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REAL-TIME SNOW SIMULATION MODEL FOR THE MONONGAHELA RIVER BASIN'

Daniel H. Hoggan, John C. Peters, and Werner Loehlein®

ABSTRACT: The Pittsburgh District, U.S. Army Corps of Engineers,
is responsible for operating two multipurpose reservoirs in the 7384
square mile (19198 square kilometer) Monongahela Basin. A third
reservoir, presently under construction, will soon be operating. The
real-time forecasting of runoff for opcerational purposes requires simu-
lation of snow accumulation and snowmelt throughout the Basin dur-
ing the winter season. This article describes capabilities of SNOSIM,
a mode} being developed for performing such simulation. The applica-
tion of this model as part of a comprehensive system of water control
software, and some initial simulation results are presented.

(KLY TERMS: real-time forecasting; snow simulation: snowmelt
modeling; reservoir operation; Monongahela River.)

BASIN AND RESERVOIR SYSTEM
CHARACTERISTICS

The Monongahela Basin is situated in the unglaciated Al-
legheny Plateau and is characterized by rugged, high rolling
hills. The Basin is long and narrow wiili a total length of
144 miles and an average width of 51 miles. Elevations
range from about 4800 feet at the southern divide to 710
feet at Pittsburgh (Figure 1).

Two existing reservoirs, Tygart and Youghiogheny, and a
reservoir presently being constructed, Stonewall Jackson,
comprise a system for which the primary purpose is flood
control. The reservoirs are also used to store water for
navigation, pollution abatement, and water supply. The
winter season flood contro! capacities for the Tygart,
Youghiogheny. and Stonewall Jackson reservoirs are 278,000,
151,000, and 38,550 acre feet, respectively. Flood control
reservations tor the summer season are somewhat less.

A real-time data collection network for water control is
presently based on 52 self-timed data collection platforms
(DCP’s) that report via satellite telemetry. The DCP’s report
stages and elevations measured at 33 stream and reservoir
sites, air temperature at 11 sites, and precipitation at 28
sites. Precipitation data from an additional 14 sites outside
the Basin are used for making estimates of subbasin-average
precipitation. The Basin is divided into 40 subbasins for
purposes of runoff simulation.

COMPUTER PROGRAM SNOSIM

The SNOSIM program simulates snow accumulation, ripen-
ing, and melt processes to determine snowmelt contributions
to runoff, and computes rainfall attenuation and lag caused
by snow on the ground. Rain that passes through the snow-
pack is added to snowmelt to obtain ‘“‘equivalent precipita-
tion,” which is treated as being equivalent to rainfall as an
input to a rainfall-runoff model (Hoggan, ¢t al., 1986).

SNOSIM is a component of an on-line software system
that includes the capability for data acquisition and processing,
precipitation analysis, streamflow forecasting, reservoir system
analysis, and graphical display of data and simulation results
(Pabst and Peters, 1983). A Data Storage System (DSS)
provides a means for the storage and retrieval of measured
data and simulation results. An interactive executive program
facilitates the use of the software system. Alternative future
precipitation and temperature scenarios, or alternative opera-
tional constraints, can be readily specified with this program.

SNOSIM is unusual in at least two respects: 1) its com-
putational time interval can be made very short (3 hours, for
example), and 2) it is designed for shallow snowpacks. Most
snowmelt models have been developed for relatively deep
snowpacks in mountainous locations, and most compute at
longer time intervals. The procedures embodied i the
SNOSIM program are those used by the Pittsburgh District,
Corps of Engineers, and would be most applicable to shallow
to medium depth snowpacks.

DATA REQUIREMENTS

Data requirements for SNOSIM are subbasin averages of
maximum and minimum temperatures, snow depths, and pre-
cipitation. Aperiodic snow density data can be used for up-
dating computed snow density. In addition to the streamflow
and precipitation data available from the network described
carlier, daily measurements of temperature (30 stations) and
snow depth (50 stations) are available, and aperiodic measure-
ments of snow density are taken at three stations.

