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INTRODUCTION

\vany important impact engineering applications rely on numerical
simulations using finite element/difference computer codes for analysis.
Several unique codes have been developed in recent years incorporating
novel concepts such as slide line logics, erosion, rezoning, dezoning, etc. The
modeling of material behavior in computer codes, while achieving improved
sophistication in recent years, still lags behind our present knowledge of
dynamic behavior and failure. Accurate descriptions of the dynamic inelastic
behavior of materials for metals, ceramics, and composites in computer codes
must include the effects of strain rate, loading history, high pressure, high
temperature, large deformation, and internal damage,

An ideal model for a computer code must-satisfy several requirements.
Q, First, it must accurately represent the physical processes. Second, the model

must be mathematically tractable and easily incorporated into the styructure
of existing codes. Third, it must be easy to calibrate the model, i.e., obtain the
material model constants, in a simple manner from a limited set of
experimental data. These require the input and coordination of material
scientists, experimentalists, and applied mechanicians. Successful progress in
this area will require careful attention to each of the areas and application of
the latest advances in the state of the art in each area.

A workshop on Dynamic Constitutive/Failuze Models for Use in
Computer Codes was held at University of Dayton on May 10-11, 1988. The
objective of the workshop was to identify and explore solutions to critical
issues in modeling material behavior under high loading rates for use in
computer codes. The workshop brought together a critical mass of active
researchers involved in various aspects of modeling the response of non-
reactive materials to high strain rate loading. The workshop focused on three
main issues in material modeling for computer codes: determination of
material parameters from impact experiments, computational effectiveness of
constitutive and failure models, and developments in material modeling as
related to the the physical processes involved in deformation and failure.

The workshop was organized into four sessions: Material Behavior,
Dynamic Failure Modeling, Brittle Materials and Composites, and Numerical

Simulations. The papers covering the work presented at the workshop are

contained in this report. The author presenting the work is highlighted in

bold in the Table of Contents.
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RECENT RESULTS AND CONTINUED DEVELOPMENT OF THE MTS MODEL

Paul S. Follansbee

Los Alamos National Laboratory

Los Alamos, NM 87545

ABSTRACT

A review is given of the development of the Mechanical Threshold Stress (MTS)

Model as a description of deformation in metals, particularly at high strain

rates. The model is based on the use of internal state variables to represent

the current structure or state of the material. Equations are written for the

va:iation of the yield stress with strain rate and temperature and for the

evolution of the state variables with strain, strain rate and temperature.

The ceforinaLioai 'uehavior of several metals has been analyzed using this

approach, and the results of these investigations are summarized. Ongoing

research to extend the model to include the effects of deformation twinning

and multiple strengthening mechanisms is described

INTRODUCTION

The variation of material strength with the applied strain rate is an

important consideration in the design of hardware for impact loading. The

magnitude of the flow stress at a given strain rate i, strain c, and

temperature T, as well as the strain-rate sensitivity m, where
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log a

a log i

influence the response to impact loading. The strength determines the

resistance to plastic flow at any instant. The strain-rate sensitivity

affects the resistance to instability, as does the temperature dependence of

the flow stress and the work hardening rate. The requirement for accurate

descriptions of the magnitude of the flow stress, the strain-rate sensitivity,

and the temperature dependence of the flow stress, and the need for these

"constitutive relations" over a wide range of strainq, strain rates, and

temperatures is a serious challenge to the materials scientist.

Many previous investigators have noted that the flow stress increases rapidly

when the strain rate is raised above roughly 1000 s-. Generally this

behavior is observed in a plot of flow stress at some constant strain level as

a function of strain rate. In mild steel, however, this increased strain-rate

sensitivity is found in a plot of the yield stress versus strain rate. The

dzta in the high strain rate regime has often been shown to be described by an

equation of the form

a- Ob(L) + p , (2)

where the constant P may or not be a function of strain. Measurements in

copper, for instance, show that over the strain race regime of 103 
to 104 s -

1

and for a strain of c-0.15, the constant P equals 0.00312 MPa-s and ab equals

248 MPa [1]. Experiments at strain rates higher than 101 s-
1 are difficult to

perform; to estimate strength levels at higher strain rates a common approach

has been to extrapolate Eq. (2) beyond the regime over which it has been f.jt.

This practice, however, must be exercized with caution. In copper, for

3



example, the flow stress predicted at i-106 s-' is 560 MPa which is roughly

twice that measured at £-10 4 s-1, and at i-10 6 s-1 the estimated flow stress

is 3368 MPa!

Ii addition to the rapid increase in the flow stress predicted by Eq. (2). tht,

strain-rate sensitivity also is predicted to increase dramatically. lI fact,

the strain-rate sensitivity for a material obeying such a law is

II - &i (3)
a b + 6£

which indicates that the strain-rate sensitivity approaches unity at vety hie1I

strain rates, whereas for most materials it is on the order of 1/30 at quasi-

static strain rates.

Thus, Eq. (2) predicts that the flow stress as well as the strain-rate

sensitivity rise dramatically at strain rates in the impact regime. This

calls attention to the generality of Eq. (2) as a description of material

behavior at very high strain rates.

in support of Eq. (2), several investigators have argued that at these high

strain rates deformation becomes controlled by dislocation drag forces which

lead to the high strain rate sensitivity predicted by Eq. (1). Following

previous investigators [2,31, Follarsbee et al 14] and Regazzoni et al (5]

showed that conditions for drag control were not satisfied by the copper test

results and that Eq. (2) was an inappropriate description. Subsequently,

Follansbee and Kocks [6] analyzed copper data through the use of an internal

state variable model based on the previous work of Kocks 17] and Mecking and
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Kocks [8]. The purpose of this paper is to review key features of the model,

termed the Mechanical Threshold Stress (MTS) model, and to provide a status on

its continued development and extension to other materials. In the nexL

section the MTS model will be reviewed. The measurements required to

establish the model parameters are then described, and a summary of the

results on copper is presented. Measurements on a low carbon steel, which

appear to be well described by Eq. (2) are reanalyzed, and it is shown that IT)

alternate interpretation is possible. Ongoing work to extend the model to

other crystal structures and more complicated engineering materials is

reviewed in the final section.

THE MTS MODEL

Deformation is assumed to be controlled by the kinetics of the thermally

activated interactions between dislocations and obstacles. Generally at any

instant, or for any given microstructural condition,

a a n o.
a + si)T )  (4)

where a is the applied stress, a is an athermal stress, p is the temperature

dependent shear modulus, 3 is the mechanical threshold stress characterizing

the stress that is required in the absence of any contribution from thermal

activation energy to overcome obstacle "i", and s characterizes the ratio of

the applied stress (minus any athermal stress) to the mechanical threshold

stress at temperatures above absolute zero. In writing Eq. (4) it has tacitly

been assumed that the contributions from individual obstacles are linearlv

additive. This is an approximation which is often made but which lacks
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fundamental basis (except in a few specific cases). One of the goals of our

current work is to investigate the regimes of applicability of this equat io.

As defined above, ai represents an internal state variable which charactri.:,

the strength, as well as the density, of obstacle "i". The ratio of the

applied stress (at a given temperature and strain rate) to the mechanical

threshold stress is given by s, which, when deformation is thermally7

activated, can be written as

g0I - bk log 1/ (/5)

where goi is the normalized total activation energy, k is the Boltzmann

constant, b is the burgers vector, and oi, qi, and pi are constants. When

dislocation drag effects become important, Eq. (5) must be modified- the

procedure to do this has been outlined previously [91.

During strain hardening, the density of defects (primarily dislocations)

increases, which leads to o3n evolution of 3D with strain. Hardening can be

described with a differential evolution equation of the form

( __D_, ____(6

dc e0 [1 [a {Ds~ J (6)

where 9 is (usually) a constant on the order of y/20, F is a function (F=1

implies a Voce law), and 'Ds is the saturation stress. Note that evolution is

also a strain rate an. temperature dependent process, with different kinetics

than described by Eq. (5). Equation (6) implies a temperature and strain-rate

dependent limit to the mechanical threshold stress characterizing

dislocation/dislocation interactions. One equation used to describe Ds (i,T)

6



in FCC metals is

log - -log (7)
IDs J  kT DsoJ

where ,Ds' A, and 8 Ds are constants. In FCC metals, A and i Ds scale with the

stacking fault energy [10]. The constant A increases with an increase in

and, in fact, in very high 7SFE materials, such as aluminum and pure BCC

metals, the strain-rate and temperature dependence of 8DS becomes negligible.

In copper, measurements (6] have indicated that 0 is a weak function of0

strain rate at low strain rates, but that at strain rates greater than -10-

s'- 0 increases linearly with strain rate. The source of this effect is0

thought to be the initial high stresses (and, thus, the initial high

dislocation generation rate) required to accomwodate the high strain rates at

yield in a relatively dislocation free material [9]. The generality of this

behavior is not yet known.

The MTS model is essentially described by Eqs. (4) through (7), although a fw

of the details, such as the o (i) dependence and the definition of the

function F in Eq. (6), are described elsewhere [6]. Although there appear to

be a sufficient number of adjustable constants !.n these equations to fit any

test data, it is important to emphasize that most of these parameters have

well-defined limits. Some of these limits have already been discussed. 'he

constants p and q in Eq. (5) are restricted to O<p:l and lqs2 [11];

generally, we have found that p-2/3 and q-1 work well for dislocation/

dislocation interactions whereas p-l and q-2 work well for dislocation/solute

atom and dislocation/interstitial atom interactions. The constant f in Eq.
7

7



(5) also is restricted to 07 c :010 s-1 and because this constant is inside0

a logarithmic term, it is not necessary to determine a precise value. The

athermal stress aa in Eq. (4) is used to incorporate any long-range obstacle,

such as a grain boundary or large dispersoid, into the analysis. It is the

yield stress in well annealed pure FCC metals, and in copper was estimated as

40 MPa [6). In FCC alloys, or in BCC metals, aa is more difficult to measure;

thus, in non dispersion strengthened materials, we always choose a small

number within the range of 40 to 100 MPa, depending on the grain size.

The normalized total activation energy go0 is an important parameter, but it

too is constrained within well defined limits. For dislocation/dislocation

interactions, we have found go-l, whereas for short-range interactions, such

as dislocation/solute atom or dislocation/interstitial atom interactions.

go-0.1. (In Eq. (5) g is dimensionless because pb s has been factored out.

Multiplying g by ub3 gives g in the units of energy.) The point is that

there are no free or floating constants in the MTS model; all of the

parameters are constrained by the physical mechanisms that Eq. (4) through (7)

attempt to describe.

FITTING THE MTS MODEL TO DATA

Because the model is based on the evolution of internal state variables,

experimental methods are required to measure these variables as well as to

evaluate Eq. (5) under conditions where these variables are constant. This

implies that it is insufficient to simply use monotonic stress-strain curves

measured over a wide range of temperature and strain rates. Ideally, one

would use in situ temperature and strain rate change tests, but these tests

are difficult under high strain rate conditions of particular interest to our

8



studies. We are therefore forced to use prestrain and reloading operations,

separated by an unloading step. The prestrain temperature, strain, and strain

rate are chosen to yield a systematic variation in the value of the state

variable(s), which will then be probed through reload tests at various strain

rates and temperatures. The reload tests are used to evaluate Eq. (4) and (5)

and only the yield stress as a function of reload test temperature and strain

rate is of interest. This implies that several identical samples are required

for a single evaluation of Eqs. (4) and (5). Variations in prestrain

conditions are used to generate the data required for fitting to Eqs. (6) and

(7). If wide variations in prestrain strain, strain rate and temperature are

of interest, then the test matrix can be large. The copper results described

in Ref. [6], for instance, cover prestrain strain rates from 10- 4 to 10 4 s -
1,

strains to 1, and only room temperature deformaticn, and the results in this

paper represent -600 separate compression tests. Thus a significant

disadvantage of the modeling procedure adopted in the MTS model is the

required data base. Fortunately as experience with more and more materials is

gained, the required size of this data base is decreasing.

APPLICATION OF THE MODEL

In copper one interesting result found by fitting the MTS model to the

extensive data set described above was that the strain-rate sensitivity of

strain hardening (Eq. (7)) exceeded the strain-rate sensitivity at constant

structure (found from Eqs. (4) and (5)). Furthermore, the strain hardening

rte increased abruptly at high strain rates which leads to the "increased"

strain-rate sensitivity observed in a plot of applied stress at conhtant

strain versus strain rate plotted on a logarithmic scale (figure 1). This

implies that constant strain is not a good basic of comparison for flow stress

9



measurements obtained over a wide range of strain rates in copper. When flow

stress values at constant mechanical threshold stress are plotted on the axes

of figure 1, there is no increase observed in the strain-rate sensitivity at

high strain rates and the strain-rate sensitivity decreases. To further

illustrate this strain-rate history effect, figure 2 shows stress-strain

curves for two annealed copper specimens, one loaded (prestrained) to a strain

of c-0.15 at a strain rate of i-104 s-1 and the other prestrained to c=0.1.5 at

i-l.4xlO "4 s " . Each of these specimens was reloaded at 295K anu i-lO1- ';-
1 ;

the reload stress-strain curves are also shown in figure 2. Although valid

questions have been raised about the accuracy of dynamic stress-strain

measurements, the quasi-static reload stress-strain curves can be measured

with precision. Note that the reload yield stress for the specimen

prestrained at j-104 s- 1 exceeds that of the specimen prestrained at the lower

strain rate by 33%. The conclusion is that the dynamically prestrained

specimen has hardened more than the quasi-statically prestrained specimen. In

figure 3, these results are combined with measurements at prestrain strain

rates between i-10-4 s-1 and j-10 4 s-1 and are plotted on semi-logarithmic

coordinates. It is evident that the strain-rate dependent hardening becomes

more important when the strain rate is raised above l0 s-1. Thus, the

dramatically increased strain-rate sensitivity seen in the flow stress (at

c-0.15) measurements in figure I is a result of the enhanced hardening that

has occurred, rather than of any change in deformation mechanism.

The MTS formalism is capable of distinguishing between the strain-rate

sensitivity at constant structure and that of strain hardening. Furthermore,

the increased strain-rate sensitivity has been identified as arising from the

strain hardening term, and this effect is more naturally described using the

MTS formalism than using Fq. (2). To illustrate this latter point, figure 4

10



shows isothermal stress-strain curves at strain rates from 10- 4 s-I to 10

s-1. The predictions at strain rates of 106 s-I and 106 s "I represent

extrapolations of the model, which has been fit to measurements at strain

rates up to 104 s "1 Note that the shape of the curves is found to change

dramatically; at the highest strain rate, the initial strain hardening is high

and the saturation stress (described by Eq. (7)) is reached rapidly. Thus,

the stress-strain curves approach elastic, perfectly-viscoplastic behavior at

very high strain rates. Figure 5 shows predicted stress-strain curves for

adiabatic conditions for an initial temperature of 295K. Temperature is

explicitly treated in the MTS model. To compute adiabatic stress-strain

curves, one has only to calculate the temperature rise through a heat balance

of the form

AT - -- f a(c) de (8)
pCp

where p is the density, c the heat capacity, and the factor 0 expresses the
P

fraction of plastic work converted to heat (0.85<0<0.95). Note that at a

strain of 2 the flow stress at a strain rate of 105 s - I is predicted to be

roughly equal to that at a strain rate of 106 s-1, although the temperature is

higher at the higher strain rate (629 K versus 584 K at 105 s'1).

Temperature changes are an example of a history effect that the MTS model is

capable of following, primarily because hardening (or softening) is modeled

differentially. Strain rate changes offer a similar challenge to the modeling

procedure. Table I lists the constant 6 in Eq. (2) measured for copper over

the strain-rate range of 10 s-1 to 104 s "I for initially annealed material

and for samples given a prestrain of 0.0513, 0.105, and 0.163 at a strain rate

of 10-3 s -1 followed by the dynamic loading. (We use Eq. (2) here only as a

11



convenient representation of roughly a hundred separate measurements.) Table

II lists the constant fi predicted using the MTS model described above. The

model does not predict exactly linear stress versus strain rate behavior, but

for comparison with the results in Table 1, a line (Eq. (2)) has been fit to

predictions of the model for monotonic dynamic loading, and for quasi-static

loading followed by dynamic loading, at strain rates from l03 s-I to 104 s-1 .

Since the model has not been fit to data from prestrains with strain rate

Table 1. Summary of Measurements of Dynamic Flow Stress in Copper

0, 10-3 MPa.s, (103 s-" < j : 104 s'1)*

Dynamic Prestrain at i = 0.001 s'-
Strain

0 0.513 0.105 0.163

0.05 1.4 0.2 0.7 1.3

0.10 2.9 1.2 1.3 1.5

0.15 3.1 1.7 2.0 1.1

0.20 2.7 1.8 1.7 1.0

Standard deviation on estimate of P = 0.5xlO "3 MPa.s.

Table 2. Summary of Predictions of Dynamic Flow Stress in Copper

f, 10-3 MPa-s, (103 s-I < j 5 104 s-1 )

Dynamic Prestrain at i - 0.001 s'

Strain
0 0.513 0.105 0.163

0.05 1.3 1.2 1.1 1.1

0.10 2.1 1.9 1.8 1.7

0.15 2.5 2.3 2.2 2.1

0.20 2.7 2.6 2.5 2.4

12



changes, this comparison actually represents a fairly demanding test of the

modeling procedures. Yet, it is evident that the mcdel captures many of the

trends noted in the measurements.

THE CASE OF MILD STEEL

The results for copper, as well as for several other FCC metals, indicate thaL

strain-rate history effects strongly influence the stress-strain behavior,

which complicates comparisons of flow stress at constant strain. In mild

steel, however, measurements of yield stress over a wide temperature and

strain-rate range by Campbell and Ferguson [12] (figure 6) show a similar

increased strain-rate sensitivity at high strain rates as found in

measurements of the flow stress at constant strain in copper. As indicated

earlier, measurements of the yield stress represent true constant structure

measurements which are not complicated by history effects; thus, the observed

behavior in mild steel has been interpreted as evidence of a transition in

deformation mechanism in the high strain rate regime [13]. Plotting the

measurements shown in figure 6 on coordinates suggested by Eq. (5), however,

leads to a different interpretation of the data. Figure 7 shows this plot for

p-l/2, q-3/2, r -50 MPa, and i -10 s-1 Note that the measurements all falla o

roughly along the same curve, that the data at low temperatures and high

strain rates are well represented by a straight line on these coordinates, and

that the data at the lowest strain rates and highest temperatures show an

approach to an athermal limit (or, perhaps, the contribution of dynamic strain

aging). In the linear regime, the mechanical threshold stress is found to

equal 536 MPa (in shear stress) and the normalizad total activation energy is

g -0.087. The conclusion is, therefore, that there is no transition within

13



the high strain rate regime and that the deformation within this regime is

well-represented by standard thermal activation theory (and is not well-

represented by Eq. (2)). This conclusion has a significant influence on the

predicted strength levels at strain rates beyond the regime of the

measurements.

STATUS OF THE CONTINUED DEVELOPMENT AND APPLICATION OF THE MTS MODEL

1. The Contribution of Deformation Twinning

The mild steel measurements illustrate one complication found in many

materials. Equation (5) is valid only over a certain regime of temperature

and strair rate. The tail at high temperatures shown in the data in figure 7

is not described by the same set of constants (or even by the same equation)

that represent the linear regime. Measurements in AISI 1018 steel, shown in

figure 8, indicate a similar tail at high temperatures as well as a flattening

of the curve at the lowest temperatures and highest strain rates. This

reduction in the temperature dependence and strain-rate dependence of the

yield stress in iron [141 and iron base alloys at low temperatures has been

observed previously and ioentified as indicating a significant contribution of

deformation twinning [15]. Indeed, metallographic examination of the 1018

steel samples showed the presence of extensive twinning for samples deformed

10% at 77K and a strain rate of 5000 s-1 (the data points with the lowest

value on the abscissa) but only mild twinning when the deformation was carried

out at a strain rate of 10-3 s-1. Twinning is a deformation mechanism that is

found in many materials, particularly low stacking fault energy FCC metals and

in BCC metals where the high temperature and strain-rate sensitivity of the

yield stress can lead to high stresses (exceeding the stress required to
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nucleate and grow twins) at low temperatures or high strain rates. As

illustrated by the 1018 steel data, deformation twinning can lead to

deformation at stresses below those required for deformation solely by a slip

mechanism. The stress level at which twinning predominates is also a sensitive

function of grain size [16] and grain orientation.

As shown above, the contribution of twinning can affect the kinetics at

constant structure. Furthermore, deformation twinning can alter the hardening

behavior. The hardening expressed by Eq. (6) occurs by the generation of

dislocations; if a significant amount of deformation is being accommodated by

deformation twinning, then the hardening rate may decrease. Indeed, this has

been observed in Fe-25 at.% Be single crystals [17] and in polycrystalline Cu-

Sn alloys [18]. Conversely, if the twin interfaces act as obstacles to

dislocation motion, then additional hardening may occur; this has been

observed in Hadfield steels [19] and in several other metals [151. Clearly.

the effect of deformation twinning on the deformation kinetics and on the

hardening behavior is complicated. But, it is equally clear that this is an

important contribution which requires further study in order that it can be

incorporated into the formalism of the MTS model.

2. Modeling Multiple Strengthening Mechanisms

Copper was chosen for our initial studies for two reasons. First, it

demonstrates the strong strain-rate sensitivity at high strain rates which has

intrigued investigators for many decades. Secondly, it is a model FCC metal,

which is strengthened moderately by the presence of grain boundaries but

mostly by the generation and storage of dislocations. Since dislocation motion

in FCC metals is not influenced by a large Peierla barrier, the strain-rate

15



sensitivity in copper arises from the kinetics of dislocation/dislocation

interactions. These interactions are well-described by Eqs. (4) and (5) over a

wide range of conditions. T7he situation in BCC metals, however, is quite

different. The Peierls barrier represents a large, short-range, barrier to

dislocation motion, which gives a higher strain-rate and temperature

dependence to the yield stress in these metals. As in FCC metals, strain

hardening occurs by the generation and storage of dislocations, which implies

that the strengthening in even a model BCC metal, such as iron, niobium, or

molybdenum, is a combination of the intrinsic lattice resistance along with

the resistance provided by stored dislocations. With continued strain

hardening, the dislocation density increases and the strain-rate and

temperature dependence of the yield stress, which combine effects of

dislocation interactions with short-range obstacles (the Peierls barrier) and

interactions with long-range obstacles (other dislocations), continually

changes. The situation becomes further complicated by the addition of solute

atoms, interstitial atoms, and dispersoids. It is common in engineering metals

(stainless steels, for example) to have strengthening contributions from

several mechanisms.

Modeling these combined strengthening mechanisms represents a significant

challenge. Equation (4) is a first approximation, but the true behavior may

be significantly more complicated than this. Ideally, an equation of the form

of Eq. (4) is desired with a limited number of internal state variables (or

even a single one) that evolve according to Eq. (6). The use of Eq. (4) with

a single evolving internal state variable, characterizing the strength of

dislocation/dislocation interactions, has been successfully applied to Ti-6AI-

4V [20], which is a two-phase alloy strengthened by interstitial oxygen and

substitutional aluminum and vanadium, and to Nitronic 40, which is an
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austenitic stainless steel, strengthened by interstitial nitrogen along with

several substitutional additions. In both of these systems deformation

twinning becomes prevalent at low temperatures and high strain rates, which

further emphasizes the points of the previous section.

To further study multiple strengthening mechanisms, a series of experiments

has been designed in nickel, two nickel-carbon alloys, a nickel-aluminum

alloy, and a ternary nickel-aluminum-carbon alloy. In these systems it is

possible to independently investigate strengthening by dislocation/dislocation

interactions, dislocation/interstitial atom (C) interactions,

dislocation/solute atom interactions (Al), and dislocation/dispersoid (Ni3AI)

interactions, and to give several combinations of these mechanisms. The

unique feature of this study is the attempt to Eeparate the deformation

kinetics at constant structure from the kinetics of structure evolution using

the MTS formalism over a wide range of prestrain strains and strain rates. k

is hoped that this study will lead to new insight concerning the difficult

question of how to model the effects of simultaneous strengthening mechanisms.

3, Some Preliminary Results

In addition to the extensive series of measurements in copper, Nitronic 40

stainless steel, Ti-6AI-4V, AISI 1018 steel, and the nickel alloys described

above, work is currently in progress on Armco iron, AISI 4340 steel (in the

soft, two-phase, alpha iron plus pearlite condition), tungsten, uranium, and

U-.75Ti. As expected the history effect, or strain-rate and temperature

dependence of the strain hardening, which was so dominant in the copper

results, is not observed in the other metals listed above. Furthermore, an

interesting (although only preliminary) observation is that the very rapid

17



dislocation storage rate found at high strain rates in copper has not been

observed in metals of crystal structure other than FCC. That is, in Ti-6A1-4V

[20], tungsten, pure iron, uranium, and U-.75Ti, the mechanical threshold

stress following dynamic prestrain is essentially equal to that following

quasi-static prestrain to the same strain level. This implies an absence in

these metals of the enhanced strain-rate sensitivity within the strain-rate

regime of l03 s-1 to 104 s-1 that has been observed in copper and other FCC

metals. It is of course quite possible that this effect has been delayed to

higher strain rates, but this will require verification.

SUMMARY

Application of the MTS model to the analysis of deformation in several FCC

metals has increased our understanding of the influence of strain rate,

particularly high strain rate, on the strength and strain-rate sensitivity in

these metals. The rising scrain-rate sensitivity at high strain rates that is

observed in copper and other FCC metals appears to be a result of rapid

dislocation generation and storage. Because the MTS model can differentiate

between the strain-rate sensitivity at constant structure (mechanical

threshold stress) and the strain-rate sensitivity of evolution, it is well

suited to model this effect., although questions remain concerning why FCC

metals behave this way at high strain rates.

Numerous constitutive equations have been proposed to describe the dynamic

deformation of metals. Many of these expressions are designed to capture

general behavior and to be easily evaluated within computer codes, while

others claim a more "physical" basis and attempt to describe greater

subtleties in the material behavior. In copper, the data in figures 2 and 3
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provide a stringent test of a constitutive description because the strain-rate

history effect requires a strain-independent formulation. There are many

proposed dynamic constitutive equations that can predict the prestrain stress-

strain curves in figure 2. However, there are few that can predict the reload

behavior illustrated in this figure. An equation that does not predict this

behavior does not accurately represent the strain-rate sensitivity and,

therefore, should be extrapolated carefully beyond the regime in which it has

been fit and should not be used in calculations (such as instability

calculations) where the strain-rate sensitivity is an important property.

Analysis of the measurements in mild steel by Campbell and Ferguson [12]

showed that the data is well described using Eqs. (4) and (5), and that there

is no need in invoke a transition in deformatiolL mechanism at the high strain

rates. A similar conclusion has recently been reached by Nojima [21]. This is

an important conclusion because, as has been emphasized throughout this paper.

the estimates of flow stress at strain rates beyond those easily achieved in

the laboratory depend on the form of the equation used to model the

experimental results. In several recent analyses of dynamic fracture in steel,

Eq. (2) has been used to represent the Campbell and Ferguson data [22,23]. If

the strain rates in the vicinity of the growing crack exceed the maximum

strain rate used by Campbell and Ferguson (see figure 6), then the flow stress

and the strain-rate sensitivity have been overestimated in these analyses.

Tle application of the MTS model to engineering metals requires continued

development of the model. The influence of defurmation twinning on the

strain-rate sensitivity at constant structure and on the rate of strain

hardening must be analyzed and eventually incorporated into the formalism.

Similarly, the effect of multiple strengthening mechanisms on both the strain-
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rate sensitivity at constant structure as well as the rate of structure

evolution requires further study. It is yet unclear how to incorporate into

the model the effect of heterogeneous plastic flow (including adiabatic

shear), which seems to dominate material behavior during, for instance, armor

penetration. Finally, we emphasize that the model as formulated here is not

ideally suited for large-strain deformation (such as modeled in figures 4 and

5) because it makes no accnunt of the texture changes that accompany large

strains and of the stress-state dependence of these texture changes. There is

complementary work underway to develop the textural evolution analyses and

models to predict these effects [24,25]. Eventually, we hope to combine these

models with the deformation kinetics models described in this paper to yield a

complete constitutive description of metal deformation over a wide range of

strains, strain rates, and Lemperatures.
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Figure 1. Flow stress in copper at c-0.15 versus applied strain rate
(triangles) compared with flow stress at a - 250 MPa
(circles).
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Figure 3. Quasi-static, room temperature, reload yield stress
measurements on copper specimens prestrained 15% at the
indicated strain rates.
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Figure 6. Yield stress (in shear) measurements of Campbell and
Ferguson [12] in mild steel. The dashed lines were
suggested by Rosenfield and Hahn [13] as lines separating
different deformation regimes.
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Figure 7. The data of Campbell and Ferguson [12] plotted on

coordinates suggested by Eqs. (4) and (5). Note that most

of the data fall along a straight line suggesting a single

rate controlling, thermally activated, deformation

mechanism.
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CONSTITUTIVE MODELS FOR PLASTIC FLOW AT
ULTRA HIGH STRAIN RATES

Rodney J. Clifton
Division of Engineering

Brown University
Providence, RI 02912

ABSTRACT

Results of pressure-shear experiments on the dynamic plastic response of metals

at shear strain rates of 105 - 106 s-1 are summarized. The flow stress for high

purity metals is found to be sensitive to the rate of strain and relatively insensitive

to the accumulated plastic stra'n. Conversely, for high strength alloys the flow

stress is relatively insensitive to the rate of strain but sensitive to the accumulated

plastic strain. For the case of high purity metals an elementary model is presented

which associates the observed phenomena with the dynamics of dislocation motion in

a three-dimensional dislocation cell structure.

EXPERIMENTAL RESULTS

Direct measurements of the stress-strain behavior of metals at high strain rates

can be made at strain rates of 103 - 104 s"  using Kolsky bar expriments and at

strain rates of 10' - 107 s-i using pressure-shear plate impact experiments. Both

types of experiments involve the plastic deformation of a specimen sandwiched

between two elastic bodies. In the case of Kolsky bar experiments, the specimens are

solid bars for compression tests and thin-walled tubes for torsion tests. In the

pressure-shear experiments the specimens are thin plates. In all these configurations,

the basic concept - due to Kolsky [1] - is to use the elastic waves in the bounding

bodies to determine the nominal stress and strain rate in the specimen, once the

strcss state in the specimen becomes essentially homogeneous. Integration of the

strain rate provides the strain required for plotting dynamic stress-strain curves.
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For this presentation, the primary interest is in the regime of very high strain

rates covered by the pressurc-shcar experiment. The experimental configuration is

shown in Figure 1. A detailed description of the technique has been given by Klopp

and Clifton [2]. Briefly, a thin specimen attached to an elastic flyer plate is

subjected to pressure-shear loading by impacting a parallel elastic anvil plate that is

inclined relative to the direction of approach. After several reverberations between

the elastic plates, the state of stress in the specimen is essentially homogeneous.

Then, the nominal longitudinal and shear strain rates in the specimen are

=un " ufs()

h

iVn " vfs 
(2)

h

where uo , vo are the normal and transverse componernts of the flyer velocity and Ufs,

Vfs are the normal and transverse particle velocity of the free surface of the anvil;

h is the specimen thickness. The normal and shear tractions at the specimen-anvil

interface are

2 Pol Ufs (3)

2= Pc 2 vfs (4)

where pc1 , and pc2 are respectively the impedances for elastic longitudinal waves and

elastic shear waves in the anvil. For Hampden tool steel plates which are commonly

used these values are pcI = 45.5 GPa/mm/gs and Pc2 = 24.8 GPa/mm/gs.

From Eqs. (1) to (4) the quantities which must be measured to allow dynamic

stress-strain curves to be obtained are the velocities uo , vo , Ufs, Vfs. The velocities

u0 , vo are obtained from the angle of inclination of the plates and the velocity of

imp.ict, which is determined from the time at which the flyer contacts five
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accurately spaced pins mounted at the muzzle of the barrel. The velocities ufs -.nd

Vfs are obtained from a combined normal velocity interferometer (NVI) and

transverse displacement interferometer (TDI)[3]. Diffracted beams required for the

TDI are obtained from a 200 iines/mm diffraction grating that is copied onto the

po!ished rear surface of the an-,il by means of a photo-resist technique.

The very high strain rates of the pressure-shear experiments are obtained

by using relatively thin specimens with thicknesses h that are in the range of 0.3 mm

to 3 gm. The corresponding gage lengths for Kolsky bar experiments are of the

order of 3 mm and larger. The smaller thicknesses in the pressure-shear experiments,

and consequently the higher strain rates, are allowable because these are plane wave

experiments which are free of lateral inertia effects and cnd-friction effects until

unloading rarefactions arrive from lateral boundaries. For the lateral dimensions of

these experiments (projectile diameter is 62.5 mm), plane wave conditions hold "or

approximaately I gs. Thus, pressure-shear experiments allow one to determine dynamic

strcss-strain curves at strain rates of i to 107 s"1 up to strains of 0.1 to 10, respectively. The

flatness required to ensure plane wave conditions can be obtained by lapping, for thicknesses

greater than approximately 35 gni. The highest strain rates (i.e. 107 s-') are obtained for

vapor deposited specimens with thicknesses of the order of 3 gm.

Experimental results have been obtained for three high purity metals (aluminum,

copper, and iron) and three commercial alloys (6061-T6 aluminum, 4340 VAR steel,

and 21-6-9 stainless steel) [4-61. Here we consider the case of OFHC copper, which is

representative of the behavior of the high purity metals and a 4340 VAR steel

(600 0 C temper) which is indicative of the main features of the response obtained for

the alloys.

l)ynamic stress-strain curves for OFHC copper specimens that were cut from a

cylindrical bar, annealed, and lapped to final thickness, arc shown in Figure 2.

(Detail.i of the experiments arc given in TFable I.) The steeply rising part of each
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curve should be disregarded because this segment is generated before a homogeneous

state of stress has been established. After the steep rise the flow stress (and the

strain rate - see Eqs. (2) and (4)) becomes essentially constant. Although two of'

the curves show a small positive slope and two show a small negative slope, tile

slopes are small relative to the strain hardening found at lower strain rates - for

which the quasi-static and torsional Kolsky bar results shown are represcntative. As

shown in Figure 2, the flow stress in the pressure-shear experiments is several times

larger than the flow stress in torsional Kolsky bar experiments and quasi-static

torsion experiments.

Dynamic stress-strain curves for vapor-deposited copper specimens are shown in

Figure 3. The specimens deformed at strain rates of 4.4 x 10 s-1 and 8.5 x 106 s-1

were prepared by RF sputtering and the specimen deformed at the strain rate of 7.1

x 106 S-1 was prepared by vacuum evaporation of resistance heated OFHC samples.

Again, after a steep rise the flow stress becomes essentially constant. The stress

levels are much higher than those shown in Figure 2 for specimens cut from bar

stock. The exceptionally high flow stress obtained at the strain rate of 4.4 x 10' s-i

(Cf. Figure 2) is an indication that differences in microstructure between the bulk

material and vapor-deposited material are playing an important role in the observed

response. Further study of vapor-deposited specimens is required to clarify the roles

of microstructure and high strain rates in causing the large flow stresses shown in

Figure 3.

As an indication of the different behavior observed for metal alloys, dynamic

stress-strain curves for 4340 VAR steel (600 0 C temper) are shown in Figure 4. In

contrast to the behavior for the high purity metals, the flow stress does not increase

strongly with an increase in strain rate from 103 s-' to 10' s-i.
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Modcling High-Rate Plastic Flow for High Purity Metals

Two characteristic features of the plastic response of high purity metals at the

high strain rates of pressure-shear experiments are the relatively strong rate

sensitivity and the relatively weak strain hardening. The weak strain hardening is

observed even at the modest strains of, say, 3% in the experiments at the lowest

strain rate. These features differ markedly from those observed in high purity

metals at low strain rates and in structural alloys at high strain rates. Thus, from

these observations alone, it would appear that new or revised microstructural models

are required to explain the observed phenomena. However, Follansbee and Kocks [71

have shown that some of the observed behavior can be explained by a model based

on consideration of the same model of thermally activated motion past obstacles that

has been developed for interpreting experimental results at strain rates up to 104 s-1.

Their model attributes the increased flow stress with increasing strain rate to the

development of microstructures which, for a given plastic strain, are more resistant to

the motion of dislocations. This enhancement of hardness with increasing rates of

deformation has been established by measuring initial yield stress or "threshold stress"

at 00 K of specimens which have been deformed previously at various strain rates. At

the highest strain rates shown in Figure 2, the model of Follansbee and Kocks [7]

predicts the reported stress-strain curves reasonably well. However, at the lower

strain rates their model tends to show more strain hardening than is observed.

To assist in the clarification of the micromechanical processes responsible for

the plastic response at high strain rates, a pilot study of the dislocation structures

induced by the pressure-shear loading has been conducted by Gray [8]. Transmission

electron micrographs have been made of dislocation networks in the specimens tested

at shear strain rates of 0.82 x 105s"1 and 2.73 x 105s- 1. Two of these micrographs
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arc shown in Figure 5. The dislocation structure consists primarily of cell walls

with nearly dislocation-free spaces between the walls. The cells appear to be

roughly spherical in shape, with a mean diameter that decreases with increasing stress

or strain rate. Multiple slip appears to have occurred throughout the grains as there

is very little evidence of linear features that are indicative of slip on a dominant

glide plane. No shear bands appear to have formed. A few twins were observed

in the specimen deformed at the lower strain rate; however, their effect appears to

be small since the volume fraction of twinned material is small and the dislocation

configurations near the twins appear to be unaffected by the presence of the twins.

Overall, the dislocation configurations suggest that plastic deformation of OFHC

copper under pressure-shear loading at strain rates of 105s-1 is a relatively

homogeneous and stable process.

Dislocation structures generated in copper by unidirectional deformation havc

been discussed by Mughrabi [9]. For single slip, in Stage II, the resolved shear stress

for plastic deformation is found to vary inversely with the spacing of multipolc

bundles as well as with the spacing of free segment lengths of primary dislocations

which bow out from the bundles [10,111. For multiple slip, which occurs in

polycrystals and in single crystals with highly symmetric orientations, a

thre,-dimensional cell structure is observed [12,13]. Giettler [11] reports that for high

purity copper single crystals the mean cell diameter varies inversely with the resolved

shear stress according to

D - 41(5)
Tr

where the resolved shear stress Yr is in MPa and the mean diameter D is in microns.

This relationship agrees with experimental results over the range of strcsscs

investigated: 12 MPa to 70 MPa [I I]. For comparison with the reported

pressure-shear experiments the resolved shear stress in Eqn (5) must be estimated
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from the applied shear stress in simple shear, T, which is measured in the

experiments. Because the orientations of the grains relative to the loading direction

is unknown, only crude approximations are possible.

One means of estimating the resolved shear stress Tr is to assume that the

grains are randomly oriented and that the shearing rate for each slip system is

related to the shearing stress by a relation of the form

-k Lo(6)
0

where a, T"0, and n are constants. Under these conditions Hutchinson [14] has shown

that the macroscopic shear strain rate yP in simple shear is related to the applied

shear stress T by

= 2a (7)

in which c, n are the same constants as in (6) and To satisfies

To s g(n)T o  (8)

where g(n) is tabulated in [14]. If, as in the Taylor theory of plastic flow of

polycrystals, one assumes that the plastic strain is the same in all grains, then for a

simple shearing deformation the shearing rate is given by

12 k
rn (m nk + m 2

k nk) (9)
12 k=1 To 1J

where pk 91k are unit normal vectors in the directions normal to the slip plane and

parallel to the slip direction for the k-Lh slip system, respectively. To estimate a

representative resolved shear stress it is furthcr assumed that the stress state is

essentially uniform so that
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T k (mk nk + mnk n ) (10)

where : =o12 is the applied shear stress. Substitution of Eqn. (10) into (9) gives

) a n I kmn k + m nk I (il)

where absolute values have been taken to ensure "k 0 for all k. The inequality

(8) is actually quite a tight upper bound and can be used as an equality for

approximation purposes.

Then, from (7), (8), (10) and (11) one obtains

12 Tk (n+1

E I -_ (12)
k=1 T [g(n)] n

Equation (12) can be used to estimate a nominal value of k4, say Yr, by noting that

for n ) 3 (as reported for the high strain rate deformation of OFHC copper [5]),

the few terms corresponding to the most favorably oriented slip systems (i.e. largest

valuzs of "k) provide the primary contribution to the sum. If one assumes that there

are M equivalent favorably oriented slip systems with a nominal resolved shear stress

r then Eqn. (12) provides the estimate

_1_

Tr = Mlg(n)Fl T. (13)

For face centered cubic crystals the number of favorably oriented slip systems is

usually small, say 1 4 M 4 5. For M = 2, 3, 4 and for n = 3, g(3) = 1.54, the

corresponding values of the factor multiplying T are 0.72, 0.65, and 0.61, respectively.
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In the subsequent discussion we take Tr = 0.65 7 as our estimate of the resolved

shear stress.

For the shear stresses Y of 178 MPa and 213 MPa corresponding to the cell %%all

structures shown in Figures 5(a) and 5(b) the values of D obtained from (5) for Tr =

0.65 T are D = 423nm and D = 354nm, respectively. These values are viewed as

comparable to the observed cell diameters of approximately 600nm and 450nm for

Figs. (5a) and (5b), respectively. Comparison can also be made with the estimate for

mean cell diameter given by Staker and Holt [13]:

10.51b
13= (14)

where L is the shear modulus and b is the Burgers vector (g = 45.2 GPa and b =

2.56 x 10-10 m for copper). Holt 115] has dervied a relation of the form (14) by

considering the modulation of the dislocation density of an array of parallel screw

dislocations. The mean cell diameter is identified with the wavelength of the

modulation and the stress is taken to be proportional to the square root of the

dislocation density in obtaining the form (14). The cell diameters obtained from

(14) for the shear stresses F = 178 MPa and T = 213 MPa are 15 = 682 nm and

D = 570 nm, respectively. Thus, it appears quite likely that Eqns. (5) and (14)

provide a reasonably accurate correlation of cell size and resolved shear stress even

for the range of high stresses generated in the pressure-shear impact experiment.

In view of the apparent correlation of the flow stress with the mirostructure

through Eqns. (5) and (14) it is of interest to examine the implications of these

equations for the associated dislocation mechanisms of plastic flow. To this end it is

intcrcsting to note that for a dislocation segment pinned at two points, separatcd by

a distance ac, the critical resolved shear stress Trc required for a Frank-Read source

to operate is
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Trrc =b_ (15)ae

where B is a factor that is reported to be approximately 1.1 for edge segments and

1.5 for screw segments [9]. Substituting gz and b for copper into Eqn. (15) and

taking 13 - 1.3 one obtains

ac = 15 (16)- Tr c

where Trc is in MPa and ac is in microns. If we identify the resolved flow stress

of Eqn. (5) with the critical resolved shear stress of Eqn. (16) we obtain the

following relationship between the critical pinning distance ac and the mean cell

diameter D.

ac Z 0.3 D (17)

Equation (17) suggests that those dislocations whose strong pinning points arc

separated by distances greater than approximately 0.3D are sufficiently free to bow

out from the cell wall and sweep across the cell under the driving force of thc

applied stress. Pinning distances of the order indicated by Eqn. (16) appear to bc

reasonable. Thus, it appears that the relationship (5) between the flow stress and

tbe mean cell diameter is associated with a dislocation mechanism in which the stress

is required to be sufficiently large to overcome the line tension which develops as

dislocations bow out to cross the clear space of the cell.

Consider next the relationship between the applied stress and the rate of

deformation for the dislocation mechanism of dislocations bowing out from a cell

wall and sweeping across the clear interior of the .ell. The rate of deformation

associated with the passage of a dislocation can be expressed as
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VA- (18)
Vat

where A is the area swept by the dislocation, per volume V, per time At. To

estimate the time At, assume that the dislocation velocity vd and resolved shear stress

Tr are related by

DVcd
Tr = d (19a)b[ I - Vd/C]

or,

vd Trb Tb2
B[l+ (9b)

where B is the drag coefficient and c2 is the elastic shear wave speed; for high

purity copper, B and c. are approximately 1.7 x 10 1 1MPa s-1 [161 and 2.25 kms. ,

respectively. In Eqns. (19), B is the drag coefficient measured at low dislocation

velocities; the relativisitic correction is introduced to limit the dislocation velocily by

the elastic shear wave speed.

The interval At required for a dislocation to cross the diameter of a cell is

D

At f dX)) (20)

where v4(Tr) is the function defined by (19b). Once the spatial dependence of Tr is

known, the interval At can be rbtained by the integration of Eqn. (20). An idealized

stress distribution Tr(x) along th.- path of a central dislocation segment is shown in

Figure 6. The stress Tr(X) is viewed as the superposition

Tr(X) = Tr + TCx(x) + TID(X) + TLT(x) + TLR(x) (21)
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where the quantities on the right side are the resolved shear stresses due to,

respectively, the applied stress T, the multipole dislocations in the cell wall, the

impinging dislocation from a neighboring cell, the line tension of the bowed

dislocation, and the long range stress field. The term Tr can be viewed as constant

over the diameter of a cell. The stress field TCW(X) due to multipoles is a

short-range field that decays quickly on the scale of distances comparable to cell wall

thicknesses. The stress field TID(x) varies as approximately

TID(X) = b (22)
2n(h + x)

where h is the thickness of the cell wall. The stress due to the bowing of the

dislocation can be represented by

TLT(x) = tb log R1X (23)
41R(x) 5b

where R is the radius of curvature of the bowed dislocation. The long range stress

field can be idealized as

TLR(X = TA cOs r2nIx] (24)

where the amplitude TA and the wavelength X are constants. The long range stress

field is expected to correlate with the dislocation cell structure. The wave length X

for :wo dimensional dislocation networks are reported to be 5-6 times the spacing of

the multipole bundles which form the mesh of the network [9]. By analogy it is

expectcd that the wavelength X for a three dimensional cell structure is several times

the mean diameter of the cells. The amplitude TA is reported to be approximately

the same as the flow stress, say TA = 0.9 Tr [9]. Again these values are obtained for
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two-dimensional dislocation networks which are reported for stage II hardening;

however, the similarity between the two and three dimensional dislocation structures

is sufficiently strong that overall characteristics of the long range stress fields arc

expected to be similar.

