v€8 ¥0CvV-av

1
@

[T

A Z SPECIFY

B
Fhew
. DFTHE ﬁ\{a%(} MTE

PROCUPEMENT
RINETHY OF

g g
g
’w,ﬁ;.a:

iff ﬁ E‘E

N

M‘t st my

CONDITIONS OF RELEASE

Aansseasssssnssasasscesans

ANAAAANRRCRANERARANRRANNRS Y

Reports quoted are not necsssarily aveliable 10 members of the public or %o commerciel
organisations.

Royal Signals and Radar Establishment
Memorandum Number 4247

Title: A Z Specification of the MaCHO Interface Editor
Author: A.W.Wood
Date: November 1988

N\

\,

\. Abstract

This document describes the basic editor part of the user interface for the SMITE
secure computer architecture using the mathematical notation known as Z. Operations
that are available to the user, and their effects on the screen display, are specified
in conjunction with descriptions of the auxiliary functions and data structures
necessary to support them. This specification will be used to implement a powerful
yet trustworthy interface for the initiation and control of security related
transactions.

_ [/’/‘_.!_ /o

Sy /7

Copyright
©
Controller HMSO London
1988

e

et

L mma— e e

Introduction

The MaCHO (Mouse and Cartouches for Handling Objects) Interface, or MaCHO-I for
short, is designed to be the primary application independent user interface for the
SMITE secure capability computer ([Terry88, Wiseman88a, Wiseman88b, Wiseman88cl.
This document formally describes the salient features of MaCHO-I in the notation of
Z, a specification language based on the mathematics of typed set theory developed
by the Programming Research Group at Oxford University, The reader who is
unfamiliar with Z is advised to read, or at least have available for consultation, the
many good reference manuals available on the language [Sufrin86, Spivey88] before
embarking on the rest of this paper.

MaCHO-1 is strongly based on the interface of the Flex computer [Foster82), in
particular in its use of the graphical block (henceforth referred to as the gblock) as
a fundamental data object. As its name suggests, this data structure is one that is
directly representable graphically on the display screen and which is composed of a
set of objects grouped together to form a whole. Gblocks can thus take on many forms
of varying sizes but, more importantly, they can contain other gblocks in their object
set, For instance, if we view a line of characters as a gblock then severa!l lines may
be combined to form a gblock called a paragraph; similarly, several paragraphs may
make a page. (For more on the uses of gblocks see [Core87))

Whilst both the MaCHO and Flex interfaces are founded upon gblocks, it is
important to note that the former, MaCHO-1, can neither manipulate them to such a
great extent as the latter, nor does it even recognise the full spectrum of types of
gblock that Flex does (approximately two thirds are not present). However, despite
this reduced functionality, the MaCHO Interface is being constructed to be superior to
its Flex counterpart in possessing those properties that are of overriding concern in
the environment of the SMITE project - complete trustworthiness and total
correctness.

To describe the design of MaCHO-1 in a clearly comprehensible manner, this
document has been split into a number of discrete sections. Section 1 is concerned
with an informal description of gblocks and other data structures as they are used in
MaCHO-I. Sections 2 and 3 formalise, in Z, the notions of Section 1 and also
introduce some operators to process them. Section 4 defines those functions which are
available to the user whose effects on the various data structures of the interface are
specified in sections 7 through to 20. Section S deals with those aspects of the
interface associated with defining views of the data by windows and section 6 defines
those simple schemas which are not constrained to be used in conjunction with any
one particular function but rather with many spread through the text.

Accesasion For y;
NTIS ORA&I w
DTIC TAB O
Unannounced a

Justifiaetion _ |

i
By
| Diseribution/
Availability Codes
P lAvéﬁ apd/or
Dist t Special

: U

|

A s oy s T e

=

e e e it

Contents

Section 1: Description of MaCHO~I Data Structures
Section 2: Formal Specification of MaCHO-1 Data Structures
Section 3: Basic Operators and Constants .
Section 4: Predeclared Functions

Section 5: Windows in the MaCHO Interface
Section 6: Basic Schemas

Section 7: Recursion in the MaCHO Interface
Section 8: Going In (to the data structure)

Section 9: Cursor Control Functions

Section 10: Inserting Characters

Section 11: Deleting Characters

Section 12: Grouping Elements

Section 13: Ungrouping Elements

Section 14: Inserting Gblocks

Section 15: Inserting New Lines

Section 16: Deleting Gblocks

Section 17: Duplicating Gblocks

Section 18: Undo

Section 19: Full Operational Specifications

Section 20: Outer Definitions

References

P et

—

Section 1: Description of MaCHO-1 Data Structures

The display of the MaCHO Interface (i.e. what the user sees on the screen) is, at
first glance, very simple - to the user it appears as a (mostly) blank space over which
they can reposition and type text at will. To select a point on the screen for the
cursor requires a simple movement of the mouse over a tablet.

Of course, the real situation is much more complicated. Firstly, the display is
composed of many non-overlapping gblocks that can be selected by the mouse, usually
together with several void portions of the screen, that is, areas which are not
covered by any part of a gblock and can NOT be selected by the mouse. Secondly, the
position of the mouse on the tablet does not necessarily bear any relation to the
displayed cursor - the system which reads and interprets the location of the mouse is
entirely seperate to that which displays the cursor. This means that one of either the
cursor or the mouse can be moved without affecting the other. At all times though,
the absolute position of the mouse on the tablet is conveyed to the user via a small
arrow, known as a pointer, drawn on the screen.

In MaCHO-I there are four distinct types of gblock:

® the line

¢ the vervec

o the horvec

® the cartouche

We will examine each of these types of gblock in turn and describe their
representation in the explanatory diagrams to be used throughout the remainder of
this text.

Line

A line is a simple sequence of characters, as may be expected. The gblock
containing this sequence will be represented as the string enclosed by double
quotes e.g. "Hello Everybody”.

Vervec
A vervec is a vertical vector of gblocks and so, for instance, one line atop

another constitutes a vervec. Vervecs notionally run from the top of the page
or screen to the bottom and so in all diagrams, a vervec will be shown as a
series of rectangles with this orientation:

]

"Hello Everybody”

Figure 1: An Example Vervec

Figure 1 shows a vervec whose third element is a line type gblock
containing the string "Hello Everybody”; the contents of the other elements in

the vervec are not specified. Note that the elements of the vervec align at
their leftmost edge.

[N,

Horvec:
A horvec is a horizontal vector of gblocks which notionally runs from left to

right on the screen. For instance, three vervecs alongside each other would
constitute a horvec. In a fashion similar to that for vervecs, horvecs are drawn
as a sequence of rectangles in the appropriate orientation:

"Hello Everybody”

Figure 2: An Example Horvec

Again, we notice an important alignment property: the gblocks of a horvec
align at their topmost points.

(The reader should note that the rectangles in the diagrams for horvecs and
vervecs are for the purposes of illustration only - they do not appear in the actual
display of MaCHO-1.)

Cartouche

Of the four types of gblock in MaCHO-I , the cartouche is by far the most
difficult structure to describe in simple terms. Perhaps surprisingly, however,
we can gain some sort of understanding from Chambers 20th Century Dictionary
which describes a cartouche as “an ornamental form for receiving an
inscription™: in MaCHO-I we view the cartouche as a visible representation of a
capability (in the computing sense of [Fabry74)) which can take the form of a
picture or just simple text.

In its (less common) pictorial form, a cartouche is akin to the well known
notion of an icon on such machines as the Apple Macintosh; in its textual form
it resembles a file name. Whatever form they take though, cartouches in
MaCHO-1 are always displayed as being enclosed by a rectangular border so
that they can be easily distinguished from ordinary text or pictures. For
instance, [centre_text :Module] is a cartouche representing the capability to a
file containing the (compiled) source code of a program to centre text, whereas

may be a user defined cartouche of the capability to a file holding

Olympic Games records. To actually access the underlying files (through their
capabilities), certain operations can be directly applied to the cartouches
themselves. In subsequent diagrams, we will represent cartouches as ‘lozenges’,
possibly containing text within: .

entre_text :lModule

Before ending this description of cartouches, it should be pointed out that in
the following specification we make no mention of their special properties - we
regard them only as another type of gblock to be handled by the interface.
Such treatment is sufficient for the purposes of this document.

Although appeenring very basic, the above four types of gblock can be combined to
form remarkably complex structures:

< e e

Figure 3: A typical display in MaCHO-I

Figure 3 (above) shows a three element vervec. The first gblock in this vervec is
of horvec type, the second is a line and the third is a cartouche. In turn, the horvec
is composed of two vervecs, both of which are made entirely from line type gblocks.
Those parts of the diagram that are shown in black represent void portions of the
screen inasmuch as any attempt to point to these regions (using the mouse) will be
disallowed. Regions of this nature arise due to the disparity of the sizes of the
gblocks in the display. In this example, the horvec contains such a void region due to
the fact that one of its elementary gblocks is four lines ‘long’ and the other is only
three. Those regions that are shown ‘cross-hatched’ are areas of the screen which,
although not visibly covered by any objects, are considered to be full of space
characters and so they can be selected by the mouse. The effect pointing to these
regions depends on the gblock that is on their immediate left - see section 8.

