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This final report will document theoretical, empirical and methodological developments
on AFOSR grant No. 86-WL-0086, HUMAN IMAGE UNDERSTANDING. The general
background for this effort be obtained from the reprint of the Psychological Review article,
"Recognition by Components: A Theory of Human Image Understanding" and the reprint of the
chapter "Aspects and Extensions of a Theory of Human Image Understanding” in Z. Pylyshyn

(Ed).
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I. INTRODUCTION AND BACKGROUND

Humans can typically recognize an object even when it is viewed from a novel
orientation, or it is a novel exemplar, or its image is extensively degraded. Moreover, most often
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only a single, brief fixation is all that is required to achieve quick and automatic understanding.
The fundamental problem addressed by Recognition-by-Components (RBC) theory is how this is
accomplished. Because a line drawing of an object can be classified as rapidly and as accurately
as a full colored, textured photograph of the object (Biederman & Ju, 1987) the problem can be
stated as one of determining how the edges extracted from an image of an object can activate--in
real time--an appropriate representation of that object in memory.

RBC assumes that an image of an object is segmented at regions of deep concavity into
an arrangement of simple convex generalized cone primitives, such as cylinders, bricks, wedges,
and cones (Biederman, 1987a) as illustrated in Fig. 1a. The central assumption of the theory is
that the members of a particular set (N < 24) of primitives, called geons (for geometrical ions),
are distinguishable on the basis of dichotomous or trichotomous contrastive viewpoint-invariant
properties of image edges, such as curved vs straight, parallel vs nonparallel, and cotermination
of edges (for defining vertices) (figure 1b). These image properties can be determined from a
general viewpoint and are highly resistant to degradation. Consequently, the geons, which are
derived from these edge contrasts, themselves will be determinable under degradation and
variations in viewpoint (Figure 1c). An analysis of the representational capacity of the geons
and their relations leads to the expectation that the basic level classification of most single visual
entities can be achieved from an arrangement of only two or three geons (Biederman, 1987a).

Stages of Processing

Figure 1d presents a schematic of the subprocesses posited by RBC. The stages are
assumed to be arranged in cascade whereby partial activation (processing) at one level is
sufficient to initiate activation at the next. An early edge extraction stage, responsive to
differences in surface characteristics, viz., sharp changes in luminance or texture, provides an
edge-based description of the object.

Following the determination of the components, a structural description specifying the
components and their relations is then matched against a like representation in memory. It is
assumed that the matching of the components occurs in parallel, with no loss in capacity when
matching objects with a large number of components. Partial matches are possible with the
degree of match assumed to be proportional to the overlap in the componential descriptions of a
representation of the image and the memorial representation.

II. A Connectionist Implementation of RBC

Hummel, J. E., Biederman, I., Gerhardstein, P. C., and Hilton, H. J. From image edges to geons:
A connectionist approach.

Hummel, Biederman, Gerhardstein & Hilton (1988) have implemented a connectionist
model of geon recognition. The model is a five-layer network (Figure 2) that takes as input an
activation vector representing the configuration of edges in the image of a geon. As output
(Layer 5), the model produces an activation vector representing the geon defined by that
configuration of edges. The connections that perform the mapping from image edges in the first
layer to geons in the fifth were derived through error back propagation. (The Hummel et al.
paper presents an earlier four layer version. The within-column architecture and representation
and organization among the columns are virtually identical to the version presented here.)

The major goals of this effort are to determine: (1) whether the constraints imposed by
the cdge-to-geon mapping were sufficient to force the model to discover the non-accidental (or
viewpoint-invariant) image properties posited by RBC as the basis upon which geons are
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recognized; (2) whether, using these non-accidental properties, the model could achieve
translation, rotation and size invariance in geon recognition; (3) if the present model, replicated
at different scales and locations over the visual field, could achieve parsing of a multi-geon
image into its constituent parts, and (4) if the resulting representation could be used to derive
inter-geon relations from the image of an object and, together with the descriptions of the geons
themselves, be used to drive object recognition. The aspect of the model to be described here
directly addresses the first two of these goals.

Architecture and Representation

The Input Layer. The model’s input layer is divided into 19 identical clusters of cells.
Each cluster contains 20 cells for the detection of image edges, and is located over a particular
portion of the model’s visual field. The cell clusters form an hexagonal lattice such that the
center of a given cluster, i, is r units from the centers of i’s six nearest neighbors (see Figure 2).
Each cluster has a circular receptive field of radius r; image edges within a cluster’s receptive
field are recorded as activity in the cells of that cluster. As the receptive fields of adjacent
clusters overlap, any given image edge will be registered in the cells of at least two input
clusters.

The 20 cells within an input cluster respond to image edges in terms of straight and
curved segments and terminations. There are four cells that respond to different orientations of
straight segments, four that respond to different orientations of curved segments, and twelve that
respond to the points at which edges of different orientations terminate (Figure 3). Thus, the
cells within the model’s input layer respond to edge features on the basis of: (1) location
(defined by the location of the cluster to which a particular cell belongs), (2) whether the feature
is an edge segment or termination, (3) curvature (in the case of segments only), and (4)
orientation.

Whether a cell will respond to a given edge feature is defined by the compatibility
between the cell type and the feature type. For example, edges tuned to respond to straight
segments will not respond at all to the presence of a curved edge. However, given that a cell
and feature are of compatible types, the strength with which the cell will respond to the feature
is a non-linear function of the feature’s location and orientation.

