
r a - - -



'4B4 7 S



......... * ....... U

CONTRiOLLE

.................... y

L



Royal Signals and Radar Establishment

Memorandum Number 4247

Title: A Z Specification of the MaCHO Interface Editor

Author: A.W.Wood

Date: November 1988

Abstract

This document describes the basic editor part of the user interface for the SMITE
secure computer architecture using the mathematical notation known as Z. Operations
that are available to the user, and their effects on the screen display, are specified
in conjunction with descriptions of the auxiliary functions and data structures
necessary to support them. This specification will be used to implement a powerful
yet trustworthy interface for the initiation and control of security related
transactions.

Copyright
0

Controller HMSO London
1988

.... __ ______________ss olo m ii i



Introduction

The MaCHO (Mouse and Cartouches for Handling Objects) Interface, or MaCHO-I for
short, is designed to be the primary application independent user interface for the
SMITE secure capability computer (Terry8l, Wisemangla, Wisemang8b, Wiseman88cl.
This document formally describes the salient features of MaCHO-I in the notation of
Z, a specification language based on the mathematics of typed set theory developed
by the Programming Research Group at Oxford University. The reader who is
unfamiliar with Z is advised to read, or at least have available for consultation, the
many good reference manuals available on the language lSufrin86, SpiveyS8] before
embarking on the rest of this paper.

MaCHO-I is strongly based on the interface of the Flex computer Foster82l, in
particular in its use of the graphical block (henceforth referred to as the gblock) as
a fundamental data object. As its name suggests, this data structure is one that is
directly representable graphically on the display screen and which is composed of a
set of objects grouped together to form a whole. Gblocks can thus take on many forms
of varying sizes but, more importantly, they can contain other gblocks in their object
set. For instance, if we view a line of characters as a gblock then several lines may
be combined to form a gblock called a paragraph; similarly, several paragraphs may
make a page. (For more on the uses of gblocks see [Core87l.)

Whilst both the MaCHO and Flex interfaces are founded upon gblocks, it is
important to note that the former, MaCHO-I, can neither manipulate them to such a
great extent as the latter, nor does it even recognise the full spectrum of types of
gblock that Flex does (approximately two thirds are not present). However, despite
this reduced functionality, the MaCHO Interface is being constructed to be superior to
its Flex counterpart in possessing those properties that are of overriding concern in
the environment of the SMITE project - complete trustworthiness and total
correctness.

To describe the design of MaCHO-I in a clearly comprehensible manner, this
document has been split into a number of discrete sections. Section I is concerned
with an informal description of gblocks and other data structures as they are used in
MaCHO-I. Sections 2 and 3 formalise, in Z, the notions of Section I and also
introduce some operators to process them. Section 4 defines those functions which are
available to the user whose effects on the various data structures of the interface are
specified in sections 7 through to 20. Section 5 deals with those aspects of the
interface associated with defining views of the data by windows and section 6 defines
those simple schemas which are not constrained to be used in conjunction with any
one particular function but rather with many spread through the text.

Accession For
NTIS ORA&I
DTIC TAB
Unannounced fl
3ust if otion

By.

Avallqbility Codes

;Dist j Special

2 1'j
__________A



Contents

Section 1: Description of MaCHO-I Data Structures

Section 2: Formal Specification of MaCHO-I Data Structures

Section 3: Basic Operators and Constants

Section 4: Predeclared Functions

Section 5: Windows in the MaCHO Interface

Section 6: Basic Schemas

Section 7: Recursion in the MaCHO Interface

Section 8: Going In (to the data structure)

Section 9: Cursor Control Functions

Section 10: Inserting Characters

Section It: Deleting Characters

Section 12: Grouping Elements

Section 13: Ungrouping Elements

Section 14: Inserting Gblocks

Section IS: Inserting New Lines

Section 16: Deleting Gblocks

Section 17: Duplicating Gblocks

Section 18: Undo

Section 19: Full Operational Specifications

Section 20: Outer Definitions

References

3



Section 1: Deacriptin of MaCHO-I Data Structure.

The display of the MaCHO Interface (i.e. what the user sees on the screen) is. at
first glance, very simple - to the user it appears as a (mostly) blank space over which
they can reposition and type text at will. To select a point on the screen for the

cursor requires a simple movement of the mouse over a tablet.

Of course, the real situation is much more complicated. Firstly, the display is
composed of many non-overlapping gblocks that can be selected by the mouse, usually
together with several void portions of the screen, that is. areas which are not
covered by any part of a gblock and can NOT be selected by the mouse. Secondly, the
position of the mouse on the tablet does not necessarily bear any relation to the
displayed cursor - the system which reads and interprets the location of the mouse is
entirely seperate to that which displays the cursor. This means that one of either the
cursor or the mouse can be moved without affecting the other. At all times though,
the absolute position of the mouse on the tablet is conveyed to the user via a small
arrow, known as a pointer, drawn on the screen.

In MaCHO-I there are four distinct types of gblock:

* the line
* the vervec
* the horvec
* the cartouche

We will examine each of these types of gblock in turn and describe their
representation in the explanatory diagrams to be used throughout the remainder of
this text.

Line
A line is a simple sequence of characters, as may be expected. The gblock

containing this sequence will be represented as the string enclosed by double
quotes e.g. "Hello Everybody".

Vervec
A vervec is a vertical vector of gblocks and so, for instance, one line atop

another constitutes a vervec. Vervecs notionally run from the top of the page
or screen to the bottom and so in all diagrams, a vervec will be shown as a
series of rectangles with this orientation:

"Hello Everybody"

FISwe 1: An Example Vervec

Figure 1 shows a vervec whose third element is a line type gblock
containing the string "Hello Everybody"; the contents of the other elements in
the vervec are not specified. Note that the elements of the vervec align at
their leftmost edge.

4



Horvec
A horvec is a horizontal vector of gblocks which notionally runs from left to

right on the screen. For instance, three vervecs alongside each other would
constitute a horvec. In a fashion similar to that for vervecs, horvecs are drawn
as a sequence of rectangles in the appropriate orientation:

HI-Hello Everybody"

Figure 2: An Example Horvoe

Again, we notice an important alignment property: the gblocks of a horvec
align at their topmost points.

(The reader should note that the rectangles in the diagrams for horvecs and
vervecs are for the purposes of illustration only - they do not appear in the actual
display of MaCHO-I.)

Cartouche
Of the four types of gblock in MaCHO-I , the cartouche is by far the most

difficult structure to describe in simple terms. Perhaps surprisingly, however,
we can gain some sort of understanding from Chambers 20th Century Dictionary
which describes a cartouche as "an ornamental form for receiving an
inscription': in MaCHO-I we view the cartouche as a visible representation of a
capability (in the computing sense of [Fabry741) which can take the form of a
picture or just simple text.

In its (less common) pictorial form, a cartouche is akin to the well known
notion of an icon on such machines as the Apple Macintosh; in its textual form
it resembles a file name. Whatever form they take though, cartouches in
MaCHO-I are always displayed as being enclosed by a rectangular border so
that they can be easily distinguished from ordinary text or pictures. For
instance, Icentre text :Module is a cartouche representing the capability to a
file containing the (compiled) source code of a program to centre text, whereas

may be a user defined cartouche of the capability to a file holding

Olympic Games records. To actually access the underlying files (through their
capabilities), certain operations can be directly applied to the cartouches
themselves. In subsequent diagrams, we will represent cartouches as 'lozenges',
possibly containing text within:

:entre_text :roduie

Before ending this description of cartouches, it should be pointed out that in
the following specification we make no mention of their special properties - we
regard them only as another type of gblock to be handled by the interface.
Such treatment is sufficient for the purposes of this document.

Although appearing very basic, the above four types of gblock can be combined to
form remarkably complex structures:

"



i i S"

"This is a line - below is a cartoucha"
CCompiler :File

Figure 3 A typical display In MaCHO-I

Figure 3 (above) shows a three element vervec. The first gblock in this vervec is
of horvec type, the second is a line and the third is a cartouche. In turn, the horvec
is composed of two vervecs, both of which are made entirely from line type gblocks.
Those parts of the diagram that are shown in black represent void portions of the
screen inasmuch as any attempt to point to these regions (using the mouse) will be
disallowed. Regions of this nature arise due to the disparity of the sizes of the
gblocks in the display. In this example, the horvec contains such a void region due to
the fact that one of its elementary gblocks is four lines 'long' and the other is only
three. Those regions that are shown "cros-hatched" are areas of the screen which,
although not visibly covered by any objects, are considered to be full of space
characters and so they can be selected by the mouse. The effect pointing to these
regions depends on the gblock that is on their immediate left - see section 8.

There are three further features of MaCHO-I. each of which plays an important
part in creating and maintaining the useability of the interface:

* a coordinate system
* a variable sized cursor
* a stack of remembered elements.