For the mechanism being investigated the dislocation to be bowed out from :he

cell wall is initially in an equilibrium position for the stress fields :Fr, TCW(x),

TLT(X), and TLR(X). As the impinging dislocation approaches, the dislocation is bowed

out under the stress field TiD(X). Because of the large amplitude of TID(X) and the

short range of influence of the stresses TCW(X), a central segment of the bowed

dislocation moves beyond the range of TCW(X) during an interval of time that is

small relative to the time required for the dislocation to sweep across the cell. This

small contribution to the total time At in Eqn. (20) will be neglected. For the

remainder of its travel across the cell a central segment of the dislocation is driven

forward by the stress fields r TID(X), and TLR(x); it is held back by the stress

field TLT(X). From Eqn. (22) the value of TID at (h + x) = D/2 is approximately

8 MPa for D = 450nm. Similarly, from Eqn. (23), the value of TLT for R = D/2 is

approximately -20 MPa. The net value of these opposing stresses is small compared

to the applied stress Yr. Furthermore, the value of the long range stress field TLR is

expected to be near its maximum positive value in cells which are being swept by

moving dislocations. Thus, as a first approximation, the effect of TID and TLT on

the time At will be regarded as negligible and At will be estimated from Eqn. (20) by

taking Tr to be constant at an effective value Teff = Tr + TA - 1.9 Yr. That is,

D B [I + (ref f/Ce
2

At . - T (25)Teff b

where Tc = Bc 2/b is the critical resolved shear stress that would cause dislocations to

move at the elastic shear wave speed c2 in the absence of relativistic effects; for
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copper, Tc is equal to 149 MPa. The times At obtained from Eqn. (25) for the

respective shear rates are shown in Table II as (At) 2 4 . The times, although short on

the scale of the time resolution of macroscopic experiments, are long relative to thc

time scale on which the inertia of accelerating dislocation is important [171. Tht i.

the neglect of the inertia of dislocations in the analysis appears to be acceptable. The

time increments obtained from Eqn. (25) can be substituted into Eqn. (18) to obtain

an estimate of the volume V in which only one dislocation cell is active

simultaneously. The results can be stated more simply if the volume V is represented

as the number, N, of close-packed cells of diameter D which comprise the volume V

(i.e. V = N15 3 //). Then, for A r7D 2/4, Eqn. (18) becomes

-
=  h (26)

4NDAt

For the assumed case of three, equivalent, favorably oriented slip systems the

shearing rate Y in Eqn. (26) is Y'P/(3 x .65) where 7 P is the measured shear strain

rate. The values of N obtained from Eqn. (26) for shots 4 and 6 are given in

Table II. These values indicate that, according to the model, only a small fraction of

the cells would be active simultaneously.

For the model being considered, the value of N is expected to be approximatcly

12 -- the number of cells in contact with a given c.-l in a close-packed array of

sphe-ical cells. This expectation is based on the requ-rement that under nominally

steady conditions each impinging dislocation would cause one, and only one,

dislocation to sweep across an adjoining cell. If N were much less than 12 then one

would expect that the dislocation density would increase strongly, cell sizes would

decrease, and the flow stress would increase. If N were less than 1, then more than

one dislocation would be sweeping across a cell simultaneously. Intersection of these

dislocations would lead to entanglements and marked refinement of the cell structure.
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On the other hand, if N were much greater than 12, some impinging dislocations

would not be able to free a single dislocation as they arrived at the cell walls sharcd

with adjoining cells. Under these conditions deformation would not be sustair-'d at

the nominal strain rate in some region of the grain.

If only a small fraction of the cells operate simultaneously, then one can expect

that the one dislocation that is sweeping across one of the N cells of a group is

subjected to internal stress fields which provide only slightly more resistance to its

motion than the resistance provided for other dislocations which are not sweeping

across cells concurrently. Thus, the sweeping dislocation should be viewed as being

driven by a stress that is only slightly greater than the threshold stress at which it is

prevented from sweeping across the cell. Under these conditions, our previous

assumption that the net retarding effects of the terms TLT(X) + Tcw(X) are offset by

the driving stress TID(X) of the impinging dislocation should be revised. Instead, we

assume that there is a distance cob over which the dislocation motion is retarded such

that the effective stress is reduced by an amount TO. The additional transit time is

aDB[I + Tecf T 0 )1 2
TC

(At)r z (27)
(Teff - To)b

The shearing rate can be obtained by substituting the sum of the time

increments of Eqns. (25) and (27) into Eqn. (26). In making this substitution we note

that in (25) the distance of travel under the driving stress Teff should be reduced to

(I - ca)D since travel over the distance aD occurs under the reduced driving stress,

(Teff - TO), of Eqn. (27). The resulting expression for the shearing rate can be

written as
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i b2 r (28)

4NBI52 41 + (T ef f/Tc )2])6 + af(Teff))

where
[+ re f f - Tn ,1

L Tc )2
fi (T Lr - [I +(Te ff/ITc)]f(Teff) - (I -C/Tff)

Equation (28) is the form of the predicted relationship between the shear stress and

the shearing rate. For a = 0, or T = 0, the retarding effects of the stress fields

T cw(X) and rLT(X) vanish and Eqn. (28) reduces to the form used for evaluating N in

Table II. For parameter values 0 < a < 1 and 0 < (To/Teff) < I the term af in

(28) reduces the strain rate at a given value of Teff or, equivalently, reduccs the

value of N for which the strain rates obtained from (28) agree with measured

values.

In order to convert Eqn. (28) into a constitutive equation between the flow

stress f in simple shear and the shear strain rate 'P we use D = Kgb/i (Cf. Eqn.

(14)), where K is a constant, to elimiqate D. The ro.solved shear stress Yr and

shearing rate / are replaced by K: and 5P/(MK), respectively, where K and M are

constants (e.g. for the assumed case of three equivalent slip systems the constants are

M = 3 and K = 0.65). Substitution of these expressions into (28) gives the

constitutive equation

'P - C3 (29)
Bg 2q((K+ )T; C, )

where C is a dimensionless constant,

C / 2 MK(K + ) (30)
4NK2

and q ((t + 7r)) c(, t)) is the dimensionless quantity enclosed in { ) in Eqn. (28).
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Thc effective stress is replaced by (K + n)f where nT represents the long-range

strcss-field TLR. The factor (1 - To/Teff) is replaced by t.

Except for Teff >> TC or Teff Z To, the quantity q in Eqn. (29) varies slowly

with 7 and the shearing rate varies as -3. For Teff>>Tc the quantity q becomes

proportional to T and the shearing rate varies as V. Such proportionality between

?P and T2 at ultra-high shearing rates has also been predicted by Grady [18] based on

an analysis of wave profiles for steady shock waves. As Teff reduces to To the

predicted plastic strain rate P reduces to zero. Thus, To represents a threshold

stress, below which the model being considered is not applicable. At these lower

stress levels, the waiting times before dislocations can overcome obstacles by means of

thermal motion are significant and would have to be included in Eqn. (27).

Equation (29) is plotted in Fig. 7 for comparison with measurements of the

pressure-shear experiments on specimens lapped from bulk material. Values used for

the parameters are those discussed in the text (e.g. N = 12, M = 3, K = 0.65) as well

as those which are representative of the resolved shear stress distribution TR(X)

shown in Fig. 6 (i.e. a = 0.1, 0.1, 7 = 0.5). The constant K is taken to be K

= 8.5, which is the average of the values corresponding to Eqns. (5) and (14) obtained

from Refs. [11] and [13], respectively. The curve passes through several data points,

but appears to be steeper than the overall trend of the data. This discrepancy in the

steepness of the curve can be reduced by extending the model to account for waiting

times required to overcome obstacles at low stress levels. The resulting retardation of

dislocation motion at low stress levels would preferentially reduce the strain rate at

the lower stress levels and thereby reduce the slope of the curve in Fig. 7.
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CONCLUDING REMARKS

Overall, the agreement between the predictions of the model and the results or

the experiments is viewed as supportive of the basic elements of the model. Although

many approximations are made, the model describes a real dislocation mechanism in

which all constants are obtained from measurements and observations made by others

without consideration of ultra-high strain rate experiments. Of course, the model is

deterministic and one can expect that if only a small fraction of the cells operate

simultaneously, then the dislocation mechanism is a highly stochastic process involving

the mutual interactions of many dislocations. Consequently, elementary models which

do not take explicit account of the statistical characteristics of the dislocation

configurations can be expected to be limited in their prediction capability. Fully

successful modeling appears to require insightful modeling of the interaction of

dislocations and the evolution of dislocation structures. On the other hand, the

modeling of the resistance of the lattice to the motion of dislocations appears to be

less critical to the development of a satisfactory description. Furthermore, if only one

dislocation is sweeping across a cell at a time, then the modeling of the mutual

interaction of high velocity dislocations should be relatively unimportant to the

development of successful constitutive models for plastic flow at high strain rates.
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Projectile Skew Pressure Shear Shear Shear Specimen
Shot Velocity Angle p -o, Stress Rate Strain Thickness
No. VO, mm/ps 0,0 MPa MPa x10 5s-' 7 mm

01 0.183 23.2 38-10 209 1.93 0.065 0.2870
02 0.190 26.6 3870 236 2.84 0.065 0.2337
04 0.179 22.0 3770 213 2.73 0.065 0.1829
06 0.093 18.0 2010 178 0.82 0.065 0.1753
08 0.176 20.0 3770 486 71.0 2.0 0.0030
09 0.188 20.0 4010 523 85.0 2.0 0.0026
10 0.180 18.0 3880 482 4.40 0.280 0.0380
11 0.174 22.0 3676 250 4.33 0.280 0.1034
13 0.189 22.0 3987 274 11.3 0.280 0.0432

Table I. Summary of Results on OFHC Copper

Shot T 7, (At )24 N
No. nm MPa MPa nsec scc -1

04 450 213 138 0.231 0.273 18.9

06 600 178 116 0.323 0.082 32.4

Table II. Computed Values of At and N for Shots 4 ald 6
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Figurc 1. Schcniatic of Configuration for High Strain Ratc Pressurc-Slicar
Plate Impact Experiment.
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Figure 2. Dynamic Stress-Strain Curves for OFHC Copper Specimens
Lapped from Bulk Material.
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Deposited OFHC Copper
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Figure 3. Dynamic Stress-Strain Curves for Vapor-Deposited Copper
Specimens.
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Figure 4. Dynamic Stress-Strain Curves for 4340 VAR Steel (600 0 C Temper).

52



(a) Shot No. 6

(b) Shot No. 4

Figure 5. TEM Micrographs of Dislocation Cell Structures Generated in
Pressure-Shear Plate Impact (From Gray [8]).
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Figure 6. Resolved Shear Stress Distribution Experienced by the Center of a Curved
Dislocation as it Sweeps Across the Diameter of a Dislocation Cell
(Relative Amplitudes correspond to Dislocation Cells in Copper with
13 = 500 nm and h = 50 nm).
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Figure 7. Strain-Rate Sensitivity of OFHC Copper and Comparison with
Predictions of Equation (29).
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DOUBLE SHOCK EXPERIMENTS

IN PMMA AND OFHC COPPER

Dattatraya P. Dandekar, Paula J. Gaeta, and Markos Hankin

U.S. Army Materials Technology Laboratory, Watertown, MA 02172

Abstract

This paper de ls with the results of a few experiments performed to (i) compare the defor-
mation behavior of PMMA subjected to successive shocks and releases against when it is

subjected to a single shock and release under plane wave conditions, and (ii) determine the
influence of such successive stimuli on the spali threshold of annealed OFHC copper. In

addition, this paper describes a technique developed to conduct shock wave experiments
where an impact velocity of less than 0.1 km/s is to be reliably attained. The results of ex-

periments on PMMA indicate that the observed repeated shock-release wave profiles, up to
a stress of 1.17 GPa, can be satisfactorily simulated numerically, using a constitutive

equation used to reproduce a single shock-release profile. The experiments on OFHC
copper show that the spall threshold appears to be larger when the copper is subjected to
tension following two successive compressions as compared to when it is subjected to ten-
sion following a single compression, i.e. in a conventional spall experiment.
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INTRODUCTION

The present work is part of an on going effort to determine the deformation be-

havior of solids subjected to successive shocks and releases under uniaxial strain condi-

tions. In principle, the need for this type of information is critical only for those material

properties which are progressively altered and to some extent irreversible, i.e. those prop-

erties which are stress/strain history dependent. Some of the properties which fall in this

category are the spall threshold of ductile metals and alloys, elastic stress limits in elastic-

plastic materials or workhardening materials, and compression parameter of powder mate-

rial, i.e. void collapse in powder material. This work gives the results of a few experi-

ments performed on PMMA and OFHC copper to determine their response to two pairs of

successive shock and release waves. These experiments may thus be considered to be the

first step taken in attaining the goal of determining and understanding the response of a

solid to a multiple pair of successive shock and release waves. Two earlier papers dealing

with the response of PMMA and Z-cut single crystal sapphire to two pairs of successive

shock and release waves below their respective Hugoniot Elastic Limits were reported by

Dandekar, Gaeta and Horie [1] and Horie and Dandekar [2]. This work elucidates (i) the

deformation behavior of PMMA subjected to a successive pair of shock and release waves

where the shock stress exceeds the Hugoniot Elastic Limit, and (ii) the effect of successive

;hocks on the spall threshold of OFHC copper in the annealed condition.

57



EXPERIMENTAL DETAIL

A general configuration for the double shock-release wave (two successive shock

and release waves) experiments is shown in Fig. 1. In these experiments the projectile

consisted of two flat disks separated by a predetermined gap and mounted parallel to each

other on an aluminum carrier. These disks were normal to the axis of the carrier or sabot

and are identified as flyers 1 and 2 in Fig. 1. The target assembly consisted of several flat

disks with mutually parallel opposing faces, between which manganin gages were embed-

ded to determine the stress wave profiles generated in the disk materials due to the impact

of the projectile on the target at a measured impact velocity. In the case of spall experi-

ments in OFHC copper, where the stress profiles were not recorded, the target was mono-

lithic, i.e. it consisted of a single disk. Typical dimensions of the disks of PMMA and

OFHC copper used in the experiments performed for the present work are given in Table 1

In these experiments the flyers and targets were of the same diameters. The diameters of

the disks making up the flyers and targets for PMMA and OFHC copper were 50± 1 mm.

These diameters were large enough to insure continuance of uniaxial strain conditions for

the time durations of measurements in PMMA and for inducement of tensions in OFHC

copper targets. Table 1 shows that these experiments were performed by symmetric im-

pact, the disk material, either PMMA or OFHC copper, being the same for both the flyers

and target in a given experiment. The disks used in the double shock release wave experi-

ments were flat to 6-8 light bands and their opposing faces were mutually parallel to within

10 gm.

The controlling variables in this type of experiment are shock durations, determined

by the thickness of the two flyers, stress free state duration between the successive shocks,

determined by the gap thickness, shock magnitudes of the successive shocks, jointly de-

termined by the impedance of the flyers and the impact velocity. The observables in these
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experiments were impact velocity, shock velocity in the target material and stress wave

profiles at the various gage depths in the target material.

The impact velocity is measured with an uncertainty of ±-0.5 %. The stress wave

profiles are recorded by means of manganin foil gages, commercially available from Mi-

cromeasurements Inc.. The type of manganin foil gage used in this work is LM-SS-

125CH-048. The precision of stress measurements is ± 2.5 %. The relative tilt of the

projectile and target at impact was less than 0.5 mrad. As is evident from Table 1 the im-

pact velocity required to conduct the experiments in OFHC copper was generally 0.12 km/s

or less. Since it has been found to be difficult to accelerate a 1.5 kg projectile in the AMTL

gas gun to 0.1 km/s or less, reliably and repeatably with gas pressure, a new approach had

to be developed to conduct these experiments. The new approach consisted of developing

a technique which uses atmospheric pressure to accelerate a projectile to a steady velo,.Ity of

less than 0.1 km/s. In addition to this, a release mechanism for launching the projectile

was developed. These two techniques are described below.

Low Velocity Technique

According to the ideal gas theory the static pressure of a gas is given by:

P = (2/3) n (mV 2/2) (1)

where n, m and V are gas density, molecular weight, and mean molec-

ular velocity, respectively
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In the case of a projectile moving down a gun tube into a vacuum with gas behind

it, the pressure on the rear of the projectile is reduced since the gas molecules are hitti-.g it

at a reduced effective velocity: Ve = (V - Vp) where Vp is the projectile velocity. Thus we

have:

e (2)

This relation will hold for the entire flight of the projectile provided the following

assumptions remain valid: (1) The gas density, n remains constant - this implies that flow

effects in the gun tube are negligible. (2) V remains constant - i.e. no temperature change.

If we also assume that there is no friction we can calculate the velocity of the pro-

jectile at the end of the barrel.

For the purposes of this calculation we can treat the atmosphere as a mixture of

80% N2 and 20 % 02. At 25 0C the molecular speeds of nitrogen and oxygen are 515 m/s

and 482 ms, respectively. Consolidating constants in equation (2) we have:

P = 0.8 C 1 (515 -v) 2 + 0.2 C2(482 - V 2

where Ci and C2 are nn/3 for N2 and 02, respectively.

At standard atmospheric pressure (0.101 MPa ) the values of C1 and C2 are

0.3808 and 0.4347 Pa s2/m2 , respectively. These values are modified by a multiplicative

ratio ( B/29.92 ) where B is the actual barometric pressure in inches of Hg. Since the
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pressure acts on the rear face of a projectile of area (A) and mass (M), the acceleration of

the projectile is given by:

a (A )[ 0"8 C (515 -V )2+ 0.2 C2(482 - V )2 (4)

Equation (4) was integrated using a simple computer program which gives the ve-

locity of the projectile when it reaches the end of the barrel. ( Note: temperature also has an

effect on the equation by changing the mean molecular velocity but it varies the final pro-

jectile velocity by less than ± 0.5 % for temperature varying from 0 0C to 40 'C, so it was

ignored). Fig. 2 shows the results of the computer calculations for barometric pressures of

30" and 29" Hg. Graphs of this type are used to determine the projectile mass needed to

achieve the desired impact velocity. Measured velocities have been within ± 3 % of the

calculated values, often better. So far, we have seen no trend in the errors so the assump-

tions used in calculating the projectile velocity appear to be valid to within experimental

scatter. Table 2 gives the values for a few of the experiments performed to date.

The projectile is held at the end of the gun barrel with a threaded mild steel rod

which has a narrow neck machined in it (Fig. 3 ). To fire the projectile, we heat the

necked down section of the rod with a propane torch until the neck yields. This ensures

that the projectile is released smoothly, with as little perturbation as possible.
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RESULTS

PMMA

Tables 1 and 3 give the information about the experimental configuration parameters

and a summary of the results of the experiments performed on PMMA. These experiments

were conducted to generate stresses in the neighborhood of 0.7 or 1.2 GPa.

As indicated in Table 1, at least one pair of manganin gages, Gages 2 and 3, were

imbedded at the same depth in the PMMA to evaluate the repeatability of the manganin gage

response under identical experimental conditions to two pairs of shock and release waves.

Stress wave profiles recorded by gages 2 and 3 in experiments where the peak stresses

were 0.75 and 1.17 GPa are shown in Fig. 4 (a) and (b). These figures show that the

stress wave profiles recorded by the manganin gages located at the same depth in PMMA

are similar with respect to one another within the accuracy and precision of measurements.

A visual summary of all stress wave profiles recorded by manganin foil gages in

various experiments done on PMMA is shown in Figure 5 (a) and (b). Common features

of these profiles are:

(i) Shock compression profiles are characterized by an initial shock followed by a

-nore gradual rounding up to peak stress as has been observed by other workers [3 and 41.

This characterization of compression wave profiles is valid for both the first and for the

second shock, following the release of the first shock. A superposition of these two shock

profiles indicates that, within the resolution of the manganin foil gages, the rate sensitivity

of PMMA, represented by the magnitude of the relaxation time, has not changed even when

the magnitude of the compressive stress exceeds the HE. of PMMA.

(ii) The release wave profiles do not show any unusual features when the peak

compressive stress is of the order of 0.75 GPa. This is true for the release wave profiles

67



-O e~j U-.7

*Ul) 00

cv 
%0 r"

-4 -4

0

c- V *V..-c LO P-4:

4 ~ m 0

4 C*
00L

CC

(n 00
a) 0h LA o m U

a) 0r t) C4

f" V CL 0 0. -4O
0 = C

to -r V.0 %j C ) C
- QV) (U*

... 0~a 0 ..

UU - 2

CD C0)2

a 0 ) C )e

C4U C4 fn0Q tA rn C\

C0 00C

- Q. %D C-0' 
LLQo ~ ~ C '. '0 fN .A

CflI_-.e A.) %00)
C), 0 L

0) lz'

0)3 41 a) '4 ' .
C~a a) - ) 0 C (i)

E t/I i

L L) 0 m) ' L. - Fu 'U0 0U I I0) CE m~ E V v 'U ) cu U &) 0 ( ( 'CL _.j.. CA, 0. L- L" 4.) u

68



Gage 2
0. -- Gage 3

0.71 a"\ \

0.6 I

Z0.5 I \

~0.34

0.2

0.1 I

0.0 I \

SI \

0.0 0.4 0.8 1.2 1.6 2.0 2.4
TimelThickness (ji.slmm)

1.5
- Gage 2 Gage 3

1.2 L (b)

0.6

0.3

V.
,.0 I_______________________.._____________________

0.0 0.4 0.8 1.2 1.6 2.0
Time/Thickness (ls/mm)

Figure 4. Stress Wave Profiles Measured by Two Gages at
the Same Location in PMMA at 0.7 GPa and 1.2 GPa.

69



0.9 o 67002 70103 o 70204

-0.6 (a)0.4-

0.3

0.2

0.5

0.4 -,

0.0 0.5 1.0 1.5 2.0
Time/Thickness (ps/mm)

o 71305 
A 72306

b)

0.5

0.0
0.0 0.5 1.0 1.5 2.0

Time/Thickness (,.s/mm)
Figure 5. Stress Wave Profiles in PMMA at

0.7 GPa and 1.2 GPa.
70



following both the first and second shock waves. The release wave profiles show a well

known dispersive character.

(iii) The release wave profile following the first shock wave amplitude of 1.17 GPa

clearly shows a pattern similar to that of an elastic-plastic solid as also previously observed

by Barker and Hollenbach [3]. Unfortunately, in the experiments 71305 and 72306 release

wave profiles following the second shock were not recorded.

(iv) The magnitude of stress recorded by the manganin foil gages following the

compressive shock state is very close to being stress free.

(v) None of the profiles show the existence of an HEL in PMMA which is consis-

tent with the observations of other researchers.

Shock wave data gathered during the performance of the experiments on PMMA are

analyzed by comparing the observed values of shock velocities, leading edge rarefaction

wave velocities and stress with the values of the respective parameters on the basis of an

elastic-plastic model for PMMA. An additional analysis is performed through numerical

simulations of the observed wave profiles recorded in PMMA at 0.75 and 1.17 GPa.

The calculations of shock velocity, leading edge rarefaction velocities and peak

stress are done by following the 'procedure outlined below.

Since the peak stress in PMMA is attained by the propagation of a single wave

inespective of the magnitude of stress, the jump condition

G= pOU u (5)

is applied to calculate stress ( at ) from the measured values of initial density ( P)

shock velocity ( U ) and peak particle velocity ( u ). In the calculations of the shock wave

and leading edge rarefaction wave velocities, use is made of measured variations in the val-

ues of elastic constants of PMMA under hydrostatic pressure to I GPa by Schock et al. [5].
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The above mentioned data are used fist to calculate mean pressure (P) corresponding to the

stress given by (1) by using the relation

1 + v (P) *CoP = 3 1 ()I= K(P) oi3 [1]-v V(q) ] (6)

Where V (P) and K(P) are the Poisson's ratio and the bulk modulus expressed as a

function of pressure P, Tj is the ratio of the change in volume ( A V ) with respect to the

initial volume ( Vi ) and oo is the measured stress.

The variations of v (P) and K(P) are obtained from the data of Schock et al. [5].

The value of P allows us to calculate V/Vi at P, i.e. the density of PMMA at P. This in

conjunction with the mass and momentum conservation relations yield the following for

shock velocity U:

The leading edge velocity is simply the longitudinal sound speed at P which is ob-

tained from the above mentioned high pressure data.

The results of these calculations are given in Table 3. The observed and calculated

values of shock parameters are very close indeed. The observed values are also in good

agreement with those measured by Barker and Hollenbach [3].

The numerical simulations of the experiments described above were done by using

an elastic-plastic material model on a general purpose one dimensional wave propagation

code called KOH. The equation of state used for PMMA was derived from the measure-

ments of longitudinal and shear sound wave velocities in PMMA to 1 GPa by Schock et al.
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[5]. The equation of state used for stresses below the Hugoniot Elastic Limit of PMMA

(0.38 GPa) is:

P = 5.92 r + 32.0 r2 + 80.0 r3  (8)

where r = the ratio of current density to initial density.

For stresses above 0.38 GPa the equation of state is:

P = 0.05 +5.92 r + 32.0 r2 + 80.0 r3  (9)

S'nce the HEL of PMMA is not observed because the plastic wave velocity exceeds the

longitudinal wave velocity at 0.38 GPa, the equation of state is irreversibly adjusted such

that at the transition pressure, 0.38 GPa, the Hugoniot has a smooth contact with the

Raleigh line [2 & 6]. The results of numerical simulations of the wave profiles obtained in

experiments performed on PMMA at impact velocities of 0.4088 and 0.614 km's, corre-

sponding to experiments 70204 and 71305, are shown in Fig. 6 and 7, respectively. The

calculated (numerically simulated) and observed wave profiles shown in Fig. 6 and 7 are in

very good agreement. In other words, the elastic-plastic model used in the present work

gcnerates wave profiles which match the observed double shock-release wave profiles in

PMAMA to 1.2 GPa.

OFHC Copper

Shock experiments for OFHC copper were designed to determine whether or not

the spall threshold of OFHC copper was history dependent. The basis for the postulate of

history dependence of spall threshold of OFHC copper was the cumulative information

pertaining to the observed low magnitude of the HEL compared to the spall threshold of

ductile metals and alloys [7 & 81. This relationship suggested that some plastic deforma-
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tion is necessary for the spallation of a ductile material. In other words, the spall threshold

of a ductile material should be history ( stress/strain ) dependent. The present set of ex-

periments was designed to determine the effect of single versus double precompression oil

the spall thresholds of OFHC copper.

The investigation of Stevens and Tuler [91 on hardened 1020 steel and fully hard-

ened 6061-T6 aluminum showed that the effect of shock precompression to 12 GPa on the

spall thresholds of these two materials was nonexistent. This simply implies that in these

two materials the defect structures generated in the hardened condition were not signifi-

candy altered during the precompression and thus the spall threshold remained unchanged.

In other words, history dependence of spall threshold is most readily discemable only in

materials where there is scope for inducing changes in the microscopic defect structures of

a ductile material when subjected to different histories.

The present investigation was, therefore, undertaken to determine the effect of two

different shock precompressions on the spall threshold of OFHC copper. The copper used

in the present investigation was of 99.99 % purity and was annealed at 400 C for an hour

and then cooled.

A general configuration of the experiments performed on OFHC copper is shown in

Fig. I. In these experiments two thin flyer disks of copper separated by a predetermined

gap were mounted on a projectile which impacted a thick OFHC copper disk target. These

disks were 50 ± 1 mm in diameter. The thickness of the flyers varied between 1.12 and

1.54 nm, while the thickness of the targets was between 5.79 and 5.89 mm. The

thickness of the gaps in these experiments varied from 0.06 to 0.15 rmm.

The thickness of the two flyers, gap and target were chosen so that the two tension

planes P1 and P2 developed in the target during shock wave experiments could be unam-

biguously identified (Fig. 8 & 9) in the recovered target. Space-time (Fig. 10) and tress-

time diagrams (Fig. 8 & 9) show that a tension of a given magnitude develops at the plane

P1 after a single shock has propagated in that region of the target. Similarly, a tension of

76



U--'

C
cc

4.-

(J2eqN) SSails pJ2e) ssaJjS 1

cc V

C)0

0D

CD ca -C

CD cu 02

cc c

6--

C.L

77E



El

C-4

-44

(jeq) ssails - (2q)) ssai11S

C 0

cc,

oo

-4 Iu AC
o. i c-

- a) cu-

Q Co

>c_

78



4.0 Impact Surface

3.5

3.0

1.00

0.5

-3 -2110 81 28

4.0 Impac Srface8

4.5

1.5 - 63

1.0

L ,, r,l 
0

-3 -2 -1 0 1 2 3 4 5 6
Distance (mmr)

at0 impact veoiiSf004msand b) 0.117 s

2.579



the same magnitude is developed at the plane P2 after two successive shocks have tra-

versed that region of the target. In other words, two different regions of the same copper

target experience two different precompression histories before being subjected to tensions

as a result of the interaction of two different sets of rarefaction waves. Pressures and pulse

durations were calculated from impact velocity, flyer thickness, and gap thickness follow-

ing standard procedures. Since it was not known whether the history of repeated precom-

pression would reduce or increase the spaU1 threshold of annealed OFHC copper, a tensile

stress was chosen which was believed to be below the spall threshold of the material. The

selection of this tensile stress was based on the information provided by Seaman et al. [10]

on the spall threshold of dead soft OFHC copper. Their investigation showed that the

minimum impact velocity required to cause spall in OFHC copper by symmetric impact was

0.0883 km/s. The pulse duration in this experiment varied between 0.4 and 0.8 gs. Thi;

specific experiment was done with a tapered flyer whose thickness varied from 0.79 to

1.58 m. Therefore, the impact velocity chosen for our first two experiments was such

that the tensile stress generated in the OFHC copper target would be less than that generated

in the Seaman et al. [10] experiment with an impact velocity of 0.0883 km/s. The impact

velocity chosen was 0.084 km/s. In 74201 the pulse duration of the first and second shock

waves were 0.78 and 0.57 Its, respectively. The time difference between the inducement

of the first and second shock wave pulses was 1.19 p.s. The induced tensile stresses at the

two planes P1 and P2 in the OFHC copper target were of the same magnitude, i.e.

approximately 1.48 GPa. The target was recovered by a soft recovery technique, in a rag

filled catcher tank. It was then sectioned, polished, etched and photomicrographed to

examine for evidence of spallation in planes P1 and P2 . Fig. 8 shows the photcunicro-

graphs of the OFHC copper target with planes P1 and P2 indicated on it. This figure

shows the presence of a string of voids in plane P1 and the absence of voids in plane P2 .

In other words, contrary to expectations, OFHC copper spalled following one shock at a

tensile stress of 1.48 GPa, yet the same target failed to spall under the same magnitude of
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tensile stress following two shock compression pulses in and around plane P2 .

Photomicrographs of this target, even at IOOX magnification, failed to show the presence

of voids in and around P2 . This figure also shows that the tilt, although not measured

during the experiment, was very small.

The second of the three experiments in OFHC copper (81103) was conducted at an

impact velocity approximately equal to that of the first experiment. The flyer thicknesses,

however, were nearly equal to each other so that the pulse duration of the two shocks

would be about the same (0.69 and 0.72 jis). Both the tilt and the scatter in the velocity

readings were relatively large but the results again showed the presence of voids at plane

P1 and the absence of voids at plane P2. This reinforces the conclusion drawn from the

first experiment that the spall threshold of OFHC copper appears to be affected by the

stress history.

Fig. 11 shows photomicrographs of shocked (from 74201) and unshocked OFHC

copper specimens. The material used in the present experiments corresponds to small

grained annealed OFHC copper investigated by Christy et al. [ 11]. However, in their ex-

periments the OFHC copper was subjected to stress exceeding 3.0 GPa. Nevertheless, one

of the failures shown in small grained OFHC copper bear similarity to those observed in

the present work. In both investigations a number of spherical voids were found to be nu-

cleated inside the grains in addition to those at the grain boundaries and grain boundary

triple points. An example of this observed in the present work is shown in Fig. 11.

Presently, only two mechanisms [12 & 13] for void growth have been proposed

but neither of them has been experimentally verified. The growth of microvoids is thought

to occur by generation and movement of dislocations. This requires the observation of

dislocation configurations in the neighborhood of voids. Christy et al. [Il] used high

voltage transmission electron microscopy (1500 kV) to obtain microstructural information

on the voids produced by impact on OFHC copper to elucidate the formation mechanism of

the observed voids. Their work illustrated the presence of an elongated void which was
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surrounded by heavily populated dislocations thought to be produced by shear strains re-

quired for the growth of a microvoid. This observation remains to be incorporated in a

void growth model. Christy et al. [11] did present the volume fraction of voids formed

upon spalling computed as a function of impact pressure for various metallurgical condi-

tions. We plan to compare the volume fraction of voids formed in their small grained

OFHC copper with those formed in our OFHC copper subjected to much smaller stresses.

In summary, stress history appears to affect the spall threshold of OFHC copper.

The mechanism underlying this effect needs to be proposed and tested not only in annealed

OFHC copper but in other ductile metals and alloys. Some of the important variables

which need to be controlled in future experiments are (i) metallurgical parameters (grain

size, impurity content, predeformation, including shock hardening), (ii) similar crystallo-

graphic metals and alloys and (iii) experimental parameters like pulse width and tensile

stresses.

SUMMARY

(i) Repeated shock release profiles in PMMA when shocked to 1.17 GPa can be

satisfactorily simulated numerically by using a single constitutive equation used to simulate

a single shock-release wave profile.

(ii) The effect of shock history (double shock induced precompression) in annealed

OFHC copper is to raise the spall threshold value compared to that obtained from conven-

tional spall experiments. In other words, the spall threshold of annealed OFHC copper is

not an invariant
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RESEARCH ISSUES RELATED TO DYNAMIC FAILURE MODELS

Spencer T. Wu

Air Force Office of Scientific Research

INTRODUCTION

Traditionally a good material model implies that the model can be

used to describe the constitutive relations of a material

(usually in a phenomenological way with the "continuum mechanics"

approach) and be able to be implemented effectively in a computer

code. To consider dynamic failures of materials and structures

subjected to high energy release, a model should be able to

represent the material behavior at both the macroscopic and

microscopic levels such that the local and global failures of the

material systems can be predicted.

This paper addresses research efforts in the development of

rational models for predicting the dynamic failure of solid

materials. In Section 2, subject areas involved are described.

In Section 3, concerns on the development of better dynamic

models are discussed. Based on these discussions, research

issues to be focused are listed in Section 4. Concluding remarks

are provided in Section 5.
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2. Subject Areas Involved

Failure modes of materials are dominated by the loading

characteristics and the structures of materials. For materials

subjected to high strain-rate type loadings, dynamic effects such

as stress wave propagations cannot be ignored. Hence the emphases

in the investigation of dynamic failures may be quite different

from those as in the static conditions. Current research efforts

involved in the development of dynamic failure models are in the

subject area of : deformation and fractures, transient effects,

experimental and computations techniques.

Fracture mechanics and investigation of failure mechanisms have

progressed well in the last twenty years. Material failures and

structural instabilities can all be better described with the

knowledge of microstructural behavior. E.g., interface and bond

related issues. Nevertheless, dynamic fractures are not addressed

only until recently when crack behavior such as curvings and

branchings are correlated with the microstructural response. In

most of the dynamic analysis, phenomena related to

microcrack/microvoid initiations, growth and coalescence, are not

explicitly included in the model.

Transient dynamic effects may cause the failure modes appeared

differently because of the high frequency loading actions and

residual properties in the materials. Shock induced phenomena

were observed due to physical changes such as generation of

86



dislocations as well as chemical changes such as phase changes.

Research studies in the last several years have provided clear

descriptions of many phenomena related to transient effects.

Further study is needed in many interdisciplinary areas to

understand the dynamic failures of materials.

Development of experimental techniques is critical in providing

information for determining the response mechanisms of the

materials. Modern developments including acoustic emission

techniques, scanning and imaging techniques have greatly improved

understanding of deformation induced phenomena, e.g.,

transmission electron microscope examinations of adiabatic shear

bands in metallic alloys. However, reliable experiemntal data for

developing rational material models, especially for brittle

materials, remain scattered.

Computation effectiveness is a major issue in the development of

a good analytical model. I.e., the computation time has to be

optimized in conjunction with the other issues including

numerical stability and accuracy. Many special "elements" and

criteria have been developed for dealing with some of the

mathematical difficulties, e.g., singularities; rezoning in the

numerical simulation. With the advancement in knowledge in the

area of mechanics and materials, it is important that the

physical processes be included in the computational model.
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3. Concerns on the Development of Dynamic Failure Models

Research efforts progressed recently have improved understanding

of failure mechanisms of materials. Concerns on further

understanding of the material behavior, advancing measurement

techniques and computational developments are described below.

Material Behavior: Efforts in the investigation of the formation

and processing of "microcrackings' and their relations to

macroscopic behavior are important in the development of failure

models. Microstructural responses such as void collapse in

brittle materials may not only dominate the fracture mechanisms

of the materials but contribute to the transition from brittle to

ductile deformations. Continued study of the microstructural

behavior is needed to understand the response of a material

system. Normally a comprehensive model is always developed first

with the static conditions. For the problem under consideration,

it seems that the development of micro-macro relations in dynamic

sense may have the advantage of comparing the wave equations at

different levels. To investigate in-depth the material response,

it is necessary that the energy released mechanisms at

microscopic levels be identified for all forms of energy, heat or

shock waves. For newly developed materails such as fiber

reinforced composites, the bond and shear effects at the

interface may behave differently as the traditional materials.

Hence, the dynamic mechanistic principles involved may also be

different for such materials and structures.
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Measurement Techniques: Insitu measurements are in general quite

complicated in the determination of responses of complex material

systems. It is more difficult to study the dynamic response of

materials because (ususally) the response histories of the

materials cannot be entirely interpreted based on the measured

data. This is especially true under inelastic and nonlinear

conditions. A jointed effort between experimental and analytical

studies has to be developed. E.g., Non-destructive measurements

against nonlinear mathematics.

Computational Development: Computational efforts need to follow

the approaches of the methods of analysis. To investigate the

failure of inhomogeneous material systems, modern statistical

mechanics approaches such as percolation theory and fractal

concepts may be useful. The formulation of the problem will be

different from the conditions developed in the past. I.e., an

integrated effort of the computation has to be established in the

analysis. There are certainly conditions where better

mathematical formulations are needed, e.g., the "FEM" formulation

for mixed mode conditions at the interface of the fiber and the

matrix in a fiber composite system. All of these require more

research studies in the area of computational mechanics.
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4. Research Issues to be Focussed

Based on the developments and the needs as described, research

issues to be further addressed are listed below.

a. Rapid Energy Release Mechanisms

Identify clearly the deformation and damage mechanisms to be used

as bases for developing sound theories to explain the material

and structural failures under very rapid energy releasing

conditions (including nonequilibrium states).

b. Microstructural and Macro-behavior Relations

Establish quantitative relations between the microstructural

parameters and material properties, and correlate the material

response with the structural response for complex composite

systems.

c. Measurement Techniques

Develop further the measurement techniques, jointly with the

modern development in other related disciplines such as non-

linear mathematics, to determine the nonlinear material and

structural response.

d. Computational Development

Develop integrated computational efforts to optimize the

numerical simulation of the physical and chemical processes.
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5. Concluding Remarks

In this paper, a few notes on the development of dynamic failure

models are addressed based on the state-of-the-art developments.

As this paper is addressed primarily toward the research

community, the mission oriented issues are not included in the

discussions. The author would like to thank his colleagues at

AFOSR for useful discussions related to this subject area.
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DAMAGE INITIATION MODELS IN IMPACT INDUCED DUCTILE FAILURE

Ian M. Fyfe
Department of Aeronautics and Astronautics
University of Washington, Seattle, WA 98195

INTRODUCTION

That dynamic effects can play an important role in the ductile failure process has been

recognized for quite some time; but the complexity of the process is such that it is extremely

difficult to identify whether the various mechanisms of failure are influenced by changes induced

by inertia, adiabatic heating, or material strain rate sensitivity, and to what degree. However,

if one considers only the initiation of damage by the nucleation of small voids or cracks the

problem becomes, more tractable, and it is also possible that, even if both inertia and strai,

rate did play roles, the experimental and theoretical considerations of dynamically induced

loading could be combined with the quasi-static case to determine the material parameters

required to predict failure. Although this paper deals mainly with the macro-level of damage

initiation as characterized by localization and the loss of structural integrity, the importance

of the micromechanics aspects, both in providing the basis of a model and defining damage, is

also considered.

One of the earliest studies on failure initiation was that carried out by Considre (11, who

developed a criterion for diffuse necking in tensile specimens. More recently the influence of

strain rate sensitivity on tensile teating was examined in some detail by Hart [2], and a general

survey of the deformation processes leading to failure was presented by Backofen [3]. However,

the realization that void nuclearion and growth was the undcr!ying mechanism was further

responsible for renewed interest in this area, with the result that a greater understanding of
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the whole process has resulted. The growth of voids under plastic deformation was analyzed

by Rice and Tracy [4], who noted the amplification of the growth rate due to stress triaxiality,

an observation also made experimentally by Hancock and Mackenzie [5]. The determination

of the conditions which lead to nucleation has been extensively studied, but unfortunately,

these difficult measurements have led to conflicting observations as to when nucleation occurs.

Several papers [6], [7] and [8] have combined both the theoretical and experimental aspects to

shed some light on the subject by showing that void nucleation is also a function of the mean

stress, and that the nucleation strain decreases with an increase in mean tensile stress.

A complicating factor in trying to define nucleation is introduced by the observation that

as nucleation occurs at second phase particles or other inclusions, the process also depends on

particle size; so that both particle-matrix decohesion, and particle cracking are contributing

factors, [9]. Thus nucleation can occur almost immediately after yield, and can continue

althrough the deformation process. However, at some point during deformation a proliferation

point is reached where the nucleation increases dramatically, [6]. It is thus generally agreed that

damage, and void nucleation in particular, is a statistical concept. Pan, Sage and Needleman

recognised this statistical feature of nucleation in the failure analysis described in [10]. In

addition a detailed study of ductile failure in Swedish iron by Thomson and Hancock I IJ

suggests that a bimodal distribution may be a more realistic model.

In this paper, experimentally determined failure strains, obtained under both quasi-static

and impact loading conditions, are plotted as a function of the mean stress. These results

are then examined in terms of a number of models that have been developed to predict this

particular type of damage. By this means it is hoped to better define the varies levels of material

damage so that a closer link can be made between the microscopic definition of damage, and the

continuum concepts of instability and localization. It is also hoped to show the compatabilty
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between different experimental techniques, and so define areas which require additional study.

NUCLEATION AND LOCALIZATION THEORIES

The complexity of ductile failure is such that models are of necessity limited to a narrow

range of deformations and constitutive equations, an example being the stability criterion of

Considire which is suitable only as a means to predict instability in a simple tensile test. This

limitation also occurs in the micromechanics area where models usually only apply to a par-

ticular mechanism, when indeed a number of mechanisms may be acting simultaneously. The

classic example being the nucleation of voids by both the decohesion of second phase particles

from the matrix, and the cracking of the particles. To examine all possible micromechanics

models is clearly beyond the scope of this paper, and so the choice is restricted to a particular

model that appears to be both compatible with the type of experiments associated with impact

loading, and the continuum variables of these experiments.

Nucleation

A model which meets the above requirements was developed by Goods and Brown [7],

and is based on the concept that a critical value of normal stress oc must be exceeded at the

particle-matrix interface in order that void nucleation may occur. If the stress at the particle

interface is assumed to be composed of a local stress aloc and a superimposed hydrostatic stress

Or,, this model can then be expressed in the form

0oc + ' M EI (1)

The value of aroe reflects the contributions of the microstructure, such as particle volume

fraction and the dislocation density which has accumulated at the particle. In the absence

of any recovery or annealing the dislocation density pzo , increases linearly with strain, and,

assuming that ajo is proportional to the square root of the density, then the nucleation strain,
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EN can be obtained from the relation:

V~= j~c~~Tm)(2)

where H is a material constant.

The above model, although obviously a very much idealized one, does give the expected

trend as to the effects of hydrostatic pressure on the nucleation strain. However, as nucleation

is essentially a continuing process with material deformation, the particular strain represented

by the above equation is susceptible to a number of interpretations. From a continuum point of

view to interpret this strain as the one controlling the satistical distribution seems reasonable,

but from a microscopic viewpoint it could well be defined as the proliferation strain, or the

strain required to nucleate a single void.

Localization

It is generally recognised that localization is triggered by both geometric and thermal

conditions. In the case of dynamic experiments, geometric triggered localization is difficult to

measure, and when it does occur, as in the case of diffuse tensile necking, it greatly adds to

the problems associated with data analysis.

As geometric necking does not occur in torsional experiments, the formation of shear

bands in this configuration are usually considered to be due to thermal instabilities. A model

described by Dodd and Bai [121, and Staker [13] can be applied, which has the form

-y = -Cn/AB(8r/OT)j7 y, (3)

where n is the strain hardening exponent in a power-law model, r is the flow stress in shear,

T is the temperature, and C (pc,,) is the volume specific heat. The parameters and A and B

are the fractions of plastic work converted to heat, and the fraction of heat conducted away

from the deforming zone respectively. It is generally assumed that A (! 0.9) and that B =1 for
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adiabatic deformation and B< 1 for nonadiabatic deformations. Other criteria where different

material behavior is assumed are described by Dormeval [14].