"Paper No. 87016 of the Water Resources Bulletin. Discussions are open until August 1, 1988.
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Figure 1. Map of the Monongahela River Basin.
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Real-Time Snow Simualtion Model for the Monongaheia River Basin

. DATA ADJUSTMENTS

Snow depths ordinarily reach a maximum of three to four
feet at the highest elevations in the Basin, and all of the
snow may melt within a few days from the influence of ab-
normaily high temperatures. The time interval of computa-
tions. which may be selected from a range of one to several
hours. must be relatively short (e.g.. 3 hours) to effectively
simulate these conditions. Daily maximum and minimum
temperatures are converted to simulation time interval values
according to a diurnal temperature distribution used by Pitts-
burgh District. A linear approximately of temperature dis-
tribution between maximum and minimum points is used to
simplity computations (Figure 2). Daily snow depths are
interpoulated linearly to obtain simulation time interval values.
Although actual changes in snow depth are not linear, par-
ticularly during periods of treezing and thawing, the effect
of this assumption on simulation results is minimal because
of the small deviation that would occur during a 24-hour
period.
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Figure 2. Diurnal Temperature Curve.

Observed snow depths under 20 inches are adjusted up-
ward according to a curve (Figure 3) developed by the Pitts-
burgh District. For snow depths in this range, the District
has found that observed depths based on gage readings are
consistently low when compared with the results of snow
surveys.
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fFigure 3. Snow Depth Adjustment Curve.

COMPUTATIONAL LOGIC

Precipitation is divided into rain or snow according to &
freezing temperature index. If the average temperature in °F
is greater than treezing temperature plus 2 degrecs. precipita-
ton is computed 25 coin. Rain, thus obtuned, is treated in
one of three ways' 1 1i there is no snow on the ground. it
is added dircctly to equivalent precipitation: 2) if snowpack
exists, but is .ot ripe {snow density is less than threshold
melt density), then the rain is absorbed by the snow; and
3) 1f the snow is npe. the rain is lagged before being added
to equivalent precipitation.

Snow ripening and melt processes are divided into two
stages, from the beginning of the period of simulation until
the time of forecast, and from the time of torecast until the
end of the period of simulation.

First Stage of Simulation

In the first stage, subbasin averages of observed precipita-
tion, temperature, and snow depth and an initial value of
snow density are used to compute a regular time series of
water equivalent, snowmelt, and snow density values. This
series of computations may be updated with a user assigned
value of snow density for any time interval in the simula-
tion.

Tracking of the average snowpack density is essential in
the simulation to determine when melt will be triggered. Ir
the model, it is assumed that the average density must reach
a threshold density to indicate ripeness before melt will
leave the snowpack. Density accounting is accomplished by
additions and subtractions to the water equivalent. Precipita-
tion, whether rain or snow, is added: snowmelt and evapora-
tion/sublimation are subtracted.

When snow density is less than the threshold melt den-
sity and precipitation occurs, the water equivalent is equal
to the water equivalent in the previous time intervsi plus
precipitation.

When there is no precipitation, the water equivalent of
the previous period is reduced by a small loss, which inciudes
an evaporation/sublimation loss and any loss from meit and
infiltration at the ground surface interface. Evaporation/
sublimation from the snowpack is a function of the vapor
pressure difference between the snow surface and the air, and
wind speed. At middle {atitudes during the winter and early
spring, the evaporation/sublimation from snow averages less
than 0.5 inches per month (US. Army Coips of Engineers,
1960). This would amount to about 0.02 inches per day.
Loss due to ground melt and infiltration could increase this
rate slightly.

If the snow is ripe and the air temperature is above freez-
ing, snowmelt is occurring, and the water equivalent from
the previous period is reduced by the amount of meit. Al
though rainfall also may be occurring, the rain is in transit
through the snowpack and does not add to the water equiva-
lent of the snow. The rain is accounted for separately and
added to melt later in the process after adjustment for lag.
Rain does, however, accelerate snowmelt slightly, so the melt
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rate is moreased by an amount proportional to the intensity
of the rainfall (LS. Army Corps of Engineers, 1960).

Combining the ram-melt equation with that for other meit
vields an equation for melt during time interval 1.

