
NAVAL POSTGRADUATE SCHOOL
Monterey, California

• WVSTAT4

DTIC
~FEB 17199

N

CD ooI THESIS

AN EXPERT SYSTEM INTERFACED WITH A DATABASE
ISYSTEM TO PERFORM TROUBLESHOOTING OF AIRCRAFT

CARRIER PIPING SYSTEMS

by

Irving B. Clayton III and Patsy R. Boozer

December 1988

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

09 894! 1-

i i i I

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification Unclassified lb Restrictive Markings

2a Security Classification Authority 3 Distribution Availability of Report
2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report Number s) 5 Monitoring Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School I (If Applicable) 37 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

I(If Applicable)
8c Address (city, state, and ZIP code) 10 Source of Funding Numbers

Pt_ Elanan Number IPronct No I Tak No I Wik Unit Acmsimon No

11 Title (Include Security Classification) An Expert System Inte rfaced with a Database System to Perform
Troubleshooting of Aircraft Carrier Piping Systems

12 Personal Author(s) Clayton III, Irving B. and Boozer, Patsy R.
13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) I 15 Page Count
Master's Thesis From To December 1988 169
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
17 Cosati Codes I 8 Subject Terms (continue on reverse if necessary and identify by block number)
Fi Id Group Subgroup Expert System, Database, Modeling

I Abstract (continue on reverse if necessary and identify by block number

Maintaining and troubleshooting aircraft carrierthrough tank piping systems is a labor intensive, operational fleet
problem. There is a clear need for a useful database and expert system to aid in fault isolation and repair planning
for these systems. The multiple extensive piping systems of an aircraft cmrier create an intimidating modelling
problem for implementation in a database. The interface of an expert system to a large database to obtain
improved execution speed, exploit a useful data model, reduce memory requirements, and enhance total system
capability is examined and implemented. A flexible model for representing a large ship's piping systems in a
database is presented. .,, . / 7 2. p.":

)

20 Distribution/Availability of Abstract 21 Abstract Security Classification
X] unclassified/unlimited same as report DTC users Unclassified

22a Name of Responsible Individual 22b Te]ephone (Include Area code) 22c Office SymbolT.
C. Thomas Wu (408) 646-3391 152Wq

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unrlassified

Approved for public release; distribution is unlimited.

An Expert System Interfaced with a Database System to Perform
Troubleshooting of Aircraft Carrier Piping Systems

by

Irving B. Clayton III
Commander, United States Navy
B.S., University of Virginia, 1972

and

Patsy R. Boozer
Lieutenant, United States Navy

B.S., University of South Carolina, 1979

Submitted in partial fulfillment of the
requiremezits for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1988

Author:z (2
Ir ng B. Clayto III

'Patsy R. oozer

Approved by:
C. omas Wu, Thesis Advisor

David K. Hsiao, Second Reader

Robert B. McGhee, Chairman
Department of Computer Science

Kneale T. Marshal'

Dean of Information and Policy Scienc s

ii

ABSTRACT

Maintaining and troubleshooting aircraft carrier through tank piping systems

is a labor intensive, operational fleet problem. There is a clear need for a useful

database and expert system to aid in fault isolation and repair planning for these

systems. The multiple extensive piping systems of an aircraft carrier create an

intimidating modelling problem for implementation in a database. The interface of

an expert system to a large database to obtain improved execution speed, exploit a

useful data model, reduce memory requirements, and enhance total system

capability is examined and implemented. A flexible model for representing a large

ship's piping systems in a database is presented.

