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REAL-TIME SNOW SIMULATION MODEL FOR THE MONONGAHELA RIVER BASIN'

Daniel H. Hoggan, John C Peters, atid Werner Loehlein'

ABSTRACT: The Pittsburgh District, U.S. Army Corps of Engineers, COMPUTER PROGRAM SNOSIM
is responsible for operating two multipurpose reservoirs in the 7384
square mile (19198 square kilometer) Monongahela Basin. A third The SNOSIM program simulates snow accumulation, ripen-
reservoir, prcently under construction, will soon be operating. The ing, and melt processes to determine snowmelt contributions
real-time forecasting of runoff for operational purposes requires simu- to runoff, and computes rainfall attenuation and lag caused
lation of sioA accumulation and snowmelt throughout the Basin dur- by snow on the ground. Rain that passes through the snow-
ing the winter season. This article describes capabilities of SNOSIM, pack is added to snowmelt to obtain "equivalent precipita-
a model being developed for performing such simulation. The applica-
tion of this model as part of a comprehensive system of water control tion," which is treated as being equivalent to rainfall as an
softuare, and some initial simulation results are presented, input to a rainfall-runoff model (Hoggan, el al., 1986).
(KLY TERMS: real-time forecasting; snow simulation; snowmelt SNOSIM is a component of an on-line software system
modeling; reservoir operation; Monongahela River.) that includes the capability for data acquisition and processing,

precipitation analysis, streamflow forecasting, reservoir system
analysis, and graphical display of data and simulation results

BASIN AND RESERVOIR SYSTEM (Pabst and Peters, 1983). A Data Storage System (DSS)
CHARACTERISTICS provides a means for the storage and retrieval of measured

The Monongahela Basin is situated in the unglaciated Al- data and simulation results. An interactive executive program
legheny Plateau and is characterized by rugged, high rolling facilitates the use of the software system. Alternative future
hills. The Basin is long and narrow with a total length of precipitation and temperature scenarios, or alternative opera-
144 miles and an average width of 51 miles. Elevations tional constraints, can be readily specified with this program.
range from about 4800 feet at the southern divide to 710 SNOSIM is unusual in at least two respects: 1) its com-
feet at Pittsburgh (Figure 1). putational time interval can be made very short (3 hours, for

Two existing reservoirs, Tygart and Youghiogheny, and a example), and 2) it is designed for shallow snowpacks. Most
reservoir presently being constructed, Stonewall Jackson, snowmelt models have been developed for relatively deep
comprise a system for which the primary purpose is flood snowpacks in mountainous locations, and most compute at
control. The reservoirs are also used to store water for longer time intervals. The procedures embodied it, the
navigation, pollution abatement, and water supply. The SNOSIM program are those used by the Pittsburgh District,
winter season flood control capacities for the Tygart, Corps of Engineers, and would be most applicable to shallow
Youghiogheny. and Stonewall Jackson reservoirs are 278,000, to medium depth snowpacks.
151 000, and 38,550 acre feet, respectively. Flood control
ieservations for the summer season are somewhat less.

A real-time data collection network for water control is DATA REQUIREMENTS
presently based on 52 self-timed data collection platforms Data requirements for SNOSIM are subbasin averages of
(D-P's) that report via satellite telemetry. The DCP's report maximum and minimum temperatures, snow depths, and pre-
stages and elevations measured at 33 stream and reservoir cipitation. Aperiodic snow density data can be used for up-
sites, air temperature at 11 sites, and precipitation at 28 dating computed snow density. In addition to the streamflow
sites. Precipitation data from an additional 14 sites outside and precipitation data available from the network described
the Basin are used for making estimates of subbasin-average earlier, daily measurements of temperature (30 stations) and
precipitation. The Basin is divided into 40 subbasins for snow depth (50 stations) are available, and aperiodic measure-
purposes of runoff simulation. ments of snow density are taken at three stations.

