AD-A204 447

K O s .
j L

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIC
o e CTE
N\, FEB21 18]

..

qu

THICSIS

HIGH SPEED OUTPUT INTERFACE FOR A
MULTIFRFQUENCY QUATERNARY PHASE SHIFT
KEYING SIGNAL GENERATED ON AN INDUSTRY

STANDARD COMPUTER
by
Robert Daniel Childs
December 1988

Thesis Advisor: P. H. Moose

Approved for public release; distribution is unlimited.

»

0

UNCLASSIFIED
SECLR(TY CLASSF (AT O OF TH'S PAGE
form Approved
REPORT DOCUMENTATION PAGE OME NS 0753 D188
18 REPORT SEC_2 "v (255 ¢ CATION "5 PESTR (T Vi NARE LS
UNCLASSIFIED
22 SECURITY CLASSIFICA™ ON ALTROR ™Y 3 DSTRBLTON AvVALAB 7Y (O REEOET
- Approved for public release;
F TiO DOWNGRADING S(wE £ . . . A .
® DECLASSIFICATION DOWNGRADING S(HED. .t distribution is unlimited
4 PERFORM'NG ORGAN ZATION REPORT NUMBE 2§ S MONTORNG ORCAN ZAT.CAN REFORT A, Prnin <
6a NAME OF PERFORN NG ORGAN ZA™ION 6b OFF CE SYMBO. [7a NAME OF MO TOR NG ORGAS, JA- 0N
(iIf applicable)
Naval Postgraduate School 62 Naval Postgraduate School
6¢ ADDRESS (City State and ZiP Cade) 7o ADDRESS Gty State and 2P Code)
Monterey, California 93943-5000 Monterey, California 93943-5000
Ba NANE OF S ADNG SRONLOR L Bo OFF (x SN R JOURCT RININT ASTR SFENT DENT S lAT L, A
ORGAN JA™ O (1t applicable)
8¢ ADDRESS (City State ana 21P Code! "D R
SR a5 “
5 N)

"1 TN dindlude Secerty Classfaaren) g1GH SPEED OUTPUT INTERFACE FOR A MULTIFREQUENCY

QUATERNARY PHASE SHIFT KEYING SIGNAL GENERATED ON AN INDUSTRY STANDARD
CONMPLTER

T2 PERSONAL &L TAME

CHILDS, Robert Daniel

“3a Pt OF RiEoRC T3n T ME Gl e L LT OF REFORT Year Morth Jayi [0 s

Master' s Thesis RN P 1988 December 62

16 S EP TNEr [

IS

T The views expressed in this thesis are those of the
author and do not reflect the official policy or position of the Depuri-

ment of Detense or the [Government
°7 . COSL 00 RS LB TERNES CONtinue 3N rEVETSE Y Nersssdry and e Nl by Ok mueme
B D SR - S &.GRO T

Communication; MFQPSK; Fourier

. |
e e

MOABNTRACT Contirue on reverse (f necessary and identify by biock numbee

A multiple frequency quaternary phase shift keved signal is generated
using a complex Fast Fourier Transform on an industry standard personcl
computer and is output using direct memory access through a digital to
analog converter. The output is permitted at rates of up to the maximum
direct memory access rate of the computer. An assembly language program
loop, direct hardware output, and high level language output are compared
as alternste solutions to the problem of outputting a data stream
contained in the computer primary memory.

---------i-----.-----.-----—-r

i i
7 K -
20 DSTRBLTON AVA LLE Ty OF ABSTRACT O ABSTRACTY SEC R T oAy CaT
(Xoncasssen Ly v en [save Ay ser 0o osems JUNCLASSIFIED
22a NAVE OF RISPONS RUE ND v DAL 22b TE E2e O (Include Ared (Odf)y-‘w T e
MOOSE, P. (408)-646-2838 | 62Me
DD Form 1473, JUN 86 Previous editions gre obsolete Sii o E e LA EOLT T T .
SIN OLIO2-LF-015i-6h03 UNCLASSIFIED

1

e

Approved for public release; distribution is unlimited.

High Speed Output Interface for a Multifrequency Quaternary
Phase Shift Keying Signal Generated on an Industry Standard
& Computer.

by

Robert Daniel Childs
Lieutenant, United States Navy
B.S.E.E., University of Washington, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1988

Author:

Approved By:

~"P. H. Modse, Thesis Advisor
\ .

) ™ <{ t&(t&

G. E. Latta, Second Reader

\\Q%ohn P. Powers, Chairman,
Department of Electrical and Computer Engineering

-cfﬁzéz;ﬁé;ﬁqﬂalica/

Gordon E. Schacher,
| Dean of Science and Engineering

ii

-

TV e

ABSTRACT

A multiple frequency gquaternary phase shift keyed signal

is generated using a complex Fast Fourier Transform on an

industry standard personal computer and is output using direct

memory access through a digital to analog converter. The

output is permitted at rates of up to the maximum direct

memory access rate of the computer.

An assembly language

program loop, direct hardware output, and high level language

output are compared as alternate solutions to the problem of

outputting a data stream contained in the computer primary

memory.

iii

e

\ .
N

Acc=c3ion For
Tare et

L e &

- v,—

DISCLAIMER

Some of the terms used in this thesis are registered
trademarks of commercial products. Rather than attempt to
cite each occurrence of a trademark, all trademarks appearing
in this thesis are listed below following the name of the firm

holding the trademark:

Advanced Micro Devices Co. .. AMD
Borland International, Inc. . Turbo Pascal, Turbo Pascal
........ tstsveccsaresasees Numerical Methods Toolbox,

......... Weerseerssessesss Turbo Assembler, and the
....... seeessereersssa.. Turbo Debugger

INC. .ot itienneencnnen ees.. IDT
Intel Corporation Intel
Jameco Electronics Jameco
Microsoft Corporation Microsoft, MS-DOS
Zoran Corporation +.. Zoran

The reader is cautioned that computer programs developed
in this research may not have been exercised for all cases of
interest. While every effort has been made, within the time
available, to ensure that the programs are free of computa-
tional and logical errors, they cannot be considered vali-
dated. Any application of these programs without additional

verification is at the risk of the user.

iv

e

TABLE OF CONTENTS

I. INTRODUCTION. ¢ ¢ e cvovovsoeonsssosonosonsssssonessonoensel
II. PC BASED MFQPSK COMMUNICATIONS....ccoveetatncanvsess?
III. IMPLEMENTATION OPTIONS.t ceveneeccncscnnnnens ..16
Iv. SUMMARY AND CONCLUSIONS.ot eerrecssestaccnaasnn 37
APPENDIX A MAIN OUTPUT PROGRAM......ccecetveernvecnccoccsss 41
APPENDIX B OUTPUT LOOP PROGRAM. ot veveanonncnns ...48
APPENDIX B REFRESH ADJUSTMENT PROGRAM..........cc0cv.. 49
APPENDIX C DMA INITIALIZATION AND OUTPUT PROGRAM.......... 50
APPENDIX D PROTOTYPE PINOUT AND LOGICAL BLOCK DIAGRAM..... 51
LIST OF REFERENCES.ttt Ceee e e veee e 53
INITIAL DISTRIBUTION LIST........ C et e s e h e 54

I. INTRODUCTION

A. BACKGROUND

Over the past several years a multiple frequency quater-
nary phase shift keyed (MFQPSK) communications system has been
developed at the Naval Postgraduate School (Proctor,1985)
(Gray,1986) (Whitacre,b1986). Several implementations have
been proposed which require specialized hardware construction
with no flexible means of actually generating the signal
instead requiring the signal to be generated offline. A
simpler implementation housed in the industry standard
computer was desired. The benefits of using a general purpose
personal computer as the driver were anticipated to be that
the transfer of data would be simplified if the output device
was physically connected to the generation device and that the
technique could be simply replicated by others desiring to

generate such signals.

B. MFQPSK SIGNAL

The MFQPSK encoding is similar to that currently used by
1200 baud modems using the Bell 212A Standard differential
phase shift keying (DPSK) in that data is represented by one
of four phase shifted versions of a single frequency (tone)

in each baud of a transmission. A baud is a discrete grouping

of information, in this case, capable o©f representing two
binary bits of information.

A four baud sequence of the four possible phase choices
on a single tone is demonstrated in Figure 1 where the
relative phase selections are +0 degrees, +180 degrees, +270
degrees, and +90 degrees. Note that the shift is referenced
to the previous phase position, not the initial position of

a +45 degree phase shifted sinusoid.

