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A. ACCOMPLISHMENTS

Th following is a brief suumary of accomplishments under Grant AFOSR-84-0131. Reports and papers

listed in Section B contain more detailed presentations and may be obtained from the investigators.

1. The Reduced Basis Method for Algebraic Systems

1.1 Subspace-Projector Pairings. Implementation of the reduced basis method requires the choice of a subspace

and a projector onto that subspace. For an arbitrarily chosen subspace-projector pair, existence of the tre solu-

tion curve is not sufficient to guarantee the existence of the corresponding reduced basis solution curve. How-

ever, when the former curve exists, it has been shown in (All that there are infinitely many subspace-projector

pairings, each utilizing an arbitrarily selected subspace, under which the reduced basis solution curve exists.

Moreover, the resulting error estimates are of the same natue as those that apply in the more familiar case when

a subspace is paired with its orthogonal projector.

1.2 Reduced Basis Additive Correction Methodr. Additive Correction Methods have been considered by a

number of authors as a meass of accelerating slowly converging iterative processes (see, for example, [A2]-

[A4]). Furthermore, it has been recognized that additive correction is central to the basic idea of multigrid

methods [A4-A5]. Although the reduced basis method in its original form appears to have little in common

with additive correction, a class of such methods has been developed using the reduced basis concept (1].

Furthermore, it has been shown that in their "two-grid" form, certain multigrid methods are special cases of this

class. The reduced basis point of view provides insight into the error reduction capability of such multigrid

methods, and at the same time suggests additive correction variants that lie outside the scope of the usual mul-

igidfm ism.

For example, an additive correction that is based on the span of translates of "presmoothed" iterates does

not correspond to any usual "coarse grid" correction in the multigrid sense. However, it can be shown that if

such corrections follow v presmoothing iterations, and if the smoothing process is symmetrizable, then the result

is at least as good as that which would have been obtained by doing v iterations of the Chebyshev semi-iterative
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method [A191 with optimum parameters. Furthermore, a model problem analysis shows tha these corections

always incorporate the ability to remove completely any v of the modes that remain in the presmoothed error.

Details of these results will appear in [31].

2. The Reduced Bans Method for Systems of Dtrewdo Equations

Error Estimates for the reduced basis method solution of differential and differential-algebraic equation

systems am contained in the Ph.D. thesis [2] by N.Y. Lin-Lee, under the direction of Professor Thomas Porsch-

ing. These estimates ate local in the following two senses. Fmrst, they apply on a nontrivial, but possibly very

small interval. Second, they require some point of the reduced curve to lie on the true solution curve. The

recem research reported in [18) has removed the interval length restriction in the differential equation case and

extended the error analysis to global versions of the methods in (21, thus effectively eliminating the second local

aspect of that work. Furthermore, this work also mcorprtes the effects of the errors resulting from the numeri-

cal integration of the reduced basis ODE systems.

3. Two-Fluid, Two-Phase Flow

Additional theoretical results on the nature of the void fracton have been incorporated into [A61 resulting

in the revision (3].

4. Binary Ga Mixture Flow Through Combuutors

In an attempt to reduce the development cycle costs associated with design of gas turbine engine combus-

toss, mathematical combustor models ae being employed to provide information about performance trends and

to predict velocity, pressure and thermodynamic property profiles in simulated pactica! combustion environ-

ments. It has been demonstrated that the dual variable method can be applied to the predictive model of the

fluid dynamics associated with an axially symmetric centerbody combustor being studied at WPAFB. This work

appeared in [4]. Modifications have been made to the industry standard program TEACH to allow for more

efficient, local iteration. The same algorithm is also used in a dual variable version which shows even more
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savings.

5. Error &iMadon and Singuriti s

The central theme of this project concerns the errors arising in the computational solution of parameter-

dependent equations of the form F (zX)= 0 where F is a given nonlinear mapping, z is the state variable

representing the solution, and X is a vector of parameters that characterize intrinsic properties of the system or

extrinsic quantities influencing its behavior. In the case of fluid problems, the operator may be generated, for

example, by the time-independent Navier Stokes equations together with the necessary boundary conditions.

