
a)NAVAL POSTGRADUATE SCHOOL
* Monterey, California

(N

SSTA j~

,%,LECTr_
FEB 2 2 1983~

]a TSIES
ADA AS A PABDEUTIC TOOL FOR ABSTRACT

DATA TYPES

b v

Richard Neely Britnell

December 1988

Thesis Advisor: C. Thomas Wu

z-'.:roved for public release; distribution is unlimited

UNCLASSIiz Dr "
SECURITY Cl ASYIICATiN OP Ti-S ;7AC:E 1w o 9,5"

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICAT!ON lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION ,'AVAILABILITY OF REPORT

Approved for public release;
2b DECLASSIFICATION: DOWNGRADING SCHEDULE distribution is unlimited

4 PERFORMING ORGANiZATION REVORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFiCE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(if applicable)

Naval Postgraduate School Code 52 Naval Postgraduate School

6
. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a NAME OF FUNDING SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGAN1ZATON (If applicable)

8c. ADDRESS (City, State, and ZIP Cocie) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK U IK UNIT
ELEMENT NO NO NO ACCESSION NO

"1 TITLE (Include Security Classification)

ADA AS A PAEDEUTIC TOOL FOR ABSTRACT DATA TYPES

12 PERSONAL AUTHOR(S)

Britnell, Richard N.
13a TYPE OF REPORT 3b T1ME COVEPED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Yaster's Thesis Io ,,I TO 1988, December! 152
16 SUPPLEMENTARv NOTATION

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Goverrnet.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Abstract Data Type; Ada; Strong Typing; Generic;

Inheritance; Information Hiding; Exception;

Separate Compilation
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis discusses the pedaaogy for abstract data types (ADTs).
Lanauage features needed for teaching ADTs are listed and arguments for need-
inu them are provided. ADTs are implemented in Ada to show the benefit of
these features. Ada possesses the desired language features but the inherit-
ance provided in Ada is limited. ADT interface considerations and ADT imple-
mentation desian strategies are critical to the pedagogy for ADTs and are also
discussed. Although Ada is complex and difficult to learn and it oily provid
limited inheritance, it is an excellent language for teaching ADTs. A

20 D S P'B >T'O% A',LAR tT, Or AR A(21 ABSTRACT SECURITY CLASSIFICATION

:J hCtASS' 'ED 'JP'JI ED E SA%11C AS POT E] DTIC USERS Unclassified

22a NAME OF RESPONS,BiE 'ND, JIDIJA, 22b TELEPHONE (Include Area Code) ZLc OFFICE SYMBOL

Prr) -r Thr)mm 1u, (408) 646-3391 Code 52Hq

DD FORM 'a 73, 84 %MAP 83 APP edt~o' may be used until eyhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete *U.S. Governmem Pinting office. is-40.2a.

i UNCLASSIFIED

Approved for public release, distribution is unlimited

Ada as a Paedeutic Tool for Abstract Data Types

by

Richard Neely Britnell
Lieutenant Commander, United States Navy

B.S., Auburn University, 1976

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1988

Author: ___
Richard Neely Britnell

Approved by :_ __
C. Thoma Wu, Thesis Advisor

(,john Y. Yu ak,- ,lSecond Reader

Robert B. McGhee, Chairman
Department of Comp ter Science

Dean of Infoio and Po -Sciences

ii

ABSTRACT

This thesis discusses the pedagogy for abstract data

types (ADTs). Language features needed for teaching ADTs

are listed and arguments for needing them are provided.

ADTs are implemented in Ada to show the benefit of these

features. Ada possesses the desired language features but

the inheritance provided in Ada is limited. ADT interface

considerations and ADT implementation design strategies are

critical to the pcdagogy for ADTs and dre also discussed.

Although Ada is complex and difficult to learn and it only

provides limited inheritance, it is an excellent language

for teaching ADTs.

Accesion For

tNTIS CR, . d

DTIC. TAS []

UN-

* 1 , bi,ty Codes

.. .. . vj., . ,('d sor

DiA

lii

DISCLAIMER

Ada is a registered trademark of the U.S. Government

(Ada Joint Program Office).

iv

TABLE OF CONTENTS

I. BACKGROUND --------------------------------------- 1

II. LANGUAGE FEATURES NEEDED FOR TEACHING ABSTRACT
DATA TYPES 7-------------------------------------- 7

A. GENERICS 7------------------------------------ 7

B. SEPARATE COMPILATION 9------------------------9

C. INFORMATION HIDING -------------------------- 13

D. STRONG TYPING ------------------------------- 16

E. INHERITANCE --------------------------------- 21

F. EXCEPTION HANDLING -------------------------- 23

III. ADT INTERFACE CONSIDERATIONS -------------------- 27

A. DETERMINING ADT OPERATIONS ------------------ 28

B. CONSTRUCTING THE INTERFACE ------------------ 30

C. CONSISTENT INTERFACE VERSUS IMPLEMENTATION
CHANGES ------------------------------------- 32

IV. ABSTRACT DATA TYPE IMPLEMENTATION DESIGN
STRATEGIES -------------------------------------- 35

V. CONCLUSIONS ------------------------------------- 42

APPENDIX A: LINKED LIST POINTER IMPLEMENTATION ------- 45

APPENDIX B: LINKED LIST ARRAY IMPLEMENTATION --------- 56

APPENDIX C: STACK - ----------------------------------- 66

APPENDIX D: QUEUE ------------------------------------ 73

APPENDIX E: BINARY TREE ------------------------------ 80

APPENDIX F: BINARY SEARCH TREE ----------------------- 98

APPENDIX G: AVL TREE --------------------------------- 115

V

LIST OF REFERENCES-- 144

INITIAL DISTRIBUTION LIST---------------------------------- 145

vi

I. BACKGROUND

The primary objective of this thesis is to determine the

language features needed in a language for teaching abstract

data types (ADTs). Additionally the thesis will show the

benefits of choosing a language with these features for

teaching ADTs. The major emphasis of ADT instruction should

be the concept of abstraction. A language for teaching ADTs

should therefore support abstraction well. Ada is such a

language. The ADT increases the level of abstraction for a

programmer and reduces the complexity of a problem. This is

achieved by defining certain operations on a data type which

is also defined by the programmer. These operations can

then be used by the programmer without concerning himself

with the details of how they are performed. Programmers

should be concerned only with these operations and how to

use them. They should not be concerned with a list of

DON'Ts designed to prevent the programmer from violating the

ADT.

An ADT is composed of two parts, the set of data values

and the primitive operations on those data values. [Ref.

l:p. 184] A stack is a classic example of an ADT. The

stack could hold any data type, such as an integer or

record. The operations on the stack might contain Pop,

Push, Top, Full, Empty, Create and Destroy. ADTs are useful

1

when programming because they provide a higher level of

abstraction that is more easily understood and used by the

programmer. When programmers build their own abstract data

types, they have detailed knowledge of how the set of

operations work and detailed knowledge of the underlying

data structure. Additionally the level of abstraction is

raised above that provided by the programming language that

the programmer is using.

Computers of the 1940's and 50's required that programs

be hard wired for the particular computer. With the advent

of high-level languages the level of abstraction was raised

significantly. The data and operations of a problem could

now be stated using the data and control structures of a

language. A greater variety of control and data structures

became available in the 1970s in languages such as Pascal.

Programmers still relied mainly on translating the problem

directly into the structures provided by the language.

"Modular software construction and object-oriented design

supports the second major jump in abstraction that is

possible in the software development process." (Ref. 2:p.

30] The programmer can create his own abstractions with

abstract data types and escape the relatively limited level

of abstraction provided by the data and control structures

of a language. [Ref. 2:p. 30]

The major advantage of ADTs is the higher level of ab-

straction that they provide to the programmer. ADTs achieve

2

this higher level of abstraction by separating the essential

qualities of data, their structure and operations, from the

inessential details of their representation and implementa-

tion. [Ref. 3:pp. 26-27] The programmer's use of the ADT

should be restricted to the well defined set of operations.

Adhering to this restriction will preserve the integrity of

the data structure. Violating this restriction destroys the

data structure's integrity and circumvents the advantage of

the higher level of abstraction.

Undisciplined programmers by design and by chance

violate ADTs. When learning about ADTs, programmers must

understand the concept of an ADT first and foremost. Once

this understanding is achieved and accepted, the programmer

must then use his own self-discipline to prevent violations

by design when the programming language in use allows the

ADT to be violated. But violations by chance may still

occur if the language in use fails to have sufficient safety

features built into it to prevent these violations.

The language a programmer is using provides some safety

features that prevent violating the ADTs built into the

language. These safety features include typing, coercions,

and information hiding. ADTs built by the programmer should

have siEilar features to prevent the corruption of tho ADT.

Often times this is not possible as the language being used

may not provide or allow the programmer to build the

necessary safety features to prevent corruption.

3

The implementation of built-in ADTs in Pascal i. hidden

from the programmer. For example, the underlying machine

representation of an integer is unknown to the programmer.

Having tnis information hidden prevents the programmer from

manipulating it. ADTs written in Pascal by a programmer

however are inside a glass house that the programmer has

built. The programmer knows how the data is stored and

manipulated. Global data structures that should be

manipulated only by procedure and function calls, that

comprise the well defined set of operations, can be accessed

directly from any portion of the program. The programmer

must be cautious not to do this, as this is a major pitfall.

Another potential pitfall involves interface design and

specification. Programmers have difficulty with designing

the interface for an ADT. Often times the interface's

design is affected by the underlying data structure that the

programmer intends to use. This can cause major problems

when the underlying data structure is changed. The

interface should be designed so that underlying data

structure changes do not require interface changes. The

abstraction provided by the operations of the ADT should be

preserved even if the underlying implementation changes.

The operations allowed on the ADT are placed in the

interface. Pre- and post-conditions for each operation

should be specified. The operations that are allowed should

be carefully considered. "If the operation set is not

4

expressive enough, it might be impossible or inconvenient to

implement certain useful functions.... " [Ref. 4:p. 33]

ADTs when designed well and used properly can be of

great benefit to programmers. Conversely, when they are not

designed well or when used improperly, they can create major

problems for the programmer. The language for implementing

ADTs should support abstraction well.

ADTs have been implemented in Ada and are in the

appendices. Ada was chosen because it supports abstraction

well throuqh the use of packages. The language contains

features that prevent some of the common actions that

corrupt ADTs. Ada also provides a capability for writing

generic ADTs. Generic capability extends the level of

abstraction that can be achieved. The ADT implementations

found in the appendices will be referred to in Chapters II,

III and IV.

Chapter II will discuss the built in language features

required of an implementation language for constructing ro-

bust ADTs. These features will include those that support

the concept of an ADT.

Chapter III will explain what should be provided in the

interface between the ADT and the user and how the interface

should be built. This chapter will also discuss the user

interface changes caused by different implementations of an

ADT.

5

Chapter IV will discuss single ADT implementation design

strategies as well as implementation design strategies for

multiple ADTs that are related or dependent on one another.

The importance of the material in the previous two chapters

will be amplified by the discussion of these strategies.

Chapter V will summarize the most important points deve-

loped. Recommendations will be made that fall into two

categories, those concerning teaching ADTs and those con-

cerning Ada.

6

II. LANGUAGE FEATURES NEEDED FOR TEACHING
ABSTRACT DATA TYPES

The implementation language for an ADT should provide

as many features as possible that enhance the ADT concept

and also provides safety mechanisms that prevent violations

of the ADT. The implementation language should provide the

programmer the following features:

1. Mechanisms for constructing generic programs.

2. Separate compilation.

3. Constructs that allow and enforce information hiding.

4. Strong typing.

5. Inheritance.

6. Exception handling.

Ada provides all of these features but the inheritance is

somewhat limited.

A. GENERICS

Generics embody the pure abstraction desired of an ADT.

A stack that contains integers may have the two operations

of Pop and Push. These operations affect two data types

namely the integer and the stack of integers. A stack of

records is identical in concept to the stack of integers

with the exception of the data type being stacked, records

in place of integers. The operations on a stack are related

to the concept of a stack not to the data type being stored

7

in the stack. A generic stack capable of storing any data

type specified by the programmer allows the operations of

the stack to be fully abstracted and provides a stack

independent of the data to be stored.

A language should support generic ADTs. As explained

above, an ADT should be implementable independent of the

data type manipulated by the ADT. The operation set of the

ADT should be applicable to any data type. Generic ADTs

allow the operations to be abstracted regardless of the data

type to be manipulated.

If logical parallels between real world objects and ADTs

can be shown when teaching ADTs then the student is more

likely - understand the concept of an ADT because he

already understands a real world object. Examples of lists

in the real world are grocery lists, mailing lists, and

"things to do" lists. Each of these lists contain different

objects; groceries, addresses, and jobs. But all of the

lists share the concept of items enumerated for a specific

reason and also the things (operations) that can be done

with a list. The list concept is separate from the items in

the list. Each of the examples above are specific instances

of a list. A list ADT should only embody the list concept,

which is a concept that the student is already familiar

with. A language that allows generic ADTs will support this

logical comparison between the ADT and its real world

counterpart.

8

Ada provides for generic programs with the generic

package or subprogram (i.e., procedures and functions). The

generic program unit serves as the template from which

actual packages or subprograms can be instantiated. When

instantiating a specific instance of the generic template

the programmer must provide the actual parameters that will

take the place of the generic parameters in the template.

[Ref. 5: p. 14] The generic linked list found in Appendix A

must have the generic parameter Item specified by the

programmer when instantiating the package.

The parameter Item can be any language or user defined

type. This gives the user of the generic ADT many different

specific ADTs. He can have a linked list of integers,

characters, records, or linked lists. The added benefit is

that the proof of correctness of the specific ADTs can be

implied from the proof of correctness of the generic ADT.

B. SEPARATE COMPILATION

ADTs are often used in large software projects because

they allow the breakdown of the overall project into smaller

modules which can then be divided among various programmers.

Programmers working on different modules may have the need

to use some of the operations provided by an ADT written by

a different programmer or team. If modules can be compiled

separately then the programmers can make use of each others

work prior to project completion. Separate compilation

9

helps realize the full benefits of this break down and

encapsulation.

Ideally a language should provide for separate

compilation of the implementation and the specification of

an ADT. This feature allows the operations of ADTs to be

fully specified and the ADT made "available" for use prior

to its implementation. Changes to an ADT's operation set

can be made easily when only the specification exists,

thereby providing greater flexibility to the design of a

large project consisting of several ADTs. The

implementation of a project can be simplified because the

complete specification of the ADTs can be completed before

the ADTs are implemented.

Students can focus their attenticn solely on

implementing an ADT when separate compilation is available.

Concern with the interactions between the ADT and the

program that uses it can be put aside while the ADT is

built. Separate compilation also supports the programming

team methodology. An instructor can specify the interface

of the ADT and once the student has implemented the ADT, the

instructor can then provide a driver test program to test

the implementation built by the student.

Some objects in the real world that are made into ADTs

are viewed by students as independent stand alone objects.

A list does not require anything external to itself to be a

list. Therefore a list ADT should not require anything

10

external either. An encoded list ADT should be compilable

separate from the program(s) that will use it. This

provides the student an abstract concept in code that can be

used at any time, just as he couid u.e the object in the

real world. Students can more clearly see the elegance an

ADT provides if the ADT can be separately compiled.

Additionally, the specification and implementation of an ADT

should be independent as long as the implementation fulfills

the requirements of the specification. If the specification

and implementation can also be compiled separately, the

student can see that the operations of an ADT are

independent of the implementation. A written list and a

mental list are two different implementations of a list.

The operations on a list though remain the same regardless

of the implementation.

Ada provides for separate compilation of program units.

More importantly Ada allows a program unit specification to

be compiled into a library unit. This defines the interface

between the program unit and the rest of the program. An

example of a specification for a Linked List ADT can be

found in Figure 1 with further details of the specification

found in Appendix A. The program unit b can then be

compiled into a secondary unit. The body contains the

executable code of the corresponding library unit. [Ref.

6:p. 222]

11

Generic
Type Item is Private;

Package Generic List is
Type List is Limited Private;

BEYOND END Exception;
NOT FOUND Exception;
INSERT BEYOND : Exception;
DELETE-OUTOFRANGE Exception;

Procedure Clear (L in out List);

Function Full (L in List) Return Boolean;

Function Empty (L in List) Return Boolean;

Procedure Insert (L : in out List; P : in Integer;
I : in Item);

Procedure Delete (L : in out List; P : in Integer;
I : out Item);

Procedure Length (L : in List; Long : out Integer);

Procedure FindItem (L in List; P : in Integer;
I : out Item);

Procedure FindPos (L in List; P : out Integer;
I : in Item);

Private
Type Node;
Type List is Access Node;

End GenericList;

Figure 1. Specification of Linked List

The distinction between the specification and body of a

program unit is significant. By defining the operations

that an ADT will have, the programmer can create a library

unit that is then visible to another compilation unit by

means of a with clause. [Ref. 6:p. 222] This feature of

Ada allows for a very modular design that can be defined and

12

compiled into library units before the first line of

executable code is written. [Ref. 2:p. 30] The design of

the ADT can be completely abstracted from the

implementation.

C. INFORMATION HIDING

The implementation details of an ADT should be known

only to the author of the ADT. Programmers that use the ADT

should be restricted to the predefined set of operations

allowed by the ADT. An ADT's integrity will remain sound if

the only operations performed are those specified by the

author. The essence of information hiding is best captured

in Parnas's Principles:

1. One must provide the intended user with all the
information needed to use the module correctly and
nothing more.

2. One must provide the implementor with all the informa-
tion needed to complete the module and nothing more.
[Ref. l:p. 285]

Implementation details hidden from the user inhibit the

user's ability to corrupt the ADT. Additionally the user's

focus is restricted to what the ADT provides and not how it

is provided. Therefore, his thought process for solving a

problem is simplified by the higher level of abstraction

that the ADT provides.

