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SUMMARY

This project was a continuation of an ongoing study of
numerical/analytic techniques for the identification of periodic
solutions to functional differential equations. The techniques
developed apply to very general classes of equations, and have been
implemented on a variety of specific model problems.

"Local" techniques refer to methods that apply to the problem of
analyzing the Hopf bifurcation structure of small periodic orbits
of multiparameter systems. A FORTRAN code, BIFDE, was modified to
allow analysis of certain nongeneric bifurcations in general
systems with infinite delay. Related questions have been
investigated.

"Global" tracking methods have been developed to study the growth
and parameter dependence of global Hopf bifurcations.
Investigations have centered on the development of spline-based
approximation techniques and their implementation in a FORTRAN code
FDETRAK. The capabilities of the code have been expanded, and
applied to scalar and two-dimensional delay difference systems.



RESEARCH OBJECTIVES

This project, along with the grant AFOSR-86-0071 with the same name
(budgeted through the Virginia Polytechnic Institute) initiated the
a thorough study of the use of numerical techniques in the analysis
of general parameter-dependent functional differential systems.
The research of this grant was simultaneously supported by the
National Science Foundation grant DMS-8701456, and a grant from the
DARPA Program in Applied and Compuatational Mathematics
(subcontracted through Michigan State University.)

The areas investigated involve techniques and information not
attainable by standard simulation methods. The work completed can
roughly be subdivided according to the local (Hopf bifurcation)
analysis in the neighborhood of equilibria, and global tracking
methods for following 1-parameter families of periodic orbits and
examining their secondary bifurcation structure.

At this early stage of the research, emphasis was placed on the
establishment of the numerical characteristics of some of the
proposed methods. An algorithm of the PI for the analysis of the
bifurcation structure of Hopf bifurcations was chosen to be
implemented in a general purpose code BIFDE. A graduate student,
Archana Sathaye was supported by AFOSR-86-0071 to assist in the
implementation. Her work was continued by a graduate student,
Nihal Aboud, under the support of this grant. Alternate numerical
implementations (symbolic manipulation) and techniques for
obtaining the necessary bifurcation data were addressed, as well.

Complimentary to an understanding of the local (Hopf bifurcation)
structure of multi-parameter FDE is the use of global tracking
methods to gain insight into the secondary bifurcation structure of
these problems. A goal of this study has been to design a general
purpose FORTRAN-based code for the analysis of scalar
delay-difference equations, as well as certain multi-dimensional
generalizations. The code has been tested on a wide variety of
scalar equations and a system modeling "chugging" in
liquid-propellant fuel rockets.

RESEARCH STATUS

Concerning the local problem, various extensions were made on an
Liapunov-Schmidt based algorithm of the PI. The algorithm, which
leads to a direct means of determining the stability and direction
of bifurcation in functional differential equations requires
substantial computation. A FORTRAN-based implementation of the
algorithm called BIFDE was designed to provide a numerical method
for resolving generic and 1st order nongeneric bifurcations in
functional differential equations (not necessarily of delay
-difference, or even finite delay type) . The code has been checked
on specific equations from the literature, and has been shown to be
useful in analyzing a relatively unstudied model of chugging in
liquid-propellant fuel rockets. See (i], (2], and (3].

A second numerical implementation investigates the feasibility of
executing the algorithm with symbolic-manipulation software. The
use of MACSYMA for such purposes has been undertaken, and results



indicate that this algorithm succeeds where symbolic implementation
of alternate approaches eg, center manifold approximation followed
by the use of Poincare transforms) have been unsuccessful. The
investigations involve both the algebraic calculation of the
bifurcation function for specific classes of delay-difference
equations, and the derivation of general formulae (applicable to
general FDE) for the resolution of the bifurcation structure at
points of second order nongenericity. See [4].

The success of the above algorithm points out the need for
effective means of computing the associated bifurcation data. An
important step in that direction is the determination of the global
convergence properties of various rootfinding techniques when
applied to quasipolynomials of the type that arise as
characteristic equations for linearized problems. Such a study was
initiated with a grant of CPU time on the Minnesota Supercomputer
Center Cray - 2. While fractal convergence basin boundaries where
anticipated, their precise form was found to share certain
geometric characteristics independent of the rootfinding method in
use. Comparison of Newton's method to various third order methods
(eg., Halley's) indicate that the global convergence properties can
vary greatly from method to method. Description of the results and
a vector algorithm for their generation are given in [5) and [6].