Where geometric localization does occur, as in the radial expansion of thin rings, the

theories developed by Hill [15], St~ren and Rice [16], and Needleman and Rice [17] might be

applied. The pertinent relations as given by Hill are

E =(4)1 +p

and

tanW = P = l/e2 (5)

where E* is the strain at localization, T is the angle between the principal strain axis and the

normal to the localized neck, el and C2 are the strains in the major and minor axes respectively.

For the thin ring expansion, where p = -1/2, the strain at localization is equal to 2n. If the

theory given in (16] had been used the results would be very slightly higher than those obtained

from Eq. (4). In the case of axisymetric straining, the model described in [17] has the form

C = (1 + 3n)(1 - n)/3 n < 1/3 (6)

The above equation applies in the diffuse neck, and is the bifurcation that just precedes failure.

A geometric localization model for torsional deformations was developed by Dodd and

Atkins [18], but as this model contains both the shear band length and an undefined parameter,

it is difficult to use. It should be recognised that the above quasi-static theories are very much

dependent on the constitutive models chosen, and in this paper only materials which can be

described fairly accurately by a power-law are considered; further it is assumed that the value

of n applies to the flow stress appropriate to the strain-rates of interest.
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EXPERIMENTAL CONFIGURATIONS

Introducing dynamic data into the considerations of the above models does not mate-

rially alter the number of mean stress levels that can be reached, but it does allow a wider

variety of experiments to be considered. In this paper we concentrate on three experimental

configurations, these being the high mean stress case associated with the plate impact test, the

intermediate condition of simple tension, and the zero mean stress case which results from the

torsion configuration. In addition only two materials were considered, 6061-T6 aluminum and

VAR 4340 Rc=33 steel, whose material properties are given in Table 1.

Values for the critical mean stress of Eq. (2) under quasi-static conditions have been

obtained by Argon and Im [6] for three materials using a combined experimental analysis

technique on -iotched tensile specimens. For the three materials tested, spherodized 1045 steel,

Cu-0.6 pct Cr, and maraging steel they determined that the ratio of critical stress to the

TABLE 1
Y E n Or/fTt C t 7*

MPa ® a (kPd/°C) (kPa/°C)

4340 831 213.0 0.065 -830 3600 0.313 0.425

6061-T6 295 71.3 0.050 -491 2533 0.285 0.406

t Refs. 12 and 13 * (A=0.9, B=1)

respective Young's moduli to be 0.0085, 0.008 and 0.009, respectively. The narrow range of

these values allows a reasonable estimate of o,, to be made. On the dynamic side, one of the

classic failure experiments is spallation created by plate impact, and for this paper the results

presented in [19] will be used. One of the characteristics of this type of experiment is that the

stress level required to cause failure increases slightly as the pulse duration shortens. In this

paper the stress values for the shorter duration pulses are not used, assuming that the increase

is due to inertial constraints.
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In the tension configuration, failure is examined in radially expanded thin r1ings, and

the techniques used are as described in [20] and [21]. To obtain the required expansion of

a thin ring specimen, an exploding wire system was used to generate a symmetric and axial

uniform pressure pulse which propagated radially through the medium surrounding the wire

to uniformly impinge on the inner surface of the specimen. One of the configurations, used

and not reported in [201, is shown in figure 1, where the wire to be exploded is on the axis of

a fluid-filled cylindrical cavity. The specimen is positioned on the outer wall of this cylindrical

region and, when loaded by the pressure pulse from the exploding wire, the specimen is free to

expand radially. In the configuration shown, the expansion of the ring is controlled by using

steel dies with different inner diameters chosen to halt the expansion of the ring at displacement

values where the failure process occurs; in particular, the point where necking, if it occurs, is

first observed. The rapid deceleration of the ring could well alter the microstructure of the

material, but it does not affect the ability to determine the strains at which these events occur.

Additional tension data were also obtained from reference [22].

The torsional data were obtained from a number of experiments, both quasi- static and

dynamic, varying somewhat in detail and sophistication depending on both the objectives, and

when the experiments were carried out. The aluminum data were those reported by Culver

[23], while in the case of the 4340 steel, the work of Tanimura and Duffy [24], and Olsen, Azrin

and Tsangarakis [25] was used. To allow this data to be compared with the others, the shear

strain was converted to equivalent strain by dividing by the square root of three.
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RESULTS AND DISCUSSION

Data from the above cited experiments are presented, where, to conform to the require-

ments of Eq. (2), the damage level is the square root of the effective plastic strain at various

points in the failure process. As is to he expected with the various definitions of failure in use,

the damage level can vary over a wide range, and the results are presented in such a fashion

that similar damage levels are connected.

Plastic Instability

As is to be expected the ductile failure processes are usually preceded by plastic insta-

bilities, for which the theories outlined earlier should apply. In the case of 4340 steel the test

configurations were such that diffuse necking was not to be expected, but in both the torsion

and ring experiments, localized bands or instabilities were observed. The bands which occur in

the thin ring configuration subjected to impact loading (i - 1x103 /sec.) can be seen ini figure

2, and the hoop strain at which these bands form, ce = 0.15, is in very close agreement with

the 2n value as predicted by Eq. (4). In quasi- static expansion of these rings, the data was

somewhat scattered, but the average value was only slightly lower.

For the torsion case the experimental instability strains given in [25] are shown in figure 3.

These results are interesting in that instability was reported for both the dynamic and quasi-

static configurations. When the dynamic instability strains are compared with the theoretical

results (see Table 1) the thermal instability model of Eq. (3) provided good agreement. An

indirect conformation of the above results is given by [261, who reported that in 4340 Rc=39

torsionally created adiabatic shear bands became evident when the shear strains reached ap-

proximately 0.14. This value is also shown in figure 3. The presence of instabilities under

quasi- static conditions is usually attributed to an increase in the number of voids just prior to

fracture, [181. However, as reported in [25], little evidence of void nucleation could be found.
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This is in accord with the thin ring experiments, where localization is purely geometric, and

as can be seen in figure 4a, very few voids are present in the localized region.

The above instability strains reported for impact loading, are also in agreement with the

values reported in [131, where the failure occurred in explosively loaded cylinders, with a mean

stress that was probably quite different from that experienced by either the expanding rings

or the torsional specimens.

In the case of 6061-T6 aluminum alloys there is no clear demarkation between failure and

instability. In the thin ring experiments, localized necking of the type shown in figure 2 was

not to be expected, mainly because the rings were too narrow, and so the standard diffused

necking preceded failure. Culver [231 found that torsional shear band instabilities were present

tinder both quasi-static and dynamic loading conditions, which was also the case for 4340, (25].

The theory given in Eq. (3) was again in good agreement with the dynamic experiments, but

in both cases the instability strains for the quasi-static tests were lower than the dynamic. As

the quasi static tests are nonadiabatic (B< 1)the theory of Eq. (3) requires that the instability

strains should be larger than the dynamic, and as suggested in [18] another mechanism may

be the cause. In addition the aluminum experiments had quasi-static instabilities which were

synonymous with failure, that this may be the influence of is voids is suggested by the necked

region in figure 4b. These instability results are summarized in figures 5 and 6.

Failure

In figures 5 and 6 the failure strains of the cited experiments are plotted as a function

of the mean tensile stress. In general the failure strain was the residual strain after impact,

measured at the point of fracture. How-ver, for the quasi-static results of references [20], [23]

and [24] the strain where there was an abrupt drop in load was used. As mentioned above this

was synonymous with instability in aluminum, but in steel both Culver [231 and Olsen et al

100



[25] observed localization well before failure.

Examining the experimental results for both materials in terms of Eq. (2), it would appear

that H is indeed a material constant. The consistent change in the critical stress between the

quasi-static and the dynamic is of more immediate concern. Although this shift indicates

an increased ductility at high strain rates for both materials, the magnitude and direction

of this change in ductility is probably due to a number of features associated with impact

loading, in particular, the strain-rate sensitivity of the material, inertia and thermal effects,

and the variation in defining damage levels. In this case neither material is inherently highly

strain rate sensitive, as contrasted with 1020 steel. In both the plate impact and expanding

ring configuration the deformation is constrained by inertia, in the plate impact this leads to

the uniaxial strain condition, and hence the higher mean stress. However, in the thin ring

configuration, or in simple tension, inertia forces act as constraints on the formation of the

neck, but have almost no effect on the mean stress. Thus it is to be expected that when

comparing the dynamic and static cases, the strains outside the necked region will be larger

under dynamic conditions, but the strains in the necked region could be similar for both. A

closer examination of the results indicate that the above is indeed the case. It thus appears

that the main cause of the difference between the dynamic and static data lies in how failure

or damage is defined.

If visible damage is used to define failure, then it is quite clear that not only void nucle-

ation, but void growth must be considered. As can be seen in figure 4, where the necked region

in thin rings under dynamic loading is compared, the 6061-T6 has very significant void growth

prior to failure, which does not seem to be the case in 4340 steel. This factor is reflected in

the fact that the ratio of dynamic to static failure strainc is less in the steel than in the alu-

minum. When the effective plastic strain is determined from area reduction values, [221, it was
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found that the damage level for static failure in the 4340 was within the range of values shown

in figure 5, but for 6061-T6 the equivalent values were much higher than even the dynamic

levels of figure 6. If the failure model of Eq. (6) is applied it also was in good agreement

when applied to the 4340 steel, but predicted a very much higher value of failure strain for the

6061-T6. However, it was also shown in [17] that porosity based models greatly reduces this

value. Again demonstrating the need to incorporate void growth concepts in general damage

theories.

From a macroscopic viewpoint if Eq. (2) indicates the beginning of void proliferation, then

to reach the higher damage levels of figures 5 and 6 an additional term must be added. This

term can be interpreted as either the continued nucleation of voids beyond the proliferation

point, or as a void growth component of the damage strain. The following expression would

satisfy either of these the contributions to the damage level.

VF-= 1 (7)

where g is a growth parameter which increases monotonically with damage. If the additional

term in the above equation represents continued nucleation, then it also implies that the extra

nucleation is from sites which require a higher critical stress to nucleate. This could represent

a bimodal distribution of nucleation sites. If the void growth interpretation is used, and if

damage strain is considered to be the sum of the nucleation and growth strains, then it can

be readily shown that the growth strain required decreases with increasing mean tensile stress.

This result is in accord with the calculations of Rice and Tracey [41 who found that as the mean

tensile stress increased, the far field strain required to cause acceptable void growth decreased.

It is also in accord with the fact, that at zero mean stress, larger strains are required to reach

the level of damage where failurc occurs. This latter requirement is also in accord with the

nucleation interpretation in that, if void growth is small more voids must be nucleated, as for
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example in ',oid sheets. As mentioned earlier the stability strains as reported by Giovanola

[26] agreed with those of [25]. In the case of the failure strains, when corrections were made t,

allow for the difference in hardness, the results were found to correspond to values that would

be predicted by Eq. (7).

CONCLUSIONS

Although the experimental evidence is limited, using a consistent measure of damage

indicates that the simple concepts on which Eq. (7) is based can provide a model which is

compatible with macroscopic measures of damage, in that H and a'c are essentially constant.

The required assumption that a well defined nucleation strain EN exists is consistent with

the void proliferation concepts of reference [8]. The results consistently indicate that plastic

instability occurs at strains lower than eN, and suggests that plastic instabilities of both the

local or diffuse kind do not require the formation of significant void levels for their existence.

Although from a continuum viewpoint, Eq. (2) cannot be applied in any general way to

predict the onset of pla.,tic instability, it could be used to predict the onset of failure, if ductile

failure is defined as the point in the deformation where voids proliferate.

As void nucleation also depends on the size distribution of the nucleating particles, the

nucleation strain of Eq. (2) could well be used to model some particular aspect of this dis-

tribution, rather than proliferation as suggested above. Unfortunately, materials research into

the statistical nature of nucleation is as yet not fully developed, so, for the present, it is to be

expected that nucleation levels will be interpreted in different ways. It would thus appear that,

despite the simplicity of the model, Eq. (7) could serve as a useful tool in impact analysis.
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A VOID GROWTH BASED FAILURE MODEL TO DESCRIBE SPALLATION
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ABSTRACT

A new dynamic failure model to describe void nucleation,

growth, and coalescence in ductile metals is reported. The model

is based on a pressure dependent yield criterion for compressible

plastic flow. This three-dimensional, plasticity-based continuum

damage model is incorporated into a finite difference, wave

propagation code. A procedure to determine the failure model

parameters is proposed. In this procedure, the model parameters

are calibrated based on the ability to match the experimental free

surface velocity history with code simulations. Model parameters

for OFHC copper have been determined successfully using this proce-

dure.

I. INTRODUCTION

Dynamic failure processes in metals have been studied exten-

sively for the last few decades. There are numerous journal

articles, technical reports, and conference proceedings on this

subject. Investigators with widely varying backgrounds, such as

applied mechanicists, metallurgists, and shock physicists have been

contributing to the understanding of dynamic failure. The fun-

damental failure mechanism associated with dynamic fracture in

ductile metals is one which considers the failure process as being

initiated by the nucleation of voids around inclusions and their

subsequent growth and coalescence as suggested by McClintock [1].

During the last two decades, different approaches have been taken

by several investigators to apply this mechanism as a means of

predicting ductile failure. Among them, Rice and Tracey [2] con-

sidered the growth kinetics of a single void in the matrix and
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developed a model which showed the dependence of void growth rate

on the triaxiality of the stress state. Hancock and MacKenzie [3]

provided the experimental evidence to support this dependency on

the stress state and used this model to predict failure initiation

in notched tensile specimens under quasi-static loading conditions.

Their study is obviously under low mean stress levels.

There are other experimental configurations in which this

fundamental failure mechanism is frequently observed and reported.

One such experiment involves impacting a flyer plate of one

material against a target of the same or other material at a higher

velocity. Fracture is induced in the target by tension arising

from the interaction of reflected shock waves from the stress-free

planes parallel to the plane of impact. The interesting feature is

the growth and coalescence of voids under high mean stress levels

leading to failure in the target plate; this type of failure is

often referred to as spallation. A simple criterion in which

stress, strain, pressure, or energy is assumed to reach a critical

value is usually employed to model spallation in computer codes.

This type of time independent failure model may work well when the

spall is well above the threshold conditions. Tuler and Butcher

[4] introduced a time dependent failure criterion. They assumed

that failure occurs only after a critical value of damage is

reached. However, there is no interaction between damage and

stresses and therefore strength degradation due to damage cannot be

modeled. This model has three parameters which have to be deter-

mined from spall experiments. Several other investigators [5-8]

proposed models to predict the spall threshold. They considered

the nucleation and growth rates of voids through rigorous mathe-

matical modeling of the failure process. Meyers and Aimone [9] and

Assay and Kerley [10] have reviewed the fundamental aspects of

spallation and the modeling efforts by the various research

workers.

The various approaches can be grouped into three categories:

(1) micro-statistical approach, (2) physically motivated empirical

approach, and (3) continuum mechanics based approach. The first
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approach was mainly pursued by Curran and co-workers [11]. Based

on the extensive micro-statistical analyses of the void sizes and

orientations, they developed models to describe the void nucleation

and growth processes. In the second ad hoc approach, the objective

was to develop models, not based on any extensive analyses of

microstructures or the kinetics of the failure processes, but

mainly based on the ability to predict certain measured quantities

such as the free surface velocity of the target plate. Under this

approach most of the works had been strictly developed and limited

to rectilinear motions. In most cases, the generalization of such

theories to any other geometry is not possible. The third approach

considered a general solution to the problem of spallation.

Davison, Stevens, and Kipp (7] presented a theory of spall damage

based on a unified and thermodynamically consistent treatment of

elastic-viscoplastic deformation. A continuum mechanics approach

was employed with a three-dimensional theory. Their theory con-

tained numerous model parameters which are not easily obtainable.

The present paper describes a failure model which is based on

microvoid nucleation and growth. The effect of damage (void volume

fraction) on strength (flow stresses) is incorporated through

associated flow rule based plasticity equations. An improved yield

function is proposed to describe the effect of pressure and void

volume fraction on the Von-Mises (effective) yield stress. The

strain rate effect on the failure process is modeled through a

viscoplastic matrix description. Model parameters are determined

from a few split Hopkinson bar tensile tests data and a free sur-

face velocity history of a target plate in a plate impact test.

Using the proposed model, spallation in OFHC copper is successfully

modeled.

II. CONSTITUTIVE/FAILURE MODEL

We identify four phases in the constitutive modeling of

damaged materials that were initially intact. The first phase of

the modeling is the description of the intact material behavior.

Prior to the development of damage, the aggregate is the fully
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dense matrix material which is usually modeled by incompressible

plastic flow theories. The second phase is the description of the

damaged material. We require a model to describe the behavior of

the aggregate material which contains microvoids/microcracks. In

the third phase, depending on the nucleation mechanism, a mathe-

matical description of the process will be required. This phase

will also require a model to describe the growth of damage. The

last phase of modeling is the coalescence of damage leading to

total failure. In the present approach, separate modeling of the

coalescence process is not needed. The void growth law is such

that the growth rate is rapidly increased as the damage approaches

its critical value.

A. Matrix Material

The fully dense, void-free matrix material can be modeled

through the state variable based viscoplastic constitutive equa-

tions of Bodner and Partom (B-P model) [12]. The B-P model in

terms of equivalent plastic strain rate bP and effective stress, Ym r
is qiven by,

2 D exp{-[
n + l  Z 2n

m ,o 0Y2

Z is a state variable. D is the limiting value of the plastic

strain rate. The value of D is usually set to 10 8/suc for metals.

n is a parameter that is mainly related to strain rate sensitivity.

The state variable Z describes the overall resistance of the

material to plastic flow and it depends on the loading history.

The evolution equation for Z is

= m(Z 1 - Z) Wp (2)

where Wp is the plastic work rate. Z1 is the maximum value that Z

can attain and m is a parameter that embodies the strain hardening
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behavior of the material. For highly strain hardening materials

like copper, m is described by,

-OW

m=m +m e p (3)

where m1 and a are additional model parameters. For less strain

hardening materials, m1 and a are assumed to be zero. Rajendran et

al [13] described the B-P model parameter evaluation scheme for

three different metals. In their scheme, all the parameters were

determined, from a few (at least three) tensile split Hopkinson bar

stress-strain curves at different strain rates and the steady state

value of the Hugoniot Elastic Limit (HEL), aHEL.

Until voids nucleate, the aggregate behavior can be described

by the B-P model. The plastic flow in the void-free aggregate is

incompressible, i.e., the sum of the principal or orthogonal plas-

tic strains is equal to zero. However, the nucleation of voids

will introduce dilatation and the plastic yield behavior will

depend not only on the second invariant J2, but also on the mean

stress or pressure. The constitutive model for the aggregate must

include these effects. For this purpose, we selected a yield-

criterion-based plastic flow rule in which the pressure dependence

enters explicitly into the calculations.

B. Modeling of Aggregate with Voids

We considered a yield-criterion-based approach in the con-

stitutive model formulation. For randomly distributed voids or

microcracks contained in the aggregate, the yield behavior will be

influenced by not only the second invariant of the deviatoric

stress (J2 ) but also by the pressure or mean stress (1 i). The

following form of the yield function has been considercd:

2 2A(p) J2 + B(p) I, = (4)

where A, B, and 6 are functions of relative density, p. Ym is the

effective stress in the material. (Note: the subscript 'Im' means
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matrix material and not a tensorial index.) Based on a critical

total deformation energy, Doraivelu et al. [14] derived the follow-

ing exprebsions for A and B:

A(p) = 2 + p2 (5)

and

B(p) = 1 (6)3

The expression for 6(p) under dynamic loading regimes was given by

Rajendran et al. [15]

b(p) = e p (7)

In general, this function is material dependent while the

functions A and B are independent of the matrix material behavior.

Thus, the yield condition for the aggregate can be written as:

f = (2+p2 ) J 2 + 1_  2 - 6 (p) Y2 = 0 (8)2 3 1 m

The viscoplastic strain rates in the aggregate can be calcu-

lated using the flow rule derived as:

ja (9)
1)

The proportionality factor can be obtained using the flow rule in

conjunction with the following relationship:

(1-f) Ym bP' = a..P (10)
mm ij 1

where f is the void volume fraction and related to relative density

p through f = l-p. Note that m is a subscript and not a tensorial

index. The above expression was derived from the definition that

the total plastic work in the aggregate is entirely due to the
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plastic work done by the matrix. By combining Equations (9) and

(10), 1 can be expressed by,

(1-f) Ym bra= m

aaij Oij

The plastic strain rates in the aggregate can be written as:

(1-f) Ym bp
iP m a#(

a riirl

In the constitutive model formulation, the total strain rate is

decomposed into elastic and plastic strain rates. The elastic

strain rates, e are related to the stress through Hooke's law as:

=D & (13)
ik kj

where Dik is the inverse of elastic modulus matrix, Eik.

Using the consistency condition which holds during the plas-

tic flow, we can obtain an expression for Ym as:

Ym =al

a Ym

An expression for ij can be obtained from Equation (13) by replac-

ing the elastic strain rate as the difference between total and

plastic strain rates,

a ij = EiR (i£ - ij) (15)

We now need an evolution equation to calculate f at any given

instance of the loading history. The void volume fraction rate, ,
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contains two parts; one due to the growth of existing voids, and

the other due to the nucleation of new voids.

C. Void Nucleation and Growth

The most widely used void nucleation model was the one that

was initially used by Chu and Needleman [16] in their analysis of

localized necking in biaxially stretched sheets. The model was

based on a mechanism in which voids are nucleated due to debonding

of inclusions from the matrix. The debonding can occur due to

either a stress or a strain criterion or both. The corresponding

model is given by,

F =F (Y + ) + F bm (16)
nl a m C m

where

1 m + P- aN 2

F f e (17)

S1r

and
-1 D - eN 2

2 2
F f= e 2 s2(18)

If the nucleation is due to only the matrix debonding from

inclusions, then the total void volume nucleated must be consistent

with the volume fraction of second phase particles. Therefore, the

values determined for the parameters fI and f2 must meet this

requirement. aN and eN are the mean equivalent stress and strain,

respectively, around which the nucleation stress and strain are

distributed in a Gaussian manner. s1 and s2 are the standard

deviations of the distributions. These two parameters will control
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the ranges of stress or strain over which most of the voids can be

nucleated.

The growth law can be directly related to the dilatation due

to growth of voids in the aggregate. By definition, the growth

rate is given by,

= (1-f) P. (19)g II

where repeated index means summation and i are plastic strain

rates in the three principal directions and f = 1-p. By taking

derivatives of the yield function with respect to the stress com-

ponents and by summing up the plastic strain rates (12), the

equation for void growth rate (19) can be written as

3 p2  (1 - p()
g =6 (p) [-PYm P) (20)

The evolution equation for the void volume fraction is then

given by the sum of k and k' as:g n

(1-f) + Fa + P) + FE (21)

where Fa and FC are given by Equations (17) and (18). Six model

parameters have to be determined to describe the void nucleation

process, when the process is due to both stress and strain

criteria.

When the stress state is triaxial with (P/Y m) >> 1, the

nucleation process is stress-controlled; whereas under uniaxial

stress states, such as in a thin ring cylinder or under plane

stress condition, the mechanism is dominated by strain. It is

fairly well established that under high strain rate and high pres-

sure loading conditions, the void nucleation mechanism is dominated

by the pressure (mean stress). To model the spall type failure,

void nucleation due to FE in Equation (16) is negligible and in

turn, we can set FE = 0 in the calculations. Effectively, the void
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volume fraction model will include only three parameters which can

be determined from the plate impact tests data.

The rate Equations (1), (2), (12), (14), (15), and (21) must

be solved numerically to describe the stress-strain response of a

void contained aggregate material. In particular, these equations

were carefully rearranged to create a well-behaved set of first

order ordinary differential equations. These equations are solv-

able by a first order Diagonally Implicit Runge-Kutta (DIRK) scheme

(17]. A first order DIRK scheme is designed to be stable, second

order accurate, and efficient for stiff differential equations.

The corresponding numerical algorithm was appended to the STEALTH

finite difference code [18). For this purpose several special

purpose subroutines were developed. Numerical exercises were

conducted using these new subroutines. The exercises were based on

a plate impact test simulation. (Note: a description of plate

impact test is given in a later section.) Results showed that the

subincremental time steps of the DIRK scheme had to be unrealisti-

cally small to sustain a stable solution when 6(p) approached zero.

Even for reasonably small time steps, a definite finite difference

grid sensitivity was noticed due to the widening gap between the

STEALTH time step and the DIRK scheme time step as 6(p) approached

zero. Further investigation revealed that this grid sensitivity

was due to the exponential form of the 6(p) function (see Equation

8). We investigated this aspect of the modeling as discussed in

the following section.

D. A New Form for 6(p)

The conditions on the coefficient of the matrix effective

stress in the yield function is 6(p) = 1 at p = 1 and 6(p) - 0 at

P = Pcr" We proceed initially with the form

(P) = g(p) - g(Pc (22)
g(1) - g(Pcr )
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which satisfies the conditions on the 6 function. However, a new

function for g(p) is proposed here as

g(p) = (1 - PN) (23)
INI (

The experimental observation of the spall signal indicated that the

first derivative of 6(p) at p = 1, or

= 6'(i) = [i - gNI g()](24)

should be much greater than unity. If 0, N, and P cr are treated as

model constants, the value for X can be solved from Equation (24)

by an iterative scheme. Note that Equation (23) requires x > N(l -

p)/INj, for any real N. A negative real value of N obviously

allows K to be close to zero so that P can become a large value

without requiring large values of INI nor requiring pcr = 1 in

Equation (24). A negative value of N also makes Equation (23) a

hyperbolic power function which we find to be numerically more

efficient than the exponential form. This fact has been substan-

tiated through the numerical simulations of a plate impact test

configuration.

III. PLATE IMPACT SIMULATIONS

In this section, the plate impact experimental technique is

briefly described. Detailed discussions on planar plate impact can

be found in References 19 and 20. Determination of the failure

model parameters is aided through the simulation of plate impact

tests. Simulations are carried out using the STEALTH one-

dimensional finite difference code. The effect of each model

parameter on the spall behavior is evaluated from the simulation

results. A methodology to determine the parameters is outlined.

The model also has been successfully used to describe spallation in

OFHC copper.
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A. Description of Plate Impact Test

The most commonly used test technique to determine high

strain rate material properties is the plate impact experiment.

This technique is schematically shown in Figure 1. A flat flyer

plate is impacted against a flat target plate. The resulting free

surface velocity history of the target is measured using a VISAR

(velocity interferometer). Using an embedded piezoresistive gage

between the target and a plastic backing block as shown in Figure

1, the stress history can also be determined.

A typical free surface velocity history profile is given in

Figure 2. The first wave (point E) that propagates into the target

plate is an elastic wave. Depending on the impact velocity, a

plastic wave (point P) follows the elastic wave. The unloading

wave that originates at the rear surface of the flyer arrives at

point R. Interaction of unloading waves from the free surfaces of

the flyer and target plates lead to high triaxial tensile stresses

in the target. Usually, nucleation, growth, and coalescence of

microvoids occur under such high stresses. This failure process is

often termed as spallation.

When the material inside the target fails, a compression wave

originates from the spalled plane toward the target free surface.

This compression wave arrival is at point S. The velocity plot

beyond point S is often referred to as the spall signal. The

velocity AVs is related to the stress level at which nucleation of

microvoids occur inside the target. The nucleation stress level,

aN' can be determined from a shock relationship,

1
oN = i p C AVs  (25)

where p is the mass density and C is the wave speed.

B. Physical Features

Impact of a 2-mm thick copper flyer against a 9-mm thick OFHC

copper target is modeled using the STEALTH code. The constitutive
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and failure models described in Section 2 were used to characterize

the high strain rate behavior of copper. Our first objective is to

demonstrate the experimentally observed important physical features

of the free surface velocity profile. In Figure 3, results from

two different simulations are shown. In the first simulation, the

model parameters were chosen so that the target spalls. A typical

spall signal, as is usually observed in an experiment, can be seen

in Figure 3. In the second simulation the spall is suppressed by

choosing a zero value for the nucleation parameter, f1 " The com-

plete unloading of the velocity history as indicated by the dotted

line clearly demonstrates the absence of spall in the target.

In Figure 4, the velocity histories obtained from simulations

at different impact velocities are shown. The most important

physical features in the velocity profiles are the velocity level,

AVs, and the time duration or period, Ts, of the wave transit

between the spall plane and the free surface. The AVs corresponds

to a stress level around which rapid microvoid or microcrack

nucleation occurs. If the impact velocity is greater than AVs, as

in the cases of plots A, B, C, and D in Figure 4, then spallation

will occur, as indicated by the spall signal. However, at an

impact velocity of 50 m/s, it can be clearly seen that spall

nucleation has not occurred. The tensile stresses in the target at

this impact velocity are lower than the mean nucleation threshold

stress aN (z16 kbars). In the nucleation model, nucleation is

assumed to occur at aN ± 3s, where s is the standard deviation.

Figure 5 shows that at velocity V = 100 m/s, the tensile peak

stress was around 13 kbars, compared to a peak stress of 18 kbars

in compression. This is due to void softening of material which

reduced the stress levels.

The void volume fraction distribution levels in the target at

three different times are shown in Figure 6. The distribution

clearly shows that the maximum void volume fraction is at the spall

plane which is around 2-mm (flyer plate thickness) from the free

surface (x = 9-mm). Presence of voids at and around the spall
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plane has been supported by metallographical studies conducted on

different materials [11].

In Figure 7, the loading path at the spall plane of the

target is shown. The void volume levels are shown by dotted lines.

Initially the strength is independent of pressure as can be seen

between points A-B. Damage nucleation has not yet initiated and

therefore f remains zero. At B, the nucleation occurs. As the

pressure increases, the void volume also increases between the

loading points B-C. Strength rapidly decreases between points C-D.

At one percent void (around D), the void contained aggregate can no

longer sustain tensile pressure, so the pressure rapidly decreases

as the void volume reaches 10 percent. Failure (coalescence of

voids) occurs between points E-F. Both pressure and strength

approach zero as the material completely fails.

C. Stability of the Solution

The integration of the ordinary differential equations for

the constitutive model by a Diagonally Implicit Runge-Kutta (DIRK)

scheme is known to be stable and at least second order accurate.

But if the time intervals of the DIRK scheme are much smaller than

the time step determined by the Courant criterion in the STEALTH

wave propagation code, then the stability and accuracy of the

solution becomes uncertain. Depending on the DIRK time step size,

the STEALTH stable time step for a particular zone (or element), as

determined from the Courant condition, may be reduced by an integer

factor ranging from 2 to 10. This factor is initialized to one,

indicating no reduction in the stable time step. Then the factor

is either increased by one if the last DIRK time step is less than

one tenth of the STEALTH time step, or decreased by one if the last

DIRK time step is greater than two tenths of the STEALTH time step.

This method allows a gradual, but not necessarily permanent, reduc-

tion in the STEALTH stable time step down to one tenth of the

stable time step computed from the Courant condition. Since there

is no mathematical criterion of stability for the entire solution,

a few numerical exercises were devised to check for solution
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stability and accuracy. These exercises involved several plate

impact simulations. One effective numerical test was to determine

if the total momentum and the total kinetic energy remained con-

stant during a plate impact simulation. The solution was accepted

only if this condition was met. The second exercise was to deter-

mine if the entire solution remained essentially the same if the

grid size was varied. The results are shown in Figure 8 for two

impact velocities, 200 m/s and 500 m/s for the three different grid

sizes. It is possible to absolutely ensure stability and accuracy

by forcing the STEALTH time interval to be the same as the DIRK

scheme time interval, but this is costly in terms of programming

effort and excessive computer time. In any case, numerical exer-

cises to vary the numerical integration and stability parameters

should be conducted tc optimize the stability, accuracy, and com-

puter time of the solution. The results so far indicate that the

solution is stable and reasonably accurate.

D. Sensitivity Study

It is important to evaluate the effects of various model

parameters (aN' f' s, , N, fcr ) on the numerically simulated

failure process. For this purpose, we conducted a sensitivity

study. The sensitivity of the dynamic failure model parameters on

the solution (in the free surface velocity versus time plot) can be

checked by varying the values systematically. The variation in the

values of the three void nucleation parameters, (aN' f, and s) were

examined first, and then the three void growth parameters (S, N,

and fcr ) were examined.

An increase in the value of aN causes the spall signal as

shown in Figure 9 to occur later while the solutions during the

rebound tend to merge together. Likewise, a decrease in the value

of f causes the spall signal as shown in Figure 10 to occur later

while the solutions during the rebound tend to merge together. It

appears the void nucleation parameters a N and f1 have a strong

influence on the initial spall signal, but become a negligible

influence on the void growth which affects the rebound.
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The standard deviation s can be defined as a fraction of N .

The sensitivity study (see Figure 11) used three different frac-

tions, 0.125, 0.25, and 0.5. Recall from Equations (16) and (17)

that the model for void nucleation due to stress follows a Gaussian

distribution with mean a N' which allows nucleation to occur for a

stress range of aN ± 3s. Since void nucleation in metals can only

occur during tension, a practical upper limit for the fraction is

one third. This prevents a negative lower bound for the nucleation

stress range. Varying the stress standard deviation, s, has only

minor effect on the spall signal or the rebound as shown in Figure

11.

The rebound peak of the spall signal increases for increasing

values of the void growth parameters 0 and INI as shown in Figures

12 and 13. The initial slope of the spall signal is less in-

fluenced by N than P. Further sensitivity studies showed that the

void growth parameter P seems to affect the slope significantly as

shown in Figure 12. Taking advantage of the negligible influence

of N on the slope, the parameter P can be estimated by matching the
spall signal slopes between the simulation and experiment. Varying

fcr from 0.6 to 1.0 had a very minimal impact on the spall signal

and the rebound. Therefore, we can arbitrarily choose a value of

one for fcr which is consistent with the definition of f at

failure.

In summary, the sensitivity study indicates that the failure

model parameters can be systematically determined by matching the

simulation results with the spall signal. a N can be obtained from

the relationship (25). The value for AVs is available from the

velocity history. The value for s can be arbitrarily chosen to be

one-fourth of aN . A theoretical value of one can be assigned for

f cr The only remaining parameters that need to be determined from

the spall signal are, fl, P, and N. f, can be determined by match-

ing the spall arrival time. P is chosen based on matching the

slope of the spall signal and finally N is selected based on match-

ing the rebound peak of the spall signal. We successfully employed
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this scheme and determined the model parameters for OFHC copper.

The following section describes this effort.

E. Model Parameters for OFHC Copper

The constitutive and failure models discussed in Section 2

were used to describe OFHC copper at high strain rate loading.

Rajendran and Bless [21] determined the B-P model parameters from

split Hopkinson bar experimental data and the steady state value of

aHEL . The correspondinq parameters are given below.

Do m I m I n Zo  Z1

1/sec kbar kbar kbar kbar kbar

108 1.1 15.0 150 0.4 8.0 65.5

The plate impact experiment on annealed OFHC copper reported by

Rajendran et al. [15] was employed in the failure model parameter

evaluation. A 2-mm copper flyer was impacted against a 9-mm copper

target at an impact velocity of 185 m/s. The free surface velocity

history of the target was determined by VISAR measurements. This

velocity history was used in the model parameter calibrations.

Based on the sensitivity study discussed in the preceding

section, the failure model parameters are estimated. Out of the

six parameters UNF s, cr' fl, P , and N determination of the first
three are fairly straightforward. The value for a N can be deter-

mined from formula (25) and the corresponding value was 16 kbar.

In order to minimize the number of model parameters, by taking

advantage of the fact that s and fcr are less sensitive to the

failure processes, we arbitrarily assigned s = 0.25 aN and fcr = 1.

We showed earlier that the spall signal did not show significant

differences for s = 2, 4, and 8. Similarly for fcr > 0.5, the

results showed similar trends and therefore a theoretical value of

1 was chosen for f

The remaining parameters ,, N, and f were determined by

adjusting them until the simulated free surface velocity matched
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well with the experimental data. Following the guidelines dis-

cussed in the preceding section, f1 was adjusted to approximately

match the spall signal arrival time. B was modified until the

average slope between points A-B in Figure 14 matched with the

experimental data. Finally, the value of N was chosen so that the

peak velocity at C matched with the data. The corresponding

failure model parameters for OFHC copper are given below.

N N fcr
(kbar) (kbar)

16 4 0.01 65 -2.4 1

It can be seen from Figure 14 that the simulated free surface

velocity history using the newly developed dynamic failure model in

STEALTH finite difference code compared extremely well with the

experimental data. The model parameters were systematically

developed using standard high strain rate experimental techniques.

The developed model evaluation scheme can be extended to other

materials which fail under dynamic loading conditions due to void

nucleation, growth, and coalescence.

IV. CONCLUSIONS

Void nucleation and growth based constitutive and failure

models to describe spallation type failure processes in ductile

materials under dynamic loading conditions were presented. The

model is three dimensional and based on micromechanical parameters.

Strain rate dependency on the strength (flow stress) and the pres-

sure effect on the plastic flow were also included in the model

formulation. New subroutines incorporating a sophisticated numeri-

cal procedure were successfully developed to describe the failure

model in the STEALTH finite difference code. Numerical stability

of the stiff differential equations that describe the model was

demonstrated through plate impact simulations.
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The matrix material description through the Bodner-Partom

model introduces the necessary strain rate dependency into the

model. The Bodner-Partom model parameters were determined from the

split Hopkinson bar stress-strain data at three different strain

rates and the steady state value of the Hugoniot Elastic Limit from

the plate impact experiments. Rajendran et al. described the

procedure to determine B-P model parameters elsewhere in Reference

13.

The pressure dependent yield function served as a plastic

potential through which the damage growth and degradation of

material strength were effectively modeled. The void nucleation

and growth models contained six parameters. The plate impact test

simulation results demonstrated that only three parameters, fl, 0 '

and N, have to be determined by adjusting them to reproduce the

experimentally observed free surface velocity history of the tar-

get. It was also shown that the determination of the other three

parameters (aN, s, fcr ) was straightforward and did not require any

calibration.

This model can be implemented into any one-, two-, and three-

dimensional finite difference/elementwave propagation/dynamic

codes. We successfully implemented it into the STEALTH finite

difference code and determined the model parameters for OFHC cop-

per. Generality of the proposed three-dimensional failure model in

configurations other than plate impact tests is yet to be

evaluated. The validity of the model parameters must be evaluated

by conducting additional plate impact tests with different thick-

nesses of both the flyer plate and target.
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MICROMECHANICS OF FAILURE AT HIGH STRAIN RATES:

THEORY, EXPERIMENTS, AND COMPUTATIONS

S. Nemat-Nasser

Professor of Applied Mechanics and Engineering Sciences

University of California, San Diego, La Jolla, California 92093, U.S.A.

Abstract

This paper examines the micromechanics of material failure by shear

banding, void collapse and void growth, microcracking, and related

phenomena at high strain rates. The following topics are discussed: (1)

physical modeling and analytical formulation of void growth or void

collapse in single crystals, where the effects of local anisotropic plastic

deformation by slip, the rate of loading, and material ductility, on the

change in the void geometry and subsequent failure mechanisms are reviewed;

(2) a review of some recent experiments on void collapse in single and

polycrystalline ductile materials, which seem to corroborate the

theoretical predictions and demonstrate how a very ductile material can

undergo brittle tensile fracturing normal to the applied compression, in

the absence of any applied tensile loading; and (3) a phenomenological

constitutive model for rate-dependent plasticity, including effects of the

vertex structure and the temperature on the plastic flow.
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I. Introduction

It is well known that large plastic deformation of ductile crystalline

solids often leads to strain localization and shear banding which may

persist and cause rupture. While this phenomenon has received considerable

attention for quasi-static loading regimes, the corresponding dynamic case

has been given far less attention numerically, analytically, and

experimentally. Quantitative experimental observation of the flow and

failure of solids at high and ultrahigh strain rates requires sophisticated

and very expensive facilities and very skilled technical support. Because

of this, few laboratories have been able to develop the required facilities

in order to address the related fundamental scientific questions. Hence,

many basic experimental issues associated with flow and failure modes of

solids at high strain rates still remain unexplored.

In response to this paucity a new center, the Center of Excellence for

Advanced Materials (CEAM), has recently been established at the University

of California, San Diego, with the explicit objective of developing

experimental, theoretical, and computational facilities and expertise, to

study the basic problem of material performance at high strain rates.

Figure 1 shows schematically the manner by which major efforts of this

Center support each other with the aim of tailoring the microstructure of

materials for optimal dynamic performance.

As is seen from Fig. 1, one of the major aims of CEAM is the modeling

of inelastic deformation and the failure modes of advanced materials. This

includes the numerical modeling of ductile rupture at high strain rates
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which involves shear banding, adiabatic shearing, and related phenomena.

Both micromechanically based and phenomenological constitutive models are

considered.

This paper examines shear banding, void collapse, microcracking, and

related phenomena at high strain rates, based on physical modeling

experiments and phenomenological constitutive relations. These relations

are developed within a framework which is sufficiently general to include a

number of significant features. For example, the effects of thermal

softening, the vertex structure of yielding, and the apparent increase in

the flow stress with increasing strain rate, can be accommodated. Some of

these issues are examined and illustrated in the following. In particular,

the following topics are discussed: (1) physical modeling and analytical

formulation of void growth or void collapse in single crystals, where the

effects of local anisotropic plastic deformation by slip, the rate of

loading, and material ductility, on the change in the void geometry and

subsequent failure mechanisms are reviewed; (2) a review of some recent

experiments on void collapse in single and polycrystalline ductile

materials, which seem to corroborate the theoretical predictions and

demonstrate how a very ductile material can undergo brittle tensile

fracturing normal to the applied compression, in the absence of any applied

tensile loading; and (3) a phenomenological constitutive model for rate-

dependent plasticity, including effects of the vertex structure and the

temperature on the plastic flow.
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2. Physically Based Analytical Modeling of Void Growth and Void Collapse

in Single Crystals

Plastic flow and failure mechanisms of ductile crystalline solids

generally involve initiation and growth (under tension) or collapse (under

compression) of microvoids. The process is highly rate-dependent, and

whether or not the final failure regime is in a ductile or brittle mode for

the same ductile crystalline solid, generally depends on the void

configuration, on the state of stressing, and on the rate at which plastic

flow takes place. Furthermore, even when the solid is a polycrystal with

an overall isotropic response, its plastic deformation at the local crystal

level is dominated by the local crystal anisotropy, and hence the growth or

collapse of voids within a crystal is an anisotropic process, even under

overall all-around uniform tensile or compressive forces. Such local

plastic deformation occurs on specific geometric planes and is controlled

by the rate of flow when slip is the predominant mode of plastic

deformation.

Analytical studies of void growth and void collapse generally have

been phenomenological and based on isotropic constitutive models; see,

e.g., Nemat-Nasser et al. [1] for discussion and references. In an effort

to include: i) the influence of local plastic anisotropic flow by plastic

slip, and ii) the influence of the rate of plastic deformation on the

mechanisms of void growth or collapse, a two-dimensional problem involving

a double-slip system has been considered by Nemat-Nasser and Hori [2] and,

for various far-field stress states imposed at moderate as well as at high

and ultrahigh rates, void growth and void collapse have been studied
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analytically; in a more recent work, Hori and Nemat-Nasser [3] have

extended their results to fully three-dimensional cases.

In this section we briefly review the analytical formulation, present

some numerical examples, and summarize the basic conclusions which seem to

have important implications for ductile versus brittle response and failure

modes of very ductile materials at high strain rates.

2.1 Formulation

High strain rate problems present enormous analytical difficulties

because: i) the involved plastic deformation is highly rate-dependent; ii)

plastic flow is anisotropic, occurring on geometric slip-planes; and iii)

the inertia effects render the field equations extremely difficult to

solve. The inertia terms may be neglected in formulating the constitutive

models which may then be used in the general dynamic field equations that

include the inertia terms. However, the effect of anisotropic plastic flow

and the rate dependency of this flow must be included in the

micromechanical modeling of constitutive relations involving void growth

and void collapse in crystalline solids.

As an illustrol'ion, consider a face-centered cubic (fcc) single

crystal containing a void, subjected to far-field stresses ar$ . Denote by d

and w, respectively, the deformation rate and spin tensors, and let

superscripts e and p stand for the elastic and plastic parts of the

corresponding rates. The stress rate corotational with the elastic spin is

related to the elastic deformation rate by Hooke's law,
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;ij + d~k aij - LijkLdt (2.1)

where LijkL is the elasticity tensor. The plastic part of the deformation

is produced by slip on specific slip systems which, for an fcc model, will

involve twelve active systems,

dj- p~ , w- -j , (a summed), a - 1, 2, ... , 12,

1 ~. (2.2)
i (s'fnf+s"n'f), s sn-s; )n (no sum on a)

Here 4o is the slip rate and s4 and nf are the tangential and normal unit

vectors of the a-th slip system. Plastic flow by slip is assumed to follow

the power-law, j - n(r/rr)n, where q, Tr, and n are regarded as material

parameters, and r is the resolved shear stress. The exponent n is very

large, say, about 100 to 150, when the strain rate is relatively small,

say, of the order of 103 or less, and it is about unity for large strain

rates. The quantity Tr is the flow stress associated with a given slip

system and, in general, depends on the accumulated slip on all other slip

systems (cross-hardening), as well as the accumulated self-slip (self-

hardening). It also depends on the temperature and hence the plastic work.