Students learning about ADTs are primarily novice

programmers. They are still learning the tenets of good

programming. When an error in a program is discovered the

quickest fix is often the one chosen. When the program is

13

retested and the error fails to reappear the student

concludes that he has fixed the problem. The student's

correction; however, may be violating the principle of

information hiding. He may have solved the problem by

directly manipulating the underlying data structure of the

ADT that he is using, if the language fails to enforce

information hiding. The student has now violated the ADT.

The benefits that the ADT provide have been muddied by the

student's actions. Most importantly, the student has failed

to use the ADT properly and he may not even realize this

fact. With information hiding enforcement provided by the

language the student is prevented from making this kind of

error.

Ada provides a very good mechanism for information

hiding through packages and private types. The package is

composed of two parts, the specification and the body. The

specification formally defines the ADT and provides the

interface to the outside world. The body contains the

hidden details of the implementation. [Ref. 5:p. 131 A

complete specification of a Stack ADT is provided in Figure

2. The user and author of the package should both be able

to perform their jobs correctly by using only the

information provided in a well documented specification.

Ada also enforces information hiding through private and

limited private types. Both of these hide the

implementation details of the user defined type. The former

14

Generic
Type StackItem is Private;

Package Gen Stack is
Type Stack is Limited Private;

Procedure Clear (S : in out Stack);
-- pre - None.
-- post - S is an empty stack.

Function Full(S : in Stack) Return Boolean;
-- pre - None.
-- post - True if stack S can not have more items added,
-- otherwise False.

Function Empty(S : in Stack) Return Boolean;
-- pre - None.
-- post -True if stack S has no items in it, otherwise

False.

Procedure Push (S : in out Stack; I : in StackItem);
-- pre - The size of S has not reached its maximum.
-- post - S has item I on top of it.

Procedure Pop (S : in out Stack; I : out StackItem);
-- pre - S is not empty.
-- post - Top of S-pre is assigned to I and S no longer
-- contains I.

Procedure Size (S : in Stack; Depth : out Integer);
-- pre - S exists.
-- post - Depth is equal to the number of items in S.

Procedure Top (S : in Stack; I : out StackItem);
-- pre - S is not empty.
-- post - I is the top item of S. S is unchanged.

Private
Type Plate;
Type Stack is Access Plate;

end GenStack;

Figure 2. Full Specification of Stack ADT

15

allows the assignment, equality and inequality operations to

be performed between objects of the same type outside the

package. The latter prohibits these three operations

between objects of the same type. The operations available

on a limited private type are restricted then to only those

operations given in the specification part of the package.

[Ref. 6:p. 158]

Ada also prohibits function side effects. Namely, a

function can only return a value. Pascal fails to provide

this capability and functions such as that shown in Figure 3

can occur as a result.

The problem with the Length function is that the current

pointer's position in the list has been altered. The

position of the current pointer prior to the function call

has been lost. The current pointer is now pointing to nil

at the very end of the list. The length has been provided

but the underlying data structure, List record, has been

altered. This alteration is a side effect of calling the

Length function. Parameters passed to a function should not

be altered and returned in the altered state. This feature

also helps to enforce the security of the underlying data

structure which is one of the goals of information hiding.

D. STRONG TYPING

Strong typing requires that whenever an object is used

its type must match the type necessitated by the context.

(Ref. l:p. 192] Failure to provide strong typing can allow

16

Type
NodePointer = Node;
Node = Record

Content : Char;
Next : NodePointer;

end;

List = Record
Current : NodePointer;
Head : NodePointer;

end;
Var

L : List;

Function Length (Var L : List) : Integer;
(* Returns the length of list L.*)
Var

Count : Integer;

Begin
Count := 0;

L.Current := L.Head; (*Puts Current at front of
list*)

While L.Current <> nil Do
begin (*Moves down the *)

L.Current := L.Current^.Next;(*list one node *)

Count := Count + 1; (*at a time counting*)
end; (*each node.*)

Length := Count;

End;

Figure 3. Example of Function Side-effect

operations to be performed between different data types that

are illogical. By allowing illogical operations the

abstraction achieved with an ADT becomes clouded and the

ADT's underlying data structures become suspect.

Type checking can be completed statically (compile-time)

or dynamically (run-time). The advantage of static checking

is that type errors are found earlier than dynamic checking.

17

Strong typing can be achieved either statically or

dynamically. [Ref. l:p. 464] BUT if dynamic checking is

done, then some type of protection should be provided in the

language to control the action of the program if a type

violation occurs.

Novice programmers often make mistakes related to type

incompatibilities. Assignments, relational operations and

parameter passing are prime opportunities for a type

incompatibility error. Students need strong typing to catch

these errors. The student could also become confused by

inconsistent actions provided by ADT operations if strong

typing were not enforced.

Ada performs type checking statically and uses name

equivalence as its type checking method. Name equivalence

defines two objects to be of the same type if they have the

same type name. [Ref l:p. 270] Ada also has subtypes and

derived types. Subtypes alleviate some of the restrictions

caused by pure name equivalence. A subtype is a subset of

some base type. The subset is defined by a constraint that

is applied to the base type. All operations permitted on

the base type can be used with the subtype. [Ref. l:p. 272]

Derived types are derived from an existing type, either

built in or user defined. The derived type is a new

distinct type that has all of the capabilities of its

parent, the type from which it was derived. BUT the derived

type and its parent type are different types.

18

Figure 4 shows an example of a subtype and a derived

type in Ada. Operations between the types DaysofWeek and

WeekDay are permissible as the types are compatible. This

provides a convenient way to express this abstraction and

retain type compatibility. The NumericMonth type inherits

all of the operations available on integers but an integer

type is not compatible with NumericMonth type.

Type Days ofWeek is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,

Sunday);

SubType Week Day is (Monday, Tuesday, Wednesday,
Thursday, Friday);

(a) Subtype Example

Type NumericMonth is new Integer range 1..12;

(b) Derived Type Example

Figure 4. Subtype and Derived Type

Ada allows programmers to define their own types. The

consistency of these types is checked both inside the

current program unit and with the external units that the

type interfaces with. (Ref. 7:p. 121] Two different

enumerated types can have as values the same identifier.

Red can be a value of the enumerated type stoplight and also

be a value of the enumerated type primary. The distinction

between the two reds is resolved by the context in which red

is used. A variable of type primary assigned red will mean

19

the primary red. [Ref. l:p. 275] This allows overloading

of an identifier but is still consistent with the strong

typing definition.

"Red" can be used in many different contexts in the real

world. There are red cars, red shirts, red lights that all

use red as a adjective. Red is also a color and in this

case is a noun. All of these red abstractions should be

obtainable. A language should not restrict an identifier to

a one time only use in an enumerated type.

Figure 5 gives an example of an incorrect procedure call

that would be detected by the strong typing in Ada. If a

student were using a Stack and a Tree in the same program he

might make the error illustrated in Figure 5. This error

could be the result of the student failing to closely check

the interfaces of the ADTs being used.

T : Tree;
Height Integer;

Size (T, Height);

(a) Procedure Call

Procedure Size (S in Stack, Depth : out Integer);

(b) Interface

Figure 5. Procedure Call Type Error

20

E. INHERITANCE

Inheritance can be very beneficial by automatically

providing certain predefined or user defined capabilities

and attributes. Once a programmer has solved an elementary

problem he should be able to use the solution directly in

solving other problems without having to restate or rewrite

his first solution. Inheritance is the feature that

provides the programmer this capability. Language provided

capabilities for a class of objects should still be

available to programmer defined subsets of that class.

Inheritance allows an abstraction that has been created

to be used by other objects or ADTs that require the same or

sirilar abstraction. Inheritance allows an abstraction to

be extended to multiple ADTs at several different levels.

With inheritance the programmer can take advantage of

predefined abstractions when constructing new ADTs instead

of having to rebuild the abstraction. Inheritance provides

a programmer easy access to predefined abstractions and

helps the programmer avoid duplicating abstractions.

Students can arrange ADTs that are related into a

hierarchical structure. A hierarchy is a powerful

abstraction itself. The "IS A" relation can be applied from

the bottom of the hierarchy to the top. Students can then

study ADTs with the help of the easily understood

abstraction of a hierarchy.

21

Students are taught that certain ADTs are just special

cases of other more general ADTs. For example, an AVL tree

is a special case of a binary search tree, which is a

special case of a binary tree, which is a special case of a

tree. If a tree ADT is implemented first then all of the

other trees should be easily derived. The general features

of an ADT can be passed to its special cases through

inheritance. The implementation of special case ADTs can be

approached in the same logical manner used to describe them.

Derived types and subtypes in Ada inherit their opera-

tions from their parent type. The operations for a derived

type are implicitly declared upon declaring the derived

type. [Ref. 8:p. 3-11] Programmers can perform error

checking more easily with subtypes by setting the range

constraints of a subtype. For example, a type named

numeric-month could be a subtype of the integers with the

range constraint of one to 12. The automatic inheritance of

integer operations by numeric-month saves the programmer

from having to define these himself. Similarly the

programmer can separate two abstractly different types that

have the same parent and range constraint by using derived

types. [Ref. l:p. 273] For example, the type hockey period

could be derived from integers with the range constraint of

one to three and the type strikes could be derived from

integers with the range constraint of one to three also.

Strikes and hockey period would be incompatible types. But

22

all of the operations allowed on integers would be available

for both of these types. Inheritance of operations and

attributes of the parent type by derived types and subtypes

saves the programmer the problem of defining these himself.

Inheritance by derived types however is not extended to

generic subprograms. [Ref. 8:p. 3-12] This prevents

implementing some generic abstract data types in terms of

other generic abstract data types. Specifically ADTs that

can be placed in an hierarchical organization can not be

implemented in terms of the parent ADT if the operations of

the parent ADT are generic. If the inheritance was

available then the operations of the stack and queue could

be implemented in terms of a generic linked list. This

implementation methodology using inheritance will be

discussed further in Chapter IV.

F. EXCEPTION HANDLING

A run-time error is an exception to the normal course of

events. [Ref. 9:p. 215] Exceptions cause a program to quit

running in the expected manner. An ADT's interface is the

only connection that the user has to the ADT. Run-time

errors can occur in the implementation details of the ADT

which are hidden from the user. The user can not fix the

problem by changing these details. BUT the problem can be

taken care of by an exception handler if the language has

this feature.

23

Exception handling should be available to both the

implementor and user of an ADT. Ada provides this

capability. Ada has five pre-defined built-in exceptions

that are raised when the situation dictates. [Ref. 8:p.

11-1] User defined exceptions can also be defined and

raised when the programmer desires. The programmer can

handle both types of exceptions in whatever manner he

considers appropriate.

The ability to perform exception handling allows the

author of an ADT to either tightly control all errors caused

when using the ADT or loosely control them by raising

exceptions and allowing the user's program to handle them.

Some ADTs might require tight control while others require

loose control. The key point is that either tight, loose or

a combination of both can be provided when exceptions can be

handled by the programmer.

When students are implementing ADTs, the point at which

exceptions are handled can be dictated by the instructor.

The instructor can choose where specific exceptions are to

be handled. He can choose to handle some within the ADT and

others to be handled outside of the ADT. Additionally, all

exception handling decisions could be postponed until all

other aspects of the ADT are implemented. A skeleton for

handling each exception could be built inside the ADT or

outside in the application, with no action being performed

by using the null statement as the handling code. These

24

null statements could then be replaced with the desired

action when finalizing the ADT or application.

Exceptions should be allowed in an ADT. Most objects in

the real world behave consistently until an action occurs

that is an exception to the normal operating conditions.

ADTs should be able to capture all of the operational

characteristics of the object it is an abstraction for.

Restricting an ADT's capability to only that which is

considered normal fails to fully capture the object being

abstracted. Students should be given the opportunity to

fully capture all of the operational characteristics of an

object in an ADT. Exceptions in the real world can be

translated directly into exceptions in code.

Exception handlers are placed at the bottom of the

programming unit in which an exception can occur or in which

an exception is to be handled. Once an exception is raised

the processing within the programming unit where it was

raised is terminated. Control is passed to the exception

handler at the end of the block or the end of the body of a

subprogram or package. [Ref. 10:p. 315] If the exception

can not be handled by that unit then the exception is

propagated to another part of the program. [Ref. 9:p. 222]

If the exception is never handled then the program will

terminate. If it is handled then control continues past the

end of the unit in which it was handled. [Ref. 10:p. 316]

25

Exceptions should be used in a controlled and

disciplined manner. They should not be used as primary

control structures. Constructs such as if-then and case

statements should not be replaced with exceptions and their

associated handlers. Exceptions and their handlers should

augment these constructs instead of replacing them.

26

III. ADT INTERFACE CONSIDERATIONS

The ADT's interface is the only view a user has of the

ADT. The decision a user makes about the usefulness of an

ADT will be based on the information provided in the ADT

interface. If a user decides to use an ADT then the correct

use of the ADT is largely dependent on the interface and the

user's interpretation of the information available in the

interface. The interface clearly is the most important part

of the ADT to the user. The following three factors

influence an ADT's interface design:

1. Operations allowed on the ADT.

2. How to create the interface.

3. Interface stability relative to implementation
changes.

The separation of the specification and implementation

of an ADT when using Ada packages requires students to

carefully consider the specification or interface of the ADT

before beginning the implementation. This helps them to

focus their attention on what the. ADT will provide. Poor

selection of ADT operations, poor documentation of the

interface, and lack of implementation flexibility will

negate the benefits ADTs provide.

27

A. DETERMINING ADT OPERATIONS

An ADT should make programming easier for its user. By

providing every conceivable operation that a user may want

the ADT will contain dead weight. Conversely, an ADT with a

severely limited operation set may not provide all of the

necessary functionality required by the user. A balance

should be struck between these two extremes. The user of

the ADT should be able to easily build additional operations

by using the operations provided by the ADT.

The operation set of an ADT should be fully expressive.

The expressiveness of an operation set can be divided into

expressive completeness and expressive richness.

"Expressive completeness requires that all of the computable

properties on the values of a data abstraction can be

expressed. Expressive richness requires in addition that

all computable properties can be expressed 'simply and

naturally'." [Ref. 4:p. 35] Expressive richness is the

stronger of the two. (Ref. 4:p. 35]

An expressively complete data abstraction's operation

set will allow all of the computable properties of the data

abstraction to be expressed. BUT the complexity of

expressing all of these values is not considered. An

expressively rich data abstraction's operation set will

allow all of the computable properties of the data

abstraction to be expressed easily. [Ref. 4:p. 36] For

example, the linked list ADT in Appendix A does not have a

28

member operation. But this operation can easily be

constructed by the user by returning each item in the list

sequentially and checking it against the item in question.

Some languages require certain operations be performed

before a declared ADT can be used. A linked list in Pascal

implemented with pointers requires that the list be created

by establishing the head node with a new operation. The

list can not be created by simply declaring a variable of

the appropriate type. This requirement is not consistent

with how other data abstractions built-in to the language

are used. If the programmer wants an integer, he only has

to declare a variable of type integer.

The linked list ADT in Appendix A allows the user to

declare a list and as a result have a list that is empty.

The empty list is immediately provided because the default

initialization of pointers in Ada is to null. If the imple-

mentation of the list in Appendix A had used a list instance

record with the head and tail as attributes then the simple

declaration of a list by the user would not result in an

empty list. The list declared by the user would be a

pointer to the list instance record and would be null. The

attributes of the record would not be defined, even if the

attributes were pointers. Assuming that the list instance

record is private, the programmer has no way to obtain an

empty list without invoking a create operation. The action

required to create the ADT itself is therefore not

29

implementation independent. Ideally the ADT should be

created upon declaration of a variable of the ADT's type as

this would be similar to what happens when a language

defined type is used to declare a variable.

The operations that make up the operation set of an ADT

should be restricted to those required by the user and as

much as possible to those that are similar to the operations

of the built-in ADTs of the programming language. This

similarity should be maintained among different ADT

operation sets. For example, if an ADT can be created and

destroyed dynamically then all ADTs should have that

possibility. The set chosen should be as rich as possible

because a rich set provides maximum functionality from a

small number of operations.

B. CONSTRUCTING THE INTERFACE

The interface through which the user of the ADT will

gain access to the ADT must provide all of the information

needed for the user to correctly use the ADT. The

operations allowed must be listed with their associated

parameters. The pre-conditions that must be met before an

operation can occur must be provided. Similarly the result

of the successful completion of the operation must be stated

also. Any possible errors that may occur as a result of the

operation should also be stated. The errors need not

contain those that are the result of performing the

operation without having met the pre-condition for the

30

operation first. The interface should also contain any

other information necessary for the successful use of the

ADT. This other information could include special

instructions about other actions the user needed to perform

before using the ADT.

Programming languages such as Pascal, Modula-2 and Ada

do not require all of the information stated above for

building an ADT interface. They do require that the

operations and their associated parameters be specified but

the additional information is not required for a successful

compilation. In Pascal and Modula-2 the additional

information must be included in the form of comments

embedded in the code or provided separately in a user's

guide. In Pascal and Modula-2 comments are the only way for

stating the additional interface information. In Ada the

additional information is primarily provided via comments

also. Some of the additional information in Ada can be

stated with exception declarations and generic declarations.

In both of these cases comments help to further specify this

information. Figure 6 shows an example of the generics from

the binary tree ADT found in Appendix E.

The procedure WhenTraversingDo must be defined by the

user of the ADT before he can use the ADT. The generic type

Item must be specified when the ADT is instantiated. The

exception NOTFOUND is declared and then a comment in the

procedure Find specifies when it is raised. Some of this

31

Generic

Type Item is Private;

with Procedure WhenTraversingDo (Content : in Item) is

-- A user defined procedure that is compatible with this
-- should be compiled for use in the instantiation of

this
-- generic package.

Figure 6. Generics to be Instantiated

information must be declared because Ada requires it but the

full understanding of the information is achieved best

through the use of comments.

Ideally the interface of an ADT should be completely

separate from the implementation of the ADT. In Modula-2

and Ada this is achieved by the definition module and

package specification respectively. Both of these are

compilation units also. The separation between the

interface and the implementation of the ADT helps to hide

the implementation and to enforce the manipulation of the

ADT through the interface only.