In general, the solution set of such parametrized equations constitutes a differentiable manifold M of

dimension equal to that of the parameter space A. While this fact is, of course, well known, we appear to have

been the first who have been using this fact as the basis for a consistent study of the numerical problems for

these equations. Our results have begun to show clearly the value and power of this geometric approach.

The basic procedures for the computational analysis of such a manifold M are the continuation methods.

When M has dimension p > 1, these methods require a restriction to some path on M and then produce a

sequence of points along that path. Obviously, it is not easy to develop a good picture of a multi-dimensional

manifold solely from information along such paths. This led us recently to the development of methods for the

computation of simplicial apprximatioas of p-dimensional subsets of M (see [25], [26]). Besides these methods

for computing specific sets of points on M, another important class of numerical procedures concerns the detec-

tion and computation of foldpoints on M with respect to a given coordinate space T, such as the natural parame-

ter space A, (see [5], [7], (191, [211).

For numerical considerations, an important aspect of this theory concerns the estimation of the various

errors arising in the computations. These errors fall into several classes. First of all, there is the important ques-

tion of the discretization errors which in this setting turns out to be the "distance" between the manifolds defined

by a given differential equation and by its discretization, respectively. This has been the topic of a series of

papers by J. P. Fink and W. C. Rheinboldt with partial support under this grant. See the earlier articles [A7],

[A8] and then [6] and [16]. In particular, in the last named paper (16] we have been the first to analyze the case
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of multi-dimensional manifolds which is of increasing importance in applications.

An essential aspect of these discsetization studies concern the question as to the exact definition of the

eemr between a solution manifold and its approximation. Obviously, the error depends on which points are to be

compored. In the cited papers it was shown that this correspondence between the points on the two manifolds

has to be defined by appropriate local coordinate systems. In other words, the resulting er is controlled by the

choice of the local coordinate system, and, since the error measure must be physically meaningful, not all local

coordinate systems are equally desirable. This question becomes particularly acute in the vicinity of singular

points where the behavior of the solutions may be subject to change.

This connection between the choice of the local coordinate systems and the singularity behavior of a point

has led us to a closer study of admissible coordinate systems at foldpoints. But the results in [5] and (7] also

suggest that the open questions about the proper choice of the coordinate system for physically meaningful error

measures requires a much closer look at the characterization of foldpoints on manifolds and at the methods for

their computation.

Besides the discretization errors there are various other computational errors which arise in the analysi of

the solution manifolds of parametrized equaions. In particular, both in the continuation methods and in the sim-

plicial appoximation methods, mentioned above, we encounter the following sources of erors:

(a) Errors associated with the predictor ad corrector.

(al) Estimation of the prediction error

(a2) Control of the termination error

(a3) Control of the effect of round-off

(b) Errors associated with the choice of local coordinate

system:

(bl) Estimation of the domain of validity of this

coordinate system,

(2) Control of the range of applicability of the

moving frame algorithm in the simplicial



approximanon method.

In connection with foldpoints computations, various further error questions arise; they will be discussed in the

next subsection. During the past year a study of these and related error questions has begun and will be con-

tinuing during the next year.

6. Detectim and Compauton of Singularities

As noted in the previous subsection, the solution set of a parametrized equation F (z, X) = 0 represents, in

general, a differentiable manifold in the combined space of the state variable and the parameter vector. This

requires a regularity assumption which is not very restrictive in applications, but which -- from the viewpoint of

singularity theory - implies the use of a suitable "unfolding". In most practical problems a host of very natural

unfoldings suggest themselves. However, the particular choice of unfolding affects the location and type of the

resulting foldpoints on the manifold and with it also the eror questions raised in the previous subsection.

Our previous work in this area concentrated on a study of the differential geometric aspects of the prob-

lem. In the already mentioned papers [5], [7] we used the tangent map to develop a geometrically instructive

and coordinate free treatment of foldpoints. Then in [21] is was shown that it is possible to reformulate in this

setting some of the basic results of bifurcation theory related to computational aspects. In particular, the bifurca-

tion sets appear as certain cuts of the solution manifold. This in turn corresponds to the consideration of particu-

lar augmented equations and hence opens up a new approach to the study of effective augmentations for the

computation of singular points. Such a study was begun in [19].

