Cyclophosphazenes have two relationships to linear high polymers: first, they may function as "monomers" for polymerization to high polymers; and second, they serve as small molecule reaction and structural models for the high polymers. These principles are illustrated by the behavior of cyclophosphazenes that bear organometallic side groups, and by species that have side units that are of biomedical interest. Some emerging applications of this chemistry are also mentioned.
Organometallic and Bioactive Cyclophosphazenes, and
the Relationship to Inorganic Macromolecules

by
Harry R. Allcock

Prepared for Publication in

Phosphorus, Sulfur, and Related Elements (Symp. Vol.)

Department of Chemistry
The Pennsylvania State University
University Park, Pennsylvania 16802

Reproduction in whole, or in part, is permitted for any purpose of the
United States Government.

This document has been approved for public release and sale, its
distribution is unlimited.
ORGANOMETALLIC AND BIOACTIVE CYCLOPHOSPHAZENES, AND THE RELATIONSHIP TO INORGANIC MACROMOLECULES.

HARRY R. ALLCOCK
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Abstract Cyclophosphazenes have two relationships to linear high polymers: first, they may function as "monomers" for polymerization to high polymers; and second, they serve as small molecule reaction and structural models for the high polymers. These principles are illustrated by the behavior of cyclophosphazenes that bear organometallic side groups, and by species that have side units that are of biomedical interest. Some emerging applications of this chemistry are also mentioned.

INTRODUCTION
Inorganic ring systems have been studied in the past mainly from the viewpoints of their synthesis, structure, and reactivity. However, in recent years two additional purposes have appeared, and these now dominate research in specific fields such as
cyclophosphazene, cyclosiloxane, cyclosilane, cyclosilazane, and borazine chemistry.

The first of these developments is based on the use of inorganic ring systems as starting points for the synthesis of inorganic high polymers. They are the "monomers" which undergo either ring-opening polymerization to macrocyclic or linear high polymers, or condensation to sheets or three-dimensional covalent solids en route to ceramics and other ultrastructure systems. The structure and reactivity of such small molecule inorganic rings are clearly important for understanding these transformations.

The second reason for the broadening interest in inorganic ring systems is that they serve as small-molecule structural and reaction models for the related macrocyclic or linear high polymers. Macromolecules are considerably more difficult to characterize structurally than are small molecules. Distributions of different chain lengths are present rather than discrete, single molecular weight species. Bond angle, bond length, and conformational values for most high polymers must be derived from the limited data obtained from fiber X-ray diffraction, and this yields far less information than conventional single crystal X-ray studies. Hence, molecular structural information from small molecule X-ray studies often provides the only data available for estimating the structure of an inorganic macromolecule. NMR studies on small molecule model compounds often provide critical information for understanding the structures of the high polymers.

Finally, and perhaps most important of all, macromolecular structural diversity is increasingly being developed by chemical reactions carried out on preformed
inorganic polymers. Such reactions can be exceedingly complex, and model reactions performed with small molecule counterparts may be an essential prerequisite as trial reactions or for understanding reaction mechanisms.

These principles are illustrated most clearly in phosphazene chemistry, and the examples given below provide a case study of what may be expected in the future for other inorganic ring systems and their polymers

BACKGROUND

The early history of cyclophosphazene chemistry revolves around the synthesis of cyclic halogenophosphazenes, such as (NPCl₂)₃ or (NPCl₂)₄, and the reactions of these species with alkoxides, aryloxides, and primary or secondary amines. Much effort has been devoted to the elucidation of the reaction mechanisms of these substitutions and to the identification of gem-, non-gem-, cis-, or trans- halogen replacement patterns.1-3 Earlier4-6 we discovered a method by which hexachlorocyclotriphosphazene (1) can be polymerized to a macrocyclic or open chain high polymer, simply by heating the molten trimer under controlled conditions at 250°C. The resultant high polymer (2) was free from crosslinks and was therefore soluble in several organic solvents. In solution it functions as a reactive macromolecular intermediate and undergoes halogen replacement reactions when treated with a wide variety of organic nucleophiles. These reactions are illustrated in Scheme I.
In recent years this approach has been extended to the polymerization of cyclic phosphazenes that bear both halogen and alkyl, aryl, or organometallic units linked as side groups to the phosphorus atoms of the ring. Subsequent replacement of the halogen atoms in the high polymer by organic nucleophiles is then carried out as illustrated in Scheme I. In addition, a direct synthesis route to alkyl- and aryl-phosphazene polymers has been developed. The progression of these developments has been described elsewhere.