There are three further features of MaCHO-I, each of which plays an important
part in creating and maintaining the useability of the interface:

® a coordinate system
e a variable sized cursor
® a stack of remembered elements.

Coordinate System

The display screen has a coordinate system such that the origin (0,0) is at
the top left hand corner. From this point, coordinates in the x direction
increase to the right; those in the y direction increase downwards, towards the
bottom of the screen. Thus all valid screen positions are represented by a pair
of positive numbers. We use this coordinate system to determine which gblock
has been selected by pointing operations and where gblocks are displayed. The
outermost gblock, which represents the entire screen, obviously has its top left
corner at (0,0).

The Cursor

In the MaCHO Interface, the size of the cursor shrinks and grows
dynamically according to the requirements of the user (but it cannot become
larger than the screen nor can it contract to be smaller than a single
character). At all times, the objects currently covered by the cursor are
displayed in reverse video format and so if the cursor were covering the letter
‘a’ say, then the user would see a white ‘a’ against a dark background. In most
instances, the cursor does just cover one single character; however, it is
possible to group gblocks together to form one large cursor to show for
instance several lines in reverse video. It is this grouping mechanism that allows
us to delete objects covering significant portions of the screen in one keystroke
(cf. "Remembered Elements® below).

Remembered Elements

This is a data structure which holds all the gblocks that the user has
deleted from the screen by one method or another during the session. The most
recently deleted gblock is at the top of the stack. At any time, this topmost
gblock can be reinserted into the display at the place of the current cursor
{see “The Cursor” above) and so removed from the remembered elements. Such a
scheme gives the user considerable "cut and paste” power since gblocks can be
repeatedly put on and taken off the stack until the desired display is achieved.
As a method of communicating the state of the remembered elements to the user,
a message is shown giving the number of elements on the stack (but not what is
actually in it).

[

This concludes our informal description of the MaCHO Interface and its data
structures. Despite the brevity of the preceding discussion, it is hoped that more of
the manipulative properties of MaCHO-1 will become apparent to the reader from the
formal specification to follow.

T T e e e s e e N A St T i it n - L imeew

Sty

o

Section 2: Formal Specification of MaCHO-1 Data Structures

[GBLOCK]

We introduce the set [GBLOCK] which contsins every gblock that can possibly be
represented in MaCHO-I. This set is very large, despite the fact that, as stated in
Section 1, there are only four distinct types of gblock - we shall see why presently.

The most basic type of gblock is the LINE. It is formally defined as being
composed of three subsequences of characters: those before and after the cursor plus
those under the cursor itseif. The only restriction on this structure is that the cursor
sequence is non-empty:

LINE
rbefnre' cursor, after: seq Char

#icursor 2 1

n

A CARTOUCHE has only two parts: a gblock and some unspecified quantity taken
from the set [VALUE]. (The reader should note that this latter component of a
CARTOUCHE is of no concern to this specification - its declaration is given only for
the sake of completeness.)

CARTOUCHE __

v: VALUE
gb: GBLOCK

To specify the notions of HORUECs and UERUECs it is necessary to go through two
stages. The first consists of a “partial” definition; a second stage presented later
expands this to a "total” definition.

A PARTIAL_HORVEC is one made up of three subsequences of gblocks in a manner
similar to that of a LINE. The sequences notionally run from left to right.

__PARTIAL _HORVEC
before, cursor., after: seq GBLOCK

#cursor 2 1

-

A PARTIAL_VERVEC has an identical specification to that of a PARTIAL_HORUVEC
but here the elementary gblocks within each subsequence notionally run from top to
bottom (see Section 1).

PARTIAL_VERVEC & PARTIAL_HORVEC

Given these definitions so far, one can easily see that they mode! the recursive
nature of gblocks. It is also noticeable that of the four, only the line type gblock is
not recursively defined.

The next stage of the formalisation is to define some method by which we can

R

prory
L

distinguish between the four types of gblocks or, in other words, given a gblock we
can discover its type. In Z, the distinction is modelled as four functions:

, line : GBLOCK »» LINE 1
3 horvec ¢« GBLOCK »» PARTIAL_HORVEC

: vervec : GBLOCK » PARTIAL_VERVEC

: cartouche: GBLOCK »» CARTOUCHE

{dom line, dom vervec. dom horvec., dom cartouche)
partition GBLOCK

The predicate informs us that no type of gblock, other than the given four exists
and furthermore, that each gblock is of exactly one type.

ngragiih-

These four “type determining” functions above allow us to embark on the second
stage of the definitions for HORVECS and VERVECS: a “total” horvec is one which
contains no horvecs in any of its subsequences and similarly, a "total™ vervec contains
no vervecs. (We shall dub this the "no X in X" rule).

__ HORVEC

1(
PARTIAL _HORVEC l
ran(before ~ cursor =~ after) n (dom horvec) = {}
_ VERVEC i 1
PARTIAL_VERVEC
ran(before ~ cursor ~ after) n (dom vervec) = {}
(The reason for the two stages should now be clear - the full definitions require
the declaration of the "typing” functions.)
The "no X in X" rule is introduced to exclude confusion for the user - when
displayed, there is no visible difference between a vervec containing no vervecs and
one containing several but the structural discrepancies can show up when certain
functions are performed. As a side effect of its specification, the "no X in X" rule
shortens any proofs that we may carry out on the operation of MaCHO-1 by
eliminating one class of problem from consideration when analysing the subelements of
horvecs and vervecs.
One additional constraint is necessary for gblocks, namely that their definitions are
non-circular. To realise this notion we make use of a relation contains. j

contains: GBLOCK « GBLOCK

Ya, b: GBLOCK .
(a, b) € contains e
(e € dom horvec A
b € ran ((horvec(a)).before ~ (horvec(a)).cursor = 1
(horvec(s)).after))
v
(s € dom vervec a
b € ran ((vervec(a)).before ~ (vervec(a)).cursor ~
(vervec(a)).after))

‘(l. € dom cartouche A b = (certouche(s)).gh)

contains holds those pairs of gblocks (g,g) such that gblock g’ exists somewhere
in the internal structure of gblock g. Lines therefore contribute no elements to the
domain of conteins (but obviously there may be many such gbiocks in its range).

9

e e e+ e L . , !

VU S S

One statement now suffices to give us a full embodiment of non-circularity:
contains’ n (id GBLOCK) = O

The formal specification of the data structures is now complete but for the sake of
brevity and clarity in the remainder of the document, we shall define schemas which

allow for their easier manipulation.

For horvecs, vervecs and lines it is useful to be able to refer to only one of their

three constituent sequences:

= [X]

=, B, Y: GBLOCK -« seq X

Y g: dom horvec

where
h & horvec(g)
¥ g: dom vervec .

where
v 2 vervec(g)
U g: dom line »
x g = l.after AB g
where
l2line(g)

=g = h.after A 8 9 = h.before A Y 9

1

o g =v.after A B g =v.before a Yg

l.before A Y g

It is also useful to be able to bind the three subsequences together:

F=[X]

bind: GBLOCK -+ seq X

U g: GBLOCK « bindg="/{(Bg, Y9 x g)

3

As a sort of inverse to BIND, we need functions which given a sequence of
objects (in this case GBLOCKs or CHARSs) constructs a single GBLOCK out of them:

F[X] =)
make: seq X « GBLOCK

U s: seqq X o
g (make s)
Y (make s)
= (make s)

10

Ao onad

Cartouches have different components to lines, horvecs and vervecs and
consequently have different methods by which to access them individually:

<t: GBLOCK + GBLOCK
v: GBLOCK « VALUE

Ug: dom certouche .
T g = (certouche(g J)).gb
v 9 = (certouche(g)).v

(The Greek letters used above are chosen to be aide-memoires: « for “after”, g for
“before” and, in the absence of a Greek ‘c’, Y for "cursor”. T is derived, somewhat

dubiously, from carTouche and v appears courtesy of its similarity to “v" as in
“value™)

11

S gy

N

Section 3: Basic tors and Constants

The first basic operator we introduce is one to sum a sequence of natural numbers:

lZ:seqN-oN

2()=10
Us: seq'Non=(hds)*I(tls)

To create, alter and move objects in the MaCHO Interface - and indeed any other

interface - we must know (or be able to determine) the height and width of the
individual objects:

(Y] ey
rhei; wid: Y - N

Given that we can find the width of single objects, we can now find the width and
height (in pixels) of an entire sequence of objects:

;[Y] — —e =
sumHid, sumhei: seq Y — N

Us: gseq Y «
sumrid s = 2 (g3 wid)
sumhei s = £ (s3 hei)

|

and we can aiso discover the height of the highest and the width of ihe widest
object in a sequence of objects:

EY ——_——m—me—s
maxwid, maxhei: seq, Y - N

Y s: seq, Y .

maxWid s
maxhei s

max (wid(ran s J)
max (heiC ran s J)

For MaCHO-I we also need functions which split sequences according to some
general methodology; that is, given a sequence we can return certain parts of it
which are determined by the result of a supplied function:

12

NMee—————————y

(_LOSPLIT_), (_HISPLIT_):
| ; (sgqul (N x (seq Y % N))) «w seq Y

!
i Us, t: seq, Y; u: seq Y; n: N;: f: seqY » N | s=1t " u.
i ft>n

! f (front t) < n

l s LOSPLIT (n, f) = ¢

s HISPLIT (n, f) = u

eed

s LOSPLIT (n, f)is that part of s up to, but not including, the first element
. whose ‘value’, as determined by function f, is greater than n. s HISPLIT (n, f)
returns the other ‘half’ of s.

space: Char
blank: dom line

)
Y blank z)space)

l p blank
« blank

‘ A blank gblock is a line type gblock with only a single space character in its
cursor: .