Accession For

INTIS GRA&
DTIC T A [
Ui u" o un od 0

i juit f on

/ Y

Disirrvibuition/

Availability Codes

Avs l -and/or. Dstl [Special

i.lmllll llll II I IIIII~
l

I I l 'Ni II II III

TABLE OF CONTENTS

1. INTRODUCTION ... 1

II. BACKGROUND ... 3

A. INTERNAL ARRANGEMENT .. 3

B. TROUBLESHOOTING .. 5

I11. DESIGN AND IMPLEMENTATION 8

A. MODELLING THE PIPING SYSTEM .. 8

B. EXPERT SYSTEM .. 10
C. SOFTW ARE .. 12
D. SCOPE OF PROTOTYPE .. 13

1. Damage Control Void .. 14

2. Fuel Oil Service Tank .. 14
3. Fuel Oil Storage Tank .. 14

4. Contaminated Tank .. 15
5. JP-5 Tank .. 15

E. IMPLEMENTATION OF THE RELATIONAL MODEL 15

F. PROTOTYPE DEMONSTRATION .. 20

1. Database System Operation .. 20

2. Expert System Operation .. 23

IV. CONCLUSIONS .. 28
A. DATABASE SYSTEM/EXPERT SYSTEM CONNECTION 28

B. REFINING THE PROTOTYPE .. 29

C. POTENTIAL EXPERT SYSTEMS ... 30

iv

APPENDIX A. DECISION TREES .. 31

APPENDIX B. RELATIONAL DIAGRAM 41

APPENDIX C. PROGRAM LISTING 42

LIST OF REFERENCES .. 159

INITIAL DISTRIBUTION LIST ... 160

V

LIST OF FIGURES

Figure 1. Through Tank Piping Arrangement for No. 4. MMR 4

Figure 2. Basic Relation Diagram ... 17

Figure 3. Contains Relation .. 17

Figure 4. Pipesystem Relation ... 17

Figure 5. Adjacent Relation .. 18

Figure 6. Compartment Relation .. 18

Figure 7. String 119S Compartments ... 19

Figure 8. Pipes Database Menu .. 21

Figure 9. Database Query Menu .. 21

Figure 10. Piping System Queries .. 22

Figure 11. Compartment Prompt .. 22

Figure 12. System Response to Query .. 23

Figure 13. All Pipes Contained in 8-119-9-V ... 23

Figure 14. Expert System Menu ... 24

Figure 15. Problem Analysis Menu .. 24

Figure 16. Fuel Oil Service Tank Problem Menu 25

Figure 17. Prompt for Compartment Number .. 26

Figure 18. Action Prompt .. 26

Figure 19. Troubleshooting Solution .. 27

Figure A.1 D. C. Void Will Not Pump .. 31

Figure A.2 D. C. Void Pumps but Refills with Water 32

Figure A.3 Damage Control Void Will Not Flood 33

Figure A.4 Damage Control Void Overflowing 34

Figure A.5 Water in a Fuel Oil Service Tank ... 35

Figure A.6 Fuel Oil Service Tank Overflowing 36

Figure A.7 Fuel Oil Service Tank Losing Fuel .. 37

Figure A.8 Fuel Oil Storage Tank Overflowing .. 38

vi

Figure A.9 Large Contaminated Tank Ovefflowing 39
Figure A.10 Fuel/Oil in a Damage Control Void 40

Figure B.1 Relational Diagram... 41

vii

I. INTRODUCTION

The failure of aircraft carrier through tank piping was identified in the mid

1970's as a difficult management problem. The deterioration of carbon steel

piping, from continuous immersion in salt water, allowed the intercommunication

of the ship's fuel tanks and damage control voids. The potential detriment of inter-

communicating tanks includes:

" loss of boiler fires due to water in the fuel oil casualties

• inadvertent overboard discharge of fuel when pumping a contaminated D.C.
void

" increased draft

• reduction in ability to counter flood

• lost reserve buoyancy

The complexity of CV's, intense operating schedules, and advancing ship age

has made dealing with piping casualties time consuming and frustrating. Hours

spent tracing piping diagrams and making false starts in resolving a problem has

pointed out that a formalized approach to the problem would be worthwhile. The

system developed in this thesis is directly applicable to CV's 59/60/61/62/63/64,

and is readily adaptable to CV's 41/43 and CVN-65. The CV-67 and CVN-68 class

side protection systems, construction materials(copper-nickel piping), and pipe

joining techniques(socket couplings) do not experience the same failures and hence

these ships would derive minimal benefit from this system.

The development of an expert system interfacing a large database to aid in

troubleshooting aircraft carrier piping systems is divisible into three areas of

emphasis:

" the model for the database system
* the design of the interface to the database
* the expert system itself

This thesis examines each of these issues and implements the recommended

solution in an operable database interfaced expert system.

The implementation of the expert system is designed to be operated by

Engineering Department personnel at sea on a micro computer likely to be readily

available. The hardware limitations therefore are considered to be those of the

Z-248, widely purchased for operating forces, and readily available as a GSA

catalog item.