The Output and Intermediate Layers. As stated above, the model’s output is an
activation vector indicating the identity of the geon defined by the configuration of edges it is
given as input. This output is produced in the eight cells of the model’s fifth layer. Each cell at
this level locally codes one of eight geon types: brick, wedge, cylinder, curved cylinder, cone,
truncated cone, prism, and curved cone. The specifics of representation in the model’s
intermediate (second, third and fourth) layers were not designed a priori; a primary aim of this
modelling effort is to observe what representations emerge naturally in these layers as a function
of the model’s mapping task. However, the architecture of the intermediate layers (including
their inter-connectivity and connectivity to the input and output layers) is highly constrained on
the basis of a priori considerations.

As in the first layer, the cells in the intermediate layers are organized into identical
clusters. A given cluster in layer L has connections to only a subset of the clusters in layer L-1.
This constrained pattern of connectivity between layers accomplishes two specific computational
aims. First, it determines the degree to which retinotopic mapping is preserved as activation is
passed between the layers; the size of a cluster’s receptive field determines exactly how much of
the visual field is represented by the activity in that cluster. Second, constraining the
connections between layers to local subsets of the cells in those layers allows the connections to




Biederman/FINAL Progress Report December 1988 Page 4@
HUMAN IMAGE UNDERSTANDING AFOSR Grant No. 86-NL-0086

I. Biederman, P. L.

Loyer T.
This level for training
Layer s. — e, purpeses only.

Each percluster at B. - Local
e % representation
— of geons,

level 4 will pags input te
one cluster at this level.

B Rop?osumﬂm of geon aspect

© ratie and axig omentation.

Layer 4 Geon Recognition Plan
10 cell

dist.rep. of geons,

20 cell hidden
Tayer.

Detection of VIPs
aver larger
spatial ares.

Layer 3.

20 ceoll hidden
layer.

Detection of VIPs
while preserving

£—1 fine spatial detail.

20 ceils coding
imege edges

Layer 2.

Layer 1.

Fl 6" a . The Five Layer Column for Geon Recognition

Layer 1: 19 Clusters each with 20 cells - edges are represented here

Layer 2: 19 clusters each with 20 cells ~ each cluster takes its input
from ene layer | cluster

Layer 3 : 7 clusters each with 20 cells = each cluster takes its input
from one layer 2 Wypercluster

Layer ¢ 1 cluster with 10 cells = this cluster takes its input from
the single layer 3 hyperciuster

Layer T : 1 cluster with @ cells - this cluster takes its input from
the gingle layer 4 cluster - goens are lecally represented
here - this layer is only for training

Straight Curved Terminations
Segments Segments

figure 3 A subset of the Connections from Layer 1
to Layer 2.

Above ars shawn the connections from all 20 first layer cells (withinone cl uster)

to three celis in o second layar cluster. AN second layer clusters ars identicel.
Tharefors, this pattern i3 repliceted throughout all 19 second Tayer clusters.

The black boxss indicate inhibitory connections, and the white excitatory connections;
the size of ¢ box 13 propertional to the magnitude of the cannection.




-

Biederman/FINAL Progress Report December 1988 Page §
. HUMAN IMAGE UNDERSTANDING AFOQOSR Grant No. 86-NL-0086
I. Biederman, P. L.

be "reused”. That is, if several separate connection matrices perform a given layer-to-layer
mapping, these connections matrices can be duplicated. The advantage of this type of "matrix
duplication” is that it insures translational invariance in mapping between separate regions of
adjacent layers.

The mapping between the first (input) and second layers occurs on a one-cluster-to-one-
cluster basis. Each of the 19 clusters in layer two contains 20 cells that are fully interconnected
to the 20 cells in one layer-one cluster. Thus, retinotopic mapping is completely preserved in
mapping from the first to second layers. The motivation behind this design was to allow the
training regime discover highly localized VIP features, viz., vertices, in the second layer clusters.

The model’s third layer contains seven clusters, each with 20 cells. Each third layer
cluster takes its input from an hexagonal lattice of seven clusters in the second layer (see Figure
2). This seven-to-one mapping was designed to allow the clusters in the third layer to discover
important combinations of firing patterns in the clusters of the second layer that may represent
viewpoint invariant properties occurring over an extended region, such as parallelism or
symmetry.

The mapping between the model’s third and fourth layers is also a seven-to-one mapping.
The single fourth layer cluster contains only ten cells and serves as a bottleneck in which the
model was forced to discover a distributed representation of the geons represented locally in the
output (fifth) layer. By virtue of the seven-to-one mappings leading up to the fourth layer, the
cluster there summarizes over all spatial information within the original input image. Therefore,
within the scope of the present model, retinotopic mapping is not preserved in the fourth layer.
However, the complete model is assumed to consist of several duplicates of the present model
distributed, at various spatial scales, over the visual field. As such, retinotopic mapping is
preserved between fourth-layer clusters in the complete version.

Simulation Procedure. The following discussion of simulation results is based upon a
simulation with a six-geon training set. The set included 48 stimuli in all: eight examples each
of bricks, wedges, cylinders, curved cylinders, cones and truncated cones. The set was
generated by creating two tokens of each geon type and presenting each token in four randomly
chosen orientation/position conjunctions. The model was trained by back propagation and
training proceeded until criterion performance (100% correct recognition and mean error per
output cell less than .02 deviation from desired output) was achieved.