The work involving global tracking techniques has centered on the
design of a general purpose FORTRAN - based code for following
periodic solutions in one - parameter families of FDE, identifying
secondary bifurcations, and following certain branches. A general
purpose code for the analysis of scalar delay - difference
equations was completed and applied to various equations from the
literature. See [7]. A redesign and extension of the code to
certain systems has been completed as well (33. A first step in
designing a parallel processing version of the code was taken in
[8).

In addition to the FDE taken from the literature to test the
effectiveness of these methods, work has been initiated in the
analysis of a class of new problems from modern electrodynamics.
In particular, the general equations of motion of charged particles
(including relativistic and radiation effects) lead -- depending on
the simplifying assumptions made -- to either retarded FDE, FDE of
neutral type, or retarded FDE with state-dependent time delays.
The model's derivation and the results of certain simulation
studies are given in [9] and [101.

PROJECT PUBLICATIONS:

* [1) BIFDE: Software for the Investigation of the Hopf Bifurcation

Problem in Functional Differential Equations (with N. Aboud and A.
Sathaye), Proceedings for the 27th IEEE Conference on Decision and
Control, to appear.

[2] "Contributions to the Computer-Aided Analysis of Functional
Differential Equations," Master's Thesis by N. Aboud, University of
Minnesota, August, 1988.

[3] Periodicity in a Model of Liquid-Propellant Fuel Rockets, in
preparation.

[4] "Symbolic Hopf Bifurcation Calculations for Functional
Differential Equations," Master's Thesis by J. Franke, University
of Minnesota, in progress.



[5] Graphical Analysis of Newton's Method, University of
Minnesota-Duluth Mathematics Technical Report # 88-4, J.
Reichenborn, 1988.

[6] Fractal Convergence Basins for Rootfinding Techniques Applied
to Transcendental Equations, University of Minnesota-Duluth
Mathematics Technical Report, E. Swieringa, in progress.

* [7] Computer-Aided Analysis of Periodic Solutions of Functional
Differential Equations, Differential Equations and Applications, to
appear.

(8] Parallel Scientific Programming on the Encore Multimax,
University of Minnesota - Duluth Mathematics Technical Report, D.
Kingsley, in progress.

[9] Time Delays in Models from Electrodynamics, (with N. Jahren
and T. Jordan), in progress.

[10) FDESLV: An ODE-based Software Package for the Simulation of
Functional Differential Equations, University of Minnesota - Duluth
Mathematics Technical Report #88-3, K. Hill, 1988.

* 6 preprints enclosed with final technical report.
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I. NTRODUCTION

Computational techniques have played an important role in the advancement of
our understanding of the qualitative nature of solutions to functional differential
equations. Simulation studies often provide compelling evidence for the asymp-
totic behavior of models too complex for direct analysis. Stable equilibria, periodic
or quasi-periodic solutions, or chaotic dynamics are often more easily "observed"
through simulation than rigorously proven to exist.

As important as simulation studies are, they are often restricted in their effec-
tiveness by the fact that they (in all but elementary situations) only identify the
numerical analogue of "asymptotically stable" solutions of the associated differential
equations. It is clear that unstable solutions play an integral role in understanding
the underlying structure of chaotic dynamics. While computational methods now
exist for the analysis of unstable Hopf bifurcations in autonomous functional differ-
ential equations (see [1, [31, [5]), the information so obtained is of limited value in
understanding large periodic orbits.

In the case of autonomous ordinary differential equations, the code AUTO of E.
Doedel [21 assists in the computation of large periodic orbits (regardless of their
stability type) in parameter - dependent equations. The code allows (among many
things) the tracking of parameter - dependent equilibria, location of bifurcation
points, tracking parameter - dependent periodic solutions arising through Hopf
bifurcations, calculation of Floquet multipliers and secondary bifurcation points,
and the tracking certain secondary bifurcations. Clearly, it would be desirable to
have at one's disposal a general purpose code that can accomplish these same tasks

AMS(MOS) Subject Claaification: 34CS9, 34K99.
This work waa partially supported by Srnts AFOSR #86-0071 and 87-0268, NSF DMS-8701456,

and a grant from the Minnewota Supercomputer Center.



2 M ;. STECH

for systems of autonomous functional differential equations. The purpose of this
paper is to report on recent progress made in that direction.