7 s UM U007 RY(T Tp) ()
where:

M, = snow melt in inches,

| = simulation time interval in minutes,

Cyp = voellicient of snowmelt (degree-day factor) in
fches of melt per mean daily degree (°F) above
freezing,

R = chserved raintall in inches,

T. = wair temperature in OF, and

Tp = lreesing temperature in OF.

Otherwise. 1t there is nu rainfall, the equation is basically the
same except that the rain melt factor is eliminated.

After snownielt has been computed for a time interval,
the water equivalent is computed.

Secand Stage of Simudation

In the second stage of simulation, which occurs after the
time of torecast, predictions of precipitation and temperature
are used, and the computations are essentially the same as
in the preceding stage except that no snow depths are avail-
able. Snow depths are computed in four different ways de-
pending on temperature and snow density conditions.

In the tirst case. when the snow density is equal to or
above the threshold melt density and the air temperature is
greater than lrcezimg. melt is occurring and the density can be
expected to remain tairly constan. ow depth under these
conditions is computed by dividing the water equivalent in
the current time interval by the density in the preceding
time nterval.

Wl
5= - (2)
where:
S, = computed snow depth in inches,
W = water equivalent of snowpack in inches of water,

1
and

D, | - pecent show density expressed as a decimal.

This approach produces a reasonable approximation of snow
depth because the density is relatively stable while melt is
occurring.

In the second case, when snow density is less than melt
density and the air temperature is greater than freczing, the
snow depth is reduced slightly by consolidation.  Although
no melt is occurring in the usual sense of water leaving the
snowpack, liquid water from melt occurring at the snow sur-
face is moving to lower levels and increasing snowpack density
(Corps of Engineers, 1956). For shallow snowpacks, the re-
duction in the snow depth under these conditions is directly
proportional to the amount of melt occurring at the surface
based on air temperature and inversely proportional to the
average density of the snowpack.

. ST TR

i (3)
1440 D,

=8~

In the third case, when the air temperature is below freez-
ing and the snow depth is greater than zero, the snow depth
in the current period is equal to snow depth in the previous
period reduced by sublimation and increased by snowfall, if
any has occurred. The average density of new snow in the
United States has been found to be approximately 10 percent
(Osborn, et al, 1982), and this value is adopted for com-
puting the deyth of new snow.

| C

S. =8 - . § 4
P T 440 o o+ )
i-17 010
where:
CS = sublimation/evaporation loss in inches per day,

and

0.

i

observed snow fall in inches of water.

In the fourth case, when the air temperature is less than
freezing and there is no snow on the ground for the previous
period, the snow depth is equal to any new snowfall that
occurs during the period divided by the density of new snow
(0.10). The snow density for each time interval during the
forecast period is computed by dividing the water equivalent
by the snow depth.

The lag of liquid water in transit through the snowpack
is computed with a lag factor that has the effect of imposing
minutes of lag per inch of snow depth. A study by the
US. Army Corps of Engincers (1960} indicates 3 to 4 hours
of lag for modeiate depths of snow. The Pittsburgh District
has used 4 to 6 hours of lag for depths ranging up to 2 or
2 feet. Based on this information, 30 minutes of lag per
inch of depth is probably reasonable for vertical drainage.




Real-Time Snow Simulation Model for the Monongahela River Basin

Since most snowmelt originates at the snow surface and
travels down through the snowpack, snowmelt as well as rain
are adjusted for lag.

In regions of mild to flat slopes, the delay to runoff
caused by snowpack may be much longer than for vertical
transit of water through the snowpack alone (U.S. Army
Corps of Lngineers, 1960). Thus, a large lag factor may be
needed to simulate runoff in areas of low relief. Although a
single (i.e., global) coefficient of lag may be set for all sub-
basins in the model with program input, larger or smaller lag
coefficients tor selected subbasins also may be specified.

The lag diminishes with decreasing snow depth; however,
for shallow snowpacks that may entirely disappear during the
course of a snowmelt event, a counteracting effect may tend
to increase the lag of snowmelt as depth decreases. In a
subbasin with moderate to high relief, typical of subbasins in
the Monongahela River Basin, snow cover recession generally
will begin at the mouth of the subbasin and move upstream
toward higher and more distant areas. Thus, as the effective
center of snowpack mass moves farther away from the mouth,
the average travel time for the snowmelt to reach the mouth
increases. To compensate to some extent for this effect, the
lag for snowmelt, established at the depth when the pack
first becomes ripe, is retained until the snow depth diminishes
to zero. Rainfall lag, on the other hand, is not affected in
this manner and decreases with diminishing depth.