Paper No 87016 of the Water Resources Bulletin. Discussions are open until August I, 1988.
2Respectively. Professor, Civil and Environmental Engine. ng, Utah Water Research Laboratory, Utah State University, Logan, Utah 84322;

Hydraulic Engineer, Hydrologic Engineering Center, 609 Second St., Davis, California 95616; and Hydraulic Engineer, Pittsburgh District, Corps of
Engineers. William S. Moorhead Federal Building, 1000 Liberty Ave., Pittsburgh, Pennsylvania 15222-4186.
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Figure 1. Map of the Monongahecla River Basin.
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Real-Time Snow Simualtion Model for the Monongahela River Basin

DATA ADJUSTMENTS COMPUTATIONAL LOGIC

Snow depths ordinarily reach a maximum of three to four Precipitation is divided into rain or snow according to a
feet at the highest elevations in the Basin, and all of the freezing temperature index. If the average temperature in F

snow may melt within a few days from the influence of ab- is greater than freezing temperature plus 2 degrees. precipita-
normally high temperatures. The time interval of computa- tion is computtt :!s :ai. Rain. thus obtained, is treated it

tions, which may be selected from a range of one to several one of three wayb ; i i! 'here is no snow on the ground. it

hours. must be relatively short (e.g., 3 hours) to effectively is added directly t, equivalent precipitation: 2) it snowpack
simulate these conditions. Daily maximum and minimum exists, but is .,or ripe (snow density is less than threshold
temperatures are converted to simulation time interval values melt density), then the rain is absorbed by the snow: and
according to a diurnal temperature distribution used by Pitts- 3) if the snow is ripe. the rain is lagged before being added
burgh District. A linear approximately of temperature dis- to equivalent precipitation.
tribution between maximum and minimum points is used to Snow ripening and melt processes are divided into two
simpli , computations (Figure 2). Daily snow depths are stages, from the beginning of the period ot simulation until
interpolated linearly to obtain simulation time interval values, the time of forecast, and from the time of forecast until the
Although actual changes in snow depth are not linear, par- end of the period of simulation.
ticularly during periods of freezing and thawing, the effect
of this assumption on simulation results is minimal because First Stage of Simulation
of the small deviation that would occur during a 24-hour In the first stage, subbasin averages of observed precipita-
period. tion, temperature, and snow depth and an initial value of

snow density are used to compute a regular time series of
water equivalent, snowmelt, and snow density values. This

.1 X series of computations may be updated with a user assigned

~ ~,- . . .. / - 4.I WAX I . value of snow density for any time interval in the simula-
1I tion.

I Tracking of the average snowpack density is essential in
the simulation to determine when melt will be triggered. Ir

the model, it is assumed that the average density must reach50
a threshold density to indicate ripeness before melt will

3. 2 leave the snowpack. Density accounting is accomplished by
additions and subtractions to the water equivalent. Precipita-

tion, whether rain or snow, is added: snowmelt and evapora-
_ 0 o .up, tion/sublimation are subtracted.F5o - When snow density is less than the threshold melt den-

DAY (1) sity and precipitation occurs, the water equivalent is equal
TIME (HOURS) to the water equivalent in the previous time interv;.i plus

precipitation.
Figure 2. Diurnal Temperature Curve. When there is no precipitation, the water equivalent of

the previous period is reduced by a small loss, which includes
an evaporation/sublimation loss and any loss from melt and

Observed snow depths under 20 inches are adjusted up- infiltration at the ground surface interface. Evaporation/
ward according to a curve (Figure 3) developed by the Pitts- sublimation from the snowpack is a function of the vapor
burgh District. For snow depths in this range, the District pressure difference between the snow surface and the air, and
has found that observed depths based on gage readings are wind speed. At middle latitudes during the winter and early
consistently low when compared with the results of snow spring, the evaporation/sublimation from snow averages less
surveys, than 0.5 inches per month (U.S. Army Coips of Engineers,

1960). This would amount to about 0.02 inches per day.

Loss due to ground melt and infiltration could increase this
rate slightly.

i) If the snow is ripe and the air temperature is above freez- -
ing, snowmelt is occurring, and the water equivalent from 0
the previous period is reduced by the amount of melt. Al-

1.000 I I I _ thouh rainfall also may be occurring, the rain is in transit
0 2 4 5 8 t0 12 14 16 to 20 through the snowpack and does not add to the water equiva.