Most of the parameters employed during training and testing are unimportant to the
present discussion. However, the effect of the activation rule was sufficiently striking as to be
worthy of note. The activation rule employed was a (-1, +1) bounded version of the logistic
activation function typically employed in back propagation models. An output threshold of zero
was imposed on the cells, and no input bias was used. As a result, cells whose net input was
negative or zero produced an output of zero, and cells whose net input was positive produced an
output that approached 1.0 as the input approached infinity. The effect of this rule was to
completely shut off cells whose net input was negative. This effect is to be contrasted with the
typical rule in which a cell’s output approaches zero as its input approaches negative infinity.
By quieting cells whose inhibitory inputs exceeded their excitatory inputs, this activation rule
greatly reduced the amount of noise propagated through the system. The effects of this noise
reduction are discussed briefly below.

Results
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Training proceeded very rapidly: the model required only 28 presentations of the training
set to reach criterion performance. This rapid convergence can be attributed both to the limited
training set employed and to the parameters used to govern the learning algorithm.

After training, the model was tested on four classes of stimuli: (1) novel
translation/rotation conjunctions of trained tokens, (2) novel tokens of the trained geon types
(e.g. another configuration of a cylinder), (3) novel geon types, and (4) scrambled tokens of
trained types. The model’s ability to recognize novel stimuli is best described as imperfect but
sensible. It generalized perfectly to novel instances of familiar tokens (test set type (1)). That is,
when test stimuli were constructed by modifying the positions and orientations of training
stimuli, performance was perfect. The model thus appears to have developed translation/rotation
invariance for the stimuli in its training set.

The model’s ability to generalize to novel tokens of each of the trained types (test set
type (2)) was somewhat less reliable, with a few stimuli classified as similar geons but most
geons were correctly classified. Eight examples each of prisms and curved cones--geons that did
not have representatives in the model’s training set--were used to test the model’s classification
of novel geon types. Its classification of these stimuli was sensible, revealing the appropriate
similarity structure, e.g., prisms were consistently classified as brick/wedge/cone combinations.
Further, ‘;he cells activated tended to cluster closely around the characteristics of the stimulus
presented.

The test set type 4 stimuli were created by rearranging (scrambling) the vertices and
edges composing the bricks and cylinders in the training set. The vertices themselves, and any
parallelism among the constituent edges, were preserved; only the spatial arrangement of these
features was perturbed. Stimuli of this type were consistently classified correctly despite the
stimulus features’ incorrect relative positions: scrambled bricks were classified as bricks, and
scrambled cylinders as cylinders or curved cylinders. We regard this "success" as problematic--a
consequence of the model’s insensitivity to spatial relations.

The insensitivity to relations characterizes many connectionist modeling efforts and it
should not have been a surprise that our initial effort would reflect this shortcoming. The
specific insensitivity to scrambling the features of a geon is a likely a consequence of the
requirement that the model derive a viewpoint-invariant representation of the geons directly from
their constituent features. Deriving viewpoint invariance directly from image features (such as
vertices or parallelism) requires that many feature-sensitive cells have excitatory connections
directly to the cell or cells that represent a particular geon. For example, if the cell representing
a brick is to be activated by the features of the brick regardless of viewpoint, that "brick" cell
must be connected to all cells representing the features of bricks from all viewpoints. As a
consequence, any combination of "brick features” will result in the activation of the brick cell
(provided only that a sufficient number of the feature cells are active). Thus, it seems that when
a viewpoint-invariant representation of a geon must be derived directly from the features
defining that geon, the relations among those features get ignored by necessity.

One possible solution to this problem is to incorporate a junction dictionary. We are
currently exploring how such a dictionary could be incorporated into a connectionist account.

Overall, given the early state of this modeling effort, the results of the simulation are
encouraging. The model succeeded in learning translation and rotation invariance for the tokens
in its training set, and it generalized reasonably well both to new tokens of familiar types and to
novel types. Also, analysis of the weight matrices revealed the emergence of many of the VIPs
posited by RBC.
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This continues to be an active part of our research efforts. On a computational and
descriptive level, RBC has also undergone some modifications and extensions. Many of these
are described in Biederman (1988a).

III. Assessing Representation Through Priming

We have launched several experiments designed to assess the nature of the representation
that results from the viewing of a picture of an object. Itis well known that the prior viewing of
a picture results in a facilitation in the speed of identifying that same picture on a subsequent
exposure (e.g., Bartram, 1974; Biederman, Blickle, et al., 1988). The presentation of the first
picture is then said to have "primed" the identification of the second picture.

Priming with Complementary Images (w. Eric Cooper). According to RBC, the
representation of an object is in terms of its geons, which are activated by image features, such
as vertices and edges. But if the geons are activated by image features--vertices and edges--why
not just represent an object in terms of image features? To see why this may not be so, the
reader is invited to identify the recoverable contour-deleted images shown in Figure 4. Now
look at Figure 5. When viewed without the benefit of side-by-side comparisons, observers
generally report that the images are the same. But figures 4 and 5 are actually complementary
images, with each member of an object pair (e.g., the flashlight) having 50 percent of the contour
of the original intact version. The images were produced by deleting, from each geon, every
other vertex and edge. Each image of an object is thus a complement of the other so that if the
two versions were superimposed they would make an intact picture with no overlapping of
contour. (A small segment of edge was retained to define the vertex. Also, very long edges
were divided between the versions.) If we were to represent objects in terms of image features,
we would need a different representation for each arrangement of occluding contour.