13

| U

Section 4: Predeclared Functions

All of the functions in the MaCHO Interface take as (part of) their input a gblock
and a stack of remembered elements, this latter being formally specified as a sequence
of ghlocks. These two parameters to the function are called the input STATE.

_STATE ___

g: GBLOCK
stack: seq GBLOCK

J

Every function delivers another STATE as its output and so in general we have:
FUN

r— —

f: STATE « STATE

To move the cursor on the display we use:
| left, right, up. down: STATE < STATE

To rub out characters to the left of the current cursor (sometimes referred to as
backspace) we use:

| del_left: STATE + STATE
and to erase those characters “underneath” the current cursor,
| del_right: STATE « STATE

Grouping several characters or gblocks together to form a large cursor is
performed by

| group_left, group_right. group_up, group_down: STATE -« STATE
whose inverses are:

ungroup_left, ungroup_right,
ungroup_up., ungroup_down: STATE = STATE

Having grouped some gblocks together under the cursor, we may wish to delete this
structure onto the stack of the input STATE which can be achieved by the function:

| del_element: STATE = STATE

Another method of adding elements to the current stack of the input but without

altering the display is to duplicate those gblocks which are currently “under” the
cursor:

| duplicate: STATE » STATE

Once on the current stack of remembered elements, a gblock can be reinserted into
the display in two manners - horizontally, that is immediately in front of the cursor,
or vertically, i.e. immediately sabove the cursor:

| ins_sbove, ins_before: STATE + STATE

14

E e e i P S P
e

Y

fm e e e r———

An entirely new blank line type gblock can be inserted in the display either above
or below the current cursor:

| blank_sbove. blank_below: STRTE « STATE

Whenever the current cursor is covering a cartouche, we can recover _the gblock
which is associated with the cartouche (= certouche(cursor).ghb) using:

| undo: STATE -« STATE

All of the above functions can be abstracted away into schemas, using schema
FUN:

Right a L FUN | f = right }

Left a [FUN | § = left)

Up e LFUN | f=up

Down # [FUN | § = down]

DelLeft o [FUN | f = del_left]
DelRight #a [FUN | f = del_right]
Groupleft a [FUN | f = group_left]
GroupRight @ [FUN | f = group_right]
GroupDown & [FUN | f = group_down)
GroupUp @ [FUN | £ = group_up 1
UngrouplLeft @ [FUN | f = ungroup_left }
UngroupRight @ [FUN | f = ungroup_right 1
UngroupUp & [FUN | f = ungroup_up !
UngroupDown & [FUN | f = ungroup_down 1
DelElement # [FUN | f = del_element 1
Duplicate @ [FUN | f = duplicate)
InsAbove a [FUN | f = ins_sbove]
InsBefore @ [FUN | f = ins_before)
BlsnkAbove @ [FUN | f = blank_gbove]
BlankBelow 2 I FUN | f = blank_below 1
Undo & [FUN | f = undo)

and their inputs and outputs can be modelled using the schema I0:
IDel s, s : STATE)

However, two functions implemented in the interface cannot be abstracted as above
since their inputs are not just a single STATE: ins_char is the function that is called
every time the user hits a key on the keyboard and thus has the struck character as
part of its input, and goin is the function that is called when the user moves the
cursor between different gblocks on the screen - necessitating the coordinates of the
point selected to be included in the input parameters.

ins_char: (STATE x Char) w STRTE-
goin: (STATE x N x N) - STATE

We can though still model the input and output state parts for ins_cher and goin
using 10.

15

Section S: Windows in the MaCHO Interface

Every coordinate in the MaCHO Interface is represented by a pair of non-negative
numbers:

COORD 2 (N x N)

A BRECT is a rectangular area defined by the coordinates of its top left and
bottom right corners:

BRECT
tl, br: COORD

fst(t1) € fst(br)
snd(t1) £ snd(br)

The windowing scheme of the MaCHO Interface is specified as a function between
BRECTs and STATEs where the BRECT defines the window through which the gblock of
the STATE it is mapped to is seen. (Recall from Section | that the stack of
remembered elements in a state is not shown.)

W
ruindous: BRECT « STATE

|

As may be guessed, however, there are constraints on the elements of the
windowing scheme so far presented whose descriptions require the declaration of some
auxiliary functions.

Firstly, we define a function which returns the set of coordinates "covered™ by a
BRECT:

| cover: BRECT ~ P COORD

bb: BRECT .
cover(b) = {x: (fst(b.tl) .. fst(b.br)):
y: (snd(b.tl) .. end(b.br J)) « (x, y)}

Next, we define a special BRECT which defines the area the user has available to
work in and two integers which define the maximum dimensions of any gblcck:

| workspace: BRECT
xmax, ymax: N

Using the above, we expand the specification of the MaCHO windowing scheme by
insisting that

e the windows completely cover the available space,

® no two windows overlap,
® and no gblock has a size greater than the maximum allowed.

16

__ WINDOWS

W

U cover (dom windows) = cover(workspace)
Y p, q: dom windows | p 2 q ¢« cover(p) n cover(q) = {2}
U s: ren windows « (Wwid $.9) S xmax A (hei s.9) S ymax

Under the constraints of WINDOWS, we can construct an initial system state in
which there is only one window whose associated gblock consists of a blank line type
gblock and whose stack of remembered elements is empty:

INITIAL .
SWINDDWS

windows' = {workspace ~ s}
where

I s: STATE

s.stack = ()
s.9 = blank

17

——————

Section 6: Basic Schemas

In this section we introduce some basic schemas which will be used in various
places throughout the remainder of the document

The first schema is a simple one containing just two natural numbers which can
represent an absolute coordinate in the workspace or a relative offset from some
point:

XY &l x, y: N]
AXY o [XY; XY*' 1

(Although XY is identical to COORD in section 6, we declare XY seperately since it
is to be used in a different way.)

Related to the above is a schema which sets the twc values in XY to zero:

Set0 _
FAXY

Another simple schema to define is one whose action is the null action:

—Null

———

10
EWINDOWS

The next three schemas define the types of the gblock which are passed in and
out of the functions of the interface:

__V0Ops
10

et ————————

s.9 € dom vervec
s’.g € dom vervec

__LOps
10

—————————

s.g € dom line
s$'.g € dom line

18

—. HOps
10

$.9 € dom horvec
s’'.9 € dom horvec

] and the next two define the type of the gblock at the top of the stack of
remembered elements in a given state:

_ TopHor vec
10

hd (s.stack) € dom horvec

__ TopVer vec
10

hd (s.stack) € dom vervec

d

We use XY in a schema which describes the action of "going in" to a single gblock
in a sequence of gblocks:

_.S

10
EWINDOWS
=XY

(V5.9 1

. s$.9
result.g)}
s.9
result.stack

9
.9
'.stec
re

st, result: STATE

ne <N
nun <
L I B N
He ~T N

wh

st.g = hd (1 s.9)
st.stack = s.stack
result = goin(st, x, y)

S is defined only when the gblock that is entered is the unique element in the
cursor sequence of the input state.

The most difficult operation to specify in this section, and probably in the entire
document, is that of normalisation so we will go through it in some detail here.

By normalisation, we mean the moulding of horvecs and vervecs into their canonical
forms without loss of information. This process has three distinct stages:

e transform the object into a sequence of its constituent gblocks,

o process this sequence to remove any undesirable features,

e partition the processed sequence into three subsequences to form the
before, cursor and after sequences of the result.

19

v e e e o B

U

This firs:'t'stuc is performed by the binding function of section l: the intermediate
stage is responsible for

® correcting any degenerate gblocks,
® removing horvecs from horvecs and vervecs from vervecs, in order to
conform to the “no X in X’ rule of section 2, and
e merging adjacent line type gblocks (in horvecs only).
For the first of these processes, we need to define what a degenerate gblock is:

degenerste: P GBLOCK

degenerste = {g: dom horvec U dom vervec | # (bind g) = 1}

- a degenerate gblock is a horvec or a vervec which contains only one gblock.
During normalisation of a sequence of gblocks degenerate gblocks are removed and
replaced by the single element they contain:
purge: seq GBLOCK - seq GBLOCK

purge () = () .