CDR Clayton developed the decision trees and provided the expertise with

respect to aircraft carrier design and construction. The data model and user

interface to the system were also designed by CDR Clayton.

LT Boozer developed the expert system, the interface to the data base, and the

data base system.

2

II. BACKGROUND

The following are Naval terms which may need to be defined to assist in the

comprehension of this paper:

* "through tank" refers to long sections (40 - 50 feet) of pipe which run in the
bottom of the ship through several adjacent compartments. These
compartments are frequently other tanks, hence the label "through tank".

" "string" refers to a group of tanks and voids all located side by side at the
same frame number and on the same side of the ship. For example, string
119S refers to five adjacent voids and tanks all located at frame 119 on the
starboard side of the ship.

* "frame" is a relative location along the length of the ship starting at the
forward end of the ship. Aircraft carrier frames are spaced at an interval of
four feet, and are numbered sequentially bow to stem.

* "wing tank" is a tank or void, outboard of the holding bulkhead, away from
the center of the ship and in close proximity to the side of the ship. They are
typically long (20 feet), narrow (5 feet), and very deep (37 feet).

A. INTERNAL ARRANGEMENT

Understanding the internal compartment and system arrangement in a

FORRESTAL/KITTY HAWK class aircraft carrier is fundamental to

comprehending the database model utilized by the expert system. An illustration of

a typical arrangement [Ref. 1 :p. 101 appears as Figure 1.

Piping emanating in the engineering spaces passes through several

compartments before reaching its termination point. Aircraft carriers built prior

to 1965 were constructed with mild carbon steel fuel oil transfer, fuel oil service,

and fuel oil recirculating piping systems. The deterioration of these systems in

service due to corrosion has resulted in leaks which are not readily apparent

because they are inside of other tanks. This internal leakage is thus difficult to

3

lf2 ,27 ,1 I19

8-127--W 8-123-1-W 8-119--W
FW FW RFW

8-119-3"W

S-127-3-F 8123-3-W RFW

FO FW

- __T
8-125V

_ _, J al, IDC

S-127-5-V 8-124-1-V 8-119-V

8-12T-7-V 8-124-3-V 6- 119-9 "V

8 1 1-11- 2F
-127-8-124-5F a-S"I'! - ., -"

4 4 1

8-127-I1F 8-124-7-F 8-119-13FFOS-5 OB2 FOS

4 4

e-127-13-V 8-124-9-F 5 8-119-15-V
DC FOOS DC

Figure 1. Through Tank Piping Arrangement for No. 4. MMR

4

diagnose. Other factors which contribute to the difficulty of diagnosing a problem

are improper system operation by personnel, inoperative or leaking valves, foreign

object blockage, and cracks in structure. Multiple combinations of the above factors

can mask one problem from another and further complicate troubleshooting. This

latter case presents the most difficult challenge to the expert system: successfully

identifying more than one problem when multiple problems are present. The

design of the expert system can accommodate this type of scenario with multiple

independent user sessions, but careful decision tree structure can minimize these

instances and identify more than one cause to a problem in a single session.

B. TROUBLESHOOTING

The initial identification of a tank/void system problem can come from:

• soundings

• tank level indicators

• water at the boiler front

• water paste tests

* requirement to strip excessively

" requirement to pump excessively

* overflowing air escapes/sounding tubes

• discharge from overboard piping

* excessive draft

• unable to pump

The decision making process in troubleshooting a piping system casualty

begins with an input of what system is disrupted and what the initial symptom of the

prc.-0em is. This information is brought to the attention of the Engineering Officer

5

of the Watch in Central Control, the work center supervisor in the oil/water lab, or

the Damage Control Assistant.

The trouble shooting process begins based on the experience and intuition of

the individual to whom the problem is addressed. This, of course, is not a constant.

The approach to solving a problem can vary widely between individuals, some who

may have experienced a similar casualty and remembered a prior successful

solution to that problem.

A methodical process of elimination is the best approach to a solution, but

thorough knowledge of the systems involved, the ship's construction, and accurate

responses to questions are required to produce a least effort path to a solution. This

is critical in an operating aircraft carrier because the demands of operating the ship

in a normal state alone taxes the crew, correcting casualties quickly exhausts them.

