
Technical Report

CMU/SEI-88-TR-22
ESD-TR-88-023

Carnegie-Mellon University
Software Engineering Institute

Perspective
on Software Reuse

J. M. Perry
GTE Resident Affiliate

GTE Government Systems Corporation

September 1988

Technical Report
CMU/SEI-88-TR-22

ESD-TR-88-023
September 1988

Perspective on Software Reuse

J. M. Perry
GTE Resident Affiliate

GTE Government Systems Corporation

Application of Reusable Software
Components Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler 'o
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1988 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center. Ann: FDRA. Cameron Station. Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering,
please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademark in this publication is not intended in any way to infringe on the rights of the trademark
holder.

Table of Contents

Acknowledgement 0

1. Introduction 1

2. Ideal Problem Solving Capabilities 3

3. Ideal Software Development Capabilities and Software Reuse as a 7
Practical Approximation

4. Integration of Development Capabilities 11

5. Generic Model Improvement 15

6. Features Analysis and Initial Formulation of the Generic 17
Development and Application Model

7. Conclusion and Recommendation 19

References 21

CMU/SEI-88-TR-22

Acknowledgement
GTE, the SEI, and the Application of Reusable Components Project provided the oppor-
tunity to formulate and refine the ideas of this paper.

The report was edited by Linda Hutz Pesante who, both as a technical writer and objective
reader, contributed to the expression of these ideas and the completion of the report.

Perspective on Software Reuse

Abstract: This report presents a perspective on software reuse in the context of
"ideal" software development capabilities. Software reuse is viewed as a means
of achieving—or at least approximating—the ideal capabilities. A generic appli-
cation and development model is proposed for unifying various types of software
reuse. The model can be initially formulated as a project family architecture and
produced from a domain features analysis. The approach presented in this report
is intended to lead to a reuse strategy and methodology for software development.

1. Introduction

This report focuses on an approach to software reuse which can be expanded to a reuse
strategy for software development. We assume a methodology which divides the life cycle
into phases, such as requirements through integration and maintenance, where each phase
produces intermediate artifacts.

The report views software development as a form of means-ends analysis, a problem-
solving method that formulates a problem as a search for a sequence of actions beginning
with an initial situation or state and ending with a goal situation or state. At each state, an
operator is selected which reduces the difference between the current state and the goal. A
solution to a problem is a sequence of operators, the sequence of states (from initial through
intermediate to the goal), and the constraints which the sequence satisfies. In this setting,
the initial state is the beginning of a software development, that is, the software require-
ments and system description; a goal is the software system product; and the operators are
methods for transforming the artifacts. Software engineering attempts to reduce the search
aspects of the process by formulating methodologies which specify the type of the interme-
diate artifacts and guide the application of operators.

In means-end analysis, analogical problem solving is the process of retrieving a solution to a
similar, previously solved problem and transforming it into a solution of the current problem.
Using this approach, software reuse can be precisely formulated as analogical development,
where a previous development from similar requirements is transformed to a new devel-
opment satisfying new constraints. An important point is that the selection of operators cor-
responds to design decisions. This view gives us insight into two reasons systematic soft-
ware reuse is difficult. First, the complete solution to the previous software development is
typically not available; usually, only the artifacts are available, and design decision infor-
mation is incomplete. Secondly, the constraints of the solution to the current development
may differ greatly from the constraints of the previous development.

This view of software reuse as the use of "sequences" of software development "solutions"
of previous projects to "solve" a current development underlies many of the ideas of the
following discussion.

CMU/SEI-88-TR-22

CMU/SEI-88-TR-22

2. Ideal Problem Solving Capabilities
To put software reuse in perspective, this section describes "ideal" capabilities for problem
solving; the next section reformulates them for software development. Finally, reuse is
presented as a way of achieving (or, at least, of approximating) these desired "ideal" capa-
bilities. The capability is "ideal" in the sense of being powerful and efficient for certain appli-
cation domains, and desirable but not yet available for other application domains. The
"ideal" capabilities are presented as problem-solving scenarios. In the next section, they are
recast as software development scenarios so that they can become the basis for a reuse
strategy.