We dLscus a modest 'first step in the development of a general purpose code
for the numerical computation of the structure of periodic orbits in parameter -
dependent functional differential equations. In particular, a FORTRAN code has
been recently developed for the general scalar delay difference equation

Z'(t) f(a;z(t),z(t'- 1)), (1.1)

where a is a real (bifurcation) parameter.

n. NU MRICAL MTHODS

The model problem (1.1) has been chosen as one of clear inportance in the math-
ematical literature, as well as one through which one can jud'ge the feasibility of
developing an analogous code for general systems of fun al differential equations
(not necessarily of delay - difference form). While Fj (1.1) is of special structure,
the numerical algorithms employed have made little reliance on that fact, so as to
provide a more valid prediction of the computational complexity to be expected for
the general functional differential equation

'(t) = f(a; Zt), (2.1)

where for fixed a, f : C([-1, 0; R') --+ R', the usual space of continuous functions.
The development of a general purpose code for the tracking of periodic solutions

can be roughly divided into 3 numerical issues.

1. Numerical Approximation of Periodic Solutions

It should be stressed here that both unstable and stable periodic solutions are of
equal importance. Thus, simulation techniques, which would lend itself to finding
stable orbits, are not used. As in the case of AUTO, collocation methods have been
chosen.

In particular, one first scales time in (1.1) so that a periodic solution of (1.1) of
period T(= 1/w) is transformed into a periodic solution of period I in

wz'(t) - f(a; :(t), z(t - w)) = 0 (2.2)

A partition of the interval [0., 1.1 is then made into N subintervals of equal length.
The 1-periodic solution z(t) of (2.2) is then approximated in terms of periodic
B-splines of order k (3 < k < 9). Using the superscript N to denote this approxi-
mation, we have

N

Z(N)(t) = B (t), (2.3)
i-il

where the coefficients ci, i 1,2,...,N are to be determined. One now imposes
N collocation constraints on z~g ) by requiring (2.2) hold at N collocation nodes
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(one taken from each of the N subintervals.) Additionally, one must impose a phase
shift constraint in order to factor out the indeterminacy due the fact that (2.1) is
autonomous. (Thus a phase shift of any periodic solution generates another.) The
resulting system of N + 1 equations in N + 2 unknowns a, ci, i = 1, 2,..., N, and
w is then expected to possess 1-parameter families of solutions. Thus, one is lead
to the consideration of:

2. One-Parameter Curve Tracking Techniques

Methods for computing one-parameter families of solutions to nonlinear systems are
now well known. It is most convenient to visualize the family locally parameter-
ized in terms of arc length, s. Initial points on the solution curve can be obtained
from Hopf bifurcation data near equilibria, or from spline approximations to stable
periodic orbits as observed through simulation.

Given two nearby points on the periodic family, one "predicts" another by linear
extrapolation to a point at some prescribed distance, ds, along the curve. One now
imposes a final scalar constraint so as to insure that the next sought-after point on
the solution curve is ds arclength units from the previous point of the curve. The
resulting N + 2 equations in N + 2 unknowns are then solved by Newton's method
(with numerically determined Jacobian).

The current code is designed to implement stepsize selection automatically. Input
data states the maximum allowable stepsize, as well as the optimal and minimum
choices. If Newton's method has not converged after a certain number of iterations
(prescribed as input), the stepsize is reduced and continuation is attempted again. If
convergence fails again, the process is repeated until either convergence is obtained
or the stepsize is reduced to a value smaller than the selected minimum value of ds.
The latter situation results in program termination.

3. Floquet Multiplier Approximation

Identification of the Floquet multipliers for the approximated periodic solution is
important both for determining the solution's stability, and for identification of
points of secondary bifurcation. These multipliers are the eigenvalues of the lin-
earized Poincare map for the T-periodic orbit -(t) of (1.1). It is convenient to
consider the linearized equation

z'(t) = Dif(z(t), x(t - 1))z(t) + Dzf (z(t), z(t - 1))z(t - 1) (2.4)