An image feature representation would suggest, therefore, that the recognition of the
original should show an advantage over the recognition of the complement. Because the same
geons would be activated from either representation, according to RBC there should be no
difference in the two versions.

We tested these possibilities in an experiment with 24 object pictures (and 32 subjects).
In an initial priming block, subjects viewed and named one of the two deletion versions of each
of the 24 objects for S00 msec. In the second (testing) block, the images were either the identical
or complementary versions of the 24 object pictures that had been shown in the priming block.
In both blocks subjects had to name the images as quickly as possible. The results confirmed the
RBC account: recognition performance for complementary images (845 msec RTs and 8%
errors) was virtually identical to performance on the identical images (832 msec RTs and 11.1%
errors).

There is no doubt that people could code the individual image features in that they could
learn to distinguish the various versions of the complementary images. But the expectation from
RBC would be that the reliance on such coding would slow their identification performance.
That is, subjects might more readily identify the complementary version of the camera if they did
not attempt to determine if it contained the particular vertices and segments present in the
original version.

We are currently running a control experiment in which new object classes and different
geon models of the same class appear in the second block of objects. Because these images
would have different geon models they should not be primed by the first block of pictures.
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Bartram has already demonstrated that such pictures are indeed worse than repeated images but
this needs to be demonstrated in our own paradigm. Worse performance on these images would
document that there was, indeed, a priming effect.

The effects of mirror reversal. In this experiment half the images on the second block of
trials were in the original left-right orientation and the other half were in a reversed orientation.
No special status is accorded to such orientation in RBC so there is no reason why any effect
would be expected. It is not that people could not recognize the orientation of the object. It may
be merely that speeded recognition might not depend on specification of orientation. And this
was found. Objects in their original orientation (829 msec RTs and .08 percent errors) were just
barely (but not significantly) better than those images in their reversed orientation (847 msec
RTs and 11% errors).

The effects of rotation in depth. A variant of the complementary priming task will
provide a strong test as to whether the representation is indeed 3D (rather than 2D). In this task,
the test (second block) images will be presented as rotated in depth, but with the same geons
present. (Often rotations of 10-200 for many objects provide the same geon descriptions as an
original orientation.) A lack of an effect of such rotation and the complementary deletion would
provide strong evidence that the representation was not of the image features (segments and
vertices), but of volumetric units. In these experiments, conditions will be run with "nonsense"
objects that did not conform to familiar object c!asses to insure that the priming was not from a
familiar object model.

IV. Role of Surface Features in Object Recognition.

A. Surface vs. Edge-Based Determinants of Visual Recognition. Biederman, [, & Ju, G.
(1987).

Two roles hypothesized for surface characteristics, such as color, brightness, and texture,

in object recognition are that such information: a) can define the gradients needed for a 2 1/2-D
sketch so that a 3-D representation can be derived (e.g., Marr & Nishihara, 1978) and b) provide
additional distinctive features for accessing memory. In a series of five experiments, subjects
either named or verified (against a target name) brief (50-100 msec.) presentations of slides of
common objects. Each object was shown in two versions: professionally photographed in full
color or as a simplified line drawing showing only the object’s major components (which
typically corresponded to its parts). Although one or the other type of picture would be slightly
favored in a particular condition of exposure (duration or masking), overall mean reaction times
(RTs) and error rates were virtually identical for the two types of stimuli. These results support a
view that edge-based representations mediate real-time object recognition in contrast to surface
gradicnt or multiple cue representations. A previously unexplored distinction of color
diagnosticity allowed us to determine whether color (and brightness) were employed as
additional features in accessing memorv for those objects or conditions where there might have
been an advantage for the color slides. For some objects, e.g., banana, fork, fish, camera, color
is diagnostic as to the object’s classification. For other objects, e.g., chair, pen, mitten, bicycle
pump, color is not diagnostic, as such objects can be of any color. If color was employed in
accessing memory, color diagnostic objects should have shown a relative advantage when
presented as color slides compared to the line drawing versions of the same objects. Also, this
advantage would be magnified when subjects could anticipate the color of an object in the
verification task, particularly on NO trials when the foil was of a different color. Neither an
overall advantage for color-diagnostic objects when presented in color nor a magnification of a
relative advantage on the NO trials in the verification task was obtained. Overall, any advantage
to depiction by color slides over a line drawing version was equivalent for diagnostic and
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nondiagnostic objects. Although differences in surface characteristics such as color, brightness,
and texture can be instrumental in defining edges and are powerful determinants of visual search,
they play only a secondary role in the real-time recognition of an intact object when edges can be
readily extracted.