Problem solving, including software development, is a goal-directed process which attempts
to produce products (i.e., goal artifacts) from initial artifacts, such as requirements or specifi-
cations. The development involves, to varying degrees, both constructive and derivative
processes. For example, the products are constructed from more primitive components,
and artifacts are transformed from initial phases to final phases. The emphasis in the devel-
opment will vary between construction and derivation, depending on the initial artifacts avail-
able.

The scenarios which illustrate this goal-directed process follow a means-end problem-
solving paradigm and use the terms initial artifacts, goal artifacts, tasks for deriving the goal
artifacts, and intermediate artifacts, rather than the terms initial state, goal state, operations,
and intermediate states. The following scenarios present several "ideal" capabilities. They
involve:

• comparison of artifacts
• transformation and derivation of artifacts
• comparison of tasks
• transformation of tasks

The first scenario posits an initial artifact and a resource artifact, a means of comparing
them, a way of using the comparison to go from an initial artifact to a specification of the
goal artifact, and a formal way of deriving the goal from the specification and the resource.

The second scenario posits an artifact similar to the goal artifact, a way of comparing the
initial artifact with the similar artifact and of comparing constraints of the tasks used for pro-
ducing the similar artifact with those of the current development, and a means of using the
comparison results to transform the previous development to a current development of the
goal.

The third scenario posits an initial artifact, a collection of available artifacts of various kinds,
a way of comparing the initial artifact with the collection, and a way of using the comparison
results to derive the goal from the initial artifact and parts of the collection.

CMU/SEI-88-TR-22

The following three diagrams summarize and help clarify the three scenarios. In the
diagrams, the double arrows denote comparisons, the dashed boxes denote starting arti-
facts (initial, resource, or analogous); dashed arrows denote transformations or derivations
to be carried out; and the dotted boxes, goal artifacts. The digits indicate the order in which
the comparisons and transformations take place. The initial artifact is, typically, a descrip-
tion of the problem to be solved and the constraints which apply to a solution.

Scenario One

I I
I Initial |
| Artifact |
I I

I
12
I
V

Resource
Artifact

I
13
I
V

Scenario Two

I 1 2
Initial | < >
Artifact I

| Analogous
| Development
| + Analogous
| Goal Artifact
I

3 /
/

/

Goal
Artifact

CMU/SEI-88-TR-22

Scenario Three

I I
I Initial |
| Artifact I
I I

Artifact
Collection

I

2 /
/

/

CMU/SEI-88-TR-22

CMUSEI-88-TR-22

3. Ideal Software Development Capabilities and
Software Reuse as a Practical Approximation

The three scenarios include a variety of software development approaches that can be ap-
plied to software reuse. The first scenario illustrates the capability of using a general appli-
cation resource and involves requirements in the form of desired operational behavior. For
example, a database system can satisfy varied storage and retrieval types of operations.
The desired storage and retrieval behavior can be described using database commands
which are interpreted by the database system to carry out the desired operational behavior.
In this scenario, the initial artifact is the desired operation, the resource artifact is the data-
base system, and the goal is a command set that has the desired operational behavior. The
command set is a goal because the commands together with the resource constitute a sys-
tem that will carry out the desired operations.

The second scenario involves requirements in the form of desired features of a common
product. A feature which is a desired characteristic of a system may pertain to either the
structure or the operation of the system. Typically, a user feature characterizes the opera-
tional capability of the system. For example, a particular VCR can be characterized by a set
of VCR features; an automobile can be characterized by a set of automobile features; or a
software switch can be characterized by a set of switching features. In this scenario, there
exists a software product with a large set of features from which the desired product is de-
rived, and an impact analysis maps the desired features to the existing system. Based on
the feature differences, the desired product is derived from the existing system. Currently,
the derivation takes the form of a specialization of a general system, removal or addition of
features, or relatively simple transformations. In this scenario, the existing or derivative sys-
tem could be an intermediate artifact as well, such as an existing generic design. Features
are a mechanism for comparing requirements with the existing system.