Because of this last condition, the first step in troubleshooting is to get as much

accurate information as possible, with as little physical effort as possible. Simply

put, you conserve energy. Actions which fall in this category are:

* taking soundings

" examining logs
• making water paste tests

* reading tank level indicators

° reading drawings and system technical manuals

The next step, based on the above information, is to make simple tests using

accessible equipment. These are:

• verify the correct line up of installed pumping/stripping systems in the
machinery spaces

* verify use of remote operating stations

6

0 disassemble small valves (4 inch or smaller) in machinery spaces/pump
rooms

* listen to systems in operation

• inspect equipment/systems in compartments which are readily entered (no
bolted access covers).

Further escalation of troubleshooting should only begin when a problem has

been isolated to a likely set of causes. Action at this point is one of the following

categories:

a open and gas free and inspect voids/tanks

0 open and pump tanks/voids using portable equipment
* pump contaminated fuel/water out of the ship within the governing

regulations for the location of the ship
• disassemble large heavy valves (greater than 4 inches) pumps, or other

complex equipment

This sequence of actions is driven by conservation of assets and the need to

minimize disruption of operating systems. The multiple possible paths to solving a

unique problem, the varying level of experience of operators, and the importance

of conserving assets, both time and personnel, clearly point to the need for an

expert system capable of managing a complex object requiring a large number of

facts stored in an organized database.

7

III. DESIGN AND IMPLEMENTATION

The design and implementation of the total "PIPES" system involved the

investigation of multiple alternatives of how to structure the system to maximize its

performance with respect to:

* model design and utility
• storage of data
" database query
• modification/update of database
* expert system power
• memory requirements

• speed

* connection of software

The following sections describe the evolution of the initial concept and

understanding of the problem, through the decisions made in the development

process, to the final configuration of the functional prototype system.

A. MODELLING THE PIPING SYSTEM

The initial concept of system design was to utilize a database management

program to perform central program functions. This was primarily driven by the

feeling that the difficulty in building the system would center around the details of

the configuration of the model. The problem was viewed as a challenging database

problem. This conclusion was drawn from the intimidating size and multiple

attributes thought felt to be required to deal with a large object such as an aircraft

carrier. There was also a defined set of queries which were clearly of the DBMS

type. The intent was to solve the model problem, build a corresponding database

8

system, and then utilize an expert system to return troubleshooting problem

solutions to the database system. The final configuration of the system, after

evolving through the development cycle, is discussed in the Conclusions chapter.

In making the choice of how to build the database model, consideration was

given to traditional database structures. A hierarchical system offered no apparent

utility in exploiting the cnstruction of the ship since there is no hierarchy among

piping systems or the pieces of a piping system. The compartments within a ship

could be hierarchically arranged by deck and by position from forward to aft in the

ship but this did not provide any apparent advantage in dealing with the piping

systems, so a hierarchical system was rejected. A network system appeared to be

feasible but while attempting to establish the links in the data structure diagram for

such a system it became clear that it would be easier to implement a relational

model.

The alternative of implementing the relational model in the expert system

could have been accomplished, but would have required using an unmanageable

number of facts in a Prolog system. This was judged to be prohibitive in terms of

both memory requirement and speed of execution. Building a similar system in

Pascal would have required an even larger quantity of code and would have again

been a poor design choice for memory and speed reasons.

A design decision was made to implement the database in a DBMS language to

attempt to exploit the relational model which had been developed and which was

thought to offer considerable potential because of its simplicity and apparent

flexibility.

9

B. EXPERT SYSTEM

The expert system function of the "PIPES" system is required to return

solutions for specific problems selected by the operator. This meant that at least

one fact is known at the outset of the session. One control structure for this type of

rule based system is referred to as forward chaining. Essentially the expert system

is given a fact and it then attempts to find a chain of facts which lead to a definitive

conclusion. Control structures for expert systems are often combined to take

advantage of the characteristics of each structure while compromising on the

limitations brought with both structures. One form of such a combined control

structure is called rule-cycle hybrid. Strictly defined, rule-cycle hybrid structures

cycle through rules, in order, as in backward chaining, however, as facts are

asserted they are added for use in the next cycle through the rules, as in forward

chaining. [Ref. 2:p. 105]