B. The Perception of Objects that Require Surface Feature Specification. (w. John
Hilton). Most of our prior empirical work concentrated on those objects whose representations
could be completely specified by a volumetric description, such as a frying pan, horse, or nail.
Some objects, such as a racquet, zebra, or screw, require a texture specification in addition to
their volumetric specification. We compared the speed and accuracy of object naming of 100
msec exposures of line drawings of these two classes of objects. The objects were matched in
their silhouette and general volumetric description but, in one case, a surface description was
required as well, as shown in Figure 6. Some examples:

Volumetric Volumetric +
Alone Texture
Nail Screw
Horse Zebra
Knife Nail File
Frying Pan Racquet
Lock Basket
Shovel Broom
Bed Accordion
Lion Tiger

Care was taken to evaluate possible effects of familiarity and frequency. If the texture
region was functioning as another component, then performance should have been facilitated
through the additional geon, in that complex objects can be identified more rapidly than simple
ones (Biederman, 1987a and described below). Alternatively, the detailed processing required to
specify the texture field might not be completed in a brief exposure duration so such objects
might prove to be less recognizable. The results supported the latter alternative and are
consistent with the previously reported secondary status of surface features. Mean RT's and error
rates for objects that could be specified by a volumetric structure alone were 858 msec and 7.5
percent, respectively. The corresponding values for the those objects requiring a texture field
was 980 msec and 19.0 percent errors.

The advantage for the objects that could be recognized with a volumetric description
alone supports our original contention that the earliest or most efficient access to memory for an
image might be an edge-based description. By this account surface characteristics offer only
secondary routes to object recognition.

V. The Perception of Partial and Degraded Objects

Background: Partia: Objects and the Effects of Complexity. Complex objects,
defined as those requiring six or more components to appear complete, as an airplane or a
penguin, could be identified perfectly from only two or three of their geons, as long as subjects
were not stressed to respond quickly (Biederman, 1987a). Under speed stress and with brief
(100 msec) exposures, both naming reaction times (RTs) and errors increased with the removal
of additional components from the complete versions. But even under these conditions, complex
objects with less than half their components were accurately named on 75 percent of the trials.
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Importantly, for the complete versions of the objects, complex objects were identified more
rapidly than simple objects (those requiring only two or three components to appear complete.

A. The effect of an inappropriate geon: Consequences of Three Geon Sufficiency
(w. Elizabeth Beiring, Ginny Ju, and Thomas Blickle). A consequence of the three-geon rule is
that the addition of a fourth but inappropriate geon (middle column of figure 7) should not result
in reduced recognition speed. The three appropriate geons (left column, Fig. 7) will be sufficient
to activate the object’s representation and unless the inappropriate geon results in the activation
of a competing object, no interference should occur, even though that same geon would facilitate
the recognition speed of an object when it was appropriate. This prediction assumes that there is
no bottom-up inhibition from geons to objects. An experiment recently confirmed this
expectation. Although the addition of a fourth
component reduced RTs and error rates in the 100 msec identification of an object when that
component was relevant, there was no effect of that geon when it was irrelevant.

B. The Effects of Contour Deletion: A Function of Visual Angle or Proportion
Removed? (w. Tom Blickle).

Biederman & Blickle (described in Biederman, 1987a) found that the deletion of contour,
even when it could be restored through collinearity or smooth curvature, resuited in considerable
interference in the speed and accuracy of object identification. Moreover, the amount removed
had large and consistent effects between a range of 25 to 65 percent deletion.

When we removed greater amounts of contour, the gap sizes also increased along with
the greater proportions. We studied whether the effects were do to the larger gap sizes (in terms
of visual angle) or proportion of the contour that was removed by expanding the images so that,
for example, the 25 percent deletion condition matched, in gap size, the gaps of the original 45
percent condition. The results were clear: Only the proportion of an object’s contour that was
removed had any effect. There was no independent effect of the retinal gap that had to be
bridged.

C. Comparing Incidental vs. Viewpoint Invariant Image Features for Object
Recognition. (T. Blickle).

Tom Blickle has completed an extensive series of experiments examining the effects of
contour deletion on object recognition. The major focus of this effort was on the comparative
effects of deleting contour that would affect the nonaccidental characterization of the image
versus metric and incidental aspects. Also under examination was the relative importance of
contour that would be important for segmentation (viz., cusps) versus contour that would be
instrumental for defining the geon. Blickle is currently writing up this research.

D. Perceiving degraded vs. partial objects: Modeling Activation in Cascade
(Biederman, Gagnon, & Hilton, 1987). The model of RBC illustrated in figure 1d can be
partitioned into two critical stages: a) those processes leading to and including the determination
of the geons, and b) those processes involved in matching an arrangement of geons to memory.

Consider figure 8 which shows, for some sample objects, one version in which whole
components are deleted so that only three (of six or nine) of the components remain and another
version in which the same amount of contour is removed, but in midsegment distributed over all
of the object’s components. In objects missing components, the components cannot be added
prior to recognition. Logically, one would have to know what object was being recognized to
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Figure 7. Left. Three-geon versions of complex objects
requiring six or nine geons to look compiete (left).
Right. Four-geon versions of the same objects.
Middle. Versions where a8 fourth--and inappropriate--
geon from another object has been added to the three-
geon version. Recognition error rates and naming
reaction times were equivalent for the 3 and 3+l
versions but error rates and RTs were fower for the 4
geon versions.
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know what parts to add. With the midsegment deletion, components can be determined from
processes employing collinearity or smooth curvature.

The two methods for removing contour may thus be affecting different stages. Deleting
contour in midsegment affects processes prior to and including those involved in the activation
of the geons (Fig.1d). The removal of whole components (the partial object procedure) is
assumed to affect the matching stage, reducing the number of common components between the
image and the representation and increasing the number of distinctive components in the
representation.