The third scenario focuses on similarities between certain large software systems and com-
puter system software, such as operating systems and environments. Well-known models
of such systems suggest a description of certain large systems as consisting of layers, each
of which provides a particular class of service, and standardized protocols for interfacing
adjacent layers. For example, some software systems have a user interface layer, appli-
cation layer, a programatic interface layer, communications layer, control or executive layer,
and resource layer. Each of these in turn may have sublayers. For example, the user inter-
face layer may consist of presentation and dialogue layers, the communications layer may
consist of the open systems interconnect (OSI) layers, and so on. A layer may also be
partitioned into parts. The separation into layers and parts results in collections of services,
functions or objects, and interfaces. Available parts, subsystems, layers, and protocols are
formally collected, organized, and evolved for developing software for particular product
areas.

CMU/SEI-88-TR-22

The three "ideal" capabilities described here are not intended to be exhaustive nor or-
thogonal, but they do represent types of capabilities which have been matured for some
areas. For instance, the first capability is typical of system products like compilers and inter-
preters, database systems, spreadsheet programs, editors, and some environments. CAMP
(Common Ada Missile Parts) constructors illustrate this capability for a particular application
domain: missile subsystems. The second capability is typified formally by switching prod-
ucts, man-machine interfaces, and generic architectures, and informally by programs used
by experienced programmers in writing similar programs. Reuse of existing systems in a
project family of similar systems is the basis of this capability. The third capability is typified
by the structure of operating systems, compilers, communication systems, and product
models. In a more rudimentary form, libraries of reusable parts, such as the CAMP compo-
nents or EVB and Booch data structure parts, come under this capability. There are many
other application areas for which these capabilities could be made available. Moreover,
these different but related capabilities can be combined to maximize reusability.

Each capability involves the "factoring" of a goal product and the "extraction" of a factor to
make it accessible for external manipulation. Reuse is realized through the factors, and
different forms of reuse can be characterized by their factors. The following three diagrams
illustrate the factoring and access interface for each capability.

Scenario 1

| standardiz ed|
commands > | resource |

I I

Scenario 2

I derivative I
product > | system |
features | |

I
I

derived
product

CMU/SEI-88-TR-22

Scenario 3

Constructs:
layers,
subsystems,
parts,
interfaces

In the first scenario, the general resource is "used" to satisfy the requirements, and the
operations of the general resource are "reused." In the second scenario, features of the
existing system are reused, and they enable the reuse of parts of the existing system. More
significantly, the process by which the existing system was developed is reused. For ex-
ample, the design decisions of the derivative development are reused, subject to the con-
straints of the derived development. In the third scenario, the layers, subsystems, and parts
are reused.

Several observations should be made. First, the factors which are reused differ, not only in
their nature but also in the time they are reused. Commands are dynamic in nature; and
although they may be expressed at compile time or earlier, they can be issued by a program
and interpreted at runtime. Also, unlike the other two scenarios, the first scenario has no
explicit goal product, which is derived or constructed. Features are characteristic of a goal
product and are usually reused at requirements or specification time. System building
blocks are usually reused at design and implementation or testing time. A second important
observation is that these capabilities are best employed in combination. The combination
provides a reuse strategy presented below. Thirdly, reuse of appropriate factors is a
"practical" way of achieving some of the ideal problem solving and software development
capabilities.

While the three types of reuse capabilities are related, ranking them by desirability leads to
further observations. The first capability is the most desirable because it provides the
highest development productivity and the most automation, and it involves the most power
and breadth of application. Of the three, the third capability seems to offer the least in terms
of development productivity, automation, and power and breadth of application. The first
capability is available from commercial or proprietary products for a small number of appli-
cation domains. The third capability is most prevalent, since most applications have or
could have collections of parts to support software development for those applications.
Typically, the capabilities for an application domain are likely to evolve from the third
(constructed system), to the second (derivative system), to the first (commands).