On the basis of the results in [21) R. X. Dai, a Ph.D. student at the University of Pittsburgh under the

direction of Professor Rheinboldi, has been working on a new method for specific class of foldpoint problems.

More specifically, a new minimal augmentation of the original equations have been devised for the computation

of so-called (p,l,l) foldpoints. For the resulting systems an efficient local corrector process has been developed

which allows for the continuation along a path of such foldpoints. In addition the approach does appear to open

up the possibility of extending the simplicial approximation approach mentioned in the previous subsection to

sub-manifolds of (p,l,l) foldpoints. This is currently being studied. The techniques have already been applied to

a variety of test problems with excellent success. A comprehensive report will be forthcoming within a few
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months.

As noted in the previous subsection, there are numerous error questions, we have investigated, arising in

the different procese for computing foldpoints on a solution manifold. We mention here only the principal

top-s

(a) Detct a foldpoint in a neighbohood of a given set x1.... x of points.

(b) For a given approximation x of a foldpoint x* of the manifold estimate the distance I Ix-x* I I between

these points.

(c) For foldpoints of a specific type develop iterative processes which are locally convergent to these points

from any sufficiently close approximation.

(d) If xj is a computed foldpoint of the discretized equations which approximates a foldpoint x of the original

differential equations, compute an estimate of the distance I Ix - xA I I.

7. Finite Element Formulation of the Streamfuncton-Vorticity Equations

The Navier-Stokes equations can be written in primitive variable formulation, in terms of the streamfunc-

tion as a fourth order problem or as two second order equations in the streamfunction-vorticity formulation. In

the linear case the fourth order problem for the streamfunction is the well-known biharmonic equation.

Although the primitive variable formulation has received the most attention, the streamfunction-vorticity formu-

lation is also of considerable interest in two dimensional domains. That is partly due to the fact that only two,

as opposed to three, fields ae to be computed; but it is mainly due to the fact that the incompressibility con-

straint is avoided through the introduction of the streamfunction.

Several theoretical and practical issues arising in the finite element approximation of the streamfunction.

vorticity equations have been studied. Initially error estimates for the linear problem were investigated. Since

the velocity is expressed in terms of the derivatives of the streamfunction, it is of practical concern to ascertain

if these derivatives are optimally approximated for choices of elements. Previous analyses concerning this prob-

lem were improved upon and the optimality of the error verified in [A101.

9
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Other issues aising in the finite element approximation of the streamfunction and vorticity include compu-

tations in multiply connected domains, the use of low order elements, the incorporation of a variety of boundary

conditions into the weak formulatio estimates for the erors in the finite approximations for the nonlinear prob-

lem and the recovery of the primitive variables. A preliminary report on computations in multiply connected

domains using low continuity finite element spaces was presented in [11]. A comprehensive report dealing with

all of the theoretical and practical issues mentioned above as well as presenting numerical examples is given in

[12].

8. A Fiite Element Analysis of MHD Flow

The equations governing the steady flow of incompressible electrically conducting fluids in the presence of

a given magnetic field can be expressed as

7 1 (V a) + V - (AxV*) - (a 4XV) = 0

diviij = 0

where j is the velocity, p the pressure, * the electric potential, A the magnetic field and N, n given dimension-

less parameters. By rewriting ctemin terms using vector identities and using appropriate spaces, one can obtain

a weak formulation for this problem that is similar to one for the Navies-Stokes equations written in terms of

primitive variables (see [All]). The purpose of using such a weak formulation is to take advantage of the

results already proved in (All]. Specificaly, the weak formulation is to find it = (a,4) e iV, p e L.2 such that

a(m, y-) + al(ij, Iay) + bOy,p) = (f , y,) for all y eW

bG, X) = 0 for all XeL2

where

a(i, )= - J V:V + J (VO-A }.))(V -(X))
- 2
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ai(m. )=. y J) (m .V a - u.V v-u)2N

andYW ,xH..,L. 2 -(*eLA J*=O).

a

The continuity and stability conditions necessary to guarantee exisence and uniqueness of the solution of

the weak Problem have been proved. In addition, a error estimate for the finite element approximation of the

weak problem has been obtained. These results, as well as a discussion of an iterative method for solving the

discrete problem will be presented in [13].