U g: degenerate . purge (g) = bind g

U g: GBLOCK\degenerate . purge (g) = (g)}

Us, t: seq GBLOCK « purge(s ~ ¢t) = purge(s) ~ purge(t)

In a fashion similar to that of purge, the second process is defined as a function
which seeks out specific types of gblock in a sequence and replaces them with their
flattened versions - helim for eliminating horvecs, velim for eliminating vervecs:

helim: seq GBLOCK — seq GBLOCK

helim () = ()

U g: dom horvec . helim (g) = bind 9

Y g: GBLOCK\dom horvec « helim (g) = (g)

Y s, t: seq GBLOCK « helim(s ~ ¢t) = helim(s) ~ helim(t)

velim: seq GBLOCK — seq GBLOCK

velim () = ()

Y g: dom vervec « velim (g) = bind 9

Y g: GBLOCK\dom vervec . velim (g) = (g)

U s, t: seq GBLOCK « velim(s ~ t)} = velim(§) ™ velim(¢t)

To specify the third process of merging adjacent line type gblocks we need an
auxiliary function which makes one line out of two:

(———————— — - o
(_ join _) : (GBLOCK x GBLOCK) « GBLOCK

YU a, b, c: dom line |
(line(¢)).before = (line(¢)).after = () A
(line(¢)).cursor = (bind a) ~ (bind b) «
8 joinb = ¢ :

The required function then follows naturally:

20

merge: seq GBLOCK — seq GBLOCK

merge () = ()
Y g: GBLOCK « merge (g) = (g)
Y s, t: seq GBLOCK: p, q: dom line .
merge(s ~ (p) ~(q) ~ t) = merge(s ~ (p join q) ~ t)
Us. t: seq GBLOCK | (lsst s ¢ dom line) v (hd t ¢ dom line) »

merge(s ~ ¢t) = merge(s) ~ merge(t)

The final stage of normalisation, splitting the processed sequence, is performed by
determining the first element of the cursor sequence and then specifying the length of
this sequence. To help to do this, we define a function which returns a sequence
containing just those elements of another (larger) sequence whose indices in this latter
are members of a given set.

F(X]m
(_1_): (PN x seq X) = seq X

n € dom
ne€doms = {n} 1 s
vis=

Putting the three stages together we obtain the desired specifications:

UNorm
[10

EWINDOUWS
VOps
XY

n: N

front p

9 (1..n) 1 q

9 (n+l .. ®#9) 1 g
.stack = s.stack

3
b > w0

(bind3 velims purge) (s.g)
v LOSPLIT (y, sumhei)
2 (last p > ~ (v HISPLIT (y, sumhei))

et

no<lune 2w

.g = front p
.g=(1..n)1gq
.9 = (n+]l .. #9) 1 g
stack = s.stack

binds helims purges merge) (s.g)
LOSPLIT (x, sumwmid)
last p > ~ (h HISPLIT (x, sumwid))

el
~T o~

21

e mm e e e e s

Section 7: Recursion in the MaCHO Interface

The aim of this document is to formally specify the behaviour of the MaCHO
Interface or, more precisely, the effect of certain operations on its underlying data
structure. Given the recursive nature of this last item, it is natural that most if not
all of the functions to be specified are themselves recursive in one way or another. In
this section we describe the general form this recursion takes.

If we were to classify horvecs or vervecs in MaCHO-1 according to the number of
elements in their cursor sequences, we could choose to distinguish two classes - those
with cursors containing two or more gblocks and those with cursors of size exactly
one. It is this latter class of gblocks which give rise to the recursion in the interface:
in these cases the result of applying a function to the horvec or vervec concerned is
determined by the type of the single gblock in its cursor and on whether the function
can be recursively applied to this same gbliock. In (very) pseudo Pascal terms we have:

FUNCTION £ (g: GBLOCK): GBLOCK:
BEGIN

IF »
9 is @ horvec or 8 vervec AND *
size of cursor = 1 AND »
cursor gblock of g is @ valid srgument for »

»

BEGIN »

cursor gblock of g := f(cursor gblock of g); =
optionally alter g with its new cursor:

Dresult 1= g »

»*

ELSE
do something else to g and return result;

From the above we see that the recursive call can be followed by further
alterations of the input gblock to yield the result; we will come across examples of
this behaviour in the document subsequently. In this section, we content ourselves, to
begin with, by formally specifying the recursive call part (marked #) for a general
function from STATE to STATE:

__Recur
EWINDOWS
10

FUN

(Y s.9
t € do
s’. s.9
s’. result.g)
s s.9

r;sult.stack
st, result: STATE

st.g = hd “[GBLDCK] s.9)

st.stack = s.stack
result = f(st)

URecur & Recur A U0ps
HRecur & Recur A HOps

(Note that in the informal] code we talked about GBLOCKs whereas the formal
specification makes reference to STATEs as is, of course, actually required.)

With this general description of recursion, we can easily describe recursive calls of
specific functions from the previous section by ‘and’ing in the matching schema. For
instance, the recursive part of the function (cursor) left applied to a vervec is
modelled by:

ULeft & VURecur A Left

To formally specify a function in full we use the schema override notation e where
for schemas S and T:

SeTa(preTAaS)yT

This notation models precisely and succinctly the ‘if..then..else..’ construction of the
pseudo code:

UFunction & UDoSomethingElse ® (VRecur A Function)

and it will therefore be often used in the ensuing text.

For the function ins_cher we require a similar recursion scheme to that just
presented but one which takes into account the extra character parameter of the

ins_char operation:

_ InsCharRecur

10
ZWINOOWS
c: Char
ni(ys.g) =1
(st, c) e dom ins_cher
ps'.9=ps.9
Ys'.g=(result.g)
«s'.9° «sS.9
s’ .stack = result.stack
where

st, result: STARTE

st.g = hd (‘IIGBLDCK] s$.9)

st.stack = s.stack
result = ins_cher(st, c)

VinsCharRecur & InsCharRecur a V0ps
HInsCharRecur & InsCharRecur A HOps

23

Section 8: Going In {to the data structure)

In order to edit text displayed on the screen it must be possible to select the
nbject or objects to be manipulated. In MaCHO-1, an object is selected by positioning
the pointer (see section 1) at a certain (x, y) displacement from the top left hand
corner of the outermost gblock in a window (see section 4) and "going in". In the
interface itself, this corresponds to the action of plummeting down from the outermost
gblock through the various levels of structure until a basic gblock, that is, a line or a
cartouche, contained therein is found.

When a line type gblock is found at the lowest level, the supplied (x,y) parameters
determine a unique element from the sequence of characters within the gblock. The
character thus selected becomes the cursor of the line from whence we can define
the pre- and post-cursor sequences of the line. However, to go into a line, we need
to check the x displacement supplied; if it yields a point beyond the end of the line,
we extend the line up to this point with a sequence of space characters. This
padding is performed by the function pad:

! pad: (seq Char x N) « seq Char

U s: seq Char; n: N | n < sumwid s « pad(s, n) = s
U s: seq Char; n: N | n 2 sumwid s
pad(s, n) = pad(s =~ (space), n)

__LGolIn .
EWINDOWS
10
LOps
EXY
P s'.g = front p
vYs8'.9={(last p)
= s'.9 = 1 HISPLIT (x, sumwid)
s’ .stack = s.stack
where
1 a pad(bi"d[Char] (s.g), x)

p & (1 LOSPLIT (x. s”m“id[Char]))

-

Going into a cartouche is at the same time the most simple and complicated
operation in this section. The simple case occurs when the x displacement given lies
somewhere along the length of the cartouche for then the result of the operation is
merely the same as the input:

_CGolnSimple
EWINDOWS

10

EXY

————

.9 & dom cartouche
< wid s.9

WXn

If on the other hand the x displacement lies somewhere beyond the length of the

24

-

cartouche, the gblock part of the result is a horvec. This horvec is crested from the
cartouche and a blank line which extends from the rightmost edge of the cartouche to
the selected point:

r.CBoInComplex

EWINDOWS

1D

EXY
s.g € dom cartouche
x 2 wid s.9
s'.9 € dom horvec
Bs'.g={s.g)
Ys'.g=(1)
o s'.9= ()
s’ .stack = s.stack

where
la make[Charl(padl (), x - wid(s.9)))

CGoln & CGolnComplex v CGoInSimple

The first part of the definition of goin for 8 vervec is similar to that for a line,
inasmuch as the (x, y) parameters select an object to be the cursor for the structure
and from this the rest of the vervec is defined. Obviously though, for a vervec, it is
the distance down the structure, the y displacement, which determines the
partitioning:

__VUPartition

ZWINDOWS
10
V0ps
axy
gs'.g = front p
Yys'.g = (last p)
x s'.g = v HISPLIT (yy, sumhei)
s’ .stack = s.stack
x' = x
y' = yy -~ sunheil B s'.g)
where
v & blnd[GBLOCK](s.9)
yy a min {y, sumhei(v) - 1}
P &v LUSPLIT (YY' SUthllGBLUCK])

Note that the displacement used to partition the vervec (yy) is the lower of the
maximum possible displacement (the height of the entire vervec minus one) and the
original y parameter.