CMU/SEI-88-TR-22

10 CMU/SEI-88-TR-22

4. Integration of Development Capabilities
All three types of reuse capabilities may be employed in the development. For example, a
command approach applies to requirements and design, a derivative approach applies to
the design, and a constructive approach to the detail design and implementation. Further-
more, the three capabilities can be combined to give an integrated approach. We view the
capabilities as being evolved by a development organization, with the distinct capabilities
becoming more and more compatible. Thus, as several derivative systems become avail-
able, they can be generalized to give a generic system; the derivative systems will yield
candidate subsystems and parts and provide a standardized context for the parts; as the
relationships between initial artifacts (derivative systems, specifications, collections of parts)
become understood and tuned for an application, command and programatic access to op-
erational capabilities of existing artifacts will evolve.

An integration of the reuse capabilities is depicted in the following diagram:

features

I Generic |
|Development I
I and |
|Application|
I Model |

I

derivative
system(s)

I V
j ,
|layers, subsystems,|
Iparts, interfaces |

Derived System

.... control
:< & >:

data
interface

CMU/SEI-88-TR-22 11

"Command interface" from the first "ideal" capability refers more generally to control and
data information that enables a user or an external program to access the operational be-
havior of another program. The command interface could be in the form of an application-
specific language, a message, or simply parameters. Of importance here is that the inter-
face formally distinguish control and data aspects, as a command does, so that it clearly
expresses desired operational behavior. The subboxes within the derived system box rep-
resent subsystems and layers.

The generic model is an application model which, in its most complete form, is an ex-
ecutable application environment for prototyping the product system development and which
can be adapted to become the product itself. However, in an incomplete form, it is a high-
level software architecture. The generic model includes more than an architecture. It in-
cludes constraints, implications, and decisions which can arise in analogous developments.
For this reason, it is also a development model and serves as a plan for the development.

The relation of derivative systems and system constructs to the system under development
(derived system) is shown indirectly (i.e., by way of the arrows to the generic model) rather
than directly for several reasons:

• The generic model serves as an integrating media for the three software devel-
opment capabilities and the two basic development processes, the derivative
and constructive.

• It limits the number of derivative systems and constructs available during the
development by imposing additional constraints. The number of derivative sys-
tems and constructs is potentially very large and will increase over time. The
contributions of many of these will have already been incorporated into the
generic model; thus, as the generic model is extended, the need for more
derivative systems and constructs is diminished.

• The generic model provides a context that facilitates understanding for using
the derivative system(s) and constructs.

• The generic model is key to formal improvement of this reuse model. The
derivative systems and constructs address the project level; the generic model
addresses a market area of many projects. The model can be extended to in-
clude operational capabilities for simulating and prototyping project families.

• The generic model provides a base for the formulation of a reuse strategy.

The arrow from the generic model to the collection of parts represents the influence such a
model has on identifying new parts and improvements to existing parts. The arrow from the
derivative system(s) to the generic application represents the abstraction of a collection of
(derivative) related systems to formulate a project family, represented by the generic appli-
cation model. The upward arrows from the derived system represent feedback loops for the
improvement of the model indirectly via the derivative systems and the parts. The derived
system has used subsystems and parts from the libraries, possibly extending them or im-
proving them. The derived system, once completed, becomes a new derivative system for
the next development.

12 CMU/SEI-88-TR-22

Features are special attributes which characterize what is reusable. A user or a program
manipulates features in order to reuse operations at runtime and to identify structures at
derivation time or parts at construction time.