XU RITTITETY

PR (- ~~n ~s L IONN
- e - —— (TR

h
)

3yte Numper

Figure 1. Four Baud Sequence

The modem technology does not directly shift the tone's
phase but rather uses the algebraic addition and subtraction
of a sine wave and cosine wave, the quadrature or orthogonal

components, of the tone to modulate this phase information as

is shown in Figure 2 which represents the third baud ~f the
above sequence--a total of +135 degrees shift, or . tone

shifted to the second guadrant.

Figure 2. Second Quadrant Signal

While this method is employed reasonably well with one
discrete frequency (or two for the case of a full duplex
modem) it is not very practical for multiple frequencies.
A method of modulating frequencies with phase information,
which is suited better to many frequencies, is the frequency
spectrum to time signal transformation of the Fast Fourier
Transform (FFT).

Figure 3 demonstrates this principle for a single fre-
guency and a phase in the first quadrant (a phase shift of +90

degrees) of a 16 frequency bin system and introduces a new

\

I L]

.
-
+

/

Figure 3. One Frequency in a 16 Bin System

graphical convention where the frequency spectrum is displayed
showing both phase and magnitude on a single graph. Each
frequency location is a polar plot with the 1line length
representing the magnitude of a frequency and the angular
displacement representing the phase shift. A vertical line
would indicate a positive purely imaginary frequency. The
FFT method 1is the approach taken to generate the MFQFS¥K
signal. The phases are specified 1in their appropriate
frequency bins which, in turn, predetermines, for real
signals, the phases for the bins symmetrically located about
the half sampling (Nyquist) frequency bin of the transform.
The spacing of these frequency bins (or frequency resolution)
is determined by dividing the Nyquist frequency by the number
of bins on each side. Sampling time is the direct inverse of
this frequency bin size. An example that encodes information
in four frequencies per baud in a 16 frequency bin system is
shown in Figure 4. If the resulting transformed signal has
the sampled-and-held signal updated with a new value at a

frequency of, for example, 60 Hz, the Nyquist frequency is 60

- S

Hz, the top frequency bin represents 120 Hz and each of the

frequency bins have a size of 7.5 Hz.

\

Figure 4. Four Frequencies in a 16 Bin System

Following the Inverse Discrete Fourier Transformation of
such a signal, the completely real time domain signal, which
consists of a series of 16 discrete steps made continuous by
holding the sample until the next discrete step is due, is
transmitted carrying phase information in each of the discrete
frequencies simultaneously. The overall signal closely
resembles bandlimited white noise. Figure 5 shows the time

domain signal of a typical 256 tone, 4096 bin packet or baud.

C. OVERVIEW

The purpose of this study was to design, optimize, and
construct a prototype output expansion board for the personal
computer bus. The sister design problem of constructing an
expansion board for the received signal is the subject of a
concurrent thesis study, although to a large extent the
problem is greatly simplified by choices made on the output

problem. Chapter Two addresses the communication system as

[T ﬂ

‘w;ﬁ ﬁ J ﬁi | v nﬂﬁ p
L sl [)(a | ﬁ L M / sz]iw\;‘
E 'W?% AR A ﬁ}"wH |
LI
= ’y"ﬁl:} du f'l V‘g !| V U Uv ! (‘

ST ‘

- ‘ir \r

iﬁ
CD 1CC 228 222 4¢3 800 800 7CC

Bvte Numper

Figure 5. Time Domain Signal of a 256 Frequency
Signal in a 4096 Bin System.

a whole and discusses the required hardware and software
elements to make the system viable. The many elements of
interaction and interdependence are discussed toc enable the
reader toc develop a base of understanding for the choices made
in the following chapters. Implementation options are
discussed along with details of the experimental process in
Chapter Three. The conclusions and recommendations for

further study are the subjects of Chapter Four.

_ S ———

wyTer

II. PC BASED MFQPS8K COMMUNICATIONS

A. BS8YSTEM COMPONENTS

The major components in a personal computer based MFQPSK
communications system are: (1) data input, (2) Fast Fourier
Transform mechanism, (3) memory access system, and (4) digital
to analog conversion.

The organization of these elements is coordinated by a
main high level language program which calls subroutines to

initiate the individual operations required.

B. DATA INPUT

The main program's first task is to retrieve the message
character set and perform the frequency encoding. A
subroutine would typically perform this task. In the final
system implementation, it is supposed that the entire message
to be encoded is readily available for translation. Messages
are prepared independently of the communications system, but
guite possibly with an editor on the same physical computer,
with characters being represented in American Standard Code
for Information Interchange (ASCII) format and placed together
as a standard Microsoft Disk Operating 8ystem (MS-DOS) file

on one of the computer's disk drives.

The encoding process must take care of several details to
be used effectively: (1) It must confirm an appropriately-
sized message, for example 4096 characters, fill the unused
character area with a predetermined idle character if too
short, or break the message into packets, each of which can
be contained within the size constraints provided, if too
long. If the message is broken into parts, the main program
must have a means of automatically transmitting mrultiple
segments. (2) The primary memory needed for the FFT subroutine
parameters and scratch area must be dynamically allocated
prior to the subroutine call and deallocated following. The
exception to the deallocation is the case where several
packets are being prepared for transmission as a single
message. Allocated areas represented by a pointing vector
would be maintained in a list of areas in main memory to be
output. When the transmission started, each area would be
transmitted in turn, with pointers representing that area
being removed from the message's list of pointers and sent to
the transmitting routine. (3) Appropriate phase and freguency
information must be assigned based on the message given,
retained and assigned the complex conjuvgate values in the
corresponding symmetrically located frequency bins. (4)
Finally, the encoding subroutine must initiate the FFT
subroutine call if the FFT is to be completed in software or

must pass the appropriate primary memory location to the main

“w

e

1’T=:————““‘ir“‘* v

program if a hardware FFT is to be accomplished. If a
multiple packet message was to be sent an FFT would be
conducted repetitively by moving through the message list of

pointers.

C. FAST FOURIER TRANSFORM

Once the process has the data encoded into frequency and
phase information, the FFT must be performed. As mentioned
in the previous section, this can be accomplished either in
hardware or software.

In the hardware choice, the data must be passed from the
computer primary memory to the expansion board where a
provision will have to be made at this point for an off
computer secondary storage method. A hardware FFT, to utilize
its speed advantage over a software FFT, must position the
entire array of data elements in such a way as to allow all
data to enter the parallel FFT process simultaneously and then
be able to output the data in a byte serial fashion for final
digital to analog conversion.

In the software FFT case, the main program must now call
the FFT routine, FFT routines typically are passed an address
pointer to the data location and return the transformed data

in the same primary memory space.

e

D. MEMORY ACCESS

Regardless of whether the data is transferred from the
primary memory to the expansion board before or after the FFT
is performed, a decision about the means by which it is
transferred must be made, unless the computer's memory is to
be paralleled with memory placed on the expansion board or the
hardware device is to have some bus authority, possibly as a
parallel processor. Paralleling memory has hazards which will
be discussed a little in the next chapter on choices. In
general, however, there are three reasonably routine methods
of moving the data off computer: (1) high-level language
transfer; (2) assembly-language transfer; and (3) direct
memory access (DMA). Each of these choices lead to different
paths, each requiring further choices to be made. One major
factor in the decision, common to all choices, is the com-
puter's own housekeeping problems, specifically, the memory
refresh requirement and the nature and means of executing

instructions.

E. HOUSEKEEPING
1. MEMORY REFRESH
Computers use dynamic random access memory (DRAM) for
their main memory. DRAM consists of a bank of single
transistor elements which are conveniently modelled by a bank

of capacitors having either a charged or depleted state

10

AP iig

Jo R

representing a logic one or zero respectively. As with all

capacitors, the charge will tend to leak over time, with the
less desirable devices having less internal capacitance, and
therefore less ability to hold their charge for a specified
time. These less desirable devices require recharge or
refresh more often than the more desirable ones. A typical
engineering judgement made by the memory device manufacturer
sets the time between refresh cycles at 15.125 microseconds.

This refresh is carried out automatically by a single
DMA channel. Since the priority of the refresh is higher than
any other computer operation, including that of the main
program execution, allowances or corrections must be made to
prevent a negative impact on the program's performance.

2. INSTRUCTION FETCHING AND EXECUTION

Instructions are placed in a section of main memory
along with the operands they may require for execution. The
instructions have varying lengths and are fetched by the main
processor one byte at a time. The rate for this instruction
fetch is one byte every four clock cycles because it is
basically a memory fetch. Therefore, the instructions which
consist of several bytes may take many clock cycles to load
into the processor before they can be executed.