As a final step, after rain and snowmelt are adjusted for
lag, lagged amounts of each occurring in the same time interval
are added and combined with any other rainfall (which may
occur in the case of snow-free time intervals) to produce an
equivalent precipitation hyetograph for the entire period of
simulation. When there is no snow on the ground, the
equivalent precipitation is set equal to the observed rainfall.

INPUT AND OUTPUT

Much of the input required, aside from the climatological
data to be processed, is ordinarily generated with the inter-
active cxecutive program that links SNOSIM with data stor-
age and other software. However, the input can alternatively
be entered with a card image input file. The forecast data
and time, the starting and ending times of simulation, and
the computational time interval are set. Zone-specified future
precipitation and maximum and minimum temperature de-
partures from normal may be entered. Five simulation
parameters may be set: 1) the coefficient of lag (COEFLG);
2) the freezing temperature (FRZTP); 3) the threshold melt
density (RMLTDN); 4) the snowmelt coefficient (SMCOEF);
and S) the sublimation factor (SUBFAC). Snow density
data for updating can be specified either zonally or for in-
dividual subbasins and by a specified amount or percentage
change to existing values.

Since the model has the capability to assign temperature,
snow density, and precipitation values by zones, a basin zone
file is required, which assigns subbasins to common zones.

Departures from normal daily temperatures are used in fore-
casting, and normal daily temperatures are used to fill in
missing data, so a file of normal daily temperatures for each
subbasin also is required. This file can be generated from
daily normal temperature data for stations with the program
PRECIP (U.S. Army Corps of Engineers, 1986), which com-
putes subbasin averages from station data.

Output from the model consists of two tables: a sub-
basin output table for each subbasin, which lists observed and
computed values of key variables for all time intervals in the
simulation; and a summary table, which presents totals and
other comparative data for all subbasins.

PROCEDURE FOR REAL TIME FORECASTING

The following sequence of operations is performed in a
real-time application of SNOSIM.

The computer program PRECIP is used to develop sub-
basin-average values of precipitation with a 3-hour interval,
and of maximum and minimum air temperature. and snow
depth, with a daily interval. PRECIP is designed to search
for the nearest reporting gages so that missing data does not
have to be filled in prior to developing the estimates with
spatial and other weighting factors.

SNOSIM is then executed to determine the equivalent
precipitation. The information required by the program is
automatically retrieved from various files, Such information
includes:

a. time parameters that define the starting and ending
times for the simulation and the time of forecast;

b. subbasin-average values for precipitation, maximum and
minimum daily temperature and snow depth;

c. future precipitation amounts, and future maximum and
minimum daily temperatures (in terms of departures from
normal);

d. normal daily maximum and minimum temperatures; and

e. snow density data, if available.

The computer program HEC-1F (US. Army Corps of
Engineers, 1986) is used to calculate discharge hydrographs
for each subbasin. Hydrographs are routed and combined
throughout the basin to provide forecasted hydrographs of
inflow to reservoirs and hydrographs at downstream control
points. Observed streamflow data are used wherever it is
available in the process of tracking flood wave movement
through the stream network. The capability also exists to
optimize runoff parameters for gaged headwater subbasins
(Peters and Ely, 1985).

Both the discharge hydrographs that are calculated with
HEC-1F and the reservoir storages are input to the computer
program HEC-S (U.S. Army Corps of Engineers, 1986) for
simulation of the reservoir system and determination of
reservoir releases. Releases are determined in accordance
with constraints at downstream control points while keeping
the system “in balance.” A wide variely of factors that
affect release decisions can be accommodated, including
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channel capacie ar downsticam control points, emergency e j - T :
con hitas ceoanng prereleases, minunum-tlow requirements, i j
etc.  Qutput such as hydrographs of discharge, reservoir ».._:

stage, and storage are written to the Data Storage System so F “":P Ctes b

that chew s he reldily dicplaved and analyzed. o 3

lterations of the above sequence can be made as required . n-{r
1o enable the evaluation of alternative future precipitation/ N b
temperature conditions or operations constraints. ¢ et I

S ]
-
TEST APPLICATION .