Coordinate System
The display screen has a coordinate system such that the origin (0,0) is at

the top left hand corner. From this point, coordinates in the x direction
increase to the right; those in the y direction increase downwards, towards the
bottom of the screen. Thus all valid screen positions are represented by a pair
of positive numbers. We use this coordinate system to determine which gblock
has been selected by pointing operations and where gblocks are displayed. The
outermost gblock, which represents the entire screen, obviously has its top left
corner at (0,0).

The Cursor
In the MaCHO Interface, the size of the cursor shrinks and grows

dynamically according to the requirements of the user (but it cannot become
larger than the screen nor can it contract to be smaller than a single
character). At all times, the objects currently covered by the cursor are
displayed in reverse video format and so if the cursor were covering the letterIa' say. then the user would see a white 'a' against a dark background. In most
instances, the cursor does just cover one single character; however, it is
possible to group gblocks together to form one large cursor to show for
instance several lines in reverse video. [t is this grouping mechanism that allows
us to delete objects covering significant portions of the screen in one keystroke
(cf. "Remembered Elements" below).

Remembered Elements
This is a data structure which holds all the gblocks that the user has

deleted from the screen by one method or another during the session. The most
recently deleted gblock is at the top of the stack. At any time, this topmost
gblock can be reinserted into the display at the place of the current cursor
(see *The Cursor" above) and so removed from the remembered elements. Such a
scheme gives the user considerable "cut and paste" power since gblocks can berepeatedly put on and taken off the stack until the desired display is achieved.
As a method of communicating the state of the remembered elements to the user,
a message is shown giving the number of elements on the stack (but not what is
actually in it).

6



This concludes our informal description of the MaCHO Interface and its data
structures. Despite the brevity of the preceding discussion, it is hoped that more of
the manipulative properties of MaCHO-I will become apparent to the reader from the
formal specification to follow.

j7

-- "-.. " -40 - . w ,,,a ~ m m s m



Sectlms 2 Fermi Spcifcation of MaCHO-I Dots StUmeturein

[GBLOCK]

We introduce the set [GBLOCKI which contains every gblock that can possibly be
represented in MaCHO-I. This set is very large, despite the fact that, as stated in
Section 1, there are only four distinct types of gblock - we shall see why presently.

The most basic type of gblock is the LINE. It is formally defined as being
composed of three subsequences of characters: those before and after the cursor plus
those under the cursor itself. The only restriction on this structure is that the cursor
sequence is non-empty:

L I N E - _I

Fbefore, cursor, after: seq thar
#cursor Z 1

A CARTOUCHE has only two parts: a gblock and some unspecified quantity taken
from the set (VALUE]. (The reader should note that this latter component of a
CARTOUCHE is of no concern to this specification - its declaration is given only for
the sake of completeness.)

CARTOIUCHE

v: VALUE
Sb: GBLOCK

To specify the notions of HORVECs and UERUECs it is necessary to go through two
stages. The first consists of a 'partial* definition; a second stage presented later
expands this to a "total* definition.

A PARTIALHORVEC is one made up of three subsequences of gblocks in a manner
similar to that of a LINE. The sequences notionally run from left to right.

PARTIAL _HORVEC

before, cursor, after: seq GBLOCK

fcursor Z 1
I I

A PARTIAL_VERUEC has an identical specification to that of a PARTIALHORUEC
but here the elementary gblocks within each subsequence notionally run from top to
bottom (see Section 1).

PARTIALJERVEC a PARTIALHORVEC

Given these definitions so far, one can easily see that they model the recursive
nature of gblocks. It is also noticeable that of the four, only the line type gblock is
not rerursively defined.

The next stage of the formalisation is to define some method by which we can

8



distinguish between the four types of gblocks or. in other words, given a gblock we
can discover its type. In Z, the distinction is modelled as four functions:

line : GBLOCK no LINE
horvec : GBLOCK -. PARTIAL_HORVEC
vervec : GBLOCK PARTIAL_VERVEC
cartouche: GBLOCK CARTOUCHE

(dam line, dam vervec, dam horvec, dam cartouche)
partition GBLOCK

The predicate informs us that no type of gblock, other than the given four exists
and furthermore, that each gblock is of exactly one type.

These four "type determining' functions above allow us to embark on the second
stage of the definitions for HORVECS and VERVECS: a *total' horvec is one which
contains no horvecs in any of its subsequences and similarly, a "total" vervec contains
no vervecs. (We shall dub this the 'no X in X" rule).

HORVEC _F PARTIALHORVEC
ran(bef ore - cursor - after) n (dam horvec) = {}

VERVECF PARTIAL.VERVEC
ran(before - cursor - after) n (dam vervec) = C-

(The reason for the two stages should now be clear - the full definitions require
the declaration of the *typing" functions.)

The "no X in X rule is introduced to exclude confusion for the user - when
displayed, there is no visible difference between a vervec containing no vervecs and
one containing several but the structural discrepancies can show up when certain
functions are performed. As a side effect of its specification, the "no X in X" rule
shortens any proofs that we may carry out on the operation of MaCHO-I by
eliminating one class of problem from consideration when analysing the subelements of
horvecs and vervecs.

One additional constraint is necessary for gblocks, namely that their definitions are
non-circular. To realise this notion we make use of a relation contains.

contains: GBLOCK 4P GBLOCK

Us, b: GBLOCK •
(a, b) a contains .
(a a dam horvec A

b a ran ((horvac(a)).before - (horvec(e)).cursor
(horvec(a)).after))

v
(a a dam varvec A
b a ran ((vorvec(s)).before - (vervec(a)).cursor

(vervac(a)).after))
v
(a a dam cartouche A b (cortouche(a)).9b)

contains holds those pairs of gblocks (g.g') such that gblock g' exists somewhere
in the internal structure of gblock g. Lines therefore contribute no elements to the
domain of contains (but obviously there may be many such gblocks in its range).

9



One statement now suffices to give us a full embodiment of non-circularity:

contains* n (id GBLOCK) - {l-

The formal specification of the data structures is now complete but for the sake of
brevity and clarity in the remainder of the document, we shall define schemas which
allow for their easier manipulation.

For horvecs, vervecs and lines it is useful to be able to refer to only one of their
three constituent sequences:

w, p, : GBLOCK -, seq X

U 9: dom horvac
ix 9 = h.after A p 9 = h.before A 1 9 

= h.cursor
where

h a horvec( 9 )
V S: dam vervec .

D 9 = v.after A 1 9 = v.before A 1 9 = v.cursor
where

v e vervec( 9 )
U 9: dam line .

9 = l.after A S 9 = 1.before A 1 9 
= 

1.cursor

where
1 e line( 9 )

It is also useful to be able to bind the three subsequences together:

(X]

bind: GBLOCK -. seq X

U 9: GBLOCK . binds = ^/( pS, -19 a )

As a sort of inverse to BIND, we need functions which given a sequence of
objects (in this case GBLOCKs or CHARs) constructs a single GBLOCK out of them:

make: seq X GBLOCK

V s: seqj X
p (make s) = ()
"i (make s) = s
e (make s) = 0

10



Cartouches have different components to lines, horvecs and vervecs and
consequently have different methods by which to access them individually:

: GBLOCK -* GBLOCK
v: GBLOCK VALUE

19: dam cartauche
9 = (cartouche( 9 )).9b

v s = (cortouche( 9 )).v

(The Greek letters used above are chosen to be aide-memoires: a for "after", e for
'before' and, in the absence of a Greek 'c', v for 'cursor*. "r is derived, somewhat
dubiously, from carTouche and v, appears courtesy of its similarity to "v" as in
"value !)

1 II



Section 3: Badc Operators and Constants

The first basic operator we introduce is one to sum a sequence of natural numbers:

I: seq N - N

1 0 - 0
Us: seq, N * I s = (hd s) + Z (tl s)

To create, alter and move objects in the MaCHO Interface - and indeed any other
interface - we must know (or be able to determine) the height and width of the
individual objects:

CY)

hei, wid: Y -- N
Given that we can find the width of single objects, we can now find the width and

height (in pixels) of an entire sequence of objects:

=[Y]

sumwid, sumhei: seq Y - N

Us: seq Y .

sumwid s = I (si wid)
sumhei s = I (si hei )

and we can also discover the height of the highest and the width of 'he widest

object in a sequence of objects:

[Y]

maxwid, maxhei: seq
1 

Y - N

U s: seq1 Y

maxwid s = max (wid( ran s 3)
mexhei s = max (hei( ran s 3)

For MaCHO-I we also need functions which split sequences according to some
general methodology; that is, given a sequence we can return certain parts of it
which are determined by the result of a supplied function:

12



.y]
UI-SPLIT_). (-HISPLIT_)

(seq Y x (N x (seq Y 4 N))) . seq Y

US, t: seq1 Y; u: seq Y; n: N; f: seq Y N I s = t u

ft >n
f (front t) S n
s LOSPLIT (n, f) - t
s HISPLIT (n, f) = u

s LOSPLIT (n, f)is that part of s up to, but not including, the first element
whose 'value'. as determined by function f. is greater than n. s HISPLIT (n, f)
returns the other 'half* of s.