9. Dual Variable Tran4formadons

The dual variable method, orginally developed in the context of finite difference discretizations of tran-

simet incompressible Navier-Stokes equations [A9], is a technique to considerably reduce the size of the linear

system to be solved at each time step. The method involves

(1) the determination of the rank of the discrete divergence operator, A,
(2) the determination of a basis for the null space of A, and
(3) the calculation of a particular solution of the discrete continuity equation.

In [8] a finite element implementation of the dual variable method is presented using quadrilateral piece-

wise bilinear velocity/constant pressure elements. Algorithms for the determination of a basis for the null space

of the discrete divergence operator and a particular solution are presented.

In C9] a finite difference discretization of the Navier-Stokes equations describing a compressible flow prob-

lem is viewed as a system defining flows on an associated network. This observation then provides a means of

applying the dual variable method to economize on their numerical solution.

The nature of the aerodynamics in and around such structures as cavities and deflectors or spoilers on vari-

ous aircraft configurations was investigated using the dual variable method [10].

A summary of the dual variable method is given in [14].
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Iterative methods are under investigation for the solution of the linearized finite difference discretizations

involved in the deal variable method. The generic form of dual variable system suggests a splitting in which a

Stieltjes matrix is to be solved at each step. The method has been implemented for two dimensional domains

and convergence properties were investigated as part of a Ph.D. thesis by George Mesina [35], under the direc-

tion of Professor Charles Hall

10. Fluid Flow on Curved Domains

A finite difference scheme was derived for two-dimensional, transient, incompressible Navier-Stokes prob-

lems in which the flow domain 0 is a bounded simply-connected region for which there exists a C2 invertible

mapping v onto the unit square:

t : Q -+ S E [0,I]x[0,I]

The transformned Navier-Stokes problem is

div!& w i.,i =-0

vi+ V  = - j + (Bjkv,)j + f  i- 1,2

subject to initial condition

i(r .0)= a(z(r)),r .S

and boundary condition

x(r, ) f r e a S andt > 0,

where, y(r, t) is velocity, p is pressure, the Jacobian matrix

co =

[ = IJ Jr- (.



The finite difference discretizauon of the above equations is proven to be unconditionally stable and con-

vergent. They also reduce to the well known Krzhivitski and Ladyzhenskaya scheme [A12] for rectangular

domains, e.g., c the identity. This work was the subject of a Ph.D. Dissertation of John Ellison, under the

direction of Professors Charles Hal and Thomas Porsching [A13] and appeared in [17].

11. D oferential Equations on Manifolds

As noted earlier, equilibrium problems arise naturally in continuum and fluid mechanics as a set of non-

linear equations of the form

F(t( = 01)

where j is from the state space Z and 1, is from a p dimensional parameter space. Then the equilibrium mani-

fold is the set of solutions to (1) in D eX = ZxA; that is

M = ((ri ),eD I F(L, D=O0 (2)

The parameters I and states I may be required to satisfy a differential equation of the form

A (X) i = CL(A) (3)

where x m (L, ). We then interpret (3) as a differential equation on the manifold (2), DEM for short. Equa-

tions (1) and (3) together,

I() = )

form what is called a differential-algebraic equation (DAE).

Two applications of interest to the investigators in which DEM's occur are:

(i) Incompressible Fluid Flow. The continuity equation is an algebraic constraint of the form (1) and the

time-dependent Navier-Stokes equations are the differential equation.

(ii) Punch Stretching of Sheet Metal. The principle of virtual work provides a force equilibrium equation

which defines an equilibrium manifold upon which one seeks solutions to differential constitutive laws of

the form (3).



In [20], a new numerical method was presented for computer simulations of punch stretching of sheet

metal. Most current approaches to finite element modeling of large deformation, elastic-plastic sheet metal

faning use a rate foam of the equilibrium equations and then must correct at each time step to insure that

equilibrium is satisfied. Such methods are referred to as inremental methods. The new method, a DEM

approach discretizes the more fundamental equilibrium equations in non-rate form and insures equilibrium of

forces at each time step. Formulating the problem as a DEM or DAE also allowed for solution of the discre-

tized system using off-the-shelf software such as LSODI. Numerical experimentation indicated that the DEM

approach was computationally much more efficient than the incremental approach.

