that the entire network is robustly stable. Though we
have been unable to find such a theorem in the literature, the concepts used
in the proof are well-established and this result is not surprising.

Terminology

The terms open right-half plane and closed right-half plane refer to the set
of all complex numbers s = ¢ + jw with ¢ > 0 and o > 0, respectively, and
the term closed second quadrant refers to the set of complex numbers with
o0 < 0and w 2 0. A natural frequency of a linear network is a complex
frequency s, such that, when all independent sources are set to zero and
all branch impedances and admittances are evaluated at s,, there exists a
nonzero solution for the complex branch voltages {Vi} and currents {I;}
[11]. For the purposes of this section, a lumped linear network is said to be
stable if a) it has no natural frequencies in the closed right-half plane except
perhaps at the origin, and b) any natural frequency at the origin results
only in network solutions that are constant as functions of time. (The latter
condition rules out unstable transient solutions that grow polynomially in
time resulting from a repeated natural frequency at the origin.)




Theorem 1

Consider a linear network of arbitrary topology, consisting of any num-
ber of positive 2-terminal resistors and capacitors and of N lumped linear
impedances Z,(s),n = 1,2, ..., N, that are open- and short-circuit stable in
isolation, i.e., that have no poles or zeroes in the closed right half plane.
Then the network is stable if at each frequency w > 0 there exists a phase
angle 6(w) such that 0 > 6(w) > —90° and {{Z,(jw) — O(jw)] < 90°,n =
1,2,...,N.

An equivalent statement of this last condition is that the Nyquist plot
of each cell’s output impedance for w > 0 never intersects the closed 2nd
quadrant, and that no two cells’ output impedance phase angles can ever
differ by as much as 180°. If all the active cells are designed identically and
fabricated on the same chip, their phase angles should track fairly closely
in practice and thus this second condition is a natural one.

The theorem is intuitively reasonable. The assumptions guarantee that
the cells cannot resonate with one another at any purely sinusoidal fre-
quency 3 = jw since their phase angles can never differ by as much as
180°, and they can never resonate with the resistors and capacitors since
there is no w > 0 at which both Re{Z,(jw)} < 0 and Im{Z,(jw)} = 0
for some n,1 < n < N. Figure 6 illustrates these ideas. The proof, which
appears in the Appendix, formalizes this argument using conservation of
complex power, extends it to rule out natural frequencies in the right-half
plane as well, and shows why instabilities resulting from a repeated natural
frequency at the origin cannot occur. Note that this formulation of the
theorem does not guarantee a unique equilibrium, since capacitor-only cut-
sets are not ruled out. In the absence of such cut-sets the equilibrium will
be unique because the d.c. cell conductances Y,(0) are strictly positive.

III. Stability Result for Networks with Nonlinear Re-
sistors and Capacitors
The previous results for linear networks can afford some limited insight

into the behavior of nonlinear networks. First the nonlinear equations are
linearized about an equilibrium point and Theorem 1 is applicd to the linear




model. If the linearized model is asymptotically stable, then the equilibrium
point of the original nonlinear network is locally stable, i.e., the network will
return to that equilibrium point if the initial condition is sufficiently near
it. But the result in this section, in contrast, applies to the full nonlinear
circuit model and allows one to conclude that it cannot blow up or oscillate
even if the initial state is arbstrarily far from the equilibrium point.

Terminology

We say that an impedance Z(s) satisfies the Popov criterion if (1+73)Z(s)
is positive real [7,8,9] for some 7 > 0. (Note that this formulation of the
Popov criterion differs slightly from that given in standard references [8,9].)

Theorem 2

Consider a network consisting of possibly nonlinear resistors and capacitors,
along with two-terminal cells each consisting of a linear impedance Z,(s)
in series with a d.c. Thévenin equivalent voltage source of value vi*, for
n =1,2,..,N. Assume the network has an equilibrium point (i.e., a d.c.
solution) characterized by a voltage v and current i{ for each branch k, and
that for any initial condition at ¢ = 0, there exists a unique, continuously
differentiable solution for the branch voltage and current waveforms defined
for all t > 0. Assume

i) the resistor curves are continuously differentiable functions v, =
fi(ix), with the derivative f{(ix) 2 Rpmin > 0 for all k and i,

ii) the capacitors are characterized by continuous functions ¢, = C(vx)t:
where 0 < Ci(vi) € Cma: for all k-and v, and

iii) the impedances Z,(s) all satisfy the Popov criterion for some com-
mon value of 7 > 0. Then the network is stable in the sense that, for any
initial condition,

T (i(t) -0t + /o°° Y id(tdt < 0. (3)

O all resistors all capacitors

The proof, which relies on interesting dualities between resistor co-
content and capacitor energy and between resistor power and a form of
capacitor reactive power, is in the Appendix. Note that Thm. 2, as
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stated, does not require the equilibrium point to be unique, since any cell
impedance may have a (nonrepeated) pole at the origin and cut-sets com-
posed entirely of capacitors and/or such cells are not ruled out. In the
absence of such cut-sets the equilibrium will in fact be unique for each
value of the Thévenin equivalent voltage sources.