A blank gblock is a line type gblock with only a single space character in its
cursor:

space: Char
blank: dom line

p blank = ()
I blank = ( space
w blank = ()

13

I _____________________ -



Section 4- fPomolard Puactiom

All of the functions in the MACHO Interface take as (part of) their input a gblock
and a stack of remembered elements, this latter being formally specified as a sequence
of gblocks. These two parameters to the function are called the input STATE.

,STATE

9: GBLOCK
stack: seq GBLOCK

Every function delivers another STATE as its output and so in general we have:

FFUN

f: STATE . STATE

To move the cursor on the display we use:

I left, right, up, down: STATE # STATE

To rub out characters to the left of the current cursor (sometimes referred to as
backspace) we use:

I del-left: STATE -w STATE

and to erase those characters "underneath' the current cursor,

I del_right: STATE 4. STATE

Grouping several characters or gblocks together to form a large cursor is
performed by

I groupleft, 9roup~jiSht, group up, groupdown: STATE . STATE

whose inverses are:

ungroup_left, ungroup.r ight,
ungroup-up, ungroup-down: STATE . STATE

Having grouped some gblocks together under the cursor, we may wish to delete this
structure onto the stack of the input STATE which can be achieved by the function:

I del-element: STATE - STATE

Another method of adding elements to the current stack of the input but without
altering the display is to duplicate those gblocks which are currently "under' the
cursor:

I duplicate: STATE -. STATE

Once on the current stack of remembered elements, a gblock can be reinserted into
the display in two manners - horizontally, that is immediately in front of the cursor,
or vertically, i.e. immediately above the cursor.

ins-above, ins-before: STATE 4 STATE

14



An entirely new blank line type gblock can be inserted in the display either above

or below the current cursor:

I 6lankabove, 61nklelow: STATE . STATE

Whenever the current cursor is covering a cartouche, we can recover the gblock
which is associated with the cartouche C = cartouche( cursor ).96 1 using:

I undo: STATE -- STATE

All of the above functions can be abstracted away into schemas, using schema
FUN:

Right a [ FUN I f = right I
Left a E FUN I f - left 3
Up a I FUN I f - up I
Down a I FUN I f = down I
Dm1Left A I FUN I f = del_laft I
DelRight a I FUN I f = dal_right I
GroupLeft a I FUN I f = group_left I
GroupRight a I FUN I f = 9roup.Jight ]
GroupDown a I FUN I f -group-down I
GroupUp a I FUN I f = sroup-up I
UnsroupLeft a I FUN I f a ungroup_left I
UnsroupRisht a I FUN I f - ungroup_right I
UnsroupUp a I FUN I f - ungroupup I
UnsroupOown a I FUN I f u ungroupdown I
DelElement a I FUN I f delnlement I
Duplicate a I FUN I f a duplicate I
InsAbove & I FUN I f - inswbov- I
InsBefore & I FUN I f a ins-before I
BlankAbove & I FUN I f - blankabove I
BlankBelow e I FUN I f a blank.below I
Undo & [ FUN I f a undo I

and their inputs and outputs can be modelled using the schema I:

ID & I a, s': STATE I

However, two functions implemented in the interface cannot be abstracted as above
since their inputs are not just a single STATE: inschar is the function that is called
every time the user hits a key on the keyboard and thus has the struck character as
part of its input, and go in is the function that is called when the user moves the
cursor between different gblocks on the screen - necessitating the coordinates of the
point selected to be included in the input parameters.

I inschar: (STATE x Char) m STATE
goin: (STATE x N x N) -* STATE

We can though still model the input and output state parts for ins cher and go in
using 10.

15



Section 59 Windaws In the MCHO lnlfacs

Every coordinate in the MACHO Interface is represented by a pair of non-negative
numbers:

COORD a (N x N)

A BRECT is a rectangular area defined by the coordinates of its top left and
bottom right corners:

BRECT _

t1, br: COORD

fst( tl ) S fst( br )
snd( tl ) T snd( br )

- - I

The windowing scheme of the MACHO Interface is specified as a function between
BRECTs and STATEs where the BRECT defines the window through which the gblock of
the STATE it is mapped to is seen. (Recall from Section I that the stack of
remembered elements in a state is not shown.)

F windows: BRECT . STATE

As may be guessed, however, there are constraints on the elements of the
windowing scheme so far presented whose descriptions require the declaration of some
auxiliary functions.

Firstly, we define a function which returns the set of coordinates "covered" by a
BRECT:

cover: ERECT F COORD

Ib: BRECT *
cover( b )= {x: (fst( b.tl ) .. fst( b.br ));

Y: (snd( b.tl ) .. snd( b.br )) • (x, y)}

Next, we define a special BRECT which defines the area the user has available to
work in and two integers which define the maximum dimensions of any gblock:

I workspace: BRECT
xmux, ymux: N

Using the above, we expand the specification of the MWCHO windowing scheme by
insisting that

e the windows completely cover the available space,
* no two windows overlap,
e and no gblock has a size greater than the maximum allowed.

16



-WINDOWS

U cover( dam windows 3 - cover( workspace
p, q: dam windows I P a q * cover( p ) n cover( q ) = {}
s: ran windows . (wid S.9) S xmmx A (hei s.9) 5 ymax

Under the constraints of WINDOWS, we can construct an initial system state in
which there is only one window whose associated gblock consists of a blank line type
gblock and whose stack of remembered elements is empty:

INITIAL

FWINDOWS
windows' = {workspece S}

where
s: STATE

s.stack = ()
s.9= blank

17



In this section we introduce some basic schemas which will be used in various
places throughout the remainder of the document

The first schema is a simple one containing just two natural numbers which can
represent an absolute coordinate in the workspace or a relative offset from some
point:

XY a t x, y: N ]
XY I [ XY; XY' I

(Although XY is identical to COORD in section 6, we declare XY seperately since it

is to be used in a different way.)

Related to the above is a schema which sets the two values in XY to zero:
SetO

AXY

x Y ' = 0 _

Another simple schema to define is one whose action is the null action:

Null

I0
E=WINDOWS

The next three schemas define the types of the gblock which are passed in and
out of the functions of the interface:

VOps

s.s a dam vervec
s'.9 e dom vervec

LOps

F 0 

a

s.g a dam lineFse.9 a dam line

18



HOps
IO

s.9 a dam horvec
s'.9 a doa horvac

and the next two define the type of the gblock at the top of the stack of
remembered elements in a given state:

TopHorvec

IO

hd (s.stack) a dom horvec

Top~er vecFI
hd (s.stack) a dom vurvec
s' = S

We use XY in a schema which describes the action of "going in" to a single gblcck
in a sequence of gblocks:

I0
-WINDOWS
EXY

w(' s.I) = 1

s'.9 = 0 S.9
Ss'.9 = ( result.9 )
m s'.9 = M S.9
s'.stack - result.stack

where
st, result: STATE

st.g = hd (t s.9)
st.stack a s.stack
result = goin( st, x, y

S is defined only when the gblock that is entered is the unique element in the
cursor sequence of the input state.

The most difficult operation to specify in this section, and probably in the entire
document, is that of normalisation so we will go through it in some detail here.

By normalisation, we mean the moulding of horvecs and vervecs into their canonical
forms without loss of information. This process has three distinct stages:

" transform the object into a sequence of its constituent gblocks,
" process this sequence to remove any undesirable features,
" partition the processed sequence into three subsequences to form the

before, cursor and after sequences of the result.

19* I

.,-i. mm~dm------ iU



This first stage is performed by the binding function of section 1: the intermediate
stage is responsible for

* correcting any degenerate iblocks.
* removing horvecs from horvecs and vervecs from vervecs. in order to
conform to the 'no X in X" rule of section 2. and

* merging adjacent line type gblocks (in horvecs only).

For the first of these processes, we need to define what a degenerate gblock is:

degenerates P GBLOCK

degenerate - (9: dam horvec U dam vervecI (bind 9) - 1}

- a degenerate gblock is a horvec or a vervec which contains only one gblock.
During normalisation of a sequence of gblocks degenerate gblocks are removed and
replaced by the single element they contain:

purge: seq GBLOCK -. seq GBLOCK

purge () ()

U 9: degenerate . purge (9) = bind 9

V 9: GBLOCK\degenerate . purge (9) = (9)
s, t: seq GBLOCK * purge( s ^ t ) = pur9e( a ) purge( t

In a fashion similar to that of purge, the second process is defined as a function
which seeks out specific types of gblock in a sequence and replaces them with their
flattened versions - hel i . for eliminating horvecs, vel i m for eliminating vervecs:

helim: seq GBLOCK -# seq GBLOCK

helim ()= ()
U 9: dom horvec . helim (9) - bind 9
V 9: GBLOCK\dom horvec . helim (9) - (9)
I s, t: seq GBLUCK * helim( s - t ) = helim( s ) helim( t

velim: seq GBLOCK - seq GBLOCK

velim ) = )
U 9: dom vervec . velim (9) = bind 9
U 9: GBLOCK\dom vervec * velim (9) = (9)
U s, t: seq GBLOCK * velim( S - t ) = velim( S ) velim( t

To specify the third process of merging adjacent line type gblocks we need an
auxiliary function which makes one line out of two:

(_ join _ (GBLOCK x GBLOCK) - GOLOCK

U a, b, c: dam line I
(line( c )).before = (line( c )).after = () A
(line( c )).cursor = (bind a) " (bind b)
a join b = c

The required function then follows naturally:

20



merges seq GLOCK -, seq GBLOCK

merge()in()
U 9: GBLOCK merge (9) - (9)
U s- t: seq GBLOCK; p, q: dam line (

merge( s - (p) - (q) - t ) - mer9e( a (p join q) t

z, t: seq GBLOCK I (lest s 9 dom line) v (hd t 9 dom line)

merge( s t ) merge( s ) merge( t )

The final stage of normalisatio. splitting the processed sequence, is performed by
determining the first element of the cursor sequence and then specifying the length of
this sequence. To help to do this, we define a function which returns a sequence
containing just those elements of another (larger) sequence whose indices in this latter
are members of a given set.