C. CONSISTENT INTERFACE VERSUS IMPLEMENTATION CHANGES

The ADT interface states what is done and not how it is

done. This is the primary abstraction provided by an ADT.

The author of the ADT is the only one to know how the ADT

accomplishes what it does. The user of an ADT is only

concerned with what the ADT does for him and how efficiently

it is done.

32

The author of an ADT should create an interface that is

totally independent of the implementation used. Once the

initial ADT implementation is completed and the ADT is

available for use, subsequent changes to the implementation

should not effect the interface. If the interface is

affected then the programs that have used the ADT may

require changes. If it is impossible to prevent changing

the interface then the changes should be kept to a minimum.

The linked list ADT in Appendix A is implemented using

pointers. The linked list ADT in appendix B is implemented

using an array. The interface provided to the user of both

ADTs is identical with one exception. The array implementa-

tion requires that the maximum size of the list be declared

when the list is instantiated. Figure 7 shows the different

generic parameters that must be instantiated for the pointer

and array implementations.

Generic
Type Item is Private;

(a) Pointer Implementation

Generic
Max Integer;
Type Item is Private;

(b) Array Implementation

Figure 7. Generics for Linked List Implementations

33

This interface change can not be prevented. By careful

selection of the maximum list size, the changes required to

previously written programs, which used the pointer imple-

mentation, can be restricted to the instantiation statement

of the ADT.

34

IV. ABSTRACT DATA TYPE IMPLEMENTATION DESIGN STRATEGIES

The programmer should carefully consider what ADTs he

needs and the operation set of each before implementing the

first ADT. Once the ADTs have been chosen, he should check

to see what ADTs are dependent on other ADTs and what ADTs

are special cases of other ADTs. The ADTs that are

independent and those that are parent ADTs of special case

ADTs should be implemented first. This order of

implementation is not required but may simplify the overall

implementation effort. The other major consideration when

implementing ADTs is the performance criterion of the

operations. This particular aspect of the ADT can vary

greatly depending on the requirements of a project but is

not the focus of this thesis. For further discussion of

this aspect refer to [Ref. 3].

If two ADTs A and B are to be built and B is a special

case of A then the A ADT should be built first. If the

language of implementation provides inheritance then B can

be defined in terms of A with additional code or

modifications included to take care of the specific details

that make B a special case of A. If inheritance is not

provided in the language then A should still be built first.

B can then be defined by copying the relevant portions of

code from A that would have been inherited and the

35

additional code or modifications then made. The rationale

for this ordering of implementations is simple. ADTs

provide higher levels of abstraction making programming

easier. The more general ADT, A, will be easier to

conceptualize than the more specific, B. Likewise, the

implementation of the A ADT will be easier to complete than

that of B.

The ADTs found in the appendices were implemented in the

same order as they appear. The linked list ADT was

determined to be the atomic ADT that could be used as the

parent of the stack and queue ADT. If Ada allowed inheri-

tance of generic subprograms, then the stack and queue

operations could be derived from the linked list ADT

operations.

Figure 8 shows some of the operations from the linked

list, queue, and stack. The two operations of the stack,

Push and Pop, could be implemented with the linked list

operations, Insert, FindItem, and Delete. A Push is

equivalent to an Insert at the first position of the list.

A Pop is equivalent to finding the first item in the list

and then deleting the item from the list.

The two operations of the queue, Enqueue and Serve,

could be implemented using the Insert, Length, Delete, and

FindItem operations of the linked list. The Enqueue is

equivalent to inserting at the end of the list which is the

36

Procedure Insert (L : in out List; P in Integer;
I : in Item);

Procedure Find-Item (L : in List; P in Integer;
I : out Item);

Procedure Delete (L : in out List; P in Integer;

I : out Item);

Procedure Length (L : in List; Long : out Integer);

(a) Linked List

Procedure Push (S in out Stack; I : in StackItem);

Procedure Pop (S in out Stack; I : out StackItem);

(b) Stack

Procedure Enqueue (Q : in out Queue; I : in QueueItem);

Procedure Serve (Q : in out Queue; I : out QueueItem);

(c) Queue

Figure 8. Selected ADT Operations

length of the list plus one. The Serve operation is

identical to the Pop for the stack.

The level-by-level traversal algorithm used in the tree

ADTs found in the appendices uses a queue. The implementa-

tions were written using a linked list. The linked list was

chosen to show that the queue is only a special case of the

linked list. Each of the tree ADTs contains a level-by-

level traversal operation. Each of the implementations

relies on a linked list ADT. The implementations could have

relied on a queue ADT as well. But the point is that these

37

i'plementations are dependent on another ADT. By

implementing the ADTs that are used by other ADTs first, the

implementations of ADTs that rely on these ADTs can be

tested immediately upon completion.

The operations within a given ADT may be dependent on

other operations within the same ADT. The dependent

operations should be implemented after the ones they depend

on. In the linked list ADT, the Length operation depends on

the Empty operation. Use of ADT operations within an ADTs

implementation facilitates the understanding of the

implementation by taking advantage of the higher level of

abstraction that the operations provide.

The Insert operation of the binary search tree and

AVL-tree makes use of the exception NOTFOUND. Figure 9

shows the code that makes up the body of the Insert from the

binary search tree ADT of Appendix F. The expected result

of the Find operation imbedded in the Insert operation is

for the NOTFOUND exception to be raised. This is not a

classical use of an exception because the raising of the

exception is the desired action. As stated earlier,

exceptions should be used in a controlled and disciplined

manner. The use of the NOTFOUND exception here is

acceptable because it results from taking advantage of the

action the Find operation provides. No other ulterior

motive exists for using the Find operation in this way. If

the Find operation were not used then additional code would

38

begin
Success := True;

If Empty(T) then -- Insert Item into the root node.
TempPtr new Node'(E,null,null);
T.Root TempPtr;
T.Current := T.Root;

Else
Find (T,E);
Success := False;

end If;

Exception
When NOTFOUND => --Action taken to insert new
node.

If ItemlLessThanItem2(E,T.Current.Element) then
T.Current.LeftChild := new Node'(E,null,
null);
T.Current := T.Current.LeftChild;

Else
T.Current.RightChild :=new Node'(E,null,
null);
T.Current := T.Current.RightChild;

end If;
When Others =>

Raise;
end Insert;

Figure 9. Code of Insert Operation for Binary Search Tree

be required to move the current pointer to the appropriate

node in the tree for the insertion. Code would also be

required to verify that the new node being inserted was not

already in the tree.

The non-classical use of an exception in the above

manner allows a programmer to write code equivalent to a

Boolean function with a side effect. If the Find procedure

were changed to a Boolean function (True when the Item is

found) then the position of the current pointer in the tree

could not be altered by the Find call, as Ada will not allow

39

an in out or out parameter in a function. The Find

procedure moves the current pointer and the exception

NOTFOUND masquerades as the Boolean result. When the

exception is not raised then the Boolean result is true

otherwise it is false.

The tree ADTs in the appendices each contain a with

clause for WhenTraversingDo. Each of the trees are generic

and the data type to be embedded within a specific instance

of a tree ADT is not known when writing the generic ADT.

The traversal operations provided within the trees would be

of no use to the user of the ADT if he could not perform

some action on the content of each node in the tree. The

desired action to be performed is only known by the user of

the ADT. By requiring the user to define WhenTraversingDo,

the author of the generic ADT can relieve himself of solving

this problem.

ADTs that require ordering of data present similar

problems that can be handled in a similar way. The binary

search tree and AVL tree ADTs in Appendices F and G both

contain a with clause for ItemlLessThanItem2. This function

must also be defined by the user of the ADT prior to its

use. Figure 10 shows the generic declarations of the AVL

tree that must be defined when the AVL tree is instantiated.

The complete AVL tree can be found in Appendix G. The

proper ordering of different values of the data type becomes

the user's responsibility.

40

Generic
Type Item is Private;

with Procedure WhenTraversingDo (Content in Item) is

with Function ItemlLessThanItem2 (Iteml in Item;
Item2 : in item) Return Boolean is

Figure 10. Generic Declarations of AVL Tree ADT

A programmer can save himself time and make his job

easier by first studying all of the ADTs he will need for a

project before implementing any of them. Ada provides an

easy way to specify the what of an ADT separately from the

how by using package specifications. Recognizing the

interdependence among ADTs and among operations within an

ADT will help a programmer to see and solve each problem

only once. By doing this he can use the benefits that

higher levels of abstraction provide while he creates even

higher levels of abstraction.

41

V. CONCLUSIONS

ADTs can be taught with the primary emphasis placed on

the abstraction that ADTs provide. Ada is an excellent

language for teaching ADTs in this manner because it

possesses the features desired for building ADTs. The

language supports user defined abstractions well. The

generic package capability raises the level of abstraction

that one can obtain by abstracting the operations of an ADT.

ADTs can be built irrespective of the data type manipulated

by the ADT.

Programmers are prevented from committing common viola-

tions of ADTs by the language. Implementation details of an

ADT can be completely hidden from the user of the ADT

through the use of packages, private types and limited

private types. Run time exceptions can be handled by the

language. These exceptions can be handled within the ADT or

by the user of the ADT.

The inheritance capability provided by Ada gives the

programmer an easy way to define new types from parent types

and retain the operations applicable to the parent type for

the new type. The major failing of the inheritance

capability is the lack of generic subprogram inheritance.

This prevents defining one generic ADT in terms of another

generic ADT.

42

Ada is a very complex language and is more difficult to

learn than Pascal or Modula-2. This complexity is the major

detractor from using the language for teaching ADTs. A

programmer with previous Ada programming experience can

easily write ADTs in Ada. A novice programmer with no Ada

experience, however, will find the language quite difficult.

Ada provides many features that support abstraction and

the writing of robust ADTs. Generics, packages, separate

compilation, limited inheritance and exceptions all

contribute to the security and abstraction desired of an

ADT. The complexity of the language and the absence of

complete inheritance among all ADTs weaken Ada as a language

for ADTs. But the strengths of Ada are far greater than

these two weaknesses. In fact, if Ada were not as complex,

it would probably not have all of the strengths for ADTs

that it does.

Programmers should try to write generic ADTs instead of

specific ADTs. The advantage of generics over specifics is

the greater useability of an ADT. Packages should be used

as the programming unit because of the interface/

implementation separation provided by the specification and

body portions of the package.

When several ADTs are to be built and used together, the

programmer should specify the operation set of each ADT

before implementing the first ADT. The operation set chosen

for each ADT should be expressively rich. Programmer

43

defined exceptions and where these exceptions will be

handled should also be specified before the first ADT is

implemented.

Programmers should use the inheritance Ada provides.

Subtypes and derived types coupled with Ada's strong typing

can ensure better control of logically different data types.

Similarly, programmers should use private and limited

private types within packages to ensure the security of the

underlying hidden data structure.

Programmers with no Ada knowledge should be taught Ada

first or use another language to learn about ADTs. If time

permits Ada should be learned and then ADTs pursued. The

benefits of Ada for learning ADTs outweigh the difficulty of

learning Ada. BUT to write good ADTs in Ada, the programmer

must know how to use the many features of Ada and he must

use these wisely.

44

APPENDIX A

LINKED LIST POINTER IMPLEMENTATION

All programs have been compiled using the Meridian
AdaVantage Compiler (version 2.1) on an IBM XT.

Generic
Type Item is Private;

Package GenericList is
Type List is Limited Private;

BEYONDEND: Exception;
NOTFOUND: Exception;
INSERTBEYOND: Exception;
DELETEOUTOFRANGE: Exception;

Procedure Clear (L : in out List);
-- pre -None.
-- post - L-pre exists as an empty list.

Function Full(L: in List) Return Boolean;
-- pre -None.
-- post - True if the list L can not have more items added,
-- otherwise False.

Function Empty(L: in List) Return Boolean;
-- pre - None.
-- post - True if list L has no items in it, otherwise False.

Procedure Insert (L : in out List; P : in Integer;
1: in Item);

-- pre - The size of L has not reached its maximum.
-- post - L includes item I in the Pth place
-- exceptions raised - INSERTBEYOND
-- if P > (Length of list + 1)

45

Procedure Delete (L : in out List; P : in Integer;
I : out Item),

-- pre - L is not empty.
-- post - I was the Pth item of the List.
-- L no longer contains I.
-- exceptions raised -DELETEOUTOFRANGE if P > Length of L.

Procedure Length (L : in List, Long: out Integer);
-- pre - L exists.
-- post - Long is equal to the number of items in L.

Procedure FindItem (L : in List; P : in Integer;
I : out Item);

-- pre - L is not empty.
-- post - I is the Pth item of L. L is unchanged.
-- exception raised - BEYONDEND if P > Length of List.

Procedure FindPos (L: in List; P : out Integer;
I : in Item);

-- pre - L is not empty.
-- post - P is the position of I in L.
-- exception raised - NOTFOUND if I is not found in List.

Private
Type Node.
Type List is Access Node;

end GenericList:

with UncheckedDeallocation:
Package body GenericList is

Type Node is
Record

Element : Item;
Next : List;

end Record;

Procedure ReturnNode is new UncheckedDeallocation

(Node, List);

46

Procedure Clear (L: in out List) is
-- post - L-pre exists as an empty list.

TempPtr : List;

begin
If not Empty(L) then

While (L.Next /= null) -- Reclaims each node in list
Loop -- except last one.

TempPtr:= L;
L:= L.Next;
ReturnNode (TempPtr);

end Loop;

ReturnNode (L); -- Reclaims last node in list.
end If;

end Clear;

Function FULL(L : in List) Return Boolean is
-- post - True if the list L can not have more items added,
-- otherwise False.

TempPtr• List:

begin

TempPtr := new Node: -- Generates new pointer
Retum_Node(TempPtr); -- Returns pointer to memory
Return (false):

Exception
when STORAGEERROR =>

Return (true); -- Out of memory.
when others =>

Raise.
end FULL;

Function Empty(L : in List) Return Boolean is
-- post - True if list L has no items in it, otherwise False.

47

begin
Return (L = null);

end Empty;

Procedure Insert (L : in out List; P: in Integer;
I : in Item) is

-- pre - The size of L has not reached its maximum.
-- post - L includes item I in the Pth place
-- exceptions raised - INSERTBEYOND
-- if P > (Length of list + I).

BeforeNew: List;
TempPtr• List;
NewPtr List;
Previous Integer;
NumItems : Integer;

begin

NewPtr := new Node'(I,null);
-- Establishes node to be inserted.

Previous := P;
TenpfPtr:= L;

If P = I then -- Inserting at front of list.
NewPtr.Next := L;
L := New_Ptr;

Else
If TempPtr = null then

Raise (INERT_BEYOND);
end If,

While (Previous 1) --BeforeNew will be pointing to
Loop -- item in list that will precede

Previous := Previous - 1; -- item being Lrsert,!d
BeforeNew := TempPtr;
TempPtr := TempPtr.Next; --TempPtr points to

--item that succeeds new
--item in list.

If TempPtr = null then
Exit,

48

end If;
end Loop;

If Previous = 1 then
BeforeNew.Next:= NewPtr;
NewPtr.Next:= Temp_Ptr;

Else
raise (INSERTBEYOND);

end If;
end If;

end Insert;

Procedure Delete (L : in out List; P : in Integer;
I: out Item) is

-- pre - L is not empty.
-- post - I was the Pth item of the List.
-- L no longer contains I.
-- exceptions raised - DELETEOUTOFRANGE
-- if P > tile length of L.

TempPtr: List;
NodeBefore: List,
Count : Integer;
Numitems: Integer;

begin
TempPtr L;

If P = 1 then -- Deletion if first item in list.
I := TempPtr.Element;
L := TempPtr Next;
Retu nNode(TempPtr);

Else

For Count in 1..(P-1) -- NodeBefore will point to
Loop -- item in list before the one

-to be deleted.
NodeBefore TempPtr

49

If TempPtr = null then
Faise (DELETEOUTOFRANGE);

-- Can't delete beyond end of list.
end If;
Temp-Ptr:= TempPtr.Next; -- TempPtr will point

end Loop; --to item to be deleted.

If Temp-Ptr = null then
Raise (DELETEOUTOFRANGE);

-- Can't delete beyond end of list.
end If;

Node_Before. Next:= Temp_Ptr.Next;
I := TempPtr.Element; --Content of node being deleted.
ReturnNode(Temp_Ptr); --Reclaims pointer to node

-- deleted.
end If;

end Delete;

Procedure Length (L : in List; Long : out Integer) is
-- pre - L exists.
-- post - Long is equal to the number of items in L.

Temp_Ptr : List;
Count : Integer,

begin
If Empty(L) then

Long:= 0; -- Returns length.
Else

Temp_Ptr:= L;
Count := 1;

While (TempPtr.Next /= null) -- Traverse list
Loop -- incrementing count

-- at each step.
Count:= Count + 1;
TempPtr := TempPtr.Next;

end Loop:

Long := Count; -- Returns length.
end If;

50

end Length:

Procedure FindItem (L : in List; P : in Integer;
I : out Item) is

-- pre - L is not empty.
-- post - I is the Pth item of L. L is unchanged.
-- exception raised - BEYONDEND if P > length of the list.

Nuniltems Integer;
TempPtr List;
Count : Integer;

begin
Temp_Ptr:= L;

For Count in I..(P-1) -- Traverse list to the Pth item.
Loop

Temp_Ptr := TempPtr.Next;
If TempPtr = null then

raise (BEYONDEND); -- Can't find Pth item when
end If; -- list length is less than P.

end Loop;

I := TempPtr.Element; -- Returns the Pth item.
end Find_Item;

Procedure FindPos (L : in List; P : out Integer;
I : in Item) is

-- pre - L is not empty.
-- post - P is the position of I in L.
-- exception raised - NOTFOUND if I is not found in list.

TempPtr• List;
New _Ptir List:
Previous : List;
Count Integer;

begin
TeipPtr:= L;

51

If TempPtr.Elemeflt = I then -- First item in the list.
P: =1;

Else
Count 1

While (Temp..Ytr.Elemeflt I=) and

(TempPtr.Next 1= null) -- Traverse list until
Loop - -- found or end of list.