12. Energy Stability of Viscous Incompressible Flows

The problem of determining sufficient conditions for the flow of a viscous incompressible fluid to be

stable under arbitrary disturbances was examined. This problem is of importance in the study of turbulence and

the transition which occupies a region of space and is subject to a prescribed velocity distribution on the boun-

dary, will alter radically or only slightly in nature if it is perturbed at some instant.

The question of stability cm be addressed by either standard linear perturbation techniques or by the

energy method; the latter is chosen in this wor. Although the great majority of stability calculations use linear

stability analysis, the method has the drawback that it allows only perturbations which are infinitesimal in mag-

nitude. This rules out perturbations of finite size and hence cannot give accurate information in many cases.

The energy method allows arbitrary disturbances but its shortcoming is that the disturbances do not necessarily

satisfy the Navier-Stokes equations, and thus the stability criterion will be more restrictive than in the actual

physical situation. However, the energy st&. .Uty analysis is based on the Navier-Stokes equations and is non-

linear in nature due to the fact that no linearizations of the equations are done. The method is mathematically

rigorous and does give insight into the physical situation.

The question of energy stability of a flow can be formulated as a linear generalized partial differential

eigenvalue problem even though the analysis is based on the nonlinear Navier-Stokes equations. Essentially, the

procedure is to obtain an equation for dK/dt where K is the kinetic energy of the disturbance, 1, and then to

determine conditions which guarantee that the kinetic energy tends to zero as time increases. A standard
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eigenvalue problem is used, where stability is governed by the dominant ¢igenvalue. Specifically, we have that

the flow is stable for Reynolds number less than 1A where X is the dominant eigenvalue of the problem

A- grad #= -X D

aWv i 0 , (1)

- - 0 on the boundary

Here D is the deformation tensor of the unperturbed flow.

A finite element method is used to approximate the dominant eigenvalue of (1). In particular, the weak

form considered is to find nonzero x eW, # e L 2 and ,X eR such that

JVII: V+ J#divv = 11 -D -y for all. eL

(2)

J xdivi =0 for all XeL 2

where L2 is the space of all functions which are square integrable and HI', I denote the usual Sobolev spaces.

To approximate the solution to the weak problem (2), finite dimensional subspaces kh c: W and Wk c L2 are

chosen which depend upon a parameter 0WA <1 tending to zero. The approximate problem is defined analogous

to (2) where the solution is sought in the finite dimensional subspaces. Once bases for Y" and W" are chosen,

the approximate problem is equivalent to an algebraic generalized eigenvalue problem. An estimate for the error

in X and its Galerkin approximation is given in [A14].

As proposed, a code was developed which uses a mixed finite element method for approximating the dom-

inant eigenvalue of (1). The program was used to determine a range of Reynolds numbers for which the flow is

guaranteed to be stable for the examples of plane shear flow and Poiseuille flow.

The first example is the simple case of flow in a channel of width 0<y<d where the initial velocity is

given by the vector (ky,O), the deformation tensor is given by Dij = 0 for i =j and Dio = .5k for i j,

ij = 1,2 and the Reynolds number is kd2/A. The channel is assumed infinite in length. The computed Rey-

nolds number for a channel of length L is given below.

I/L 1 1/2 1/3 1/4 1/5
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Re No. 289.87 201.42 186.975 182.11 180.01

Using the above calculations the extrapolated value at IlL = 0 is 177.4 which is in good agreement with the

value of 177 published by Orr.

The second problem of detemining the stability of Poiseuille flow in a pipe is of more interest physically

and has been studied by many author For this example the formulation (1) makes sense in an unbounded

domain when the solutions ae single-valued in 0 and periodic in z. To this end, the solution is assumed of the

form x(r, 0, z) = (r. a. P) e'(. where 5 is an integer. This form is substituted into (1) and the follow-

ing system results

Lu -i[ A V]* =-.