[XI

(. 1 _9: (P N x seq X) -. seq X

V v: F N . v 1 () = ()
Id s: seq X . I} s = )
U v: F, N; s: seq1 X; n: N

n a dom s - Cn} I s = (s(n))
n a dom s,- {n} 1 s = ()
v 1 s = (min v} 1 s) - ((v\{min v}) 1 s)

Putting the three stages together we obtain the desired specifications:

UNorm
ID
EWINDOWS
VOps
XY
n: N

is s'.9 - front p
'1 s'.9 (1..n) 1 q
Ss'.9 a (n+l .. uq) 1 q

s'.stock = s.stck
where

v a (binds velim; purge) (s.g)
p a v LOSPLIT (y, sumhei)
q a ( lest p ) (v HISPLIT (y, sumhei))

I0IHNorm

_WINDOWS
HOps
XY
n: N

V s'.9 - front p
-1 s'.9 (1 .. n) I q
a s'.9 - (n+1 .. #q) 1 q
s'.stack - sstack

where
h a (bind; helimi purges merge) (s.9)
p a h LOSPLIT (x, sumwid)
q A ( lost p ) (h HISPLIT (x, sumwid))

21



Setle 7. Recursion In the MaCHO Interface

The aim of this document is to formally specify the behaviour of the MaCHO
Interface or, more precisely, the effect of certain operations on its underlying data
structure. Given the recursive nature of this last item, it is natural that most it not
all of the functions to be specified are themselves recursive in one way or another. In
this section we describe the general form this recursion takeL.

If we were to classify horvecs or vervecs in MaCHO-I according to the number of
elements in their cursor sequences, we could choose to distinguish two classes - those
with cursors containing two or more gblocks and those with cursors of size exactly
one. It is this latter class of gblocks which give rise to the recursion in the interface:
in these cases the result of applying a function to the horvec or vervec concerned is
determined by the type of the single gblock in its cursor and on whether the function
can be recursively applied to this same gblock. In (very) pseudo Pascal terms we have:

FUNCTION f (9: GBLOCK): GBLOCK;
BEGIN

IF *
9 is a horvec or a vervec AND *
size of cursor = 1 AND *
cursor 9block of g is a valid argument for f *

THEN *
BEGIN *

cursor 9block of 9 := f( cursor 9block of 9 ); *
optionally alter 9 with its new cursor;
result := 9

END a
ELSE

do something else to 9 and return result;
END;

From the above we see that the recursive call can be followed by further
alterations of the input gblock to yield the result; we will come across examples of
this behaviour in the document subsequently. In this section, we content ourselves, to
begin with, by formally specifying the recursive call part (marked a) for a general
function from STATE to STATE:

Recur

EWINDOWS
I0
FUN

e( S.9) = 1
at e dom f
is s'.9 = a s.9
I s'.9 = (result-s)
M s'.9 = a S.9
s'.stack = result.stack

where
st, result: STATE

st.g w hd ('I[GBLOCK] s.)
st.Stack - . stack
result l f( at

22



VRecur a Recur A VOps
HRecur & Recur A HOps

(Note that in the informal code we talked about GBLOCKs whereas the formal
specification makes reference to STATEs as is, of course, actually required.)

With this general description of recursion, we can easily describe recursive calls of
specific functions from the previous section by "and'ing in the matching schema. For
instance, the recursive part of the function (cursor) left applied to a vervec is
modelled by:

WLeft a VRecur A Left

To formally specify a function in full we use the schema override notation a where
for schemas S and T:

S o T A (-pre T A 5) v T

This notation models precisely and succinctly the "if..then..else.. , construction of the
pseudo code:

UFunction a VDoSomethingElso (VRecur A Function)

and it will therefore be often used in the ensuing text.

For the function ins_chur we require a similar recursion scheme to that just
presented but one which takes into account the extra character parameter of the
i nschar operation:

InsCharRecur

I0
_WINDOWS
c: Char

u(w 3.9) = 1
(st, c) a doN inschur
SS '.9 - 0 s.9
Ss'.9 ( result.9 )
S'.9 = S 3.9

s.stack = result.stock
where

st, result: STATE

st.9 = hd (1IGELOCK) s.9)

st-stack a sustack
result - ins.Lhor( st, c

VInsCharRecur a InsCharRecur A VOps
HlnsCharRecur a InsCherRecur ^ HOpS

23

"I- - u m Slll S l llE I •



Section ,: Going In (to the data structure)

In order to edit text displayed on the screen it must be possible to select the
,)bject or objects to be manipulated., In MaCHO-I, an object is selected by positioning
the pointer (see section 1) at a certain (x. y) displacement from the top left hand
corner of the outermost gblock in a window (see section 4) and "going in". In the
interface itself, this corresponds to the action of plummeting down from the outermost
gblock through the various levels of structure until a basic gblock, that is. a line or a
cartouche. contained therein is found.

When a line type gblock is found at the lowest level, the supplied (x,y) parameters
determine a unique element from the sequence of characters within the gblock. The
character thus selected becomes the cursor of the line from whence we can define
the pre- and post-cursor sequences of the line. However, to go into a line, we need
to check the x displacement supplied; if it yields a point beyond the end of the line,
we extend the line up to this point with a sequence of space characters. This
padding is performed by the function pad:

pad: (seq Char x N) seq Char[ s: seq Char; n: N J n < sumwid s . pad(s, n) = s
V s: seq Char; n: N I n a sunwid s •

pad(s, n) = pad(s (space), n)

LGaIn

=WINDOWS
Io
LOps
-_xY

I s'.9 = front p
"I S'.9 = ( last p
w s'.9 = 1 HISPLIT (x, sumwid)
s'.stack = s.stack

where
1 a pad( bind(Charl (s.9), x

p a (1 LOSPLIT (x, sumwid(Char]))

Going into a cartouche is at the same time the most simple and complicated
operation in this section. The simple case occurs when the x displacement given lies
somewhere along the length of the cartouche for then the result of the operation is
merely the same as the input:

,CGoInSimple

..WINDOWJS
I0
EXY

s.9 a dam cartouche
x < wid s.9

S=

If on the other hand the x displacement lies somewhe'e beyond the length of the

24



cartouche, the gblock part of the result is a horvec. This horvec is created from the
cartouche and a blank line which extends from the rightmost edge of the cartouche to
the selected point:

C~olnComplex

-SWINDOWS
I0
-XY

5.9 6 dom cartouche
x Z wid s.s
s'.9 e dom horvec
1 s'.9 = ( s.9 )
1 s'.9= ( i )
Ss'.9 = )

s'.stack = s.stack
where

1 a make[Charj( pad( 0, x - wid( s.S )

CGoIn a CGolnComplex v CGoInSimple

The first part of the definition of So in for a vervec is similar to that for a line,
inasmuch as the (x, y) parameters select an object to be the cursor for the structure
and from this the rest of the vervec is defined. Obviously though, for a vervec, it is
the distance down the structure, the y displacement, which determines the
partitioning:

VPart it ion

_=WINDOWS
I0

VOps
XY

a s'.9 = front p
I S'.S = ( last p
w s'.9 = v HISPLIT (yy, sumhei)
s'.stack s.stack
X* = X

y= yy sumhei( 0 s '.9
where

v a bind[GBLOCK]( s.9

yya min {y, sumhei( v ) - 1}
p a v LOSPLIT (yy, sumhei[GBLOCK])

Note that the displacement used to partition the vervec (yy) is the lower of the
maximum possible displacement (the height of the entire vervec minus one) and the
original y parameter.