The slip-rate 4, defined by the power law, has some serious

limitations, especially at very high slip rates, where the exponent n is

set equal to 1. An obvious limitation is that this does not place an upper

value on the rate of slip. An alternative and still very simple model is

to use an exponential relation of the form y - jM exp (-arr/7), where jM is

the upper value of the slip rate, and a is a numerical factor. Other, more

physically based models have been proposed, but will not be discussed here.
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2.2 Method of Calculation

In the sequel we confine attention to two-dimensional problems with

two active slip systems; see Fig. 2. This is the problem associated with

the actual experimental results which are discussed in Section 3. For a

discussion and results of the general case, see Hori and Nemat-Nasser [3].

For details of the actual calculations, see Nemat-Nasser and Hori [2].

The far-field stress is assumed to be prescribed by giving the far-

field stress rate & as a function of time. The deformation of an

initially circular void with radius ar is computed incrementally, using the

following procedure:

1) At a specified time t - to, an elliptical cavity (see Fig. 2) with

boundary r(t0 ) (i.e., a,, a2 and X are prescribed) in an infinite

elastoplastic solid is considered. The stress field a(t0 ) is known. The

solid is then subjected to a far-field incremental loading defined by

stress rate &'.

2) The instantaneous response is assumed to be purely elastic for a step

loading Aa' - &'At, and the instantaneous stress rate &(t0 ) and the

incremental stress field Aa - &(t0)At are calculated. The new stress

field a(t 0 +At) is then obtained as the sum of a(t 0 ) and Aa(t 0 ),

aij (t 0+At) - aij (to) + Aaij + O(At 2). (2.3)

3) From the current stress field a(t0 ), the resolved shear stress on each

slip system is calculated, and the current plastic deformation rate and

spin tensors are obtained. The corresponding displacement gradient is

then obtained from the sum of the elastic and plastic parts.
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4) Ignoring the elastic contribution to the void shape change, and taking a

sufficiently small time increment, the incremental small displacements

of the points along the void boundary r(t0) are computed; this

deformation by rate-dependent plastic flow is assumed to take place

during the time increment At.

5) The new void geometry, in general, will not be elliptical. To continue

the computation, an equivalent elliptical void with boundary r(t0+At) is

calculated, using the following criteria:

a) The maximum distance from the center to the perimeter of the

deformed void is taken to be the major semi-axis a, of the

equivalent ellipse.

b) The orientation of a, established in a) is taken to be the

orientation of the major semi-axis, X.

c) The aspect ratio of the equivalent ellipse is defined by p -

A/xaq, with A being the area of the deformed void.

This procedure can be continued until the aspect ratio of the

equivalent ellipse becomes so small that the ellipse can be regarded to be

a crack (void collapse), or until the aspect ratio attains a limiting value

with the void area increasing in an unstable manner (self-similar

expansion).

2.3 Tensile Cracking Normal to Applied Compression

Tensile cracks are generally formed in brittle materials in a

direction normal to the applied tensile loads. Indeed, under mixed opening

and sliding modes, cracks often curve and take on a direction normal to the
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maximum applied tension, or parallel to the maximum applied compression;

see Horii and Nemat-Nasser [4]. Hence, it defies intuition that tensile

cracks can form in a very ductile material normal to the applied

compression. The theoretical model of Nemat-Nasser and Hori [2] suggests

that this indeed can happen during unloading when a pre-existing void is

fully or partially collapsed into a crack by uni-axial compressive loads.

Furthermore, whether or not a collapsed void will extend as a tensile crack

and the extent to which it will grow, depend on the initial void size, the

rate of compressive loading, and the material toughness.

The analysis is based on the simple assumptions that unloading occurs

elastically and that the crack may grow if the Mode I stress intensity

factor exceeds a given critical value. The Mode I stress intensity factor

at the tip of a crack of length 2a (which is obtained by the extension of a

crack of length 2a, formed by a collapsed void), due to the superposition

of accumulated stresses during loading and released stresses during

unloading, is given by

an -()) 2Ja -(2- 2 ;1 + an(u )  a, (2.4)

a, (,r(a- )

where the subscript n denotes the stress component normal to the crack

face, and where it is assumed that the crack faces remain traction-free,

and that the far-field stresses existing prior to unloading are removed by

the amount o (u) . In Eq. (2.4) superscript I on a stands for the magnitude

of the stress during loading, and superscript u stands for the unloading

stress. In the actual calculation the extended crack length defined by a,

is chosen such that the value of K!, calculated from (2.4), equals the

153



prescribed critical value of the stress intensity factor.

The calculation shows and experiment verifies that higher compressive

loads are required at higher loading rates, in order to collapse a void.

Hence, larger stress intensity factors are attained in complete unloading,

when void collapse occurs at higher loading rates. Thus the response of

the same material containing the same microvoids will not be the same when

the loading rate is changed: the material becomes stronger but more brittle

at higher (compressive) loading rates.

For a given material with known fracture toughness, from Eq. (2.4) one

can estimate the minimum size of the void which, upon collapse into a

crack, does not extend during unloading. This minimum void size decreases

with increasing loading rates.

2.4 Results and Discussion

The process of void growth and void collapse and the subsequent

failure mechanisms depend on the orientation of the slip systems, the state

of stress, the rate of loading, and the initial void size. The following

general results are obtained.

1) Even under all-around uniform compression, an initially spherical

(circular in two dimensions) void quickly becomes nonspherical and may

collapse into a crack. Depending on the rate of loading, the ductili-

ty of the material (which is also affected by the rate of loading),

and the initial void size, the crack which is formed by the void col-

lapse may extend in its own plane during the course of unloading,
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leading to failure by a brittle type tensile fracture, even though the

material has not been subjected to any overall tensile loads. This

occurs at high strain rates for sufficiently large voids. The minimum

void size required for such a failure decreases with increasing

compressive loading rate.

2) Void collapse in compression and void growth in tension are basically

different processes and one cannot be regarded as the reverse of the

other. Thus, phenomenological models currently used to estimate

ductile fracture, which do not distinguish between void growth and

void collapse, are of limited usefulness.

3) An initially circular (in two dimensions) void may collapse into a

crack, even under uni-axial tension, if the orientations of the slip

systems are suitable. Similarly, overall shear stresses can collapse

a void into a crack. However, under tensile loads, voids usually

expand into ellipsoidal cavities which may then grow self-similarly in

an unstable manner, leading to ductile failure.

4) Figures 3a and b give typical results for void collapse in uni-axial

compression, using a double-slip plane deformation assumption. In

Fig. 4 we show a typical result for a spherical void which is

deforming into a complicated shape under all-around compression.

Figure 5 shows void growth under all-round uniform tension, and Fig. 6

shows how a void can collapse even in uni-axial tension. These are

presented here for illustration, and the interested reader is referred

to Nemat-Nasser and Hori [2] and Hori and Nemat-Nasser [3] for more

details and examples.
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3. Experimencs

The results of the void collapse calculations reported in Sec. 2 are

in good accor with data reported by Butcher et al. (51 on porous aluminum,

where it was observed that voids collapsed in aluminum under 70 kg/mm2

uniform compression, with reference stress of 40-50 kg/mm2 . This is

essentially what the computation of Nemat-Nasser and Hori [2] has revealed

for stress rates as high as 104'rs '1, where r, is the reference stress.

In an effort to fully understand the failure mechanisms associated

with dynamic void collapse in ductile metals and to verify the theoretical

predictions, a systematic experimental program has been initiated by the

author and coworkers at CEAM. Initial experiments are uni-axial and are

done both quasi-statically (strain rate - 0.001/s) in a servo-controlled

hydraulic testing machine, and dynamically (strain rate - 1000 to 104/s) in

a split Hopkinson bar apparatus. Test specimens are copper and mild steel

coupons approximately 17.8mm by 8.9mm, with 0.9mm thickness. Both

polycrystal and single-crystal copper as well as (polycrystal) 1018 steel

coupons are tested. Polycrystal coupons are conventionally machined, and a

circular hole of approximately 350 to 600pm is drilled through the

thickness at the center. Single-crystal coupons are obtained from a large

(25mm dia. by 150mm long) copper crystal. Orientation is determined from

back reflection Laue photographs of the X-ray diffraction pattern. Coupons

are then Electrical Discharge Machined (EDM) from the large crystal, and an

EDM of about 120pm diameter circular hole is put through the thickness at

the center. Coupons are supported against buckling by sandwiching them

between semicircular cylindrical pieces of OFHC copper or steel. 17 .8m
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dia. by 8.9mm high. The sandwiched assembly is held together in a steel

annulus whose height is selected to limit the total compressive deformation

to a predetermined amount of plastic strain. The assembly is held in the

steel annulus with Styrofoam pillows. Supporting copper pieces (and

specimens) are annealed at 650'C for one hour after machining. Records of

hole shape are made with a scanning electron microscope before and after

testing.

Figure 7 shows the collapsed void in single-crystal copper axially

strained by about 21.4% at 1,100/s strain rate. The upper figure shows the

shear bands. The crystal is cut in such a manner that two slip systems in

the plane of the specimen are activated. Hence, the thickness remains

essentially constant. Since one of the slip systems dominates, the

deformed void rotates, and the final configuration is not quite normal to

the axis of compression. The two lower figures in Fig. 7 are the

electronmicroscopic record of the polished and etched specimen. As is

seen, the collapsed void has extended as a crack in dynamic crack growth

fashion, resulting in multi-branching which suggests a rather high crack-

growth velocity. Experiments of this kind clearly have shown that the

cracks extend in many different directions and not only in the direction of

the cleavage plane of the crystal.

Figure 8 shows the void collapse (initial void size of about 600pm) in

compression and subsequent crack growth in 1018 mild steel, at various

indicated strain rates. Extensive crack branching is observed which is an

indication of very high velocity crack growth. The tensile cracks

initially run straight ahead for a distance and then branch out. The
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resistance of the material to plastic flow during compressive loading and

the extent of subsequent tensile cracking decrease with decreasing strain

rate; compare the three experiments shown in Fig. 8.

It is therefore seen that brittle-type tensile cracking is produced in

very ductile single and polycrystals under purely compressive loads, in a

direction normal to the applied compression. The large local plastic flow

during void collapse produces residual strains which, during unloading,

create cracks. Since, in the absence of voids, the failure mode of the

same material is by ductile rupture, it can be concluded that the

compression-induced large plastic flows produce certain embrittlement and

hence, change the mode of failure of the material. To completely

understand the microstructural changes that result in such a response,

detailed studies of the dislocation structure in the region close to the

collapsed void are required. For detailed discussion and additional

experimental results the reader is referred to Nemat-Nasser and Chang [6].

4. Computational Modeling

As commented on before, unstable flow by localized deformations is an

integral part of large-deformation metal plasticity. Hence, effective

numerical models must be capable of capturing localization by shear banding

as a part of the solution. This, however, is an exceedingly difficult

problem which has eluded the computational solid mechanics community.

While there is extensive literature on the numerical study of various

phenomena relating to the problems of necking and shear banding, they have

involved spacialized computer programs with special elements which must be
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arranged a priori in a manner which anticipates the location and

orientation of the shear bands. Furthermore, essentially all such

calculations concerned quasi-static deformation.

In view of this, a coordinated effort involving collaboration with

researchers at Sandia National Laboratory, at Lawrence Livermore National

Laboratory, and ANATECH, has been initiated at CEAM in an effort to develop

within the context of large-scale explicit computer codes, PRONTO and DYNA,

constitutive models and associated algorithms which are capable of

predicting localized deformations at high strain rates, say from 102/s to

107/s. In this section some preliminary results are reviewed and

illustrative examples given. A more complete discussion is found in

Nemat-Nasser ec al. [7].

4.1 A Phenomenological Model

A simple rate-dependent phenomenological model can be based on the

assumption that the plastic deformation rate tensor dP is decomposed into

two components, one co-axial with the deviatoric part of the Kirchhoff

stress, the other normal to this stress, when viewed as vectors in the

deviatoric stress space. The first component contributes to the rate of

plastic work and may be associated with the gradient of a smooth plastic

potential. The second component has zero contribution to the rate of

plastic work, but serves to model the structure of the vertex on the yield

surface, which is an integral part of slip-induced plasticity.

More specifically, we write for the deformation rate tensor d, with

components dij ,
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d-d+dP , (4.1)

where the elastic part de is given by

de - M:f , (4.2)

with M being the elastic compliance tensor, and i an objective rate of

change of the Kirchhoff stress. For the plastic part of the deformation

rate tensor we write,

dP-ypu+ArA (4.3)

where

1', - (44)

Hence,

':'-1 , ' 0 (4.5)

In (4.3), A is the noncoaxiality parameter (Nemat-Nasser [8]) which,

in rate-independent plasticity, plays an essential part in giving the model

its predictive capability in large plastic deformations that involve

instability by localization; see Rice [9], Storen and Rice [10], Nemat-

Nasser [8], Nemat-Nasser and Iwakuma [11], and Asaro [12].

For rate-dependent plasticity we assume that j is defined in terms of

the effective stress r, in the same manner as the slip rate in single
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crystals is defined in terms of the corresponding resolved shear stress.

For example, we may choose

i'r (Y/rr) n , (4.6)

where the exponent n is a very large number for low strain rates, say, up

to 10 3 /s, and is approximately 1 for higher strain rates, and r, is the

reference effective stress associated with simple shearing at reference

strain rate ir. In general, rr" -r (-y, T), where y is the accumulated

effective shear strain, and T is the temperature. Other forms such as

y-y exp (-a-r/r) , (4.7)

where jM is the limiting value of the strain rate and a is a parameter, or

a suitable version of (4.7), may be used. The presence of a large exponent

n in (4.6) for low strain rates, followed by a linear relation for high

strain rates, or, what is the same, the presence of the exponential

function in (4.7), necessitates specialized effective algorithms, in order

to ensure adequate accuracy of the numerical results.

4.2 Numerical Examples and Discussion

For illustration, assume isotropic elasticity and, with A as the shear

modulus, from (4.2) obtain

' - 2 pde ' - 2j(d '.dp) (4 .8)

Take the inner product of both sides with , and using (4.3) and (4.5),
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obtain

S+j-d ,(4.9)

where

r-r/(-2p) , d-A: d' (4.10)

Moreover, since

I--' [I-A® 0 : de" (4.11)

we have

P - + [l - JA]:d' , (4.12)

where

P-j2AA/(l+2,uA) (4.13)

We set A - 0 when r < r (/id)11n , with an analogous expression when (4.7)

is used, so that for small r and when the response is basically elastic,

the second term in the right-hand side of (4.3) is zero.

Equation (4.6) is used for numerical results reported in this section.

For r<Tr and n large, this equation yields small values for the strain

rate. When ?r, the strain rate becomes large, and, for large values of

n, the model simulates rate-independent plasticity. For very large strain

rates, n - I and the plastic flow is controlled by viscous drag associated

with the phonon drag on dislocation motion.
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Equation (4.9) is to be integrated at each time step in such a manner

that the relation between i and r/rr, given by either (4.6) or (4.7), is

satisfied. In an explicit code, at each time step the right-hand side of

(4.9) is obtained in terms of the current nodal forces, by integrating the

equations of motion. Then the integration of (4.9) in conjunction with

(4.6) or (4.7), yields Ar and A-y and hence, from (4.3) the increment in the

plastic deformation rate, and from (4.8) the increment in the stress. The

differential equation (4.9) varies its character over the range of values

of j. Hence one may need to use different algorithms for different strain

rate regimes.

We have obtained some tentative results on the basis of constitutive

assumption (4.6), with n - 100 for i : -o and n - I for greater strain

rates, where i0/J 3 - 104/s. The computations are done using PRONTO 2D

[13]. In this code the objective stress rate is obtained by first rotating

the Kirchhoff stress from the current Eulerian triad to the associated

Lagrangian triad, taking the material derivative of the resulting stress

tensor and rotating back when necessary.

For a numerical example, Figs. 9a, b, c, and d show localization in

uni-axial extension at 102, 103, and 104/s strain rates with A - 0 (i.e. no

noncoaxiality). To ensure that localization occurs at the center of the

bar, a slightly different hardening parameter is assigned to the central

element. This is actually unnecessary since localization occurs (if it

does) automatically at some point in the bar which however, cannot be

predetermined. The calculations are made using the following expression

for the flow stress:
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Tr-ao (+7/o)N exp - (T-T 0 ) ) , (4.13)

where a0, 7o, To, and N are fixed parameters; for the examples reported

here, we have assumed .- a0 - 1.25 GPa, ir/-3 - 10- 3/s, yO/13 -

6.25xiO 3, N - 0.08, To - 294*K, and A - 1.6xl0"3/°K. Also, the Young

modulus E - 2xl02GPa, Poisson's ratio u - 0.3, and mass density p - 7,833

kg/m3 are used. The change in temperature is calculated from T-arY,,

where 95% of plastic work is assumed being converted into heat.

The influence of the strain rate on localization is illustrated in

Figs. 9b, c, and d. It is seen that at low strain rates, sharp shear bands

occur, but at high enough strain rates no shear banding is predicted. This

is basically due to the change in the exponent n from n - 100 for small

strain rates to n - I for large ones. The effect of noncoaxiality is

illustrated in Fig. 9e with $ - 0.975. As is seen, sharper shear band are

produced.

As a second example, we consider the void collapse problem, and again

with A - 0 and other parameters as before, obtain results shown in Figs.

lOb and lOc. As is seen, the resistance to void collapse is increased with

increasing strain rate.

These and other related examples show that:

I) In the standard PRONTO environment, unstable deformation by shear

localization can be captured without recourse to any special elements

and without any special arrangement of the elements, by just using a

reasonable suitably fine mesh structure and quadrilateral elemt-rts with

164



one-point integration;

2) The localized deformation is mesh size independent, as long as a

reasonable number of meshes is used;

3) The shear band is sharper at lower strain rates;

4) At higher strain rates the bands are broad and tend to disappear at

very high strain rates, a phenomenon which may, in part, be associated

with the fact that exponent n in (4.6) is set equal to I at high strain

rates.
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MJCROSTRUCTURAL MODELING AND TESTING:

CHARACTERIZATION COMPUTATION DYNAMIC AND

QUASI-STATIC

RELATION BETWEEN MICRO-

STRUCTURES AND PROPERTIES

I I'
MATERIAL DESIGN WITH

TAILORED MICROSTRUCTURE

FOR OPTIMAL DYNAMIC RESISTANCE

I

PROCESSING FOR

REQUIRED MICROSTRUCTURE

(COLLABORATIVE EFFORT)

Figure 1. Major research components of the Center of Excellence for
Advanced Materials (CEAM), University of California, San Diego. The
Center's main objective is to design advanced materials with tailored
microstructures for optimum performance in severe environments.
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Figure 2. Elliptical cavity in the zl,z 2 - and (1 , 2 -coordinate systems.
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OI/ar, P
SLIP PLANE

2. /

....... major semi axis a,

aspect ratio p

N

Figure 3.(a) Change of aspect ratio p and major semi-axis a, under uni-
axial compression &T /7Tr _1-02/s; 08 - 0.5x, and 0 - 0.2nr. ar is the radius
of the initial hole, and rr is the reference (yield) stress.
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Figure 3.(b) Deformed shape of initially circular void; the equivalentellipse at - -0.950, -1.095 and -1.140.

171



X3

oil,

1(00 deformed shape

Figure 4. Deformed shape of initially spherical void after time increment
At- 0. 5 sec, under all -around uniform compression 6&'/r, - 6' /r, &- a/r,
-- 1/s for crystal with 12 slip systems; n~ - 1, n - 1, 0k - 0.2,r.
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Figure 5. Change of aspect ratio p and major semi-axis a, under all-around
ensile loading &i/r - - 105/s; 6 - 0.5, and 0 - 0.2,r.
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Figure 6. Change of aspect ratio p and major semi-axis a, under uni-axial
tension 6!2/?r - 10 5/s; 8 - 0.5w, and 0 - 0.2w.
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void dia 130 iJm (011) plane

21.4% 1100/sec

Figure 7. Void collapse and subsequent tensile cracking under uni-axial
compression in single crystal copper: shear bands (upper figure);
collapsed void (middle figure); and tensile cracks (lower figure) at the
tip of collapsed void.
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1018 STEEL void dia.650 IJm

Sx 10-/e

12 8%
1600/Swc

12.7%
5000/sec

Figure 8. Void collapse and subsequent tensile cracking under uni-axial

compression in 1018 steel: for a total of about 12% axial shortening, the

void collapses completely (upper figure) at quasi-static 
loading, but not

at higher strain rates (middle and lower figures). The corresponding

tensile cracks, formed at the ends of collapsed voids, 
are shown in the

right-hand figures.
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Figure 9. Uni-axial extension and shear banding at total extension of 13%
of initial length:

(a) undeformed shape

9.(b) at 102/s strain rate
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Figure 10. Void collapse under uni-axial compression with total shortening

of 5%:

(a) undeformed shape
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SECTION III

BRITTLE MATERIALS AND COMPOSITES



IMPACT BEHAVIOR OF CERAMICS

By:

S. J. Bless
University of Dayton
Research Institute
Dayton, OH 45469

INTRODUCTION

The behavior of ceramics under impact loading has become a

topic of great importance in at least two current technological

developments: development of improved ceramic armor and develop-

ment of ceramic engine components for aircraft. It has become

clear that the performance of ceramics under impact does not bear

an obvious relationship to properties of ceramics as convention-

ally defined and determined.

The purpose of this paper is to describe the properties of

ceramics that seem to be most closely related to impact behavior.

We will then describe test techniques used to characterize the

dynamic behavior of ceramics. It will turn out that results are

often contradictory, and a unified conceptual framework is yet to

emerge. Lastly, we will review the data available for alumina,

which is probably the best studied ceramic, and for which criti-

cal ambiguities in behavior modes still exist.
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CHARACTERISTICS OF IMPACT LOADING

We concern ourselves here with impacts that are likely to

result in penetration of the ceramic. In other words, we are

dealing mainly with ceramic armor applications.

Ceramic armors should probably be grouped into two classes:

light and heavy. Light ceramic armor employs tiles whose thick-

ness is comparable with the diameter of the impactor, and whose

width is typically 10 times the thickness. Such tiles are

generally bonded to substrates of similar thickness to the tile.

Impact occurs directly on the face of the ceramic. The main

failure mode in such tiles is tensile failure on the back surface

opposite the impact site. There are several published accounts

of penetration mechanisms in such tiles [1,2].

Heavy ceramic armor is the application that is of most

intense current interest. Heavy ceramic armor employs tiles that

are typically several times thicker than the impactor diameter.

Tiles are also usually relatively well confined by surrounding

structure, including on the impact face. We do not know of any

open publications on the mechanics of heavy ceramic armor. There

are also very few restricted access publications that treat

penetration and failure mechanisms; we point out [3] as a good

source of information.

The first stage of impact onto a ceramic (or any other

target) involves a shock phase. Shock stresses are very high, as

shown in Figure 1. The deformation associated with shock loading

is one-dimensional strain, which implies perfect lateral

confinement. Tensile stresses develop in the ceramic after

initial shock passage, due to the diverging flow (hoop stresses)

behind the shock wave, and due to reflection of compressive waves

as tensile waves at tile boundaries. In the case ot heavy armor,

it appears that the combination of compressive and tensile

stresses ahead of the projectile induces a great deal of damage

in the as yet unpenetrated ceramic.
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The stress at the projectile interface after the shock

decays is given approximately by:

1 2
I - 2 -v) +Y (1)

2 p p

where pp is the penetrator density, u is the impact velocity, v

is the penetration velocity, .nd Y is the flow stress of thep
projectile [4,5]. Using the approximation that v = 0 (i.e., the

penetrator is defeated), Figure 2 graphs the stress from

Equation 1. It can be seen that this stress is also very high,

even relative to the strength of most ceramics.

The combination of the high impact stress and the degrada-

tion of the ceramic in front of the penetrator may result in

ceramic failure ahead of the projectile. In this instance, much

of the penetration takes place through ceramic that has been

altered by previous compressive and/or tensile failure.
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PROPERTIES OF CERAMICS THAT AFFECT DYNAMIC BEHAVIOR

Before commencing this discussion, we want to warn of the

danger of reification. We describe properties and failure modes

according to an incomplete and still evolving set of concepts.

At this time, it is best to approach all experimental data with

as open a mind as possible, and avoid forcing new observations to

fit into what may turn out to be an inadequate model for

behavior. Nevertheless, we do hope that the discussion that

follows will serve as a guide to the design of critical experi-

ments, both to explore fundamental behavior modes and to provide

engineering data for design. We also hope this discussion will

aid modelers in identification of critical processes.

Impact response is, in general, governed by bulk

properties. Failure occurs so rapidly that different regions of

the ceramic cannot communicate with each other. Hence, where

flaw size is important, it is the average, not the maximum flaw

that determines behavior.

Other bulk properties also play critical roles. The elas-

tic moduli, and in particular the bulk modulus, K, determines the

ability of the ceramic to spread the load away from the impact

site and avoid local failure. The equation of state (EOS) (e.g.,

the pressure-volume relationship at high pressure) determines the

peak stress associated with impact, which in turn governs the

intensity of shock waves in the impactor and in the ceramic. The

initial intensity of the shock loading often is critical in

determining the early breakup of the ceramic and the projectile.

The importance of bulk properties runs counter to the

intuition of many ceramics engineers. The bulk response, for

example, is probably one reason why, in general, results of

impact testing exhibit much less scatter than is typical of

mechanical tests at low deformation rates.

Probably the most important property of ceramics for resis-

tance to penetration is compressive strength. Impact stresses
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are initially very high, as shown in Figures 1 and 2. During

most stages of the impact process, the ceramic is not free to

expand laterally. Hence, the confined compressive strength is of

primary importance. The confined compressive strength is

synonymous with the Hugoniot Elastic Limit (HEL), which is the

shock strength.

According to [6], the strength of brittle materials should

be a function of the sum of the largest and smallest principal

stresses,

= (U 1 + a3)/2 (2)

Hence, we have the general behavior sketched in Figure 3. Note

that according to [7], many ceramics become ductile as P becomes

very large.

Tensile strength is also a very important impact parameter.

Many impact-induced failures are due to tensile stresses. The

bulk tensile strength is also known as the spall strength. It is

measured in shock experiments, and is the tensile strength under

one-dimensional strain deformation. In impact events, material

usually experiences tensile stresses only after very intense

compressive loading. Thus, the dependence of tensile strength on

compressive prestress is very important for brittle materials.

In fact, this dependence is very sensitive for many brittle

materials [8,9].

The propagation rate of tensile failure is also undoubtedly

very important for determining impact response. This process may

account for the loss of confinement in large tiles, as expansion

of outer boundaries is communicated to the impact region.

Tensile fracture in prestressed brittle materials can take place

very rapidly because energy stored in the elastic field is trans-

formed to kinetic energy of failed material. Most of the

theoretical work on this subject has been carried out by Soviet

authors; see for example [10,11].
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It is clear that the properties after compressive failure,

compressive, shear, and tensile, also strongly affect the

penetration of ceramic tiles by projectiles. It has been ob-

served that the strength of ceramics after compressive failure

varies greatly among different ceramics. Figure 4, for example,

shows shock Hugoniot curves for different types of materials.

The Hugoniot is the shock loading path. The lower curve

(labelled HYDR) is the hydrostat (e.g., compression curve for all

principal stresses equal). The offset between these two curves

is equal to two-thirds of the shear stress. (See, for example,

[12] or [13] for a general discussion of shock loading states.)

Some ceramics are observed to lose all shear strength at the HEL

[14]; this behavior is termed "elastic-isotropic". Other

ceramics [15] and glass [16] retain full shear strength above the

HEL. Still other glasses and ceramics display gradual softening

at high pressure [17,18].

After compressive failure, the ceramic material may be

granulated. Granulated materials usually are described by a

Coulomb relationship, in which the maximum shear stress,

S = (a1 - a3)/2 (3)

is a linear function of P;

S = a+ (4)

This behavior is also sketched in Figure 3 together with the

original failure surface. It would be surprising, and contrary

to shock observations [14] if the strength of granulated material

can exceed the initial strength of material, so evidently when

the failed material is fully compressed it either retains its

initial ability to support shear stress or else the strength

collapses as in the elastic-isotropic model. Referring to

Figure 3 we can pose two of the most difficult questions in need

of experimental investigation: What does the shape of the

failure surface look like between point Y (failure under uniaxial
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stress) and point H (failure under shock loading)? When the

failure surface is reached between Y and H (at A for example),

where is state B, to which the material releases? (See [6] for

further discussion of this latter question.)

The behavior of ceramics during unloading is also largely

unresolved. Figure 5 illustrates a load/unload cycle under one-

dimensional strain. Metals load to failure, after which they

have approximately constant shear strength. Ignoring the

Bauchinger effect, they have the same strength on unloading.

When metals are unloaded to zero driving stress, a, = 0, the post

shock microstructure closely resembles the starting material, and

there is a trapped shear stress. Ceramics that retain shear

strength behave similarly to metals until unloading commences.

After the loading cycle is completed, ceramics are probably

totally pulverized. The manner in which ceramics lose shear

strength as pressure is relaxed probably has a critical relation-

ship to penetration resistance.

Another property of ceramics that may affect impact

response is dilatancy. Dilatancy refers to the tendency for a

failed material to increase in volume due to cracks. It is

manifested as an increase in mean stress if failure takes place

at constant volume, or an (possibly violent) expansion takes

place under stress boundary conditions. Historically, there

appears to be two concepts for dilatancy. The first is a precur-

sor to failure. This effect was first observed in rocks [19,20].

The second type of dilatant behavior arises when failed granu-

lated material is forced to undergo additional shear strain.

Grains slide over one another, rotate, and hence need to occupy

more volume. Either type of dilatancy seems to imply strength

enhancement under dynamic loading because dynamic loading usually

implies a constant volume boundary condition; hence the mean

stress increases from dilatancy, and an increase in mean stress

usually implies an increase in strength.

The speed of release waves in failed material may also play

a large role in armor mechanics. There seems to have been little
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work in this area, except measurement of release wave speeds

under shock loading conditions. We note here the theory for

unloading wave speeds driven by dilatancy advanced in (21]. In

addition, there is the self-sustaining brittle fracture model

described in 110].
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EXPERIMENTAL TECHNIQUES

In order to evaluate the usefulness of experiments, we must

be clear about the objectives of experiments. In the present

context in which development of impact resistant systems are

developed, the primary purpose of experiments is probably to
validate and calibrate numerical analyses. Numerical analysis

encompasses both constitutive models and computational algo-

rithms. However, the best experiments are those which can be
interpreted without supporting numerical analysis; for example,

direct measurements of strength parameters as functions of stress

state or load history. Calibration of codes by direct comparison

to penetration experiments is hazardous. Any given experiment

may not provoke all important modes of material response. In
addition, some experiments may be relatively insensitive to

critical material parameters; for example, high velocity penetra-

tion of metals is not very sensitive to strength parameters.

Plate impact experiments are the most accepted techniques

to determine the dynamic properties'of brittle materials.

Figure 6 illustrates the basic impact configuration. A flat

flyer plate strikes a flat target plate, inducing plane waves in

both the flyer and target. If the impact region of the target is

driven into the plastic region, then an elastic wave propagates

into the target whose strength represents the elastic limit of

the target material. This is, by definition, the HEL. As dis-

cussed above, the HEL is a primary impact property of ceramics.

Analysis of the wave profile also gives data for equation

of state parameters and spall strength (see, for example [22]).

The shape of the wave profile also allows one to estimate the
extent of elastic-isotropic or elastic-plastic behavior above the

HEL.

Measurement of spall stress as a function of driving stress
is especially diagnostic for ceramics. Unlike metals, for which

spall stress is relatively unaffected by prior compressive
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failure, the spali strength of many brittle materials is strongly

decreased if compressive failure occurs first. The nature of the

decrease provides important clues as to the character of the

compressive failure--microfracture versus microplasticity.

Actual traces observed in plate impact tests on ceramic

targets are hardly ever as simple as the generic waveform

sketched in Figure 6. There is usually a "ramp" from the first

elastic arrival to the plastic wave top, as in Figure 7. The

ramp indicates a departure from simple elastic-plastic behavior

on loading. The usual interpretation of ramping invokes hard-

ening (strengthening) after the first elastic arrival. Causes of

strengthening of ceramics may be strain rate or pressure.

Release is also frequently not symmetric in ceramics, as

shown in Figure 8. The relative steepening of the release waves

in glass, for example, seems to be associated with a densifica-

tion that is similar to a phase change [17].

Precursor decay also affects interpretation of HEL values

in ceramics. In alumina, for example, it appears that specimens

must be at least 10 mm thick to ensure that equilibrium values of

HEL stress are achieved [23].

Most puzzling is the unsteady nature of shocks in some

brittle materials. In particular, many glasses do not maintain a

steady stress behind the plastic wave arrival [16). Whether

stress decay is due to anomalously fast release waves or relaxa-

tion of deviator stresses behind the shock arrival is not yet

understood.

The basic plate impact test has been augmented in recent

years by a number of specialized modifications that are very

helpful for study of ceramics. First among these is the use of

transverse stress gauges to directly measure the deviatoric

stress behind shock waves [24,25]. Use of transverse gauges is

considerably more accurate than the older technique of inferring

transverse stress by comparing Hugoniot curves to hydrostats.

Hydrostats for new ceramics are not always known. Ambiguity
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concerning the hydrostat shape for failed material is not a

concern.

Progress has also been made on recovery techniques for

ceramics. Using techniques described in [26,27] ceramics have

been recovered from about 100 m/s impact. Analysis of fractured

material has been very valuable in determining failure modes

which may aid development of more impact resistant materials.

Using the self-trap technique [26], it is even possible to

recover spalled material.

Double flyer plates also provide a new technique to probe

the behavior of shock fractured material without uncertainties

concerning additional damage during recovery [28]. It has been

used to study alumina [28] and sapphire [29].

Pressure shear experiments may also be an important tool

for future studies of ceramics. This technique was developed for

study of large deformation in metals [30]. In the usual version

of this experiment, an oblique impact plate strikes a target so

as to induce particle velocities both normal to and parallel to

the impact surface. The result isa normal pressure wave fol-

lowed by a shear wave. The combined loading may provide a means

to achieve stress boundary conditions not otherwise achievable in

dynamic experiments. Another version of the pressure shear tests

employs a conventional flyer impactor.; lhowever, the rear surface

of the target is oblique so that both compression and shear waves

are produced when the impact-induced compression wave reflects

from the rear surface. To date, only this latter configuration

seems to have been used for brittle rocks [31], and there seems

to be no pressure shear data for ceramics.

The conventional stress state for testing is one-

dimensional stress. Dynamic tests are normally conducted with a

Hopkinson bar. So far, only [32] have published dynamic failure

stress data for ceramics with a split Hopkinson bar. While the

data appears to be consistent, questions remain concerning stress

equilibrium in the sample, since the strains involved are far
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less than the limits for which the Hopkinson bar is normally

considered valid.

The bar impact technique is another means of measuring the

failure stress under one-dimensional stress. A flyer plate is

made to impact the end of a long bar. Failure occurs at the

impact surface, and an elastic wave propagates along the bar.

The amplitude of the wave is the largest elastic stress support-

able by the bar material. The test was successfully used to

measure dynamic yield stress for metals [25]. It has also been

applied to ceramics to measure failure stress [33]. It appears

to be a valid technique to measure failure stress under one-

dimensional stress. Moreover, as discussed in [21], the duration

of the stress pulse and the radial expansion velocity are very

sensitive to the post failure properties of the bar material.

Thus this test may also be very useful for characterizing the

behavior of failed ceramics. Work toward this end is currently

underway at the University of Dayton.

We conclude this section on experimental techniques with an

assessment. Compressive failure of ceramics can and should be

characterized both by the bar impact test and the plate impact

test. In addition, the plate impact test is needed to measure

spall strength. Measurements at intermediate stress states must

await development of a pressure-shear type experiment; tlhi

should be a high priority. Measurement of post-failure

properties can be accomplished by double plate impact tests and

bar impact tests. However, more analysis is required for the bar

impact test in order to develop a sound interpretation algorithm.
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DYNAMIC RESPONSE OF POLYCRYSTALLINE ALUMINA

Alumina has been one of the most extensively studied

ceramics under impact loading. However, there is still not a

consistent picture of the nature of dynamic yielding in this

material. Concentrating on polycrystalline alumina, we will

first present those features of the dynamic response that are

uncontroversial. Those properties that are still being debated

will then be described.

SHEAR STRENGTH ABOVE THE HEL

The shear strength of alumina is maintained at shock

stresses above the HEL. This conclusion is based on several

different types of measurements:

(a) The Hugoniot has a constant offset above the hydrostat
[34,35].

(b) The initial release is elastic [36,37].

(c) Direct measurements of the lateral stress, using
transverse gauges, show a constant shear stress above
the HEL [15].

The issues that are still not clear concern the following

questions:

(a) Is alumina rate dependent?

(b) Is dynamic yielding in alumina due to plasticity or
microfracture?

(c) Is the spall strength maintained when shocked above the
HEL?

RATE AND PRESSURE EFFECTS

It has been noted by [26] and [32] that the strength of

alumina calculated from shock data using the formula:

Y ~ 02 1-2v 1 = 1-2v (5)

d 1 2 1-v 1 -v *HEL
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is much larger than the static yield strength. For example, Yd

43 kb for AD-85 (85 percent alumina), whereas the static strenjth

is 19 kbar. This has been interpreted by (32] as evidence for

rate dependence.

Other evidence for rate dependence at ultra high rates

comes from HEL decay studies. The HEL of very pure alumina

(Lucalox) increases by a factor two as a 1 increases from 136 to

490 kbar (36]. Precursor decay is also observed in sintered

aluminas [25,38]. In 85 percent alumina, specimen thickness of

about 30 mm was required to measure "equilibrium" HEL values

[38], whereas in more pure aluminas (>94 percent), 10 mm thick-

ness was sufficient. In these studies, actual strain rates

associated with HEL values were not measured. Ramping of the

plastic wave in 85 percent alumina was also interpreted in [38]

as evidence for rate dependent behavior. Rate dependence in 94

percent alumina was studied ever rates of 5 x 104 to 6 x 105 -1

using various plate impact techniques, and no rate dependency was

seen [39]. Bar impact data at strain rates of about 10 3s - show

that the strengths of 94 percent and 99 percent alumina at this

rate do not differ appreciably from static values [33]. Much of

these data are summarized in Figure 9.

It is safe to conclude from these observations that some

aluminas are rate dependent, but only at very high rates, prob-
5 -1ably exceeding 10 s Rate effects are not sufficient to

account for the discrepancy between Yd (Equation 5) and Y

measured from static or bar impact tests.

It seems likely that in part the high HEL values of

ceramics is due to the greater confining stress associated with

shock loading. Figure 10 presents data for the strength of

alumina as a function of confining pressure. The large influence

of pressure on strength of ceramics means that measurement of HEL

values is more important for these materials than for metals.
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FAILURE MECHANISM

On the basis of known deformation mechanisms in single

crystal alumina [36] concluded that plastic flow via dislocation

motion in polycrystalline alumina could not occur in a plate

impact experiment and dynamic yielding in alumina is due to

microfracturing. This conclusion is supported by work done by

[37], who showed that alumina (AD-85) is degraded by the elastic

precursor. In addition, experiments on heat treated samples show

a correlation between fracture toughness and HEL values [41].

Recovery experiments on 85 percent alumina find microcracks in

material shocked to near the HEL [42,43]. Microcracking at the

HEL is also consistent with observations of loss of spall

strength observed in some aluminas shocked to near or above the

HEL [9,36].

On the other hand, some shock recovery experiments with

pure aluminas have found grain plasticity dominates under shock

loading, even above the HEL [44]. The interpretation of the HEL

as a plastic yield threshold in these ceramics is also supported

by observations that the spall strength does not change above the

HEL in these same ceramics [45]. It has also been found that the

HEL of a 94 percent alumina is increased by preshock [39], which

is easiest to explain in terms of plastic failure mechanisms.

It is difficult to reconcile these contradictory observa-

tions for microfracture and microplasticity. Unfortunately, each

team of investigators has used slightly different experimental

techniques and ceramics from different sources. Since both

interpretations are supported by several types of evidence--

recovery, spall strength variations, reshock properties--the best

hypothesis is that the failure process is highly dependent on the

original microstructure of the material. For example, it has

been suggested that a very fine grain structure may favor ductile

behavior.
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SUMMARY

This summary reflects the our interpretation of the ex-

perimental evidence.

(a) The shear strength of alumina is maintained at high
stresses surpassing the compressive strength.

(b) The increase in strength observed in plate impact
experiments is probably due mainly to high confining
pressure, not high strain rate.

(c) The occurrence of precursor decay does indicate some
strain rate effect at ultra high rates.

(d) There is no agreement on whether dynamic yielding is
due to plasticity or microfracture. It is likely tht
the failure process varies with the microstructure and
composition of the alumina.

(e) There is also lack of agreement on whether spall
strength is retained in material shocked above the HEL.
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Figure 1. Shock Stress as a Function of impact Velocity for
Tungsten Projectiles Striking Alumina.
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Figure 3. General Variation of Shear Strength, S, as a Function

of P. Here S = 1/2 (a I - 2).
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FLYER PLATE MEASUREMENT
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Figure 6. Plate Impact Experiment.
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Figure 7. Stress Time Signal as Commonly Observed in Ceramic

Targets.
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Figure 9. Yield Strength Under Uniaxial Stress Conditions as
a Function of Strain Rate.

AD-85 is 85% alumina. Data sources are [46,47,32],
respectively.

AD-99 is 94% alumina. Data sources are [33,481,
respectively.
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A STRAIN RATE DEPENDENT BRITTLE FRACTURE MODEL
BASED ON CONTINUUM DAMAGE MECHANICS*

E. P. Chen

Applied Mechanics Division III
Sandia National Laboratories

Albuquerque, New Mexico 87185

ABSTRACT

Dynamic fracturing in brittle materials is studied in the present investigation using a

strain rate dependent continuum damage model. A basic assumption of this model is the

existence of a randomly distributed crack network in the material. Under applied tension,

these cracks will grow and interact to relieve the stress. This is reflected globally by

reducing the stiffness of the material. In compression, the material responds in an

elastic/perfectly plastic manner. Explicit strain rate dependence has been included in the

model. A brief description of the model will be given. Applications of the model to treat

engineering scale problems will be discussed.

INTRODUCTION

An important aspect of many engineering applications of brittle materials involves the

understanding of the fracture and fragmentation behavior of these materials under rapidly

applied loads. Typically, many brittle solids have an existing flaw structure. Under applied

loads, these flaws will grow and interact to relieve portions of the material volume of their

load carrying capability. The process progresses until the total volume becomes incapable

of carrying load and failure occurs. Thus, the dynamic fracture process in brittle materials

may be modeled as a continuous accrual of damage where the damage is defined to be the

* This work is sponsored by the U.S. Department of Energy under Contract DE-AC04-76-
DP00789.
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volume fraction of material that has been tension relieved by multiple crack growth and

interaction. Such a model has been developed by the author and his coworkers [1-3]. In

this model, the material behaves in an elastic/perfectly plastic manner under compressive

loading conditions. Explicit strain rate dependence has been included in the model. A

brief review of the model will be presented. The model has been implemented into the

transient dynamic finite element codes PRONTO 2D [4] and DYNA2D [5]. To

demonstrate the utility of the model, numerical simulations of the oil shale blasting and

concrete penetration problems are presented.

A BRIEF ANALYTICAL MODEL DESCRIPTION

The basic assumption of the damage model is that the material is permeated by an

array of randomly distributed cracks which grow and interact with one another under

tensile loading. The model does not try to treat each individual crack, but rather treats the

growth and interaction of cracks as an internal state variable which represents the

accumulation of damage in the material. This damage, D, is assumed to degrade the

material stiffness following the equations derived by Budiansky and O'Connell [6] for a

random array of penny-shaped cracks in an isotropic elastic medium:

K = K(1-D) (1)

where K and K denote, respectively, the bulk modulus for undamaged and damaged

material. The damage is related to the damaged Poisson's ratio, -, and crack density

parameter, Ca, through

D= 16(1-2) C (2)
9 (1 - 2v)
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The crack density parameter is related to the undamaged Poisson's ratio, V, and V- by the

following expression:

Cd 45 (V - V_)(2 - ) (3)
16 (1-_ -2 )[10v,-7( + 3v)]

Thus, if the crack density parameter is known, the damaged Poisson's ratio can be

calculated from Equation (3) and consequently, the damage parameter is found from

Equation (2). The crack density parameter provides information about cracking in a given

volume in that it is assumed to be proportional to the product of N, the number of cracks

per unit volume, and as, the cube of the average crack dimension in the volume element

under consideration, i.e.,

Cd Na 3  (4)

Following the work of Grady and Kipp [7], N is expressed as a Weibull statistical

distribution function activated by the current.bulk strain measure P/3K, where P is the

pressure or mean stress P = (a,,. + ayy + OJ)/3, according to

N kP)m()

In Equation (5), k and m are material constants to be determined from strain-rate

dependent fracture stress data. Since the size of the fragments is determined by the

intersecting crack network within the material volume, the crack dimension is thought to be

proportional to the fragment size. Thus, the average crack dimension, a, is estimated from

the nominal fragment diameter expression for dynamic fragmentation in a brittle material

[81 as

2a -0R K Ic 213 (6)

2- s max)
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where p is the mass density, C, is the uniaxial wave speed (NE,-/p), with E being the Young's

modulus, and KI, the fracture toughness of the material. Also, m.x is the maximum

volumetric strain rate experienced by the material throughout the fracture process. Note

that Equation (6) provides the average crack size that has been activated by the applied

load in the volume element under consideration. Thus, when the strain rate is low, only

large cracks have been activated and the material can only separate into a few large pieces.

On the other hand, under high strain rates, smaller cracks would also have been activated

and the specimeli can break into many small fragments. The proportionality constants

from Equation (4) and Equation (5) can be absorbed into the constant k. Hence, the

additional material parameters for this constitutive model, aside from the commonly

defined ones, are k and m as given in Equation (5). When bulk tension occurs in the

material, it is possible to calculate, at each time step, the damage parameter D from the

above expressions. The stiffness is then degraded by the factor (1 - D). In this fashion, the

post-damage responses of the material are represented. Note that the damage parameter

D is an internal state variable which is evolutionary and irreversible in nature. In

compression, the material is assumed to behave in an elastic/perfectly plastic manner.