OSER t SOw DEPTH (tNCS) lent of the snow. The rain is accounted for separately and

added to melt later in the process after adjustment for lag.
Figure 3. Snow Depth Adjustment Curve. Rain does, however, accelerate snowmelt slightly, so the melt odes

3 a t .po~clal01'or
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rate is increased by an amnount proportional to the intensity This approach produces a reasonable approximation ot snow
it the rainfall (U.S. Army Corps of Engineers, 1960). depth because the density is relatively stable while melt is

Combining the rain-melt equation with that for other melt occurring.
yields an equation for melt during time interval I. In the second case, when snow density is less than melt

density and the air temperature is greater than freezing, the
M (C + U4 007 R)(T i  T F) (1) snow depth is reduced slightly by consolidation. Although

1440 'MRno melt is occurring in the usual sense of water leaving the
snowpack, liquid water from melt occurring at the snow sur-

where face is moving to lower levels and increasing snowpack density
(Corps of Engineers, 1956). For shallow snowpacks, the re-

M. = sin ch melt in inches, duction in the snow depth under these conditions is directly
proportional to the amount of melt occurring at the surface

simulation time interval in minutes. based on air temperature and inversely proportional to the

C1  'oelticient of snowmelt (degree-day factor) in average density of the snowpack.

inches of melt per mean daily degree (OF) above
Si =I i 1-T j- (3)

R i  = ,hsc vcd rain fall in inches, =_44 0D i- 1 (

i = air temperature in 0 F, and In the third case, when the air temperature is below freez-

T F  Iree/ing temperature in OF. ing and the snow depth is greater than zero, the snow depth
in the current period is equal to snow depth in the previous

Otherwise. t' !heie is no rainfall, the equation is basically the period reduced by sublimation and increased by snowfall, if

same except that the rain melt factor is eliminated, any has occurred. The average density of new snow in the

After srmelt has been computed for a time interval, United States has been found to be approximately 10 percent

the water equ-ilent is computed. (Osborn, et al., 1982), and this value is adopted for com-
puting the de,:*h of new snow.

Secoind .Stay(, (il'Suinlation

In the second stage oh simulation, which occurs after the Si = S_- I C • (4)

time of hore._ast, predictions of precipitation and temperature 0 i
are used, aiid the computations are essentially the same as i -1 0in the preceding stage except that no snow depths are avail-

able. Snow depths are computed in four different ways de- where:
pendinig on temperature and snow density conditions.

In the tirst case, when the snow density is equal to or C = sublimation/evaporation loss in inches per day,
abore thle threhmod melt density and the air temperature is and
greater thaii I rceing, melt is occurring amd the density can be
expected to main tairly constan, iw depth under these Oi  = observed snow fall in inches of water.
conditions is climputed by dividing the water equivalent in
the current lime interval by the density in the preceding In the fourth case, when the air temperature is less than
time interval, freezing and there is no snow on the ground for the previous

period, the snow depth is equal to any new snowfall that
W occurs during the period divided by the density of new snow

1 D (2) (0.10). The snow density for each time interval during the
forecast period is computed by dividing the water equivalent
by the snow depth.

Wilt re The lag of liquid water in transit through the snowpack
is computed with a lag factor that has the effect of imposing

I  s conipited snow depth in inches, minutes of lag per inch of snow depth. A study by the
watr equivalent ofiniU.S. Army Corps of Engineers (1960) indicates 3 to 4 hours

is p of lag for modeiate depths of snow. The Pittsburgh District

has used 4 to 6 hours of lag for depths ranging up to 2 or
I) - percent snow density expressed as a decimal. 2 feet. Based on this information, 30 minutes of lag per

inch of depth is probably reasonable for vertical drainage.
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Real-Time Snow Simulation Model for the Monongahela River Basin