The next and final stage of the definition of 90 in for a vervec is to recursively
go in" to the gblock in its cursor with the displacement calculated from the

partitioning stage:

VGoIn a VPartitioni S

For a horvec, the partitioning part of 90 in is almost identical to that for a
vervec - with the obvious exception that it is the distance along the structure which
determines the components of the result and thence it is the widths of the gblocks in
the sequence which is important:

25i



HPurtition

EbWINDOWS

HOps
MXY

p s'.9 = front p
Ss'.9 = ( lost p
w s'.9 - h HISPLIT (xx, sumuid)
s.stack = s.stack
x, x - sumwid( 13 s'.g

where
h a bind(GSLOCKI (s.S)
xx min (x, sumwid( h ) - 1}
p a h LOSPLIT (xx, sumwid[GSLOCK])

Analogously to vervecs again, the second stage in the defintion of 9 in for a
horvec consists of a recursive *go in' to the cursor gblock: in horvecs, however, this
is not the last stage - as it is for vervecs - since we require that the result from the
second stage described by schema S to be normalised. The extra processing required
is to handle the case when the user selects a point beyond the rightmost end of a
horvec whose last element is a cartouche: the resulting "go in" to the cartouche
would result in a horvec within a horvec by definition of CGoInComplex. Thus we
have:

HGoIn a HPartitionj Si HNorm

26



Section 9. Cursor Control Functions

At any stage, we may wish to change the position of the cursor, away from that
established by the initial 90 in. For large movements we can of course execute a
further goin at the desired point but if we want only to move to the adjacent
character or gblock it is simpler (and more efficient) to use the normal cursor
movement commands - cursor left, cursor right, cursor up and cursor down.

To specify such movement, we introduce two schemas - StepForw to move the
cursor sequence of a gblock onto the first element of the postcursor sequence and
StepBack to move it onto the last element of the precursor sequence:

_StepForw

10
FWINDOWS

0 S'.9 = (0 5-9) ( s.9)
I s'.9 = ( hd (w s.9)
W S'.9 = tl (W s.9)
s'.stack = s.stack

StepBack

I0
--WINDOWS

is s'.9 = front (p s.9)
' s'.9 = ( last (p s.9)
SS'.9 - ('f s.9) ^ (W s.9)
s'.stack = s.stack

In a vervec, cursor movement up or down takes place in two stages - the first
changes the structure according to the relevant *step" schema above and the second
recursively "goes in* to the newly defined cursor:

VDown a ((StepForw A VOps)J S) (VRecur A Down)
UUp & ((StepBack A VOps)Ji S) (VRecur A Up)

As a horvec is a horizontal sequence of gblocks a call to move the cursor up or
down it only makes sense if the operations can be recursively applied:

HUp a HRecur A UP
HDown a HRecur A Down

Moving left in a line is easily specified:

LLeft a StepBeck A LOps

and moving left in a horvec is defined analogously to moving up in a vervec:

HLeft a ((StapBeck A HOps)i S) 0 (HRecur A Left)

The move left operation in a vervec is defined recursively:

!2



VUeft a VRecur A Left

To shift the cursor of & line to the right is another simple schema:

LRight & StepForW A LOps

but the specifications of rightwards movement for horvecs and vervecs are more
complicated as will be seen.

When we apply the right function to a vervec, we transform the cursor of the
vervec into a two element horvec. The first element of this horvec is a vervec made
from the cursor sequence of the vervec and the second element is a blank line:

VRight

I0
EWINDOWS
VOps

P S'.9 = IP 3.9
I s'.9 - ( h )

S'.9 = M s.9
s'.stack = s.stack

where
h: dom horvec
v: dom vervac

v = make ('1 s.9)
ph (v )
I h = ( blank
uh= ()

Right a VRightla SetOj S

In a horvec, move right is first of all interpreted as a command to move the cursor
onto the first element of its postcursor sequence:

HRishtl & (StepForw A HOps)J S

If. however, the postcursor sequence of the horvec is empty then HRightl is not
defined; in this case a new blank line type gblock is added onto the end of the
horvec which is then gone into:

28

-, i I l l I e e Ill I I l • mum



__IAddLino

I0
-=WINDOWSHOps

13 s'.9 - (a S.9) ( s.g)Ss'.9 - blank)
1 $' .9 (

s',stack = s.stick

HRightZ a AddLinei Set0j S

Although at first glance HRi9htZ may appear to be an unnatural operation, it is
this specification which is the one most used for easily extending the length of
horvecs. Altogether then we have:

HRight a (HRightZ a HRightl) a ((HRecur A Right)j HNorm)

29



Secton I0: Inortlins Claracters

Characters are inserted into lines immediately before the cursor, as may be
expected:

_LInsCher

I0
EWINDOWS
LOps
c: Char

aS .9 - (M s.9) ( c )
I s'.9 = 1I 5.9
w S'.9 = W 5.9
s .stock = s.stack

Characters inserted into horvecs are made into line type gblocks and appended to
the precursor sequence of the horvec just as a character is added to a line:

InsCharToHor

I0
HWINDOWS
HOps
c: Cher

p s'.g = (V s.9) ^ ( make(Cher]( ( )
1 s'.9 = I s.9
N S'.9 - 0 S.9
s'.stuck = s.stack

The result of InsCharToHor must be normalised to merge the newline type gblock

with any that are adjacent to it in the horvec:

HInsChor a (InsCharToHor a HlnsChorRecur)J HNorm

In a vervec, the action of inschur is to transform the cursor of the vervec into
a horvec consisting of the line made from the character and a vervec made from the
cursor of the vervec:

30

I______ _________________



~ ~~InsCharToI~er_____________

VOps
c: Char

0S.9 - 0 5-S

m1 3'.9 = ( Ii

s'.stuck s.stack
where

h: dom harvec

p h = ( makeCCharJ( (C) )
'I h = ( make[GSLDCK]( 1 S'S
ix h = ( )

Once the horvec is created in the vervec we go into it:

VInsChar a (InsCharToVers 5) * VlnsCharRecur

__.~-..31



Section 11: Dlfln Characters

11.1 Delete Left

For a line, del_laft has a simple specification:

-LDelLaft

I0
EWINDOWS
LOps

p s'.9 = front (p s.9)
I S'.9 = I s.9
M S'.9 = M s.9
s'.stack = s.stack

For horvecs however, del_left does not have such an easily intuitive
specification. This complexity arises due to the fact that within a horvec it is
possible to delete the character immediately before the cursor using delete left:

BackDelChar ------------- 9

I0
=WINDOWS
HOps

b e dam line
# (bind b) > 1
13 S'.9 = front (p s.9) ( 1 )
I1 S'.9 = I s.9
M S'.9 = a s.9

where
6 a last (P[GBLOCK] s.9)

1 a make (front (bind b))

Obviously there will only be a character to delete if the last element of the
precursor sequence of the horvec is a line type gblock. There is yet, though, another
complication in that even when there is such a gblock, it must contain at least two
characters in order that some characters are left after the deletion. In the cases
where there is only one character in the relevant gblock the effect of delleft in
the horvec is to remove this gblock altogether:

32



-BackD.I~block________

ID
BUINOOI.S
Hops

b a dom line
a (bintdb) -
p s'.9 = front (p s.9)
'I s'.9 - I S.9
01 U .9 = 0 5.9
s' .stack -s-stack

where
b e lost (P[GBLOCKJ 5.9)

Putting these schemas together we have:

HDell-eft a (BuclcDelChor v BackDeIGblock) a (HRecur A DelLeft)

The specification of delete~left for vervecs is somewhat easier:

VDelLeft A (Uecur A DelLeftj Ii Narm

The normalisation stage is required for that case where the cursor of the vervec is
a horvec with two elements whose first element is deleted during the action of
Back~elGblock: such an action would leave a degenerate horvec in the ver'jec.

11.2 Delete Right

Like del_lef t, del..r i ht has a simple effect on lines:

L~miRi 9ht_

I0
MWINDOWS
lops

0 s'.9 = 0 5.9
I s'.9 = ( hd (Si s.9))
1Si 5.9 = ti (of 5.9)
s'-stack = s-stack

The cursor of the line is deleted and the new cursor is the first character that
appeared to the right of the old cursor.

From the specification of LOeiR i ht we notice that the del-ri ght operation is
undefined in a line with a null posicursor sequence. When such a situation occurs in a
line which is the cursor giock of a vervec, we replace the cursor sequence of the
offending line with a space character and assign this new line to be the cursor of the
vervec:

33



_UVDlPartL in_
I0
-INDOWS
VOps

# ('t S.9) * 1
c a dam line
I s'.9 = 15.9
*s'. 9  ( 1 )
* s'.9 a S 5.9
s.stock - s.stack

whers
c a hd ('CGBLOCK] s.S)
1 a make (M c ( space ))

VDelRight a (VOlPrtLinsJ S) * (VRecur A DalRight)

When a line with an empty postcursor sequence forms the cursor of a horvec, and
del_r i 9ht is applied to the horvec, the result is to delete the cursor sequence of
the line and move right in the horvec:

HDelPartL ine
IO

EWINDOWS
HOps

N (I 5.9) = 1
c e dom line
bind c i ' c
a 5'.9 0 S.9
'Y S.g = ( 1 )

a S.9 = S 5.9
s.stack = s.stack

where
c a hd (I[GBLOCK) s.g)

1 a make (1 c)

DelRightInHorl a HDelPartLinei HRight

However, DelRightInHorl is not defined if the cursor sequence of the line
covers the whole line. To handle this case we use DalRiShtInHorZ which deletes
the entire line from the horvec and moves right in the horvec when possible,
otherwise the original line is replaced by a blank line:

34



Dalk~holeL ine________

ID

H~ps

a (-f 5.9) 1
c a dam line
bind c -tw c
ps'.9 5.9
5.9 0
('I :::: ( blank )A
0139 0)

I 5.9 of ()
(,I s. 9 =hd (Cc, .9) A
Ix s'.9 -tl (01 5.9))
.'stack s %.tack

where
c * Ihd (1[GLOCI 5.9)

DeIRightInHorZ a DelWholeLinej Set~i 5

Altogether we have

DelRightlnHor A DeiRightlnHori v DelRightlnHor2

HDelRight a DelRightInHor * (HRecur A DeiRight)

35



Seetiom 12: Grouplai mamMM

Pervading all of the previous sections is the notion of cursor size and how it
affects what is actually performed in the interface. This section and the following one
define those operations that allow the displayed cursor to be expanded and
contracted in order to achieve precisely the function that the user desires. Such
alteration of the cursor has no actual influence on the contents of a gb!ock and thus
there is no need for any post-normalisation stage.