One of the innovations of the Intel 8088 over earlier
processors was the implementation of an advanced fetching

mechanism where instructions can be fetched in advance of

11

e
3

their being needed by the processor. A total of four instruc-
tions may be prepostioned like this. One difficulty in
placing the instructions in the processor in advance is that
if a program loop occurs or program control is passed to
another location by a subroutine call, the processor is ready
to execute instructions in the old path. 1In these cases, the
instructions are flushed from the processor and the process
is restarted. This time consuming process can actually slow
down the execution of a program directly following a branch
or loop.

Instructions are programs contained within the
microprocessor. These little programs are called microcode.
Execution times of these microcoded programs depend on the
number of operations to be performed. Some instructions are
fairly straightforward and consume few machine cycles.
Examples of short instructions are register to register
transfers or arithmetic rotates which typically require a
single arithmetic logic unit cycle. The two instructions
cited take only two clock cycles of the main processor to
accomplish. Others such as the interrupt instruction are
extremely complicated and perform many functions inside the
processor. It manipulates the stack polinter six separate
times, as well as manipulating a number of other registers and

takes over 50 clock cycles to perform.

12

-

Regardless of the instruction or its 1length, the
processor will complete the instruction in its entirety before
passing bus control to another process.

3. HARDWARE INTERRUPTS

In addition to memory refresh, processor progran
control may be set aside by the occurrence of hardware inter-
rupts. The three interrupts used by the computer are:
Interrupt 0 which is invoked every time the Intel 8253
programmable interval timer count reaches 2zero, Interrupt 1
which is invoked every time a key is depressed on the system
keyboard, and Interrupt 6 which reports a disk access
complete.

These interrupts are maskable and can be disabled by
selecting the appropriate mask at Port 21h (address of the
interrupt controller).

4. BYSTEM IDLE

Any program controlled machine must either be held in
a halted state or it must have a series of instructions to
perform. The halted state is used whenever another processor
has control of the bus as in the case of a DMA transfer. More
often than not, however, some input is required from the
keyboard for the operating system to perform its next func-
tion. The input required may be a data input for a program,
or may be a command for the operating system itself invoking

a program.

13

d o

dotniyrtn

The program loop used by the system while waiting for
input contains the two instructions at each end of the
instruction execution time spectrum--a two clock cycle
instruction and a 52 clock cycle instruction. This program
loop keeps checking to see if any entry has been made to the
keyboard. Since the time to type a key is so large compared
to the time it takes to perform instructions, the keyboard
interrupts the process and deposits the representation of the
key in a kbuffer in memory and, if the key is the first to be
placed in an empty buffer, sets a flag to indicate something
in the buffer.

The read-only memory (ROM) basic input/output system
(BIOS) contains the instructions which tell the computer how
to perform this vital service of waiting for an input. The
ROM-BIOS 1is proprietary and changes from machine to machine
but in all machines the program loop loocks something like the
following (the numbers in parenthesis indicate the number of

clock cycles required for the instruction to execute):

mov ah,1 ;request service #1 (4)
recheck: int 1é6h ;anything from keybd?(51)
jz recheck ;zero flag means no (16)
mov ah, 0 ;request service #0 (4)
int 16h ;places char in ah,al(51)
14

P

T Tww oy

Int 16h looks something like:
cmp flag,1 ;true flag means keybd(9)
;hardware interrupt # 1
shas occurred--its
;int service routine sets

;the flag
iret (32)

F. DIGITAL TO ANALOG CONVERSION

All implementations of this system perform the digital to
analog (D/A) conversion on the expansion board off computer.
Since the conversion is made continuously, some decision must
be made regarding the method of latching the data and
selecting the specific time to activate the latch. Once data
is latched the conversion is made to an analog signal. The
design must specify the form of the analog signal to be used.
The three decisions required are: (1) the no signal voltage
level; (2) the voltage maximum to minimum range; and (3) the
level of accuracy chosen. One of the given parameters in this
study was that an eight bit conversion was sufficiently
accurate. This was a convenient choice since memory data is
eight bits wide and the INTEL 8088 transfers eight bits at a

time.

15

III. IMPLEMENTATION OPTIONS

A. DATA INPUT

Since the encoding process is currently unresolved and the
subject of further research in another thesis project, a test
harness called ENCODEDATA was written which allowed the
selection of the signals for a test of the remainder of the
system. ENCODEDATA is the first subroutine called in the main
program which 1is located in Appendix A. The subroutine
prompts the user to choose the phase of the selected frequency
bin or makes provision for a random assignment of frequency
phase information for all assigned frequency bins. It
maintains a record of the choices made so that the phases of
the symmetrically located frequencies are properly chosen to

maintain a real signal output following the FFT.

B. FFT IMPLEMENTATION

One of the first choices made in the design process was
whether to implement the FFT in hardware or software, because
of the number of other system characteristics resting on the
decision. Arguably there exists a third option, that the FFT
could be calculated off the computer with the results for
transmission submitted as a file. If such a choice were made,

however, the main reason for having a personal computer-based

16

e

system, the ability to have a completely integrated system,
would be violated.

The concept design provided at the start of this project
assumed that the transformation of the data to be transmitted
would be received and encoded by an offline FFT being provided
to the computer simply as a file of bytes to be transmitted.
At the time this author joined the research project, the FFT
was being accomplished in the A Programming Language (APL)
language off-line with the resulting data file being
transferred to the output device which was a simple barrel
shift register feeding a D/A converter.

The decision was made to incorporate the FFT into the
computer system to allow a completely integrated system. A
hardware FFT implementation was rejected because of the
current lack of a single chip 4096 point FFT device. A few
notes on the current work in this area are included in the
conclusions and recommendations area.

Following the decision to use a software FFT implementa-
tion, the algorithm and computer language needed to be chosen.
As was mentioned earlier, the preliminary research used APL
which is an interpretive rather than a compiied language. The
author chose to use a much faster compiled language such as
Pascal, C or Fortran for .he final implementation.

One benefit of using a compiled program in place of an

interpreted program is that, for an interpreted lanquage, much

17

more memory is required to be in use to support the program.
Interpreted 1languages must Keep every command structure
available for use. A compiled program typically picks only
those function categories required for the specific applica-
tion to be loaded into memory for the program to execute
successfully. For example, if screen output is not required,
all rcocutines concerning screen interface may be omitted from
the compiled version of the program with no ill effect.

The biggest effect, though, is speed. The author found
a standard Turbo Pascal FFT routine would run at about one-
half of the time cost of using apPL.'

The decision was made to use an FFT routine from a
standard library. The FFT subroutine used for the test
harness is called ComplexFFT and is part of the file
FFT87B2.INC available as part of the Borland Tirrbo Pascal
Numerical Methods Toolbox.? The Cooley-Tukey Algorithm is
used in this implementation and requires approximately 22
seconds for a 4096 point FFT on an 8.0 MHz zero wait state
machine with an Intel 80287 math coprocessor. The FFT is

performed prior to the beginning of the message transmission.

'The actual times were 22 seconds for the Turbo Pascal versus
57 for the APL using the same machine with the most efficient
algorithms known.

’source code for this subroutine is not included because the
license will not permit reprinting the source code.
written by the license holder is permitted to include a compiled
copy of the subroutine.

18

A program

P

As with many FFT routines, the transformed signal is returned
to the calling program in the same matrix (this also means the
same primary memory locations) in which the input frequency
and phase information were passed.

Flexibility was the factor which the author used to decide
on the specific compiled language with all other elements
being equal. FFT subroutines using the same basic algorithm
were readily available in Fortran and Pascal, and could have
easily been translated into C. Pascal was chosen over Fortran
because of the ease in handling input and output and because
of the fact that, since its entry (particularly the entry of
TURBO PASCAL by Borland International, Inc. which dramatically
changed the pricing structure for programming languages) into
the personal computer arena, a wealth of standard routines
have become available. All software needed for the develop-
ment of this project had a cumulative cost of approximately

$200 at commercial retail rates.’

home for the system.

3This cost included the Turbo Pascal Numerical Methods

Toolbox, of which the FFT and related routines are a part, the
Turbo Assembler and the Turbo Debugger,
Assembly language subroutines for initialization and startup of the
DMA process, and Turbo Pascal, which was used for the main progran
The cost of the operating system (approxi-

mately $100) is not included in these estimates.