The Popov criterion condition on the cell impedances can be weakened,
given some simple topology and modeling restrictions. In many circuits,
such as the regular array in Fig. 2, each cell has one terminal connected
only to a fixed or limited number of grid resistors, never to the terminal of
another cell. This, along with a limit on the incremental conductance of
the resistors, can be used to effectively add linear resistors to the terminals
of each cell impedance, allowing the user to shift the Nyquist plots to the
right before applying the Popov criterion. Figure 7 illustrates this process
in stages, and Thm. 3 below states the improvement.

Theorem 3

Consider a network satisfying the following conditions in addition to the
assumptions of Theorem 2:

i) the resistor curves have derivative f;(ix) > Rmin + €, Rmin > 0 for
some € > 0, for all k¥ and #,

ii) each cell (which includes the series voltage source v*) has at least
one terminal connected to zero capacitors, zero cells, and to no more than
M resistors, and

iii) the impedances Z,(s) are such that the corresponding expressions
Zn(3) + (Rmin/2M) all satisfy the Popov criterion for some common value
of r 2 0. Then the network is stable in the sense that, for any initial
condition,

T (i) - QPdt+ T /°°° T d(tdt<oo.  (4)

0 L1l resistors all capacitors

The proof is in the Appendix.




IV. Concluding Remarks

The design criteria established by these theorems are simpie and practical,
though at present their validity is restricted to linear models of the cells.
The results are consistent, in an interesting way, with the spirit of neural
networks. Attention is focussed on the global collective behavior of the
system. Neither the stability criteria nor the methods of proof rely on
assigning any specific functional role to any particular component. This
feature is characteristic of Tellegen's theorem and most, if not all of, the
results that follow from it [12].

There are several areas of further work to be pursued, one of which
is an analysis of the cell that includes amplifier clipping effects. Others
include the synthesis of a compensator for the cell, an extension of the
nonlinear result to include impedance multipliers other than the Popov op-
erator, a waveform bounding analysis of the network which would guarantee
adequate convergence after an allotted settling time, and an input-output
stability theorem.

V. Appendix
Proof of Theorem 1

Let s, denote a natural frequency of the network and {Vi}, {Ix} denote any
complex network solution at s,. By Tellegen’s theorem [12], or conservation
of complex power, we have

Y Wl; =0, (8)
k
i.e., for s, # any pole of Z,,n =1,..., N and s, # 0,
TILPRe + T2 (8.Ck)™! + Z|Ia*Za(ss) =0

resistors capacitors cell impedances (6)
and for s, # any zeroof Z,,n=1,...,, N,
SIWER: + TIWlsCr + TIWYi(s) =0 -

resistors capacitors cell admittances

where the superscript * denotes the complex conjugate operation.
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i) There are no natural frequencies at s, = jw # 0.

For each w > 0 all the cell impedance values lie strictly below and to the
right of the half-space boundary in Fig. 6. The capacitance impedances
{(wCi)~'} and the resistor impedances {Ri} also lie below and to the
right of this line. Thus no positive linear combination of these impedances
can vanish as required by eq. (6). A similar argument holds for w < 0.

ii) There are no instabilities resulting from a repeated natural
frequency at the origin.

The assumptions that the cell impedances have no jw-axis zeroes and that
their Nyquist plots for w > 0 never intersect the closed 2nd quadrant imply
that ¥7(0) > 0,n = 1,...,N. Thus eq. (7) requires that all the voltages
across resistor branches and cell output branches must vanish in any com-
plex network solution at s, = 0. Thus only the capacitor voltages can
be nonzero and the network solution will be unaltered if all non-capacitor
branches are replaced by short circuits. But every solution to a network
comprised only of positive, linear 2-terminal capacitors is constant in time
and hence stable.

iii) There are no natural frequencies in the open right-half plane.