TempPtr '=Temp-tr.Next;

Count: Count + 1; -- Count each node checked.
end Loop;

If Temp-ptr. Element /= I then
raise NOTFOUND; --Item desired is not in the list.

Else
P :=Count; -- Item located in the Pth position.

end If,
end If,

end Find_Pos;

end GenericList;

Instantiation of GenericList

with adajio;
use adajio;
with GenericList;

Procedure Iisttest is
Package IntList is new "fenericList(Itein => Integer);

S :IntList.List;
Intl :INTEGER;
lnt2: INTEGER;
BoollI BOOLEAN;

begin
Loop

new_line;

52

put ("1. Full?");
newline;
put ("2. Empty?");
newline;
put ("3. Clear.");
new_line;
put ("4. Insert.");
new_line;
put ("5. Delete.");
newline;
put ("6. Length.");
newline;
put ("7. Find Item.");
newline;
put ("8. Find Position.");
newline;
new_line;
put ("Enter number of action you desire. ");

get (IntI);

Case Intl is
when I :>

newline;
put("Checking if list is full.");
If lntList.Full(S) then

put(" Yes it is full.");
Else

put(" No it is not full.");
end If;

when 2 =>
newline;
put ("Checking if list is empty.");
If IntList.Empty(S) then

put(" Yes it is empty.");
Else

put(" No it is not empty.");
end If;

when 3 =>
new_line;
put("Clearing the list.");
IntList.Clear(S);

53

put(" Finished clearing the list.");

when 4 =>
new_lrne;
put("Enter integer you want to put in list.")
get(lnt2);
new-line;
put("Enter position in list where")
put(Lnt2);
put(" should be inserted.)

get(Int I);
IntList.Insert(S,Int 1 ,Int2);
new-fine;
put("Finished with insertion.");

when 5 =>
new_Iine,
put("Enter position you want deleted from the");

get(IntlI);
new_line;
lntList.Delete(S,Int 1 ,Int2);
put~lnt2)-
put(" was deleted from the list and was in");
put(" position)
put(b Itl)

new_line;

when 6 =>
new_I ine;
IntList. Lengdh(S ,lnt I)
put("T'he length of the list is")
put(lnt 1);

new_lne;

when 7 =>
new_line;
put('Enter the position in the list you want");
put(" the content of.")
get(lnt I);
new-line,

54

IntList. Find_ltem(S ,int ,Int2);
put(hit2);
put(" was in the ");
put(Int 1);
put(" position.");

when 8 =>
newline;
put("Enter integer you need the position of');
put(" in the list. ");
get(Int2);
new-line;
IntList.FindPos(S,Int 1,Int2);
put(lnt2);
put(" was in the ");
put(Int I);
put(" position of the list.");

when others =>
EXIT;

end Case;
end Loop;

Exception
when IntList.BEYONDEND =>

put ("Trying to get something from beyond end of');
put (" the list.");

when itList.NOTFOUND =>
put ("What you were looking for in the list isn't");
put (" there.");

when ltList.DELETEOUTOFRANGE =>
put ("You can not delete beyond the end of the");
put (" list.");

when IntList.INSERTBEYOND =>
put ("You can not insert beyond the end of a"):
put (" list.");

when others =>
Raise;

end ListTest;

55

APPENDIX B

LINKED LIST ARRAY IMPLEMENTATION

Generic
Max: Integer;
Type Item is Private;

Package ArrayList is
Type List is Limited Private;

BEYONDEND: Exception;
NOTFOUND: Exception;
INSERTBEYOND : Exception;
DELETEOUTOFRANGE: Exception;

Procedure Clear (L : in out List);
-- pre - None.
-- post - L-pre exists as an empty list.

Function Full(L.: in List) return Boolean;
-- pre - None.
-- post - True if the list L can not have more items added,
-- otherwise False.

Function Empty(L: in List) return Boolean;
-- pre - None.
-- post - True if list L has no items in it, otherwise False.

Procedure Insert (L : in out List; P : in Integer;
1: in Item);

-- pre - The size of L has not reached its maximum.
-- post - L includes item I in the Pth place
-- Exception raised - INSERTBEYOND
-- if P > (Length of list + 1).

Procedure Delete (L : in out List; P : in Integer;
I : out Item);

56

-- pre - L is not empty.
-- post - I was the Pth item of the List.

-- L no longer contains I.
-- exceptions rasied - DELETEOUTOFRANGE
-- if P > the length of L.

Procedure Length (L : in List; Long: out Integer);

-- pre - L exists.
-- post - Long is equal to the number of items in L.

Procedure FindItem (L : in List; P : in Integer;
I : out Item);

-- pre - L is not empty.
-- post - I is the Pth item of L. L is unchanged.

-- Exception raised - BEYONDEND if P > Length of list.

Procedure FindPos (L : in List; P : out Integer;
I: in Item);

-- pre - L is not empty.

-- post - P is the position of I in L.
-- Exception raised - NOTFOUND

-- if I is not found in the list.

Private

Type ListArray is array (L..Max) of Item;
Type List is

Record

ListLength : Integer:= 0;
Lst : ListArray;

end Record;

end ArrayList;

Package body ArrayList is

Procedure Clear (L : in out List) is
-- post - L-pre exists as an empty list.

57

begin
L.ListLength := 0; -- Satisfies Empty list condition.

end Clear;

Function FulI(L : in List) return Boolean is
-- post - True if the list L can not have more items added,
-- otherwise False.

begin
Return (L.L.stLength = Max);

end Full;

Function Empty(L: in List) return Boolean is
-- post - True if list L has no items in it, otherwise False.

begin
Return (L.ListLength = 0);

end Empty;

Procedure Insert (L : in out List; P : in Integer;
I: in Item) is

-- pre - The size of L has not reached its maximum.
-- post - L includes item I in the Pth place
-- Exceptions raised - INSERTBEYOND
-- if P is > L's length + 1.

Numitems : Integer;
Newltem : Item;
Templtem : Item;

begin
Length(L,Numltems);
Newltem:= I;

If P > (Numltems + 1) then
Raise (INSERTBEYOND); -- Can't insert beyond end of

--list.

Else

58

If P = (NumItems + 1) then -- Inserting at end of the
L. Lst(P) : = 1; -- list.
L.ListLength: L.ListLength + 1;

Else

For Index in P..(Numltemns + 1)
Loop -- Insert new item & move everyone else

Templtem : L.Lst(Index); -- down one position.
L.Lst(Index) := Newltemn;
Newitem := Templtem;

end Loop;

L.ListLength :=L.ListLength + 1;

end If;
end If;

end Insert;

Procedure Delete (L :in out List; P :in Integer;
I : out Item) is

-pre - L is not empty.
-post - I was the Pth item of the List.
-L no longer contains I.
-exceptions raised - DELETE_0111'OFRANGE

-- if P > the length of list.

NumItems :Integer;

begin
Length(L,Numltems);
If P > Nuniltems then

Raise (DELETEGiLl'_OFRANGE); -- Can't delete beyond
-- end of the list.

Else

1: L.Lst(P);
L.ListLength: L.ListLength - 1;
If P = NumItems then --Deleting last item in the list.

null: -- No need to shift down the list.

Else

59

For Index in P..(Numtems - 1) -- Moves items after
Loop -- P up I position.

L.Lst(Index) := L.Lst((Index + I));
end Loop;

end If;
end If;

end Delete;

Procedure Length (L : in List; Long: out Integer) is
-- pre - L exists.
-- post - Long is equal to the number of items in L.

begin
Long := L.ListLength;

end Length;

Procedure FindItem (L : in List; P : in Integer;
I : out Item) is

-- pre - L is not empty.
-- post - I is the Pth item of L. L is unchanged.
-- Exception raised - BEYONDEND if P > length of the List.

Numltems : Integer;

begin
Length(L,Numltems);

If P > NumItems then
Raise (BEYONDEND); -- Can't find item beyond end of

Else -- list.
I := L.Lst(P); -- Returns desired item.

end If;
end FindItem;

Procedure FindPos (L : in List: P : out Integer;
I : in Item) is

-- pre - L is not empty.
-- post - P is the position of I in L.

60

-Exception raised - NOTFOUND
-- if I is not found in the List.

Numlterns :Integer;
Found: Boolean;
Index : Integer;

begin
Length(L,Numltems);
Index L, 1
Found :=false;

While (Index <= NumnItems) and not (Found)
Loop -- Traverse list looking for match.

If L.Lst(Index) = I then
Found := true;
P := Index;

Else
Index .- Index + L,

end If;
end Loop-.

If not (Found) then -- List traversed and itemn not found.
Raise (NOT-FOUND).

end If;
end FindPos;
end Array-List;

Instantiation of Array-List

with a(Ia-io;
use ada-io,
with Array-list;

Procedure lasttest is
Package LSTINT is new Arrayjlist(MAX => 60, ITEM => Integer)-,

S: LSTINT.List-.
Int I : INTEGER;
lnt2: INTEGER.

61

Booll : BOOLEAN;

begin
Loop

newline;
put (" I. Full?");
new_line;
put ("2. Empty?");
newline;
put ("3. Clear.");
newline;
put ("4. Insert.");
newline;
put ("5. Delete.");
newline;
put ("6. Length.");
newline;
put ("7. Find Item.");
new_line;
put ("8. Find Position.");
new_line;
newline;
put ("Enter number of action you desire. ");
get (Intl);

Case Int I is
when I =>

new_line;
put("Checking if list is full.");
If LSTINT.Full(S) then

put(" Yes it is full.");
Else

put(" No it is not full.");
end If:

when 2 =>
new_line;
put ("Checking if list is empty.");
If LSTINT.Empty(S) then

put(" Yes it is empty.");
Else

put(" No it is not empty.");
end If;

62

when 3 =>

newA_Iine;
put("Clearing the list.");
LSTINT.Clear(S);
put(" Finished clearing the list.");

when 4 =>

new-line;
put("Enter integer you want to put in list.")
get(lnt2);
new line;
put("Enter position in list where")
put(lnt2);
put(" should be inserted.")
get(IntlI);
LSTINT.Insert(S,Intl ,Int2);
new-line-
put('Finished with insertion.");

when 5 =>

new_line;
put("Enter position you want deleted from the");

get(lnt 1);
new-line.
LSTINT.Delete(S.Intl ,Int2);
put(lnt2);
put(" was deleted from the list and was in")
put (" position')
put(lnt 1);

newA_l ine;

when 6 =>

new line;
LSTINT.Length(S,Int 1);
put("The length of the list is")
put(Intl),

put(.")

new-line;

63

when 7 =>
newline;
put("Enter the position in the list you want");
put(" the content of. ");
get(Int 1);
new-line;
LSTINT.FindlItem(S,Int 1 ,lnt2);
put(Int2);
put(" was in the ");
put(Int 1);
put(" position.");

when 8 =>
newline;
put("Enter integer you need the position of in");
put(" the list. ");
get(Jnt2);
new_lne;
LSTINT. FindPos(S ,lnt 1 ,Lnt2);
put(Int2);
put(" was in the ");

put(int I);
put(" position of the list.");

when others =>
EXIT;

end Case;
end Loop;

Exception
when LSTINT.BEYONDEND =>

put ("Trying to get something from beyond end of");
put (" the list.");

when LSTINT.NOTFOUND =>
put ("What you were looking for in the list isn't");
put (" there.");
put (" You can not delete from an empty list.");

when LSTINT.DELETEOUTOFRANGE =>
put ("You can not delete beyond the end of the");
put (" list.");

when LSTINT.INSERTBEYOND =>
put ("You can not insert beyond the end of a");

64

put (7 lSt. fI) -
when others =>

Raise;
end lasttest;

65

APPENDIX C

STACK

Generic
Type StackItem is Private;

Package Ge-_Stack is
Type Stack is Limited Private;

Procedure Clear (S : in out Stack);
-- pre - None.

-- post - S is an empty stack.

Function Full(S : in Stack) Return Boolean;
-- pre - None.
-- post - True if stack S can not have more items added.
-- otherwise False.

Function Empty(S : in Stack) Return Boolean;
-- pre - None.
-- post -True if stack S has no items in it, otherwise False.

Procedure Push (S : in out Stack; I : in Stackltem);
-- pre - The size of S has not reached its maximum.
-- post - S has item I on top of it.

Procedure Pop (S : in out Stack; I : out Stackltem);
-- pre - S is not empty.
-- post - Top of S-pre is assigned to I and S no longer
-- contains I.

Procedure Size (S : in Stack; Depth : out Integer);
-- pre - S exists.
-- post - Depth is equal to the number of items in S.

Procedure Top (S : in Stack; I : out Stackltem);
-- pre - S is not empty.

66

-- post - I is the top item of S. S is unchanged.

Private
Type Plate;
Type Stack is Access Plate;

end Gen_Stack;

with UncheckedDeallocation;
Package body Gen-Stack is

Type Plate is
Record

Element: StackItem;
Next : Stack;

end Record;

Procedure Return_Plate is
new UncheckedDeallocation (Plate, Stack);

Procedure Clear (S : in out Stack) is
-- post - S is an empty stack.

TempPtr : Stack;

begin
If not Empty(S) then

While (S.Next /= null) -- Reclaims each node in Stack
Loop -- except last one.

Temp_Ptr:= S;
S := S.Next;
ReturnPlate (TempPtr);

end Loop;

ReturnPlate (S); -- Reclaims last node in Stack.
end If;

end Clear;

67

Function FULL(S : in Stack) Return Boolean is
-- post - True if the stack S can not have more items pushed,
-- otherwise False.

TempPtr: Stack;

begin
Temp-Ptr := new Plate; -- Generates new pointer.
Retum_Plate(TempPtr); -- Returns pointer to memory.
Return (false);

Exception
when STORAGEERROR =>

Return (True); -- Out of memory.
when others =>

Raise;
end FULL;

Function Empty(S : in Stack) Return Boolean is
-- post -True if stack S has no items in it, otherwise False.

begin
Return (S = null);

end Empty;

Procedure Push (S : in out Stack; I : in StackItem) is
-- pre - The size of S has not reached its maximum.
-- post - S includes item I on the top of the stack.

New Ptr: Stack;

begin
NewPtr:= new Plate'(1,S); -- Creates new node on top of

-- stack.

S := New_Ptr; -- Assigns S to new top of the stack.
end Push;

Procedure Pop (S : in out 0-tack; I : out Stackltem) is
-- pre - S is not empty.

68

-- post - Top of S-pre is assigned to I and S no longer
-- contains I.

Temp_Ptr: Stack;

begin
Temp_Ptr:= S;

I:= S.Element; -- Retrieves Item on top of stack.

S := S.Next; -- Assigns S to new top of the stack.

RetumPlate(TempPtr); --Reclaims pointer that was the
-- top of the stack.

end Pop-

Procedure Size (S : in Stack; Depth : out Integer) is
-- pre - S exists.
-- post - Depth is equal to the number of items in S.

Temp_Ptr : Stack;
Count : Integer;

begin
If Empty(S) then

Depth := 0: -- Returns Depth.
Else

Temp_Ptr:= S;
Count := 1;

While (TempPtr.Next /= null) -- Count items in the
Loop -- stack.

Count := Count + 1;
TempPtr := TempPtrNext;

end Loop;

Depth := Count; -- Returns Depth.
end If:

end Size:

69

Procedure Top (S : in Stack; I : out StackItem) is
-- pre - S is not empty.
-- post - 1 is the top item of S. S is unchanged.

begin
1:= S.Element; -- Copies into I content of Top of the

-- stack.

end Top;
end GenStack;

Instantiation of GenStack

with ada_io;
use ada_io;
with GenStack.
Procedure stcktest is
Package Int_Stck is new GenStack(StackItem => Integer);

S : IntStck.Stack;
Intl : INTEGER;
lnt2: INTEGER;
Booll : BOOLEAN;

begin
Loop

newline;
put ("1. Clear");
newline;
put ("2. Empty?");
newline;
put ("3. Full?");
new_line;
put ("4. Push.");
newline;
put ("5. Pop.");
newline;

put ("6. Size.");
new-line;
put ("7. Top.");
newline;

70

new-line;
put ("Enter number of action you desire.")
get (Intl);

Case Intl is
when I =>

new_line;
put("Clearing the stack.");
IntStck.Clear(S);
new-line;
put(" Stack is cleared.");

when 2 =>

new-line;
put ("Checking if stack is empty.");
If hitStck.Empty(S) then

put(" Yes it is empty.");
Else

put(" No it is not empty.");
end If.

when 3 =>

new-line;
put("Checking if the stack is full.");
new_line;
If IrnStck.FuU(S) then

put("Stack is full.");
Else

put ('Stack is not full.");
end If;

when 4 =>

new_line;
put("Enter integer you want to push on stack.")
get(Lnt2);
new,-i e;
mntSt ck. Push (S,1nt 2);
new-line;
put('Finished with Push."),

when 5 =>

new line;
lntStck.Pop(SInt2);

71

put(Int2);
put(" was just Popped from the stack.");

when 6 =>
new -line;
IntStck.Size(S,Int 1);
put("The depth of the stack is")
put(Int 1);

when 7 =>
new-line;
Int-Stck.Top(S ,Jnt2);
put(Int2);
put(" is on the Top of the stack.");

when others =>
EXIT;

end Case;
end Loop-,

end StckTest;

72

APPENDIX D

QUEUE

Generic
Type Queuetem is Private;

Package GenQueue is
Type Queue is Limited Private;

Procedure Clear (Q: in out Queue);
-- pre - None.
-- post - Q-pre exists as an empty queue.

Function Full(Q : in Queue) Return Boolean;
-- pre - None.
-- post - True if queue Q can not have more items added,
-- otherwise False.

Function Empty(Q : in Queue) Return Boolean;
-- pre - None.
-- post -True if queue Q has no items in it, otherwise False.

Procedure Enqueue (Q : in out Queue; I : in QueueItem);
-- pre - The size of Q has not reached its maxinum.
-- post - Q has item I at end of it.