The two stages can be regarded as being arranged in cascade, with an earlier geon
determination stage relaying activation on the object matching stage. Figure 9 shows the
expected activation functions from the two procedures for deleting contour. Deleting contour in
midsegment results in an initial slow growth in activation as the relatively slow processes for
smooth continuation are required to restore the deleted contours. Once the restoration is
complete there is a rapid growth in activation at the object representation stage. By contrast,
there is an initial rapid activation of the components from the partial objects which, however,
asymptotes below the activation level of the midsegment deleted objects. The reason for this is
that the missing components have activation levels of zero. Once the filling-in is completed for
the objects with midsegment deletion, the complete complement of an object’s components are
available, providing a better match to the object’s representation than is possible with a partial
object that had only a few of its components. The net effect is to produce a crossover interaction
over exposure duration which produces a similar effect on the next stage, activation of the
representation of the object.

This prediction was supported from the results of an experiment (described in
Biederman, 1987a) which studied the naming speed and accuracy of six- and nine-component
objects undergoing these two types of contour deletion. At brief exposure durations (e.g., 65
msec) performance with partial objects was better than objects with the same amount of contour
removed in midsegment both for errors and RTs. At longer exposure durations (200 msec), the
RTs reversed, with the midsegment deletion now faster than the partial objects.

VI. Variation within Object Classes (w. John Hilton)

One hindrance to the development of a mature science of image understanding is the
current absence of clear criteria--or even consciousness--by which presumed image processing
operations or theoretical claims are to be evaluated. Perhaps the most common "method" by
which operations or claims have traditionally been offered for evaluation is the appeal to the
Method of Casual Viewing (Biederman, 1988). (This has also been termed the "beauty pageant
method.") With this method, a processed image is presented for viewing on a page and the reader
is invited to identify it. Typically the image would have information that is irrelevant to the
theory or not passed by the filter deleted from it. An accurate identification of the image is
supposed to be interpreted as support for the author’s theory of the effectiveness of the detector.

Perhaps the only task that such a method is relevant to is that of "ultimate identifiability"
(Biederman, 1988a). That is, one can conclude that there is sufficient information in the image
to allow a classification but virtually nothing can be concluded about the nature and efficiency of
the processing that produced this classification. In particular, one cannot conclude anything
about the processes by which an original image of an object is initially recognized--what
Biederman (1987a) termed "primal access.” The reason for this is that the human has been
characterized as possessing a number of routes ("bag of tricks") through which he or she can
achieve recognition. These routes can differ greatly in the amount of time and attentional effort
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they require to achieve recognition. What makes the method of casual viewing especially
inappropriate is that dramatic differences in processing time and effort are not readily available
to casual introspection.

Consider, as an example, Attneave’s (1954) oft reproduced image of a cat, as shown in
the upper left panel of Figure 10, which was drawn by connecting points at extrema of curvature.
(This is generally equivalent to the replacement of curved lines with straight lines.) The
subjective ease by which most readers can identify this image has lead to a conclusion, by many,
that such points are sufficient for primal--not just ultimate--access, in general.

Biederman and Hilton (described in Biederman 1988a) measured the speed and accuracy
of naming Attneave’s image (as "CAT") and a number of other pictures from a 100 msec
exposure immediately followed by a mask of random appearing lines. The mean correct naming
reaction times (RTs) and errors (in parenthesis) are shown under the particular images.
Attneave’s cat averaged 1078 msec with a 17% error rate. Removing the eye slit increased error
rates to 42% (the RTs at such a high error rate are unstable). David Lowe’s cat, drawn by
connecting the midpoints of Attneave’s cat, had an error rate of 39%. Shown at the right are
images of three cats in which curved edges are present. (There never was an original image of
Attneave’s cat so three pictures were selected from general sources.) These latter images are
recognized perfectly with RTS that averaged about 300 msec less than those required for
Attneave’s cat. (This result--a large detrimental effect on object recognition performance from
the straightening of image curves--can be shown to hold, in general, for any curved object.)

Similar results were found for a set of images of various chairs, including several
published by Kolers (Figure 11). Here the major variable was not the elimination of curved
edges but the prototypicality of the exemplar. An office chair, made up only of simple
volumetric parts, could be named in 684 msec, with O percent errors. Kolers’ rocking chair
gequixed 1129 msec with 53 percent errors! Similar variation was round for a set of lamps (fig.

).

To recapitulate, an image processing operation of which we are subjectively unaware can
actually require several times the additional perceptual processing time than that required for the
original image. A correction for the higher error rates would produce an even greater value of
the additional processing time. This phenomenon--large perceptual processing consequences
from subjectively innocuous image processing operations--can be shown to hold for a large
number of image processing operations.

The approximately 300 msec increase in naming RTs for the modified or stylized images,
though representing an increase of 43 percent over the RTs for the original images, actually
represents a considerably greater increase when only the central time for recognition is
considered. At least half of the 700 msec mean naming RTs for the standard or original versions
of the objects is used for initial sensory registration and the selection and execution of an overt
naming response. The 300 msec increase in RTs then represents an 86 percent increase in the
time required for recognition. The problem here is that the increased time for the stylized or
modified images may allow them to be recognized as symbols or through inference, rather than
through a direct mapping of a representation of image contours to a stored representation of an
object.