19

which were used for the

C. DATA OUTPUT TECHNIQUES

Given that the FFT was to be performed in software, the
next step in the process was to decide on the method of
getting the FFT results from internal memory to the D/A
converter. The largest problem initially considered in this
area was that of accommodating the memory refresh overhead for
the primary memory. Several approaches were examined: (1)
postpone the refresh such that the entire block of data (4096
bytes) could be transmitted in between refreshes; (2) replace
the dynamic memory with static memory which requires no
refreshing; (3) use off computer static or bubble memory,
loading the memory off computer in parallel with the on
computer memory, and then isolating the computer bus during
the transmission of the output signal; (4) use off computer
static or bubble memory, transferring data to the off computer
memory and then transmitting; and (5) use DMA in the single
byte mode so that memory refresh could be accomplished in a
normal manner.

The options were considered in much the order listed
above. The following sections detail the process through
which the decision was made.

1. POSTPONING MEMORY REFRESH

As mentioned in Section II.E, the frequency of this
refresh depends on the capacitance of the poorest quality

device in the system's memory. The computer uses DMA channel

20

.

Lok

had ot

zero to perform the refresh, one block at a time, initiated
by a pulse from the system timer (INTEL 8253). Each DMA
channel has a priority assigned based on the number of the
channel, with the lowest number, channel 2zero, having the
highest priority. Refresh excludes the processor from the
system bus for the period of refresh. The DMA controller
keeps track of the address of the memory block to be refreshed
next so that a new block is chosen each cycle. The cycle
takes five computer clock cycles to complete.

The refresh time was compared with the most
straightforward means of outputting data from the primary
memory--an assembly language program 1loop. Appendix B
contains a simple nine line loop program (Eggebrecht, 1983,
p. 188) which was used in this test. A total of 43 clock
cycles are required in the case of an INTEL 8088 processor to
accomplish one pass through the loop's instructions. A test
circuit was designed and used to verify the output timing.
This operational test of the first circuit design also
provided the first look at the effect of the memory refresh
on a controlled output. The test waveform was extremely
jittery.

The reason for the jitter was that while the 1loop
consisted of 43 clock cycles, the main processor turned

control of the busses over to the DMA channel zero memory

21

‘__w—

ey

refresh every 121 cycles for a period of five clock cycles.®
The net result of this periodicity conflict was that sometimes
two data bytes and other times three data bytes would be
output between refreshes.

The first attempt to correct the jitter resulting from
the memory refresh problem was to manage its timing to suit
the system needs. There is a wide range of timings permitted
for the memory refresh.

As mentioned previously, the memory manufacturers
specify a typical refresh requirement of 15.125 microseconds.
This is not a hard and fast rule, however. A recent article
in the PC Magazine (Roemmele, 1988, pp. 331-346) discussed a
method of manipulating the memory refresh period. Experimen-
tation on Naval Postgraduate School machines yielded an
experimental result that the refresh cycle could be extended
to 30 milliseconds for all machines with some select machines
being extended up to 0.3 seconds without parity error. The
PC Magazine article cited an example of a machine which could
be refreshed as infrequently as 1.001 seconds! The assembly
language program cited in the article and used in this test

is included in Appendix C.

‘“The times listed here are for the 8.0 MHz personal computer
using an Intel 80286 processor used in this project. Refresh is
based on time, not instruction cycles, whereas instructions are
just the opposite.

22

Ll

Since the refresh period could not be expanded to
include an entire block transmission in this mode, the refresh
period was reduced to match one byte of data transfer. Every
cycle of the program loop which output a single byte was
followed by a memory refresh.

The real difficulty of using the program loop was its
severe inflexibility. The entire communication system must
be designed for a specific class of machines running at a
specific frequency. If for some reason the output frequency
had to be changed, the refresh period would have to be changed
and the program loop would also have to be modified to include
more or less no operation (NOP) statements. The range of
output frequencies available under this method for an 8.0 MHz
machine was limited to a low of approximately 66 KHz because
of the memory refresh requirement and a high of approximately
145 KHz because of the time in executing statements in the
program loop.

The first design, although technically meeting the
requirements of the system, clearly needed more flexibility.

2. PRIMARY MEMORY REPLACEMENT

If static ram (SRAM) were used for primary memory,
memory refresh would not be an issue. SRAM is a much more
complicated structure which uses, instead of a single transis-
tor holding a charge, eight transistors forming a flip-flop.

This typically requires much more chip real estate and, as a

23

N

result, costs much more per byte than the DRAM. The obvious
next question was, "Why not just replace the DRAM with SRAM
and not worry about the refresh?" Unfortunately, the two
different types of chips are not interchangeable. A SRAM chip
manufactured with the same technology as a DRAM chip will have
less memory in the same package size. SRAM built under newer
technology allows more compact placement of the circuitry and
has a difference in the pinout which prevents a direct
replacement. One option in dealing with this problem was to
build a memory expansion board with SRAM and disable the old
memory and refresh buses. This option was not attempted
because of the drastic nature of the solution. It should be
noted, however, that the frequency range under this option
would lose its lower end limitation.
3. ADDING EXTERNAL COMPUTER MEMORY

Many times a simple conceptual design becomes greatly
burdened when it gets to the point of real world implementa-
tion. The idea of paralleling memory is one of those things
that sounds like a simple solution to the problem of trans-
ferring data but ends up being very complicated. The concept
is that corresponding memories on the buses would be paral-
lelled for the calculation part of the program and then
isolated by means of a latched address decode following the
FFT calculation. The expansion address and data buses would

have to be isolable from those of the main processor. To meet

24

DX g

the requirement that memory refresh would not affect the
output, an entire second system of output address program
control would have to be implemented to select the particular
byte to be output at any given time during the second phase
of the process where the busses were isolated. A 40696 byte
barrel shifter was found’® which could handle the output
problem of the second phase reasonably well without a separate
program counter, but had no means for being randomly addressed
by the processor during the first phase. Many suitable random
access devices were found which could meet the first phase
requirements but had no reasonable way of producing the output
independent of the processor's program control.

In additicn to the complicated construction required,
flexibility is again of concern. Only one memory region is
allowed for the placement of data coming from the FFT. Any
g other program using the computer has to be concerned about the
meaning of the latched decode address for isolating the
expansion board and its conceivable initiation of the output
process.

The research path that this series cf problems seemed
to propose next was to duplicate the memory in question
without parallelling. This would allow the main processor to

execute program control for 1loading the external barrel

>The IDT7M204 chip was manufactured starting in 1985 by the
Integrated Device Technology Company, Incorporated. It uses a nine
bit wide data first in first out (FIFO) array of 4096 bytes.

25

shifter and then pass control for the output directly to an
oscillator which would gate the output on the expansion board.
The advantages of this modification were to permit the
computer housekeeping to proceed without any interference and
to allow the output process to operate with only the
limitations of the output device itself. As an example, the
IDT7M204 device would allow a range of output frequencies
between 0.1 Hz to 12.0 MHz.

The disadvantage was that the design still required
a means of transferring the data from internal to external
memory and imposed a limitation on the length of a continuous-
ly transmitted message to the length of the available external
buffer--in this case only one block or packet of data.

Still, this approach was the solution pretty well
settled upon until the problem of memory to memory transfer
of data was taken on in earnest. It seemed reasonable that
DMA was in order because raw speed was the prime concern in
getting the data to the output device. However, once the
study of the various DMA options was started, it became
apparent that a DMA technique might well hold the answer for
a direct output to the converter without the bother and
inflexibility of an intermediate memory device.

Additionally, if several packets were to be transmitted

in a single message, the transmission would have to stop while

the intermediate device was reloaded from main memory with the

26

P

- W‘ g

hadhd 4 o g

next packet of information. The DMA technique would require
only changing the base pointer in the DMA controller to effect
the location of the subsequent data for output.
4. DMA OUTPUT

The DMA controller (Intel 8237) has two general modes
of operation--block and byte. When performing a transfer in
the block mode, no maskable interrupts or other coprocesses
are allowed to take control of the bus. This can result in
a failure of the refresh if the blocks are too large. The
computer manufacturers specify this mode as unallowed for that
reason, even though technically the block mode can certainly
be programmed. When a block transfer is initiated, the
computer automatically transfers the block at the maximum DMA
rate which varies among the various computer manufacturers.
This transfer takes six clocks because of a wait state
inserted by the baseband logic to accommodate slower memory
(Eggebrecht, 1983, p. 115). The hardware designer also has
it within his ability to insert additional wait states if
needed to slow the process down. For a block of 4096 bytes
and an 8 MHz machine, this could fall within the bounds of the
extended memory refresh. If this method were to be used for
the system 4096 byte block, the transfer could occur at an
incredible byte rate of approximately 1.3 MHz taking a little
over three milliseconds to transfer the entire block!