Procedure Serve (Q : in out Queue; I : out QueueItem);
-- pre - Q is not empty.
-- post - I was at front of the Queue Q. Q no longer
-- contains 1.

Procedure Size (Q : in Queue; Length : out Integer);
-- pre - Q exists.
-- post - Length is equal to the number of items in Q.

Procedure Front (Q : in Queue- I : out QueueItem);
-- pre - Q is not empty.

73

-- post - I is the first item of Q. Q is unchanged.

Private
Type QItem,
Type Queue is Access QItern;

end Gen_Queue;

with UncheckedDeallocation;
Package body GenQueue is

Type Q Item is
Record

Element: Queueltem;
Next : Queue;

end Record;

Procedure ReturnQ__Item is
new UncheckedDeallocation (QItem, Queue);

Procedure Clear (Q : in out Queue) is
-- post - Q-pre exists as an empty queue.

TempPtr: Queue;

begin
If not Empty(Q) then

While (Q.Next /= null) --Reclaims each node in Queue
Loop -- except last one.

Temp_Ptr:= Q;
Q := Q.Next;
Retun_Q_Item (TempPtr);

end Loop;

ReturnQItem (Q), -- Reclaims last node in Queue
end If,

end Clear,

74

Function FULL(Q : in Queue) Return Boolean is
-- post - True if the queue Q can not have more items added,
-- otherwise False.

Temp_Ptr: Queue;

begin
TempPtr:= new QItem; -- Generates new pointer.
Return_Q_Item(TempPtr); -- Returns pohiter to memory.
Return (false);

Exception
when STORAGEERROR =>

Return (True); -- Out of memory.
when others =>

Raise-
end FULL:

Function Einpty(Q: in Queue) Return Boolean is
-- post -True if queue Q has no items in it, otherwise False.

begin
Return (Q = null):

end Empty:

Procedure Enqueue (Q : in out Queue; I : in Queueltem) is
-- pre - The size of Q has not reached its maxinum.
-- post - Q includes item I at the end of the queue.

New_Ptr: Queue;
EndPtr : Queue;

begin
New_Ptr := new QItem'(I.nul); -- Creates new node to go

-- in queue.
If Empty(Q) then

Q:= New _Ptr.

Else
EndPtr := Q: - Initializes to front of queue.

While (EndPtr.Next /- null) -- Travels length of

75

Loop -- queue to end.
EndPtr: EndPtr.Next;

end Loop;

EndPtr.Next :=NewPtr; -- Adds new Queueltem to end
end If; -- of Queue.

end Enqueue;

Procedure Serve (Q: in out Queue; I : out Queueltem) is
-pre - Q is not empty.
-post - I was at front of the Queue Q.

-- Q no longer contains I.

TeinpPtr : Queue;

begin
Ternp-Ptr:=Q

I :=Tenp-PtElement; -- Retrieves Item on top of queue.

Q: Temp-Ptr.Next; --Assigns Q to new top of the queue.

Retuinl-Q-tem(Temp-tr). -- Reclaims pointer that was the
-- top of the queue.

end Serve.

Procedlure Size (Q :in Queue; Length , cut Integer) is
-pre - Q exists.
-poct -Length is equal to the number of items in Q.

Temp-Ptr: Queue;
Count :Integer,

beg in
If Emipty(Q) then

Length 0--Returns Length.
Else

Temp-Ptr:=Q
Count : -

While (Ternp-Ptr.Next /null) -- Count items in the

76

Loop -- queue.
Count:= Count + 1;
Temip-tr: Temp-Ptr.Next;,

end Loop;

Length := Count; -- Returns Length.
end If,

end Size;

Procedure Front (Q : in Queue; I : out QueueItem) is
-pre - Q is not empty.
-post - I is the top item of Q. Q is unchanged.

begin
1I: Q.Elemnent;-- Copies into I content of Front of

-the queue.

end Front;
end Gen_Queue;

hIstantiation of Gen-Queue

with ada i o
use ada io:
with Gen_Queue;
Procedure quetest is
Package IntQueue is new GenQueue(Queueltern => Integer);

Q : IntQueue. Queue;
IntlI INTEGER;
Int2: INTEGER.
BoollI : PI)OLEAN,

beg in
Loop

new _li1e.
put ("L Clear'");
new line,
put ("2. Empty?7' ;

77

put ("3. Full?");
newline;
put ("4. Enqueue.");
newline;
put ("5. Serve.");
newline;
put ("6. Size.");
newline;
put ("7. Front.");
newline:
newline;
put ("Enter number of action you desire. ");

get (lit I);

Case Intl is
when I =>

newline;
put("Clearing the queue.");
nt_Queue.Clear(Q);

new_line;
put("Queue is cleared.");

when 2 =>
newline;
put ("Checking if queue is empty.");
If IntQueue.Empty(Q) then

put(" Yes it is empty.");
Else

put(" No it is not empty.");
end If;

when 3 =>
newline;
put("Checking if the queue is full.");
new_line;
If lit Queue.Full(Q) then

put("Queue is ful! ");
Else

put ("Queue is not full.");
end If;

when 4 =>
new lne;

78

put('Enter integer you want to place in the queue.)

get(lnt2);
new-line;
Int_Queue.Enqueue(Q,Int2);
new_line;
put("Finished with enqueue.");

when 5 =>

new_line;
IntQueue .--ive(Q,1nt2);
put(Int2);
put(" was just Served from the queue.");

when 6 =>

new_line;
IntQueue.Size(Q,Intl);
put("The size of the queue is)

put(lnt 1);
putC.').

when 7 =>

newvlrne;
lntQueue .Front(Q,Lnt2);
put(Lnt2);
put(" is at the Front of the queue.");

when others =>

EXIT;
end Case,

end Loop,

end QueTest.

79

APPENDIX E

BINARY TREE

Generic
Type Item is Private;

with Procedure WhenTraversingDo (Content : in Item) is <>;
-- A user defined procedure that is compatible with this
-- should be compiled for use in the instantiation of this
-- generic package.

Package GenBinaryTree is
Type BinaryTree is Limited Private;

NOTFOUND: Exception;

Procedure Clear (T: in out BinaryTree);
-- pre - T exists.
-- post - T-pre exists as an empty tree.

Procedure Destroy (T: in out BinaryTree);
-- pre - T exists.
-- post - T-pre no longer exists.

Function Full(T: in BinaryTree) Return Boolean;
-- pre - T exists.
-- post - True if the tree T can not have more items added,
-- otherwise False.

Function Empty(T: in BinaryTree) Return Boolean;
-- pre - T exists.
-- post - True if tree T has no items in it, otherwise False.

Procedure Create(T : in out BinaryTree);
-- pre - None.
-- post - T exists and is empty.

80

Procedure Insert (T : in out BinaryTree; E : in Item;
C : in Character; Success : in out Boolean);

-- pre - T exists. The size of T has not reached its maximum.
-- comment - Character 'L' or '1' should be parameter for
-- left child.
-- Character 'R' or 'r' should be parameter for
- - right child.
-- post - If pre-T was empty then E is the content of the
-- Root node of T and Success is true.
-- Otherwise pre-Current location has a new C child
-- that contains E if Success is true and Current
-- location is the new child.
-- Success is false if C child existed prior to
-- insertion try. Current location remains same as
-- pre if Success is false.

Procedure DeleteSub (T: in out BinaryTree);
-- pre - T is not empty.
-- post - SubTree rooted at pre-Current location is deleted.
-- If pre-Current is root then tree no longer exists.

Procedure Update (T: in out BinaryTree: E: in Item);
-- pre - T is not empty.
-- post - E is the new content of Current location.

Procedure Retrieve (T : in BinaryTree; E : in out Item);
-- pre - T is not empty.
-- post - E is the content of pre-Current location.

Procedure Find (T: in out BinaryTree; E: in Item);
-- pre - T exists.
-- post - Current Location in the tree contains E.
-- exception raised - NOTFOUND if E cannot be found in tree
-- and Current Location remains unchanged.

Procedure PreOrderTraversal(T: in BinaryTree);
-- pre - T exists.
-- post - Current Location remains unchanged. Action
-- specified by user supplied WhenTraversingDo
-- procedure is perfonned on each node in the tree in
-- preorder fashion.

81

Procedure InOrderTraversal(T: in BinaryTree);
-- pre - T exists.
-- post - Current Location remains unchanged. Action
- - specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- inorder fashion.

Procedure PostOrderTraversal(T: in BinaryTree);
-- pre - T exists.
-- post - Current Location remains unchanged. Action
-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node i the tree in
-- postorder fashion.

Procedure LevelByLevelTraversal(T: in BinaryTree);
-- pre - T exists.
-- post - Current Location remains unchanged. Action
-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- a level by level fashion starting at the level
-- containing the root node.

Private
Type TreeInstance;
Type BinaryTree is Access TreeInstance:

end GenBinaryTree;

with UncheckedDeallocation, GenericList;
Package body GenBinaryTree is

Type Node; -- Forward declaration.
Type NodePointer is Access Node; -- Construction method of

-- tree.
Type Node is -- What tree is made up of.

Record
Element : Item;
LeftChild :NodePointer;
RightChild : NodePointer;

end Record;

Type TreeInstance is -- Provides access to tree and

82

Record -- to a specific node.
Root : NodePointer;
Current : NodePointer;

end Record;

package PointerList is
new GenericList(ITEM => NodePointer);

use Pointer_List;
-- Linked list that will contain
-- NodePointers.

Procedure ReturnNode is
new UncheckedDeallocation (Node, NodePointer);

-- Used for reclaining NodePointer
-- memory space.

Procedure Return_Tree is
new UncheckedDeallocation (TreeInstance, BinaryTree);

Used for reclaiming BinaryTree
-- memory space.

Procedure Clear (T: in out BinaryTree) is
-- pre - T exists.
-- post - T-pre exists as an empty tree.

begin
If not Empty(T) then --If already clear then don't do it.

T.Current := T.Root;
DeleteSub(T);
Create(T);

end If;
end Clear:

Procedure Destroy (T: in out BinaryTree) is
-- pre - T exists.
-- post - T-pre no longer exists.

begin
Clear(T:
ReturnTree(T);

end;

83

Function FulI(T: in BinaryTree) Return Boolean is
-- pre - T exists.
-- post - True if the tree T can not have more items added,
-- otherwise False.

Temp: Node_Pointer;

begin
Temp := T.Root; -- Checks that tree exists.
Temp := new Node; -- Check if space is available.
ReturnNode(Temp); -- Return space allocated by check.
Return (false);

Exception
when STORAGEERROR =>

Return (true); --Full as no more memory is free.
when others =>

Raise;
end Full;

Fuiztion Empty(T: in BinaryTree) Return Boolean is
-- pre -T exists.
-- post - True if tree T has no items in it, otherwise False.

begin
Return (T.Root = null); --Empty when root points to null.

end Empty;

Procedure Create(T: in out BinaryTree) is
-- pre -None.
-- post - T exists and is empty.

TempPtr : BinaryTree;

begin
TempPtr := new Treelnstance'(null,null);
T := TempPtr;

end Create;

84

Procedure Insert (T : in out BinaryTree; E : in Item;

C : in Character; Success : in out Boolean) is

-- pre - T exists. The size of T has not reached its maximum.

-- conunent - Character 'L' or '1' should be parameter for
__ left child.

-- Character 'R' or 'r' should be parameter for
__ right child.

-- post - If pre-T was empty then E is the content of the

-- Root node of T and Success is true.

-- Otherwise pre-Current location has a new C child

-- that contains E if Success is true and Current
-- location is the new child.
-- Success is false if C child existed prior to

-- insertion try. Current location remains same as

-- pre if Success is false.

TempPtr: NodePointer; -- Used to create a new node.

begin
Success := True; -- Initialization.

If Empty(T) then -- Insert Item into the root node.

TemrPtr := new Node'(E,nul,null);
T.Root := TempPtr;
T.Current := T.Root,

Else

Case C is
when 'L' I '1' => -- Insert as new leftchild.

If T.Current.leftchild /= null then
Success := False; --Leftchild already existed.

end If;

If Success then
TempPtr := new Node'(E,null,null);
T.Current.leftchild := TernpPtr;
T.Current := T.Current.leftchild;

end If;

when 'R' I 'r' => -- Insert as new rightchild.

85

If T.Current.rightchild /= null then
Success := False; --Rightchild already exists.

end If;

If Success then
TempPtr:= new Node'(E.null,null);
T.Current.rightchild := TempPtr;
T.Current := T.Current.rightchild;

end If;

when others =>
Success := False;

end Case;
end If;

end Insert;

Procedure TreeDispose (N : in out NodePointer) is
-- Hidden procedure that deletes sub tree rooted at N and
-- reclains the memory space.

begin
If N /= null then

TreeDispose(N.leftchild); -- Delete sub tree rooted at
-- leftchild

TreeDispose(N.rightchild); -- Delete sub tree rooted at
-- rightchild

RetumNode(N); -- Reclaim memory space.
end If;

end TreeDispose;

Function FindParent(T: in BinaryTree; N : in NodePointer)
Return NodePointer is

-- Hidden Function that returns a pointer to the parent of
-- the node pointed to by N. Search for parent is done level
-- by level from root.
-- SHOULD NEVER BE CALLED WITH AN EMPTY TREE.

L: List; -- Will hold Node-pointers.
Position : Integer; -- Used to index into List L.
I : NodePointer; -- Content of List L nodes.
TempPtr : NodePointer; -- Used to traverse tree.

86

begin
TempPtr: T.Root; -- Initialization.
Lnsert(L, l.TemnpPtr); -- Enqueue root node in List.

Loop -- Level by level search for parent.
Delete(L,l.1); -- Serve first node of List.

If (IHeftchild = N) or (I.rightchild =N) then
Exit-, -- Parent has been found.

end 1f:

If J.leftchild /= null then --Enqueue nodes of next
Length(L, Position); -- level..
Position := Position + I;
hisert(L,Position,I.leftchild);

end If-,

If I.rightChild /1 null then
Length(L, Position);
Position :=Position + 1;
Insert(L,Position.I.riglltchild):.

endI If.
end Loop. - . from left to right.

Clear (L): -- Reclaim memnory used by List L.

Return (I)- -- I s parent.
end FinidParent-,

Procedure DeleteSub (T : in out BinaryTree) is
-pre - T is not empty.
-post - SubTree rooted at pre-Current location is deleted.

If pre-Current is root theni tree no longer exists.

Ternpltr : NodePointer; --Used to point to parent of current.

beginl
IfT[Current = T.Root then

-- Delete left side of tree.
If i.Root.eftchild /= null then

I. Current :=T.Root.Ieftchild,
DeleteSub(T);

87

end If;-- Delete right side of tree.

If T. Root. rightchild /= null then
T.Current :=T.Root.rightchild;
DeleteSub(T);

end If;

T.Root null;- Empty the root node.
T.Current :=T.Root;
ReturnTree(T);

Else

TempPtr: FindParent(T,T.Current);

If TempPtr.Jeftchild =T.Curient then
Tei-pPtr.leftchild null; -- Parent's pointer to

Else
TempPtt.riglitchild :=null; -.. child set to null.

end If;

Tree Dispose (T.Current). --Reclaim memory used by
-- subtree.

T.Current:=TernpPtr; -- Current moves up to parent.
end If;

end DeleteSub-,

Procedure Update (T: in out BinaryTree; E : in Itemn) is
-pre - T is not empty.

-post - E is the new content of pre-Current location.

begin
T.Current. Element := E; --Current node's content is now E.

end Update,

Procedure Retrieve (T: in BinaryTree; E: in out Item) is
-pre - T is not empty.

-post - E is the content of pre-Current location.

begin
E := T.Current.Element, --E is content of the current node

88

end Retrieve-,

Procedure Find (T: in out B naryTree; E : in Item) is
-pre - T exists.
-post - Current Location in the tree contains E.
-exception raised - NOTFOUND if E cannot be found in tree

-- and Current Location remains unchanged.

Found: Boolean; -- True when item search for is found.
L : List; -- Will hold NodePointers
Position : Integer; -- Used to index into list L.
I : NodePointer; -- Content of nodes in. list L.

begin
Found := false, -- Initiai1zation.
If T.Root /= null then

Insert(L, I ,T.Root);

Loop -- Level by level search for E.
If Ernpty(L) then

Found := False; -- E was not found
Exit; -- All nodes of tree searched.

end If:

Delete(L, 1,I1); -- Serve first node of list L.
If I.Element = E then

Found := true; -- E is found.
Exit; -- Terminate search.

end If:.

If lieftchild /= null then -- Enqueue next
Length(L.Position); -- level's nodes
Position := Position + 1;
lnsert L.Positioni,I.leftchild),

end If-,

If l.rightChild /= null then
Length(LPosition);
Position := Position + 1;
Insert (L,Position,I.rightchild):

end If: --.. left to right.

endI Loop-.

89

Clear (L); -- Reclaim memory used by list L.
end If;

If not Found then
raise (NOTFOUND); -- Tree does not contain E.

Else
T.Current :=I; -- I contains E.

end 1f;
end Find;

Procedure PreOrderTraversal(T : in BinaryTree) is
-pre -T is not Empty.
-post - Current Location remains unchanged. Action

-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- preorder fashion.

Procedure PreOrder(Ptr: in NodePointer) is
-Hidden procedure that actual-ly performs the traversal
-recursively.

begin
If Ptr 1= null then

W henTraversingDo(Ptr. Element); -- Perform action on
PreOrder(Ptr.leftchild); -- each node.
Pie~rder(Ptr.righitchild);

end If,
end PreOrder;

begin
PreOrder(T.Root);

end PreOrderTraversal;

Procedure InOrclerTraversal(T : in BinaryTree) is
-pre - T is not Empty.
-post - Current Location remains unchanged. Action

-- specified by user supplied WhenTraversingDo
-- procedure is performned on each node in the tree in
- inorder fashion.