These reaction sequences have been developed to the point where at least 300 different types of stable, high molecular weight polyphosphazene systems are now known, each with different side groups or combinations of different groups. The
macromolecular properties change with each modification of the side groups, and the range of properties now accessible rivals and sometimes surpasses that found in classical organic polymer systems. For these reasons, several poly(organophosphazenes) are now produced on a manufacturing scale9 for use in advanced engineering applications, and this aspect of the field continues to grow. By the middle of 1988, well over 1000 publications dealing with the synthesis and uses of polyphosphazenes had appeared.

In the following sections a few selected developments from our laboratory will be discussed. The theme of the comments will involve two questions. First, what molecular structural features in a cyclic phosphazene favor polymerization or prevent it? Second, to what degree can secondary reactions be carried out on the cyclic trimers or high polymers to modify side groups already present? For a more general overview the reader is referred to several recent surveys.7-11

POLYMERIZABILITY

Although halogenocyclophosphazenes, such as (NPCl\(_2\))\(_3\), (NPCl\(_2\))\(_4\), (NPF\(_2\))\(_3\), and (NPBr\(_2\))\(_3\) polymerize when heated, their counterparts in which all the halogen atoms have been replaced by organic groups do not polymerize. They may undergo ring-ring equilibration to yield higher cyclic oligomers, but no genuine high polymers are obtained.

It follows, then, that considerable interest revolves around the behavior of cyclic trimers that contain both halogen and organic side units. The structures shown in 5-13 illustrate the types of compounds within this class that do polymerize when heated.
Most of these compounds were prepared by organometallic chemistry. For example, species 5-8 were synthesized by the reactions of organosilyl or organosiloxyl Grignard reagents with \((\text{NPCl}_2)_3\).\(^{12}\) The geminal methyl groups in 6, 8, and 9 were introduced by subsequent treatment with methylmagnesium chloride. The carboranyl derivatives 10 were prepared by the interaction of \((\text{NPCl}_2)_3\) with the appropriate lithiocarborane.\(^{13}\) Species 11 was accessible via the reaction of \((\text{NPCl}_2)_3\) with an organocopper reagent derived from methylmagnesium chloride, followed by treatment with propargyl bromide.\(^{14}\) Reaction of the resultant gem-methyl-propynylphosphazene with \(\text{B}_{10}\text{H}_{12}(\text{CH}_3\text{CN})_2\) yielded 11. Compound 11 undergoes Hawthorne-type chemistry to form nidocarboranyl anions and tungsten or molybdenum carbonyl adducts. The metallocenylphos phazenes, 12, were isolated from the reaction of \((\text{NPF}_2)_3\) with lithioferrocene or lithioruthenocene, while species 13 were prepared by the interaction of \((\text{NPF}_2)_3\) with dilithioferrocene or dilithioruthenocene.\(^{15}\)

Although the organosilicon derivatives 5-9 undergo phosphazene ring-opening polymerization to high polymers with pendent organosilicon side groups, other related derivatives do not.\(^{16}\) For example, the analogues of 8 and 9, with a chlorine atom in place of the geminal methyl group, undergo silicon-oxygen bond cleavage reactions rather than polymerization. The presence of two linear siloxane units geminal to each other, or two geminal cyclotetrasiloxane groups, inhibits polymerization, probably for reasons connected with steric hindrance during the polymerization steps.

Species 10 and 11 undergo polymerization to polyphosphazenes, although the steric bulk of the carborane units appears to favor a shift in the ring-polymer
equilibria to favor medium molecular weight \((1 \times 10^5)\) rather than high molecular weight \((1 \times 10^6)\) macromolecules.

The metallocenyl derivatives 12 and 13 illustrate the role played by a strained transannular ring. Both compounds polymerize by opening of the phosphazene ring at 250° C. However, species 13 polymerizes faster. Opening of the phosphazene ring in 13 allows a release of the ring strain, and this favors linear or macrocyclic polymer formation over recyclization to small rings.

REACTIONS OF SIDE GROUPS

Organic side groups linked to a polyphosphazene by means of the chemistry shown in Scheme I can function as sites for further chemical reactions. A critical requirement for this type of structural diversification is that the reagents used for side group modification should not bring about cleavage of the phosphorus-nitrogen skeletal bonds. Thus, such reactions are usually explored first with cyclic trimeric or tetrameric model compounds as a prelude to experiments with the high polymers. Two examples will be given, both related to the syntheses of high polymeric phosphazenes that are of interest in biomedical research.