The constants k and m in the analytical model are specific to the strain rate dependent

fracture responses of the material under consideration. The procedure to determine the

constants k and m from strain rate data has been given in [1] and will not be repeated here.

OIL SHALE BLASTING

The damage model as implemented in DYNA2D was used to obtain results for the

single cratering tests conducted in 1983-1984 at Anvil Points Mine near Rifle, Colorado, by

Sandia National Laboratories [9,10]. A schematic of the experimental configuration is

given in Figure 1 to show the pertinent parameters. These involve the depth of burial b,

the length of the explosive column c, the diameter of the explosive 2d, the property of the
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explosive, and the property of the oil shale. The explosive column was detonated from the

bottom. The two single borehole cratering tests were essentially the same except that one

test included stemming above the explosive column (SB-1), and in the other test, the

explosive column was open to the surface (SB-2). The value of b = c = 2.5 m, and 2d =

0.162 m were fixed for these tests. The explosive used in the tests was IREGEL 1175U,

whose pertinent properties are given in [101. A core was taken from rock near the test site.

The results of Fischer Assay analysis of this core are shown in Figure 2. The stratigraphy

indicates the layered structure of the oil shale media. The mechanical properties for these

grades of oil shale are required input to the damage model for numerical simulation

purposes. These are listed in Table 1. The strain rate dependent fracture stress data,

Table 1. Mechanical Properties of Oil Shale by Grade

Young's Shear
Grade Density Modulus Poisson's Strength k K1,
(gpt) (kg/ms) (GPa) Ratio (Ma) m (M- 3 ) (N/m3/2)

8.7 2523 30.2 0.259 102 7 4.34 x 1027 512000
10.1 2493 28.8 0.260 103 7 2.96 x 1027 520000
11.4 2465 27.5 0.261 103 7 2.04 x 1027 527000
13.5 2420 25.4 0.264 104 7 1.08 x 1027 538000
15.8 2370 23.1 0.266 106 7 5.01 x 1026 551000
17.3 2338 21.6 0.267 107 7 2.92 x 1026 559000
21.2 2261 17.8 0.271 106 7 6.44 x 1025 580000
24.0 2216 15.5 0.274 102 7 2.09 x 1025 595000
25.5 2192 14.2 0.276 100 7 1.06 x 1025 605000
29.0 2136 11.2 0.279 95 7 1.61 x 1024 638000
38.6 2008 7.0 0.289 78 7 3.70 x 1022 726000
51.1 1870 4.3 0.301 70 7 7.26 x 1020 896000

however, have only been determined for 20 gpt (gallons per ton) grade oil shale (Figure 3)

[9]. In this set of calculations, the constants k and m in the damage model are obtained

based on the data in Figure 3. Note that the determination of k is dependent upon the
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fracture toughness. Therefore, m = 7 for all grades of oil shale, but the value of k is

different. The IREGEL 1175U explosive is modeled in the DYNA2D code as a material

type which uses the JWL equation of state [5]. The relevant parameters can be found in [9]

and are not repeated here.

The finite element mesh used in the calculations is shown in Figure 4. Two

idealizations for the oil shale have been made. In the first case, the oil shale was

approximated as an isotropic material having the properties of the 21 gpt oil shale. This

represents the average of the oil shale grades in Figure 2. The second case treats the oil

shale as a layered structure according to the stratigraphy in Figure 2. Measured and

calculated shock wave parameters at a point 3.0 meters from the explosive column and 2.5

meters below the surface are compared in Figures 5 and 6. In Figure 5, the measured

arrival time and those calculated from the isotropic and layered models are shown; and

close agreement was found among all three values. Further, the peak radial stress

calculated in the two simulations was within 10 percent of the measured one. The radial

particle velocity measurement and calculations at this same point are shown in Figure 6.

The peak velocity calculated by the isotropic model is the highest, while the layered model

yielded the lowest value. These comparisons demonstrate the accuracy with which the

numerical model calculates the transmission of the explosive induced shock waves.

The region of significant rock damage in the oil shale is usually measured by

excavating the rock loosened by the blast. Comparisons between experimental and

numerical results are shown in Figures 7 and 8. The layered model produced a smaller

damaged rock zone than the isotropic one due to energy dissipation by the layer interfaces.

However, in both cases, the calculated regions of damage were much larger than excavated

craters.

To further investigate the fragmentation experienced in the tests, cores were taken

from the rock beyond the crater. The cores showed extensive fragmentation, indicating
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that fragmentation extended beyond the excavated region. A gradational scale was used to

describe the extent of fracturing experienced by each part of the core. Five categories were

chosen for this description:

1. Intact - for rock that appeared to have suffered no damage;

2. Fractured - for rock that contained isolated fractures;

3. Well Fractured - for rock that had an extensive network of intersecting

fractures;

4. Rubble - for rock that had been fractured enough that it was a collection

of fragments;

5. Pulverized - for rock that had been ground into small fragments (less than

0.5 cm in diameter).

Each section of core was assigned one of these categories. The categories of fragmentation

used to describe the cores can also be compared to the numerical calculations of damage.

The five degrees of fragmentation used in the core analysis were compared to different

intervals of the damage coefficient. The resuft, shown in Figure 9, is a similarity between

the numerical calculation and experimental measurement that suggests rock fragmentation

can be calculated with reasonable accuracy using this damage model.

CONCRETE PENETRATION

In this case, an attempt to simulate numerically the concrete penetration experiments

conducted by Hightower and Forrestal [11] is made. In these experiments, steel

penetrators with 6.0 CRH nose shapes, 6.1 - 6.3 in. diameters, 59 - 64 in. lengths, and 330 -

350 lb. weights were accelerated to impact velocities between 1000 - 2000 fps with a 12 in.

diameter, smooth-bore, recoilless gun (Davis gun) into concrete slabs. Only normal

penetration has been included in this test series. The geometry of the two-layered targets is

shown in Figure 10. The construction of the concrete slabs is quoted from [11]: "All
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targets were poured at the same time, and tests were conducted at 4, 24, and 48 months

after construction. The concrete slabs were 16 ft. square and were 2 and 3 ft. thick. The 2-

ft.-thick slabs were designed as two-way slabs (equal reinforcement in the lateral directions

and no shear reinforcement), and the 3-ft.-thick slabs were designed as one-way slabs

(principal reinforcement in one lateral direction, temperature reinforcement in the other

direction, and shear reinforcement)."

Numerical simulations of the normal penetration processes in geological targets using

the PRONTO 2D code have been considered previously by Chen [12]. In these

calculations, both the penetrator and the target are treated as deformable bodies. The

metal penetrators are usually modeled as elastic/plastic materials with strain hardening

behavior. The targets are modeled by the soil and crushable foam model in PRONTO 2D

[5]. A pilot hole is assumed along the expected penetrator path. For illustration purposes,

the case of penetration into 4-month-old concrete target corresponding to the tests in [11]

is considered. Only the first layer of the target has been included since it is enough to

make the point. The finite element mesh is shown in Figure 11 where axisymrnmetry has

been invoked. Material properties for the steel penetrator are not important since it will

essentially not deform under the range of impact velocities considered here. For this

reason, the material properties of the steel penetrator are not listed. Some concrete

properties have been measured in [11] from core samples and these are shown in

Figure 12. Other mechanical properties were taken from open literature and are listed

in Table 2. For an impact velocity of 1340 fps, Figure 13 shows a deformed mesh plot at

3.0 ms. Calculated maximum deceleration 3900 g and exit velocity 1150 fps compare well

with measured values of 4300 g and 1075 fps, respectively.
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Table 2. Typical Concrete Properties

Mass Density 2.4 Mg/m3
Young's Modulus 20.7 GPa
Poisson's Ratio 0.18
Fracture Toughness 2.75 MPa- '.ii

By comparing the observed failure surfaces in the target in Figure 14 with the

calculated ones in Figure 13, numerical calculations certainly did not simulate the failure

surfaces well. The reason for this discrepancy as well as the pilot hole assumption stems

from the use of plasticity type of constitutive models. The use of plasticity type models

allows only the dissipation of energy by continuous deformation and precludes fracturing as

an additional mechanism for energy dissipation purposes. Thus, for these models, the

physically observed material separation processes must be manually included by, for

example, the pilot hole assumption, to arrive at the desired results. Otherwise, these

fracture characteristics will be absent as evidenced from the fracture surfaces in Figure 13,

as compared with those in Figure 14. Moreover, under oblique impact conditions, when

the trajectory of the penetrator is not known a priori, the utility of the plasticity type

models is even more restricted. In this regard, a fracture-based material model should be

more appropriate. Since the previously described damage model has been implemented

into PRONTO 2D, the same problem of normal impact of a steel penetrator at 1340 fps

into a 2-ft.-thick concrete target slab has been calculated using the damage model. The

same finite element mesh in Figure 11 is used. In order to use this model, the constants k

and m in the damage model must be determined. This requires the strain rate dependent

tensile strength data for concrete in the range of strain rates of I to 1000 /s. In lieu of

these test data, they can be estimated from the fracture toughness value by an equation

given in [13]:
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(9EK 2c)1/3 1/3

c ___2_ / (7)C 16 Y2 C

relating the tensile strength and strain rate. In Equation (7), E is the Young's modulus, Y

is a crack geometric shape factor, and C is the shear wave speed. Assuming that the sub-

scale cracks are penny-shaped, Y can be taken to be 1.12. Other constants can be obtained

from Table 2. Figure 15 shows the result from this estimation procedure. The constants k

and m can be determined from strain rate dependent fracture stress via a procedure given

in [1]. The values of k and m corresponding to the results in Figure 15 are found to be

5.753230 x1021/mS and 6.0, respectively. Figure 16 shows the deformed mesh plot based on

the damage model at 3.0 ms. The computation also used the element death feature in the

PRONTO 2D [51 code. Hence, an element is deleted from the calculation when the

damage level reaches 0.5. The preliminary result in Figure 16 compares well with the

observed fracture surfaces in Figure 14. Although some problems, such as the calculated

deceleration history does not agree well with the measured record, remain, the results in

Figure 16 are encouraging. Work is in progress to refine the analysis based on the damage

model. Further results will be communicated when they become available.

SUMMARY

A continuum damage model has been applied to study the dynamic response of brittle

materials with subscale crack populations. The model treats the dynamic fracture process

as a continuous accrual of damage where the damage is defined to be the volume fraction

of material that has been tension relieved by multiple crack growth and interaction.

Numerical simulation of the oil shale blasting problem validates the utility of the damage

model. A work-in-progress report on the simulation of the concrete penetration problem

show interesting features. Further results will be communicated in a future report.
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COMPACTED 6 ft
FILL

SLAB 1 2 ft

COMPACTED 5 ft
FILL

SLAB 2 3 ft

SLAB 1 - 5000 psi CONCRETE WITH 1 PERCENT REINFORCEMENT IN
THE LATERAL DIRECTIONS, #8s AT 7 in. EACH WAY, TOP
AND BOTTOM; GRADE 60.

SLAB 2 - 5000 psI CONCRETE WITH 2 PERCENT REINFORCEMENT IN
ONE LATERAL DIRECTION, 10s AT 7 in. TWO LAYERS
TOP AND BOTTOM; 1/2 PERCENT SHRINKAGE
REINFORCEMENT IN THE OTHER LATERAL DIRECTION, #8s
AT 12 In. TOP AND BOTTOM; AND #5s AT 6 In. EVERY
14 In. SHEAR REINFORCEMENT; GRADE 60.

Figure 10. Geometry of the Two-Slab, Buried Target
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A Finite Element Material
Model for

Microfracture-Damaged Brittle Rock1

L. S. Costin

Geotechnical Design Division

and
C. M. Stone

Applied Mechanics Division I

Sandia National Laboratories

Albuquerque, New Mexico 87185

ABSTRACT

A continuum damage model based on the mechanics of microcrack growth has been
implemented in the finite element code SANCHO. The model incorporates the ef-
fects of the nucleation, growth and coalescence of microcracks on the deformation
of brittle materials, such as rock, under compressive loading. The material subrou-
tine keeps track of both the magnitude and direction of microcrack growth in each
element so that the induced anisotropy due to crack growth in preferred directions
and the stress history dependence of microcrack growth are properly taken into
account. In addition, the model allows for interaction among neighboring microc-
racks, which leads to coalescence and subsequent material failure or softening. A
damage vector, which is calculated from the crack distribution in each element, is
used as an internal variable to compute the effective elastic moduli at each stage
of the deformation. The results of several sample calculations using the model
are presented and methods for determining the required material parameters are
discussed.

'This work performed at Sandia National Laboratories supported by the U.S. Department of Energy
under contract number DE-AC04-76DP00789.
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1 Introduction

The deformation of brittle materials, such as rocks and concrete under relativt'k
low confinement, is accommodated primarily by the nucleation and growth of micro
cracks. This deformation mechanism results in several phenomena characteristic of
the response of brittle materials to stresses large enough to cause permanent daniiag.
In particular, pressure dependent dilatancy, stress induced anisotropy. hysteresis, with
discrete memory, the progressive change in the apparent elastic moduli under increasing
stress and the gradual softening of the material in the failure regime which event uali
results in a localization of deformation along large fractures or shear zones are among
the important phenomena that have proven difficult to include in any well develo pd
constitutive theory for inelastic materials, such as classical plasticity.

In recent years there has been a large reported effort directed at developing rie'x
theories of non-linear material behavior that account for, in a continuum sense. some of
the microstructural mechanisms associated with both brittle and ductile deforinatiO.
Continuum damage models, based on the original work of Kachanov 1. fall into thiK
class of material model. Two major difficulties rived to be addressed when atteriipi ing

to formulate a damage model for implemientat ion into a numerical code. Fir 1. h
rmicrostructural variables that must be rec6rded and used in the computation of th i
deformations may require an un.dul 3 large amount of storage capacity and rraiipiila-
tion of data. This problem will eventually be overcome by the use of larger and a-lr

computers. The second problem is somewhat more critical to lhe smi icss of dantri;igr
models. Many damage models intended 1o simulate deforrnation in britle naterial ai(,
based on microcrack nucleation and growth, which is essentially a stress driven mce(lha-
nism. As a result, they contain features that tend to lead to numerical instabilities. )"'or
example, corners on the damage (yield) surface, non-normali:y and strain-softenillg art
common features of these models that are difficult to treat numerically. In additiiol.
numerical codes are often insensitive to, and sometimes suppress. the development of
localized deformation, an important failure mode in brittle materials. These prolhcmni
are particularly acute for brittle materials which are modeled as time-independent. Ih,-
cause they are not of a class for which uniqueness ard slabilily of solutiol ti-an hr
proven 2.

In this report, we document the details of the implementation of a specific (ta rrugr.
model based on the work of Costin ard llolcomb 13-7 into SANCHO, a two-dimelsional.
large deformation finite elemmient code '8 . Although the model was implierenlt Into
a specific finite element code, there is nothing in lie model it self or in the .thotl'-
employed it the numerical implementation of it that would prevent its installailt, i 1,

any other two-dimensional finite element code.
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The model incorporates the effects of the nucleation, growth and coalescence of
microcracks under compressive loading. In addition, the model allows for interaction
among neighboring microcracks which leads to coalescence and subsequent material
failure or softening. In order to deal with some of the numerical problems inherent in
damaging and softening materials, such as those noted above, some modifications to the
code and its solution techniques were required. These will be discussed in some detail.
In the next section, the theory and equations on which the model is based are presented.
Then, in Section 3, the numerical implementation of the model is discussed and the
algorithms for solution of the model equations are presented. Section 4 demonstrates
how to derive the model parameters from certain kinds of experimental data and how
to estimate the value of some of the parameters in the absence of a complete set of data.
Finally, the results of the analyses of some sample problems are presented in Section
5. Because of the complex nature of the model, no analytical solutions exists, even
for simple boundary value problems. Therefore, the results obtained from the sample
calculations are compared to experimental results. A user's guide for employing the
material model in SANCHO is given in Ref [29].

2 Theory

2.1 Basic Definitions

Before proceeding to a discussion of the model equations, a few definil ions need to be
presented so that the terminology used is clear. First, the measures of stress and strain
used in the model need to be defined. Since SANCHO is a finite deformation code.
a finite strain measure is required. The microfracture damage model was originally
developed under the assumption that the strains were infinitesimal 13 . However, the
equations remain valid for the case of finite strains and large rotations, provided a
rotationally invariant finite strain measure is used along with its appropriate work-
conjugate stress [6 . To do this, the equations are written in terms of the Lagrangian
(Green-St.Venant) strain, E, and the second Piola-Kirchhoff stress, T'O . Thus, the
model can be used to describe material response at large strains, provided, of course.
that the intact portion of the material being modeled remains linear and elastic. The
nonlinear and possibly large strains are assumed to result from the growth and opening
of tensile microcracks which are distributed throughout the intact material.

The motion of a body can be described by the equation

x'(XQ,t) (1)
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where the particles of the body are identified by the material coordinates X" and the
points in space that a particle traverses during the motion are identified by the spatial
coordinates, x' (tensors and vectors are denoted by bold-faced Roman letters). The
function, x', then, describes the motion of the particles, X', as a function of time, t.
Only material coordinates that coincide with the spatial coordinates in the reference
configuration, (t = 0), are considered, thus, x'(X",O) = X'.

The basic measures of deformation computed by SANCHO [8] during the solution
process are the deformation gradient, F., and the stretching rate, di,. The deformation
gradient is defined as

k  ax (2)

and the stretching is given by

- (v,3j + v,,) (3)
2'

where the velocity is defined as

'.( t -axi(x°'t) (4)
at

The strain can be defined in terms of the deformation gradient

E, (F t, = 2 o - Co ) (5)

where the quantities 9k, and GR are the metric tensors in the spatial coordinates and
the coordinates of the reference configuration. respectively. Similarly, the strain rate
can be computed in terms of the deformation gradient and the stretching

E,, = FodkmFe. (6)

In SANCHO, the equations of motion are solved in terms of the Cauchy stress, t k , .

Therefore, the second Piola-Kirchhoff stress computed in the constitutive subroutine
must be converted to Cauchy stress using the following transformation

km = J T0, (7)

JFQ 0F(7

where J -- IFI - '. In addition, the stress and strain tensors are usually separated into
hydrostatic and deviatoric components. The deviatoric stress is defined as

T 3 = 7" - I T6 Gar 13)

3
where MT is the hydrostatic stress. Similar definitions apply to the deviatoric and
hydrostatic components of the strain and strain rate tensors.
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2.2 Model Equations

2.2.1 Stress Intensity Factor

A plane crack can be described adequately by specifying its size and orientation.
In the model, it is assumed that all microcracks are preexisting penny-shaped feature.
which can be described by the radius of the cracked surface, a, and a unit vector normal
to the crack surface, n, as shown in Figure 1. A crack vector can then be defined as

a = an. (9)

In a polycrystalline medium like rock, compressive loads can generate local tensile
stresses in the neighborhood of a microcrack. These local stresses generally arise from
material property mismatches between grains or from contact stresses between grains
with irregular grain boundaries [9,10]. The tensile stress due to deviatoric loading acting
on any given crack is assumed to be proportional to the component of the deviatoric
stress which is normal to the crack surface (Figure 1). Thus, the local tensile stress.
TZ, acting on a is given by

TZ (a,n,d, d)n T .T'.n (10)

where T' is the applied deviatoric stress and FT is a function of proportionalit\ between
the local tensile stress and the applied deviatoric stress and is, in general, a function
of the crack size and orientation as well as two microstructural lengths. The distance
d is the nominal size of the local tensile region and d, is the initial average distance
between neighboring cracks, thus, d, > d. Because the local tensile field is limited to
perhaps a few grain diameters, crack growth causes the driving stress to be relieved as
the crack propagates through the region. This effect is approximated by making T- a
function of (d/a). A specific functional form of Y will be derived later.

There is also a compressive stress acting on the crack due to the hydrostatic com-
ponent of the applied stress (compressive stresses are taken to be negative). Thus.
the total driving stress acting on any given crack can be expressed as the sum of 1he

hydrostatic, trT/3, and the local tensile (deviatoric) components, Tr, of the applied
stress (Figure 1).

To formulate a crack growth criterion, a fracture mechanics approach is taken w here
the stress intensity at the crack tip, K1, is used as a parameter that describes the state
of stress at the crack tip. When K1 reaches a critical value, Kl,, the crack extends until
K, < Kl,. For modeling purposes, the microcracks are assumed to be penny-shaped.
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Considering a single crack, with orientation n, the elastic stress intensity factor may
be approximated by

Kr = -a.n - + 7 (an,d,di) nT (1 J)

Note that the two terms in equation (11) represent, respectively, the contributions of
the hydrostatic and deviatoric components of the applied stress. The dot product,
a . n, is used in equation (11) to emphasize the notion that the stress intensity factor
is calculated for a microcrack of size a. and orientation n.

2.2.2 Microcrack Interaction

As microcracks nucleate and grow during the deformation history, the separation
distance between adjacent cracks becomes small enough that some interaction between
the stress fields at the crack tips is inevitable. To include this interaction effect, we
need to consider how the crack-tip stress intensity factor is affected by the stress fields
of neighboring cracks. To do this, we first consider a collinear array of planar cracks
(Figure 2). One solution to this problem. obtained by using a Laurent series expansion.
is given by Isida llI. A more recent solution. employing a "pseudo-traction" method,
is given by Horii and Nemat-Nasser 112' and is shown in Figure 2. Since the solution
was obtained by a numerical method, an approximate analytic form was derived. This
is also shown in Figure 2. The basic result of this analysis is that, as cracks become
more closely spaced, the stress intensity factor is amplified, resulting in crack growth at
lower applied stresses. This effect is also present in arrays of non-collinear cracks but
to a somewhat lesser degree 11l. Since collinear interaction is the most severe case. it
represents a bound on the interaction effect of arrays of cracks (Figure 3). Unfortu-
nately, no similar solution exists for the interaction of penny-shaped cracks. However.
it can be assumed that the form of the solution for penny cracks will be approximately
the same as that for planar cracks if we replace the planar crack length (Figure 2) with
the penny crack radius. The additional factors arising from the differences in crac-k
geometry between the two situations can be lumped into the scaling constant, f. which
is defined below.

Combining the analytic approximation to the collinear crack solution given in Figure
2 with a term, (d,/a), which accounts for thb, effect of crack growth on the local driving
slress. the proportionality function in equation (11) can be written as

f d(a) ] (12)
2 44
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where f is a scaling constant that can be determined from experimental data. The

term. (d/a) is included to approximate the effect of crack growth on the local driving
stress. Because the local tensile field is limited to a few grain diameters, crack growth

causes the local stress to be relieved approximately in proportion to the ratio of d,'a.

Figure 3 shows the effect of both local stress and crack interaction on the stress

intensity factor (through the function Y) for the case of uniaxial compression with

d -- dl. For small aidl, crack growth is stable because crack growth results in a decrease
in driving force. As cracks grow closer together, the interaction effect becomes stronger

and eventually unstable crack growth occurs just beyond the minimum point in Figure

3.

2.2.3 Damage Surfaces

In order to obtain a continuum description of microcrack damage, it is assumed that

an ensemble of cracks contained in some region of the body behaves in a manner similar
to an individual crack (accounting only for near-neighbor interactions). That is, the
equation describing the response of an ensemble of cracks is assumed to be identical in
form to that describing the response of a single crack (equation (11)) except that now a
represents a measure of the mean size and density of cracks with normal n. The other
parameters may also be thought of as average values associated with the continuum
response.

When the applied loads reach a sufficient magnitude., the stress intensity factor
associated with the most favorably oriented cracks reaches the critical value and these
cracks begin to grow. This is the point where damage begins to accumulate. Letting
K, K,. in equation (11) and rearranging the terms results in the following expression

V ..T T rT [7K, 0. (13)

For each direction. n. at a point in the material, Y = 0 (equation (13)) represents a
surface in stress space. If the stress state is below this surface, the cracks with normals.
ni. are not growing. If the stress state is on the damage surface, then further loading
will cause the cracks to grow. Thus, a will increase in such a way as to maintain Y = 0,
provided, of course, that crack growth is in the stable region (Figure 3). The damage
surface represented by Y = 0, then, behaves in a manner similar to a yield surface in
the theory of plasticity. As damage accumulates, the damage surface moves outward.
Thus, any unloading will put the stress state below the current damage surface and no
further cracking can occur until the material is reloaded to a stress state on the current
darriage surface.
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a constant state of incipient cracking. The surfaces of constant damage determined
from the experiment were, within experimental error, straight lines as predicted by
the model. In addition, when two successive surfaces were determined for the same
sample, the second surface apparently had a steeper slope than the initial one, again in
agreement with the model. Thus, Holcomb's experiments at least qualitatively confirm
the existence of surfaces in stress space of constant damage. Recently, the existence
of damage surfaces resulting from more complex loading histories which include the
rotation of the stresscs relative to the material have been confirmed by Holcomb and
Costin 116].

2.2.4 Damage Parameter

The state of cracking at each point in a brittle rock can be specified by a crack
function, a(O,0), where a is a function of the spherical angles (0, ). Thus, for any
spatial direction (0, 0), a(0,0) represents the extent of crack growth that has taken
place on cracks lying normal to that direction. The function a can be computed uniquely
from equation (13) at each stage of the deformation, provided that the crack growth is
in the stable region (Figure 3). However, this function is not very useful as an internal
state variable in a constitutive equation because it is not invariant with respect to the
chosen coordinate system. It is desirable to define the crack damage such that it is
invariant and represents some average measure of the state of cracking. Therefore we
let the damage be the vector defined by

A :- e, . (a - a,)H K,(n)idfQ (14)

where e, is a unit vector in the ?th coordinate direction and fQ implies integration over
the upper unit hemisphere. For convenience, D is defined such that in the initial stale,
D -- 0. The function a, = aon is the initial distribution of --Ack lengths. Any initial
distribution of cracks can be defined as a reference virgin state. The function HK,(n)i
is defined by

HIKI(n)] = 0K, >0 "

Thus, D is defined so that only those cracks that are currently under deviatoric tension
and participating in the damage process are accounted for. This is important when
stress histories that include rotation of the principal directions relative to the material
are being considered 15,16].
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It is easiest to illustrate the utility of the damage surface concept by using the
example of axisymrnetric loading such as occurs in uniaxial or triaxial tests on rock.
In this case, T11 = T22  - -p and T33 = -o with a > p. Figure 4 shows the results of
a series of triaxial compression tests on Westerly granite reported by Brace et al. 10.

The data shown in the figure are the stress states at which yield occurred during tests
performed at several different constant confining pressures. p. Yield was defined as
the point where the volume strain first departed from the linear elastic curve (onset
of dilatancy). Since the increase in volume strain is closely related to th( growth of
microcracks, Brace's yield point roughly corresponds to the point khere crack growth
begins in the most favorable direction. The data in Figure 4 are given in terms of the
principal tensile (positive) deviatoric stress T 1 versus the mean stress Tkk/3. The
reason for this is that for the chosen axes, the damage surface, equatiorn (13), predicted
by the model would be a straight line with a slope of 1/7, and an intercept of [2ija== J"

As shown in Figure 4, the data are well represented by a straight line. The slope and
intercept of a least-squares-fit line through such triaxial data can be used to determine
material parameters such as f and d. This will be discussed in more detail in Section
4.

More recent advances in rock mechanics testing has made it possible to determine
more accuralely the threshold of damage and to map damage surfaces in stress space
w ithout relying on the initiation of dilatancy. which is a rather crude measure of darn-
age initiation. Newer tecliniques employ acoustic emission technology (AE) to detect
(rack growth by the sonic emissions radiated from growing cracks. HolcoMb 13 has
performed a series of experiments in which acoustic emissions were used to delect lit

initiation of inicrocrack growth and map the damage surfaces for iriaxial stress paihs.
In these experiments, a sample of Westerly granite was first loaded hydrostatlicall\ lo
3 MPa. Then the sample was loaded axially at constant lateral stress to an arbitrarN
stress somewhat less than the failure stress. This established a damage state in 1he
sample as evidenced by the large number of acoustic emissions recorded during the
initial loading. On unloading, no further acoustic emissions \,ere recorded and none
\\ere recorded on reloading until the previous peak stress \was reached. at which liie
the emission rate increased significantly. Thus, apparently no furthc-r damage occurred
during unloading or reloading until the previous maximum stress Nuas reached. This
meniory of the previous maximum stress is often referred to a, the Kaiser effect 1-
and has been demonstrated previously on other rocks 11. The novel portion of Hol-
comb's experiment was that he then increased the confining pressurc and reloaded until
the rate of acoustic emissions began suddenlN to increase rapidly. indicating that (rack
growth was again beginning to occur. By successively increasing the confining pressurc
and then loading axially (see Figure 5) until the acoustic emission marker was again
reached, Holcomb was able to trace out a surface in stress space that corresponds to
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model calculations of triaxial compression at different confining pressures using material
parameters for Westerly granite (see Section 4). The portions of the curves beyond the
peak stress in Figure 6 were computed by allowing the material to deform in a stable
manner. Once the peak stress is achieved, crack growth would be unstable if more
load were applied. Thus, in order to maintain stability, the stress is reduced by the
amount required to arrest the crack growth. For the next load increment, the stress
increases according to the programed stress path, resulting in re-initiation of the cracks.
causing more unloading to occur in order to arrest them. In some sense, this is a stable
unloading curve; however, the damage continues to increase because the cracks grow
during every iteration. This type of unloading path has been duplicated in laboratory
experiments by Wawersik and Fairhurst 1181. They found that in very brittle rocks
such as basalt, unloading had to occur much faster than would be the case in an
infinitely stiff loading. That, is, energy had to be extracted from the specimen in order
to keep the deformation stable in the post-peak regime. The model calculations shown
in Figure 4 seem to indicate a similar response. Of course, some rocks, such as Indiana
limestone i18,, show increasing strain on the post-failure portion of the curve. Thus.
in a stiff loading machine, such a material would remain stable past the peak stress,
whereas, basalt would not. This type of response could be achieved by the model

either by increasing the effect of damage on the elasticity of the material (increasing C,
and C2 in equation (18)) or by assuming that the majority of interactions are betv ven
non-collinear cracks (Figure 3).

Since the ratio a Id, determines the point of instability, the parameter, dj. can b,
determined directly from the uniaxial compression strength of the material. l)etermi-
nation of model parameters is discussed in more detail in Section 4.

3 Numerical Implementation

The rnicrocrack-damage model was implemented in the form of a material model
subroutine in the finite element code SANCHO '81. SANCHO is a special purpose code

designed to compute the quasi-static, large deformation, inelastic response of plarar
or axisymnimetric solids. A constant bulk strain, bilinear displacement isoparainetric

element is used for the spatial discretization. A self-adaptive dynamic relaxation schcnie
based oin explicit central difference pseudo-time integration and artificial damping iV

used to generate the series of equilibrium solutions.

At each solution step in the calculation, the prfgrF-m -irnates the 'train state for

the next solution step based on the previous converged solution and current boundar
co iit low. The deformation gradient is the primary information provided to the r11ale-
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2.2.5 Constitutive Equation

The final part of the model is the constitutive equation that relates the strains to
the imposed stresses and the state of damage. Because we are concerned only with
situations in which the matrix material remains linearly elastic, we assume that the
strains can be derived from an energy function in a manner simikir to that describe,
by Krajcinovic and Fonseka [17]. For example, the Gibbs energy pot ential, i . can be
assumed to be a quadratic function of the stresses and have a quadratic (lependen(, oin
the damage as well. The strains are then given by

E_ (I)
aT

which, for small strains, results in

(,j = $,jkl~kl. (17)

The compliance matrix is given by

Su k,- -- jbkl - C(6i)(l6 k)( + D()D,)

xhere E and v are the elastic constants of the virgin material and CU an C. ar'e
additional constants that account for the effect of crack damage on the deformation.
The constant, C1 , determiWOs the reduction in stiffness perpendicular to the darna,,
vector (parallel to the major direction of crack growth), whereas, C2 determines t hIt
additional volume strain (Poisson expansion) that results from crack opening. Not(

that because only mode I crack opening is assumed, the cracks do not affect the Shiea
compliance. Thus, Cl(6,,) = C 2 (6j ) -- 0 for i j. For purposes of implementation of
the model into a large deformation code, we assume that the equations remuitl alid

for large deformations, thus, we write equation (17) as

E.3 - $ T r . (1 .)

2.2.6 Failure Criterion

In the model, failure of the material is assumed to occur when stable crack gro\ Ili
is no longer possible. This occurs when crack interaction becomes the dominan I iilg

force for crack growth and the crack-tip stress intensity factor increases with increasinlg
crack length, under constant stress (Figure 3). Thus, when any microcrack in an\
direction at a material point exceeds the critical value (ciitica! add ratio). Ihe oll\
way to maintain stability of the material is to unload. Figure 6 shows the resultsi (.f
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rial subroutine. The material subroutine then calculates the corresponding stress and
damage states. Finally, dynamic relaxation is invoked to obtain a static equilibrium
solution. Each iteration of this procedure leads to a new trial strain state and trial
stress state that converge to a global static equilibrium solution after a few iterations.
Convergence of the iterative procedure is assumed to occur when an internal measure
of the global force imbalance is less than a user prescribed value.

3.1 Material Subroutine

The material subroutine first calculates the strain from the supplied deformation
gradient (equation (5)). Then, the stresses resulting from those strains and the current
state of damage are calculated using the inverse of equation (19). Equation (19) was
inverted analytically by Gaussian elimination before being written into the subroutine
so that no time consuming matrix manipulation is necessary. After the stresses are
computed, the damage equation (equation (11)) is used to determine whether the stress
state is above or below the damage surface (i.e. whether microcracks will grow, K,
K1., or not, K, < K1.). Since this equation is a function of the orientation of the crack.
the crack function, a. is discretized into thirteen spatial directions (every 15' in-plane
anid one in the out-of-plane or hoop directionj'covering the hemisphere over which the
damage (equation (14)) will be integrated (see Figure 7). Thus, equation (11) is used
thirteen times for each iteration within the subroutine to compute the damage surface
associated with each possible crack orientation. If the stress state is outside the damage
surface in one or more directions, the crack length in that direction is incremented by
a given amount, Aa. The damage is then computed from equation (14). But altering
the damage changes the stresses computed from the given strain state so, an iterative
process within the material subroutine must be used to find the unique stress-damage
solution. A schematic diagram of this process is shown in Figure 8. It should be noted
here that iteral ion and convergence of the stress-damage solution is independent of the
overall program solution and the global convergence criterion. The amount of crack
growth allowed on each subiteration of the solution process, Aa, is determined by the
user and should be chosen so that the solution can be obtained rapidly without any
su~bstantial over-shoot. As shown in Figure 8, for each increment of crack growth.
ihe damage surface moves outward, whereas, the stress state relaxes back toward the
damage surface. Thus, convergence of the solution is guaranteed as long as the crack
growth renains in the stable region.

A unique solution of the stress-damage equations is also guaranteed if the damage
state is such that an increment of crack length in a given direction is stable. That is,
the material is on the rising portion of the stress-strain curve and the stress intensity
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factor decreases with increasing crack length. If crack growth becomes unstable (A'

increases with increasing crack length), the crack is allowed to grow to a limiting value

and the element is identified as being in failure. Once an element has failed, its load

carrying capacity (stiffness) is reduced progressively to zero. This is done over several

solution steps rather than all at once in order to promote more rapid convergence of

the code at each new equilibrium solution.

The damage is calculated by integrating equation(14) which has been simplified to

account for the two-dimensional geometry. The in-plane components of the damage

can be determined by integration through an angle of 0 -- 0 to 7., where p is measured

clockwise from the vertical z-axis. Since the crack function is discretized into twelve

in-plane directions, each spanning an arc of 15", the integration of equation (14) is

over dQ -do -i r/12. In the subroutine, the out-of-plane c6mponent of the crack

function is stored in the variable a(1), whereas, the in-plane conlponents are slored in

a(2) through a(! 3). Thus, the R and Z component.s of the damage vector are given by

D (R, Z) 2 o( ) 1t(i)(sin(dk(i)),cos(c(i)))dd (20)
t a

where H(i) is the discrete function, given by cquation (15), evaluat ed for each of tle

crack directions. a(i), which are oriented at angles 0(i). The hoop or out-of-plate

component of the (aniage is evaluated by giving the one crack direction that co'nlribuict
to it a weighting equal to one in-plane crack direction, ie. 7r/ 12. Thus. P(O) is given b\

(a(l) a,,( 1())
D (0)a,, (1)

3.2 Solution Control

When the damage is low or moderale, the resulting incremens in damage do 11ot
drastically affect the stresses; but, solving tle stress-damage equalions can be tiIC

consuming. In addition, when the stress state is near tih point \le(,re failure of ani

elernent is beginning, small changes in the trial strain slates may cause the elericnt to

fail during one iteration and then, because the stress was transferred to olher neighbor-
ing elements, the element may jump back into the stable regitne during the next Irial

iteration. Tbis drastic shifting of the da magc stie from stal, to unstable anid bia k
to stable as lhe solution process iterates can cause problems in oblaining a coji erged

equilibrium solution. Thus, some additional control oplions were added to SAN(C:11(
to enhance the rate of convergence. First, the solution sequence was allered so that.

at each load step, a converged solution is first obtained by keeping the damage fixed
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at the value it had at the previous step. Because the damage is fixed, this amounts to
obtaining an elastic solution with constant (but degraded) moduli, which can be done
quite rapidly. Once the elastic solution is found, a flag is set activating the complete
stress-damage solution and the program iterates until a new global solution, with the

updated damage state, is found. When the damage is low or moderate, the increment
of damage added during the current step does not alter the elastic moduli very much.

Thus, since the solution with the full damage model is starting from a converged elastic
solution with only slightly different moduli, convergence to the new damage solution
is very rapid. This two step solution process reduces the computational time signifi-
cantly over the time required to obtain the solution with the full stress-damage routine
invoked fron, the beginning.

When elements are in, or near, the failure regime, where unstable crack growth can
occur, a second solution strategy can be employed that both enhances the stability

of the solution process and decreases the computation time. This is achieved at the
expense of some accuracy in the equilibrium solution. This technique uses the two
step process described above except that once the elastic solution is found, only one
additional iteration is allowed with the stress-damage routine invoked. This amounts
to computing an equilibrium stress state, then using that state to CO1pute the niew
state of, damage, but no further iterating is done. Thus, the solution is on( of slatic
equilibrium where the damage is Comnpatible with the stress state but. not with the
strain state, i.e. equation (13) may be satisfied but not equation (19). lowever. I he
error does not appear to be very great, as will be demonstrated later. This neluiod has
the great advantage that equilibrium solutions are always sought under conditioiis of

constant damage., which greatly eases )roblems associate(] with reliability of 1lie global
solution algoril him, especially in regions where elements are failing.

3.3 Post-Failure Decay

During the calculation of the crack vector, a, each crack direction at every Gauss

point is checked. If a solution to equation (13) cannot, be found, then the applied stresses
and the crack size are such that the crack is unstable (KI increases with increasing a).
When this occurs, the crack length in that direction is set to a fixed maximum lenilh

wtiich is equal to di, the distance between neigh boring cracks. Thus, it is assumed Ihat
unstable crack growth occurs, causing the crack to link up with its nearest, neightbors.
At this point, the material is presumed to have failed and its load carrying capacit.
is systematically reduced. This is done through a user specified "decay" parameter.
When the material at an integration point has been identified as having failed, the
stresses are computed using the current, damage (including cracks that have been sel
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to the maximum length because of instabilities). Then, these stresses are multiplied by

the decay parameter, which is a positive number less than one. This has the effect of

isotropically reducing the stiffness of the material at that point. After each step, the

decay parameter is updated by multiplying it by itself. For example, if the decay at a

failing point is 0.9 at step n, it will be 0.81 at step n + 1 and 0.73 at step n 4 2 and so on.

Thus, when crack growth at a point is severe enough to cause local failure, the material
is softened over the succeeding steps. Currently, only isotropic softening is implemented

in the model; however, other more realistic schemes are being investigated.

3.4 Random Initial Crack Lengths

Under most circumstances, it is usually assumed that the initial microcrack length,
a,, is the same for all directions at all points in the material. In practice, however.

this initial length will probably vary randomly from point to point and direction to

direction. There is nothing in the model which precludes the use of a random variation

to describe the initial microcracked state. An attempt has beer made to allow the user
to generate a randomly varying initial crack length for the material.

Defining an initial random riicrocracked state is done by assigning each element

integration point an initial crack length for each of the thirteen crack directions. The

random variation is generated in a pre-processing program that writes a file which is

read by the analysis program. A different crack length (randomly varied) is written for

each of the thirteen damage integration directions at each element integration point.
The analysis program stores these initial crack lengths which, of course, results in

increased program storage.

The pre-processing program generates the distribution of crack lengths in the fol-

lowing way. First, a random number generator is used to generate thirteen sets of
numbers between 0 and I that are uniformly distributed. One set of numbers is gen-
erated for each crack direction. The number of random values in each set is equal to

four times the number of elements associated with the damage model, since SANCHO

uses four Gauss points per element. This initial randomizing process is done to ensure
that cracks of a given length and orientation will be scattered randomly through the

mesh. Thus, the thirteen crack lengths at each Gauss point will be different. Next, a
mathematical distribution, which represents the physical crack length data, is used to
generate the function that maps the random number associated with each crack direc-

tion, i, and Gauss point, j, into a set of crack lengths, A'. The mapping function used
for this process is derived from the inverse cumulative distribution function (CI)F-)

for the selected mathematical distribution. An average crack length for each integra-
tion direction is then computed by summing the individual crack lengths and dividing
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by the total number of points. This computed length is then scaled by a normalizing
length provided by the analyst and a scale factor is computed. Each individual crack
length is then multiplied by this scale factor to get the final crack length. The analyst
supplied crack length is necessary to scale the distributed crack lengths so that the

initial crack lengths, averaged over the structure. will represent some reasonable value
for the material.

Several standard mathematical distributions can be used as the second distribution

used to generate the sets of microcrack lengths for each crack direction. These include

the normal, lognormal, Weibull and the SB distributions. Each distribution type is

best suited to a certain class of random variables. Since the exact distribution of

the microcrack lengths is unknown, a mathematical description that provides a general

modeling capability was employed. The SB distribution provides the capability to skew

and to control the flatness or peakedness of the distribution [19]. Four parameters are

required to characterize this distribution. These four parameters are: (1) E, the lower

bound of the data, (2) A, the range of the data, and (3-4) -y, b, the shape parameters

that peak and skew the distribution. These parameters must generally be determined
by analyzing the specific data.

For the pre-processing progri-tu used here, the inverse CDF for the S1 distribut ion,
which is used as part of the mapping function, was determined in an approximate

manner using the results of Salas and Benzeden 120]. The values, U', obtained by

operating or the sets of random numbers with the normal inverse CDF are then used

to generate the set of crack lengths using the following relation

A

where

expl(U' - y)/6I.

An example using this distribution to generate an initial crack state is given in

Section 5.3. A copy of the pre-processing program used to generate the set of initial

crack lengths at. each Gauss point is given in Ref (29]. For the analysis described

in Section 5.3, it was assumed that the minimum crack length for Westerly granite

was 0.5 mm and the maximum value was 1.4 mm. The minimum crack length was

determined from acoustic emissions studies. The maximum crack length was assumed
to be halfway between the minimum and the critical crack length (di). The remaining

shape parameters were chosen, somewhat arbitrarily, to give the distribution a slightly

skewed shape since the exact initial crack distribution was unknown. The average crack

length was scaled to 0.7 mm which was the crack length used in calculations where it
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was assumed that initial crack lengths were all the same. This was done so that the
results from the calculations using the initially random distribution could be compared
to the results of analyses using a constant initial crack length of 0.7 mm.

3.5 Thermal Strains

SANCHO adjusts the stretching tensor to compensate for thermal strains which
are interpolated from material input data 181. However, equation (19) which is used to
compute the stress, contains the strain itself and not just the strain rate. In order to
compute correctly the bulk response when the temperature is changing, the thermal
strains are computed in a separate subroutine which is called by the material sub-
routine if a thermal problem is specified. The thermal strain is computed by reading
the temperature from the temperature history file which is supplied from an external
source 181. Then the strain is interpolated from the temperature-strain data which is
supplied as part of the material data string on cards 8 and 9. The thermal strain is
then subtracted from the the diagonal components of the mechanical strain. A listing
of this subroutine is given in Ref (29].

4 Determining Model Parameters

In this section, we will demionstrate a procedure for delerTliir g a set of model
parameters frori triaxial compression and microstructural data. For illustrative pur-
poses, we will use published data on Westerly granite to develop the parameters shown
in Table 1. Senseny j211 has used a procedure similar to the one described below to
estimate model parameters for Algerie granite.

In using triaxial test data to determine model parameters, we tacitly assume the
initiation of damage, as detected either through AE or volume strain measurement
techniques, is due to the propagation of the most favorably oriented crack. If the
specimens are compressed such that the greatest principal compressive stress, -- a. is in
the 3-axis direction with the confining pressure, -p, applied in the I and 2 directions.
then the positive principal components of deviatoric stress will be T1, -- T22 = 1/3(a --
p). Therefore, the most favorably oriented cracks will be those that have normals
perpendicular the 3-axis. Thus, we can simplify equation (13) to

, Tkkt 7r] K l,
Tl 3 -_27v/- ,J " (22)
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By plotting the points of damage initiation for a series of triaxial tests on axes of
T1 versus -Tk/3, an initial damage surface for the most favorably oriented cracks is
produced, as shown in Figure 4. Note that we use the abscissa of -Tkk/ 3 = (a + 2p)/3
because compressive stresses are considered to be negative and, thus, Tkk/3 < 0.