CMU/SEI-88-TR-22 13

14 CMU/SEI-88-TR-22

5. Generic Model Improvement
A reuse strategy should include means for improving the strategy and evolving the model.
Identification of possible improvements can be accomplished through data collection activi-
ties and post mortem analyses. Evolution is facilitated by categorizing types of possible
extensions. Relating the reuse strategy of the previous section to the means-end paradigm
suggests several of these:

• Extending and tuning the resource, derivative, and reusable artifacts and
modifications (i.e., refactoring to enhance reusability).

• Capturing constraints, design decisions, and implications which underlie the
derivative system, the derived system, and the generic model (eventually im-
proved to the point of becoming an operational model, that is, a generic
system).

• Creating representations for software developments which specify artifacts,
constraints, and design decisions.

• Extending the collection of available artifacts to include representations of
developments and subdevelopments.

• Creating and improving mechanisms for comparing artifacts and, moreover, for
comparing developments.

• Extending the generic model to allow simulation with the various artifacts and
derivations that were selected and possibly modified, based on the results of
the comparisons.

The mechanism for comparison and systematic extension of the generic model to allow sim-
ulation, and even prototyping, implies the necessity of domain-dependent artifacts and con-
straints. Domain dependencies and separation from domain independencies are likely to
become increasingly difficult as improvements are made. The separation of domain de-
pendence from domain independence is both critical and difficult. It is critical because, ulti-
mately, that which is "ideally" reusable is that which is domain independent. It is difficult
because dependence and independence are relative and subject to change with a shift in
point of view and with the advance of technology.

CMUSEI-88-TR-22 15

16 CMU/SEI-88-TR-22

6. Features Analysis and Initial Formulation of the
Generic Development and Application Model

Domain analysis is an investigation of an application area and its application systems to
determine the operations, objects, and structures which commonly occur. Domain analysis
produces a definition of the domain and descriptions of objects, functions, relations, and
rules which constrain them, in addition, domain analysis can include selection of a represen-
tative set of application systems to represent the domain, as well as commonality analysis to
identify reusable parts for the domain. Such domain analysis is prerequisite to the devel-
opment of a library of reusable parts which supports the third software development capa-
bility. A features analysis, another type of domain analysis, supports the second develop-
ment capability, the derivation of a software system from an existing system. A features
analysis produces feature specifications for application systems for a domain. Systems are
then structured to facilitate extension, modification, and deletion of features.

Both commonality analysis and features analysis support the first development capability
and the formulation of a generic development and application model. However, these anal-
yses identify and describe; they need to be followed by a synthesis activity to produce a
generic model. The generic model is not the requirements model of structured systems
analysis [Gane & Sarson; McMenamin & Palmer] which tries to separate the "logical system"
requirements from the "physical aspects" of the system, or the "essential activities" from an
"incarnation." The generic model may, in fact, incorporate physical or incarnation aspects in
order to exploit reusability. Moreover, it is a software system architectural development
model. It specifies the design of a project family, i.e., a collection of systems. It is to the
project family what a software architecture is to a single system. This implies a software
development which has two stages: project family design and project member develop-
ment. The project family design includes a high-level design of all members of the family
and would be done once. Furthermore, the generic model addresses not only software
products, but their development as well. It is the framework for deriving a new development
and new products and for applying reusable parts. Such a generic model is the key to unify-
ing different types of software reuse and an approach that can be refined and expanded into
a reuse development methodology.

The use of a generic model for software development is a fundamental departure from tradi-
tional software development. The model encompasses solution concepts and introduces
them into the development at every stage, thus violating the strong separation of phases
promoted in traditional development. Indeed, software development that maximizes reuse
differs fundamentally from traditional development in recognizing that the incorporation of
design concepts into requirements, or implementation concepts into design, is not neces-
sarily "bad," and it allows maximum reuse of prior developments and their products for new
developments. In problem solving terms, this perspective on software reuse incorporates
solution concepts into a problem description model.