The first example involves the deprotection of glyceryl units attached to a phosphazene skeleton.\(^{17}\) Glycerol was first protected by reactions with formaldehyde, acetone, or trimethylorthoformate to yield reagents that were converted to the sodium salts shown in Scheme II. The sodium salts were then allowed to react with \((\text{NPCl}_2)_3\) to form the hexaglyceryl cyclotriphosphazenes shown. Attempts to deprotect these side groups with a variety of reagents showed
Scheme II
that the reaction conditions were quite critical if phosphorus-nitrogen bond cleavage was to be avoided. After many trial experiments it was found that the isopropylidene protecting group could be removed cleanly by treatment with 80% acetic acid, without skeletal decomposition. The same conditions were then used for deprotection of the analogous high polymer to yield the poly(glycerylphosphazene) shown as 14. Polymer 14 is a water-soluble, biodegradable macromolecule that hydrolyzes slowly to phosphate, ammonia, and glycerol, and is a candidate as a substrate for controlled drug release applications.

The second example involves two related reactions of aryloxy side groups attached to a phosphazene skeleton and the transposition of these reactions to the surface chemistry of polyphosphazene solids.

Nitro-aryloxyphosphazenes can be prepared by two different routes: by the reaction of a sodium nitroaryloxide with, for example, (NPCl₂)₃ or (NPCl₂)₄; or by the nitration of aryloxyphosphazenes such as [NP(OC₆H₅)₂]₃ or [NP(OC₆H₅)₂]ₙ. The nitro groups then serve as reactive sites for the attachment of biologically active agents. One such reaction pathway is shown in Scheme III, in which the nitro groups are introduced via a nitroaryloxide at the initial macromolecular substitution step, and are converted in solution first to amino- and then to diazonium halide units. These couple with catecholamines such as dopamine to yield a polymer which, in the solid state (15), shows a surface bioogical activity toward rat pituitary cells in culture similar to that found for free dopamine in solution.¹⁸ This, then, is a prototype for devices in which biological responses are obtained without release of the small molecule bioagent into the living organism. Needless to say, the reaction pathways used for the synthesis of the polymer were
Scheme III

\[
\begin{align*}
\left[\begin{array}{c}
N=
\end{array} \right] & \xrightarrow{H_2} \left[\begin{array}{c}
N=
\end{array} \right] \\
\left[\begin{array}{c}
N=
\end{array} \right] & \xrightarrow{\text{HR}} \left[\begin{array}{c}
N=
\end{array} \right]
\end{align*}
\]

HOMO

\[
\begin{align*}
R &= \text{HO-CH}_2\text{CH}_2\text{NH}_2 \\
R &= \text{HO-CH}_2\text{CH}_2\text{NH}_2
\end{align*}
\]

15
Scheme IV

\[
\begin{align*}
\text{A} & = \text{Alumina}, \quad \text{P} = \text{Polyphosphazene}, \quad \text{R} = (\text{CH}_2)_3
\end{align*}
\]
developed initially at the small molecule cyclic phosphazene level.

A related development involves reactions carried out totally at the surface of a solid poly(aryloxyphosphazene), reactions that have no counterpart at the small molecule level. Thin surface coatings of \([\text{NP(OC}_6\text{H}_5)_2]_n\) were deposited on particles of porous alumina powder. The polymer surface was then nitrated in a heterophase reaction, and the nitro groups then reduced to amino units with dithionite. Treatment of the surface with glutaric dialdehyde, followed by glucose 6-phosphate dehydrogenase or trypsin, resulted in covalent linkage of the enzymes to the surface. Enzymic activity was retained (and indeed the enzyme longevity was enhanced) to the point that the enzyme-solid conjugates could be used for biochemical transformations in a continuous flow reactor. The advantage of the phosphazene as an immobilization substrate is that the surface character of the polymer can be changed readily by means of the chemistry shown in Scheme I.

ACKNOWLEDGMENTS

The work described here was supported by the U.S. National Institutes of Health (through the National Heart, Lung, and Blood Institute), Air Force Office of Scientific Research, Army Research Office, Office of Naval Research, and N.A.S.A.