By performing a linear least-squares fit through the initial damage points, a straight
line is produced that corresponds to equation 22. From the inverse of the slope (1/S,
2.18) and the intercept (1, = 18.9 MPa) of the line through the data, we can get

(a,,) - f ao2 o(23)[,

and
[2 ;rd] K, 

(24)

Using equations (23) and (24), either the initial crack length or the fracture toughness
for microcracks can be calculated, provided one or the other is known. In general, it is
easier to estimate the initial crack length from either average grain size measurements
or from actual crack measurement data than to determine the fracture toughness for
crack sizes of interest. This is because for small cracks, the fracture toughness depends
somewhat on the crack size. Schmidt and Lutz 1221 have performed a series of fracture
toughness tests on Westerly granite. They found that for crack lengths in the range
of 10 to 100 mm, the fracture toughness increased from 2.0 to 2.6 MPaV/m. For crack
lengths below 10 mm the fracture toughness decreased much faster with decreasing
crack length. Extrapolating their data to crack lengths on the order of 1.0 mm, the
fracture toughness is approximately 1.0 MPaij/i.

From the data reported by Tapponnier and Brace 1231, we can estimate the average
grain size of Westerly granite 1.o be approximately 1.0 mi. Typically, the microcracks
present in the virgin material are of the order of one half to one grain diameter in
length. Thus, we estimated the value of a,, to be 0.7 mm. Inserting a, = 0.7 into
equation (24) along with the value of I from equation (23) and the appropriate values
of the slope and intercept of the initial damage surface (Figure 4), the value of Kt, is
computed to be 1.23 MPa/-m. This is a value comparable to that derived from the
data of Schmidt and Lutz 1221.

The three remaining microstructural parameters remain to be determined. From
the model we know that

d d > a,. (25)
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The length, d, is the span of the region of tension caused by some local inhomogeneity.

It is assumed that these regions are due to mechanisms such as grains of different
elastic properties being compressed together. Most of the idealized tension producing
mechanisms are on the order of the grain size, thus, d can at most be two to three
grain diameters. Experience has shown that a value of d, chosen so that the ratio dia,
is approximately equal to three, gives good results. Thus, a value of d = 2.0 mm was
derived for Westerly granite.

The parameter d, represents some initial spacing of microcracks and, thus, is related
to the initiation of failure by unstable crack growth. Ideally, one could determine a
failure curve similar to the initial damage curve (Figure 4) and determine its slope (Sf)
and intercept (If) where

SI> S,

and
If > 1.

Then using

2. y/\i aj I(2i)

a value of of could be determined and substituted into

Y"(af>2f -~ d~ ( J) (27)
li((, ) 2

d);

The pair of equations (23) and (27) could then be used to solve for the remaining two
model parameters d, and f. Unfortunately, a failure curve, in the sense used in the
model, would be very difficult to determine. This is because, in an actual experiment.
when failure begins by microcracks coalescing, the state of stress is very inhomogeneous.

Thus, regions of high stress may fail, whereas, regions of lower stress may be far from
failure. The average stress measured at the peak in the stress-strain curve is not
representative of the failure stress in the model sense. If an AE location system were
used during the tests, the stress state where localization of damage causes initiation of
failure may be detectable. However, experiments reported to date are inconclusive on
this point.

In lieu of a better method, the following fitting procedure can be used. First. we
assumed, = d, then calculate f from equation (23). Then, an axisymmetric finite
element model of a uniaxial compression test is formulated, such as the one discussed

in Section 6. An analysis is run with the tentative model parameters to determine the
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value of stress at the peak of the stress-strain curve. This value is compared to uniaxial
compressive strength data. If the predicted strength is too low, d, is increased and
a new f is determined; then, the procedure is repeated. If the predicted value is too
high, more changes are required since d, > d. Usually, by adjusting d and d, slightly,
a good fit can be obtained. For Westerly granite, a value of d, = d = 2.0 mm proved
quite good. This resulted in a value of 0.715 for f.

The two constitutive parameters, C and C2, are also best determined by com-
paring axial and volume strains predicted from a uniaxial compression analysis with
experimental data. From equation(18), it can be seen that

C, - (28)
E

and
L/

C2 - - (29)

Using the above values to start with, the results of an analysis can be compared to
experimental data and the values adjusted to give the desired fit.

5 Example Problems

Because of the complex nature of the microcrack damage model, analytic solutions
to even simple boundary value problems are not available. Thus, direct comparisons
of solutions with analytic results for the purpose of model verification are not possible.
However, in this section, results of some calculations using simple geometries and load-
ing conditions are presented and compared with experimental results, where possible,
both to assist in verification of the implementation of the model and to demonstrate its
validity in regard to modeling brittle materials. In addition, the effect of different solu-
tion control schemes, discussed in Section 3.2, on the solution of a particular problem
are shown.

5.1 Single Element in Compression

5.1.1 Model Behavior Compared to Experiment

In order to demonstrate the basic nature of the model, a simple calculation was
performed using only a single axisymmetric element subjected to uniaxial compression
(Figure 9a). The material parameters used in these calculations and all others presented
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here were derived from a series of triaxial tests on Westerly granite 110], as discussed

in Section 4, and are given in Table 1.

Figures 9b and 9c show the results of the single element analysis compared with
the experimental results of Brace, et al. 1101 that were used to determine the model

parameters. The fit to the data is reasonably good, demonstrating the model accurately
replicates the data on which the parameters are based. As will be demonstrated later,
the stress states in uniaxial and triaxial tests are not usually homogeneous unless great
care is taken to alleviate end constraints applied by the end platens. This causes some
problems in using this type of test data to determine model parameters because the
usual process of determining parameters assumes the data are derived from tests in
which the stress is homogeneous.

The accumulation of damage during axisymmetric uniaxial loading is displayed
in Figure 9(d). The three components shown in the figure are the components of the
damage vector in the (R), (Z) and (0) coordinate directions, respectively (equations (20)
and (21)). The damage begins to accumulate at approximately 35% of the peak stress,
consistent with acoustic emission measurements 113 i [15]. In addition, more damage is
accumulated in the (R) and (0) coordinate directions than in the (Z) direction because
cracks grow primarily parallel to the loading axis (Z-axis).

5.1.2 Comparison of Solution Techniques

Figure 10 shows the behavior of a single element, in plane strain, subjected to
uniaxial compression. Three solutions are shown. The three curves were generated
using (1) the two-stage stress-damage convergence scheme, described in Section 3.2.
where the the second stage stress-damage solution is allowed to reach complete global

convergence (designated "Elastic-Full Damage" in the figure); (2) the modified two-
stage convergence scheme where the damage is updated after an elastic solution is
found but no further iterating is allowed (designated "Elastic-Damage Update" in the
figure); (3) a solution using the update method but with time (or, equivalently, strain)
increments of half the size used in the other two calculations. A comparison of the three
curves shows that the accuracy of the update method is quite reasonable, differing from
the full damage solution only in the post-failure regime. Considering that the update

method runs approximately five times faster than the full damage method and. for
more complex problems, tends to be more reliable in the post-failure regime, it seems
reasonable that this method should be used, at least for preliminary calculations. The
effect of changing the solution step size is also shown in Figure 10. Because of the
isotropic decay method used, the rate of decay is tied directly to the number of steps
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used in computing the response in the post-failure regime. The decay parameter, of
course, can be adjusted to give the same post-failure response for any number of steps.

5.2 Uniaxial and Triaxial Compression Test Simulations

Uniaxial and triaxial compression tests of rock and cuncrete are often used to obtain
material property data for engineering analysis. Calculations using this test geometry
are useful because both the load-deformation histories and the failure modes are easily
confirmed by experiment.

Simulations of uniaxial and triaxial compression tests on Westerly granite at several
confining pressures were run using the material parameters given in Table 1, with a
uniform initial crack length, a,. For comparison, calculations were run in both the
plane strain and axisymmetric configurations.

The model geometry and finite element mesh used is shown in Figure 11. Since
the initial crack length was isotropic, a plane of symmetry was assumed through the
middle of the sample so only half of the model was actually used in the computlations.
The rock was divided into 100 elements for most computations. Computations with
400 elements and with 25 elements (in plane 'train) were also performed to assess the
effect, if any, of element size on the results.

For uniaxial test simulations, the top of the steel endcap was displaced downward
at a steady rate until so many elements in the rock material failed that converged
equilibrium solutions were no longer possible. In the triaxial tests, a hydrostatic stress
(in-plane stress for plane strain calculations) was first imposed by applying a uniform
pressure at the lateral boundaries in combination with enough axial displaenent to
achieve an isotropic in-plane stress state. Then, the axial displacement of the endcap
was increased until the rock failed. During this loading, the lateral pressure was kept

constant. In all cases, it was prescribed that no slip could occur between the endcap
and the sample.

Engineering stress-strain curves were derived from each simulation by compuling
forces and displacements in a manner similar to what would be done in a laboratory
experiment. That is, axial stress was derived by computing the total reaction force
at the lower boundary and dividing by the original cross sectional area. Axial strain
was derived by computing the net displacement of the ends of the rock and dividing
by the original length. Lateral strain was derived by computing the net displacement,
between two points across the central portion of the specimen and dividing by the
original thickness. The volume strain was then computed as the sum of the axial and
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lateral strains.

5.2.1 Plane Strain Calculations

The first set of results is for the plane strain configuration. Figure 12 shows the
stress-strain data derived from the simulated tests at three different confining pressures:
P, = 0, 10, and 50 MPa. The effect of pressure on the ultimate strength and the dilatant
behavior of the material are in good agreement with laboratory experiments on Westerly
granite i101; although the magnitudes of calculated failure stresses are somewhat lower
than those reported in the experiments because the experiments were conducted on
axisymmetric specimens. However, as shown in Figure 13, the stress-strain response
of material as derived from the simulated compression test differs somewhat from the
response of the material under uniform uniaxial compression as derived from a single
element plane strain calculation. This is because the stresses in the rock in the multiple
element simulated compression test are not uniform.

Figure 14 shows the stress distribution, in terms of the von Mises equivalent stress
(ra I 3T,' T,), in the rock at a point near the peak stress for each of the three test

conditions. The distributions are quite similar for all three cases with strong gradients
near the ends of the rock and less severe gradients near the center. Across the center
of the specimen there is about a 15% variation in stress. Vertically, from the platen to
the center of the specimen there is a 20 to 30% variation in stress, depending on the
confining pressure. Although even a simple linear elastic analysis shows that the stresses
are not uniform in the sample because of the constraint of the endcaps, the present
analysis also shows that once microcrack growth begins, these inhomogeneities in the
stress field tend to be amplified because regions under greater deviatoric stress become
more highly damaged and, therefore, less stiff compared to undamaged regions such
as those near the endcaps. Thus, the stress is redistributed further and the gradients
become more severe.

5.2.2 Effect of Element Size

Plane strain simulations were also run using 25 elements and 400 elements to model
the rock material. A comparison of the results from uniaxial compression calculations
using three different meshes is shown in Figure 15. There are some small differences in
the response curves up to the point of maximum stress. However, the major differences
occurred in the neighborhood of the maximum stress and on into the post failure
regime. The predicted maximum stress varied from approximately 180 MPa (using 400
elements) to 200 MPa (using 25 elements).
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5.2.3 Damage Distribution

The distribution of damage (magnitude of the damage vector, equations (20) and (21))
in the rock at the same stress states as those shown in Figure 14 is given in Figure
16 (plane strain calculation). Note that for the unconfined test, the maximum dam-

age occurs in a region on the surface of the sample, just below the endcap but not at

the corner where maximum deviatoric stresses occur. Also, there are large triangular

regions at the ends of the sample that have sustained little or no damage. As the

confining pressure is increased, these end regions become smaller and regions of high

damage begin to appear in the center of the sample. This indicates that the mode of

deformation changes considerably as confining pressure is applied. However, even at 50

MPa confining pressure, the damage in the central region of the sample is considerably

greater than near the ends. Because high damage means that the microcrack density

is large and, thus, the volume strain in this region is large, it could be expected that

some nonuniformity in surface deformation should begin to appear well before the peak

in the stress strain curve. Such observations have been made experimentally by Spet-

zler, et al. [24] and Kurita, et al. [25] using a sensitive holographic method to measure

surface deformation of rock samples under triaxial test conditions.

5.2.4 Failure Modes

The damage contours shown in Figure 16 also indicate possible failure modes. In the

unconfined test, the maximum damage is confined to near surface regions, giving rise

to the possibility that macrofractures will form in these regions resulting in slabbing

off of material near the surface. As confining pressure is applied, this mode changes to

one of more confined damage in the central portion of the sample, possibly leading to

fractures forming in the central region of the sample and propagating outward to the

surface along directions of high damage, resulting in faulting across the specimen.

The progression of failure for the unconfined, plane strain case is shown in Figure

17. The darkened regions shown in each frame are regions where the elements have

failed and are softening. Tile first frame shows the state of the sample just before the

peak in the stress-strain curve. Failure of some elements begins before the peak in

the stress-strain curve is reached. The failure zones spread rapidly as the deformation

continues beyond the peak stress. The last frame shows the state of the sample at

the end of the stress-strain curve. Computational reliability (convergence of solutions)
could not be maintained beyond this point.

The mode of failure predicted in the unconfined case is quite typical of brittle

materials in compression. If large fractures form in regions of heavy damage and failure

262



(Figure 17), it is easy to see that slabs of material will form and fall away. Experiments
by Wawersik I9] and Wawersik and Brace 1261 clearly show this kind of behavior in
uniaxial compression in a very stiff load frame. Figure 18 shows a series of photographs
of sectioned post-test samples taken from Wawersik 19]. The samples shown in the
figure were loaded to states of failure similar to those shown in the simulation in Figure
17. By sectioning samples after testing, Wawersik 19] determined that large fractures
form at the surface below the endcap (not at the corner) and propagate nearly parallel
to the lateral surface, leaving an hourglass-shaped central region of intact material. In
addition, it was evident from microscopic examination of samples that the central region
was heavily damaged, whereas, the regions near the ends appeared to have significantly
fewer microcracks.

The progression of failure in a test simulation with 50 MPa confining pressure is
shown in Figure 19. The mode of failure is quite different from that shown in Figure
17 for the case of uniaxial compression. If the confining pressure is large enough, the
mode of damage and failure shifts to one in which the damage is confined to the central
interior of the sample, resulting in the formation of one or more large fractures that
propagate outward at an angle toward the surface near the corner of the sample. This
mode of failure has been carefully documented experimentally by liallbauer et, al. 271.
Figure 19 shows a similar result, in that the failure begins in the central region. With
further deformation, zones of failure begin to appear at the surface below the ends.
However, it. is the central failure zone that spreads and finally consumes the central
region of the sample.

5.2.5 Comparison with Axisymmetric Results

The results of simulated compression tests on Westerly granite in the axisyminetric
mode are compared with the previously discussed plane-strain results in Figure 20 for
uniaxial compression and triaxial compression at 50 MPa confining pressure. Failure
of the sample occurs at a slightly higher stress in the axisymmetric case because of
the added hoop constraint. However, in the axisymmetric case, it is the darnage in
the hoop direction which dominates the failure mode. Figure 21 shows the predicted
progression of failure under axisymmetric uniaxial compression. The damage in the
failed zones is almost entirely in the hoop direction, which would lead to the formation
of axial fractures causing the sample to split into long pie-shaped segments.

Because of the constraint imposed by end conditions, it appears that conditions
of both plane-strain and axisymmetry may exist simultaneously in a compression test
sample, leading to multiple sets of fractures. An example of this type of brittle failure
in compression is shown in Figure 22. The figure s!:ows a uniaxial compression sample
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of aluminum-filled epoxy tested by Olsson and Jones 1281. The sample clearly shows
two sets of fractures. Hourglass fractures appear through the sample, leaving a cone-
shaped piece of intact material at each end of the sample. In addition, several axial

fractures are shown. Thus, it appears that the ends of the sample reflect conditions
consistent with plane strain deformation and failure, whereas, the failure mode evident
in the central portion of the sample reflects axisymmetric deformation.

5.3 Uniaxial Compression with Random Initial Crack Lengths

All of the above calculations were performed starting with an initially isotropic

distribution of microcracks. For romparison a uniaxial compression, plane-strain cal-

culation was performed using randomly generated initial crack lengths for each direction
at each Gauss point. Crack lengths were allowed to vary from 0.5 to 1.4 mm in such a
way that the average initial crack length over the entire model was 0.7 mm, the same

as in the isotropic case. The random variation in initial crack lengths was generated

using the pre-processing program described in Section 3.4. With the random initial

crack lengths, the material at each integration point is different, so no symmetry in

the model could be assumed. Figure 23 shows the slate of damage near the maximum

stress and the failed zones in the sample late in the post-failure regime. Due to the lack
of symmetry, damage appears to be localizing into a band angled across tile sample.
However, because the shear stiffness in the model is not affected greatly by the damage,

a shear zone does not form. Instead, failure bands similar to those in the isotropic case
eventually form, leading to hourglass fracluring.

6 Concluding Remarks

The material model discussed in this report allows for a good representation of
the behavior of brittle damaging materials such as rock, concrete and ceramics. The
model is best suited for application to problems where a detailed knowledge of the

stress and deformation states as well as the location and extent of regions of potential
failure are required. To date, the model has been used extensively in the analysis of
laboratory experiments to determine the extent and uniformity of derormation under
simple and (omplex load paths. In addition, the model has been used in conjunction
with experimental lechniques such as acoustic emission location to study and identify

the conditions under which localization of damage and deformation occur. This is an
important step in understanding the formation of faults and joints in geologic media

and the sudden failure of some kinds of concrete structures. Future applications may
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include the analysis of ceramic components, especially the effects of thermal stresses
arid fatigue on service life.

Because this type of model is rather new and the version discussed in this report is
the first attempt to implement such a model, several changes and improvements to the
model and its implementation are planned for the near future. There are two major
changes which will be made to address more completely the problem of calculating the
stresses in the post-failure regime. First, the sequencing of failure will be addressed
by incorporating a feature that allows the material at only one integration point at
a time to go into failure. Once the most critical (most highly stressed) of the points
that have reached the failure condition is identified, it will be identified as having failed
and a new equilibrium solution will be sought in order to determine the new stress
distribution resulting from a failure at one integration point. The remaining elcmentsr
will thn again be checked to see whether any are still at the failure condition: if so, the
most critical will be allowed to fail. The process continues until no more integration
points are at the failure condition. Thus, at each solution step, the stresses resulting
from re-distribution of loads due to failing regions in the structure will be properly
accounted for.

The second change to be made improves the calculation of stresses at a point that is
in failure. In the current version, the stresses are isotropically reduced to simulate the
reduction in load carrying capacity of a fractured element. This is somewhat unrealistic
in that the material can support stress parallel to the fracture and can also support some
shear stress. To correct this shortcoming, the stresses will be calculated b\ rotating
them to the reference frame of the critical fracture. The orientation of the uns able
fraclure is known from the crack function, a(n). The effect of the fracture is to reduce
to zero the normal and shear components of stress on the crack plane. Once this is
done, the stress tensor is rotated back to the global coordinate system and returned to
the program. Thus, the stresses at a failing point will be reduced anisotropically in a
way consistent with the growth of the macrocrack.

Finally, it is hoped to extend the improved version of the model to a ful\ thrce-
dimensional version. The main problem in doing this is the large amount of storage
required to represent the crack function accurately. For two dimensions. thirleeui slor-
age locations are required for each integration point just to store the (rack orienulat ion
and magnitude information. In three dimensions, this would increase to 144 storage
locations per integration point. Additional research is required to determine the min-
imum number of directions needed to accurately integrate the crack function before a
three-dimensional version of the model can be effectively implemented.
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Table 1: Model Parameters

Parameter Westerly
Granite

E (GPa) 60
v 0.25

C1 (i/MPa) 8.3 x 10::-
C2 (i/M.,Pa) 2.0 x 10-'
a0 (in) 0.0007

-d (mn) 0.002

d, (in) 0.00

Kic (MPaV/mi) 1.23
f 0.715
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Idealization of a microcrack in rock. The local region
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Figure 2

The effect of interaction between an array of collinear
cracks on the stress intensity factor. Pseudo-traction
solution is that of Horii and Nemat-Nasser 112].
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The effect of interaction between an array of collinear

cracks on the stress intensity factor of a penny (rack
in a local tensile region.
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Figure 4

Initial damage (yield) surface and failure surface for
Westerly granite. The solid lines are the model ap-
proximations to the data of Brace et al. [10].
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Load path followed by Holcomb [13] (luring triaxial
tests on Westerly granite to determine )oints on a
single damage surface I)V using the Kaiser eflect.
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Schematic showing the a.ssumed microcrack array at each
Gauss point (a = [a(l),a(2), a(13)1).
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Schematic of convergence process for the solution of
the stress-damage equations. Crack array compo-

nent, a,(i), at solution step n is incremented by Na
until the computed stress, T. relaxes to the damage
surface.
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Figure 9

Results of a single axisymmetric element in compres-

sion compared to the unijaxial compression data of

Brace, et al. 1101. (a) Single element model. (b) Ax-

ial stress-strain curve. (c) Axial stress-volume strain

curve. (d) Three com~ponents of the damage vector

as a function of the axial strain.
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Figure 10

Results for a single element in plane strain compression using
three different solution schemes.
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Finite element model of the triaxial test conifigura-
tion. 6 is the app~lied dIisp~lacemrent and P, is the
confining pressure.
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Westerly Granite, Plane Strain
600.0.................

'a500.0 -

"-400.0 Unconfined
......Pc= IOMpa

~ 3oo~oPc= 5OMPa

200.0

l100.01

-0.025 -0.020 -0.015 -0.010 -0.005 0.000 0.005
Volume Strain

Westerly Granite, Plane Strain
600.0...................

.. 500.07

~300.0
4)4

ZOO-- Unconfmned

~ 10.0Pc= IOMPa
Pc= 5OMPa

0.0 I. . . I .

0.000 0.002 0.004 0.006 0.008 0.010 0.012
Engineering Strain

Figure 12

Stress-strain results calculated from the model triax-

ial compression tests at different confining pressures.
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Figure 13

Comparison of the stress-strain response derived from
a simulated uniaxial compression test with the stress-

strain behavior of a single element in uniform uni-
axial compression.
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Figure 14

Contours of constant von Mises equivalent stress at a

point near the ultimate stress for three different test

conditions. The bar at the bottom of each figure

gives the range of stress in MPa associated with the

contours.
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Westerly Granite, Plane Strain
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Figure 15

Stress-strain data calculated from model uniaxial
compression tests usilg 25, 100, aid 400 elements
to model the rock.
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Contours of constant Damage at a point near the ultimate
stress but before any failure has occurred. The scalar Dam-
age is the magnitude of the Damage vector. The bar at the
bottom of each figure gives the range of Damage associated
with the contours.
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Figure 17

Progression of failure in a simiulated plane strain uliaxial
compression test. The dark areas represent (l>JnCIIIs ihat

have gon( into failure andi are at somw slag of soflniig.
The schematic stress-stirain curve at. the lop of each figirc
gives the aipproximate local i(n on the lseCCimnii st itss-st ra i
response crve where 1lie view is taken.
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Figure 19

Progression of failure in a simulated plane strain triaxial
compression test at 50 MPa. The dark areas represent ele-
ments that have gone into failure and are at some stage of
softening. The schematic stress-strain curve at the top of
each figure gives the approximate location on the specimen
stress-strain response curve where the view is taken.
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Triaxial Test Calculations
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Figure 20

Comparison of stress-strain data calculated from tri-
axial compression test simuiilationis using the axisyrm-

metric configuration with those calculated using tiw,
plane-strain configuration.
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Figure 21

Progression of failure in a simulated uniaxial coin-
pression test in the axisynirnetric configuration. The
dark areas represent elements that have gone into
failure and are at some stage of softening. The
schematic stress-strain curve at the top of each fig-
ure gives the approximate location on the specimen
stress-strain response curve where the view is taken.
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Figure 22

Photographs of an aluminum-filled epoxy sample af-
ter uniaxial compression. (a) Side view showing ax-

ial cracks similar to the axisymmetric hoop failure
shown in Figure 21. (b) End view showing slabbing
or hourglass fractures similar to the plane-strain fail-
ure shown in Figure 17.
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Figure 23

Results from uniaxial plane strain compression calculations
using an initially random distribution of crack lengths. (a)
and (b) are contours of constant Damage at points just before
and just after peak stress. (c) and (d) show the progression
of failure after the peak stress. Failed elements are shown by
darkened regions.
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1. INTRODUCTION

Modern computer-aided analysis and use of concrete for special

structures such as reactor containment vessels and missile storage silos,

has led to a growing interest in the cracking behavior of concrete [1-4].

Such concrete structures are also likely to be subjected to short duration

impulsive and impact loads in addition to static loads. Experimental

results indicate that tensile, flexural and compressive strength of concrete

increase with increase in rate of loading [5-7]. This implies that

neglecting the 'rate effect' in structural design might result in

underestimation of the strength of structures and hence uneconomical

designs. On the other hand, there is experimental evidence to suggest that

higher rate of loading might result in a brittle failure of concrete

structures as compared to ductile failure at slow rate of loading [8-10].

In order to accurately evaluate the overall structural response under

impact loading, a knowledge of the constitutive relationships and failure

criteria of concrete, steel, and interface properties, over a wide range of

strain rates (i.e., rates of loading) is essential. In this report, some

relevant experimental results and an analytical model of concrete aubjected

to different rates of loading are discussed.

2. REVIEW OF DYNAMIC TEST METHODS

The effect of impact loading on mechanical properties of concrete has

been reviewed in detail by Suaris and Shah [7], Mindess [11], Sierakowski
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(12), and Reinhardt [13]. Many investigators (see for example, Reference 6)

have studied the rate sensitivity of fracture strength of concrete in

tension, flexure, and compression. Various test methods have been used for

this purpose, as discussed next.

2.1Test ehd

Conventional DroR Weight Tests: This is a simple qualitative test. In

this test, a known weight is dropped on a specimen and the impact resistance

is characterized by the number of blows required to either initiate visible

cracking in the specimen or cause complete failure of the specimen.

Evidently this method is dependent on the weight, size, and shape of hammer,

drop height, and size of specimen. ACI Committee 544 recommends this test

to evaluate the impact resistance of fiber reinforced concrete.

Ramakrishnan et al. [14] used this technique to determine the performance of

steel fiber reinforced concrete.

Explosive Test: This method involves use of explosive shocks for

applying high rates of loading. This test is useful for studying scabbing

and fragm ntation Bhargava and Rehnstrom [15] used explosives and high

speed photography to study dynamic cracking behavior of plain and polymer

modified concrete. Mayrhofer and Thor [16] used a blast-simulator to study

the dynamic response of fibre and conventional reinforced concrete.

Charvy Imiact Test: The Charpy Impact Test consists of a pendulum-type

hammer striking a specimen, simulating either a cantilever beam or a three

point bend specimen. This test was originally recommended for metals

(ASTH). The impact toughness is characterized in terms of the energy

required for total fracture of the specimen. The energy required for

fracture is evaluated from the travel of the pendulum after the impact. The

measured energy value includes the energy to fracture the specimen, energy

absorbed by the testing system, and the kinetic energy imparted to the
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specimen [17, 18]. Krenchel [19] and Johnston [20] used this test to

evaluate the impact performance of steel fiber reinforced concrete in terms

of energy absorption capacity relative to unreinforced matrix. The next

step involved the use of an instrumented hammer in the conventional Charpy

test. Thus the hammer load-time history could be obtained. Based on such

Charpy impact tests of silicon carbide specimens, Abe, Chandan and Bradt

[21] concluded that the energy calculated from the Charpy test is higher

than the true fracture energy of the specimen and that the lower the true

fracture energy, the higher is the discrepancy obtained from the Charpy

test. Since the strength to weight ratio of concrete is much lower than

that of metals, the conventional Charpy impact test could overestimate the

energy absorption values of unreinforced matrix.

The above test methods do not facilitate rigorous quantitative analysis

of the impact behavior of cement composites. One cannot obtain useul

parameters for constitutive modeling purposes using the above experimental

methods.

Instrumented Drop weight Test: The instrumented drop weight test

consists of instrumented hammer and supports so that these serve as load

cells. With the aid of adequate data acquisition systems, one can obtain

load, displacement and strain versus time response of the specimen during

the impact event. These results can be used to obtain design parameters

such as modulus of rupture (MOR), Young's modulus, cracking strain, and

energy absorbed (directly evaluated from load-deflection response) as

functions of strain rate. Suaris and Shah [22] developed this test for

studying the impact behavior of plain and fiber reinforced concrete (Figure

1). Recently, Bentur, Mindess and Banthia [24] developed a similar test

set-up for testing large-sized concrete specimens.

Modified Instrumented Charpy Impact Test: Gopalaratnam, Shah and John

Figure 2. Modified instrumented Charpy impact testing system (17, 25, 26).
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[17) developed the modified instrumented Charpy impact testing system

(Figure 2). As the name suggests, the conventional Charpy machine was

modified to include the following features among others [17, 25, 26):

1) Concrete specimens larger than the conventional metal specimens

could be tested.

2) Hamer and support loads could be recorded independently.

3) Deflections, strains, and crack growth could also be recorded.

This test set-up has been used for studying impact behavior of steel

and glass fiber reinforced cement composites [18, 27], and fracture

mechanics investigation of effect of impact loading on concrete (25, 26,

28]. Similar to the instrumented drop weight test, this rAethod also yields

paramters useful for constitutive modeling of concrete under impact loading.

Svlit Honkinson Bar Test: The split Hopkinson bar test enables

determination of stress-strain responses in compression and tension at high

strain rates. The test was originally developed by Kolsky [29]. A

schematic of this test set-up is shown in Figure 3. The specimen is

located between two long bars, namely incident and transmtter bars. The

specimen may be held in such a way that either a tensile or a compressive

stress pulse, as desired, could pass through the specimen. The stess pulse

is generated at the free end of the incident bar by an explosive charge or

an impacting bullet. An excellent summary of the split Hopkinson bar

technique is given in Reference 30. Reinhardt et. al. [1] and Malvern et.

al. (32] used this method to study the high strain rate behavior of cement

composites in uniaxial tension and compression, respectively.

Constant Strain Rate Test: Constant strain rate tests are deflection-

controlled tests [see for example, References 22, 25 and 26]. Constant

strain rate tests can be done in tension, flexure, and compression. This is

an ideal test suitable for strain-softening materials such as concrte. But

it may be difficult to achieve high strain rates in such tests.
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2.2 Inertial Effects in High Strain Rate Tests

Inertial effects could become significant at higher rates of loading.

Using a two degree of freedom model to represent the impact test set-up (see

Figure 4), [Suaris and Shah, Reference 33] analyzed in detail the inertial

effects in impact tests. The use of the hammer load signal alone can lead

to erroneous results. The inertial loads could be neglected only if the

hammer load cell response was identical to the support load cells. This

required the use of a rubber pad to soften the contact zone between the

hammer and the specimen. Suaris and Shah [33] validated this appraoch

analytically using the model shown in Figure 4. Gopalaratnam, Shah and John

(17] used this model to obtain guidelines for designing an impact test set-

up, as discussed earlier.

Bentur et. al. [24] conducted instrumented drop weight impact tests on

large-sized concrete specimens. The acceleration of the specimen was

measured using accelerometers glued on the specimen. This enabled direct

evaluation of the inertial effects experienced by the specimen. They

reported that the inertial loads could be as high as 90% for concrete

specimens. They also concluded that though the use of ruuber pad decreased

the inertial effects, it also reduced the rate of loading, as expected. It

should be noted that this was also observed by Suaris and Shah [33] and

Copalaratnam et. al. [17]. John [25] showed that the model shown in Figure

4 could be used to accurately predict the acceleration experienced by the

specimen and hence the inertial effects obseved by Bentur et. A. [24].

2.3 Discussion

Several other studies using the various test methods described above

have been conducted [34-47]. Based on the above review of dynamic test

methods the following remarks can be made:
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1. Instrumented impact tests (drop weight or Charpy) and splt

Hopkinson bar tests can be used for developing constitutive models

for concrete at impact rates.

2. Inertial effects have to be considered while analyzing the

experimental results. In some cases direct measurements using

accelerometers may be required.

3. To obtain the rate sensitivitiy of mechanical properties useful for

constitutive modeling over a wide range of strain rates,

instrumented impact (drop weight or Charpy) tests or split

Hopkinson bar tests should be coupled with constant strain tests.

3. EXPERIMENTAL RESULTS OBTAINED FROM HIGH STRAIN RATE TESTS

Typical experimental load-deformation responses are shown in Figures 5-

7. Figure 5 corresponds to uniaxial tension [13], Figure 6 to flexure [18],

and Figure 7 to uniaxial compression (48]. The relevant conclusions

regarding high strain rate behavior of concrete are listed below:

1. The peak strength increases with increase in rate of loading in

tension, flexure, and compression (Figure 8 [49,50]).

2. The rate sensitivity (ratio of impact strength to static strength)

is highest for tension and lowest for compression (Figure 8). Rate

sensitivity in flexure is between that of tension and compression.

This implies that rate sensitivity of mode I (tensile) cracking is

probably responsible for the observed rate effects [49, 50, 51].

3. Young's modulus (E) is relaively rate independent from strain rate
-6

of 10 to 1.0 per second. This is shown in Figure 9, which was

reported by Gopalaratnam and Shah [18] based on flexural impact

results. This trend of relatively rate independent E was also

observed by:

a) Tinic and Bruhwiler [38] in uniaxial tension.
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b) Suaris and Shah [49], and Ahmad and Shah [48] in compression.

c) John [25] in flexure based on load-crack mouth opening

responses of notched beams at impact rates.

In contrast, Reinhardt [13] reported that E increaseswith

increasing strain rate based on impact tensile tests. Their

results indicated that the increase was about 25% at a strain rate

of 1.0 per second.

4. Secant modulus evaluated at the peak load increases, see Figure 9.

This was also observed by others in tension and compression [38,

48, 49]. This implies that the material behaves more linearly at

high strain rates, i.e., prepeak nonlinearity decreases with

increase in rate of loading.

5. John and Shah [26] used special brittle Krak Gages for studying the

effect of impact loading on mode I crack growth in concrete, Figure

10. The experimental results indicate that prepeak nonlinearity in

concrete is due to prepeak crack growth and this prepeak crack

growth decreases with increasing strain rates, Figure 11.

6. The average crack velocity at strain rate of 0.4/sec. is less than

5% (about 100 m/sec.) of Rayleigh wave velocity in concrete, as

observed by John and Shah (26). Bhargava and Rehnstrom (15) and

Mindess et. al. (52) also reported similar crack velocities.

7. The deflection or strain at peak load also increases with the rate

of loading (7, 13, 38, 48, 49).

8. The rate sensitivity of lower strength concrete is higher than that

of higher strength concrete, Figures 12 (7, 8, 17, 28).

9. Most of the reported data correspond to strain rate less than or

equal to 20 per sec. except those of Malvern et. al. (32) and Jawed

et. al. (47).
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4. MODELING OF CONCRETE BEHAVIOR UNDER HIGH STRAIN RATES

Some of the models proposed for predicting the rate sensitivity of

fracture are described in this section [53-64].

Thermally Activated Flaw Growth Models: Many investigators have used

thermally activated flaw growth models to predict the strain rate effects on

fracture strength of materials such as concrete, ceramics and rocks. For

example, Evans (62) assumed that the crack velocity is a power function of

stress intensity factor (Equation 1) and derived a relationship between the

fracture stress and rate of stress application as given by Equation 2. Note

that Equation 2 was also derived by Charles (63).

V cc N (1)

V (a) /N + 1 (2)

in which K I - mode I stress intensity factor, V - crack velocity, of

fracture strength, & - rate of stress application, and N is assumed to be

rate independent. Mindess (11) reported a value of N - 30 for crack

velocities up to 10-1 cm/sec. Based on impact crack growth measurements,

John and Shah (26) concluded that log KIversus log V relationship is

nonlinear at higher rates of loading and hence Equation 1 is invalid at

impact rates. Mihashi and Wittmann (64) derived an expression similar to

Equation 2 (see Equation in Figure 13) by combining rate process theory and

stochastic principles.

The rate process theory models were developed to predict crack under a

constant load or a slowly increasing monotonically applied load. Under such

loads crack growth is slow (crack velocity less than I mm/sec.). Hence this

theory may not be valid at impact rates where crack growth is at much higher

rate (15, 26, 51, 52), as shown in Figure 13. Kormeling (65) used the rate

300



theory to derive relations between fracture energy (Gf), deformation rate

and temperature.

Dynamic Crack Models: To determine the dynamic stress distribution

around a fast moving crack tip, one can use equations of motion including

the inertia terms. Freund (66) obtained dynamic elastic solutions for crack

growth due to general loading. He concluded that the dynamic stress

intensity factor decreases with increasing crack velocity as given by the

following equations:

KID -k(V).Kis

in which kID -dynamic Ki, Kis - static KI for the same loading, and k(V) -

velocity correction factor, similar to the results of Broberg (67). The

variation of k(V) with crack velocity (V) is shown in Figure 14. The

maximum observed crack velocity at impact rates (strain rates about

1.0/sec.) is less than 5% of Rayleigh wave velocity (CR) (26, 51). For this

small value of V/CR, it can be seen in Figure 14 that the value k(V) is

close to 1.0 and hence KID - Kis in Equation 3.

Using the theory of linear elastic dynamic fracture mechanics for

Heaviside loading of an isolated crack, Grady and Kipp (68) derived the

following relationship between fracture strength, of and strain rate, 1,

Equation 4.

a a (M)/3 (4)

Not that Equation 4 is similar to Equation 2 with N - 2. This cubic rate

dependence of fracture stress on strain rate was experimentally observed for

4 4a rock sample (Arkansas novaculite) at i - 0.8 x 10 4to 2.5 x 10 /sec.

Equation 4 is applicable at very high rates only because it was derived
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assuming that the crack travels at terminal velocity (acoustic velocity)

after initiation. As discussed earlier, the observed crack velocity (V) is

very low (V/CR < 5%) even at strain rates = 1.0/sec (26, 51). Hence

Equation 4 may not be applicable for concrte at strain rates observed so

far.

From the above two sections, one can conclude that neither the rate

process theory nor the elastic dynamic theory is capable of predicting the

rate sensitivity of nonlinear material such as concrete in the strain rate

regime of 10.7 to 10/sec.

Nonlinear Fracture Mechanics Model: For conditions where LEFM (linear

elastic fracture mechanics) is applicable, one can calculate the critical

stress intensity factor, Kic, from the notched beam tests using the measured

peak load and initial notch depth, a . For cement based composites there is

significant precritical (prepeak) nonlinear crack extension (also called

"slow crack growth" or "process zone") (53-55). This can be seen in Figure

15. Crack growth was measured using Krak gages (see Figure 10) on one

side of the specimen and strain was measured a the notch tip on the other

side of the same specimen. The strain gage reading shows extensive

"straining" (strain > 150 pstr) when the load response deviates from

linearity. Close to this the Krack gage indicates crack initiation. One

should include this prepeak crack growth for determining size independent

KIc. It is very difficult to estimate the crack length based on surface

measurements since the crack front is tortuous and discontinuous (26, 69-71)

To overcome this difficulty Jenq and Shah (53, 72) proposed an

effective crack length approach to obtain a valid fracture toughness value.

The effective crack length ae was defined such that the measured elastic

crack mouth opening displacement was the same as that calculated using LEFM,

Figure 16. They observed that KIc and CTODC (critical crack tip openinig

displacement, (Figure 16) determined thus is essentially independent of size
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of beam. Note that CTODC is the elastic opening at the location of the

initial notch tip when the initial notch, a0 , is assumed to grow to an

effective crack, ae, at the peak load. Note that Kic defined by them is

termed KIc* Jenq and Shah used this Two Parameter Fracture Model (TPFM) to

explain the various size effect related phenomena in plain concrete (53,

72), fracture of steel fiber reinforced concrete (73), size effect in shear

failure of reinforced concrete beas (74), and mixed mode fracture of

concrete (75).

Based on the Two Parameter Fracture Model, John, Shah and Jenq (51)

proposed a model to predict the rate sensitivity of mode I fracture of

concrete. KIc and E were assumed to be rate independent and CTODc was

assumed to decrease with increasing strain rates. John and Shah (28) used

this model for studying high strength concrete, and the interaction of

static strength and rate of loading. The proposed model predicts the

generally observed trends in rate effect in tension (Figures 12 and 17), and

flexure (Figures 18 and 19). The model also predicts the decrease of

prepeak nonlinearity with increase in rate of loading, as shown in Figure

11. The difference in rate sensitivity in tension and flexure is predicted

to be due to the size effect involved in the determination of flexural

strength as shown in Figure 20. Note that a large beam haas the same rate

sensitivity as uniaxial tension, Figure 20.

This model seems to be valid in the range 10.7 to 1.0/sec. This model

was developed for Mode I fracture (as in the case of uniaxial tensile [76,

77] and flexural failure [26, 70, 72] . In actual failures, the fracture

will be mixed mode (mode I, tensile, and mode II, shear) in nature.

Experimental and theoretical study is in progress at Northwestern University

to investigate the effect of rate of loading on mixed mode fracture of

concrete (25). This study would be helpful in assessing the potential
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variation of mode of failure of reinforced concrete structures with

increasing strain rates.
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HIGH STRAIN RATE TESTING OF COMPOSITES

R. L. Sierakowski
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Columbus, Ohio 43210

Abstract

A review is presented of the high strain rate behavior of filamentary

composite materials. The experimental techniques used in evaluating the

dynamic performance of composites are chronicled as well as the types of

composites materials studied by investigators. Research as to areas of

needed research are addressed.
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Introduction

Dynamic loading effects occur in materials and structural elements by

the application of rapidly applied loads produced over short time

durations. For composite type materials, dynamic effects are particularly

important due to concern with the impact resistance of these materials.

Unlike metallic based materials, the multiphase structure of composites

leads to complex interactions of the constituent elements. That is, at the

fiber/matrix interface, the chances for micro-damage to develop at all

dynamic loading levels are increased, leading to damage which, in turn,

influences subsequent mechanical performance.

The complexity of the dynamic problem is further compounded by the

fact that the intensity of the loading influences the loading rate, which

affects the wave propagation and damage mechanisms occurrng in the

composite material/structure. The distinction between material and

structural response is pertinent in considering dynamic events since a

clear definition between material response and structural response is an

important issue for composites (Harding, [1]). Thus, in order to develop

an understanding necessary for composite material behavior subjected to

dynamic loading, it is necessary to study the interactive nature of dynamic

events occurring during the loading process. As an example, in order to

determine dynamic properties necessary for modelling dynamic events, it is

necessary to study stress wave propagation as well as to know the material

constitutive relations. However, to understand the wave propagation events

the very same dynamic properties which are being sought must be known in

order to input these parameters into the constitutive equations which are

to be determined. Thus, understanding all three events must be synthesized

in order to both understand and quantify dynamic effects.
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This can be exemplified through Figure 1 shown below.

Dynamic Properties Ik

Constitutive Equations

IWave Propagation

Figure 1. Interactive Dynamic Effects

The aforementioned discussion is pertinent to the focus of two of the

three issues highlighted in this workshop, these being:

* The ease with which model parameters can be determined directly
from impact experiments

* Development in modeling related to the physical processes involved
in deformation and failure

In order to pursue the aforementioned issues, it is useful to use experience

gained from studies on the mechanical behavior of metals as a basis for pre-

dicting the general behavior of composites.

<lO-3/sec 10- 3 _ lO-1/sec 100 - 101/sec 102 - 10 4/sec >10 4 /sec

Constant Hydraul ic Pneumatic Mechanical Gas Gun
Load or or or or Expolosive

Machines Screw Mechanical Explosive Driven Plate
Mechanics Machines Impact Impact Devices

Fig. 2 Loading Regimes and Experimental Test Techniques

As a reference point it is useful to refer to Figure 2 which illustrates a

range of strain rate regimes with accompanying experimental test techniques.

It is generally accepted that rate effects on metals (FCC, BCC, HCP, etc.)
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generally become important in the range extending from 50 to 500/sec. The

experimental procedures indicated have been used for obtaining data on such

dynamic properties as:

strength
modulus
fracture toughness
damping
fracture surface energy
strain to failure

In the present case, primary focus will be given to studies of both continuous

filament and discontinuous filament metal and non-metal matrix composites

considering such parameters as fiber volume fraction, packing density, and

fiber diameter. The issues important to the design of experiments for the

dynamic testing of such composites are:

• Devising launch mechanisms to produce the desired stress state

0 Fixturing specimens in the test assembly

0 Selection of specimen geometry

* Test duration and equilibrium transit time

0 Complexity of composite failure mechanisms

0 Measuring transient parameters accurately

0 Data collection, management, and interpretation

The dynamic test methods currently used for studying the dynamic properties of

composites have been cited in the following table and each is discussed in the

accompanying text. Included at the end of the text is both a reference list

as cited and a bibliography for further use by the reader.
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TABLE I
Dynamic Test Methods

* Punch Tests

* Izod, Charpy Impact

* Drop Weight Tests

* Hydraullc/Pneumttc achines

* Hopkinson Pressure Bar
- Compression
- Tension
- Shear
- Flexure

* Flyer Plate

For each of the cited test methods, a description of materials tested,

loading rates, and data obtained from reference sources has been included.

IPunch Tests

* Materials Tested
- Weaves, Laminates

(Pemaglass 22FE, NCRE, Graphite,
Kevlar, Glass)

* Punch7Loadlng Rates
- 10- to 10 M/sec
- Test Configuration

(Beams. Plates)

" Data Obtained
- Maximum Punch Load vs.