What we do use however is the technique of defining generic schemes to handle
horevecs, vervecs and lines in a uniform way just as in Section 2. ExpandBeck
extends the cursor sequence of the given gblock over the last element of the
precursor sequence and ExpandForw extends it over the first element of the
postcursor sequence:

ExpandBack

I0
SWINDOWS

a s'.9 = front (p s.9)
I s'.9 = (last (0 s.9)) (1 s.9)
M S'.9 = a S.9
s'.stack = s.stack

ExpandForw

I0-_I'JINO0l.J5

p S'.9 = p s.9
1 s'.9 = (,I s.9) - (hd ( s.9))
SS'.9 = tl (M s.9)

s'.sack = s.stack

By supplying the relevant object class to the above two schemas, we achieve the
desired specifications:

LGroupLeft a ExpandBack A LOps
VGroupLeft a VRecur A GroupLeft
HGroupLeft & (Expandlack A HOps) e (HRecur A GroupLeft)

LGroupRisht a ExpandForW A LOps
VGroupRight a VRecur A GroupRight
HGroupRight a (ExpendForW A HOps) e (HRecur A GroupRight)

VGroup~p a (ExpandBack A VOps) * (VRecur A GroupUp)
HGroupUp a HRecur A Groupip

VGroupOown a (ExpandForH A VOps) 8 (URecur A GroupDown)
HGroupDown a HRecur A GroupDown

36



Section 13: Unwos lemeonts

In a manner akin to that of the previous section, we can specify most ungrouping
actions on~ horvecs. vervecs; and lines using only two schemas - ContractForw and
ContractBack make the cursor sequence of the given gblock smaller by paring off its
first and last elements respectively. Both schemas are defined only if there are at
least two elements in the sequence to be trimmed (since the cursor sequence of a line,
horvec or vervec must never be empty. see section 2):

ID
EWINDObIS

# (I 5.9) > 1
a s'.g = (is s-s) (hd (r s-g))
'1 S'.9 - ti (I S.9)
M 5'.9 = M 5.9
s'.stack - s-stack

ContraictBack ____________

I0
=-WINDOWS

tA (, 5.9) > 1
a 5.98 = a 5.9
I s'.9 - front (If s.9)
M 5'.S - last (I 5.9) )-(eg 5.9)
s'.stack - stack

Ungrouping characters in a line is easily specified:

LUngroupLeft a ContractForW A LOps
LUngroupRight A ContractBack A LOPs

Ungrouping gblocks from the left or the right in a horvec is a more complex
operation: if the operation makes the size of the cursor sequence exactly one, we
recursively 'go in" to this gblock otherwise nothing further is done:

I4TrimLeft a (ContractForW A HOps)i (S v Null)
HUngroupLmft & HTrimLeft * (HRecur A UngroupLeft)

HTrimRight & (ContractBack A H~ps)j (S V Null)
HUngroupRight a HTrimRight e (HRecur A UngroupRight)

Ungrouping from the top or the bottom in a vervec is analogous to ungrouping from
the left or the right in a horvec and so we have:

VTrimUp & (ContractFor. A VOPS)l (S v Null)
VUn~roupUp a VTrimUp a (Uecur A UngroupUp)

VTrIm~own & (ContractBmck A VOPS)i (S V Null)
U~lnsroupDow~n a VTriDown * (VR~cur A UngroupDown)

3.7



Finally we specify those cases where the direction of the ungrouping required is
inappropriate to the orientation of the object structure:

HUngroupDown a HRecur A UnsroupDown
HUnroupUp a HRecur A UnSroupUp

VUngroupLeft a VRecur A UngroupLeft
VUngroupRiSht a VRecur A UngroupRight

38



Section 14: InsertinI GbIocks

As mentioned in section 3, the gblock at the top of the stack of remembered
elements can be inserted either before or above the currently displayed :ursor. In all
cases, the insertion is followed at some stage by "going in" to the newly inserted
gblock.

Gblocks can be inserted immediately before the cursor of a line to form a horvec:

InslntoL i ne

-WINDOWS
IO

s.9 e dam line
s'.9 e dam horvec
p s'.9 = ( make( p s.9 ) )
' s'.9 = ( hd s.stack )
i s'.9 = ( make( ('I s.9) (m s.9)
s'.stack = tl s.stack

The result of the insertion is normalised and then re-entered:

LInsBefore a InsIntoLines HNormJ S

Inserting a gblock into a horvec at its current cursor position is easily specified:

InslntoHor

-WINDOWS
I0
HOps

P S'.9 = p S.9
I s'.9 = ( hd s.stack )
Ix S'.9 = (S s.9) ^ (w S.9)
s'.stack = tl s.stack

HInsBefore * (InsIntoHor a (HRecur A InsBefore))i HNormJ 5

Inserting a gblock before the cursor sequence of a vervec forms a horvec at that
position in a manner similar to that of InsCharToUer:

39

____________



Ins~ftflnto Var ________

-WJINDOWS
VOpg

0 S'.9 0 P 59
*s'.9 h)
m 5.9 S- 59

s'.stack tl s stack
where

h: dam horvac:

ph = ( )
Ih - ( hd s-stack)

wi h = ( make( I 5.9))

Vlns8efore a (InsBeflntoVerl S) a (VRecur A InsBefore)

Gbloclcs are inserted above the cursor sequence of vervecs only; for horvecs the
operation has to be recursively applied-

Ins~bovelntoVer _______

=.WINDOWS
I0
VOps

0 5'.9 = p 5.9
I s'.9 = ( hd s-stack
" S'.9 = (I1 5.9) -(Do S.9)
s'.stack =ti s-stmck

VlnsAbove a (InsAboveIntoVer 0 (Uecur A InsAbove))i VNormJ S
HlnsAbove a HRecur A Ins~bove

40



Section 1& Inearting Now Lines

New lines can only be inserted into vervecs but in two ways, either above or below
the cursor sequence:

-BlankA ___________

SWINDOWS
VOps

13.9 = 0 5.9
I s'.9 = (blank

01 s'.9 = (1 59) (IX 5.9)
S ..stock =s-stack

BlankB ___________

I0
EWINDOWS
VOps

13 S.9 = (3 S.9)(' 5.9)
I s'.g = (blank

9*5.9 = a5.9
S stock s.stack

Immediately after a new line has been inserted, it is assumed that the user wishes
to edit it and so we 'go in" to the new object at its top left hand corner (0,0):

VIBlankAbove a (BlenkAj Set~i S) * (VRecur A BlankAbove)
VBlankBelow a (Blank~i Set~i S) 0 (Uecur A BlankBelow)

For horvecs, blank _above and blank-b.elow are defined recursively:

H~lonkAbove a HRecur A BlankAbove

HBlankBelow a HRecur A BlankBelow

41



Sectre lEt cel tOU GbIoeks

In MaCHO-I, the entire cursor sequence of a horvec or a vervec can be deleted
onto the current stack of remembered elements in one operation:

F zWINDOWS

p s'.9 a 0 S.9
1 s'.9 = ( hd (w s.9) )
SS'.9 = tl (m s.9)
s'stac= ( make( ' s.9 ) ) s.stack

Deletel however is not defined if the postcursor sequence of the object gblock
is empty - in this case the deletion is performed by Delete2:

DeleteZ
I0
rEWINDOWS

0' S.9 = ()
1 s'.9 = front (p s.9)1 s.. = 1Bst (p s.) )
. s'.9 = ()
s'.stack ( make( Y s.9 ) ) s.stack

and so:

Del a Deletel v Delete2

Notice that Del is not defined if both the pre- and post-cursor sequences of the
object gblock are empty - if it were we would be able to delete the entire input
gblock leaving nothing to be recorded as the output.

After the deletion has been performed we "go in" to the top left hand corner of
the new cursor:

VErase a (Del A VOps)i TopVerveci SetOJ S
HErase & (Del A HOps)J TopHorveci HNorma SetOl S
(In a horvec the result of the deletion has to be normalised in case the deletion

has given rise to newly adjacent line type gblocks.)