The next and fina! stage of the definition of goin for a vervec is to recursively
“go in" to the gblock in its cursor with the displacement calculated from the
partitioning stage:

UGoIn & UPartitions S

For a horvec, the partitioning part of goin is almost identical to that for a
vervec - with the obvious exception that it is the distance along the structure which
determines the components of the result and thence it is the widths of the gblocks in
the sequence which is important:

25

P SR VS Y

- e T

- v

HPartition
!_EHINDOHS
10
HCps
axy

g = front p

g ={ last p)

'.9 = h HISPLIT (xx, sumuid)
tack = s.stack

x - sumwid(8 s'.g)

e

h s blnd[GBLUCK] (s.g)

xx & min {x, sumwid(h) - 1}

p 2 h LOSPLIT (xx, SUmHId[GBLUCKl)

Analogously to vervecs again, the second stage in the defintion of goin for a
horvec consists of a recursive "go in" to the cursor gblock: in horvecs, however, this
is not the last stage - as it is for vervecs - since we require that the result from the
second stage described by schema S to be normalised. The extra processing required
is to handle the case when the user selects a point beyond the rightmost end of a
horvec whose last element is a cartouche: the resulting "go in" to the cartouche
:ould result in a horvec within a horvec by definition of CGoInComplex. Thus we

ave:

HGoIn & HPartition3 S3 HNorm

26

Section 9: Cursor Control Functions

At any stage, we may wish to change the position of the cursor, sway from that
established by the initial goin. For large movements we can of course execute a
further goin at the desired point but if we want only to move to the adjacent
character or gblock it is simpler (and more efficient) to use the normal cursor
movement commands - cursor left, cursor right, cursor up and cursor down.

To specify such movement, we introduce two schemas - StepForw to move the
cursor sequence of a gblock onto the first element of the postcursor sequence and
StepBack to move it onto the last element of the precursor sequence:

__StepForw

10
EWINDOUS

ne 2w

0"
-
0w’

0]
~nun

prs

b

-

2

n

(]
—

StepBack _
B 10
EWINDOWS

= front (B s.9)

= (last (p s.8))
= (Ys5.9) " (x 5.9)
k = s.stack

—

In a vervec, cursor movement up or down takes place in two stages - the first
changes the structure according to the relevant “step” schema above and the second
recursively "goes in" to the newly defined cursor:

UDown & ((StepForw A V0ps)3 S) @ (VRecur A Down)
VUp & ((StepBack A VOps)3 S) @ (VRecur a Up)

As a horvec is a horizontal sequence of gblocks, a call to move the cursor up or
down it only makes sense if the operations can be recursively applied:

HUp & HRecur A Up
HDown & HRecur A Down

Moving left in a line is easily specified:

LLeft & StepBack A LOps

snd moving left in & horvec is defined analogously to moving up in a vervec:
HLeft & ((StepBack A HOps)3 S) @ (HRecur A Left)

The move left operation in a vervec is defined recursively:

2?

VlLeft & URecur A Left

To shift the cursor of a line to the right is another simple schems:
LRight & StepForu a LOps

but the specifications of rightwards movement for horvecs and vervecs are more
complicated as will be seen.

When we apply the right function to a vervec, we transform the cursor of the
vervec into a two element horvec. The first element of this horvec is a vervec made
from the cursor sequence of the vervec and the second element is a blank line:

_VWRightl

10
EWINDOUS
UOps

h: dom horvec
v: dom vervec

make (Y s.g)
= (v
(blank)
()

R «4W<
FITIITN

URight @& URightls Set0s S

In @ horvec, move right is first of all interpreted as a command to move the cursor
onto the first element of its postcursor sequence:

HRightl & (StepForw A HOps)? S

If. however, the postcursor sequence of the horvec is empty then HRightl is not

defined; in this case a new blank line type gblock is added onto the end of the
horvec which is then gone into:

28

RddL ine

r-III!
EWINDOWS
Ps
ps'.g=(ps.g)" (1s.9)
Ys'.g = (blank)
o S'-s = ()
s'.stack = s.stack

HRight2 @ AddLines Set03 S

Although at first glance HRightZ2 may appear to be an
this specification which is the one most used for easily
horvecs. Altogether then we have:

unnatural operation, it is
extending the length of

HRight # (HRightZ2 @ HRight1) ® ((HRecur A Right)3 HNorm)

29

Characters are inserted into lines immediately before the cursor, as may be
expected:

__LInsChar

10
EWINDOWS

(@ps.g)~(c)

El)
e«

s.9
s.g
s.stack

Characters inserted into horvecs are made into line type gblocks and appended to
the precursor sequence of the horvec just as a character is added to a line:

__InsCharToHor

10

SWINDOWS

HOps

c: Char

gs'.g=(@s.g) " (make[Char]({c)))
Ys'.9=1Ys.9

xs'.9=ous.9

s’ .stack = s.stack

The result of InsCharToHor must be normalised to merge the newline type gblock
with any that are adjacent to it in the horvec:

HInsChar & (InsCharToHor e HInsCharRecur)3 HNorm

In a vervec, the action of ins_char is to transform the cursor of the vervec into
a horvec consisting of the line made from the character and a vervec made from the
cursor of the vervec:

1

i
t

. InsChar ToVer
. ; 10
.

)

SWINDOWS
V0ps
c: Char

g h=(makEIChar]({c))
Yh=(mEkE[GBLUCK](Ys.g))
wh = ()

Once the horvec is created in the vervec we go into it:

VinsChar & (InsCharToVers S) e VlnsCharRecur

‘ ‘ e O ARAIS it 2 IULAD Sl oL NS IS N %5 8 5,
{ ORI
e e

B T -~ v e a

™ e T

ety Ay i . AP AN P RIP

T ——

- n -t

- e = = =

Section 11: Deleting Characters

11.1 Delete Left

For 8 line, del_left has a simple specification:

LDelleft

F-IU

EWINDOWS
LOps

front (B s.9)
¥s.9

> S.9

= s.stack

ne«o

s
S
S
.

xnun

stac!

For horvecs however, del_left does not have such an easily intuitive
specification. This complexity arises due to the fact that within a horvec it is
possible to delete the character immediately before the cursor using delete left:

__BackDelChar

10
EWINDOWS
HOps

(ps.g)"~ (1)

I
F
.-l:rQQ.n'natr

last (®1gg grx) =-9)
make (front (bind b))

> PPN ~—~m

J— |

Obviously there will only be a character to delete if the last element of the
precursor sequence of the horvec is a line type gblock. There is yet, though, another
complication in that even when there is such a gblock, it must contain at least two
characters in order that some characters are left after the deletion. In the cases
where there is only one character in the relevant gblock the effect of del_left in
the horvec is to remove this gblock altogether:

32

__BackDelGblock . ;

: ? 10
: EWINDOWS

: HOps
b € dom line
(bind b) = 1
ps'.g = front (g s.9)
1s'.9=Ys.9
%s'.9=xs.9
s’.stack = s.stack

where

Putting these schemas together we have:

HDelLeft & (BackDelChar v BackDelGblock) ® (HRecur A Delleft)

The specification of delete_left for vervecs is somewhat easier:

UBelLeft & (VRecur A DellLeft)s UNorm

The normalisation stage is required for that case where the cursor of the vervec is

horvec with two elements whose first element is deleted during the action of
BackDelelock such an action would leave a degenerate horvec in the vervec.

11.2 Delete Right
Like del_left, del_r ight has a simple effect on lines:
,._LDelRisht

10
EWINDOWS
LOps

P s.9

{ hd (x s.9))
t]l (x s.9)

= s.stack

=0nn

The cursor of the line is deleted and the new cursor is the first character that
appeared to the right of the old cursor.