Punch Speed
- Force Time Histories
- Fracture Damage
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Punch tests have been performed in order to obtain data on maximum punch

loads, force-tim histories and fracture damage of composites. Harding [2),

for example, has studied weaves and laminates consisting of epoxy and poly-

ester based materials. As an example of the results obtained, the effect of

punch speed on load-displacement for a glass/epoxy composite is shown in

Figure 3 for punch speeds ranging from lO' 7to 16 m/sec. These data show that

the maximum punch load increases by 250% for epoxy based materials and has

been observed to increase by about 100% for polyester based materials. Fur-

ther punch type tests have been performed on Kevlar-epoxy weaves as described

by Duffey, Glass, Sutherland, [3], in which a series of low speed punch loads

at less than 10 m/sec were performed. These results were used to compare with

a theoretical finite element model by examining predicted and observed load-

deflection curves. Some recent results on low speed impact in the 3 m/sec

regime have been conducted, for example, by Shivakumar, Elber and Illg, [4].

In this study, two models were introduced, the first an energy balance and the

second a spring mass model to predict impact force magnitude and duration as a

function of impact velocity.
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j CHARPY/IZOO TESTSI iI

Materials Tested

- Eglass/Epoxy, S-glass/Epoxy,
Kevlar 49, HN-Graphite/Epoxy,
Thornel 75/Epoxy, Boron/Epoxy,
Hodore I/Epoxy,
Nodmore II/Epoxy,
Boron/Alumin ul

* Loading Rates

- .005 1m/sec to 1000 ln/sec
Test Configuration
(Three Point Bending Tests)

Data Obtained

- Energy Absorption
- Notch Sensitivity
- Fracture Behavior
- Rate Effects

(Energy Absorption, Bending Strength)

Charpy/Izod tests have been widely used for obtaining such data as com-

posite material energy absorption, specimen notch sensitivity, and composite

fracture behavior. Such tests were originally designed to examine the energy

absorbing qualities of metals and later used for studying resins and compos-

ites. Studies on composites using instrumented Charpy tests have been con-

ducted, for example, by Beaumont, Riewald, and Zweben, [5]. These studies in-

volved impact velocities of approximately 3.5 m/sec and for conditions where

wave propagation effects were ignorable. A typical load history schematic for

the impact event is shown in Figure 4. Based upon such data, a proposed

Ductility Index was introduced by the authors defined as the ratio of initia-

tion energy to propagation energy to evaluate the energy absorption within the

material. This index can be considered as a useful screening tool for evalu-
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ating the energy absorption of composites. In addition, both notched and

unnotched (bend) Charpy tests provide an insight into the inherent differences

between static and dynamic failure modes as observed, for example, by Krinke,

Barber, Nicholas, [6] and shown in Figure 5. Most recently Ruiz and Mines,

[7], and Mines and Ruiz [8] have performed instrumented Charpy tests on

composites using V-notched and precracked fatigue specimens. For these tests,

the recorded complex strain-time traces have been found to require electronic

filtering to insure appropriate conversion to a force time diagram. A typical

filtered Charpy load-time trace is shown in Figure 6.

Analytical work using FEM to evaluate the stress distribution of V

notched Charpy type specimens in the near field, that is, in the vicinity of

notches, and in the far field, has been studied by Chamis, [9]. An

investigation of a variety of unidirectional composites including Boron,

Graphite, Kevlar and Glass reinforced epoxy using NASTRAN as the FEM tool

indicates a complex biaxial stress state in the vicinity of the notch

involving transverse tension combined with interlaminar shear. Further away

from the notch at the beam center, interlaminar shear appears to be the

dominant fracture mode. Results of this analysis indicate that use of the

Charpy test with a V notched specimen does not appear suitable for assessing

non-metallic fiber composite impact resistance, because of the complex stress,

strain, and strain rates encountered throughout the specimen.
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DROP WEIGHT DEVICES

Naterials
- Eglass/Epoxy, S-glass/Epoxy

(ERL 2256), Graphite/Epoxy
(AS/3S01), Hybrids
(ACIF-HT Carbon/Keylar 49/
Araldite F/AT 972)

* Loading Rate
- 1 to 10 1/sec
- Test Configuration (Beaus)

Data Obtained
- Energy Absorption
- Fracture Toughness
- Failure Mechanisms
- Strength Reduction
- Notch Sensitivity

Drop Weight Tests

Drop Weight Tests have been used in a similar way to Charpy/Izod Tests to

obtain dynamic properties data on material energy absorption, fracture tough-

ness, failure mechanisms, strength reduction, and notch sensitivity. A sche-

matic of such a drop test apparatus as used by Broutman and Rotem, [10], Is

shown in Figure 7. In this schematic, a drop weight with a preselected inden-

tor tip is raised to a fixed height and released onto a specimen located on

instrumented supports. Drop test results examining strength versus impact

velocity for undirectional and cross-ply E glass/epoxy composites of differing

geometries and drop weight heights have been studied for example by Broutman

and Rotem, [10), and shown In Figure 8. Observations from these tests indi-

cate that energy absorption is rate sensitive and that the principal mecha-

nisms of energy absorption is delamination between layers. Studies on the

impact strength of balanced angle ply composites have been examined for ex-
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ample by Llfshltz, [11]. The importance of fiber orientation as it effects

composite failure has been studied. For the E-glass/epoxy composites studied

in Reference [11] a drop weight apparatus as shown schematically in Figure 9

was used. Some of the important results obtained from these studies include

that for fiber orientations greater than -45, the maximum transverse strain

theory agrees well with experiment and that the dynamic failure stress is of

the order of 25% higher than the corresponding static value. More recent drop

weight tests by G. Caprino, [12], for example, have examined predictive models

for the residual tensile strength of carbon fiber composites. The Linear

Elastic Fracture Mechanics model (LEFM) introduced has been shown to be useful

for calculating residual tensile and compressive strength for low speed im-

pacts. A typical residual strength curve is shown in Figure 10. Very recent

drop weight tests on Kevlar/Carbon hybrid composites have been studied by

Marom, Drukker, Weinberg, and Benloji, [13]. .Results obtained from these

experiments, which have been based on recorded force-time traces, indicate

that the failure event in the carbon fibers always preceded that occurring in

the Kevlar fibers, this attributed to the lower strain to failure for the

graphite fibers. A typical impact energy curve as related to layer

interchange and sequencing is shown in Figure 11.

330



I HYDRAUJLIC/PNEJMATIC MACHINES

- Materials
- Neat Resins (PWUA, CAB, Nylon,

Polypropylene)
- S-glass/Epoy (828,871)

• Loading Rates
- 1 to 50/sec/ 500/sec
- Test Configuration (Tension)

Data Obtained
- Strain Rate Sensitivity
- Failure Modes
- Mechanical Properties
- Constitutive Equation

Modelling

Hydraulic/Pneumatic Tests

Hydraulic/Pneumatic Tests have been conducted to obtain data on composite

strain rate sensitivity, failure modes, dynamic material properties and con-

stitutive equation modelling. Tests of this type are especially useful for

controlled strain rate testing in the medium rate range. In this regard,

Chou, Robertson, and Rainey, [14], studied the room temperature dynamic com-

pressive behavior of a number of neat resins and their associated use for

temperatures over a strain rate range extending from 10 4 /sec to 103 /sec. A

summary of work done on a variety of plastics has also been included by these

authors and is noted in Figure 12. In particular, a unique open/closed loop

testing machine has been designed for use in these experiments. The closed-

loop mode incorporates a feedback system with a function generator for moni-

toring load and displacement. The open loop system uses fast acting valves

with various orifice sizes, which when coupled with adjustable piston strokes

insures a controlled displacement rate. Typical true stress-strain curves
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obtained for a PM4A resin are shown in Figure 13, as well as true stress and

strain rate behavior in Figure 14.

In the same time period Armenakas and Sciammarella [15], performed dy-

namic tests using a specially designed high speed apparatus in which an ex-

posive type launch system was used. Specimens tested were plate like speci-

mens fabricated from glass/epoxy and measurements were made by high speed

photos taken of Moire patterns using a Beckman-Whitley camera. Stress-strain

rate data for the glass/epoxy composite tested is shown in Figure 15. Some

of the interesting observations made concerning composite failure include the

fact that the number of fiber breaks at high rates is higher than at low rates

and that the strain corresponding to the ultimate load is dependent on the

strain at the ultimate load of the individual glass fibers.

Another interesting hydraulic/pneumatic device has been discussed by

Matera and Albertson, [16]. This hydraulic/pneumatic device is shown in

Figure 16 and uses gas and water, the latter placed in the upper chamber,

while both chambers are initially at equal pressure. When the diaphragm shown

in Figure 16 is ruptured, liquid is ejected, the piston moves up, with the

pressure controlling the displacement rate. Strain measurements are made by

means of a displacement transducer which is fixed to the upper bar which moves

with the piston. This device allows strain rate measurements in the range 1

to 50/sec.
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I HOPKINSON PRESSURE BAR

COMNPRESSION

* Materials
- Epoxy C124, Steel/Epoxy (Epon

815,828), E-glass/Epoxy (Epon
815.828). CuW, Steel/Epoxy
(Epon 815,828), Al-Alti, NI-Nb-Al
Du/V, St/U, /Al, /Steel

" Loadigg Ratel
- 10' to 10"/sec
- Strain Sensitivity
- Stress Pulse Shaping
- Constituent Properties

(Filament Size, Volume Fraction)
- Dynamic Ytield/Ultimte Stress
- Fracture Mechanism
- Mterial Processing
- Constituent Equation Modelling
- Damage Initiation

Among the most widely used tests for evaluating high strain rate effects

in metals is the split Hopkinson pressure bar test. This type of test proce-

dure has bee used to examine the dynamic response of materials in various

modes of testing including compression, tension, and shear. Some of the

important data obtained by using this test procedure include strain rate

sensitivity, constituent properties, dynamic yield stress, Gamage propagation,

and fracture mechanisms. The compression test represents one of the more

fundamental testing modes for both metals and composites and a typical sche-

matic of the test arrangement is shown in Figure 17, as dascribed by
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Chiddister and Malvern, [17]. Some of the important issues which need to be

considered in both fixturing the test specimens and analyzing the data col-

lected include minimizing radial inertia effects, accounting for wave propaga-

tion effects, and lubricating the specimen end faces. The latter is par-

ticularly important for composites insofar as the replication of the resultant

failure modes is concerned. A somewhat more detailed view of the SHPB Com-

pression apparatus showing the specimen configuration and wave transmission

through the incident bar, the specimen, and the transmitter bar has been shown

in Figure 18. This has been discussed in some early representative SHPB

experiments performed by Lindholm [18], [19] on a variety of metals as well as

some polymeric materials. Typical stress strain and rate dependent data for

Cu is shown in Figure 19. This data obtained for a FCC type metal leads to a

suggested form for the functional relationship between stress, strain, and

strain rate as obtained from Figures 19 and 20 and is represented by an equa-

tion of the type a = a0+ a1log I where a 0 refers to unit strain data and

a1 (e) increasing strain data. The form of this equation suggests a rate

dependency which is due to a thermally activated process.

The application of the SHPB to epoxy based resins in a compression mode

has also been studied by Lindholm [18]. Some typical static and dynamic

curves are shown in Figure 21 for a specific epoxy. The rate sensitivity of

this class of materials as well as the viscoelastic nature of the material is

clearly evident.

Hauser [191 has examined experimental techniques for measuring the

stress-strain relations of various classes of materials including metals,

ceramics, and rock. Included in these studies was consideration of stress

pulse shaping as related to the design of both the input/output bars for

various loading modes including compression, tension, and shear. A schematic
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of each mode of loading is shown in Figure 22. Variations of these loading

modes have been applied to composites more recently. It should be noted that

each of the aforementioned designs requires a dedicated SHPB configuration,

launch mechanism, and specimen configuration and holding fixture. For the

case of metals, and in an attempt to make the pressure bar versatile, Lindholm

and Yeakley [21] proposed the design of a compressive SHPB bar which by speci-

men redesign could accomodate tensile specimens as shown in Figure 23. The

introduction of a so-called hat type section for the tensile specimen was

studied and this type of specimen showed no apparent geometrical effect when

used for metallic based specimens. The application to composites, however,

poses not only a manufacturing type problem but a geometrical/scaling problem

as well. Some of the earliest work on the dynamic compressive testing of

filamentry type composites was reported on by Sierakowski, et. al., [22].

These studies consisted of a systematic study of a carefully fabricated model

system consisting of steel wire/epoxy specimens, with filament size, spacing,

and volume fraction as parameters of study. Typical stress-strain curves for

a particular filament size and volume fraction have been shown in Figure 24.

The rate dependency of the composite system tested for various volume frac-

tions and filament sizes is shown in Figure 25. Additional compressive bar

high rate test data for E-glass/epoxy specimens has been shown in Figure 26.

Further studies by Sierakowski, et. al., [23], on model steel wire/epoxy

composites tested in compression on the SHPB examined fracture modes as well

as the parameters mentioned above. Figure 27 shows the effect of volume

percent reinforcement at both low and high strain rates as it effects peak

stress. It is evident that in the dynamic case a peak stress associated with

a filament size and volume fraction of reinforcement is evident, while such an

observation is not true at low rates. This can be partly attributed to dif-
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ferences in observed failure modes between low and high strain rates shown in

Figure 28. Some high rate compression tests in controlled filament reinforced

metal based composites have been conducted by Ross and Sierakowski, (24] for a

Tungsten/Copper Composite in the SHPB. Once again, filament size and volume

fraction were examined as related to how rate effects influence the flow

stress of the material. Typical results are shown in Figure 29 with corres-

ponding stress-strain curves shown in Figure 30. Additional tests on metal

based composite systems in compression using a SHPB were conducted by

Sierakowski and Lemkey, [25), on a model material (Al-Al 3Ni). Such composites

have filaments aligned in situ in the matrix material using the process of

rapid solidification. Typical stress-strain rate data as well as dynamic

stress-strain data for this material are shown in Figures 31,32. An interest-

ing observation is that even though the matrix is ductile a strain softening

phenomena is observed for high loading rates. Some additional tests on metal

based systems have been conducted by Weimer, et. al., [26], and Krause,

[27]. A summary table of rate effect data obtained from these studies for

various metal based composite systems is shown in Figure 33 with some of the

particular compressive pressure bar design and specimen fixturing for the high

strength composites tested is shown in Figure 34. Some of the interesting

failure modes observed during these tests has been included in Figure 35.

These may be compared to the steel-epoxy modes shown previously. Most re-

cently, Bai and Harding [28) have studied fracture initiation under high rates

of loading for glass/epoxy composites. The first observed sign of damage for

single layer composites appears to be when failure occurs along the direction

of the axially aligned reinforcement, while for the case of the multi-layer

composites, it was found that longitudinal splitting may plIjy an important

role in the initial failure process.
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HOPKINSON PRESSURE BAR

I TENSION

" Materials
- Al-Al NI. Ni-Nb-Al, FP/Al

SiC/6061, SMC, CFR (Polyester
KFR (Polyester), Glass/Epoxy
Carbon/Glass/Epoxy
Carbon/Kevlar/Epoxy
Voven Carbon/Epoxy
Graphite/Epoxy

* Loaditg Ratis
- 10_ -lO0/sec
- Test Configurations

(Tensile Coupons)

Considerable interest in the dynamic tensile testing of filamentary

composites has occurred in recent years. A number of important issues related

to the overall design of the tensile pressure bar system as well as the speci-

men configuration and fixturing occur for the tensile case. An early pressure

bar apparatus capable of rates to 2000/sec, was suggested by Harding, [29],

and used for testing a number of metal based materials. Such a configuration

is shown schematically in Figure 36.

One of the earliest tests on composite type specimens tested in a tensile

mode was performed by Matera and Albertini, [161. These tests were performed

on eutectic type composites Al-Al 3Ni and Ni-Nb-Al using a modified pressure

bar apparatus shown schematically in Figure 37. Some typical strength versus
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strain rate data for Al-Al 3 Ni composites is shown in Figure 38 for a range of

temperatures. It has been noted that the response of this system to high

strain rates is controlled mainly by the aluminum rich matrix. Continued

improvement in tensile pressure bar device for high strain rate testing of

metal based materials has been suggested by Tatro, et. al., [30), and

Nicholas, [31) and [32]. Each of the systems shown schematically in Figures

39,40 represent a different configuration for both introducing the dynamic

stress into the specimen as well as specimen configuration and fixturing; all

important elements for filamentry composite specimens.

Results obtained from the first test procedure, Tatro, et. al., [30), has

shown that difficulties exist in the design of the specimen gripping as well

as specimen size effects, which has resulted in a wide scatter in test re-

sults. A more reproducible tensile pressure bar scheme for metals is that of

Nicholas, [31), which uses a threaded type specimen. Data obtained for a wide

variety of metals has been shown to be in agreement with other investiga-

tors. A modification of the aforementioned tensile device for testing par-

ticulate, short fiber, and continuous fiber type composites was introduced by

Ross, et. al., [33]. Particular attention was paid to the design of the

specimen holding configuration as shown schematically in Figure 41. For the

SiC/606/Al, SMC, and FP/Al composites, which can be machined to produce

threaded specimens, high strain rate data can be obtained. Also, for some

types of composites which cannot be machined, a smooth contoured waisted type

specimen may be useful. Most recently, Welsh and Harding, [34], have con-

ducted high rate tensile tests using the pressure bar for a variety of con-

tinuous filament composites. Materials tested include carbon, glass, and

Kevlar reinforced polyester resins. Some typical results obtained for several

strain rates for carbon and glass are shown in Figure 42. It has been ob-
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served that there is an effect of strain rate on failure strength and the

fracture appearance for impact loading. An extension of tensile dynamic

response for hybrid type composites was studied by Saka and Harding, [35]. A

typical waisted type specimen used in the studies is shown in Figure 43 with a

schematic of the SHPB arrangement and wave diagram shown in Figure 44. Some

dynamic stress-strain curves obtained for various types of composites are

shown in Figure 45. It has been observed by Saka and Harding, [35], that

fracture for carbon fiber reinforced plastics show limited fiber pull out with

local cracking in the resin in planes perpendicular to the applied load. For

the case of glass fiber reinforced plastics an extended damage zone with no

clearly defined fracture surface and considerable fiber pull-out has been

noted. Additional studies on the behavior of glass/epoxy, graphite/epoxy and

carbon/glass hybrids has been reported on by Saka and Harding, [36]. A sche-

matic of the test configuration used in the study as well as typical results

obtained for a glass weave composite relating stress to strain rate is shown

in Figures 46, 47. Of note in these results, is that the yield stress shows a

more significant increase with strain rate than does the maximum stress. Most

recently Liu and Chiem, [37], have proposed a tensile test device for com-

posites patterned after the overall test device of Tatro, 1980 [30], and the

specimen configuration/fixture of Ross, et. al., [33]. A schematic of the bar

apparatus and Lagrangian wave diagram are shown in Figure 48 with typical

stress-strain data obtained for woven carbon/epoxy composites shown in Figure

49.
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I Expanding Ring I

While the tensile HPB has been modified for use with composites, another

high rate technique based upon an expanding ring as proposed by Hoggat and

Recht, [38], has been modified for use with composite type specimens. While

this technique offers an opportunity to obtain extremely high strain rates

however, it is difficult to determine the stresses accurately. The technique

does however provide for a uniform deformation in the specimen and avoids wave

propagation effects. A schematic of this device as proposed by Hoggat and

Recht, [38], for thin metal rings is shown in Figure 50. An extension of this

device to graphite/epoxy composites with different ply constructions has been

studied by Daniel, et. al., [39]. A schematic of the device is shown in

Figure 57 with a typical dynamic stress-strain curve shown for the composite

studied shown in Figure 52. While a dynamic stress-strain curve is obtained,

difficulties noted are that the specimens need to be of tubular construction

with accompanying difficulty in machining and the loading procedure requires

an explosive discharge.
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I HOPKINSON PRESSURE BAR

* Materi al s

- Polymethylene Oxide,
Polycarbonate Graphite/Epoxy
Polyamide

* Loading Rates

. 102 _ 104/sec
- Test Configurations

(Short Cylinder, Thin Walled
Tubes, Beams)

One of the important test modes for composites is the shear configura-

tion. Torsional pressure bars have been developed for metals in order to

eliminate such effects as friction and transverse stresses due to radial

inertia as present in axial loading. Duffy, [40] has used a torsional pres-

sure bar as shown in Figure 53 to test thin walled tubes of metal materials.

To test matrix materials made of a variety of plastics, Vinh and Khalil, [41],

have used a special torsional impact machine of the type shown schematically

in Figure 54 for polymethylene which in turn has been used in the development

of dynamic constitutive equations. Further, torsional PB bar development for

large strain measurement of metals has been contributed by Stevenson, [42].

The specimen fixity for these experiments has made use of an epoxy resin

cement.
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The dynamic fragmentation of ceramic type materials using the torsional PB

has been studied by Costin and Grady, [43]. Most recently, Gilat and Pao,

[44], have developed a torsional PB for studying the dynamic response of

various materials including polymer doped hydraulic cements, Sierakowski,

Gilat and Wolfe, [45]. A schematic of both the pressure bar and wave diagram

as well as typical shear stress-strain curves for the polymer hydraulic ce-

ments are shown in Figures 55,56.

While all the aforementioned torsional pressure bar designs could be

extended to the testing of various classes of composites, few have been.

Recently Warner and Dharan, [46], have suggested a pressure bar experimental

arrangement for the testing of composite short beam shear specimens as shown

in Figure 57. Both the interlaminar and transverse shear configurations for

the composite beams have been tested using this experimental arrangement with

data for the interlaminar shear mode shown in Figure 58. It has been observed

that the interlaminar shear remains relatively constant for all loading rates

while the transverse shear decreases with increasing strain rate.
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I HOPKINSON PRESSURE BAR

I FLXR

* Naterials
- Steel

* Load ing Rates
- 104 - O'/sec
- Test Configurations

(Beams)

* Data Obtained
- Fracture Toughness
- Crack Initiation
- Load Time History

A modification of the Hopkinson Pressure Bar for studying the fracture

toughness of materials has been examined by Mines and Ruiz, [8] and Ruiz and

Hines, [7]. The technique devised is shown schematically in Figure 59 with

recorded strain-time histories also shown in Figure 59. Some difficulties

that are associated with data reduction for Charpy tests are accountability

for inertia forces within the specimen, output trace oscillations, and the

question as to whether specimen fracture occurs at the maximum load. Some of

these difficulties can be avoided by tests using a pressure bar type test

technique. Specifically, the HPB provides a technique for obtaining a well

defined impulse load in which fracture occurs before reflection of the stress

waves at the distal end of the bars. Also, the load application is sufficient

in time to encompass the fracture time and such occurrences as specimen move-

ment in the loading anvils is eliminated.
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While the technique has not been adopted to composites, it appears that such

an application may be useful.

FLYER PLATE TESTS

* Materi al s
- Quartz Cloth Reinforced Phenolic

" Loading Rgtes
- 10 -10 /sec
- Test Configurations

(Beams, Plates)

" Data Obtained
- Constitutive Modelling
Parameters

- Pulse Attenuation
- Dynamic Fracture
- Stress Wave Induced Damage
- Material Properties Degradation

In order to study the response of materials at very high pressures and

under a state of uniaxial strain, loading rates, flyer plate tests have been

used with applications to composites related to composites of the cloth

reinforced type. As an example of the technique, the single and double flyer

plate impact apparatus described by Berkowitz and Cohen, [47] and [48], is

shown in Figure 60. Some classes of stress wave induced damage for composites

dynamically loaded in such experimental arrangements is shown in Figure 61.

Some of the important design issues for flyer plate experiments include the

launch mechanism, which usually involves an explosive type discharge or

magnetic driven propulsion, alignment of the flyer plate in free flight, and

instrumentation of the target material.
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Recently, Rajendran and Bless, [49], have surveyed high strain rate material

behavior and reviewed and described some new experimental techniques including

a double flyer plate technique. While such techniques have not been applied

to composites, this application does indeed seem feasible.

CONCLUDING REMARKS

It should be noted that in the design of experiments for studying the

dynamic behavior of composites, a clear distinction needs to be made between

material versus structural response. This has been noted in a recent review

by Harding, [1], concerning the effect of high strain rates on material prop-

erties. In particular, the material response is exemplified by insensitivity

to load application and specimen geometry while structural response is related

to both specimen geometry and material properties. Thus, the design of exper-

iments is compounded by the difficulty to distinguish carefully between these

two response modes.

As noted in the present review, a description of dynamic test methods

developed for obtaining high strain rate data on the mechanical response of

metals and extended to composites has been reviewed. Since composites are

multiphase materials, the dynamic test data as reported on for metals has

importance as related to the performance of metal matrix composites. In

addition, rate dependent data for non-metallic matrices has also been studied,

however, less information is generally available on the rate dependency of the

fiber phase of composites due to the inherent difficulties in the testing of

filaments and fiber bundles. The characterization of the constituents is

indeed important to assessing the performance of composites of the fiber

reinforced type, however, the complex interaction occurring between the rein-

forcing fibers and matrix phase result in difficulties in assessing the rate

dependency of the constituent phases. This type of complex behavior has been
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noted as for example that as tie rate of testing is increased, the correspond-

ing failure mode changes. Thus, while some progress in extending dynamic test

techniques to composites and developing new rate dependent tests for compos-

ites has been made, assessing the mechanical behavior of composites will rest

with the ability to clearly distinguish the response mode of the specimens

tested, that is, to specifically note the geometrical and material properties

features associated with the specimens tested. At issue, therefore, are such

important factors as the processing variables involved in specimen fabrica-

tion, quality control of same, role of the fiber/matrix interface, environmen-

tal conditioning of the specimens, and selection of individual constituent

phases, that is, the respective matrices and fibers selected for study.

The effect of high strain rates on composite material properties can at

best be stated as a rapidly developing field. Much of the development for

this class of materials is based upon understanding and experience gained from

metal materials. For filamentary type materials, which represent a signifi-

cant interest class of composites, a number of important research issues

arise. Among these are the complex interactions occurring between the fiber

and matrix, the effect of fiber coatings on composite performance, and the

quantification of microdamage on composite response and failure. All of these

issues reflect upon the difficulties associated not only with static strength

measurements but also with the design of high rate test devices. This does

not address other important factors and parameters significantly affecting

material strength including time and temperature effects, moisture effects for

polymer matrix composites, and the processing/fabrication aspects of various

classes of composites.

346



0

'4-)

L&J

Eu

00

U2 4-1

o04
CL4.

347J



A4

0

4oD 0
AC

I

4,_

o 0*

-0

o 34

'-44



H

G
15-

F

10D

C

B

A

5 II

0 0.25 0.50 0.75

Punch displacement (mm)

Figure 3 - Punch Tests, Glass/Epoxy, Punch Speeds 2'.5 x 10-7 to 16
rn/sec., Reference (2

349



L-J

41 &.-

to

41
u

00
-WJ

350



Slow Bend Charpy Impact

0.254 cm 1100

0.254 cm 6061 _____________

0.254 cm Gr-ep _________

0.508 cm Gr-ep

0.508 cm 1100 ME

0.508 cm 6061

Figure 5- Slow Bend and Charpy Impact Test Failure Modes, Beam-Aluminum

(1100,6061), Graphite-Epoxy, Reference [6]
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Strain Rate

Investigator Date Materials s-  Temp OK

Koisy 1949 polyethylene 1,900-7,500 293

PMMA 575 292

natural rubber 5,000 290

Back, Campbell3  1957 phenol formaldehyde 500 Room

phenol formaldehye composite 500

Rlpperger4  1958 polyethylene 2,200-5,700 210;300;340

PTFE 2,200 300

nylon 2,200 300

CAB (Tenite M) 2,200 300

CAB (Tenite H) 2,200 300

polystyrene 2,200 300
polyvinylidene chloride 2,200 300

Volterra. Barton5  1958 natural rubber 41 274;294

hard rubber 25
polychloroprene (Neoprene GNA) 33

1963 polyethylene 0.4-16 233-323

ethyl cellulose 0.4-7.4

CAB 0.4-4.3

Tardif, Marquis7  1963 PMMA 150-590 Room

polycarbonate 327-1028

nylon 500;860
polyacetal 450;670
PTFE 570-1.420

epoxy 150-690

Davies, Hunter8  1963 PMMA 1,550-5,600 Room

nylon 6 2,000-8000
polyethylene 1,270-3.700
PTFE 1,430
PVC 1.250

Lindholm9  1964 epoxy 930 Room

Hoge '0  1965 polypropylene 0.6-1,610 Room

Maiden, Green", 2  1966 PMMA 0.005-1,210 Room

Hold'" 1968 PMMA 10-11,000 273-388

Dao' 4  1969 polyethylene nylon 6-6 0.00033-33 77-450

Meikle'5  1969 PMMA 0.07-33 200-360

Figure 12 - Strain Rate Effects for Neat Resins, Reference 
[14]
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Figure 16 - Pneumatic-HydrauliC Testing Apparatus, Reference [16]
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Figure 18 - Schematic SHP8 Compression Apparatus, Reference [18]
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Figure 22 - Schematic Compression, Shear, Tension SHPB Arrangements,
Reference (20
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Figure 25 - Stress vs. Strain Rate Steel/Epoxy -Various Filament Sizes,
Reference [22]
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Figure 27 - Ultimate Compression Stress Steel/Epoxy, Reference [23]
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Figure 29 - Stress - Strain CUrves 'or cu W, Reference [241
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Material Strain Yield Flow Stress Final
Designation Rate Stress at Strain Compressive(MPa) (MPa) Strain(a)

DU/45W(AF) 1 X 10 -4  1365 1968 9.0

1.6 X 10' 2010 2234 8.1

3.3 x 103  2000 2423 16.6

DU/45W-3Re(HT) 1 X 10-4  1480 2180 12.7

1.5 x 10' 2320 2530 7.6

2.6 x 10' 2440 2640 13.3

St/45W-1ThO2(HT) 1 x 10-4  1120 1460 9.0

7 x 102  2310 2350 3.3

7 x 10 2  2160 2350 3.5

2 x 103  2430 2410 10.2

Figure 33 - Quasistatic and Dynamic Longitudinal Compressive Strength of W
Fiber-Reinforced Metal Matrix Composites, Reference [271
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Plastic Buckling Barreling with
Longitudinal Splitting

Fiber Buckling Brooming

Figure 35 - Schematic Compressed Failure Specimen Modes, Reference [27]
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Figure 36 -Tensile 
PB Apparatus, Reference [291
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Figure 37 - Schematic Hopkinson Pressure Bar System, Reference [16]
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+.o00
0. 125 ± .01 RAD 0.165 Diameter
Do Not Undercut +00.0

0.325

-- w-0.30--- Reference

0.650 ±.005

1.25 ±.01

Tensile Specimen

Scale 4 x Size

(a) Machine Drawing (Dimensions in inches)

~ Specimen Holder

(b) Specimen Inserted in Bar

Figure 41 - Specimen Configurations Tensile SHPB FP/A1, SiC/6061, SMC
Composites, Reference [33]
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19
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6.0 Wt. fractionl.
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Figure 43 - Test Specimen Configurations, Reference [35)
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Figure 44 - Schematic Tensile SHPB Arrangement and Wave Diagram, Reference
[35]
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Figure 47 - Strain Rate Effects All Glass Composites, Reference (36)
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Fi gure 48 - Schematic Tensile SHPB, Reference r371
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Composites, Reference [37)
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Figure 50 - Schematic Expansion Thin Ring, Reference [38]
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Figure 51 - Schematic Tensile Split Ring Testing Fixture, Reference 
[39]
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288/AS), Reference [39]

399

.... .. .. I II ll lli l ll / II i I0



End

Pinand Tor Tosionlal

TInciette Gages

Figure 53 - Schematic Torsional -0 1rsue1aReeeceM 0

400 ime



4

Ir.

401'



41

(U 4U

U

LL

-4 -4

402



16-

m1

2
14

3/

12

10

8

6 Test # Ave. y (sec-)

1 845

4 2 1108

3 1175

2

0 2 46 8 10 12 14

Shear strain (%)
Figure 56 - Dynamic Shear Stress - Strain Curves Hydraulic Cement,

Reference [45]

403



SPECIMEN

(a) Interlaniinar shear (b) Transverse shear

Figure 57 - Schematic Shear PB Test for Composites, Reference (46]
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SECTION IV

NUMERICAL SIMULATIONS



IMPLEMENTATION OF SIMPLIFIED CONSTITUTIVE MODELS IN
LARGE COMPUTER CODES

Gordon R. Johnson
Honeywell Incorporated

Armament Systems Division
Brooklyn Park, Minnesota 55428

INTRODUCTION

For a wide range of problems involving high velocity impact and explosive detonation, material

models can have an important effect on computed responses. Examples of some of these

types of computations are shown in Figure 1. Although computational analyses are currently

very helpful, there remains much to be accomplished in developing material models for both

strength and fracture. This paper will: 1) briefly describe the computational algorithms for the
material response, 2) present and compare some simplified models, and 3) discuss how the

appropriate constants may be obtained.

COMPUTATIONAL ALGORITHMS FOR DYNAMIC MATERIAL RESPONSE

A schematic representation of the computational algorithm is shown in Figure 2. Note that the

stresses must be obtained from the strains and strain rates, rather than determining the strains

and strain rates from the stresses.

Most computer codes use a computational procedure similar to that initially presented by

Wilkins [1] for use in the HEMP code. For axisymmetric geometry, the three normal stresses

are expressed as:

Or =Sr - (P + Q) (1)

z=szi - (P + Q) (2)

o0 = - (P + 0) (3)

where sr, sz, and so are deviator stresses; P is the hydrostatic pressure; and 0 is the artificial

viscosity. The shear stress is represented by trz.

409



The deviator and shear stresses are updated In an incremental manner for each time
increment. Trial values of these stresses at time = t + At are:

s~' t+Ast+2G~t 2,rZ)t (4)

t+At t ts z sr + 2GeAt+ 2TrzrzAt ()

t+At t
S + 2GezAt (6)

t+At t + t t (7)t+ tz + GyrzAt + (;r. 0z) 4ZA(

t+At t
In Eq. (4), s r is the trial radial deviator stress at time = t + At, sr is the radial deviator stress at

time = t, G is the elastic shear modulus, 6r is the deviator strain rate in the radial direction, At is
the integration time increment, is the shear stress at time = t and orz is the rate of rotation

rz r
in the r-z plane. The second term (2G{rAt) is the incremental stress due to the incrementalt
strain (6rt) during the time increment. The third term (2 ,rt orzAt) is due to shear stresses from

the previous time increment, which now act as normal stresses due to the new orientation of
the element, caused by an incremental rotation ((orzAt) during the time increment. The axial,
hoop, and shear stresses (sz , so,.rrz) have a similar form except that the hoop stress does not

have a contribution from rotated shear stresses.

The updated stresses in Eqs. (4) to (7) are trial stresses only, and they may need to be reduced
if they are greater than the strength of the material. This determination can be made by
computing the von Mises equivalent stress:

=[[' (sr - S ) - so)2 + (a - Sr)2 1 +3t rz]1/2 (8)
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If 5 is not greater than the equivalent tensile strength of the material, ama x , the final deviator

and shear stresses are in the elastic range, and are as given in Eqs. (4) to (7). If a is greater

than omax' then the material is in the plastic range and the stresses in Eqs. (4) to (7) must be

multiplied by the factor (amax/). When the reduced deviator and shear stresses are put into

Eq. (8), the result is always a = omax . The primary purpose of the strength model is to

determine oma x . This will be described in more detail later.

The hydrostatic pressure is dependent on the volumetric strain and the internal energy in the

element. The Mie-Gruniesen Equation of State (21 is commonly used for metals and can be

expressed in the following form:

P =(Klg + K2g2 + K3 9 3 ) (1 - [Ig2) + Es(1 + p.) (9)

where gi = p/po - 1 = VoN-1, and Es is internal energy per initial volume. The initial and current

densities are po and p, and the initial and current volumes are Vo and V. The four material

constants are K1 , K2 , K3 , and the Gruneisen coefficient, F. For small spherical volumetric

strains, Eq. (9) reduces to P = KIIg, where K1 is analogous to the elastic bulk modulus.

For high pressures, the effect of the internal energy, Es , can be significant. Therefore, it is

necessary to solve the pressure and internal energy equations simultaneously, which ensures

that the pressure and energy are consistent with one another.

The artificial viscosity, 0, tends to damp out localized oscillations near the leading edge of

wave fronts. It is called artificial because it is a numerically induced viscosity rather than a real

material viscosity.

There appears to be a general concensus that the equation of state models (pressure as a

function of volume and energy) and data are adequate for most computations involving metals.

As a result, more attention needs to be focused on strength and fracture models.

COMPUTATIONAL STRENGTH MODELS

In the preceding section, the strength of the material was designated as amax, for clarity, but

will now be simplified to a = 0 max* A good computation strength model, then, is one which will

accurately predict o as a function of the strain, strain rate, temperature, and/or pressure.
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One of the more commonly used simplified models for metals is that developed by Johnson

and Cook (3]. In this model, the equivalent tensile flow stress is given by

a = [A + B En] 1 + C kn i'] [1 - mPm] (10)

where E is the equivalent plastic strain, 0 is the dimensionless plastic strain rate for o =

1.0s "1, and T* = (T - Troom)/(Tmel t - Troom) is the homologous temperature for 0:< T* < 1.0.

The five material constants are A, B, n, C, and m.

The expression in the lirst set of brackets gives the stress as a function of strain for * = 1.0 and

T* = 0. The expressions in the second and third sets of brackets represent the effects of strain

rate and temperature, respectively. At the melting temperature (T* = 1.0), the stress goes to

zero for all strains and strain rates. The basic form of the model is readily adaptable to most

computer codes, since it uses variables (i, *, T*) that are available in the codes.

The Johnson-Cook model: 1) is simple to implement, 2) does not require excessive

computing time or memory, 3) can be used for a variety of metals, 4) allows constants to be

readily obtained from a limited number of laboratory tests, and 5) enables the effects of the

important variables to be identifiable and separable.

The primary disadvantage of this model is that it is empirical, and therefore, has no sound

physical basis. Thus, exceptional care must be exercised when using it for extrapolated values

of , i*, and 1".

Although various test techniques can be used to obtain constants for this model, the following

approach has commonly been used [3]. First, the yield and strain hardening constants (A, B, n)
are obtained from isothermal tension and torsion tests at relatively low strain rates (9* 5 1.0).

Next, the strain rate constant, C, is determined from torsion tests at various strain rates, and

from tension tests (quasi-static and Hopkinson bar) at two strain rates. Finally, the thermal

softening constant, m, is determined from Hopkinson bar tests at various temperatures.

The Zerilli-Armstrong model is based on dislocation mechanics, and is therefore more

physically based than the Johnson-Cook Model. The Zerilli-Armstrong model has two forms:
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one for face-centered cubic (fcc) metals and another for body-centered cubic (bcc) metals [4].

The expression for fcc metals is:

a = CO + C2E1/2 exp (-C3 T + C4 T Ini) (11)

where e is the equivalent plastic strain, i is the equivalent strain rate, and T is the absolute
temperature. The four constants are C0o, C2, C3 , and C4. Here the initial yield stress, C0o , is

independent of strain rate and temperature. Also, the stress does not necessarily go to zero at
the melting temperature. Reference 4 provides a discussion of how CO is affected by solute

and grain size.

The expression for bcc metals is:

a = CO + C1 exp (-C3 T + C4Tn ) + C 5 n (12)

where the variables (e, i, T) are as defined for Eq. (11) and the six constants are C0 , C1 , C3 ,

C4 , C5 , and n. Here the initial yield stress is a function of C0 , C1 , C3 , and C4. Again, the

stress does not necessarily go to zero at the melting temperature.

In Eq. (11), the strain, strain rate, and temperature are all coupled together for the fcc model. In

Eq. (12), however, the effect of strain hardening is separated from the coupled strain rate and

temperature for the bcc model.

The fact that the Zerilli-Armstrong model is based on dislocation mechanics appears to make it

preferable to the Johnson-Cook model. On the other hand, the more complex form of the

Zerilli-Armstrong model appears to make it more difficult to obtain the appropriate constants.

Both are easily implemented into the codes.

Figure 3 shows a comparison of isothermal and adiabatic stress-strain relationships for the two

models of interest. This is done for OFHC Copper (fcc) and Armco Iron (bcc). The temperature

for the adiabatic relationships is due to the plastic work of deformation. Constants for both

models were obtained from essentially the same data base [3, 4].

For the OFHC Copper, the Johnson-Cook model predicts higher adiabatic stresses at lower

strains, and lower stresses at higher strains. For both the OFHC Copper and the Armco Iron,
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the Johnson-Cook model predicts less of a strain rate effect than does the Zerilli-Armstrong
model. Generally, however, the adiabatic responses are similar for the two models. The

isothermal responses vary more, but it is difficult to actually attain an isothermal response at

the high strain rates shown.

There remains much uncertainty about the behavior of metals under the combination of very
high strain rates (105 < 107s - 1) and large strains (e > 0.5). This is due to the wide range of

proposed models and to the general lack of test data under these conditions. It is the author's

opinion that the most important problem to be addressed is to develop physically based

models that accurately predict adiabatic stress-strain behavior at large strains and high strain

rates. If the results are presented in a form similar to that shown in Figure 3, then a meaningful

evaluation and comparison of the models can be made. At this time, there is not general

agreement by researchers working in this area.

Additionaly, while the von Mises flow rule is commonly used, it is well known that simple

tension-torsion comparisons cannot always be adequately accounted for when using this flow
rule. Also, material history effects can be important when dealing with changing strain rates

and changing strain directions.

Returning again to the Johnson-Cook and Zerilli-Armstrong models, one way of evaluating

these models is to compare computed results with cylinder-impact test results, such as shown

in Figure 4.

To quantify the degree of agreement between computed shapes and test data, an average

error has been defined as

Ai 3 [I1ALI'I ADI ' AWl (13)

where L, D, and W are the deformed length, diameter and bulge (diameter at 0.2 Lo from the

deformed end) from the test results; and AL, AD, and AW are the differences between the

computed and test results. Note that both models give good general agreement, but the Zerilli-

Armstrong model gives better agreement.

The maximum computed equivalent strains (rmax) in Figure 4 range from 1.57 to 2.04. The

strain distributions, however, show that the overwhelming majority of the elements experience
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equivalent strains less than 0.6. Therefore, the comparisons in Figure 4 tend to reflect the

accuracy of the model for relatively low strains (e < 0.6), but do not necessarily provide a good

indication for larger strains (c > 0.6). This is a very important limitation associated with cylinder

impact test data. A more detailed discussion of this limitation is provided in Reference 5.

The simplified models of Eqs. (1), (2) and (3) represent the stress as an explicit function of the

strain, strain rate, and temperature. This is very desirable from a computational viewpoint.

However, there are several more complicated models [6-9], which include loading history, but

require iterative procedures to obtain the equivalent stress, a. Although all of these models are

physically based, there are differences. It would be very helpful and interesting to have an

assessment of each model's predictions for a limited number of identical materials.

Although the preceding discussion has focused on metals, there is a need to develop

improved models for other materials such as sand, soil, rock, concrete, and ceramics. These

materials have little ductility, when compared to metals, but the strength can be dependent on

the hydrostatic pressure. As an example, Figure 5 shows a schematic representation of a

computational model for ceramics. Note that the strength before and after fracture is highly

dependent on the pressure.

DETERMINATION OF CONSTANTS FROM CYLINDER IMPACT TEST DATA

The preceding discussion presented the simplified Johnson-Cook and Zerilli-Armstrong

models. Constants for these models were obtained primarily from torsion tests at various strain

rates, Hopkinson bar tests at various temperatures, and quasi-static tension tests [3,4].

Another option is to obtain some of the constants from a cylinder impact test. This is described

in more detail in Reference 5, along with some potential problems associated with the

approach.

Figure 6 shows how cylinder impact test data can be used to obtain constants for various forms

of the Johnson-Cook model. The adiabatic stress-strain relationships are shown in Figure 7,

and the constitutive model constants are given in Table 1. The adiabatic stresses are shown

only to the maximum strains attained in the computed results.

For Case A-i, only the length, L, of the deformed cylinder (OFHC Copper) is matched with the

computational result. Because only one deformed dimension is matched, only one
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independent strength constant (representing a constant flow stress) can be obtained. Note that

there are significant discrepancies between the test and computational results at the deformed

end of the cylinder.

Case B-1 allows for linear strain hardening. By matching both the deformed length, L, and the

maximum diameter, D, it is possible to obtain the two constants for the linear hardening. Here

the computed result is in good general agreement with the test result, with a relatively small

error of & = 0.005. One reason for the good correlation is that the cylinder tends to conserve

volume; and the intermediate diameter, W, must be consistent with the conserved volume.

Applying this model to larger strains than those experienced in the computed results of Case B,

however, would probably lead to excessively high stresses. It is well known that thermal

softening tends to decrease the rate of strain hardening at large strains, as shown in Figure 3.

It is possible to obtain a more realistic model, again solving for only two constants, by

assuming linear thermal softening (m = 1.0). This also provides a good correlation with the test

data (A = 0.012), as shown in Case C-1 of Figure 6, and it allows the thermal softening to

reduce the stresses somewhat at the larger strains.

Cases D-1 and E-1 are based on the complete Johnson-Cook model of Eq. 1. Although there

are five constants in this model (A, B, n, C, m), only the three yield and strain hardening

constants (A, B, n) are determined from the test data. The strain rate constant, C, and the

thermal softening constant, m, must be approximated or obtained from other sources. Because

there are now three constants, it is possible to match three deformed dimensions: the length,

L; the maximum diameter, D; and an intermediate diameter, W. Note again, however, that the

intermediate diameter, W, is not totally independent.