A snownmelt flood event in February 1985 was used for ] e
testing SNOSIM. A build up of snowpack in mid-February ' 1 TR DI L
was completely melted by high temperatures in the period SusGa o B W
of a week, producing high runoft.

The model was first applied to the 15 headwater subbasins Figure 5. Observed and Computed Flow for Subbasin BKNW.

m the Monungahela River Basin. No special weighting fac-

tors for temperatures or snow depths were used in the com-

putation of subbasin averages from gage data. The program

PRECIP has the capability for introducing normalized weights, e

such as normal maximum and minimum tempratures and ,*__;}_ - e
normal snow depths. Elevation differences may also be used :

for weighting temperature data. The purpose of the weighting HEE =

is to adjust puint {gage) values for local variations. H 4

The reat-time raintall-runoff model HEC1-F was run follow- 1 T

mg SNOSIM, using equivalent precipitation computed by N ;

SNOSIM us uan input to compute hydrographs for all sub- < M{f o -

basins. A comparison of the computed and the observed . T

hydiographs tevealed that the fit was quite good in some ) /

subbasins: tor example, subbasin MAKP (Figure 4), but the w-i< —

timing ot peak discharge was not good in others; for example, :
subbasin BKNW (Figure 5). Through the introduction of e T e
snow depth weighting based upon elevation differences and ' URBASIN Brnw l
adjustment of lag factors, a satistactory fit of hydrographs

could be achieved Tor all subbasins (note the improvement Figure 6. Observed and Computed (with weighting and

m it for subbasin BKNW in Figure 6). lag adjustment) Flows for Subbasin BKNW.

e One of the key computations in SNOSIM is for the snow

] depth after the time of forecast, when no observed values

ks are available. Comparison of computed with observed snow

4 7 depths indicated that the model produced a reasonably good

° ““'f approximation. See the results for subbasin MAKP shown

. ’ in Figure 7. Because of the lack of significant rainfall in the

N e test event, verification of the rain-on-snow melt simulation
3 in the model was not possible.

s ﬂ‘]L
we } CONCLUSIONS

l L Although snow accumulation and melt processes are high-

' n T T e ""-m:’ w w w r o= o ly complex and are influenced by a large number of variables,

A ow waer an attempt was made to keep the level of model sophistica-

tion consistent with data availability and operational require-

figure 4. Observed and Computed Fow tor Subbasin MAKP, ments. Thus, data inputs have been limited to temperature,

snow depth, precipitation, and snow density. However,

;—_
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several parameters and weighting factors can be adjusted by
the user to reflect the influence of complex factors that are
not included in the model.
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Figure 7. Observed and Computed Snow
Depths for Subbasin MAKP.

Testing of the model with data from the February 1985
flood event indicated that obtaining the correct timing of
runoft from subbasins is probably the most significant prob-
lem to be anticipated. Since different factors or combina-
tions of factors can be employed to influence the timing, the
question arises as to what strategy to use. For example, all
of the following factors affect timing, so any or all could
be considered for adjustment: 1) initial snow density; 2) thres-
hold melt density; 3) freezing temperature (air); 4) snowmelt
coefticient; 5) coefficient of lag: 6) temperature weighting
factors used in subbasin averaging by program PRECIP;
7) snow depth weighting factors used in subbasin averaging
by program PRECIP; and 8) loss rates used by program
HECI-F.

The factors that produce the greatest effect on timing
are the weighting factors used in subbasin averaging and the
lag factor. [In testing the model, lag factors were used al-
most exclusively to correct timing problems; however, future
operation of the model may indicate that more emphasis
needs to be given to weighting in the subbasin averaging
process. Good spatial averaging of snow depth data measured
at statwons is particularly difficult to achieve, and further
resvarch in this area is needed. Testing of the model with
this ove event obviously is just a start in the process of
developing an =ffective operational system. Refinement of
the muodel based on experience and data from future events is
anticipated.
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