90

Procedure InOrder(Ptr : in NodePointer) is
-Hidden procedure that actually performns traversal
-recursively.

begin
If Ptr /= null then

InOrder(Ptr.leftchfld);
WhenTravers ingDo(Ptr. Element); -- Perform action on
ItiOrder(Ptr.rightchild): - each node.

end If-,
end InOrder;

begin
lnOrder(T.Root);

end lInOrderTraversal;

Procedure PostOrderTraversal(T: in BinaryTree) is
-pre - T is not Empty.
-post - Current Location remains unchanged. Action

-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in

-- postorder fashion.

Procedure PostOrder(Ptr :ini NodePointer) is
-Hidden procedure that actually perfonins the traversal
-recursively.

begin
If Ptr /= null then

Post Order(Ptr.leftch id);
Post Order(Ptr. rightchild);
WhenTraversingDo(Ptr. Elemnent), -- Performn action on

end If, -- each node.
end PostOrder;

beg in
PostOrde r(T. Root);

end PostOrderTraversal;

Procedure LevelByLevelTraversalT: in BinaryTree) is
-pre - T is not Empty.

91

-post - Current Location remains unchanged. Action
-specified by user supplied W~henTraversingDo procedure is
-performned on each node in the tree in a level by level
-fashion starting at the level containing the root node.

L : List-,
Position : Integer;
Ptr, I : NodePointer;

begin
If not Empty(T) then

Ptr := T.Root;
Insert(L, I,Ptr); -- Enqueue root node of tree in L.
Loop

If Empty(L) then
Exit; -- Traversal finished.

end If-.

Delete(L,l1); -- Serve first node of list L.

WhienTraversingDo(I.Elemetit); --Perform action on
-- each node.

If IHeftchild /= null then -- Enqueue next
Lengthi(LPosition):, -- level's nodes
Position := Position + 1;
Insert(L, Posit ion,l. Ieftchild),

end If,

If l.rightChild /= null then
Length(L,Position);
Position := Position + 1,
Insert(L,Position,I.righitchid);

end If-,- . left to right.

end Loop;

Clear (L), -- Reclaim memory used by list L.
end If;

end Level By LevelTraversal;
end Gen_BiaryTree;

92

Example Procedure to be Instantiated for WhenTraversingDo

with ada-io;
use ada_io;

procedure NodeOutput(I :Integer) is
begin

new-line;
put (I);

end NodeOutput;

Instantiation of GenBinaryTree

with adla_io;
use ada_io;
with GenBinaryTree, NodeOutput;

Procedure treetest is
Package IntTree is new GenBinaryTree(Item => Integer,

WhenTraversingDo => NodeOutput);

T :lot_-Tree.BinaryTree;
IntlI INTEGER;
lnt2 :INTEGER;
Boo] I : BOOLEAN;
ch :Character;

beginl
Loop

new line'.
put ("0. Create.");
new-linie.
put CTI Full?");
new-line.
put C 2. Empty?");
new _line;
put ("3. Clear.");
new"line;
puit ("4. Insert.");
new-line.

93

put ("5. DeleteSub.");
newline;
put ("6. Update.");
new_line;
put ("7. Retrieve.");
new-line;
put ("8. Find.");
newline;
put ("9. Traverse.");
newline;
put (" 10. Destroy.");
newline;
new_line;
put ("Enter number of action you desire.");
get (Int I);

Case Int l is
when 0 =>

Int_Tree.Create (T);
newline;
put("Tree created.");

when 1 =>
new_line;
put("Checking if tree is full.");
If hat_Tree.FuH(T) then

put(" Yes it is full.");
Else

put(" No it is not full.");

end If;

when 2 =>
new_li me;
put ("Checking if tree is empty.");
If hIt_Tree.Empty(T) then

put(" Yes it is empty.");
Else

put(" No it is not empty.");
end If;

when 3 =>
new_line;
put("Clearing the tree.");

94

IntTree.Clear(T);
put(" Finished clearing the tree.");

when 4 =>

new-line;
put("Enter integer you want to put in tree.")
get(Int2);
newA_line;
Loop

put(."Enter '1' or 'r for left or right");
put(" child.")
get(ch);
new-line;
Case ch is

when 'I'L' =>

Exit,
when 'rT'IR >

Exit;
when others =>

put ("Try again must be '1' orY.)
new_hine;

end Case;
end Loop-,

IntTree.Insert(T.Int2,chi,Booll),
new-line;
If BoollI then

put("lisertion was successful.");
Else

put("Insertion was not successful.")-,
end If-,

when 5 =>
newjline
pttCDeleting sub tree rooted at current node.");
mntTree.DeleteSub(T);
put(" Finished with deletion.");

when 6 =>
new"line,
put("Enter integer you want current node to");
put(" now hold.")
get(Int2);

95

new_line;
put("Updating current node.");
Int-Tree. Update (TInt2) -
put(" Finished with update."):

when 7 =>

new-line;
put("Retrieving content of current node.");
Int_Tree.Retrieve(T,.lnt2):.
put(" Content was
put (Int2);

when 8 =>

new-lie:
put("Enter integer you want to find in the");
put(" tree.")
get(hInt2);
new_line;
put("Finding")
put(lnt2);

lnt_Tree.Find(TInt2);
put(" Finished with find.");

when 9 =>
new-line:
Loop

put("Enter either Yr, 'W, 'o' or 'e' for")
new-line:
put ("r = pre-order, n =in-order, o=
put ("post-order or e =)
put (" level by level traversal.")
get(ch);
Case ch is

when 'r'I'R' =>

bitTree .PreOrderTraversal(T);
Exit,

when 'n'I'N' =>

hItTree .LnOrderTraversal(T);
Exit;

when 'o'1'0' =>

hIt_-Tree. PostOrderTravers al(TM;

96

Exit;
when 'e'I'E' =>

IntTree.LevelByLevelTraversal(T);
Exit;

when others =>
put ("Try again enter either 'r',');
put ("'n','o', or V.");
newline;

end Case;
end Loop;
new_line;
put("Traversal finished.");

when 10 =>
new_line;

put ("Destroying Tree.");
hnt_Tree.Destroy(T);
newline;
put ("Tree destroyed.");

when others =>
EXIT,

end Case;
end Loop;

Exception
when IntTree.NOTFOUND =>

put (" What you were looking for in the tree");
put (" isn't there.");

when others =>
Raise;

end Treetest;

97

APPENDIX F

BINARY SEARCH TREE

The major portion of this binary seauch tree
algorithm is taken from [Ref. 3:pp. 239-242].

Generic
Type Item is Private;

with Procedure WhenTraversingDo (Content : in Item) is <>;
-- A user defined procedure that is compatible with this
-- should be compiled for use in the instantiation of this
-- generic package.

with Function Item lLessThanltem2
(Iteml : in Item. ltem2: in Item) Return Boolean is <>;

-- A user defined function that returns True
-- if Iteml < tem2.

Package GenBSTree is
Type BSTree is Limited Private;

NOTFOUND: Exception;

Procedure Clear (T: in out BSTree);
-- pre - T exists.
-- post - T-pre exists as an empty tree.

Procedure Destroy (T : in out BSTree);
-- pre - T exists.
-- post - T-pre exists as an empty tree.

Function FulI(T: in BSTree) Retum Boolean:
-- pre - T exists.
-- post - True if the tree T can not have more items added,
-- otherwise False.

Function Empty(T: in BSTree) Return Boolean;
-- pre - T exists.

98

-- post - True if tree T has no items in it, otherwise False.

Procedure Create(T. in out BSTree);
-- pre - None.
-- post - T exists and is empty.

Procedure Insert (T: in out BSTree; E: in Item;
Success : in out Boolean);

-- pre - T exists. The size of T has not reached its maximum.
-- post - If pre-T was empty then E is the content of the

Root node of T and Success is true.
- - Otherwise if E is not already in the tree then E
-- has been inserted in its proper position in the
-- tree. Success is true and Current location is the

-- new child that contains E.
-- If E was in T-pre then Current location remains
-- unchanged and Success is false.

Procedure DeleteSub (T: in out BSTree);
-- pre - T is riot empty.
-- post - SubTree rooted at pre-Current location is deleted.

-- If pre-Current is root then tree no longer exists.

Procedure Retrieve (T : in BSTree; E : in out Item);
-- pre - T is not empty.

-- post - E is the content of pre-Current location.

Procedure Find (T: in out BSTree; E: in Item);
-- pre - T exists.
-- post - Current Location in the tree contains E.
-- exception raised - NOTFOUND if E canmot be found in tree

-- and Current Location points to node

-- where E would be added.

Procedure PreOrderTraversal(T: in BSTree);
-- pre - T exists.
-- post - Current Location remains unchanged. Action
-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- preorder fashion.

Procedure lnOrderTraversal(T: in BSTree);
-- pre - T exists.

99

-- post - Current Location remains unchanged. Action

-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- inorder fashion.

Procedure PostOrderTraversal(T : in BSTree);
-- pre - T exists.
-- post - Current Location remains unchanged. Action
-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- postorder fashion.

Procedure LevelByLevelTraversal(T: in BSTree);
-- pre - T exists.

-- post - Current Location remains unchanged. Action
- - specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- a level by level fashion starting at the level
-- containing the root node.

Private
Type TreeInstance;
Type BSTree is Access TreeInstance;

end GenBSTree;

with UncheckedDeallocation, GenericList;
Package body Gen BSTree is

Type Node; -- Forward declaration.
Type NodePointer is Access Node; -- Construction method

-- of tree.
Type Node is -- What tree is made up of.

Record
Element : Item;
LeftChild: NodePointer;
RightChild : NodePointer;

end Record;

Type Treehlstance is -- Provides access to tree and
Record -- to a specific node.

Root : NodePointer;

100

Current : NodePointer;
end Record;

package PointerList As

new GenericList(ITEM => NodePointer);
use PointerList; -- Linked list that will contain

-- NodePointers.

Procedure Return_Node is
new UncheckedDeallocation (Node,NodePointer);

-- Used for reclaiming NodePointer
-- memory space.

Procedure Return_Tree is
new UncheckedDeallocation (Treel nstance,BSTree);

-- Used for reclaiming BSTree
-- memory space.

Procedure Clear (T : in out BSTree) is
-- pre - T exists.
-- post - T-pre exists as an empty tree.

begin
If not Empty(T) then --If already clear then don't do it.

T.Current := T.Root;
DeleteSub(T):
CreateT);

end If;
end Clear;

Procedure Destroy (T : in out BSTree) is
-- pre - T exists.
-- post - T-pre exists as an empty tree.

begin
Clear(T):
ReturnTree(T);

end Destroy.

101

Function Full(T : in BSTree) Return Boolean is
-- pre - T exists.
-- post - True if the tree T can not have more items added,
-- otherwise False.

Temp: NodePointer;

begin
Temp T.Root; -- Checks that tree exists.
Temp new Node; -- Check if space is available.
Retum_Node(Temp); -- Return space allocated by check.
Return (false);

Exception
when STORAGEERROR =>

Return (true). --Full as no more memory is available.
when others =>

Raise;
end Full,

Function Empty(T: in BSTree) Return Boolean is
-- pre - T exists.
-- post - True If tree T has no items in it, otherwise False.

begin
Return (TRoot = null); --Empty when root points to null.

end Empty;

Procedure Create(T : in out BSTree) is
-- pre - None.
-- post - T exists and is empty.

TempPtr: BSTree;

begin
TempPtr:= new Treelnstance '(null,null);
T := TempPtr;

end Create;

Procedure Insert (T: in out BSTree; E: in Item;

Success : in out Boolean) is

102

-- pre - T exists. The size of T has not reached its maximum.
-- post - If pre-T was empty then E is the content of the
-- Root node of T and Success is true.
-- Otherwise if E is not already in the tree then E
-- has been inserted in its proper position in the
-- tree. Success is true and Current location is the
-- new child that contains E. If E was in T-pre
-- then Current location remains unchanged and
-- Success is false.

TempPtr: NodePointer; -- Used to create a new node.

begin
Success := True; -- Initialization.

If Empty(T) then -- Insert Item into the root node.
TempPtr:= new Node'(E,null,null);
T.Root := TempPtr;
T.Current T.Root;

Else
Find (T, E);
Success := False;

end If;

Exception
when NOTFOUND => -- Action taken to insert new node.

If Item I LessThanItem2(E,T.Current. Element) then
T.Current.LeftChild:= new Node'(E.null,null);
T.Current:= T.Current.LeftChild;

Else
T.Current.RightChild := new No(le'(E,null,null);
T.Current := T.Current.RightChild;

end If;
when Others =>

Raise;
end Insert,

Procedure TreeDispose (N : in out NodePointer) is
-- Hidden procedure that deletes sub tree rooted at N and
-- reclaims the memory space.

begin

103

If N /= null then
TreeDispose(N.leftchild). --Delete sub tree rooted at

-- leftchild.
Tree Dispose (N .rightchild); --Delete sub tree rooted at

-- rightchild.
RetumNode(N); -- Reclaim memory space.

end If,
end TreeDispose;

Function FindParent(T: in BSTree; N: in NodePointer)
Return NodePointer is

-Hidden Function that returns a pointer to the parent of
-the node pointed to by N. Search for parent is done level
-by level from root.
-SHOULD NEVER BE CALLED WITH AN EMPTY TREE.

L: List; -- Will hold Node-pointers.
Position : Integer. - Used to index into List L.
I : NodePointer; - Content of List L nodes.
TempPtr: NodePointer, -- Used to traverse tree.

begin
TempPtr := T.Root; -- Initialization.
hisert(L. I.TeinpPtr); -- Enqueue root node in List.

Loop -- Level by level search for parent.
Delete(L,1 .1); -- Serve first node of List.

If (I.leftchild = N) or (I.rightchild = N) then
Exit; -- Parent has been found.

end If;

If I.leftchild /= null then -- Encjueue nodes of
Length(L, Position); - next level..
Position := Position + 1;
Insert (L,PositionI.Ile ftchild),

end If;

If l.rightChild /= null then
Length(L. Position);
Position := Position + 1;
Insert(L.Position,I .rightchild),

104

end If; --.. from left to right.
end Loop;

Clear (L); -- Reclaim memory used by List L.

Return (I1); -- I is parent.
end F'idParent:

Procedure DeleteSub (T: in out BSTree) is
-pre - T is not empty.
-post - SubTree rooted at pre-Current location is deleted.

If pre-Current is root then tree no longer exists.

TempPt r: NodePointer; --Used to point to parent of current.

begin
If T.Current = T.Root then

-- Delete left side of tree.
If T. Root. leftchiid /= null then

T.Curreiit :=T.Root.leftchild;
DeleteSub(T);

end If;
-- Delete right side of tree.

If T. Root. rightch ilcl /= null then
T.Current := T.Root.rightchild;
DeleteSub(T);

end If-,

T.Root :=null; -- Empty the root node.
T.Current :=T.Root;
Return Tree(T):,

Else

1 einpPtr: FfindParent(T,T. Current);

If TempPtr.leftchfld =T.Current then
TeinpPtr.leftchild null; -- Parent's pointer

Else -- to child
TenipPtr.rightchild := null; -- set to null.

end If,

105

Tree Dispose (T.Current); -- Reclaim memory used by
-- subtree.

T. Current := TempPtr; --Current moves up to parent of
-- deleted subtree.

end If;
end DeleteSub,

Procedure Retrieve (T : in BSTree; E : in out Item) is
-pre -T is not empty.
-post - E is the content of pre-Current location.

begin
E: T.Current.Element; --E is the content of the

end Retrieve; -- current node.

Procedure Find (T: in out BSTree; E: in Item) is
-pre - T exists.
-post - Cut-rent Location in the tree contains E.
-exception raised - NOT_-FOUND if E cannot be found in tree

-- and Current Location points to node
-- where E would be added.

Found : Boolean; -- True when item searched for is found.
SearchPtr: NodePointer;
Parent : NodePointer;

begin
SearchPtr := T.Root; -- Initialization.
Found := false; -- Initialization.

While SearchPtr /= null
Loop

Parent := SearchPtr;

If SearchPtr. Element = E then
T.Current := SearchPtr; -- Search completed.
Found := True;
Exit;

Else

106

If Item I LessThanltem2(E, SearchPtr.Element) then
SearchPtr: SearchPtr.LeftChild;

Else
SearchPtr :=SearchPtr.RightChild;

end If;
end If;

end Loop;

If not Found then
T.Current :=Parent;
raise (NOTFOUND); -- Tree does not contain E.

end If;

end Find;

Procedure PreOrderTraversal(T: in BSTree) is
-pre - T is not Empty.
-post - Current Location remnains unchanged. Action

-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- preorder fashion.

Procedure PreOrcler(Ptr: in Node_Pointer) is
Hidden procedure that actually performs the traversal

-recursively.

begin
If Ptr /= null then

WhenTraversinigDo(Ptr.Elemient);. -- Perform action on
Pre Order(Ptr. leftchild); -- each node.
Pre Order(Ptr. rightchild);

end If,
end PreOrder;

begin
PreOrder(T.Root);

end PreOrderTraversal;

Procedure InOrderTraversal(T: in BSTree) is
-pre - T is not Empty.
-post - Current Location remains unchanged. Action

107

-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- inorder fashion.

Procedure InOrder(Ptr : in NodePointer) is
-Hidden procedure that actually performs traversal
-recursively.

begin
If Ptr /= null then

InOrder(Ptr.leftchild);
WhenTraversingDo(Ptr.Element); -- Perform action on
InOrder(Ptr.rightchild); -- each node.

end If,
end InOrder;

begin
lnOrder(T.Root);

end InOrderTraversal;

Procedure PostOrderTraversal(T: in BSTree) is
-pre - T is not Empty.
-post - Current Location remains unchanged. Action

-- specified by user supplied WlienTraversingDo
-- procedure is performed on each node in the tree in
-- postorder fashion.