Since most snowmelt originates at the snow surface and Departures from normal daily temperatures are used in fore-
travels down through the snowpack, snowmelt as well as rain casting, and normal daily temperatures are used to fill in
are adjusted for lag. missing data, so a file of normal daily temperatures for each

In regions of mild to flat slopes, the delay to runoff subbasin also is required. This M'le can be generated from

caused by snowpack may be much longer than for vertical daily normal temperature data for stations with the program
transit of water through the snowpack alone (U.S. Army PRECIP (U.S. Army Corps of Engineers, 1986), which corn-
Corps of Engineers, 1960). Thus, a large lag factor may be putes subbasin averages from station data.
needed to simulate runoff in areas of low relief. Although a Output from the model consists of two tables: a sub-

single (i.e., global) coefficient of lag may be set for all sub- basin output table for each subbasin, which lists observed and
basins in the model with program input, larger or smaller lag computed values of key variables for all time intervals in the
coefficients for selected subbasins also may be specified. simulation: and a summary table, which presents totals and

The lag diminishes with decreasing snow depth; however, other comparative data for all subbasins.
for shallow snowpacks that may entirely disappear during the
course of a snowmelt event, a counteracting effect may tend
to increase the lag of snowmelt as depth decreases. In a PROCEDURE FOR REAL TIME FORECASTING

subbasin with moderate to high relief, typical of subbasins in The following sequence of operations is performed in a
the Monongahela River Basin, snow cover recession generally real-time application of SNOSIM.

will begin at the mouth of the subbasin and move upstream The computer program PRECIP is used to develop sub-
toward higher and more distant areas. Thus, as the effective basin-average values of precipitation with a 3-hour interval,

center of snowpack mass moves farther away from the mouth, and of maximum and minimum air temperature. and snow
the average travel time for the snowmelt to reach the mouth depth, with a daily interval. PRECIP is designed to search

increases. To compensate to some extent for this effect, the for the nearest reporting gages so that missing data does not
lag for snowmelt, established at the depth when the pack have to be filled in prior to developing the estimates with
first becomes ripe, is retained until the snow depth diminishes spatial and other weighting factors.
to zero. Rainfall lag, on the other hand, is not affected in SNOSIM is then executed to determine the equivalent

this manner and decreases with diminishing depth. precipitation. The information required by the program is
As a final step, after rain and snowmelt are adjusted for automatically retrieved from various files. Such information

lag, lagged amounts of each occurring in the same time interval includes:

are added and combined with any other rainfall (which may
occur in the case of snow-free time intervals) to produce an time ar the starting andeendeng
equivalent precipitation hyetograph for the entire period of times for the simulation and the time of forecast;

simulation. When there is no snow on the ground, the b. subbasin-average values for precipitation, maximum and
equivalent precipitation is set equal to the observed rainfall, minimum daily temperature and snow depth;

c. future precipitation amounts, and future maximum and
minimum daily temperatures (in terms of departures from

INPUT AND OUTPUT normal);
d. normal daily maximum and minimum temperatures; and

Much of the input required, aside from the climatological e. snow density data, if available.
data t) be processed, is ordinarily generated with the inter-
active executive program that links SNOSIM with data stor- The comp uter p ogra i (.. rorps

age and other software. However, the input can alternatively Engineers, 1986) is used to calculate discharge hydrographs
be entered with a card image input file. The forecast data for each subbasin. Hydrographs are routed and combined

and time, the starting and ending times of simulation, and throughout the basin to provide forecasted hydrographs of
the computational time interval are set. Zone-specified future inflow to reservoirs and hydrographs at downstream control
precipitation and maximum and minimum temperature de- points. Observed streamtlow data are used wherever it is

partures from normal may be entered. Five simulation available in the process of tracking flood wave movement

parameters may be set: I) the coefficient of lag (COEFLG); through the stream network. The capability also exists to

2) the freezing temperature (FRZTP); 3) the threshold melt optimize runoff parameters for gaged headwater subbasins

density (RMLTDN); 4) the snowmelt coefficient (SMCOEF); (Peters and Ely, 1985).