The classic issue addressed by this experiment concerns how an infinitely variable class--
such as chairs or cats--can be recognized. Neisser referred to such classes as "ill defined" and it
was certainly what Kolers had in mind in presenting his page of chairs. The answer offered by
this study--and RBC--is that the mental representation of an object does not include all the
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possible details and contour variations. Recognition is achieved despite such image variations
rather than because of it. There may be representations for one or several prototypical exemplars
and images are matched to those exemplars. To the extent that the images lack detail specified
by the mental representation or to the extent that the images include detail that are not in the
mental representation, recognition will be slow and, under brief exposure durations, likely to be
in error.

VILI. ATTENTIONAL DEMANDS OF OBJECT RECOGNITION
A. Visual Search for Geons (Ju & Biederman).

Ginny Ju is currently collecting data for her dissertation exploring the attentional
demands of object perception using the Treisman search paradigm. In an already completed
experiment, the subject had to attempt to detect a given geon, e.g., a curved cylinder. In the
disjunctive condition, the distractors for that target might be bricks and cylinders, where the
cross section of one distractor could not recombine with the axis to form the target by illusory
correlation. In the conjunctive condition, such an illusory correlation was possible in that the
distractors (for the curved cylinder) might be cylinders and curved bricks. Display size was
varied from 4 to 16 objects. The results showed an large increase in RTs and error rates as a
function of display size in the conjunction condition. RTs and error rates were hardly affected
by display size in the disjunctive condition. This would suggest that attention is required to
detect the geons. (A cautionary note on these results: The stimuli were not antialiased. The
volumes, particularly those with a curved cross section, had a jagged appearance. The current
experiments are being run on the Mac IIs which have higher resolution and better quality
images.) Ju’s experiments will be a major examination of the problems of shape recognition is
multielement displays. She will be exploring conjunctive costs across geons and relations.

The preliminary results suggest that at least part of the increase in object detection RTs
and error rates in multiobject, nonscene displays (Biederman, Blickle, Teitelbaum, Klatsky, &
Mezzanotte, 1988) is a function of the attention required to determine the geons.

B. Visual Search for Objects.

Biederman, I., Blickle, T. W., Teitelbaum, R. C,, Klatsky, G. J., & Mezzanotte, R. J. (1988).
Object identification in multi-object, nonscene displays.

When we look at a chair or a giraffe we cannot suppress a semantic interpretation of that
image, although we need not name it (e.g., Smith & McGee, 1980). Given that classification of
object images is mandatory, is it capacity free? A picture analog to the Egeth, Jonides, and Wall
(1972) letter-digit classification experiment was run in which subjects attempted to detect the
presence or absence of a target object, specified by basic-level name, in a nonscene (clockface)
arrangement of pictures of common objects. The number of objects varied from one to six.
Presentation duration was 100 msec. There was a sharp monotonic decrease in detectability as a
function of the number of objects in the display, indicating that object detection under these
conditions is an attention-demanding process. This result was unconfounded with similarity
because larger displays were constructed by adding objects in order of decreasing similarity to
the target. The target object was either consistent with the other objects in the field in that it
would be relatively likely to appear in a setting which contained those objects, e.g., a target of
TEA KETTLE among kitchen objects such as a stove, toaster, frying pan, and spice rack; or
inconsistent, such as TRACTOR among the same objects. Although consistent targets have been
found to be more readily detected than inconsistent targets in real-world scenes (e.g., Biederman
et al, 1982), inconsistent targets were slightly more detectable in the nonscene displays used in
the present investigation. This latter result is evidence against an account of the perceptual
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interference found for inconsistent (or improbable) objects in real-world scenes which holds that
the interference derives from an inventory listing of the objects without regard to their spatial
relations. A geon cluster hypothesis is proposed to account for the rapid activation of a scene’s
semantic representation without an attentional cost from the number of objects.

VIIL Expert Visual Identifications.

Biederman, I., & Shiffrar, M. (1987). Sexing day-old chicks: A case study and expert systems
analysis of a difficult perceptual learning task.

The sexing of day old chicks has been regarded as an extraordinarily difficult perceptual
task requiring years of extensive practice for its mastery. Experts can sex chicks at over 98
percent accuracy at a rate of 1,000 chicks per hour spending less than a half second viewing the
cloacal region. A group of naive subjects were shown 18 pictures of cloacal regions of male and
female chicks (in random appearing arrangement) and asked to judge the sex of each chick. The
pictures included a number of rare and difficult configurations. The subjects were then briefly
instructed as to the location of a critical cloacal structure for which a simple contrast in shape
(convex vs concave or flat) could serve as an indicant of sex. When the subjects judged the
pictures again (in a different order), accuracy increased from 60.5 to 84.0 percent, a value that
matched the performance level of a group of professional sexers with these pictures. The
correlation (over items) between the naive subjects and the professionals before instruction, was
.21; after instruction, .82. The instructions were based on an interview and observation of an
expert (HC) who had spent 50 years sexing 55 million chicks. Much of the reported difficulty in
developing perceptual expertise in this task may stem from the need to classify extremely rare
configurations in which the convexity of the structure is not apparent. It is possible that the rate
of learning of these instances could be greatly increased through the use of simple instructions,
such as those used in the present investigation, that specified the location of diagnostic contour
contr;sts.f A parallel is drawn between learning to sex chicks and learning to classify tanks as
friend or foe.

IX. An Extension to Scene Perception (Biederman, 1988a).

The mystery about the perception of scenes is that the exposure duration required to have
an accurate perception of an integrated real-world scene is not much longer then what is
typically required to perceive individual objects. The recognition of a visual array as a scene
requires not only the identification of the various entities but also a semantic specification of the
interactions among the object and an overall semantic specific of the arrangement.