Assume the contrary, i.e., that there exists such a network with a natural
frequency 3, with Re{3,} > 0. Alter each element in the network (except
resistors) as follows. For each cell having a Z,(s) of relative degree less
than zero, add a series resistance R; for all other cells and for capacitors,
add a parallel conductance G to each. Call each resulting pair a “composite
element”, and choose R = G = A > 0. For ) sufficiently large all natural
frequencies must lie in the open left-half plane since every branch element
is strictly passive for A sufficiently large. Since the natural frequencies are
continuous functions of A [13] and Re{3,} > 0 for A = 0, there exists some
A > 0 for which some natural frequency 3, lies on the imaginary axis. But
this is ruled out by the proof in part i) unless §, = 0, and the argument
in part ii) rules out $§, = 0, since any network solution at 3, = 0 consists
of zero branch voltages except for capacitor branches, and for A > 0 each
capacitor has a conductance G in parallel with it. Since the voltage across




G is zero in such a network solution, all branch voltages (and thus all branch
currents) in that solution must be zero, which is a contradiction because a
natural frequency at $, would imply the existence of a nonzero solution.

Proof of Theorem 2

First consider the special case in which all branch voltages and currents
can be zero in equilibrium. By Tellegen’s theorem, for any set of initial
conditions and any time T > 0,

/OT ST (vi(t) + Tin(t))ir(t)dt +

resistors

/oT Y (k) +ron(t))in(t)dt +

capacitors
[)T Z (‘Uk(t) + Ti)k(t))ik(t)dt =0, (8)
cell impedances

where  denotes dv/dt. The resistor co-content ¢x(v) is, for all v in the
range of fk(l)a

#u(v) = [ a(v)dv’ 20, ®)

where g, is the inverse of the function fi; note that gi exists because f; is
monotonically increasing. Then for resistors,

[ Coute) + ron(eintera =
T
]o ve(t)in(t)dt +

r[ou(vi(T)) ~ dx(va(0))]
(10a)
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and using the inequality in (9), along with 7 > 0, gives

/0 T (0a(t) + rin(t))is(B)dt >

/;T vk(t)ik(t)dt - rd)k(vk(O))
(10b)

for all resistor branches. Similarly the capacitor energy Ei(q), as a function
of the charge ¢, is

q .
Edg) = [ va)dg' 2 0.

(11)
Then for capacitors,
L + roncenincde =
T
r '[0 e()in(t)dt + |
[Ex(gx(T)) = Ex(4x(0))),
(12a)
and uéing the inequality in (11) gives
[ o + roucenin(at >
r [ (@)in(t)dt - Ex(an(0))
(12b)
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for all capacitor branches. And for cells, the assumption that (1+73)Z,(s)
is positive-real (by the Popov condition) implies that

/o T (onlt) + T6u(t))in(t)dt > —En(0), (13)

where E,(0) > 0 is the “initial energy in the Popov-multiplied cell impedance”
at ¢t = 0, a function of the initial condition only. Using (10b), (12b), and
(13) in (8) gives

/o TS o)t +

resistors

"/oT Y ve(t)ik(t)dt <

capacitors

Y ra(ve(0)+ Y En(qe(0))+

resistors capacitors
Y E.0). (14)
cell impedances .
But the right side of (14) depends on the initial conditions only, so that

/o TS w®)in(t)dt +

r / T at)ik(t) < oo (15)

0 capacitors .
For resistors, the inequality condition on f}, the zero equilibrium branch
voltage and current assumption, and Rnin > 0 yields i2 < R}, vkis. Also,
for capacitors i} = C2(v)92 € CrmazCi(vi)v? and Cpmgz = 0 so that i <
ComazUkix. The resultant inequalities for resistors and capacitors, along with
Rmin > 0 and Cpy: 2 0, in (15) yield the result (3) for the special case of
i) = 0 for all branches:

/o°° Y d(t)dt+r [0°° Y 2(t)dt < . (16)

resistors capacitors




To prove the result for the general case of a nonzero equilibrium solution, a
constant additive transformation on the branch voltage and current wave-
forms will result in a network satisfying the special case just proven. Note
that capacitor branch currents vanish at equilibrium.