Unfortunately, if transmission is desired at a slower rate,

27

J*

Ww - :

the issue of flexibility again raises its head. Since the
4096 byte transfer pushes the system to its practical refresh
limits, any solution requiring additional wait states to be
inserted extends the cycle beyond acceptable limits and will
certainly result in parity error failures of the main memory.

This mode was considered with a simple modification
to the system of halving the size of the block of data. This
approach allowed the data to be transferred at any rate
between 650 KHz and 1.3 MHz by placing the I/0 CH RDY line in
the inactive low state while waiting for the next clock. By
reducing the block size to half, the refresh requirements
continued to be met. The difficulty in this approach had to
do with the specific system being implemented which needed a
wide number of frequency bins available in the lower fredquency
spectrum. As the frequency of byte transfer increased, the
size of the frequency bins increased as well. This, coupled
with the restriction that the block size be cut in half,
drastically reduced the number of frequency bins available in
a given low frequency response region. For example, a
frequency response of 50 Hz to 15 KHz (such as a normal
acoustic channel), sending information with a 2048 bin system
at a sampling rate of 650 KHz, has a bin size of approximately
635 Hz and only 23 frequency bins available for assignment in
the permitted frequency range. Contrast this with the 4096

bin system sampled at 60 KHz which has a bin size of

28

approximately 29 Hz and 515 bins available for encoding within
the specified frequency response.

The DMA single byte transfer mode, even though it
takes a few more clock cycles to perform, offered more
flexibility in the design. The flexibility comes from the
ability to vary the frequency over a wide range of values by
reguesting a byte transfer almost at will. Each byte is
output after an active regquest has been asserted on the

appropriate DMA reguest line.

453
"

R RITETITR

Figure 6. Theoretical/Actual Sinusoid

29

o

st

When the choice was made to implement this design, it
was expected that the range of allowable frequencies would be
from 0.1 Hz to 880 KHz. This derived from the fact that, in
this mode, the main processor is allowed an instruction cycle
(four clock cycles) in between every DMA byte transfer (six
clock cycles). Thus only about half of the instruction
bandwidth is utilized for the DMA transfer. Unfortunately,
the background process detailed in Section II.E.2 consisted
of instructions much longer than the four clock memory access
cycle. Given the longest instruction of 51 clock cycles (INT)
and the six clock DMA cycle, the highest sampling frequency
with a 100 per cent probability of noninterference was 140.35
KHz. Even given the fact that the signal loses no pulses, the
signal is not truly stable. Because of the differing lengths
of instructions in the system idle loop, the latched signal
is transmitted at times which fluctuate slightly around the
DMA request. This effect is seen in Fiqgure 6 and is not a
significant problemn.

An incomplete summary of the events causing the
sinusoid perturbation shown in Figure 6 is listed below with

the timing references signifying the number of elapsed clock

cycles:
Cycle Event
0 INT instruction occurs ani requires 51
clock cycles to complete.
1 DMA requests the bus for byte transfer.

30

‘o

50 DMA cycle starts.

57 CMP instruction occurs and requires 9
clock cycles to complete.

57+ DMA requests the bus for byte transfer #2.

67 DMA cycle #2 starts.

74 IRET instruction starts and requires 32
clock cycles to complete.

107 JZERO instruction starts which flushes
the instruction pipeline but causes no
problem since it requires enough time
for execution to allow pipeline to refill.
It requires 16 clocks to complete.

114 DMA request #3.

116 DMA cycle #3 starts.

123 INT instructien starts (51 clocks).

171 DMA request #4.

175 DMA cycle #4 starts.

182 CMP instruction starts (9 clocks).

192 IRET instruction starts (32 clocks).

for the
stable a

tial.

Note that the very worst case is the starting point
process, yet, by the second data point the signal is
t an optimum value within a very narrow time differen-

Since there are two instructions in the loop with

substantially shorter instruction lengths than the troublesome

INT instruction, there is a significant cushion available toc

the process to buffer the effects of the different execution

lengths.

31

oW

When viewed on the oscilloscope the output appears
stable up to approximately 250 KHz. This is due to the fact
that the timing of the computer is completely independent of
the timing of the crystal oscillator for the expansion board
allowing the instruction performance to be much more well
behaved than the worst case cited above where the longest
possible instruction occurs just the instant before the clock
pulse reguesting a byte transfer. Depending on the level of
redundancy in the code, the errors introduced by operating in
the range between 140 KHz and 250 KHz may be acceptable.

Another interesting possibility arises when the output
is accomplished at the lower rates. Less than two percent of
the instruction bandwidth of the computer is utilized at 140
KHz. This leaves most of the computer's capabilities free to
accomplish other tasks in parallel with the message
transmission.

The memory refresh is easily accommodated in this
method as well since a window is opened every byte transfer
cycle which permits another higher priority process such as
the refresh to take place.

The DMA must be initiallized when its use is to be
invoked. 1Initialization is accomplished by writing data to
several registers contained within the DMA controller. 1In the
personal computer design, the address space starting at

Address 0 is decoded and sent to the DMA controller. This

32

Lol o 0l

Madinde 4 ot _mmmme aaam —rw,—'—

application uses an assembly language routine disguised as a
Pascal subroutine named DMAINIT (for DMA initialize). This
subroutine, which is located in Appendix D, initializes the
base address of the matrix, the number of points to be output,
the byte type of memory transfer, and the channel to be
utilized. It was written closely following a non-working
version used as an example in (Sargent and Shoemaker, 1984,
p. 246).

Since the DMA controller is unable to address the
entire address space of the computer, the DMA page register,
a device separate from the controller, is initialized in the
same subroutine with the source matrix address information.
The address which decodes to this device is 80 hexadecimal.

DMAINIT is called as the last substantive step of the
main program immediately following the SCALEDATA subroutine
which ensures that an appropriate output level is obtained.
The parameter which determines if a single block is to be
repetitively output would probably be chosen differently in
the system once a real encoded signal is being output. This
parameter is a part of the word output to location dma+11.
In this case, the DMA was initialized to automatically return
to the same data block when the terminal count of bytes
transferred was reached so that a nonchanging signal could be

observed on an oscilloscope.

33

v e

T e, —

The current expansion board design has a DMA regquest
occurring on the appropriate channel at a frequency determined
by the oscillator input. This repetitive request is the
result of an asynchronous clock running to the DREQ3* line.
(The * symbol following the signal name indicates that it is
an active low signal--in this case the request is being made
when the signal is a logic zero.) As long as the channel is
masked, the request has no effect and the output circuit
ignores anything appearing on the data bus.

When the initialization is complete, the appropriate

DMA channel is unmasked and the data transfer is started.

D. DIGITAL TO ANALOG CONVERSIONS

An octal data latch held the signal stable so that the
conversion process from a digital to an analog signal could
take place.

As can be seen in Figure 7, the data is stable (shown with
a cross-hatch) on the data bus when the IOW* signal
transitions from the active low state to the inactive high
state in conjunction with the DACK3* signal being in its
active low state. Coupling the logical or with the rising

edge sensitive flip-flop a single point is defined for the

34

hadide 4 ot g

FOW*

DACKSH

ho=H7

Figure 7. DMA Initiated Read From Memory

data latch. This is the point that primary memory is latched
to retain the value until the next valid data.®

When a standard eight bit digital to analog converter (DAC
0800) was checked to meet the system specifications, its range
of abilities was far beyond anything that the system needed
both in terms of frequency and accuracy. The output of the

octal latch is continuously fed to the converter where its

®It is necessary to include the DACK3* signal with the IOW»*
signal to prevent data from being latched whenever the IOW* signal
becomes active due to a memory refresh. The logical or is chosen
only because of part and signal availability. The two needed
signals are available on the expansion bus only in the active low

states.

35

Lt

output is provided to the back of the computer as the analog
signal out.

The circuit was built on a Jameco JE36 PCB Breadboard
which could be inserted directly in the expansion slot with
output signals sent directly to a 25 pin connector on the

computer back.

36

. L P

‘—”’W

Fu R

IV. SUMMARY AND CONCLUSIONS

A. FLEXIBILITY

A working MFQPSK personal computer based system was
developed which not only meets the design constraints of a 10
KHz to 14 KHz frequency response output at a sampling frequen-
cy of 61.440 KHz but also provides a large measure of flexibi-
lity in the following ways: (1) the expansion board and
driving programs are able to be run on any of the industry
standard fully compatible computers using processors ranging
from the Intel 8088 to the Ihtel 80386 with no software or
hardware changes required; (2) the frequency response of the
system can be tuned to match different hardware constraints
imposed merely by changing the values of the constants ALOW,
BLOW, CLOW, DLOW, ELOW, EHI in the main program of Appendix
A which adjust the frequency bins selected by the data
encoding process to match the frequencies permitted; and (3)
by changing only a single clock on the expansion board, the
output sampling frequency can be modified from 0.1 Hz to 140
KHz on an 8.0 MHz machine (the upper frequency limit can be
extended to 1.3 MHz 1in the block transfer mode with the

following block size limitations).