However, the perception of a scene is not, in general, derived from an initial
identification of the individual objects comprising that scene. That is, in general we do not first
identify a stove, refrigerator, and coffee cup, in specified physical relations and then come to a
conclusion that we are looking at a kitchen.

Some demonstrations and experiments suggest a possible basis for understanding rapid
scene recognition. Mezzanotte showed that a readily interpretable scene could be constructed
from arrangements of single geons that just preserved the overall aspect ratio of the object, such
as those shown in Figure 12. In these kinds of scenes, none of the entities, when shown in
isolation, could be identified as anything other than a simple volumetric body, e.g., a brick.
Most important, Mezzanotte found that such settings were sufficient to cause interference effects
on the identification speed of intact objects that were inappropriate to the setting.
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Figure 1%g®. Upper portion. Two of Mezzanone’s scenes. "City Street” and "Office.” Lower

portion. Possible geon clusters for the scenes in above.
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We have been exploring the possibility that quick understanding of a scene is often
mediated by the perception of geon clusters. A geon cluster is an arrangement of geons from
different objects that preserve the relative size and aspect ratio and relations of the largest visible
geon of each object. In such cases, the individual geon will be insufficient to allow identification
of the object. However, just as an arrangement of two or three geons almost always allows
identification of an object, an arrangement of two or more geons from different objects may
produce a recognizable combination. The cluster acts very much as a large object. Figure 12
shows two examples. If this account is true, fast scene perception should only be possible in
scenes where such familiar object clusters are present. This account awaits empirical test.
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Biederman, I. Visual perception and performance in space: Some methodological and empirical
problems. Invited paper at the Exploratory Meeting on Changes in Vision During Long-Term
Space Flight. NASA Ames (California): June, 1986.

Blickle, T. W., & Biederman, I. Perceiving degraded objects. Paper presented at the Meetings
of the Human Factors Society, Dayton, Ohio: September, 1986.

Ju, G., & Biederman, I. The perception of objects depicted by color or line drawings. Paper
presented at the Meetings of the Human Factors Society, Dayton, Ohio: September, 1986.

Biederman, I. Aspects and extensions of a theory of human image understanding. Paper
presented at the First Queens University Vision Conference, Kingston, Ontario: April, 1987.

Biederman, I. The role of scene perception in the analysis of aquatic injuries. Invited address to
the Aquatic Injury Safety Association, Ft. Lauderdale, Florida: May, 1987.

Biederman, 1. Matching Image Edges to Object Memory. Paper presented at the First
International Conference on Computer Vision, IEEE Computer Society [Fourth Workshop on
Human and Machine Vision.). London, England: June, 1987.

Biederman, 1. (1987). Perceptual and attentional factors in the processing of multisensor
displays. Invited address to the National Academy of Sciences-National Research Council
Committee on Vision and U. S. Army Workshop on human Processing of Computer Aided
Target Images. Aberdeen Proving Grounds, Maryland: July.

Biederman, 1. (1987). Real-time human image understanding and pilot performance models.
Invited presentation to the NASA-NRC Working Group on Pilot Performance Models.
Washington, D. C.: Dec.

Biederman, I. (1987). Human image understanding. Invited paper to the Air Force Review of
Vision Research. Annapolis, MD.: December.

Biederman, 1. (1988). Computational and empirical analyses of human image understanding.
Invited address to the Twin Cities Special Interest Group in Artificial Intelligence.
Minneapolis, MN.: January.

Biederman, I. (1988). A psychologist looks at belief in the paranormal. Invited address to the
Minnesota Skeptics. Minneapolis, MN.: January.

Biederman, I. (1988). Invariant Visual Primitives for Object Recognition. Invited address to
the AAAS Symposium on High-Level Vision; Interdisciplinary Approaches to Object
Recognition. Boston, Massachusetts: February.

Biederman, I. (1988). Geons: Visual Primitives for Human Image Understanding. Invited
paper presented at the Meeting for Visual Form and Motion Perception: Psychophysics,
Computation, and Neuro Networks. Boston, Massachusetts: March.

Biederman, 1. (1988). Real-time human image understanding. Paper presented at the Spring
Symposium on Physical and Biological Approaches to Computational Vision, American
Association for Artificial Intelligence. Stanford, CA.: March.
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Biederman, I. (1988). Human image understanding. Invited address to the Meetings of the
Midwestern Psychological Association. Chicago, IL..: April.

Biederman, I. (1988). Visual object recognition. Invited presentation at the James S.
JMu::::).onncll Foundation Summer Institute in Cognitive Neuroscience. Harvard University:

INVITED COLLOQUIA: 1986-88

Columbia University

Duke University

University of Rochester

University of Minnesota [Two colloquia: Engineering and Computer Science, and Psychology].

University of Maryland

Georgia Technical Institute

Brandeis University

University of Pittsburgh

MacMaster University

University of Toronto

Cambridge University (APU)

University of London

Harvard University

University of South Florida

Columbia University (Animal Cognition Group)

Honeywell

MIT (Psychology Department and the Center for Biological Information Processing)

US Army Research Institute, Ft. Benning, Ga

Stanford University

McGill University (Departments of Electrical Engineering; Cognitive Science Program)

University of Auckland, New Zealand.