From the specification of LDelRight we notice that the del_r ight operation is
undefined in a line with a null postcursor sequence. When such a situation occurs in a
line which is the cursor gblock of a vervec, we replace the cursor sequence of the
offending line with a space character and assign this new line to be the cursor of the
vervec:

33

[P PP —

| ‘ __\UDelPartLine

10
EWINDOWS
V0ps

z
T
--nl_!‘un.unnt

(1(cBLOCK) -9
make (s c ™ (space })

4

UDelRight & (VDelPsrtLines S) @ (VRecur A DelRight)

When a line with an empty postcursor sequence forms the cursor of a horvec, and
del_r ight is applied to the horvec, the result is to delete the cursor sequence of
the line and move right in the horvec:

’__HDelPartLine —_—

10
SWINDOWS
HOps

¥s.9
dom
ind c »
.9’

LS

1] s =
.9 =
'.stack
wh

hd (Yrgp gck) S-9)

"
c
b
-]
Y
o
]
er
c
1 make (B c)

re
-]
2

DelRightInHorl & HDelPartlLines HRight

However, DelRightInHorl is not defined if the cursor sequence of the line
covers the whole line. To handle this case we use DglRightInHor2 which deletes
the entire line from the horvec and moves right in the horvec when possible,
otherwise the original line is replaced by a blank line:

34

e 2 e g e st

r_DlthollLine

10
EWINDOWS
HOps

n (1s.g9)=1

c € dom line

bind c = Yc

ps'.g=ps.g

% 5.9 () =
(1s'.g = (blank) A

xs'.9= ())

% 5.9 % () e
(Y$'.9=hd (x $.9) A
xs'.9=t]l (« 5.9))

s’ .stack = g.steck

where

cahd (YIGBLUCK] $.9)

DelRightInHor2 & DelWholel ines Set03 S

Altogether we have

DelRightInHor @ DelRightlInHorl v DelRightInHor?2
HDelRight @ DelRightInHor ® (HRecur A DelRight)

e . m——— -

Section 12: Elements

Pervading all of the previous sections is the notion of cursor size and how it
affects what is actually performed in the interface. This section and the following one
define those operations that allow the displayed cursor to be expanded and
contracted in order to achieve precisely the function that the user desires. Such
alteration of the cursor has no actual influence on the contents of a gblock and thus
there is no need for any post-normalisation stage.

What we do use however is the technique of defining generic schemas to handle
horevecs, vervecs and lines in a uniform way just as in Section 2. ExpandBack
extends the cursor sequence of the given gblock over the last element of the
precursor sequence and ExpandForw extends it over the first element of the
postcursor sequence:

— ExpandBack

10
EWINDOWS

front (B s.9)

{last (@ s.9)) ~ (Y s.9)
« S.9

= s.stack

LR]
N
00w w

Enua

c

__ExpandForw

0
EWINDOWS

’ s's
s.g) ~ (hd («x s.9))
(x 5.9)

s.stack

s
s’. Y
s’ 1

ne Lo
xaaen
It er~M

2000

'.stac

)

By supplying the relevant object class to the above two schemas, we achieve the
desired specifications:

LGroupLeft a ExpandBack A LOps
UGroupLeft & URecur A Groupleft
HGroupleft & (ExpandBack A HOps) e (HRecur A GrouplLeft)

LGroupRight & ExpandForw A LOps
UGroupRight # URecur A GroupRight
HGroupRight & (ExpandForw A HOps) @ (HRecur A GroupRight)

VUGrouplp & (ExpandBack A VOps) @ (URecur a GroupUp)
HGroupUp & HRecur A Groupllp

VGroupOown & (ExpandForw A VUOps) @ (VRecur A GroupDown)
HGroupDown & HRecur A GroupDown

Section 13 Blements

In a manner akin to that of the previous section, we can specify most ungrouping
actions on horvecs, vervecs and lines using only two schemas - ContractForw and
ContractBack make the cursor sequence of the given gblock smaller by paring off its
first and last elements respectively. Both schemas are defined only if there are at
least two elements in the sequence to be trimmed (since the cursor sequence of a line,
horvec or vervec must never be empty, see section 2):

ContrectForu

10
EWINDOWS

- . w_g

s.9)

ng2s
st~

__ContrectBack

10

SWINDOWS

% (Ys.9)>1

gs'.g=8s.8

Ys'.9 = front (Y s.9)

xs'.g=(last (Ys.9))" (« s.9)
s’'.stack = s.stack

Ungrouping characters in a line is easily specified:

LUngroupLeft & ContractForw A LOps
LUngroupRight # ContrectBack A LOps

Ungrouping gblocks from the left or the right in a horvec is & more complex

operation: if the operation makes the size of the cursor sequence exactly one, we
recursively "go in~ to this gblock otherwise nothing further is done:

HTrimLeft @& (ContractForw A HOps)3 (S v Null)
HUngrouplLeft & HTrimLeft @ (HRecur A Ungroupleft)

HTrimRight & (ContractBack A HOps)? (S5 v Null)
HungroupRight & HTrimRight ® (HRecur A UngroupRight)

Ungrouping from the top or the bottom in & vervec is analogous to ungrouping from
the left or the right in a horvec and so we have:

UTrimUp & (ContractForw A VOps)s (5 v Null)
UUngroupUp & VTrimUp ® (VRecur A Unsrouplp)

UTr imDowun & (ContractBack A VOps)s (S v Null)
VuUngroupDowun & VUTrimDown @ (VRecur A UngroupDown)

Ky}

Finally we specify those cases where the direction of the ungrouping required is
inappropriate to the orientation of the object structure:

HuUngroupDown & HRecur A UnsroupDown
HuUngrouplUp & HRecur A UngrouplUp
UUngroupl.eft & YRecur A UngrouplLeft
UUngroupRight & URecur A UnsroupRight

Section 14: Inserting Gblocks

As mentioned in section 3, the gblock at the top of the stack of remembered
elements can be inserted either before or above the currently displayed cursor. In all
cases, the insertion is followed at some stage by "going in" to the newly inserted
gblock.

Gblocks can be inserted immediately before the cursor of a line to form a horvec:

— InsIntoLine

EWINDOWS

10

$.9 € dom line

s'.9 € dom horvec

ps'.g= (make(p s.g))}

Ys'.g=(hd s.stack ?

x s'.g = { make((Y s5.3) " (x 5.9))}
s’.stack = tl s.stack

The result of the insertion is normalised and then re-entered:
LInsBefore # InsIntoLines HNorm3 S

Inserting a gblock into a horvec at its current cursor position is easily specified:

InsIntoHor .
F-EHINDONS

10

HOps

Bs'.g=ps.g

Ys'.g = (hd s.stack)

% s'.g=(1s.8)" (x 5.9)

s’ .stack = tl s.stack

HInsBefore & (InsIntoHor ® (MRecur A InsBefore))s HNorm3 S

Inserting a gblock before the cursor sequence of a vervec forms a horvec at that

position in a manner similar to that of InsCharToUer:

e

o ot

. InsBefIntoVer

10
ZWINDOWS
UOps
Bs’'.g=pgs.g
Yys'.g=<{h)
vs'.9*xs.9
hs'-st-ck = t] s.stack
W

re
h: dom horvec

()
{ hd s.stack)
(

h
h
h make(¥ s.g))

f 4«0

VInsBefore & (InsBeflntoVer3s S) e (VRecur A InsBefore)

Gblocks are inserted above the cursor sequence of vervecs only; for horvecs the
operation has to be recursively applied:

_ InsAbovelntoVer
EWINDOWS
10

V0ps

——————

=ps.9

= { hd s.stack)

= (Ys.9) " (n 5.9)
k = t] s.stack

ereremd

VinsAbove & (InsfAbovelntoVer @ (VRecur A InsAbove))s UNorm3 S
HInsAbove & HRecur A InsAbove

40

T e bt i e

Section 15: Inserting New Lines

i : New lines can only be inserted into vervecs but in two ways, either above or below
: the cursor sequence:

y
1
r _ BlankA
I0
EWINDOWS
V0ps
Bs'.g=ps.g
1 Ys' .3 = (blank)
1 «s5'.9= (Ys5.9)" (x s.9)
i s’ .stack = s.stack
_.BlankB .
10
4 ZWINDOWS
V0ps
Bs'.g=(gs.g)" (1s.9)
Ys'.9 = { blank
%s'.9g9 = us.9
s’.stack = g.stack

Immediately after a new line has been inserted, it is assumed that the user wishes
to edit it and so we “go in” to the new object at its top left hand corner (0,0

UBlankAbove & (BlankA3 Set03 S) ® (VRecur A BlankAbove)
UBlankBelow & (BlankB3 Set(3 S) @ (VURecur A BlankBelow)

For horvecs, blank_sbove and blank_below are defined recursively:

HBlenkAbove & HRecur A BlankAbove
HBlankBelow & HRecur A BlankBelow

41

SR

Section 16 Deleting Gblocks

In MaCHO-I, the entire cursor sequence of a horvec or a vervec can be deleted
onto the current stack of remembered elements in one operation:

Deletel
— -
10
EWINDOWS
o s.9 %2 ()
Bs'.9g=ps.g
Y¥s5'.9=(hd («x s.9))
xs'.9 =t] (« 5.9)
s'.stack = (meke(Y s.g)) ~ s.stack

Deletel however is not defined if the postcursor sequence of the object gblock
is empty - in this case the deletion is performed by DeleteZ:

Delete2 .
[10

ZWINDOWS

o 5.9 = ()

g s’'.g = front (B s.g)

Ys'.9=¢(last (p s5.g))

xs’'.9= ()

s'.stack = (make(Y s.9)) ~ s.stack
and so:

Del a Deletel v Delete?

Notice that Del is not defined if both the pre- and post-cursor sequences of the
object gblock are empty =~ if it were we would be able to delete the entire input
gblock leaving nothing to be recorded as the output.