The nature of the problem solving done in troubleshooting shipboard piping

systems led to the development of a system which employed a decision tree design

where the entry point to a unique tree was a user selected problem. After entry into

the tree, the user is directed to carry out troubleshooting action and then respond to

questions as to the outcome of his investigations. In this manner virtual facts are

established, as in forward chaining, through a series of user actions and responses

which lead down the tree to a conclusion. Each rule which succeeds (establishing a

virtual fact) thus leads to another rule which in turn must succeed (establishing

another fact) to reach a conclusion. The design decision of how to connect the

expert system to the database system presented the most difficult challenge in

building the system. The available database programs provide no capability to

make a call to another program, and return to the database program. A major

10

design change in the structure of the system was forced at this point of

development. The details of this decision follow. The interface of a expert system

to DBMS files can be accomplished by calling a specific data file from within the

expert system. This would mean that none of the DBMS functions would be

available for query or file modification without quitting the expert system and

loading the DBMS. The alternative of loading the DBMS each time it was needed,

and then reloading the expert system, though feasible, was regarded as an

undesirable degradation, from an operator's performance perspective.

An obvious alternative was to utilize a more advanced machine and run the

expert system and DBMS simultaneously with a multi-processor, allowing queries

to the DBMS without terminating the expert system. This method was judged

unsatisfactory because of the requirement to be able to operate the system on

shipboard available equipment, which at best would be 80286 processor based.

Because the expert system can make calls to external data files, the feasibility of

calling compiled DBMS program queries was examined. A limited number of

software routines which would perform some DBMS functions were identified but

not used because of the limitations on the nature of queries and prohibitive dollar

cost. The potential performance improvement offered by this approach was a

significant increase in speed over DBMS commands due to the machine language

configuration of the already compiled routines. A further option was to write

drivers in the DBMS program language to perform all of the required calls and

returns from DBMS. By essentially duplicating explicit DBMS functions, the

DBMS files could be queried and/or manipulated to return a response without the

need to carry all of the DBMS's operating overhead and memory requirements.

The drivers would, as compiled routines also did, significantly speed the response

11

of the database side of the system. Decomposing DBMS program code and writing

appropriate routines was not in the scope of this thesis. The final design choice was

a compromise to obtain the desirable modelling and data storage of the DBMS

system and the efficiency of a Prolog expert system. The connection of the expert

system to the DBMS was made by running the system from the DBMS system

program and accessing the expert system by calling the already compiled

executable Prolog file. The key to making this choice was recognition that the full

Turbo-Prolog program was a compiled executable program [Ref. 3:p. 160] which

could be run inside the d-BASE III program [Ref. 4:p. 208] and not exceed the

640K resident memory limitations of the hardware. An additional design decision

was made to allow queries in the DBMS side of the system to be made both by using

functions built for the DBMS program, and by a program feature provided to allow

user built queries in d-BASE III, enabling full exploitation of the large database.

This meant that some operator involvement was accepted to allow more complex

DBMS queries to be made.

C. SOFTWARE

D-base III was selected as the database implementation software because it

supports the relational database design. The use of the relational database was

fundamental to the development of a useful model of the ship and its internal

systems. D-base III is readily available to the potential users of the system and is

relatively inexpensive. Prolog was chosen for the expert system because it was

designed for artificial intelligence applications. Prolog solutions are arrived at by

logically inferring one thing from something that is already known. A Prolog

program is not a sequence of actions, but a collection of facts together with the

rules for drawing conclusions from those facts. Prolog more closely follows

12

thinking than procedural programming languages, because it is a declarative

language. A Prolog program for a given application will typically require only

one tenth as many program lines as the corresponding Pascal program.

Turbo-Prolog (Version 2.0) was selected for use in the implementation of the

expert system because it was the latest and apparently best product available for use

on the mandated IBM compatible hardware. It is a fifth generation language and,

like d-BASE III, is both economical to purchase and readily available to potential

users of the system developed in this thesis.

D. SCOPE OF PROTOTYPE

The development of the expert system to do troubleshooting of through tank

piping system problems first required a problem statement of those casualties

which the system must be able to solve.