Procedure PostOrder(Ptr : in NodePointer) is
-Hidden procedure that actually performs the traversal
-recursively.

begin
If Ptr /= null then

PostOrder(Ptr.leftchild);
PostOrder(Ptr.rightchild);
WhenTraversingDo(Ptr. Element); -- Perform action on

end If; -- each node.
end PostOrder;

beg in
PostOrde r(T. Root)-,

108

end PostOrderTraversal;

Procedure LevelByLevelTraversal(T : in BSTree) is
-pre - T is not Empty.
-post - Current Location remains unchanged. Action

-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in

a level by level fashion starting at the level
-- containing the root node.

L : List;
Position : Integer;
Ptr, I : NodePointer;

begin
If not Empty(T) then

Ptr := T.Root;
Insert(L,l ,Ptr); -- Enqueue root node of tree in L.
Loop

If Empty(L) then
Exit; -- Traversal finished.

end If;

Delete(L,l,I); -- Serve first node of list L.

WhenTraversingDo(I.Element); -- Perform action on
-- each node.

If I.eftchild /= null then --Enqueue next
Length(L,Position); -- level's nodes..
Position := Position + 1;
Inisert(L,Position,I .leftchild);

end If;

If ILrightChild /= null then
Length(l.,Position);
Position := Position + 1;
Insert(L,Position,I .rightchild);

end If; --.. left to right.

end Loop;

109

Clear (L); -- Reclaim memory used by list L.
end If;

end LevelByLevelTraversal;
end GenBSTree;

Example Function to be Instantiated for Item IlIess~hanltem2

Function IntegerLessThan(Iteml :in Integer;
Item2. in Integer) Return Boolean is

begin
Return (Item 1 < Item2);,

end Integerl-essThan;

Instantiation of GenBSTree

with ada_10;
use ada-io-
with GenBSTree, NodeOutput, Integerl-essThan;
Procedure bsttest is
Package IntBST is new GenBSTree (Item => Integer,

WhenTraversingDo => NodeOutput,
Item I LessThanltem2 => Integerl-essThan);

-- NodeOutput details can be found in Appendix E.

T: IntBST.BSTree;
IntlI INTEGER;
Int2: INTEGER;
BoollI BOOLEAN;
ch :Character;

begin
Loop

newline.
put CO0. Create.");
new-line;

110

put ("1. Full?");
newline;
put ("2. Empty?");
new-line;
put ("3. Clear.");
new_line;
put ("4. Insert.");
new_line;
put ("5. DeleteSub.");
newline;
put ("6. Retrieve.");
newline;
put ("7. Find.");
new-line;
put ("8. Traverse.");
new line.
put ("9. Destroy.");
new_line;
newline;
put ("Enter number of action you desire.");
get (Int I);

Case Intl is
when 0 =>

Int_BST.Create (T);
new_line;
put("Tree created.");

when I =>
newline;
put("Checking if tree is full.");
If IntBST.Full(T) then

put(" Yes it is full.");
Else

put(" No it is not full.");
end If;

when 2 =>
new-line;
put ("Checking if tree is empty.");
If lnt_BST.Empty(T) then

put(" Yes it is empty.");
Else

I1l

put(" No it is not empty."),
end If;

when 3 =>

new-line;
put("Clearing the tree.");
IntBST.Clear(T);
put(" Finished clearing the tree.");

when 4 =>

new-line;
put("Enter integer you want to put in tree.")
get(Int2);
new_line;
IntBST.Insert(T,Int2.Booll);
new-line;
If Booll then

put("Insertion was successful.");
Else

put("Insertion was not successful.");
end If.

when 5 =>

newIine;
putC"Deleting sub tree rooted at current node.");
IntBST.DeleteSub(T);
put(" Finished with deletion."),

when 6 =>

new_line;
put("Retrieving content of current node.");
IntBST.Retrieve(T,Int2)-;
put(" Content was
put (Int2);
put C".");

when 7 =>
new_line;
put('Enter integer you want to find in the");
put(" tree.")
get(Int2);
new_line'
put("Finding")

112

put(Int2);

lnt_BST.Find(T,lnt2);
put(" Finished with find.");

when 8 =>
newIine;
Loop

put("Enter either 'r, Vn, V' or 'e' for)

new-line;
put ("r = pre-order, n = in-order, o =T

put ("post-order or e =)
put (" level by level traversal.")
get(ch);
Case ch is

when 'r'I'R' =>
In_-BST.PreOrderTraversal(T);
Exit-,

when 'n'I'N' =>
h-itBST.LnOrderTraversal(T);
Exit;

when 'oI'O' =>
hItBST.PostOrderTraversal(T)-.
Exit,

when 'e'IE' =>
mntBST.LevelByLevelTraversal(T);
Exit;

when ot! ers =>
put ("Try again enter eithier r',Wn");
put (",'o, or'e..
new-line;

end Case;
end Loop-,
new-line,
put("Traversal finished .");

when 9=>
new-line-
put("Destroying Tree.");
I tB ST. Destroy (T),
new-line;
put ('Tree destroyed.");

113

when others =>

EXIT;
end Case;

end Loop-,

Exception
when bitBST.NOTFOUND =>

put ("What you were looking for in the tree");
put ('isn't there.');

when others =>
Raise,

end bsttest;

114

APPENDIX G

AVL TREE

The following algoritlun is a combination of the AVL
tree algorithm found in [Ref. 3:pp. 259-2601 and in

[Ref. Il:pp. 225-2271.

Generic
Type Item is Private;

with Procedure WhenTraversingDo (Content: in Item) is <>;
-- A user defined procedure that is compatible with this
-- should be compiled for use in the instantiation of this
-- generic package.

with Function Item l LessThanltem2
(Iteml : in Item; Item2 : in Item) Return Boolean is <>;

-- A user defined function that returns True if Iteml < Item2.

Package GenAVLTree is
Type AVLTree is Limited Private;

NOTFOUND: Exception;
DELETENOTFOUND: Exception;

Procedure Clear (T: in out AVLTree);
-- pre - T exists.
-- post - T-pre exists as an empty tree.

Procedure Destroy (T: in out AVLTree);
-- pre - T exists.
-- post - T-pre no longer exists.

Function FulI(T: in AVLTree) Return Boolean;
-- pre - T exists.
-- post - True if the tree T can not have more items added,
-- otherwise False.

115

Function Empty(T: in AVLTree) Return Boolean;
-- pre - T exists.
-- post - True if tree T has no items in it, otherwise False.

Procedure Create(T: in out AVLTree);
-- pre - None.
-- post - T exists and is empty.

Procedure Insert (T: in out AVLTree; E: in Item;
Success : in out Boolean);

-- pre - T exists. The size of T has not reached its maximum.
-- post - If pre-T was empty then E is the content of the
-- Root node of T and Success is true.
-- Otherwise if E is not already in the tree then E
- - has been inserted in its proper position in the
-- tree. Success is true and Current location is the
-- new node that contains E. If E was in T-pre then
-- Current location remains unchanged and Success is
-- false. In all cases T remains an AVL tree.

Procedure Delete (T : in out AVLTree; E : in Item);
-- pre - T is not empty.
-- post - Item E is deleted from T and T remains an AVL tree.

Procedure Retrieve (T: in AVLTree; E: in out Item);
-- pre - T is not empty.
-- post - E is the content of pre-Current location.

Procedure Find (T: in out AVLTree: E: in Item);
-- pre - T exists.
-- post - Current Location in the tree contains E.
-- exception raised - NOTFOUND if E cannot be found in tree

and Current Location points to node
-- where E would be added.

Procedure PreOrderTraversal(T: in AVLTree);
-- pre - T exists.
-- post - Current Location remains unchanged. Action
-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- preorder fashion.

116

Procedure InOrderTraversal(T: in AVLTree);
-- pre - T exists.
-- post - Current Location remains unchanged. Action
-- specified by user supplied WhenTraversingDo
-- procedure is perfonned on each node in the tree in
-- inorder fashion.

Procedure PostOrderTraversal(T: in AVLTree);
-- pre - T exists.
-- post - Current Location remains unchanged. Action
-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- postorder fashion.

Procedure LevelByLevelTraversal(T : in AVLTree);
-- pre - T exists.
-- post - Current Location remains unchanged. Action
-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- a level by level fashion starting at the level
-- containing the root node.

Private
Type Treelnstance:
Type AVLTree is Access Treelnstance;

end GenAVLTree;

with UncheckedDeallocation, GenericList;
Package body GenAVLTree is

Type Node: -- Forward declaration.
Type NodePointer is Access Node; -- Construction method

-- of tree.
Type High is (left, equal, right); -- Records Balance

-- factor of tree.

Type Node is -- What tree is made up of.
Record

Element : Item:
Balance High;

117

LeftChild NodePointer
RightChild: NodePointer;

end Record;

Type TreeInstance is -- Provides access to tree and
Record -- to a specific node.

Root : NodePointer;
Current: NodePointer;

end Record;

Package PointerList is
new GenericList(ITEM => Node_Pointer);

use PointerList; -- Linked list that will contain
-- NodePointers.

Procedure Return_Node is
new UncheckedDeallocation (Node,NodePointer);

-- Used for reclaiming NodePointer
-- memory space.

Procedure Return_Tree is
new UncheckedDeallocation (Treelnstance,AVLTree);

-- Used for reclaiming AVLTree
-- memory space.

Procedure Clear (T: in out AVLTree) is
-- pre - T exists.
-- post - T-pre exists as an empty tree.

begin
While not Empty(T) -- If already clear then don't do it.
Loop

T.Current := T.Root;
Delete(T, T.Root.Element);

end Loop;
end Clear:

118

Procedure Destroy (T: in out AVLTree) is
-- pre - T exists.
-- post - T-pre no longer exists.

begin
Clear(T); -- Reclaims memory space used by tree.
ReturnTree(T); -- Reclains instance of tree.

end Destroy;

Function FulI(T : in AVLTree) Return Boolean is
-- pre - T exists.
-- post - True if the tree T can not have more items added,
-- otherwise False.

Temp: Node_Pointer;

begin
Temp T.Root; -- Checks that tree exists.
Temp := new Node; -- Check if space is available.
Return_Node(Temp); -- Return space allocated by check.
Return (false);

Exception
when STORAGEERROR =>

Return (true); --Full as no more memory is free.
when others =>

Raise;
end Full;

Function Empty(T : in AVLTree) Return Boolean is
-- pre - T exists.
-- post - True if tree T has no items in it, otherwise False.

begin
Return (T.Root = null); --Empty when root points to null.

end Empty,

Procedure Create(T: in out AVLTree) is
-- pre - None.
-- post - T exists and is empty.

119

TempPtr: AVLTree;

begin
TempPtr: new Treelnstance'(nulljiull);
T := TempPtr;

end Create,

Function FindParent(T : in AVL-Tree; N : in NodePointer)
Return NodePointer is

-Hidden Function that returns a pointer to the parent of
-the node pointed to by N. Search for parent is a binary
-search.

-SHOULD NEVER BE CALLED WITH AN EMPTY TREE.
-SHOULD NEVER BE CALLED WITH N POINTING AT ROOT OF TREE.

TempPtr: NodePointer; -- Used to traverse tree.

begin
TempPtr := T.Root;

Loop
While Item I LessThanlrem2(TempPtr. Element, N.Element)
Loop -- Search Right subtree

If TempPtr.RightChild = N then
Return(TempPtr); -- Parent found!

end If,
TempPtr := TernpPtr.Right Child;

end Loop;

While Itenm I LessThanltem2(N. Element, TernpPtr. Element)
Loop -- Search Left subtree

If TempPtr.LeftChild = N then
Return (TernpPtr); -- Parent found!

end If;
TempPtr := TempPtr.LeftChild;

end Loop;
end Loop-,

end FindParent;

Procedure SetPointers (T: in AVLTree;
p1I, p2, p3, p4 : in out NodePointer) is

120

-Hidden procedure that sets NodePointers as follows:
-p1I -- > parent of pivot.
-p2 ->pivot.

-p3 ->child of pivot along the search path to new node
-p4 ->child of p3 along the search path to new node

Teivp: NodePointer;

Begin

Temp := T.Root; -- initialization.

While Temp.Element /= T.Current.Element
Loop

Case Temp.Balance is
when left I right => --Sets p2 to closest unbalanced

p2 := Temp-, -- ancestor of new node.

-- Sets p3 to child of p2 on path to
-- new node.

If Item I LessThanltem_2
(T.Current.Element, Temp.Element) then

p3 := p.leftChild;
Temp :=p3;

Else
p13 := p2.RightChild;
Temp p3;

end If;

-Sets p4 to child of p3 on path to
-- new niode.

If Item 1 LessThanhen12
(T.-Current. Element, p3 .Elernent) then

p4 :=p3.LeftChild;
Else

p4 := p3.RightChild;
end If;

when equal => -- Moves Temp down tree towards new
-- node.

If Item I LessThanltein2
(T.Current. Element, Temp.Element) then

Temp := Temp. LeftChi Id,
Else

121

Ternp :=Temp.RightChild;
end If;

end Case;
end Loop;

-- If pivot exists and is not the root
-- then find the parent of pivot.

If (p2 /= T.Root) and (p2 /= null) then
p1 : FindParent(T, p2);

end If;
end SetPointers;

Procedure Reset (T: in out AVLTree;
p : in out NodePointer) is

-Rebalances nodes on search path from p to the new node.
-Called only when the insertion does not cause a rotation.

begin -- Correct balance from p down to
-- the new node.

While T. Current. Element /= p.Elemnent
Loop

If Item I LessThanltem2
(T. Current. Element, p.Element) then

Case p.Balance is
when equal =>

p.Balance := left; -- New node is left of p.

when right =>
p.Balance: equal; -- New node balances p.

when others => -- p.Balance cannot = left.
nul,

end Case;
p := p.LeftChild; -- Proceed towards new node.

Else

Case p.Balance is
when equal =>

p.Balance :=right; --New node is right of p.

122

when left =>
p.Balance := equal; -- New node balances p.

when others => -- p.Balance cannot = right.
null;

end Case;
p:= p.RightChild; -- Proceed towards new node.

end If;
end Loop;
p := T.Root; - Pievents loss of tree if root was pivot.

end Reset;

Function Short (p2 : in NodePointer;
E : in Item) Return Boolean is

-- Returns true if the new node containing E is on the Short
-- side of p2. Otherwise returns false.

begin
Case p2.Balance is

when left =>
If Item I LessThanltem2(E, p2.Element) then

Return (False); --New node is on tall side of p2 .
Else

Return (True); --New node is on short side of p 2 .
end If:

when right =>
If Item I LessThanltem2 (E, p2.Element) then

Return (True); --New node is on short side of p2.
Else
end If;

when others => -- p2.Balance cannot = equal.
nll;

end Case,
end Short;

Function Single (p2 , p3, p4 : NodePointer) Return Boolean is
-- Returns true if a single rotation is required to balance
-- the tree. Otherwise returns false.

123

begin
Case p2.Balance is

when right =>
If Item lLessThan~tem2 (p3.Element, p4.Element) then

Return (True); -- p3 is right of p2 and
-- p4 is right of p3

Else
Return (False);

end If-,

when left =>
If Item 1lLessThanltem2 (p4.Elemnent, p3.Elernent) then

Return (True); -- p3 is left of p2 and
-p4 is left of p3

Else
Return (False);

end If-,

when others => -- p2.Balance cannot = equal.
null;

end Case;
end Single;

Procedure SingleRot(pl, p2, p3, p4 : i Node_Pointer;
T: in out AVLTree) is

-Performs a single rotation on T below node p1I, using p2 as
-the pivot.

begin
If p1 I1= null then -- p2 is not the root.

If p1 LeftChild =p2 then
pl.LeftChild p3; --Connects p3 to same position

Else -- underneath p1I that
p1 RightChild :=p3; -- p2 was occupying.

end If-,
end If.

If p2.LeftChild = p3 then

If (p4.Element /= T.Current. Element) and

(p4 /= null) then

124

p4.Balance :=Left;
end If,

p2.LeftChidd: p3.RighitChild; -- Breaks tree apart and
p3.RighitChiild: p2; -- puts it together

-- again balanced.

If (p2.LeftChild = null) and
(p2.RightChild /= null) then

p2.Balance Right;
Else

p2.Balance Equal;
end If;

Else

If (p4.Element /= T.Currentt. Element) and
(p4 /= null) then

p4.Balance :=Right;
end If,

p2.RightChiild: p3.LeftChild; -- Breaks tree apart and
p3.LeftChild: p2; __ puts it together

-- again balanced.
If (p2.RightCliild = null) and

(p2.LeftChild /= null) then
p2.Balance Left;

Else
p2.Balance Equal;

end If.

end If-,

IfplI = null then -- p2 must have been root therefore
T.Root p=;p3; Root must be updated to be p3.

end IfC
end SingleRot:

Procedure DoubleRot(pl, p2, p3, p4 :in Node_Pointer;
T: in out AVLTree) is

-Perfornis a double rotation on T below node p1, using p2 as
-the pivot.

125

begin
If p I/= null then -- p2 is not the root.

If pl.LeftChild =p2 then
pi.LeftChild :=p 4 ; --Connects p4 to same position

Else -- underneath p1 that
p1 RighitChild :=p 4 ; -- p2 was occupying.

end If-,
end If;

If p2.LeftChild = p3 thern
p3.RightChild: p4.LeftChild; -- Breaks off subtrees
p2. LeftChild p4.RightChild; -- of p4 and reconnects

-- them to p2 and p3.

If p2.RightChild /= null then
If Itemn I LessThanltem2

(p4.Elenient, T.Current.Element) then
p2.Balance: Equal; -- p2's new left subtree

-- contains new node.
Else

p2.Balance :=Right; --p2's new left subtree does
end If, --not contain the new node.

Else

p2.Balance Equal; -- p4 is the new node
-therefore p2 has no children.

end If.

If p3.LeftChild /= null then
If Item I Lessnhanltem2

(T.Current.Elemnent, p4. Element) then
p3.Balance Equal, -- p13's new right subtree

-- contais new node
Else

p3.Balance Left; -- p3's new right subtree
end If; -- does not contain the new

-- node.

Else

If Item 1 Lessnhailtem2
(T. Current. Element, p4. Element) then

126

p3.Balance Right; -- p3 has only one child and
-- it is new node.