Case D-1 is the result obtained if nothing is known about the strain rate or thermal softening

characteristics of the material. Here, the strain rate constant is set to C = 0, and the thermal

softening is assumed to be linear, or m = 1.0. Case E-1 uses the previously determined strain

rate and thermal softening constants from Reference 3 and Figure 3. Even though there is little

apparent difference between Cases D-1 and E-1 for this problem, for some other problems

(with wider ranges of strain rates and temperatures), the Case E-1 constants will probably

provide better results. Also included in Table 1 and Figure 7 are data from Reference 3 and

Figure 3.
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Looking at Figure 7, it can be seen that there is a significant discrepancy in the various

adiabatic stress-strain relationships, especially at the larger strains. Yet, with the exception of

Case A-i, they all provide a generally good correlation with the date data. The reason for this

situation is provided in the distribution of strain. Although some of the elements experience

equivalent plastic strains as high as 2.04, most of the elements experience strains less than

0.6. Looking back to this specific range of strains in Figure 7, there is good general agreement

(except for Case A-i) between the various adiabatic stress-strain relationships. Therefore,

because the various models essentially agree with one another in this relatively narrow band

of strain, it would be expected that they would give similar results for computed solutions

whose strains fall within this narrow band, and whose strain rates are similar to those

experienced in the cylinder impact tests.

In the lower portion of Figure 6, the same approach was attempted for the Armco Iron. For

Case A-2, only the length, L, was matched, giving a constant flow stress. For Case B-2, the

length, L, and diameter, D, were matched using linear strain hardening. For Case C-2, linear

thermal softening (m = 1.0) was included with the linear strain hardening, and the two

dimensions (L, D) were matched.

The result of this discussion is that it is possible to determiie constants from the cylinder impact

test, but that great care should be taken to not extrapolate beyond the range of strains and

strain rates that govern the results of the test.

SUMMARY AND CONCLUSIONS

This paper has attempted to describe how simplified constitutive models can be implemented

into large computer codes. It has also described some ways of obtaining constants for these

models.

There are currently several simplified models and several more complicated models in

existence and/or in development. It is not generally obvious what the distinguishing features

are for each of these models, and what differences in material response are predicted by the

various models. A comprehensive assessment and comparison of these models would be

helpful.
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Table 1. OFHC Copper and Armco Iron Constants for the Johnson-Cook Model as
Determined by Various Methods

CONSTANTS FOR JOHNSON-COOK MODEL
Y =[A+BE n I[i +Cln l [1-r m]

OFHC COPPER

CASE A aB(MPa) (MPa) n C m

REF. 3 90 292 0.31 0.025 1.09 0.063

A-1 250 0.0 - 0.0 - 0.231

B-1 157 425 1.00 0.0 - 0.005

C-1 150 490 1.00 0.0 1.00 0.012

D-1 118 484 0.74 0.0 1.00 0.0

E-1 98 368 0.70 0.025 1.09 0.0

ARMCO IRON

REF. 3 175 380 0.32 0.060 0.55 0.025
A-2 593 0 0.0 - 0.041

B-2 555 134 1.00 0.0 - 0.001

C-2 553 230 1.00 0.0 1.00 0.004
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Figure 1. Schematic Representation of the Computational Technique Used in the EPIC-2 and

EPIC-3 Codes
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Figure 2. Examples of Impact and Explosive Detonation Computations Performed with the
EPIC-2 and EPIC-3 Codes
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Figure 4. Comparison of Cylinder Impact Test Results and Computed Shapes for OFHC
Copper and Armco Iron Using the Johnson-Cook and Zerilli-Armstrong Models
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Figure 6. Examples of Cylinder Impact Test Results Used to Determine OFHC Copper and
Armco Iron Constants for the Johnson-Cook Model
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YIELDING AND ROTATION OF A MULTIPLE-PLANE PLASTICITY

MODEL COMPARED WITH TRADITIONAL MODELS

By Lynn Seaman

SRI International

Menlo Park, CA 94025

Traditional isotropic plasticity models can represent equivalent stress, total

plastic strain, and work hardening fairly well, if the material remains approxi-

mately isotropic. If large material rotations occur or the material develops signif-

icant anisotropy, more complex models are required. In this paper, we explore a

multiple-slip-plane plasticity model for its response to rotations, work hardening,

and strain-rate effects. Hence, this single model can represent all these effects.

Our purpose is to examine the accuracy with which this model can treat these

effects.

We first introduce the general characteristics of a multiple-plane plasticity

model, termed SHEAR4 [1,2,31. Then computations are made with the model for

comparison with stress results from simple isotropic yield models. These simple

models are extended to include work hardening and strain-rate effects, and further

comparisons are made. Finally, an analysis of material rotation under large shear

strain is made, and the SHEAR4 results are compared with exact results.

The SHEAR4 model is based on the slip-plane concept formulated by Batdorf

and Budiansky [4]. Its operation is very similar in concept to the two-plane model

of Peirce, Asaro, and Needleman [5]. They were providing for the specific slip

planes of a single crystal in their study. Bazant has developed a series of multiple-
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plane models to represent initially isotropic materials [6, 7, 8]. Generally, he has

found it necessary to use a large number of planes (20 or more) to represent ade-

quately an isotropic behavior. Another multiple-plane model with characteristics

to SHEAR4 is that of Zienkiewicz and Pande [9], which they used to represent

shearing behavior in rocks.

NATURE OF TIE MULTIPLE-PLANE PLASTICITY MODEL

The SHEAR4 model is a multiple-plane plasticity model onto which the shear

band microprocesses have been added. The multiple-plane feature can be viewed

in two equally valid ways:

1. A discretization of all possible orientations for slipping in a globally isotropic

polycrystalline material, or

2. A representation of the actual slip planes in a single crystal.

The planes in the SHEAR4 model can be initially oriented to represent either

isotropic behavior or specific planes.

The selected orientations (shown in Figure 1) are central to the model formu-

lation because all plastic strain as well as localization (shear banding) occurs on

these orientations. Some of the possible sets of orientations that could be used

in the model are listed in Table 1. Each of these sets of orientations is complete

and isotropic: it does not favor any quadrant around a point. Our selection of

orientation sets was guided by our experimental data in which shear bands tended

to occur on 450 lines. Therefore, we selected the 9-plane set from the table, the

set shown in Figure 1.
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Table 1

ORIENTATION OPTIONS FOR SHEAR SLIP MODELINGa

No. of Planes Coordinate Equiangular

2-D 3-D Axes 45* Planesb  Planesd

3 3 X, Y, Z None None

5 7 X, Y, Z None (X,Y,Z), (-X,Y,Z)
[(x,-Y,Z), (-x,-Y,Z)I o

7 9 X, Y, Z XY, YZ, XZ, (-X,Y) None
R(-YAz, (-x,z)I o

9 13 X, Y, Z XY, YZ, Xz, (-X,Y) (X,Y,Z), (-X,Y,Z)

[(-Y,Z), (-X,Z)IC [(X,-Y,Z), (-X,-YZ)jC

a The 2-D state is taken as either plane strain or axisymmetry. There are
no shears in the YZ and XZ directions. This symmetry requires that some
planes be identical; e.g., YZ and (-Y,Z). For 2-D problems, these pairs of
planes can be treated as single planes. Orientations are designated by the
directions of the normals to the damage planes.

6 Normals to these slip planes are at 45 degrees between the coordinate direc-

tions; e.g., -X,Y means the normal is at 45 degrees between the -X and Y
axes.

C Orientations listed in brackets are needed only for 3-D symmetry.

d Normals to the equiangular planes are directed along lines that have equal

angles to each of the listed coordinate axes.
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For a calculation, the planes are given initial orientations in the external coor-

dinate directions. Hence, the orientations could be aligned initially to favor some

directionality of the material. During the computation, each orientation is allowed

to rotate with the deformation of the material such that relative orientations do

not stay fixed.

For stress-strain relations, the material is represented by a standard thermoelas-

tic-plastic model with work hardening and strain-rate dependence. The material

elastically deformed is isotropic; hence, its stress tensor can be separated into pres-

sure and deviatoric components. Whereas the material is initially isotropic, the

presence of differentially hardened slip planes and shear bands can lead to highly

anisotropic behavior for the material element containing both elastically deformed

material and slip on the planes. The stress calculations are made using Cauchy

stresses in the current configuration.

The pressure is given by the Mie-Grineisen relation:

P = CL+ Du 2+ sM+ rpo(E-EH) (1)

where

= Polp, - 1, the compression strain,

P., po are current and initial solid density,

C, D, and S are coefficients with the units of moduli (this series defines

the Hugoniot for the material),

r is bhe Grfineisen ratio (dimensionless),

E is the internal energy (energy per unit mass), and

EH is the energy at the same density (p.) on the Hugoniot.
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With this formulation, the pressure responds to thermal and mechanical effects,

while the deviator stress is normally a function of the mechanical changes.

The deviator stress is computed from the standard elastic relation:

v!, = a!.0 + 2GAI (2)

where

G is the shear modulus,

c' and a'j. are the deviator stresses after and before the current strain

increment, and

Ae. is the incremental change in the elastic deviator strain.

As usual, the total deviator strain is separated into elastic and plastic components:

AC-= AC' 4(3)

The next step for computing the deviator stresses is to determine the plastic

strain increments. These plastic strains are computed on the individual planes in

the SHEAR4 model.

The following steps are followed in computing the plastic strains:

" Impose the strain increment tensor [AJJ.

" Treating all the strain increment as elastic, compute the stress tensor [ON]

from Eq. (2).

" Transform [a'] to normal and shear stresses (ON and OX) on each plane (k1h

plane).
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" Relax the shear stress components ot according to the standard stress re-

laxation equation:

do ,_ AE r ok - _ -ak O -Yk-= 2 k kr(4)
dt At T, At T(

* Compute the plastic strains Ae' on each plane, and assemble these strains

into the tensor ASP .

" Recompute the stress tensor (a] from the elastic strain, based on the differ-

ence between the total and plastic strain tensors: [AET ! -[AE P !

The yield strength on each plane is allowed to work harden according to the plastic

strain ck' that accumulates on that plane.

With this plastic flow procedure, natural anisotropy develops in the material

because the plastic strain stored on each plane (and hence the yield strength on

that plane) reflects the directions of the loading history.

COMPARISON OF STRESSES WITH SIMPLE YIELD MODELS

Because yielding occurs only on specific planes, the SHEAR4 model yields at

a somewhat higher stress than isotropic models that are able to yield on the plane

with the highest shear stress. Therefore, we loaded the model under simple stress

conditions and compared its response to that of the Mises and Tresca models.

In the Mises model, yielding occurs when the scalar quantity a reaches the yield

strength Y. In the Tresca model, yielding occurs on specific planes when the shear

stress on that plane exceeds Y/2. If we require that the Tresca and Mises models

give the same yield condition in simple tension, then the Tresca model gives a shear
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yielding strength that is just V3/2 of the strength from the Mises model. Because

SHEAR4 also provides yielding on specific planes, we might expect its behavior to

be somewhat like that of the Tresca model. However, the SHEAR4 planes are not

necessarily at the plane of maximum shear stress; therefore, SHEAR4 generally

provides a higher yield strength than the Tresca model.

For the initial comparisons, we made simulations with nominal steel properties

using an initial yield strength of 1 GPa, a work-hardening modulus of 3.2 GPa,

and a stress relaxation time constant of 10 ns.

The first simulations with the SHEAR4 model are for a tensile loading applied

in the z-direction. A strain of 8% was applied in the z-direction, and strains of

-4% were applied in the X- and Y-directions. Thus, the volume was preserved

and a simple tension test was approximated. The loading rate was 8 x 10 per

second in the z-direction. After loading for 1 is, straining was stopped and the

stress was allowed to relax. The computed stress history is shown in Figure 2.

This figure also shows the history of the threshold stress or static yield stress, Yt.

Work hardening gradually increases this yield value until point A, when loading

ceases. At point A, the stress begins to relax back to the static value. Because

of the short time constant, the relaxation is very rapid and the overshoot of the

stress is only about 0.1 GPa. The orientation of the planes is ideal for this loading

so the initial yielding matches that for both Mises and Tresca. However, neither

the work hardening nor the stress relaxation follows the patterns of those models.

To test the effect of the stress-relaxation time constant, we next simulated the

same loading with a time constant of T - 10- seconds. The loading is along the

433



X-direction, but with the slip planes oriented such that the results are identical

to those for loading in the z-direction. The resulting stress history is shown in

Figure 3. The overshoot in stress is about 1.25 GPa. In a standard Mises model

with stres relaxation in the form of Eq. (4), the overshoot would be 3GTi = 1.92

GPa, or 1.5 times the observed value here. (The 0.1 GPa noted above for a time

constant of 10- 8 seconds is nearly half the expected value of 0.192 GPa.) The

stress relaxation rate seen in Figure 3 corresponds to a relaxation time of about 5

x 10- s , or just half the one used. Hence, the effective time constant for SHEAR4

appears to be about half that obtained with a Mises model. To obtain similar

time effects, we should use T ; 2 TMi,,,.

The next yielding studies were made to determine the effect of the initial

slip plane configuration on the apparent yield strength of the SHEAR4 model.

Therefore, we applied a simple tension loading for a range of initial orientations

of the slip planes. A uniaxial tensile loading was applied in the X-direction at a

strain rate of 8 x 10 until a strain of 8% was reached (1 us). At that point, loading

was stopped, and the strain was held constant for the same period of time. Then

unloading was imposed at the same rate for the same period of time, and the cell

was again held at a constant strain. The loading and unloading pattern used in

the computations is shown in the inset in Figure 4. The SHEAR4 computations

were made with six different initial orientations of the slip planes in the X-Y plane.

The first orientation was that shown in Figure 1. Second, planes 1 through 8 were

rotated 9° irom X in the X-Y plane. For orientations 3 through 6, the planes were

shifted by 9" degree increments until the first plane was at 450. The resulting 6 at

loading points A, B, C, and D are shown for each initial configuration in Figures
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4 and 5. The pattern of loading is such that the stress overshoots to point A,

then gradually reduces to point B through the stress relaxation process, unloads

elastically through zero to yielding in the opposite direction at point C, and then

relaxes to point D.

The expected pattern of loading is shown by the "Mises Stat'c" line in Figure 4.

The expected pattern, including work hardening and strain-rate effects, is shown in

the diagram at right in Figure 5. Clearly, the values from the six computations only

roughly approximate these Mises values. Without work hardening and strain-rate

effects, yield strengths are higher than the Mises strength because of nonoptimal

orientation of the planes. Work hardening occurs at about half the rate in the

Mises model because only the plastic strain taken on the local plane is considered

in SHEAR4, not the total plastic strain taken on all planes. On the active planes,

this local plastic strain tends to be about half the equivalent plastic strain in the

usual global definition. As noted earlier, the time constant in SHEAR4 has a

smaller effect than in an isotropic model, so the stress overshoot is only about

half that of the standard model. In summary, the work-hardening and strain-rate

effects contribute to decreasing the yield strength computed in SHEAR4, whereas

the nonoptimal placement of the slip planes introduces a random increase in the

strength compared with a Mises model.

ANALYSIS OF ROTATION

We first consider the rotations occurring in a block of material undergoing

large shear strains as background for examining the accuracy of the multiple-

plane calculations. The multiple-plane model is used to simulate various loading
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paths and the results of the calculations are compared with analytical results. The

large-shear problem is illustrated in Figure 6, in which a block is being distorted

in simple shear. The block is sheared by moving points 2 and 3 by u~t. The

apparent rotation from the Jaumann procedure is

At()

For an example of the difficulty with large rotation problems, consider the case in

which the incremental motion in Figure 6(a) gives an angular change of Aa = 10.

Then continue the motion for 180 increments. Line 03 rotates by about 20 per

increment initially. However, as it moves from the vertical, the angular change

per increment reduces. Line 02 initially rotates by Aa per increment; hence, its

rotation matches the "average" rotation. But this line also moves away from 450,

and so thereafter its rotations are less than Aa per increment. The state after

1800 of motion is shown in Figure 6(b). Equation (5) would give a total angular

change of 1800. Yet from Figure 6(b), it is clear that none of the bounding lines

rotated more than 900, so the average rotation must be less than 45' . (The actual

average rotation is about 380.)

Types of Rotation to Consider

The rotation information for a block of material can be used in at least three

ways and can account for three different effects:

1. Transformation of the stress tensor to account for the material rotation.

2. Rotation of micro features, such as cracks or planes of anisotropy.

3. Average rotation of the cell material.
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In a recent article 110 it was found necessary to distinguish between these three

types of rotation because they are in fact different and because their individual

importance depends on the material being used and the information required from

the computation. This is a problem that has been studied thoroughly by Dienes

[111. The following observations were made based on the constitutive relation

under study:

1. Isotropic elastic material: Rotation corrections are needed for shear strains

on the order of 1. As shown in Figure 7, the usual Jaumann correction is

not adequate.

2. Isotrop.- plastic material: Jaumann's or Dienes' method or no correction

is sufficient for stress computations, but Dienes' method is needed to com-

pute the average rotations. Figure 8 compares stresses computed by Dienes'

method and by Jaumann's method for material with a large yield strength;

there is no difference even for this very large yield strength.

3. Anisotropic material with material orientations that are fixed with respect

to each other: Dienes' method should be used to account for the location of

the material orientations.

4. General anisotropic material or material with developing anisotropy: The

relative orientations of planes in the material are not fixed, so individual

planes must be treated. The average cell rotation (by any method) is not

useful for orienting the planes or for stress computations.

Analysis of Rotation of Lines
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The rotation analysis is developed first for the motion of a line in a linear

velocity field. This result is applied to the rotation of material features such as

microcracks. Then the line analysis is applied to determine the average rotation

of a block undergoing large shear deformation.

A line segment L in a linear velocity field will be stretched (or shortened) and

rotated. We consider only the rotation aspect. The rotation rate dO/dt is given

by the dot product
d L dt (6)

where n- is the unit normal to the line L. 6 is the displacement of one end of the

line with respect to the other, and L is the line length. The linear velocity field is

written in terms of velocities u and v in the z- and y-directions. The d6/dt can

be written in terms of the x- and y-coordinates and the Ax and Ay lengths of the

line.

I d _ 1U/G1X)AX + (au/49Y)Aij -(av/ax)Ax + (av/8y)Ay
ILIdt ILl ILl

-au 09u 89 I
-TC os$ + Tsin) +j IMxcos + 9sin0). (7)

The angle 0 is the angle of the line with respect to the x- coordinate, measured

positively counterclockwise. Similarly, the normal vector i is

n = i sin 0 - jcos 0. (8)

When the expressions for dg/dt and n- are placed in Eq. (6), the rotation rate is

obtained:

dO _ u 9u . ___o 2 (9)d"- asin aos 0 - au s + 49v Cos 2 + -- sin 0 cos O. (9)
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Equation (9) is used to obtain the rotation for lines or other line-like features in

two-dimensional calculations.

Next we consider the rotation of several lines in a block of material as a means

of obtaining the average rotation of the material. We assume that the block has

a large number of lines drawn on it. Then the block is sheared, and the motion

of the lines is followed. If a simple shear w =da/dt = au/ay is applied, then the

rotation rate dO/dt of a line originally at an angle 0. from the x-axis is

d2 
dadt -aiT 0  t si 2 " (10)

For a constant w, this equation can be integrated over time to obtain

coto = cote0 + Aa (11)

or

Ae = 0-0, = arccot(cot 0o + Aa) - 0". (12)

Now we can find the average rotation for a cell by finding the average AO for a

large number of planes. A set of 36 planes uniformly distributed from 0, = 00 to

1750 was studied. Simple shear strain such as that in Figure 6 was imposed in 10

increments for 180 steps. As shown in Figure 9, the rotations of the planes varied

from 0* to 115*.

We tracked the rotations of sets of lines during the shearing calculation and

examined the accuracy that could be achieved with this method, compared with

the preceding exact analysis. First we used 18 orthogonal pairs of lines. The

average rotations of pairs that were initially orthogonal ranged from 360 to 800,

compared with the exact value of 57.520 = arctan r/'2. Yhe range in these average
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rotations is shown in Figure 10. The abscissa of this plot gives the range from the

minimum to the maximum rotation for any pair of lines, normalized by the exact

value for the rotation. The figure shows also results for nine sets of four planes

each, six sets of six planes each, four sets of nine planes each and two sets of 18

planes each. Clearly, the error in the average angle decreases markedly with the

increase in the number of planes used. As expected, the error increases with the

total rotation imposed. Hence, the correct rotation of the material can be found

by following the rotation of sets of lines, but this procedure does not provide high

accuracy unless a large number of lines are used.

Rotations with the Multiple-Plane Model

With this rotation information we can examine the operation of a multiple-

plane model to determine how well it represents large rotations. For the model we

use four planes to describe shearing in the x-y plane; hence, we expect to obtain

uncertainties of about 7.40 (from Figure 10) for a nominal rotation of 1800.

The inaccuracies noted previously for small amounts of total strain are simply

enlarged for large shear strain. Figure 11 shows the resulting Mises stress for

loading in simple shear to an equivalent plastic strain of 1.4. Curves are given

for six initial configurations of the planes. Because of the grouping of the planes,

periods of apparent hardening and softening are caused by the locations of the

planes, not by material behavior.

Similar computations were made to examine the grouping of the slip planes,

using the same six starting locations for the four base planes. A shear strain of 2

was imposed along the y-axis. The motion of these four planes is given in Figure
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12 as a function of the initial position of each plane. The positions of the planes

for no strain and with the first plane at 0' are shown as dots along the abscissa.

After a strain of 2.0 the three planes originally at 00, 450, and 90 are now spaced

only from 650 to 90', whereas the plane originally at 135* is finally at 2250. Yet

2250 corresponds to 450, so all four planes are actually within the range of 450 to

900; these planes will poorly represent shearing that would require slip from 0' to

450 or from 900 to 1800. Without appropriately placed slip planes, the stresses

may be too high. A similar bunching of the planes occurs when the first plane

starts at 450, but for other configurations the final distribution of planes is more

uniform with angle.

SUMMARY

Problems still exist in the computation of stress and rotation in material that

develops anisotropy and undergoes large strains, especially large shear strains.

Standard tensor solutions appear inappropriate to account for rotations in

anisotropic materials. Therefore, we have considered multiple-plane models which

can, in principle, account correctly for rotations.

We examined stress computations under large strains for several loading paths

in a nine-plane model (SHEAR4). The results follow:

a The nominal yield stress reached depends (± 10%) on the orientation of the

planes with respect to the loading direction. For large strains, the variation

of the yield stress with orientation increases significantly.

e Work hardening occurs at about half the rate it would in a Mises model for
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the same work-hardening modulus.

" The time constant T, in the multiple-plane model causes relaxation and

overstress comparable to T/2 for a Mises-type model.

" After large shear strains, the original planes can become grouped together

in orientation and poorly represent an isotropic material. The material then

responds with increased apparent yield strength.

Multiple-plane models can readily represent a large range of rotation, damage, and

yield phenomena, but attention should be given to accuracy problems associated

with the limited number of planes used when these planes are a discretization

of isotropiz slipping material. However, when modelling deformation of a single

crystal, as by Peirce, Asaro, and Needleman [5], the multiple-plane models should

give accurate results.
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APPLICATIONS OF THE BODNER-PARTOM MODEL

William H. Cook
Air Force Armament Laboratory

AFATL/MNW
Eglin AFB, FL 32542-5434

INTRODUCTION

The Bodner-Partom constitutive model represents a well

documented, state variable, viscoplastic constitutive model with

several apparent advantages for applications in continuum

mechanics wave propagation codes (hydrocodes) 11,2]. The model

has recently been implemented in versions of the STEALTH and

EPIC-2 HYDROCODES [3,4] at the University of Dayton Research

Institute, and sufficient software and documentation have been

provided to the EPIC-2 user community for use of this model with

the EPIC2 86 version of the code currently available to

Government sponsored users through Eglin AFB [5]. This paper

documents some preliminary experiences with the application of

the Bodner-Partom model to elementary validation test problems

and problems of interest to the conventional weapon development

community.

BACKGROUND

The Bodner-Partom cunstitutive model separates t,,tal

deformation rate into elastic (geometrically reversible) and

plastic (geometrically irreversible) components that are
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loading and unloading. The formulation includes strain hardening

as a function of plastic work, rate of deformation effects, and

strain rate history effects. The model implemented here assumes

isotropy, although more recent developments of the model have

been proposed allowing the treatment of modest anisotropy. This

implementation modifies the originally isothermal Bodner-Partom

model to account for thermal softening effects through a

modification of the strain rate hardening term. The model avoids

the necessity for yield criterion and loading or unloading

conditions. The state variable approach is developed with

metallurgical implication associated with dislocation theory

concepts. A limiting strain rate is assumed in the model--

generally 100,000,000 per second.

The model takes the form:

iPij = Do exp -[ Z 23 J
2  n n +n 1 iS2" (i)3J 2n S

1) 02 n, 2

Z = Z- (Z1 - Zo) exp {-m W p (2)

where Z is the inelastic state variable representing resistance

to plastic flow caused by microstructural barriers impeding

dislocation motion.

W C (3)
p ij 1)
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n = n - T* A }  (4)

where n controls rate dependency

-W
m=M + me p (5)

where m controls the rate of work hardening.

In these equations, and throughout this paper, the following

notations apply:

a total stresses

S deviatoric stresses

J2 second invariant of deviatoric stresses

Ep, Ce, E plastic, elastic, and total strain rates

Einsteinian summation convention is denoted by subscripts except

on constants.

It should be noted that strain rates are expressed as a

function of stresses in this model, and solving for stresses in

terms of strain rates is not possible. Hydrocodes universally

require the solution of incremental stresses from incremental

strain rates, demanding an iterative solution for stresses when

the Bodner-Partom model is implemented in a hydrocode.
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The model requires eight material constants summarized

below:

D0 limiting value of plastic strain rate in shear

Z initial value of0

Z saturation state for (0 ! z < Z1 )

m1 work hardening coefficient

m1 secondary work hardening coefficient

another secondary work hardening coefficient

n strain rate coefficient (large is rate sensitive)

A thermal softening exponent

Special software has been developed by the University of

Dayton Research Institute for determination of the first four

constants described above, based on- at least three tensile tests

at different strain rates [6]. The software is essentially a

computer aided graphical approach providing four options for the

evaluation of material test data to determine Bodner-Partom

material constants. The four options are:

1. Determine the four basic material constants allowing

user interaction for adjustments. Constants determined

are:

Zo Z1 mo n o
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2. Graphically compare stress-strain curves of tensile or

compressive tests against curves generated from the

Bodner-Partom model with specific values for the

constants determined in Option 1.

3. Graphically compare stress-strain curves of best-fit

plots from tensile or compressive tests against curves

generated from the Bodner-Partom model with specific

values for the constants determined in Option 1.

4. Solve the Bodner-Partom model for selected strain rates,

displaying the stress-strain curve for a range of

preselected stresses based on specific values for the

constants determined in Option 1.

In all cases, this software assumes a limiting shear strain rate

of 100,000,000 per second. Constants are determined sequentially

so that errors in determining the first constant can effect the

selection of subsequent constants. The user must determine the

following material constants iteratively with assistance from

graphic displays of model fits to test data:

a mI A

SOLUTION TECHNIQUE FOR BODNER-PARTOM MODEL

The Bodner-Partom model represents material plastic strain

rate as a function of material con-;tants, a state variable

related to plastic work, and the stress state. Within
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BASIS FOR COMPARISON

The Johnson-Cook constitutive model was used as a basis of

comparison for this study [']. This five-parameter empirical

model has been demonstrated to provide realistic solutions to

hydrocode predictions of a very broad class of applications to

extremely dynamic events such as impact, penetration, and

explosive acceleration of metals. The Johnson-Cook model has the

form:

= [A + B Fn] [I + C In F*] [I - T*M  (6)

where:

a Equivalent Stress

Effective Strain
*

E Strain Rate
(dimensionless, normalized by 1/seconds)

*
T Homologous Temperature

(dimensionless (T-Troom)/(Tmelt-Troom))

and the five material constants are:

A Yield Strength

B Work Hardening Coefficient

n Work Hardening Exponent

C Strain Rate Coefficient

M Thermal Softening Coefficient
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hydrocodes, stresses must be determined from incremental strains,

so the Bodner-Partom model must be inverted to represent stress

as a function of strain. This is not directly possible, so an

iterative solution technique is required.

The iterative solution seeks deviatoric stresses, total

stresses, and plastic strain rates at the current cycle. These

values are known for the previous cycle, along with values for

the current cycle for total strain rate, volumetric strains, and

pressure. The elastic constants are also known. The iterative

solution used here is essentially an Euler scheme using a first

order forward difference to determine the new stress state. A

trial stress state is chosen and placed in the Bodner-Partom

model, which provides trial plastic strain rates. Elastic strain

rates are calculated and added to the trial plastic strain rates

for a trial total strain. Deviatoric stress rates are calculated

using the elastic constants and the elastic strain rates. Total

stress rates are determined by adding the pressure terms.

Finally, a trial total stress state is established by adding the

incremental stress rate times the time step to the stresses known

for the previous cycle stresses for the element being considered.

The stresses calculated are compared to the originally estimated

stresses, and the process iterates to an acceptable level of

difference between estimated and calculated stresses.
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BASIS FOR COMPARISON

The Johnson-Cook constitutive model was used as a basis of

comparison for this study [7]. This five-parameter empirical

model has been demonstrated to provide realistic solutions to

hydrocode predictiors of a very broad class of applications to

extremely dynamic events such as impact, penetration, and

explosive acceleration of metals. The Johnson-Cook model has the

form:

: [A + B Fn) [i + c gn *) [1 - T* M] (6)

where:

a Equivalent Stress
E Effective Strain

E Strain Rate
(dimensionless, normalized by 1/seconds)

T Homologous Temperature
(dimensionless (T-Troom)/{Tmelt-Troom))

and the five material constants are:

A Yield Strength

B Work Hardening Coefficient

n Work Hardening Exponent

C Strain Rate Coefficient

M Thermal Softening Coefficient
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COMPARISON OF MATERIAL CONSTANTS

Table 1 provides a comparison of the material constants used

in this study for the Bodner-Partom Model as compared to the

Johnson-Cook Model. In all cases, the material constants for the

Johnson-Cook Model are derived from laboratory experiments and

are taken as provided in the EPIC-2 material library. The

Bodner-Partom material constants were derived from laboratory

experiments for all cases but the second set of copper data. The

Bodner-Partom constants for the Oxygen Free High Conductivity

(OFHC) copper were determined from the OFHC Johnson-Cook model.

In almost all applications in this study, the OFHC data for the

Bodner-Partom model as derived from the Johnson-Cook model were

used as a basis of comparison. The only exception was a test

case for a plate impacting a rod, where independently determined

constants for different sets of material were used.

The eight material constants required by the Bodner-Partom

model suggests a more complex data set requirement than actually

usually exists, since two of the constants are only required for

materials such as copper where the work hardening effects demand

extra constants for a reasonable fit, and since the constant Do

is usually safely presumed to be 100,000,000. On the other hand,

the Bodner-Partom model as implemented here is complicated by the

requirement to provide 7 additional parameters associated with
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the convergence criterion for the iterative solution of the

model.

APPLICATIONS

Five test cases were used to evaluate the performance of the

Bodner-Partom model relative to the Johnson-Cook model in

applications of the EPIC-2 hydrocode to problems representative

of simple high strain rate impact problems or complex problems of

interest to the conventional weapons development community.

These problems consisted of a cylinder impacting a rigid surface

(Taylor impact), a simulated high strain rate tensile test with

loading reversal, a plate impacting a rod, a rod penetrating a

plate, and an explosively formed penetrator (EFP).

The Taylor cylinder impact calculation relates to a test

often used to determine material parameters for constitutive

models used in calculations of high strain rate deformation

processes. Figure 1 shows the initial configuration for this

calculation, and establishes the standard format used throughout

this paper for initial configurations. For the axisymmetric

calculations performed, the top half of the figure shows a

material map and the bottom half shows the initial gridding.

Figure 2 shows the comparison of the results of a 1-inch long,

0.3-inch diameter OFHC copper rod impacting a rigid surface at

6000 inches per second, with the stress profiles for the deformed

cylinder at 60 microseconds depicted for the Bodner-Partom model
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on top and the Johnson-Cook model below. This is the standard

format used for results plots throughout this paper. In all

figures, the Bodner-Partom model is denoted BP and the Johnson-

Cook model is denoted EPIC since it is the default constitutive

model in the EPIC hydrocode. The close comparison of the two

models in terms of both deformation and stress profiles is

notable. For this low temperature, high strain rate (average

strain rates of around 20,000 per second), and moderate strain

conditions, the models are nearly alike.

The second test case simulated a high strain rate tensile

test. Figure 3 illustrates the initial configuration and the

velocity boundary condition used to simulate the tensile test

with loading reversal at two different levels of high strain

rates. This calculation used a 0.125-inch diameter by 0.375-inch

long OFHC copper cylinder fixed at one end with an applied

velocity boundary on the other end with velocity as a function of

time as shown in the Figure 3 and outlined below:

TIME VELOCITY AVERAGE STRAIN RATE SOUGHT
p/sec (inches/second) (1/sec)

0-100 150 400
100-200 -150 -400
200-300 750 2000
300-400 -750 -2000
400-500 150 400
500-600 -150 -400

These values and the configuration of the specimen were selected

to be representative of a potential Hopkinson bar test.
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Variables associated with element 116 were recorded as a function

of time, and the equivalent uniaxial stress is plotted as a

function of effective strain in Figure 4 for both the Bodner-

Partom and Johnson-Cook models. It is important to note here

that although full reversal of loading occurred, because of the

use of equivalent stresses and effective strains, all values are

positive. Equivalent stress is given as:

2 _Z (S + + S + 3 2  + 2+ 2 (7)S S11 22 $33) S12 S13 23

Effective strain is computed as:

E-V' [(c11 - 2 2]1+(e 1 - f33] +(E 2 2 -' 3 33
2 + 6(1 2 +c+ e232] (8)

The instantaneous strain rate effects of the models are obvious,

but the strain rate history effects that should be observable

with the Bodner-Partom model are not clear, perhaps because of

the modest difference in strain rates and levels of strain rate

effects in OFHC copper. Figure 5 shows the achieved strain rates

at element 116 as predicted by EPIC, and Figure 6 shows the

results at completion as well as three times during loading.

Geometrically, the results are almost identical, and the stress

profiles compare favorably.

The third test application was a plate impacting a rod,

selected to observe the modeling of wave propagation in a long
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rod with the two constitutive models. A 1-inch diameter by 6-

inch long stationary rod of steel was impacted by a 2-inch square

by 0.6-inch thick steel plate at 7716 inches per second.

In the Bodner-Partom calculation, the rod was 1008 steel and the

plate was 1020 steel, while for the Johnson-Cook calculation 1006

steel and Armco iron were used. Figure 7 shows the initial

configuration and the location of element 835 where all element

data were recorded as functions of time. Figure 8 illustrates

the equivalent stress vs. time curves observed at element 835 for

the two different models with the slightly different sets of

materials. Because of these differences in materials, direct

comparisons cannot be expected, but the predicted profiles

demonstrate the ability of the Bodner-Partom mode1 to follow

stress wave propagation without introducing spurious results.

Figure 9 shows the final profiles and stress contours, which are

slightly different due to differences in materials modeled.

The last two test applications represent standard

conventional weapon applications with correspondingly more severe

deformations. Figure 10 shows the initial configuration for a 2-

inch long, 1-inch diameter OFHC copper rod penetrating a

stationary 6-inch square by 1-inch thick 4340 steel plate at

100,000 inches per second. Failure of both the penetrator and

the target were permitted using the erosion capabilities of the

EPIC code, where for strains greater than 150% the elements were

deleted and only the mass of the nodes remained in the
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calculation. Since failure keys on the strain values, it was

anticipated that small changes in the material models might

result in large solution differences. Only slight differences

were observed, as shown in the results in Figure 11.

The final test application was an explosively formed

penetrator as shown in Figure 12. This has traditionally

represented one of the most severe tests of a constitutive model

seen in the conventional weapon design process. It encompasses a

wide range of high temperatures, large strains, and high strain

rates with relatively high pressures. Various designs can lead

to segments of the liner being in an extremely wide design space

involving strains, strain rates, temperatures, and pressures. As

shown in Figure 13, although the final geometries are similar,

and considering the sensitivity of the problems to the

constitutive model they are very closely alike, the differences

in final stress contours are significant. Selecting one result

as more correct than the other would be extremely difficult since

experimental results of recovered slugs have potential for

deformations during the recovery process and flash radiography

generally cannot thoroughly resolve voids in the tail section.

Both predictions represent what have historically been considered

good results, but since the Bodner-Partom model material data set

was derived from the Johnson-Cook data, and in view of the

examples presented previously, a more similar solution might have

been expected. The sequential derivation of the material
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constants for the Bodner-Partom model and the approach towards

the treatment of the thermal softening are suggested as the

likely differences in the results.

Generally, it may be concluded from this set of five

applications, that for a comparable set of material inputs, the

results from the Bodner-Partom model duplicate the results of the

Johnson-Cook model. These conclusions are valid only for the

range of applications represented by the five tests, and further

evaluation with complex loading conditions and loading in other

ranges of strain, strain rate, temperature, and pressure are

desirable. Applications had been sought to demonstrate the

inherent advantages of the strain rate history effect embodied in

the state variable approach of the Bodner-Partom model, but no

such applications relevant to conventional weapon modeling were

obvious.

TIMING COMPARISONS

The Bodner-Partom model suffered severely in timing

comparisons with the simpler Johnson-Cook model. The

implementation in the EPIC code was done primarily with

modularity of coding as a goal, so computational efficiency no

doubt suffered. The Bodner-Partom model implementation involved

that addition of 14 new subroutines to the code for a total

addition of 1889 lines to a baseline code of 12,407 lines. The

additions were commented extensively and are self-documenting.
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Also, these changes were performed in a way to be easily extended

to support failure models that consider a matrix material with

material properties that could be modified by void formation to

provide aggregate material response for damage based failure

model development. This contributed partially to the time

intensive results of the Bodner-Partom calculations. Overall,

these timings were at ]aast three to four times longer than the

Johnson-Cook model for very simple problems with modest

deformations, and as much as 23 times longer for conventional

weapon design applications involving very large strains and high

strain rates. Timings for the five applications considered are

given in Table 2. Note that in all cases the Johnson-Cook model

was used with a sound speed fraction of 0.9, where the Bodner-

Partom model required reduction of the sound speed fraction to as

low as 0.5 to achieve convergence. (Sound speed fraction is a

multiplier on the maximum allowable time step determined by the

Courant condition.) Also, in the conventional weapons

applications, the convergence criteria for the Bodner-Partom

model were extended beyond 10 time step cuts and 100 iterations

per cell per cycle in order to achieve convergence. The

calculations with the Bodner-Partom model had to be repeated in

each case as acceptable convergence criteria were determined. As

experience with the model develops, this situation would probably

be vastly improved, but the additional complexity and potential

for failed solution cannot be eliminated.
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Table 3 illustrates profiles of performance for the EPIC code

on the third test case for the plate impacting a rod with and

without the Bodner-Partom model on an ULTRIX VAX 8650 using the

f77 compiler without optimization. Note that in Table 2 timings

for the third test case were for the same machine but for the VAX

FORT compiler with optimization selected by default. Profiling

could not be accomplished with optimization on this system. In

this case the caluulation required 6121 seconds with the Bodner-

Partom model and 1875 seconds with the Johnson-Cook model for a

factor of 3.26 in timing. The Bodner-Partom related subroutines

took 35.5% of the run time, compared to 19.2% of the total run

time required for the same calculation with the Johnson-Cook

model. It should be noted that a large percent of total time as

reported by this profiler is used by intrinsic mathematical

functions, so direct comparison of these percentaqes and the

slowdown of the total calculation are not straightforward. The

Bodner-Partom model makes much greater use of the exponentiation

and power expansion intrinsic functions. Also, the overall time

increased due to the reduced sound speed fraction required by the

Bodner-Partom model. This reduced sound speed fraction was found

to be more efficient than further subcuts of time in the

iterative solution technique, and in some cases was the only

approach that led to convergence.
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ADVANTAGES AND DISADVANTAGES OF BODNER-PARTOM MODEL

The Bodner-Partom model is probably superior to most of the

models in current use in hydrocode applications. The model has

been implemented and demonstrated in versions of the EPIC-2 and

STEALTH hydrocodes. The model is well documented and well known

throughout the research community. It embodies the concept of a

limiting strain rate that is the subject of much recent

experimental research. The model is applicable over a relatively

wide range of strain rates, and includes history dependence

through a state variable approach. Relatively straightforward

techniques for the determination of the material constants exists

and have been implemented in interactive graphic based software.

The model has no discontinuity at a yield point and does not

require a yield criterion or loading/unloading conditions.

Drawbacks for the Bodner-Partom model do exist, and the

selection of this model for particular applications must consider

the balance between these disadvantages relative to the

aforementioned advantages. The model is not easily

conceptualized, and although some meaning can be given to the

material constants, that meaning is often not direct.

Furthermore, the sequential determination of the material

constants from test data can lead to diverse sets of material

constants, particularly for the last several constants

established, when different researchers establish those

constants, even from the same test data. The convergence schemes
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necessary for the implementation of this class of model in the

structure of a typical hydrocode necessitate several constants

related to the convergence criteria that impose an extra burden

on the user of the code. The selection of these values would

probably improve with more use of the model, eventually becoming

fairly simple. Finally, and most importantly, for the

implementation of the model reviewed here, the coding was

extremely extensive, and the increase in computer time required

to achieve a solution was high. More efficient coding is

possible, and improved convergence schemes could increase the

efficiency of the model in hydrocodes. For applications where

large strain rates lead to large strains per time step in

hydrocodes, the Bodner-Partom model incurs high costs relative to

the empirical class of model such as the Johnson-Cook model.

SUMMARY AND CONCLUSIONS

An implementation of the Bodner-Partom constitutive model in

the EPIC-2 hydrocode has been successfully applied to several

demonstration problems. The results of calculations with the

Bodner-Partom model compare directly to results obtained with the

Johnson-Cook constitutive model, where material parameters for

the Bodner-Partom model were determined from matches to the

Johnson-Cook model. Applications which demand the complexity of

the Bodner-Partom model need to be identified to justify itq use

in the present form. Better coding efficiency and better

convergence schemes for the iterative solution of this model are
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desirable for cost effective applications. Recently, an improved

solution scheme based on a Diagonally Implicit Runge-Kutta (DIRK)

algorithm has been successfully developed at the University of

Dayton Research Institute. The preliminary results indicate

substantial improvements in the timings. Also, for user

simplicity, several of the convergence criterion related

constants are internally handled by the code and the solution

convergence seems to be assured in each computer run. However,

the timing efficiency for conventional weapon design applications

using this new DIRK scheme is yet to be established.
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COMPARISON OF MATERIAL CONSTANTS

EPIC

Armco Iron 1006 4340 OFHC Cu

A (PSI) 25,400 50,800 114,900 13,000
B (PSI) 55,100 39,900 73,900 42,300
n (-) 0.32 0.36 0.26 0.31
C (-) 0.060 0.022 0.014 0.025
m (-) 0.55 1.00 1.03 1.09

BODNER-PARTOM

1008 1020 OFHC Cu (1) OFHC Cu (2)

D (1/sec) 1.0e8 1.0e8 1.0e8 1.0e8
Zo (PSI) 797,710 92,824 116,030 47,860
Z, (PSI) 1,015,300 134,890 949,997 123,276
m, (1/PSI) .00010342 .00020684 .0000759 .0000276
m, (1/PSI) 0.0 0.0 .0010340 .0001720
o< (1/PSI) 0.0 0.0 .0100003 .0008270
n. (-) 0.4 4.0 0.4 2.8
A (-) 0.0 0.0 0.0 0.85

(1) UDRI published constants from independant
laboratory experiments

(2) Derived form fits to EPIC default constitutive
model as part of this study

TYPICAL CONVERGENCE CONSTANTS

Max strain per time step (-) .0001
Min eff plastic flow stress (PSI) .15
Convergence tolerance (-) .0001
Relaxation factor (-) 1.0
Max iterations (-) 10
Max number of time cuts (-) 10
Time step cut factor (-) 2

Table 1. Material Constants
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TIMING COMPARISONS OF THE
BODNER-PARTOM MODEL IN EPIC2
WITH THE DEFAULT EPIC2 MODEL

EPIC2 MODEL BODNER PARTOM MODEL RATIO

Time SSF Time SSF % Elem

Taylor Impact 690 0.9 2919 0.7 100 4.2

Tensile Test 2883 0.9 10084 0.9 100 3.5

Plate on Rod 532 0.9 ±638 0.7 100 3.1

Rod Penetration 243 0.9 5768 0.5 31 23.7

EFP 1591 0.9 11598 0.6 10 7.3

Table 2. Timing Results
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TIMING DATA

The Bodner-Partom changes to EPIC-2 include 1889
lines of FORTRAN coding added to the 12,407 lines
in the baseline EPIC-2 code

This includes the addition of 14 subroutines:
BODNER
BODPAR
INIBPS
CMPBPS
ESTBPS
AVHYMX
NEWWPM
::PIJ

Ne WPRS
NEWSIJ
CHKBPS
NEWEST
UPDBPS
NEWBPS

TIME SPENT IN SUBROUTINES

EPIC BODNER-PARTOM

ELOOP1 21.3 % ELOOPi 8.8 %
STRESS 13.9 MIEGRU 7.9
MIEGRU 5.3 CHKBPS * 4.0
NLOOP 2.9 NEWPRS * 3.9

INIBPS * 3.8
NEWSIJ * 3.4 i
NEWWPM * 3.2
ESTBPS * 2.9
BODNER * 2.2
EPIJ * 2.2 r--35.5 %
UPDBPS * 1.6
NEWBPS * 1.5
CMPBPS * 1.5
AVHYMX * 1.5
BODPAR * 4
NEWEST *13
NLOOP 1.1

(1875 seconds) (6121 seconds)C

Table 3. Profile Results
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