A decision was made to limit the scope of the expert system to those casualties

experienced in the CV side protection system (wing tanks). Although the

troubleshooting solution to these types of problems often extends into the

machinery spaces and pump rooms, the initial problem areas dealt with by the

expert system are those found among the menu items below as choices which are

presented to the user:

• Damage Control Voids

" Fuel Oil Service Tanks

" Fuel Oil Storage/Ballast Tanks

• Contaminated Tanks

* JP-5 Tanks

All of these menu selection tanks are wing tanks. This selection is the first

decision a user is required to make in operating the program.

13

The development of the logic for initial symptoms of casualties is done in

decision trees which are then coded in Prolog. Appendix A contains the logic

decision trees for the implemented casualties.

The menu items below appear depending on the selection of the tank type

problem from the list of tanks above. Thus, the casualties handled by the system

are:

1. Damage Control Void

• Will not pump

* Pumps but refills with water
• Will not flood

" Overflowing

" Oil in a void

" Sewage in a void

2. Fuel Oil Service Tank

* Water present

• Overflowing

• Foreign particles

" Losing fuel
* Gaining fuel

3. Fuel Oil Storage Tank

* Water present

* Overflowing

* Foreign particles

* Losing fuel
* Gaining fuel

14

4. Contaminated Tank

" overflowing

* will not pump

5. JP-5 Tank

" water present

• overflowing

* losing fuel
° will not strip
* will not pump

E. IMPLEMENTATION OF THE RELATIONAL MODEL

Modelling a complex physical object is a principle challenge in designing many

database systems. The creation of a satisfactory model of the multiple and extensive

piping systems in an aircraft carrier was a primary area of research for this thesis.

At the outset of implementing the expert system, one approach would have

been to have used individual Prolog facts to describe the components of each system

down to the requisite level of detail required to accomplish troubleshooting. This

approach, while feasible, was judged to be unacceptably costly in memory

requirements and execution speed. Simply stated, the number of facts was too

large.

The power of a database language was needed to structure, manipulate, and

query the database in a manner which would take advantage of the properties of the

system being modeled.

Initial examination of Entity/Relationship models appeared to require

considerable complexity to successfully model the system and its attributes. The

requirements were to be able to uniquely identify each section of pipe within the

15

ship, to include location, system, and physical properties such as size and material

composition. Because the troubleshooting function of the expert system is

concerned with through tank piping, a model was developed which could be

reduced to just four relationships, many fewer than was anticipated. All the

requirements could be met by careful placement of the attributes with the right

relationship in the model, enabling the use of a surprisingly simple scheme.

Although the model employed is fully adequate for this expert system, as

implemented, it would require additional refinement to be expanded to model a

machinery space or pump room. Because of the size of a main machinery room,

simply identifying a pipe as being in the compartment is insufficient detail to be

able to constructively utilize the model. An additional attribute is needed, for

example "piping segment number" (piece number). This new attribute would be

made up of the forward most frame number of a pipe within a compartment

coupled to a port/starboard sequence number thus accommodating multiple pipe

segr onts within a large compartment.

The relational database developed and implemented in dBASE, uniquely

identifies each pipe in the ship by the compartment number it is contained in, and

the system that it is a part of.

Thus the relation diagram (Figure 2) reduces to just four relations.

16

ICOMPARTEN -A D RAC N T

CONTAINS

I PIPESYSTEM

Figure 2. Basic Relation Diagram

The CONTAINS relation (Figure 3) is keyed by compartment number to each

pipe within that compartment.

COMPARTMENT SYSTEM NUMBER
8-119-9-V FOS 8-119-11-F
8-119-9-V FOT 8-119-13-F
8-119-9-V FOT 8-119-11-F

Figure 3. Contains Relation

represents a portion of the database describing which pipes are actually physically

located in compartment 8-119-9-V. The PIPESYSTEM relation (Figure 4)

System Number Pipe System Size Material Couplings
FOS 8-119-11 -F Fuel Oil Service 4 steel N/A
FOT 8-119-11-F Fuel Oil Transfer 5 steel N/A
FOT 8-119-13-F Fuel Oil Transfer 5 steel N/A

Figure 4. Pipesystem Relation

depicts the noun name of the system, the size (diameter) of a pipe in inches, the

material composition, and the type of joint make up used. These attributes are used

17

to maintain a current database for the configuration of the ship to support long

term maintenance planning. The repairs include the replacement of deteriorated

carbon steel piping, hence the material attribute, with copper nickel piping and the

change of troublesome sleeve couplings with those of socket design, thus the

coupling attribute. The size aids in the identification of a pipe when a tank/void is

opened and inspected.