After the deletion has been performed, we "go in" to the top left hand corner of
the new cursor:

VErase & (Del A VOps)’ TaopVervecs Set03 S
HErase & (Del A HOps)’ TopHorvecs HNorm3 Set03 S

(n a horvec the result of the deletion has to be normalised in case the deletion
has given rise to newly adjacent line type gblocks.)

The full specifications of deletion in a horvec and a vervec are thus:

UDelElement & VErase @ (URecur a DelElement)
HDelElement & HErsse @ (HRecur a DelElement)

42

N S

| -
! 5 Section 17: Duplicating Gblocks '
|
i
|

The duplicate function is defined only for horvecs and vervecs, in which case its
action is to push a gblock of the respective type onto the top of the given stack of
remembered elements. The pushed gblock is composed of the gblocks which are
contained in the current cursor sequence of the horvec or vervec to which the
operation is applied.

— Dup

10
EWINDOWS

s'.g = 8.9
' s'.stack = (make(Y s.g)) "~ s.stack

VDuplicste & ((Dup A VDps)3 TopVervec) @ (VURecur a Duplicate)
4’ HDuplicate & ((Dup A HOps)3 TopHorvec) @ (HRecur A Duplicate)

43

[T S

Ry

> [POTRR— VAU
1

e e e o et

. —

The undo function returns the gblock component of the cartouche to which it is
applied but only if this gblock is not a line:

_Clndo

10
EWINDOUS

T s.9 ¢ dom line
s'.g=7s.9
s’ .stack = s.stack

-

After a cartouche is “"undone™ we “go in" to the result at some chosen point in
order perhaps to "undo” another cartouche therein. However, the result of an undo
may be a vervec which, if the original cartouche is itself an element of a vervec, will
result in a structure which contravenes the “no X in X" rule of section 3. Similarly,
the operation may result in a horvec being created within a horvec and so we have:

UlUndo @ (VRecur A Undo)s UNarms S
HUndo & (HRecur A Undo)s HNorms S

44

St st T

Section 19; Full Operational Specifications

We now present, in a single unifying block, the full formal definitions of the basic

actions within the MaCHO Interface:

GOIN @ LGolIn v CGoln v HGoIn v VGoln
Y GOIN « goin(s, x,» ¥ } = s’

LEFT & LLeft v HLeft v VULeft
U LEFT « left(s) = s’

RIGHT & LRight v HRight v URight
U RIGHT « right(s) = s’

UP & Hup v VUp
GUP « up(5) = g°

DOWN & HDown y UDown
U DOWN « down(s) = s°

INS_CHAR @ LInsChar v HInsChar vy VInsChar
Y INSERT_CHAR « ins_cher(s, c) =s’

DEL_LEFT & LDellLeft v HDelLeft v UDellLeft
Y DEL_LEFT « del_left(s)= s’

GROUP_LEFT & LGroupleft v HGroupLeft v VGrouplLeft
¥ GROUP_LEFT . group_left(s) =g’

GROUP_RIGHT @& LGroupRight v HGroupRight v UGroupRight
Y GROUP_RIGHT « group_right(s) =g’

GROUP_UP & HGroupUp v VGroupUp
Y GROUP_UP « group_up(s) = g’

GROUP_DDWN #& HGroupDown v VGroupDown
© GROUP_PDOWN « group_down(g) = s’

UNGROUP_LEFT a LUngrouplLeft v HungroupLeft v VUngrouplLeft
U UNGROUP_LEFT . ungroup_left(s) = s’

UNGROUP_RIGHT a LUngroupRight v HUngroupRight v VlUngroupRight
¥ UNGROUP_RIGHT « ungroup_right(s) = s’

UNGROUP_DOWN @ HUngroupDown v VlUngroupDown
Y UNGROUP_DOWN « ungroup down(s) = s’

UNGROUP_UP & HUngrouplUp v VlUngroupUp
Y UNGROUP_LP « ungroup_up(&) = g’

INS_ABOVE & HInsAbove v VInsAbove
¥ INS_ABOVE « ins_sbove(s) = g’

45

e

INS_BEFORE & LInsBefore v HInsBefore v VinsBefore
U INS_BEFORE . ins_before(s) = g’

{ BLANK_ABOVE & HBlankAbaove v VBlankAbove
YU BLANK_ABOVE « blenk_gkove(s) = &'

i BLANK_BELOW a HBlankBelow v VBlankBelow
{ : Y BLANK_BELOW « blank below(s) = g’

i ' DEL _ELEMENT & HDelElement y UDelElement
: : © DEL_ELEMENT . del_element(§) = s’

DUPLICATE & HDuplicate v UDuplicate
Y DUPLICATE « duplicatel(s) = g’

{ UNDO & CUndo v HUndo v VUndo
YUUNDD ¢« undo(s) = s*

T MBS betimnit

b . L

e o s s

Section 20: Outer Definitions

At the moment, we have specified the operations of the MaCHO Interface (section
19) without having detailed where their inputs, that is s in schems 10, come from: we
shall do this now.

Recall from section 4 that the MaCHO Interface is basically just a set of BRECTs
each one of which has a STRTE associated with it which defines the gblock and stack
of remembered elements for that window. Thus, one can select a STATE by choosing a
window and taking the state corresponding to this window:

__ChooseState

—
EWINDOWS
s': STATE
b': BRECT

b' € dom windouws
s’ = Wwindows(b’)

Given a scheme whereby we can return a state given a window, it is natural to
define another which given a window, replaces the state corresponding to it with a
new state:

__ReplaceState

OAWINDCWS
s: STATE
b: BRECT

b € dom windows
windows' = windows & {b » s}

Now we are just about ready to specify in full how each operation is carried out
in the MaCHO Interface. To do this though, we must specify two things - what
happens when the chosen operation can be carried out sucessfully and the error
messages which appear when it can‘t.

The success of an operation is determined by the the success or otherwise of three
subtasks:

® selection of an input state
e application of the operation to this input state
® recording of the result of the operation into the interface data structure

The first and last of these subtasks are ChooseState and ReplaceState
respectively, the middle task is defined in terms of Inner@poly:

— Innerfpply
EWINDOWS

47

[

™
\4

We will put these three stages together using as an example the “move cursor left”
function.

The middle task is specified by a schema which given any input state returns the
state which is the result of moving the cursor left in this state:

LeftOK & Innerfpply A Left

The successful application of "move cursor left” on a state extracted from a
window in the interface is thus described by:

OLeft & ChooseStates LeftDKs ReplaceState

Several other operations that can be performed by the MaCHO Interface are
specified in a manner similar to that above:

UpOK & Innerfpply A Up
OUp & ChooseStates UpOK3 ReplaceState

DownOK & Innerfipply A Down
ODown & ChooseStates Down0OK3 ReplaceState

DelLeftOK & InnerApply A DellLeft
ODelLeft & ChooseStates DellLeftOK3 ReplaceState

GroupleftOK & InnerApply A Groupleft
OGroupleft & ChooseStates GroupleftOK3 ReplaceState

GroupRightOK & InnerRpply A GroupRight
DGroupRight & ChooseStates GroupRightOKs ReplaceState

GroupUpOK & InnerApply A Grouplp
OGrouplUp & ChooseStates GroupUpOK3 ReplaceState

GroupDownOK & InnerApply A GroupDown
OGroupDown & ChooseStates GroupDownOKJ ReplaceState

UngrouplLeftOK & InnerfApply A Ungroupleft
OUngroupLeft & ChooseStatel UngrouplLeftOKJ ReplaceState

UngroupRightOK & Innerfpply A UngroupRight
OUngroupRight & ChooseState’ UngsroupRightOK3 ReplaceState

UngroupUpOK & Innerfpply A Ungrouplp
OUngroupUp # ChooseStates UngroupUpOK3 ReplaceState

UngroupDownOK & InnerRpply A UngroupDown
OUnaroupbown & ChooseStates UngroupDownOKs ReplsceState

UndoOK & InnerRpply A Undo
OUndo & ChooseState’ UndoOKs ReplaceState

Having specified the successful cases above, we now turn out attention to the error
cases.