Proof of Theorem 3

As in the proof of Thm. 2, we specifically address only the case in which all
the Thévenin equivalent cell voltages are zero and thus all the branch volt-
ages and currents are zero at equilibrium. By condition ii), each impedance
Z.(s) has a terminal connected to m, resistors and to no other elements,
where 0 < m, < M. If m, = 0, then the cell is open-circuited; it does
not affect the rest of the circuit. If m, 2 1, then Z,(s) is connected to m,
linear resistors of value R,,;,/2 as explained in Fig. 7. Let i; be the branch
currents entering the resistors at the dashed boundary shown in Fig. 7d,
J =1,2,..,m,, and let v; be the correspondiug voltages referenced to the
terminal of the cell shown as ground. Also let v, and i, be the voltage
across and current through Z,(s), respectively, in the direction sense such

that

Mn

ia(t) = L i) (17)

=1

Then

Rmin .

| 0;(8) = va(2) +
i =12,..,m,. Using (17) and (18) gives

[ 0,0+ ris(eis(de = [ (wutt) + rin(o)in(0rde +

=1
7SS Einy i) + risis(yae (19)
=1
Using (17), (19) can be written as

/ori(”i(t) + 10;(t))ij(t)dt =

=1

13




Rﬂun

/ [oa(8) + Ti(8) + (GER)(ix(t) + ri()lin(t)de +

Rmm

—-—-)(z,(t) —m7i,(t))i;(t)dt +
j=1
Tmn R"""T Ni(t) = myte(2))ij(t)dt. (20)
J=l 2

Since m;1i,(t) is the mean of i;(t) over all j, and Rp;n > 0, the integrand in
the second term on the right side of (20) is nonnegative (as is easily shown
by a standard quadratic form), e.g.

Z_:l( "‘"‘)( 15(8) = mtia(2))is(2) 2 0. (21)

Also, (17) and (21) can be used to show that

/ 22(z,(t) m,(8))i;(8)dt =

=1

Z(ij(T) —mztiy(T))i}(T)-

Jj=1
$3(1,(0) - m712(0))i;(0) 2 K, 22)
=1

where K depends on the initial conditions only. Condition iii) in the state-
ment of the theorem and m, < M mean that the first integral on the right
side of (20) is bounded below by —E,(0), where E,(0) is the “initial energy
in the impedance [Z4(s) + Bmin](1 + 7s).” This, with (20), (21), and (22),
show that

/ S (0s(t) + 7o5(£)is()dt > Ka(0) (23)

j=1
where K,(0) depends only on the initial conditions at t = 0, for n =
1,2,...,N. The resistor inequality f;(ix) = Rmin + € shows that the non-
linear resistors in Fig. 7c have fi(ix) 2 ¢/2. Thus the circuit satisfies the

14




conditions of Thm. 2, except for the form of the cell impedances; in this
regard, equation (23), summed over all the cells, is used in place of (13) for
the proof.
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Figure Captions

Figure 1: The cell in dotted lines, a photoreceptor and signal processor
circuit using two MOS wide-range amplifiers, realizes spatial lateral inhi-
bition by communicating with similar cells thiough a resistive grid. Bias
adjustments ensure that the output impedance of amp #1 is much lower
than that of amp #2.

Figure 2: Interconnection of cells through a hexagonal resistive grid. Ground
connections are internal to each cell. Cells are drawn as 2-terminal elements
with the power supply and signal output lines suppressed to emphasize that
each is modelled as a black box characterized by its driving-point impedance
seen from the grid terminal. The grid resistors will be nonlinear by demgn
in many such circuits.

Figure 3: Elementary model for an MOS amplifier.

Figure 4: Simplified network topology for the circuit in Fig. 1. The ca-
pacitor that appears explicitly in Fig. 1 has been absorbed into the output
capacitance of transamp #2.

Figure 5: Passive network with driving-point impedance identical to that
of the cell model in Fig. 3 with the transamp modelled as in Fig. 4.

Figure 6: Illustration for the proof of Theorem 1. For each w > 0 the cell
impedances Z,(jw) must all lie below some half-space bounaary lying in
the closed first and third quadrants. The boundary can vary with w.

Figure 7: a) Nonlinear resistor connected to cells at nodes a and e. The
dashed lines emphasize that each cell is also connected to other resistors, not
shown. b) The resistor in a) can be split into a series string of two identical
resistor pairs, where each pair consists of a linear resistor of value Rp;n/2
and a nonlinear resistor. If Rmin is chosen to be less than the smallest
value of f/(i), then the resulting nonlinear resistors between nodes b, ¢, and
d will still have strictly monotone increasing v — i curves. c) The model for
parasitics associated with the resistor in a) can include capacitors between
any of the nodes b, ¢, d, and ground; it can not include any connected to
a or e. d) Each cell impedance can be thought of as a multiterminal linear
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element, shown in the dashed box, as seen from the external circuit.
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