Lv + i(2 /r2 u - flr*) = 3

Lw -cx4 =-)ru' I v d
7Tr- (ru) +'I r dw

u, v, w bounded at r =0

u=v=w =Oat r=1

where IL=(u,v,w), Lu 1 ~-~ (rzs) -- 02+, + U2]u, Las=Lu + u.= r I r 2  
I

Note that these equations form a complex one-point boundary value problem with a singularity at the ori-

gin. The weak formulation must incorporate an appropriate boundary condition for the velocit- at r = 0. The

particular weak from considered is the following- Find u, v, w e H1, e H2 , e R such that for all e H1,

Z E H2,
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(fiat.r dr + f c1 . FA + if .. vkdr -J-(~d a ~ w~

fv,l ,rd + f C1 .*d - iJfiutdr + iJfW = 0

JWr rdr +JfC 2 .14dr +ia i *d ;LJU r2dr

-17 (ru)Xdr - iJPVzdr - ifrzwzrdr =0

where = p2+ I +a 2r2 , C2 = C- I

for appropriate spaces HI and H2.

With this weak formulation the condition imposed on the velocity at r = 0 is ru = ryv = rw, =0, which

is a natural boundary condition. This problem was discretized using piecewise linear elements. The results

obtained agree with those of Joseph and Carmi (AI5]. However, their numerical calculations were unnecessarily

complicated. For example, different techniques for the various cases such as a = 0 and a * 0 had to be

employed as well as using Frobenius series as starting values near the origin. Specifically, the value of 81.5 was

obtained as a sure limit of stability and corresponded to the case a = 1, P = 1. This agreed with Joseph and

Carni's result and confirmed the fact that the value of R = 180, which was previously believed to be a sure

limit of stability, is incorrect. This work is discussed in a paper in preparation [231.

13. The Conjugate Gradient Method on Supercompnuers.

The application of the preconditioned conjugate gradient (PCCG) method to the solution of the large,

sparse linear systems resulting from the discretization of partial differential equations on regular and irregular

domains was investigated. The primary goal was the efficient implementation of the PCCG method on vector

super copters. In [24], this goal was met by the introduction of

(i) A dat structure which is suitable for manipulation on vector machines,

(ii) Preconditioned matrices which are effective for general sparse matrices, and

(iii) Numbering schemes for both regular and irregular grids, which are amenable to adequate vectorizations.

14. The Numerical Solution of Transport Problems

The question of finding schemes for approximating the solution of transport problems (e = 0) and

diffusive transport problems (0 < e -c 0(i)) is a central problem in computational fluid dynamics and combustion
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theory. Frequently, efficient schemes are required which have high accuracy, preserve positivity, minimize

dispersive effects, minimize grid orientation effects, etc.

An additive correction algorithm proposed in [AI7] was considered for the I-D equilibrium problem:

-e u'+f(x)u'+ g(x)u = g(x), <x <U (o) = a. U (I) = P3.(I

An exact analysis of the deferred correction algorithm was performed in [27], accounting for layer effects, via

the theory of discrete buier functions. This analysis established that in outer layer regions (regions of fixed

distance 8 > 0 from layers) the scheme converges uniformly in e with accuracy given by the high accuracy

"defect" operator. The influence of discrete layer terms was clarified in [27] also. A mesh refinement process is

naturally suggested by this analysis, which also gives a bound upon the region of assured 0(h2) accuracy.

Next the case of 2-D equilibrium tasort (e = 0) and diffusive transport (e > 0) problems was considered

u = u(x, y) satisfies

- + v, u, +v2 + gu = q ,in LI c R 2 ,
u=aon at , 0<gc0(l). (2)

We have focused our attention on methods which strictly preserve positivity. [A 2-D filtering technique which

approximately preserves positivity in the deferred correction methods previously discussed was introduced in

[A18]]. The simplest way to satisfy this requirement is with difference stencils which are of positive type.

In [28] the spurious diffusive effects of positive type schemes were investigated for (2). Specifically, the

presence of anisotropic crosswind diffusion was studied. It was shown in [28] that, except when the transport

direction is precisely aligned with the mesh, there does not exist a positive type scheme with zero spurious

crosswind diffusion. The precise amount of this diffusive term is given in [28]. In [32], this analysis was taken

one step further. The principal axes of diffusion for difference schemes were defined. By comparing these to

the physical flow, a general methodology for comparing difference schemes and parameter selection in a given

scheme is obtained.