The full specifications of deletion in a horvec and a vervec are thus:

VDelElement a VErase a (VRecur A DelElement)
HDalElement a HErase a (HRecur A DelElement)

42



Section 17: Duplicatin Gblocku

The duplicate function is defined only for horvecs and vervecs, in which case its
action is to push a #block of the respective type onto the top of the given stack of
remembered elements. The pushed gblock is composed of the gblocks which are
contained in the current cursor sequence of the horvec or vervec to which the
operation is applied.

EWINDOWS

S.5 = 5.9L .stack =(make( I s.9 s.stack

VDuplicate a ((Dup A VOPS); TopVervec) e (Vecur A Duplicate)
HDuplicate & ((Dup A H~ps); TopHorvec) o (HRecur A Duplicate)

43



Scton Mk 3Unab

The undo function returns the iblock component of the cartouche to which it is
applied but only if this gblock is not a line:

CUndo
ID

-=WINDOWS

us.g a doam line
3'.9 - "T s.9
s'.stack = s.stack

After a cartouche is "undone" we 'go in" to the result at some chosen point in
order perhaps to "undo' another cartouche therein. However, the result of an undo
may be a vervec which, if the original cartouche is itself an element of a vervec, will
result in a structure which contravenes the 'no X in X" rule of section 3. Similarly,
the operation may result in a horvec being created within a horvec and so we have:

VUndo a (VRecur A Undo )J VNormj S
HUndo a (HRecur A Undo)j HNormj S

44



Section 19. Full Opaatfcnml Sipclfteaim

We now present, in a single unifying block, the full formal definitions of the basic
actions within the MaCHO Interface:

GOIN a LGoIn v CGoIn v HGoIn v VGoIn
U GOIN - goin( s, x, y ) - r.'

LEFT a LLeft v HLeft v VLeft
V LEFT . left( s ) = s'

RIGHT a L-Right v HRight v Might
U RIGHT * right( s s'=

UP a HUp v VUp
tf UP * up( S ) = S'

DOWN a H~own v VDawn
U DOWN * down( s ) = s'

INS-CHAR a LlnsChar v HlnsChar v VInsChar
V INSERTJCHAR . insacher( s, c ) = s'

DEL-L.EFT a LDelLeft v HDelLeft v VDelLeft
V DEL-LEFT . del-left( s ) - '

GROUP-L.EFT a LGroupLeft v HGroupLeft v VGroupLeft
U GROUPJ..EFT . 9roup-left( s ) - s'

GROUPRIGHT a LGroupRight v HGroupRight v VGroupRight
ti GROUP3YIGHT . 9roup-risht( s s '

GROUP-UP a HGroupUp v LiGroupUp
U GROUPJJWP * sroup-up( s ) - '

GROUP-D.OWN a HGroup~own v VGroup~own
V GROUP..PDWN . group-.down( z ) = s'

UNGROUPJ..EFT a LUngroupLeft v HUngroupLeft v VUngroupLeft
U UNGROUPJ.LEFT * ungroup-left( s ) - s'

UNGROUPRIGHT a LUngroupRight v HUngroupRight v VUngroupRight
Id UNGROUP-.RIGHT - unsraup..yisht( s ) z s'

UNGROUP_.POWN a HUnsroupDown v VUnsroup~own
U1 UNGROUP..POWN . unrup..down( s ) - s'

UINGROUP.JP a HUngroupUp v VUrigroupUp
U1 UNGROUPJUP . ungroup.up( s 5, a

INS -ABOVE a HlnsAbove v VlnsAbove
U INS-ABOVE .ins...bove( s s'a

_____________________45 _____



INS-BEFORE a LInsBefore v HInsBefore v VIns~efore
U INS-BEFORE - ins-before( £ ) z -

BLANK-ABOVE a H8lankAbove v V8lenkAbove
V BLANKJWBOVE - blmnk-a.bove( 5 a'

BLANK-BELOW a HBlankgow v V81ank5.iow
V BLANI(.3ELOW * blmnk..below( a )a

DEL-ELEMENT 4 HDalElement 4 VDelElement
U DEL-E.LEMENT * dm1 ulmnt( a. ) = s'

DUPLICATE a HDuplicate v VDuplicate
U DUPLICATE * duplicate( s ) .

UNDO a CUndo v HUndo v VUndo
V UNDO *undo( s s '

46



Section 20: Outer Deflinitions

At the moment, we have specified the operations of the MaCHO Interface (section
19) without having detailed where their inputs, that is a in schema I, come from: we
shall do this now.

Recall from section 4 that the MaCHO Interface is basically just a set of BRECTs
each one of which has a STATE associated with it which defines the gblock and stack
of remembered elements for that window. Thus, one can select a STATE by choosing a
window and taking the state corresponding to this window:

ChooseState

EWINDnWS
s' : STATE

b': BRECT

b' e dom windows
s' = windows( b'

Given a scheme whereby we can return a state given a window, it is natural to
define another which given a window, replaces the state corresponding to it with a
new state:

ReplaceState

AWINDOWS
s: STATE
b: BRECT

b doam windows
windows' = windows (b " s}

Now we are just about ready to specify in full how each operation is carried out
in the MaCHO Interface. To do this though, we must specify two things - what
happens when the chosen operation can be carried out sucessfully and the error
messages which appear when it can't.

The success of an operation is determined by the the success or otherwise of three
subtasks:

* selection of an input state
* application of the operation to this input state
" recording of the result of the operation into the interface data structure

The first and last of these subtasks are ChooseState and ReplaceState
respectively, the middle task is defined in terms of InnerApoly:

InnerApply ..

SWINDOWS
IY
FUN

s * doam f
5'= f( s

47

________r____________________



:Tah ie ak is specified by a schema which given VX input state returns the

Wtae wicl put thee retage tov hruing asneapl the oe cursor left i hssae

LetKaInnerApplY A Left

Th ucsflapplication of*oecro et nasaeetatdfrom a
window in the interface is thus described by:

OLeft a Choose~tatei LeftOKj ReplaceState

Several other operations that can be performed by the MaCHO Interface are
specified in a manner similar to that above:

UPtIK a InnerApplY A UP
OUp & ChooseStateJ UpOKi ReplaceState

DownOK a InnerApplY A Down
ODown a ChooseStatei DownOKi ReplaceState

DelLeftOK & InnerApplY A DelL-eft
ODelLeft A ChooseStatei DelLeftOKi ReplaceState

GroupLeftOK a InnerApply A GroupLeft
OGroupLeft & ChooseStatei GroupLeftOKi ReplaceState

GroupRightOK a InnerApplY A GroupRight
OGroupRight A ChooseStateJ GroupRightOKi ReplaceState

GroupUpOK a InnerApply A GroupUp
OGroupUp a ChooseStetei GroupUpOKi ReplaceState

Group~ownOK a InnerApplY A GroupDown
DGroupDown a ChooseStatei GroupDownOKi ReplaceState

UngroupLeftjK a InnerApplY A UngroupLeft
OUngroupLeft a ChooseStatei UngroupLeftOKi ReplaceState

UngroupRightOK a Innet-ApplY A UngroupRight
OUngroupRight a ChooseStatel UngroupRightOKi ReplaceState

UngroupUpOK a InnerApply A Ungroup~p
OUngroupUp a ChooseStatel Un~roupUpOKi ReplaceState

UngroupDownOK & InnerApply A Ungroup~own
OUnsroup~own a ChooseStatmi UngroupDownOKI RepluceState

UndoOK a InnerApplY A Undo
OUndo a ChooseStatel UndoOKi ReplmceState

Having specified the successful cases above, we now turn out attention to the error
cases.

When an error occurs, an error report is signalled to the user. The invocation of
such a message in no way affects the contents of the. windows in the interface:

REPORT a seq Cher

48 ___



Error ____._

r!: REPORT

FailLeft a I Error I r! - "Cannot Move Left" I
FailUp & I Error I r! - "Cannot Move Up" I
FailDown I C Error I r! a "Cannot Move Down" I
FailDal I C Error I r "Cannot Delete Object" I
FailGrrupLeft I [ Error I r! a "Cannot Group Left" I
FailGroupRi9ht I C Error I r! = "Cannot Group Ri9ht" I
FailGroupUp & I Error I r! - "Cannot Group Up" 3
FailGroupDown & I Error I r! = "Cannot Group Down" I
FailUngroupLeft I C Error I r! = "Cannot Ungroup Left" 3
FuilUngroupRight I C Error I r! - "Cannot Ungroup Right" 3
FailUngroupUp a I Error I r! - "Cannot Un9roup Up" I
FailUngroupDown a C Error I r! = "Cannot Ungroup Down" I
FailUndo a I Error I r! = "Cannot Undo - not a cartouche?" I

By combining the error schemas above with their relevant functions we can specify
completely most of the operations of the MaCHO Interface - raising an exception only
when the attempted operation fails:

OuterLeft a FailLeft a OLeft
OuterUp a FeilUp a OUp
OuterDown a FailDown a ODown
OuterDelLeft a FailDel * ODelLeft
OuterGroupLeft a FailGroupLeft a OGroupLeft
OuterGroupRight a FailGroupRight 0 OGroupRight
OuterGroupUp a FailGroupUp • OGroupUp
OuterGroupDown a FailGroupDown 0 OGroupUown
OuterUngroupLeft a FailUngroupLeft 0 OUngroupLeft
OuterUngroupRight a FailUngroupRight 0 OUngroupRight
OuterUngroupUp a FailUngroupUp 0 OUngroupUp
OuterUngroupDown a FailUngroupDown a OUngroupDown
OuterUndo a FailUndo * OUndo
We now come to define the 'outer* versions of those functions from section 4 whose

appropriate action when the inner application is undefined is not to immediately flag
an error (as the preceding defintions of this section have done).