When an error occurs, an error report is signalled to the user. The invocation of
such a message in no way affects the contents of the windows in the interface:

REPORT 2 seq Char

48

e v

o et e« s i

-

Failleft & [Error | r! = "Cannot Move Left" 1

FeilUp @ [Error | r! = “"Cannot Move Up” 1

FeilDowun & [Error | r! = "Cannot Move Down™ 1]

FailDel @ [Error | r! = "Cannot Delete Object™]
FailGreuplLeft @ [Error | r! = "Cannot Group Left”]
FailGroupRight & [Error | r! = "Cannot Group Right®]
FeilGrouplp & [Error | r! = "Cennct Group Up" }
FailGroupDown & { Error | r! = "Cannot Group Down” 1}
FailUngrouplLeft # [Error | r! = "Cannot Ungroup Left" 1
FailUngroupRight & [Error | r! = "Cannot Ungroup Right” 1
FailUngroupUp & [Error | r! = "Cannot Unsroup Up" 1]
FailUngroupDown & [Error | r! = "Cannot Ungroup Down”" 1
FailUndo @ [Error | r! = "Cannot Undo - not a caertouche?” 1}

By combining the error schemas above with their relevant functions we can specify
completely most of the operations of the MaCHO Interface - raising an exception only
when the attempted operation fails:

OuterlLeft & Failleft e DOLeft

OuterUp & FailUp e DUp

OuterDown & FailDown @ ODown

OuterDelLeft & FailDel e ODellLeft

OuterGroupleft @ FailGrouplLeft ® OGrouplLeft
OuterGroupRight # FeilGroupRight e OGroupRight
OuterGroupUp & FailGroupUp e OGroupUp
OuterGroupDown & FailGroupDown @ OGroupUown
OuterUngrouplLeft & FailUngrouplLeft e OUngroupleft
OuterUngroupRight & FaillngroupRight @ OlUngroupRight
OuterUngroupUp & FaillUngroupelp ® OUnarouplp
OuterUngroupDown & FailUngroupDown @ DOUngroupDown
OuterlUndo @ FailUndo @ OUndo

We now come to define the ‘outer’ versions of those functions from section 4 whose
appropriate action when the inner application is undefined is not to immediately flag
an error (as the preceding defintions of this section have done).

For instance, consider the case where the outer gblock is a cartouche and the user
wishes to duplicate this object. Then, since duplicate is defined only for horvecs and
vervecs, if we followed the pattern given so far in this section we would signal an
error “cannot duplicate™ when it would appear that the requested operation is
entirely reasonable, Thus we define ODup:

— ODup

10
EWINDOWS

s'.9 = 5.9
s’'.stack = (5.9) ~ s.stack

o

and then:

Duplicste0K & ODup ® (InnerApply A Duplicste)
ODuplicate & ChooseStates DupliceteOKs ReplaceStete
OuterDupl icate a ODuplicate

49

\ !
'
i
!

A similar line of argument leads us to define ODel which deletes the outer gblock

onto the stack of remembered elements and sets the outer gblock to be a blank line:

__QOel

10
EWINDOWS

s'.9 = blank
' .stack = (s.9) " s.steck

DelElementOK & ODel @ (InnerApply A DelElement)
ODelElement & ChooseStstes DelElement0K3 ReplaceState
OuterDelElement & ODelElement

For inserting elements above the outer gblock we define 0InsA:

__0InsA

10
EWINDOWS

om vervec
()

(hd (s.stack))
(s.9)

= t] (s.stack)

Xiuonono

and for inserting elements alongside the outer gblock we define OInsB:

_0InsB

10

EWINDOWS

s’'.9 € dom horvec

s .g={)

Y8'.g=(hd (s.stack))
xus'.g={s.9)
s’.stack = t1 (s.stack)

After inserting a gblock at the outermost level we normalise the results of the

insertion then "go in" to their cursor - just as is done when inserting into a horvec
or a vervec:

InsAboveOK & (OInsAR3 UNorms S) e (Innerfpply A InsAbove)
InsBeforeOK a (0InsB3 HNorms S) e (Inner@pply A InsBefore)

All inserts however are only possible if (a) there is something to insert and (b) if

there is room to insert the object into the outer gblock (recall the maximum
dimensions for gblocks specified in section 5. We can define two error schemas to
describe what messages appear when these conditions are violated:

NoRoom & [Error | r! = "No Room to Insert Object”]
EmptyStack & [Error | s.steck = () A

r! = "No Remembered Elements”]
InsError # NoRoom e EmptyStack

Then we have:

OInsfbove & ChooseStates InsAboveOKJ ReplaceState
OuterInsAbove & InsError e OInsAbove

DInsBefore & ChooseStates InsBeforeOKs ReplaceState
Outer InsBefore & InsError e OlnsBefore

We can also, of course, insert a blank line type gblock either above or below the

outer gblock:

~0BlankB

10
EWINDOWS

= ¢ blank)
= (5.9)
k = s.stack

negswmn
W -

BlankAboveOK & (OBlankR3 Set0s3 S) @ (InnerApply A BlankRbove)
BlankBelowOK & (0OBlankB3 Set03 S) @ (InnerApply A BlankBelow)
OBlankAbove & ChooseState3 BlankAboveOK3 ReplaceState
DBlankBelow & ChooseStates BlankBelowOK3 ReplaceState

OuterBlankAbove & NoRoom ® 0OBlankAbove
OuterBlankBelow & NoRoom e OBlankBelow

A request to move the cursor right at the outer level creates 2 horvec whose first

element is the original outer gblock and whose second element is a blank line:

OToHor

F-IU

EWINDOWS

This extra blank line can only be inserted if there is room for it and so we have:
RightOK & (OToHor s HNorm) @ (Innerfpply A Right)

DRight & ChooseStates RightOKs ReplaceState

DuterRight & NoRoom @ ORight

Typing a character at the outer level also forms & horvec but aguin only if there

Si

is room:

— InsCharfpply

10
EWINDOWS
c: Char

(s, ¢) € dom ins_char
s' = ins_char(s, c }

CInsC .
[10

ZWINDOWS

c: Char

om horvec
(make((c)))
{ s.9)

N <D0
cmwn -

« e =0
xunna

n
* s oo
DWwwWWMm

(4]

InsCharOK & OInsC @ (InnerRpply A InsCharApply)
DInsChar & ChooseStatel InsChar0OK3$ ReplaceState
OuterInsChar & NoRoom e OInsChar

For OuterDelRight we need to take into account the case when the outer gblock
is a line with a null postcursor sequence since del_r ight is not defined for this line:

_ODelR____

10

ZWINDOWS

LOps

B8s’'.g=p8 s.9
Ys'.9 = { space)
«s'.g= ()
s'.stack = s.stack

DelRightOK & 0DelR @ (InnerApply A DelRight)
0DelRight a ChooseStates DelRightDKJ ReplaceState
OuterInsChar & FailDel e ODelRight

S2

-

References

[Core87) P.W.Core, "User Extensible Graphics Using Abstract Structure”, RSRE Report
87011, August 1987,

[Fabry74] R.S.Fabry, “Capability Based Addressing”, CACM 17:7, July 1974,
Pp. 403-412, :

[Foster82] J.M.Foster, LLF.Currie and P.W.Edwards, “Flex: A Working Computer Based
on Procedure Values”, Proceedings of the International Workshop on High Level
Language Computer Architectures, Fort Lauderdale, Florida, December 1982.

[Sufrin86) B.Sufrin, "The Z Handbook”, Oxford University Programming Research
Group, Draft 1.1, March 1986.

[Spivey88] J.M.Spivey, "The Z Notation: A Reference Manual®, to be published by
Prentice-Hall International, 1988

[Terry88) P.F.Terry and S.R.Wiseman, "On the Design and Implementation of a Secure
Computer Sysem”, RSRE Memo 4188, June 1988

[Wiseman88al S.R.Wiseman, “"Protection and Security Mechanisms in the SMITE
Capability Computer”, RSRE Memo 4117, January 1988.

[Wiseman88bl S.R.Wiseman, "The SMITE Object Oriented Backing Store”, RSRE Memo
4147, March 1988.

[Wiseman88c) S.R.Wiseman and H.S.Field-Richards, "The SMITE Computer
Architecture”, RSRE Memo 4126, January 1988,

53

&

s P AT e .

Overal) security classification of sheet 00000 00 ..., ceeieenenn. Cereeieseaeiennn

(As far os possible this sheet should contain only unclassified informstion

DOCUMENT CONTROL SHEEY
UNCLASSIFIED

If it ts necessary to enter

classified information, the box concerned sust be marked to indicate the classification eg (R} (C) or (S))

1. DRIC Reference (if known)

2. Originator's Reference {3, Agency Reference
Memo 4247 u/c

4. Report Security
Classitication

5. Originator's Code (if
known)

7784000

6. Originator (Corporate Author) Nase and Location
ROYAL SIGNAL & RADAR ESTABLISHMENT
ST ANDREWS ROAD, GREAT MALVERN,
WORCESTERSHIRE WR14 3PS

Sa. Soonscring Agency's

a. Sponsoring Agency (Contract Authority) Nase and Location

{ S

Code {if known)

1. Title

A Z specification of the MaCHO interface editor.

7a. Title in Foreign Language (in the case of transiations)

Tb. Presented at (for conference napers) Title, place and date of conference

8. Author 1 Surname, initials| 9(a) Author 2
Wood A W

9(b) Authors 3,4... 10. Date ob. ref.

11.1988 53

14, Other Reference

11. Contract Nuaber 12, Period 13. Project

15. Distribution statesent

Unlimited

Descriptors (or keywords)

continue on separate oiece of paper

Abstract

This document describes the basic editor part of the user interface for the
SMITE secure computer architecture using the mathematical notation known as Z.
Operations that are available to the user, and their effects on the screen
display, are specified in conjunction with descriptions of the auxiliary
functions and data structures necessary to support them. This specification
will be used to implement a powerful yet trustworthy interface for the
initiation and control of security related transactions.

$80/48

. e s -