CMU/SEI-88-TR-22 17

18 CMU/SEI-88-TR-22

7. Conclusion and Recommendation
This report has presented a perspective on software reuse that views reusability as a means
for achieving—or at least approximating—three desirable development capabilities. Means-
end analysis served as the unifying context for describing these capabilities. The capabil-
ities are characterized by their initial artifacts, intermediate and goal artifacts, artifact trans-
formations, and transformation constraints. The report reformulated these development ca-
pabilities in terms of software reusability, and proposed a generic development and appli-
cation model to unify the three capabilities. The model can be formulated as a project family
architecture produced from domain features analysis. It provides a framework for the devel-
opment of a new project family member, as well as for the products of that development.

The approach presented in this report can be expanded to a reuse strategy for tailoring a
software development methodology.

CMU/SEI-88-TR-22 19

20 CMU/SEI-88-TR-22

References
1. Adelson, B. and Soloway, E., The Role of Domain Experience in Software De-

sign, IEEE Transactions of Software Engineering, Volume SE-11, Number 11,
1985, pp. 233-242.

2. Bulman, D., Model-Based Object-Oriented Design for Ada, Pragmatics, Inc.
Waikoloa, Hawaii, 1988.

3. Carbonell, J.G., Learning by Analogy: Formulating and Generalizing Plans
from Past Experience, Machine Learning, An Artificial Intelligence Approach,
Tioga Press, 1983, pp. 137-159.

4. Gane, C. and Sarson, T., Structured Systems Analysis: Tools and Tech-
niques, Improved Systems Technologies, New York, 1977.

5. Giddings, R.V., Accommodating Uncertainty in Software Design, Communica-
tions of the ACM, Volume 27, Number 5, May 1984, pp. 29-35.

6. Lewis. T.G., Apple Macintosh Software, Software Reviews, IEEE Software,
March 1985, pp. 89-92.

7. McMenamin S.M. and Palmer, J.F., Essential Systems Analysis, Yourdon
Press Computing Series, Prentice-Hall, Englewood Cliffs, N.J., 1984.

8. Rosene, F., A Software Development Environment Called STEP, ACM Con-
ference on Software Tools, New York, NY, April 1985.

9. Schank, R.C., Language and Memory, Cognitive Science 4, 243-284,1980.

CMU/SEI-88-TR-22 21

22 CMU/SEI-88-TR-22

ECURlTY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

NONE
2a. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE

3. OlSTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

N/A
« PERFORMING ORGANIZATION REPORT NUMBERIS)

CMU/SEI-88-TR-22

5. MONITORING ORGANIZATION REPORT NUMBERIS)

ESD-TR-88-023

6.. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.

Sb. OFFICE SYMBOL
(If applicable)
SEI

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE •

5c. AOORESS (City. State and ZIP Code!

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. AOORESS (City. State and ZIP Code)

ESD/XRS1
HANSCOM AIR FORCE BASE
HAMSPOM. MA 01771

a, NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

Sb. OFFICE SYMBOL
(If applicable)

ESD/XRS1

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003
Be. ADDRESS (City. State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNDING NOS.

11. TITLE (Include Security Classification)

Perspective on Software Reuse

PROGRAM
ELEMENT NO.

63752F

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

J. M. Perry
13*. TYPE OF REPORT

FINAL

13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr.. Mo.. Day)

September 1988
15. PAGE COUNT

27 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI COOES

FIELD GROUP SUB. GR.

IB. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

software reuse
software development

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report presents a perspective on software reuse in the context of "ideal"
software development capabilities. Software reuse is viewed as a means of achieving
- or at least approximating - the ideal capabilities. A generic application and
development model is proposed for unifying various types of software reuse. The
model can be initially formulated as a project family architecture and produced
from a domain features analysis. The approach presented in this report is intended
to lead to a reuse strategy and methodology for software development.

20. OlSTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED £} SAME AS RPT. D OTIC USERS Q

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION
22a. NAME OF RESPONSIBLE INDIVIDUAL

KARL H. SHINGLER
22b. TELEPHONE NUMBER

(Include Area Code)

412 268-7630

22c. OFFICE SYMBOL

SEI JPO
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAG'