For instance, consider the case where the outer gblock is a cartouche and the user
wishes to duplicate this object. Then, since duplicate is defined only for horvecs and
vervecs, if we followed the pattern given so far in this section we would signal an
error 'cannot duplicate" when it would appear that the requested operation is
entirely reasonable. Thus we define ODup:

ODup

ID
EWINDOWS

S'9p. 9s'.stack =(s.9 ) ^ s-stack

and then:

DuplicateOK a ODup a (Inner~pply A Duplicate)
ODuplicate & ChooseStatei DuplicateOKJ ReplaceState
OuterDuplicatea ODuplicate

i 49



A similar line of argument leads us to define Oel which deletes the outer gblock
onto the stack of remembered elements and sets the outer gblock to be a blank line:

-WINDOWS

s'.9 - blank
.s'.stack a ( s.9 ) s-stack

DelElemantOK a 0a1 0 (InnerApply A DelElamant)
OMelElement a ChooseStates OelElemantOKS ReplacuState
OuterDelElement a OelElement

For inserting elements above the outer gblock we define OInsA:

_OInsA

10

SWINDOWS

s'.9 a dom vervec
13 s'.9 = ()
I s'.9 = ( hd (s.stack))
* s'.9 = ( s.9 )
s'.stack - tl (s.stack)

and for inserting elements alongside the outer gblock we define OInsB:

_Ons_ _

EWINDOWS

s'.9 * dam horvec
13 5'.9 = ()

s'.9 = ( hd (s.stack)
s'.9 = ( S.9 )

s'.stack tl (s.stack)

After inserting a gblock at the outermost level we normalise the results of the
insertion then "go in" to their cursor - just as is done when inserting into a horvec
or a vervec:

InsAboveOK a (OInsAJ VNormJ S) a (InnerApply A InsAbove)
InsBeforeOK a (OInsBJ HNormi S) 0 (InnerApply A InsBefore)

All inserts however are only possible if (a) there is something to insert and (b) if
there is room to insert the object into the outer gblock (recall the maximum
dimensions for gblocks specified in section 5). We can define two error schemas to
describe what messages appear when these conditions are violated:

NoRoom a I Error I r! "No Room to Insert Object' I
EmptyStack a I Error I s.stack () A

r! - "No Remembered Elements" I
InsError a NoRoom * EmptyStack

Then we have:

so.1O



DlnsAbove a ChooseStatai InsAboveOKJ ReplaceState
OuterlnsAbovea InsError a DlnsAbove

Dlns~efore a ChooseStatei InsBeforaOKi ReplaceState
fluter InsBefore a InsError 0 flnsBefore

We can also. of course, insert a blank line type gblock either above or below the
outer gblock:

,OBlonkB_______

ID
EWINDOWS

s'.9 e dom vervec
9 S'.9 = ( 5.9 )
I '.9 = ( blank)

Us'.9 = (
sstock =s-stack

tI18lankA_______

ID

Is .9 a dom vervec
0 S'.9 = (
'I s'9 = (blank

S 5 9 - ( 59)
sstock =s-stack

BlankAboveiK a (OBlankAI Set~l S) 9 (InnerApply A EllankAbove)
BlankBelowOK a (D8lankBJ SetOJ S) * (InnerApply A BlankBelow)
08lankAbove a ChooseStatei BlankAboveOKi ReplaceState
OBlankBelow a ChooseStateJ BlankBelowOKi ReplaceState

OuterBiankAbove a NoRoom 0 OBlankAbove
Duter~lank~elow a NoRoom 0 OBlonkBelow

A request to move the cursor right at the outer level creates a horvec whose first
element is the original outer &block and whose second element is a blank line:

,OToHor ________

10
EWINDOWS

s'.9 a dam horvec
0 s'.s = S-59 )
I s3.9 - blank)

s'3.9 = (
' stock =s.stack

This extra blank line can only be inserted if there is room for it and so we have:

RightflK a (OToHori HNorm) a (InnerApplY A Right)
M~ight a ChooseStatel RightOKi ReplaceState
OuterRight a NoRoom 0 ORight

Typing a character at the outer level also forms a horvec but again only if there

_______ 15'



is room:

InsiCharApply!ID
EWINDOWS
c: Char

(s, c) a dom ins~char
s' = ins-char( s, c

DInsC____________

I0
EWINDOWS
C: Char

s' .9 e dam harvec
p s'.9 = (make( ( c I)
I1 s'.9 = (S-9
Ix s'.9 = (
s'-stack =s-stack

InsCharOK a OInsC * (InnerApplY A InsCharApply)
DlnsChar a Chaose~tatei InsCharOKS ReplaceState
OuterlnsChar a No~oom * GInsChar

For OuterDeiR i 9ht we need to take into account the case when the outer gblock
is a line with a null postcursor sequence since deljr i ght is not defined for this line:

ODeiR________

ID
EWINDOWS
cops

0 s'.9 = 0 -
*1 s'.9 = ( space
ME s'.9 = 0)
s'.stacc s.stack

DeiRightOK aODeiR a (InnerApplY A DelRight)
ODeiRight *ChooseStatei DelRightOKJ ReplaceState
OuterlnsChar & FailDel a ODeiRight

52



f

References

[Core87l P.W.Core, "User Extensible Graphics Using Abstract Structure, RSRE Report
87011, August 1987.

[Fabry741 R.S.Fabry, "Capability Based Addressing', CACM 17:7, July 1974,
pp. 403-412.

[Foster82] J.M.Foster, I.F.Currie and P.W.Edwards, "Flex: A Working Computer Based
on Procedure Values", Proceedings of the International Workshop on High Level
Language Computer Architectures, Fort Lauderdale, Florida, December 1982.

[Sufrin86] B.Sufrin, "The Z Handbook", Oxford University Programming Research
Group, Draft 1.1, March 1986.

[Spivey88] J.M.Spivey, "The Z Notation: A Reference Manual", to be published by
Prentice-Hall International, 1988

(Terry88] P.F.Terry and S.R.Wiseman, "On the Design and Implementation of a Secure
Computer Sysem", RSRE Memo 4188, June 1988

[Wiseman88al S.R.Wiseman, "Protection and Security Mechanisms in the SMITE
Capability Computer", RSRE Memo 4117, January 1988.

[Wiseman88b] S.R.Wiseman, "The SMITE Object Oriented Backing Store", RSRE Memo
4147, March 1988.

[Wiseman88c] S.R.Wiseman and H.S.Field-Richards, "The SMITE Computer
Architecture", RSRE Memo 4126, January 1988.

53



00CIM[INT CONROL SHEET

Overall security classification of she NCLASDTRSI ET
.r l... S.IED..... ..... . ....................................... ........

(As for es possible this sheet should contain only unclassified Information. If it is necessary to enter

classified irforsation, five bo tncerned must be marked to Indicate the classification eg (0) (C) or (S)

1. DRI Reference (if known) 2. Originators Reference 3. Agency Reference 4. Report Security
Memo 4,247 11U/C Classil'i caiho,

5. Driginatorls Code (if 6. Originator (Corporate Author) Name and Location
known) ROYAL SIGNAL & RADAR ESTABLISHMENT

7784000 ST ANDREWS ROAD, GREAT MALVERN,
WORCESTERSHIRE WR14 3PS

5a. Sponsoring Agency's Ga. Sponsoring Agency (Contract Authority) lame and Location
Code (if known)

7. Title

A 1Z specification of the MaCHO interface editor.

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference Dapers) Title. place and date of conference

8. Author 1 Surname. initials 9(a) Author 2 9(b) Authors 3,4... 10. oate - p. ret.

Wood A W 11.1988I 53

11. Contract luamber 12. Period 13. Project 14. Other Reference

15. Distribution statement

Unlimited

Descriptors (or keywords)

continue en separate plece of Osaer

Abatract

This document describes the basic editor part of the user interface for the
SMITE secure computer architecture using the mathematical notation known as Z.
Operations that are available to the user, and their effects on the screen
display, are specified in conjunction with descriptions of the auxiliary
functions and data structures necessary to support them. This specification
will be used to implement a powerful yet trustworthy interface for the
initiation and control of security related transactions.

sO/'e

j .... ... . .. .