37

Frequency Range Mode Max Block S8ige

0-140K byte no limit
80K-160K block 256
160K-320K block 512
320K-650K block 1024
650K-1.3M block 2048
1.3M block 4096

B. CHANGES REQUIRED FOR LONGER MESSAGES

With messages that result in a signal length longer than
one block, ENCODEDATA should build a table of pointers
representing the allocated memory locations where the blocks
of data are represented. ComplexFFT should be called from
within a loop that is executed until all blocks have been
transformed. Since the FFT routine returns data in the same
memory locations as when called, the table of pointers used
on entry to the loop would be the same as those needed for
output by the SCALEDATA routine. The DMAINIT routine would
have to be modified to accept another parameter representing
the current pointer to the base address. As mentioned previ-
ously, the autoinitialization option would not be chosen since
each data structure would be transmitted only once with each

call giving a new base address.

C. CURRENT AND FURTHER RESEARCH

As was mentioned earlier, current research 1is being
conducted to implement a receiver for the system using a
similar application of personal computer based principles.

Another project is researching an error detecting/correcting

38

scheme for translating the ASCII characters into the frequency
and phase representations.

A project is needed to settle on a method for synchroniz-
ing the data blocks to protect against signal deterioration
from the effects such as the transmission medium attenuation
and differential channel delays for different frequencies.
One intriguing concept worthy of further consideration is that
a short correlation operation could be conducted as a parallel
process utilizing the wasted portion of the instruction
bandwidth mentioned in Section III1.C.4 above. Since correla-
tion requires only addition and subtraction operations which
have a computational cost of approximately one~-thirtieth that
of the multiplies required for the FFT butterflies, the
process could be designed to be conducted in real time during
the transmission of a 4096 byte block of data. If not quite
enough time was available for the synchronizing correlation,
the block could be repeatedly transmitted the number of times
necessary to extend the time of transmission while providing

a simple means of error correcticn to the receiving system.

D. ENHANCEMENTS

The current progression towards very large scale
integrated (VLSI) circuits makes it reascnable to expect an
integrated device capable of performing a 4096 point FFT on
a single chip within the next couple of years. A semicustom

design could be pursued even now with a bitsliced approach

3%

from a company such as Advanced Micro Devices in Sunnyvale,
California. With their AMD 29000 series devices, a user could
design a special purpose data flow (meaning no program counter
is required) microprocessor using standard library components
such as floating point arithmetic processing units. Semicus-
tom devices, however, are still very expensive and would not
improve the system enough to justify the added expense.
Another potential approach which shows promise is to
utilize a dedicated digital signal processor such as the
products offered by the Zoran Corporation or Analog Devices,
Inc., as a coprocessor. The trend with these devices is
toward the capability of performing larger and larger FFTs on
chip. The ZR34161 processor has an on device storage capabil-
ity of 128 complex integers and can perform an FFT of that
size in a single instruction. The continuing difficulty is
that for each such FFT performed, 512 memory accesses must be
made before and after the instruction is performed to preposi-
tion the data in the appropriate cache memory locations on the
coprocessor. The promise held, however, is that when enough
data can be prepositioned in the on chip cache memcry, a real
time FFT can be performed at a reasonable cost per

application.

40

e

APPENDIX A

program THESIS:;

{This program is the main program which supports the MFQPSK
system. It is a Turbo Pascal program which runs on a MS-DOS
system with a math coprocessor. Subroutines called by this
stub but not included in the file are ComplexFFT which is
contained in FFT87B2.INC file and DMAINIT which is contained
in the DMAINIT1.BIN file. The assembly language source code
for the DMAINIT routine is contained in Appendix D of this
thesis.)

(SI-} {Disables I/0 error trapping)
{SR~) {Disables range checking}
const

TNArraySize = 4095;
{THIS IS THE SIZE OF A BLOCK}

IOerr : boolean = false;
type
NZERARRAY = array [1l..256]) of 0..4;

{FOR THE CHOICES OF ONE OF FOUR
PHASES OR FOR A NON-CHOICE OF
0.0 REAL AND 0.0 IMAGINARY)
array [O0..TNArraySize] of byte;
{HOLDS DMA DATA TO BE BROADCAST.
THIS REPRESENTS AN ENTIRE BLOCK
OF FFT PROCESSED DATA WHICH IS
OUTPUT AS THE TIME SIGNAL}
TNvector = array[O0..TNArraySize] of Real;
{TYPE FOR BOTH THE REAL AND
IMAGINARY DATA FOR THE INPUT TO
THE FFT)}
TNvectorPtr = “TNvector;
{PTR FOR FFT DATA ARRAY WHICH
ALLOWS DYNAMIC ALLOCATION OF
MEMORY BY THE "NEW" CONSTRUCT.
IF MORE ARRAYS WERE REQUIRED
TO BE KEPT FOR MULTIPLE BLOCK
TRANSMISSIONS, THIS DYNAMIC
ALLOCATION COULD KEEP THE DATA
AVAILABLE FOR MULTIPLE BLOCK
TRANSMISSIONS. } '

BCSTARRAY

var
ALOW, BLOW, CLOW, DLOW, ELOW, EHI, I, INDEX,J, K, BINDEX,
NUMBAUDS , NUMPTS , PHASECHOICE, TEMP : INTEGER;

41

I ey ittt

DATAR, DATAI : REAL;

OUTFILE : TEXT:
{THIS FILE WILL HOLD THE ASCIIX
CHARACTERS WHICH REPRESENT THE
HEX VALUES)

THEFILE : file of byte:;
{THIS FILE HOLDS THE ACTUAL HEX
BYTES)}

NZERO : NZERARRAY;
{KEEPS TRACK OF ASSIGNMENTS FOR
REVERSALS)

BCST : BCSTARRAY;
{ARRAY MADE AVAIL TO DMAINIT)

XREAL, XIMAG : TNvectorPtr;

{ PTRS FOR DATA SENT TO FFT}
INVERSE, RANSELECT, SHORTCHOICE : BOOLEAN;
DATA , ERROR : BYTE;

{$I FFT87B2.INC)
{$I COMPFFT.INC)
{SI COMMON.INC)

procedure DMAINIT (var BCST : BCSTARRAY):
{THIS PROCEDURE IS REALLY AN ASSEMBLY LANGUAGE ROUTINE
BUILT IN THE FORMAT ACCEPTABLE TO TURBO PASCAL WHICH
PASSES THE ADDRESS BCST ON THE STACK IN THE FORM OF FOUR
BYTES OF DATA. THE FOUR BYTES OF THE ADDRESS ARE
COMPOSED OF THE SEGMENT (TWO BYTES) AND THE OFFSET (TWO
BYTES). THE PROCEDURE TAKES CARE OF ALL INITIALIZATION
OF THE DMA CONTROLLER AND STARTS THE OUTPUT PROCESS.
THE OUTPUT PROCESS COULD BE SEPARATED BY UNMASKING THE
DMA CHANNEL SEPARATELY. THIS PROCEDURE CAN BE CALLED
REPEATEDLY BY MERELY SUBSTITUTING A NEW ADDRESS FOR A
NEW 4096 BYTE BLOCK OF DATA.)

external 'DMAINIT1.BIN';
{THE PROCEDURE CALLED HERE IS A BINARY FILE WHICH IS
PRODUCED BY ASSEMBLING THE DMAINIT1.ASM PROGRAM, LINKING
THE RESULTING DMAINIT1.0BJ FILE WITH THE MS-DOS PROGRAM
LINK AND THEN EXE2BIN-ING THE FILE WITH THE MS-DOS
PROGRAM EXE2BIN USING THE DEFAULT OUTPUT EXTENSION .BIN.
THIS DMAINIT1.BIN FILE IS PLACED IN THE SAME DIRECTORY
AS THE TURBO PASCAL COMPILER}

procedure GETPHASECHOICE;

{THIS PROCEDURE IS WRITTEN ONLY TO BE ABLE TO SEE AN
UNDERSTANDABLE RESULT OF THE FFT PROCESS WHICH IS A
SIMPLE SINE-WAVE IF ONLY ONE FREQUENCY IS SELECTED.