In parallel, a much more ambitious approach to 2-D transport problems has been investigated. Monotone

(i.e. inverse positive) type schemes for iransport, transport-diffusion and ransport-diffusion-reaction equations

have been studied. Monotone schemes can, in principle, overcome many of the inherent barriers in positive type
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methods. However, the inhemt global and nonlinear character in generating monotone stencils presents a

severe challenge.

Recently, there have been three breakthroughs at ICMA on this question. The first is that a methodology

has been developed for reducing to sequential linear systems these global nonlinear consistency conditions.

Thus, a chnique has been developed for generating a class of novel monotone type difference schemes for gen-

eral boundary value problems. This class contains a number of free parameters which can be used to enforce

other desirable features e.g., high accuracy, minimal dispersive or diffusive properties, etc.

Secondly, a "collage" type theorem for monotone and positive type matrices has been proven. General

monotone (inverse positive) matrices lack the algebtaic strucme of matrices of positive type. Thus, it is neces-

sary to give a systematic procedure for combining monotoe type stencils with other stencils to preservq stability

in complex convection-diffusion-reaction problems. This collage theorem is a major step to developing a gen-

eral theory which will specify the correct procedures.

These breakthroughs are a very general approechAnethodology for deriving schemes with assured stability

and assured preservation of positivity. To complete the picture, we are currently working on generating large

classes of novel schemes for 2-D transport problems and analysis of the error the schemes generated. These

would then be applied to many specific problems including combustion and fluid flow.

15. Problems with Memory in Mathematical Physics

Progress has been made in a tangentially related area of applied mathematics: physical processes incor-

porating delay on memory effects. For problems with (possibly infinite) delay-t +t) f g ,s, x)x(t-s))d(s) =ft), t e R

(s)=(s) , sER-, (I)

a global existence theory has been developed in [29] where the asymptotic behavior of solutions is also con.

sidered. In a companion paper (301, general conditions upon g and ;t are given which ensure exponential

asymptotic stability of the initial value problem. Thus, [29], [301 give a fairly complete picture of the behavior

of solutions to (1) under a very mild nonresonance type condition upon g.
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16. 3-D Fluid Flow Calcudations on the CRAY XMP-48

Ther is a rather large (6400 flow cell) version of the 2-D fluids code ALGAE (10] which typically takes

overnight on a VAX 8650 to get one time-step finished. We needed such a large version in a fluids simulation

of aircraft cavity flows, and foind that we could get 300 time steps (often needed to get a steady state) finished

on a CRAY XMP-48 within a 24 hour period. However, we noticed that this code was extremely slow and that

75-90% of the CPU time on the CRAY was being used by the solver. One obvious conclusion was that any

practical 3-D code would have to be developed in a supercomputing environment using very efficient vectorized

solvers.

Because of a short term need to make the CRAY XMP-48 version of ALGAE more efficient, and to give

us some experience with high efficiency solvers of linear systems on the CRAY, we attempted to unravel the

bookeeping in ALGAE to produce the final equations in matrix-vector form without turning on ALGAE's

inefficient (on the CRAY) fiontal solver. This latter feature, combined with ALGAE's link-list bookeeping, pro-

vides its excellent capability for efficient solution of a complicated geometry on computers with limited storage.

However, on a large-memory machine devoted to vector efficiency and with parallel capability, the frontal solu-

tion can be hard to vectorize, and link-list bookeeping requires re-organization in vector form to get reasonable

efficiency on a supercomputer such as the XMP-48. We had hoped to modify ALGAE to simply generate the

matrices without turning on the frontal solver so we could call one of the high efficiency solver packages on the

CRAY.

This turned out to be a coding nightmare, so it was decided to move on to a new coding for the 3-D ver-

sion. We have extended the dual variable method [A9] to incompressible flow in three dimensions and a gradu-

ate student, Ms. Ye, under the direction of Professor Charles Hall has developed an algorithm for the constmc-

ton of "countries" or faces of the associated network. A node-oriented system has been planned on domains that

are imbedded in rectangular parallelopipeds.
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