Else
p3.13alance Equal; -- p3 has no children.

end If,
endl If,

p4.LeftChild :=p3; -Reconnects subtrees rooted at p3
p4.RightChild: p2; -- and p2 to p4 which is now

-- balanced.

Else

p3.LeftChild :=p4.RiglizChild; -- Breaks off subtrees
p2.RightChild: p4.LeftChild; -- of p4 and reconnects

-- themn to p2 and p3.

If p2.LeftChild /= null then
If Item I LessThanltern2

(T.Current.Elemnent, p4.Element) then
p2.Balance Equal; -- p2 's new right subtree

-contains new node
Else

P2.B3alance Left; -- p2's new right subtree
end If-, -- does not contain the new

-- node.

Else

p2.Balance :=Equal, -- p4 is tile new node and
-- therefore p2 has no children.

end If;

If p3.RightChild /= null then
If Item I L-essllhanltem2

(p4 .Element. T.Current.Elenient) then
p3.Balance Equal; -- , p3's new left subtree

-contains new node.
Else

p3.Balance Right; -- p3's new left subtree
end If;, -- does not contain the new

-node.

127

Else

If Iteml LessThanltem2
(p4.Element. T.Current.Element) then

p3.Balance Left; -- p3 has only one child and

-- it is new node

Else
p3.Balance Equal;-- p3 has no children

end If;
end If;

p4.LeftChild := p2; --Reconnects subtrees rooted at p2

p4.RightChild:= p3; -- and p3 to p4 which is now
-- balanced.

end If-

p4.Balance := Equal;

If pl = null then -- p2 must have been the root therefore

T.Root := p4 ; -- Root must be updated to be p4.

end If;
end DoubleRot.

Procedure Insert (T: in out AVLTree; E: in Item;

Success : hi out Boolean) is

-- pre - T exists. The size of T has not reached its maximum.

-- post - If pre-T was empty then E is the content of the

-- Root node of T and Success is true.

- - Otherwise if E is not already in the tree then E

-- has been inserted in its proper position in the

-- tree. Success is true and Current location is the

-- new child that contains E. If E was in T-pre then

-- Current location remains unchanged and Success is

-- false.

TempPtr: NodePointer; -- Used to create a new node.

pl, p2 , p3 , p4 : NodePointer := null:

begin
Success := True; -- Initialization.

128

If Enipty(T) then -- Insert htem into the root node.
TernpPtr: new Node' (E.Equal,nulI,null):
T.Root :=TempPtr;
T.Current :=TRoot;

Else
Find CT, E). -- If not found then exception NOTFOUND

-is raised.

Success :=False; -- E was found in T therefore
-insertion failed.

end If.-

Exception

When NOTFOUND => -- Action taken to insert new node.

If Item I Less-hanltem2(E,.Current. Element) then
T. Current. LeftChild :=

new Node'(EEqual~null~null);
T.Current :=T.Current.LeftChild,

Else

T.Current RightChild
new Node' HEqual.null.null),

T.Current := T.Current.RightChfld:
end If;

SetPointers (T, p 1. p2 . p3. p4)-.

It p2 = null then -- No pivot exists.
Reset (T, T.RootU; -just adjust balances.

Else

If Short (p2. E) then -- New node was added to
It p2 = T.Root then -- short side.

Reset (T, T.Root),
Else

Reset (T, p'/';
end If.

1:lke -- New node was add~ed to tall side.

If Single (p2 , p3 , p4) then
SingleRot (pl, p2, p3, p4 , T):

Else
DoubleRot (pI, p2, p3 , p4 , T);

end If;
end If;

end If;

when Others =>
Raise;

end Insert;

Procedure Delete (T: in out AVLTree; E: in Item) is
-- pre - T is not empty.
-- post - Item E is deleted from T and T remains an AVL tree.

H : Boolean := False;

Procedure Delete I (E : in Item; P : in out Node_Pointer;
H: in out Boolean) is

Q : NodePointer := null;
NewRoot : NodePointer := null;

Procedure BalanceL (P: in out NodePointer;
H : in out Boolean) is

-- This is a hidden procedure called only from Delete.
-- Rebalances after left subtree has shrunk.

PI, P2 : NodePointer := null;
BI, B2: High;

begin
Case P.Balance is

when left =>
P.Balance := equal;

when equal =>
P.Balance := right;
H := false;

130

when right =>
PI P.RightChild;
B I =P I.Balance;

* If (B I = equal) or (B I = right) then
-- Single right/right rotation

P.RightChild:= PI.LeftChild.
* Pl.LeftChild: P;

If B 1 = equal theni
P.Balance := right;
P1 .Balance :=left;
H := false;

Else

P.Balanice :=equal;
Pi.Balance equal-,

end 1f;

P: P1;

Else -- Double right/left rotation

P2 :=P1.LeftChild;

B2 P2.Balance;
P1 .LeftChild: P2.RightChild;
P2.RightCliild := P1;
P.RightChdl: P2.L-eftChild,
P2.LeftChild:=P

If B2 = right then
P.Balance :=left;

Else

f'.Balance: equal;
eind If;

If 132 = left then
P1 Balance :=right;

Else

131

P1.Balance :=equal;
end If;

P: P2;
P2.Balance :equal-,

end If;
end Case;

end BalanceL;

Procedure BalanceR(P : in out NodePointer;
H :in out Boolean) is

-This is a hidden procedure called only from Delete.
-Rebalances after right subtree has shrunk.

PI,P2: NodePointer: null;
131,132 :High:

begin
Case P.Balance is

when right =>
P.Balance: equal,

when equal =>
P.Balance :=left;
H :=false;

when left =>
P1 P.LeftChild;
BI Pl.Balance;

If (BI = left) or (13 1equal) then
-- Single left/left rotation

P.LeftChild: P1 RightChild;
P1 .RightChid: P;

If B I = equal then
P-Balance: left;
Pl.Balance: right;
H :=False;,

1 32

Else

P. Bal ance equ al;
PI.Balance :=equal;

end If;

P: P1;

Else -- Double left/right rotation

P2: P1 .RightChild;
B2 :=P2.Balance;
P1 RightChild: P2.LeftChild;
P2.LeftChild: P1;
P.LeftChidd: P2.RightChild;
P2.RightChild: P;

If B2 = left then
P.Balance :=right;

Else

P.Balance: equal;
end If,

If B2 = right then
Pl.Balance: left;

Else

P1 .Balance := equal;
end If,

P: P2;
P2.Balance equal;

end If;

end Case;
end BalanceR;

133

Procedure Del(R: in out Node-Pointer; H : in out Boolean) is
-- This is a hidden procedure called only from Delete.
-- Finds in order predecessor of node to be deleted and moves
-- it in to the deleted nodes position.

begin
If R.RightChild /= null then --Finds inorder predecessor

Del(R.RightChild, H); -- of deleted node.

If H then
BalanceR(R,H);

end If;

Else

Q.Element := R.Element; -- Moves in order predecessor
-- contents up to replace node
-- whose contents are deleted.

R R.LeftChild; --Retain child if any of predecessor
-- node.

H true; -- Need-to-Balance flag set.
end If,

end Del;

begin -- Deletel
If P = null then

Raise (DELETENOTFOUND); --E does not exist in tree.

Elsif Item I LessThanltem2(E,P.Element) then
Delete I (E,P.LeftChild,H); -- Move down one level

-- towards node that could contain E.
If H then

BalanceL(P,H);
end If;

Elsif Iteml LessThanltem2(P.Element, E) then
Delete I (E,P.RightChild,H); --Move down one level

-- towards node that could contain E.

If H then
BalanceR(P,H);

end If;

134

Else -- P points to node that contains E.
Q:= P;
If QRightChild = null then --At most 1 child, move it

P:= Q.LeftChild; -- up the tree.
H := true;

Elsif Q.LeftChild = null then --At most I child, move
P = Q.RightChild; -- it up the tree.
H := true; -- Need-to-Balance flag set.

Else
Del(Q.LeftChild,H); --Start search to find in order

-- predecessor of node being deleted.
If H then

BalanceL(P,H);
end If,

end If;

Return Node(Q); -- Reclaim memory of one deleted node.
end If;

end Delete 1;

begin -- Delete
Deletel (E,T.Root,H); -- Interface to Recursive algorithm

end Delete,

Procedure Retrieve (T: in AVLTree; E: in out Item) is
-- pre - T is not empty.
-- post - E is the content of pre-Current location.

begin
E := T.Current.Elernent; --E is the content of the

end Retrieve, -- current node.

Procedure Find (T: in out AVLTree; E: in Item) is
-- pre - T exists.

-- post - Current Location in the tree contains E.
-- exception raised - NOTFOUND if E cannot be found in tree
- - and Current Location points to node
-- where E would be added.

Found: Boolean; -- True when item searched for is found.
SeatchPtr : NodePointer;

135

Parent : NodePointer;

begin
SearchPtr := T.Root; -- Initialization.
Found := false; -- Initialization.

While SearchPtr /= null
Loop

Parent := SearchPtr;
If SearchPtr. Element = E then

T.Current := SearchPtr; -- Search completed.
Found := True;
Exit;

Else

If Item I LessThanltem2(E, SearchPtr.Element) then
SearchPtr := SearchPtr.LeftChild;

Else
SearchPtr := SearchPtr.RightChild;

end If;

end If,

end Loop;

ReturnNode(SearchPtr); -- Reclaims memory.

If not Found then
T.Current := Parent;
Raise (NOT FOUND); -- Tree does not contain E.

end If-.
end Find;

Procedure PreOrderTraversal(T: in AVLTree) is
-pre - T exists.
-post - Current Location remains unchanged. Action

-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- preorder fashion.

136

Procedure PreOrder(Ptr : in Node_Pointer) is
-Hidden procedure that actually performs the traversal
-recursively.

begin
If Ptr /= null then

WhenTravers ing Do(Ptr. Elemnent); -- Perform action on
Pre Orde r(Ptr. LeftChild); -- each node.
Pre Orde r(Ptr.RightChidd);

end If;
end PreOrder;

begin
PreOrder(T.Root);

end PreOrderl'raversal;

Procedure InOrderTraversal(T : in AVLTree) is
-pre - T exists.
-post - Current Location remains unchanged. Action

-- specified by user supplied WhenTraversingDo
-- procedure is pef-forn-ed on each node in the tree in
-- inorder fashion.

Procedure InOrder(Ptr: in NodePointer) is
-Hidden procedure that actually perfornis traversal
-recursively.

begin
If Ptr /= null then

InOrder(Ptr. LeftChild);
WhenTraversingDo(Ptr. Element); -- Perform action on each node.
InOrder(Ptr.RightChild):

end If;
end InOrcier:

begin
lnOrder(T.Root);

end LnOrder'Fraversal;

Procedure PostOrderTraversal(T: in AVLTree) is
-pre - T exists.

137

-- post - Current Location remains unchanged. Action
-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- postorder fashion.

Procedure PostOrder(Ptr : in NodePointer) is
-- Hidden procedure that actually performs the traversal
-- recursively.

begin
If Ptr /= null then

PostOrder(Ptr.LeftChild);
PostOrder(Ptr.RightChild);
WhenTraversingDo(Ptr.Element); -- Perform action on

end If; -- each node.
end PostOrder;

begin
PostOrder(T.Root);

end PostOrderTraversal;

Procedure LevelByLevelTraversal(T: in AVLTree) is
-- pre - T exists.
-- post - Current Location remains unchanged. Action
-- specified by user supplied WhenTraversingDo
-- procedure is performed on each node in the tree in
-- a level by level fashion starting at the level

containing the root node.

L: List;
Position: Integer;
Ptr, I : NodePointer;

begin
If not Empty(T) then

Ptr = T.Root;
Insert(L, I,Ptr); -- Enqueue root node of tree in L.
Loop

If Empty(L) then
Exit; -- Traversal finished.

end If;

138

Delete(L, 1,I), -- Serve first node of list L.

WhenTraversingDo(I.Eleiment); -- Perform action on
-- each node.

If I.LeftChild /= null then -- Enqueue next
Length(L,Position); level's nodes
Position :=Position + 1;
Insert(L,Position,I.LeftChild);

end If;

If I.rightChild /= null then
Length(L,Position);
Position :=Position + 1;
Insert(L,Position,I .RightChild);

end If: - . left to right.

end Loop;

Clear (L); -- Reclaim memory used by list L.
end If,

end LevelByLevelTraversal;
end Gen_AVLTree;

Instantiation of AVL Tree

with ada io:,
use ada-io;
with GenAVL-Tree, NodeOutput, IntegerLessThan;
Procedure avitest is
Package IntAVL is new GenAVLTree(ltern => Integer,

WbenTraversingDo => NodeOutput,
Item 1 LessThanltern2 => IntegerLessThan);

-NodeOutput details can be found in Appendix E.
-- ntegerLessThan details can be found in Appendix F.

T: IntAVL.AVLTree;
Intl : INTEGER;
Int2: INTEGER,
BoollI BOOLEAN;

139

ch : Character;

begin
Loop

newline;
put ("0. Create.");
newline;
put ("1. Full?");
new_line;
put ("2. Empty?");
newline;
put ("3. Clear.");
newline;
put ("4. Insert.");
newline;
put ("5. Delete.");
newline:
put ("6. Retrieve.");
newline;
put ("7. Find.");
new_line;
put ("8. Traverse.");
newline;
put ("9. Destroy the Tree."),
new_line;
new_line;
put ("Enter number of action you desire.");
get (ht I);

Case bit I is
when 0 =>

Int_AVL.Create (T);
new_line;
put("Tree created.");

when 1 =>
new_line;
put("Checking if tree is full.");
If IntAVL.FulI(T) then

put(" Yes it is full.");
Else

put(" No it is not full.");
end If;

140

when 2 =>

new-line;
put ("Chiecking if tree is empty.");
if Int_-AVL.Em-pty(T) then

put(" Yes it is enmpty.");
Else

put(" No it is not empty.");
end If-.

when 3 =>

new-line-,
put('Cleariflg the tree.");
IntAVL.Clear(T);
put(" Finished clearing the tree.");

when 4 =>

new-line:
put("Enter integer you want to put in tree.)

get(lnt2),
new-line,
IntAVL.Insert(TInt2,Booll);
new-line;
If BoollI then

put("Insertion was successful,"),
Else

put("Insertion was not successful.");
end If;

when 5 =>

new-line;
put("Enter integer you want deleted fromn the");

put(" tree.").
get(lnt2);
new_line;
IntAVL.Delete(T,Int2);
put(" Finished with deletion.");

w.hen 6 =>

new-fine,
put("Retrieving content of current node.");
IntAVL.Retrieve(T,Int2);
put(" Content was
put (Int2);

141

put C'.");

when 7 =>

new-line;
put("Enter integer you want to find in the");
put(" tree. *)

get(Lnt2);
new line;
put("Finding")
put(Int2);

Int_AVL.Find(T,Int2);
put(" Finished with find.");

when 8 =>

new-line,
Loop

put("Enter either Yr, Wn, 'o' or 'e' for")
new-line;
put ("r = pre-order, n = in-order, o
put(" post-order or e=",
put (" level by level traversal.")
get(ch);
Case ch is

when 'r'F'R' =>

IntAVL.PreOrderTraversal(T);
Exit;

when WnI'N' =>
hitAVL.InOrderTraversal(T);
Exit;

when 'o'1'0' =>

hitAVL.PostOrderTraversal(T);
Exit;

when 'e'IE' =>

hItAVL.LevelByLevelTraversal(T);
Exit;

when others =>
put ("Try again enter either 'r,'n");
put ('','o' , or ' .

new_line;
end Case;

end Loop;
new_line;

142

put("Traversal finished.");

when 9 =>
Int_AVL.Destroy(T);
new line,
put ("Tree destroyed.");

when others =>
EXIT;

end Case;
end Loop;

Exception
when IntAVL.NOTFOUND =>

put (" What you were looking for in the tree");
put (" isn't there.");

when others =>
Raise;

end avltest;

143

LIST OF REFERENCES

1. MacLennan, Bruce J., Principles of Programming
Languages: Design, Evaluation, and Implementation, 2d
ed., Holt, Rinehart and Winston, New York, NY, 1987. f

2. Wiener, R., Sincovec, R. "Modular Software Construction
and Object Oriented Design Using Ada," Journal of Pascal
and Ada and Modula-2, Vol. 3, No.2, March/April 1984.

3. Stubbs, Daniel F., Webre, Neil W., Data Structures with
Abstract Data Types and Modula-2, Brooks/Cole Publishing
Company, Monterey, CA, 1987.

4. Kapur, Deepak, Srivas, Mandayam, "Computability and
Implementability Issues in Abstract Data Types," Science
of Computer Programming, Vol. v 10, Issue nl, February
1988.

5. Buzzard, G.D., Mudge, T.N., "Object Based Computing and
the Ada Programming Language," Computer, Vol. 18, No. 3,
March 1985.

6. Watt, David A., Wichmann, Brian A., Findlay, William,
Ada Language and Methodology, Prentice-Hall
International (UK) Ltd, London, England, 1987.

7. Leach, D.M., Satko, J.E., "Implementation Languages for
Data Abstractions," Third Annual International Phoenix
Conference on Computers and Communications. 1984
Conference Proceedings, IEEE Computer Society Press,
Silver Spring, MD, 1984.

8. Department of Defense Military Standard ANSI/MIL-STD-
1815A, Reference Manual for the Ada Programming
Language, February 17, 1983.

9. Gilpin, Geoff, Ada A Guided Tour and Tutorial, Prentice
Hall Press, New York, NY, 1986.

10. Booch, Grady, Software Engineering with Ada, 2d ed., The
Benjamin/Cummings Publishing Company Inc., Menlo Park,
CA, 1986.

11. Wirth, Niklaus, Algorithms and Data Structures, Prentice
Hall Inc., Englewood Cliffs, NJ, 1986.

144

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Professor C. Thomas Wu, Code 52Hq 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

4. Lieutenant Commander Richard N. Britnell 2
625 Alberta Avenue
Cookeville, Tennessee 38501-2667

145