(suppressing the dependence on a) on the phase space L"1-,01 x R, rather than
C([-i, 0; R). Without loss of generality, we may assume T > 1. Thus, the time T
map for this equation is knowi to be compact. It is approximated by computing
the action of the map on a finite dimensional approximation to the phase space.
In particular, one numerically computes the solutions of the initial value problems
for the linearized equation with initial conditions taken to be one of the M + 1
characteristic functions of the intervals [-hi,-h(i- 1)], i = 1,... ,M, (A = I
and {0} for i = 0. Using the inner product structure of the phase space, solutions
on [T - I., TJ are then projected onto the M + 1 dimensional subspace spanned by
the above initial conditions.
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As a result, one obtains a linear map on RM+', the eigenvalues of which are
expected to correspond to Floquet multipliers for the periodic solution. Clearly,
the accuracy of the approximation scheme relies both on the accuracy of the ap-
praximation to the periodic solution of (1.1), as well as the dimension of finite
dimensional approximation to the phase space. It should be remarked that (2.1)
being autonomous implies that 1. should be a Floquet multiplier, thus providing a
convenient symptom of the overall accuracy of computed multipliers.

IM. TWO EXATNPLES

Wright's Equation
z'(t) = -az(t - 1)(1. + ,()l, a> 0 (3.1)

satisfies the standard conditions for a Hopf bifurcation at a =Q2. It is well known
that the bifurcation is generic, supercritical, and locally orbitally asymptotically
stable (see [4] and the references therein.) The family of periodic orbits are easily
calculated by the code described above. Figure 3.1 depicts the bifurcation diagram
obtained from 75 curve tracking steps performed on the collocation approximation
(5th order splines) with N = 28. The vertical axis is, roughly speaking, the L2 norm
of the periodic orbit (normalized to period 1.)

Floquet multiplier approximation is reserved (in this case) to every 10th tracking
step. Because the multipliers are known to cluster at the origin of the complex
plane, we tabulate only those multipliers with modulus larger than one half. The
dimension of the phase space approximation is =-41.

step multipliers larger than .5

10 0.9988 0.9104
20 0.9991 0.6521
30 0.9992
40 0.9995
50 1.0007
60 1.0085
70 1.0346

Observe that (except for the numerical equivalent of the unit multiplier) a mul-
tipliers lie within the unit circle, thus confirming the stability type of the periodic
orbit. Note also that accuracy of the unit multiplier degenerates as the periodic
orbit grows in size. This can be explained by the fact that the periodic orbits to
Wright's equation possess regions of fast variation of z. Accuracy of the approxi-
mation scheme can be maintained if one increases the collocation parameter N as
one tracks along the curve.

The above computation was performed on the four - processor Cray-2 of the
University of Minnesota Supercomputer Center, and required 47.75 seconds CPU
time. Based on benchmark comparisons with a VAX 11/750, one would expect the
computation to take approximately 25 rrinutes on this more common machine.
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As a final example, we consider the delayed negative feedback equation

Z'(t) = -2az(t) - 2bz(t - 1)/[1. + z'°(t - 1)], (3.3)

where a and b are positive parameters. If one fixes a = 1.00, then the spectral
conditions for a Hopf bifurcation from z = 0. are satisfied at b = 1.5219. Due to
the choice of nonlinearity the bifurcation is not generic. However, the stability
algorithm of [51 can be applied to show the periodic orbits tically,
ar ' to be locally orbitally asymptotically stable.

Figure 3.2 depicts the computed bifurcation diagram. Fifth order splines are used,
with N and M varied so as to maintain acceptable accuracy of the unit multiplier.
The period along the stable leg of the primary Hopf bifurcation is approximately
2.743. The first secondary bifurcation (at b = 1.953) corresponds to a simple branch,
with a Floquet multiplier leaving the unit disk at 1. on the real axis. The stability
of the periodic orbit is observed to switch to this secondary family. This secondary
family itself looses stability to a stable period doubling orbit of period 5.2961 at
b = 2.385. These periodic orbits loose stability at another period doubling (near
b = 2.453), and the tracking is terminated when the resulting period 10.569 orbits
undergo yet another period doubling bifurcation near b = 2.479 to an orbit of period
21.113. See Figu;:e 3.3 for a simultaneous plot of existing periodic orbits near 2.470.
Dashed curves denote unstable orbits.

IV. SUNMRY

The examples of the previous section indicate the types of information that can be
now routinely obtained through the described code. However, the benchmark data
for Wright's equation make it clear that additional work must be done if a code of
this type is to be effectively implemented on standard mainframe computers.

Ongoing research concerns the effects of variable mesh collocation methods and
alternate Floquet multiplier approximation methods on improving the performance
of the above code. Tayloring a code for delay difference equations is expected to
improve code performance, as well.
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