REFERENCES

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Office of Naval Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Attn: Code 1113</td>
</tr>
<tr>
<td></td>
<td>800 N. Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217-5000</td>
</tr>
<tr>
<td></td>
<td>Dr. David Young</td>
</tr>
<tr>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Dr. Bernard Douda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Naval Weapons Support Center</td>
</tr>
<tr>
<td></td>
<td>Code 50C</td>
</tr>
<tr>
<td></td>
<td>Crane, Indiana 47522-5050</td>
</tr>
<tr>
<td></td>
<td>Naval weapons Center</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>China Lake, California 93555</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Naval Civil Engineering Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: Dr. R. W. Drisko, Code L2</td>
</tr>
<tr>
<td></td>
<td>Port Hueneme, California 93401</td>
</tr>
<tr>
<td></td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20380</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Defense Technical Information Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Building 5, Cameron Station</td>
</tr>
<tr>
<td></td>
<td>Alexandria, Virginia 22314</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td></td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>DTNSRDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: Dr. H. Singerman</td>
</tr>
<tr>
<td></td>
<td>Applied Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Annapolis, Maryland 21401</td>
</tr>
<tr>
<td></td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td></td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td></td>
<td>San Diego, California 91232</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 356B

Professor A. G. MacDiarmid
Department of Chemistry
University of Pennsylvania
Philadelphia, Pennsylvania 19174

Dr. E. Fischer, Code 2853
Naval Ship Research and Development Center
Annapolis, Maryland 21402

Professor H. Allcock
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Professor R. Lenz
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Professor G. Wnek
Department of Chemistry
Rensselaer Polytechnic Institute
Troy, NY 12181

Professor C. Allen
Department of Chemistry
University of Vermont
Burlington, Vermont 05401

Dr. Ivan Caplan
DTNSRDC
Code 0125
Annapolis, MD 21401

Dr. R. Miller
Almaden Research Center
650 Harry Road K918801
San Jose, CA 95120

Dr. William B. Moniz
Chemistry Division
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard M. Laine
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

Dr. L. Buckley
Naval Air Development Center
Code 6063
Warminster, Pennsylvania 18974

Dr. James McGrath
Department of Chemistry
Virginia Polytechnic Institute
Blacksburg, Virginia 24061

Dr. Geoffrey Lindsay
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Professor J. Salamone
Department of Chemistry
University of Lowell
Lowell, Massachusetts 01854

Dr. J. Griffith
Naval Research Laboratory
Chemistry Section, Code 6120
Washington, D.C. 20375-5000

Professor T. Katz
Department of Chemistry
Columbia University
New York, New York 10027

Dr. Christopher K. Ober
Department of Materials Science and Engineering
Cornell University
Ithaca, New York 14853-1501
ABSTRACTS DISTRIBUTION LIST, 3568

Professor T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Kurt Baum
Fluorochem, Inc.
680 S. Ayon Avenue
Azuza, California 91702

Dr. Ulrich W. Suter
Department of Chemical and Engineering
Massachusetts Institute of Technologies
Room E19-628
Cambridge, MA 02139-4309

Dr. William Bailey
Department of Chemistry
University of Maryland
College Park, Maryland 20742

Dr. J.C.H. Chien
Department of Polymer Science and Engineering
University of Massachusetts
Amherst, MA 01003

Professor G. Whitesides
Department of Chemistry
Harvard University
Cambridge, Massachusetts 02138

Dr. K. Paciorek
Ultrasystems, Inc.
P.O. Box 19605
Irvine, California 92715

Dr. Ronald Archer
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Professor D. Seyferth
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Professor J. Moore
Department of Chemistry
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. V. Percec
Department of Macromolecular Science
Case Western Reserve University
Cleveland, Ohio 44106

Dr. Gregory Girolami
Department of Chemistry
University of Illinois
Urbana-Champaign, IL 61801

Dr. Ted Walton
Chemistry Division
Code 6120
Naval Research Lab
Washington D.C. 20375-5000

Professor Warren T. Ford
Department of Chemistry
Oklahoma State University
Stillwater, OK 74078

Professor H. K. Hall, Jr.
Department of Chemistry
The University Arizona
Tucson, Arizona 85721

Dr. Fred Wudl
Department of Chemistry
University of California
Santa Barbara, CA 93106

Professor Kris Matjaszewski
Department of Chemistry
Carnegie-Mellon University
4400 Fifth Avenue
Pittsburgh, PA 15213

Professor Richard Schrock
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139