and 5) the sublimation factor (SUBFAC). Snow density Both the discharge hydrographs that are calculated with

data for updating can be specified either zonally or for in- HEC-l F and the reservoir storages are input to the computer

dividual subbasins and by a specified amount or percentage program HEC-5 (U.S. Army Corps of Engineers, 1986) for

change to existing values, simulation of the reservoir system and determination of
reservoir releases. Releases are determined in accordance

Since the model has the capability to assign temperature, withrconstrass atldownstre cotr ints whileckeeping

snow density, and precipitation values by zones, a basin zone with constraints at downstream control points while keeping

file is required, which assigns subbasins to common zones. the system "in balance." A wide variety of factors that
affect release decisions can be accommodated, including

5
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c;vainel caa, It' a' downiteam control points, emergen, y "°"

o! ]It:. Is ,,.ot pr.r.leuscs, tnnmum-flow requiremeits, I
etc. Output such as nydrographs of discharge, reservoir /

stage, and storage ire written to the Data Storage System so F .
L,: : !) ;C :..J;i) di. paLyed aid azrilyzed. 0

Iteiations of the above sequence can be made as required u -

t) enable the evaluation of alternative future precipitation/ N

teinpetattite midittons or operations constraints. C

S

IEST APPLICATION

A snowmelt llo,,d event in February 1985 was used for
testing SNOSIM. A build tip of snowpack in mid-February A. , ,, , a , u ,. 1 a3 M ' a, ,

was completely melted by high temperatures in the period
of' a week. pioducitg high runoff.

lhe model was first applied to the 1 5 headwater subbasins Figure 5. Observed and Computed Flow for Subbasin BKNW.
in the Monongahela River Basin. No special weighting fac-
tors for temperatures or snow depths were used in the com-
putation of subbasin averages from gage data. The program
PRECIP has the capability for introducing normalized weights,
such as normal maximum and minimum tempratures and ,, . . .

nornial mtow depthis. Elevation differences may also be used
for weighting temperature data. The purpose of the weighting F

L
is to ad1,ix point (gage) values for local variations. 0

The real-time rainfall-runoff model HECI-F was run follow-
ing SNOSIM, using equivalent precipitation computed by
SNOSIM as in input to compute hydrographs for all sub- c -F

basins. A comparison of the computed and the observed s

hyditigaph., revealed that the fit was quite good in some
subbasins Im example, subbasin MAKP (Figure 4), but the -
timing of peak discharge was not good in others; for example,
subbasin BKNW (Figure 5). Through the introduction of ,, , , a ,, a,, a. , a ,' at

snow depth weighting based upon elevation differences and
adjustment io lag factors, a satisfactory fit of hydrographs
could be achieved lot all subbasins (note the improvement Figure 6. Observed and Computed (with weighting and
ii Pit for Ilbasin B3KNW in Figure 6). lag adjustment) Flows for Subbasin BKNW.

a." - One of the key ,omputations in SNOSIM is for the snow

depth after the time of forecast, when no observed values
are available. Comparison of computed with observed snow

F depths indicated that the model produced a reasonably goodL
0 - approximation. See the results for subbasin MAKP shown
I .in Figure 7. Because of the lack of significant rainfall in the

i " test event, verification of the rain-on-snow melt simulation
c in the model was not possible.
F

-, CONCLUSIONS

Although snow accumulation and melt processes are high-
....... a. an w a a ly complex and are influenced by a large number of variables,

an attempt was made to keep the level of model sophistica-
tion consistent with data availability arid operational require-

I igore 4. Observcd and Computed How for Subbasin MAKP. ments. Thus, data inputs have been limited to temperature,

snow depth, precipitation, and snow density. However,

6
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by program PRECIP; and 8) loss rates used by program
HEC I-F.

The factors that produce the greatest effect on timing
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lag factor. In testing the model, lag factors were used al-
most exclusively to correct timing problems; however, future
operation of the model may indicate that more emphasis
needs to be given to weighting in the subbasin averaging
process. Good spatial averaging of snow depth data measured
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the ,tiodel based on experience and data from future events is
anticipated.
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