OF COURSE THE WHOLE PROCESS GETS MORE COMPLICATED IF
MORE CHOICES ARE MADE BEFORE THE "NO MORE FREQUENCIES"

42

Fon

OPTION IS SELECTED SINCE THE RESULT OF 256 SELECTIONS

IS A BAND LIMITED WHITE NOISE CASE. IT GETS THE PHASE
CHOICES FROM THE KEYBOARD OR SELECTS THE PHASES RANDOMLY
IF RANSELECT IS TRUE.)}

var
GOODRESPONSE : boolean;
RESPONSE : char;

begin {GETPHASECHOICE)
GOODRESPONSE := TRUE;

repeat

WRITELN(' WHICH ONE YOU WANT?'):;
WRITELN;
WRITELN('O NOT THIS FREQUENCY, THANKS'):
WRITELN('1 QUADRANT ONE') ;
WRITELN('2 QUADRANT TWO') ;
WRITELN('3 QUADRANT THREE') ;
WRITELN('4 QUADRANT FOUR') ;
WRITELN('N NO MORE FREQS PLEASE'):;
WRITELN('R DECIDE FOR ME, PLEASE (RANDOM)'):;
READLN (RESPONSE) ;
case RESPONSE of .

‘o : PHASECHOICE := 4;

1 : PHASECHOICE := O0;

12! : PHASECHOICE := 3;

'3 : PHASECHOICE := 2;

4t : PHASECHOICE := 1;

'N! , n! .

begin
SHORTCHOICE := TRUE;
PHASECHOICE := 4:
end;

'R','r! : RANSELECT := TRUE:
else

begin

WRITELN('YOU HAVE TO PICK ONE OFF THE LIST!');
GOODRESPONSE := FALSE:;
end;

end; {case)
until (GOODRESPONSE or RANSELECT) ;
end { GETPHASECHOICE} ;

procedure ENCODEDATA

begin{ ENCODEDATA)
NEW (XREAL) ; (THIS DYNAMICALLY ALLOCATES MEMORY
FOR THE ARRAY NEEDED TO INPUT
FREQUENCY BIN ASSIGNMENTS FOR THE
FFT ROUTINE)
NEW (XIMAG) ;

43

FILLCHAR(XREAL " ,SIZEOF(XREAL"),0): (FILLCHAR FILLS
THE NEWLY ALLOCATED MEMORY WITH O

VALUES)
FILLCHAR (XIMAG" ,SIZEOF (XIMAG"),0);
ERROR := 0; (THIS SETS THE ERROR RETURN CODE SO

THAT AN ERROR INDICATED BY THE FFT
ROUTINE CAN BE RECOGNIZED)
for I := 0 to NUMPTS~1 do

begin
if (I < BLOW) then
begin
DATAR := 0.0;
DATAI := 0.0;
end
else if (I >= BLOW) and (I < CLOW) then
begin
J 1= J+1;
if not (RANSELECT or SHORTCHOICE) then
GETPHASECHOICE
else if SHORTCHOICE then
PHASECHOICE := 4
else
PHASECHOICE := RANDOM(4):;
if (PHASECHOICE = 0) then
begin
DATAR := 80.0;
DATAI := 80.0;
end
else if (PHASECHOICE = 1) then
begin
DATAR := 80.0;
DATAI := -80.0;
end
else if (PHASECHOICE = 2) then
begin
DATAR := -80.0;
DATAI := -80.0;
end
else if (PHASECHOICE = 3) then
begin
DATAR := =-80.0;
DATAI := 80.0;
end
else
begin
DATAR := 0.0;
DATAI := 0,0;
end;
NZERO([J] := PHASECHOICE;
end

else if (I >= CLOW) and (I <= DLOW) then

44

Fol

end

begin
DATAR

end

else if (I > DLOW) and (I <= ELOW)

begin

PHASECHOICE := NZERO([J]:
if (PHASECHOICE = 0) then

begin
DATAR := 80.0;
DATAI := -80.0;
end
else if (PHASECHOICE
begin
DATAR := 80.0;
DATAI := 80.0;
end
else if (PHASECHOICE
begin
DATAR := =-80.0;
DATAI := 80.0;
end
else if (PHASECHOICE
begin
DATAR := -80.0;
DATAI := -80.0;
end
else
begin
DATAR := 0.0;
DATAI := 0.0;
end;
J = J-1;
end
else
begin
DATAR := 0.0;
DATAI := 0.0;
end;
XREAL"[I] := DATAR;
XIMAG " [1] := DATAI;

.
’

end { ENCODEDATA)

procedure{SCALEDATA)

begin

WRITELN ('WRITING THE FFT RESULTS TO DISK'):

for INDEX
begin

:= 0 to NUMPTS-1 do

1) then

2) then

3) then

then

{*NOTE THAT THIS REPRESENTS A BIAS IN THE SAMPLE

P

45

OF HALF THE DYNAMIC RANGE OF THE DIGITAL TO ANALOG
CONVERTER. THIS BIAS SHOULD BE SUBTRACTED BEFORE
THE SIGNAL IS TRANSMITTED. FOR EXAMPLE, IF THE
DYNAMIC RANGE OF THE DEVICE IS 0-10V, THE BIAS IS
+5. THIS BIAS WAS DEVELOPED PRESUMING THE D/A DEVICE
DOES NOT RANGE BETWEEN + AND - VALUES.)}

TEMP := ROUND(XREAL®[INDEX] + 126.0);

if TEMP < 0 then

TEMP := ;

DATA := TEMP;

WRITE (OUTFILE,TEMP,' '):

WRITE (THEFILE,DATA) ;

BCST[BINDEX] := TEMP;

BINDEX := BINDEX + 1:;
end:;

end{ SCALEDATA)

begin {(MAIN PROGRAM)
ASSIGN (OUTFILE, 'OUTFILA1.DAT'); (THIS OUTPUT FILE IS
DESIGNATED SO THAT AN EXPERIMENTER CAN ENSURE THAT

HE HAS A REASONABLE OUTPUT PRESENTED TO THE DMA
WHICH COULD CONCEIVABLY RESULT FROM THE FFT PROCESS
TO WHICH HE FED THE INPUT. IF HE SELECTED ONLY ONE
FREQUENCY, HE WOULD EXPECT TO SEE IN THIS FILE THE
ASCII REPRESENTATION OF A SINUSOID)}

REWRITE (OUTFILE):; (REWRITING MAKES THE FILE BLANK IF IT
ALREADY EXISTS AND OTHERWISE CREATES A FILE BY THAT
NAME)

ASSIGN (THEFILE, 'HOUTFA1.DAT!'): {THIS OUTPUT FILE IS
DESIGNATED SO THAT A BINARY OR HEXADECIMAL OUTPUT
(DEPENDING ON YOUR POINT OF REFERENCE) IS CREATED
WHICH CAN BE IMMEDIATELY OUTPUT TO A D/A CONVERTER.
IN THE EARLIEST DAYS OF THIS PROJECT, THE DATA WAS
OUTPUT THROUGH AN INDEPENDENT PROCESS FOR TEST AND
THIS FILE WAS CONSTRUCTED SO THAT THE DATA WAS EASILY

TRANSLATED}

REWRITE (THEFILE): (REWRITING MAKES THE FILE BLANK IF IT
ALREADY EXISTS AND OTHERWISE CREATES A FILE BY THAT
NAME }

INVERSE := FALSE; {THIS MEANS THAT WE ARE GOING TO ASK

FOR A FORWARD FFT. THE ISSUE OF WHETHER A FORWARD OR
INVERSE FFT IS ONLY A MATTER OF A FACTOR OF 1/PI)
J = 0y {J PROVIDES THE INDEX FOR THE ARRAY WHICH

RECEIVES THE 256 FREQUENCY BIN PHASE ASSIGNMENTS O,
1, 2, OR 3 REPRESENTING QUADRANT 1, 2, 3, OR 4, OR 4
REPRESENTING THE CHOICE OF NO FREQUENCY ASSIGNMENT AND
THEN RETURNS THAT VALUE IN THE REVERSE SEQUENCE FOR
THE MIRROR FREQ ON THE OTHER SIDE OF THE NYQUIST
CENTER FREQUENCY)

46

P

{THIS IS WHERE THE VALUES ARE INSERTED FOR THE VARIETY OF
CASES. THE CATEGORIES ARE BROKEN UP AS FOLLOWS: IN THE A
RANGE FROM ALOW TO AHI WILL ALWAYS BE ZERO REAL AND ZERO
IMAGINARY. IN THE B RANGE FROM BLOW TO BHI ARE A RANDOM SET
OF QUADRATURE PHASE SIGNALS. THE B RANGE IS SELECTED BY
CORRELATING THE REQUIRED FREQUENCY RESPONSE OF THE INTENDED
OUTPUT DEVICE. THE FREQUENCY PHASES ARE SELECTED BY USING
A RANDOM NUMBER GENERATOR TO BUILD AN EVENLY DISTRIBUTED
SEQUENCE OF INTEGERS WITH VALUES RANGING FROM 0 TO 3 1IF
RANSELECT IS TRUE. 1IF SHORT CHOICE IS TRUE THEN THE VALUE IS
ALWAYS SELECTED AS INTEGER 4 WHICH REPRESENTS A NONCHOICE OF
FREQUENCY. AS THESE VALUES ARE GENERATED THEY ARE STORED IN
THE NZERO MATRIX SO THEY CAN BE USED AGAIN FOR THE REVERSE
SEQUENCE NECESSARY TO GENERATE A REAL TRANSFORM. AFTER EACH
VALUE IS GENERATED AND TEMPORARILY STORED IN THE NZERO MATRIX,
IT IS ASSIGNED A QUADRATURE PHASE REPRESENTATION BASED ON THE
INTEGER VALUE ASSIGNED. I FOUND THAT A GOOD WEIGHTING TO GIVE
THESE QUADRATURE SIGNALS WAS 80.0 REAL AND 80.0 IMAGINARY
(WITH THE SIGNS DEPENDENT ON THE REPRESENTATION SPECIFIED BY
THE INTEGER VALUE). THE C RANGE IS AGAIN ASSIGNED VALUES OF
ZERO REAL AND ZERO IMAGINARY AND CROSSES THE CENTER OF THE
FREQUENCY SPECTRUM BEING SENT TO THE FFT ROUTINE. THE D RANGE
IS THE RANGE WHERE THE B VALUES ARE REVERSED IN ORDER AND
GIVEN THE VALUES OF THE B RANGE COMPLEX CONJUGATES. THIS IS
ACCOMPLISHED BY READING THE NZERO MATRIX IN THE REVERSE ORDER
AND EVALUATING THE INTEGERS AS IN THE B RANGE EXCEPT THAT THE
IMAGINARY PARTS HAVE THE SIGNS REVERSED. THE E RANGE FROM
ELOW TO EHI IS ZEROS IN BOTH REAL AND IMAGINARY PARTS.)

NUMPTS := 4096; {THE COMBINATION OF NUMPTS AND NUMBAUDS
IS INTENDED TO ALWAYS END UP BEING A TOTAL OF 4096
POINTS PRESENTED TO THE FFT ROUTINE. FOR EXAMPLE
ANOTHER SYSTEM COULD BE CHOSEN SUCH THAT NUMBAUDS MIGHT
BE 16 AND NUMPTS BE 256)

NUMBAUDS := 1;

ALOW := 0;

BLOW := 672;

CLOW := 928;

DLOW := 2768;

ELOW := 3424;

EHI = 4095;

BINDEX := O; { BROADCAST INDEX}

RANSELECT := FALSE; {IF TRUE SELECTS RANDOM PHASES)

SHORTCHOICE := FALSE; {(IF TRUE SELECTS LESS THAN FULL LOAD
OF FREQUENCIES)
for K := 1 to NUMBAUDS do
begin
ENCODEDATA
WRITELN ('PERFORMING THE FFT');
ComplexFFT (NUMPTS, INVERSE, XREAL, XIMAG, ERROR) ;

47

WRITELN ('THE ERROR VALUE IS
SCALEDATA
DISPOSE (XREAL) ;
DISPOSE (XIMAG):
end;

CLOSE (OUTFILE):

CLOSE (THEFILE) ;

DMAINIT (BCST) ;

end.

48

' ,ERROR) ;

~

-

]

T

¢ Ne na we ws e o

XXXX
XXXX

XXXX

XXXX:

XXXX:

XXXX:
XXXX:
XXXX:
XXXX:
XXXX:

'pla

APPENDIX B

Assembly Language Output Loop Program

example was compiled with the DEBUG program
provided with all MS-DOS systems

:0100

: 0103

:0106

0109

010B

ol1o0cC
010D
010E
0110
0112
ced

mov
mov
mov

mov

out

inc
dec
jnz
int

dx, 2000
bx,0112
cx,2000

al, [bx)

dx,al

bx
cx
0109
20

:puts the port address in

;dx register

;puts address of data area

1in bx register

;specifies 4096 words of

rdata to be output

;take word of data at address
;pointed to by bx register
;and put it in al register
;puts byte of data in al on
;the data bus

;add one to the buffer address
;decrease count remaining
;loop until all bytes are out
sreturns system control to DOS
;this is where the data is

49

4 we g we we we we

XXXX:0100
XXXX:0102
XXXX:0104
XXXX:0106
XXXX:0108

XXXX:010A

XXXX:010C

mov
out
nov
out

mov

out

int

al,74
43,al
al,ff
41,al
al, o0

41,al

20

APPENDIX C

Assembly Language Program to Modify Refresh Time

example was compiled with the DEBUG program
provided with all MS-DOS systems

;selects timer #1

;43 is the port for the timer
;this is the value you will set
;for the lower 8 bit count down
;41 is the port for the count
spreload

;this is the upper 8 bits for the
scount down

;the timer keeps track of how
;many times it has been sent a
;value and knows that this is the
;jupper 8 bits since it is the
;second time its address has been
;decoded

;returns system control to DOS

50

it

APPENDIX D

codeseqg segment
public dmainit
assume cs:codeseg

;procedure DMAINIT (var BCST : BCSTARRAY):

;this procedure initializes dma channel 3 and sets the
;parameters to output the array bcst by passing the start
;address of the array on the stack.

dma equ 0
dmapage equ 80h
dwavcnt equ 1000h
dmainit proc near
push bp
mov bp,sp suse bp to address stack
les di,dword ptr(bp+4] :;move address of
:bcst into es:di
mov al, s5bh ;dma chan 3 single mode,
out dma+11,al ; read, autoinitialize
out dma+12,al ;reset first/last ff
mov ax,es ;calc high order 4 bits
mov cl,4 ; of buffer area
rol ax,cl
push ax ;save ax for dma start addr
and al,ofh
out dmapage+2,al ;store in ch 3 dma page
;register
pop ax
and al,ofoh
add ax,di ;get page offset
out dma+6,al ;output waveform buffer
mov al,ah H start address
out dma+6,al
mov ax,dwavcnt ;output dma byte count
out dma+7,al
mov al,ah
out dma+7,al
mov al,3 sunmask ch 3 to start
out dma+10,al
pop bp
ret 4 ;pop 4 bytes off stack for
;addr of bcst
dmainit endp
codeseg ends

end dmainit

51

e N aie Adammme o

APPENDIX E

The following two figures show the circuit used

in the

expansion board based MFQPSK system. The first is the logical
schematic and the second is the actual expansion board pin

diagram.
CLK ‘ GRD J
GRD
GRD K
DACK3*
DREQS3*

IOw=*

ANOUT

DACK3*

52

ta g0 100,

ATAYNIT+D
va1

A s A

19 48 99 59 99 19 g9 o9
1 LI

SIRdAY Y i

ON ON
ON ON
ON ON
ON 44 JDA
- gyo AL ays
ON 9LG6S1 » €0Vvd
£0dd 1100
ado (ab:)
ATdVYNI+O ays
»£0VA ON
ON =y 1yno g™ ON
ONwg >cs1 fmON
ON ON
J0A ON

53

NS I

LIST OF REFERENCES

Eggebrecht, L. C., Interfacing to the IBM Personal
Computer, Howard W. Sams & Co., 1983.

Gray, L. E., Sampling Rate Reduction for a High Data
Rate Acoustic Receiver, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1986.

Proctor, E. L., Design of a Digital Acoustic
Communications Receiver for a Linear Hydrophone
Array, Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1985.

Roemmele, B. K., "Instant Speedup for Your PC," PC
Magazine, v. 7, no. 13, July 1988.

Sargent, M., and Shoemaker, R. L., The IBM Personal
Computer From the Inside Out, Addision-Wesley
Publishing Company, 1984.

Whitacre, P. M., Effects of S8oft Limiting on the
Performance, Detection, and Synchronization of a
Digital Acoustic Communications 8ystem, Master's
Thesis, Naval Postgraduate School, Monterey,
California, June 1986.

54

ot

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Statiqn
Alexandria, Virginia 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Department Chairman, Code 62

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5100

Professor P. H. Moose, Code 62 Me

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5100

Commander

Naval Ocean Systems Center

Attn: Mr. Darrell Marsh (Code 624)
San Diego, California- 92152

55