The ADJACENT relation (Figure 5) locates

Compartment Forward Aft Starboard Port Above

8-119-9-V 8-114-9-V 8-124-3-F 8-119-11-F 8-119-i-V 4-119-5-V

Figure 5. Adjacent Relation

locates the compartment in the ship with respect to the other compartments and is

used in troubleshooting logic and in maintenance planning to predict access and gas

free requirements.

The COMPARTMENT relation (Figure 6)

String Usage Compartment Date Paint Date Completed

119S Void 8-119-9-V 4-83 4-85

Figure 6. Compartment Relation

identifies the string which a compartment is a member of, and records historical

maintenance data pertinent to the entire compartment. The complete relational

diagram appears in Apopendix B.1.

Thus an apparently complex modeling problem was reduced to its fundamental

relationships in a powerful relational database. The central relationship in this

model and the basis for its power is the Contains relation. By subdividing the

18

aircraft carrier down to compartments, the common building block of the model, it

becomes possible to depict the entire ship or only an area of the ship in which you

are interested. In this thesis, for example, we only are interested in the fourth deck

and below compartments. Thus everything above 45 feet above the keel (the height

of the fourth deck) is not present in the database, because it is not relevant to

through tank piping.

By utilizing the Adjacent relation and the Contains relation it is possible to

trace a pipe through the entire ship. For example, if compartment 8-119-9-V is a

suspected problem void, the Adjacent relation tells us that there are compartments

8-119-7-V and 8-119-11-F inboard and outboard respectively of the problem void.

The Contains relation then tells us that pipe system FOT 8-119-13-F (actually a

section of pipe) is contained in each of three voids/tanks. We can thus trace this

pipe through at least 3 compartments. If we look at the Pipe-System relation we

find that FOT 8- 119-13-F is a fuel oil transfer pipe, 5 inches in diameter, and made

of carbon steel. The Compartment relation tells us that 8-119-9-V, the original

problem void, is in string 119S. Other compartments in string 119S appear in

Figure 7.

8-119-1-W 8-119-9-V
8-119-3-W 8-119-11-F
8-119-5-F 8-119-13-F

8-119-7-V 8-119-15-V

Figure 7. String 119S Compartments

A check of Contains for these compartments reveals that pipe system FOT 8-

119-13-F originates in 8-119-5-F, passes through 7-V, 9-V, 11 -F, and terminates

in 13-F. The value of the compartment relation is that it identifies the

19

compartments in a string. From a given compartment, a string could be built by

multiple calls to adjacent. Providing the relation minimizes repetitive manipulation

of the database to obtain a frequently needed and useful fact. The relationship that

may not be apparent is that most piping runs, run athwartship within the boundary

of a string. The database design takes advantage of this property easing the

modeling of a piping system by speeding the location of other compartments

containing a section of pipe belonging to a specific system. Summarizing, the four

relations contribute to the utility of the model as follows:

* CONTAINS: identifies unique pipes in a compartment by pipe system
* ADJACENT: locates a compartment within its surrounding compartments

providing the mechanism for the building block concept in the model
• COMPARTMENT: identifies the string a compartment is in, useful in that it

relates a small group of compartments adjacent to each other within the ship
" PIPE SYSTEM: allows the attributes of an entire system to be carried in a

single tuple, rather than repeated for each compartment

F. PROTOTYPE DEMONSTRATION

The initial step in operating the system is to start "PIPES". The following

screen displays will provide a demonstration of the steps required to operate both

the d- BASE III portion of the system and how to enter the troubleshooting mode of

operation performed by the expert system side of the system.

1. Database System Operation

The first menu (Figure 8) presented to the operator from the database

offers a choice system functions.

20

PIPES DATABASE

Add/Edit Database Record A
Query Database Q
Print Database Records P
Backup Database B
PIPES - Expert System E

Select Option
Press ESC to EXIT

Figure 8. Pipes Database Menu

If the user desires to query the database, for an example, he would type

"Q", which would bring up the database query (Figure 9) menu

PIPES SYSTEM QUERIES

Compartment Access C Strings S
Pipe Systems P Tanks by type T
Adjacent tanks A Inboard Tanks I
List of paint dates L Unlisted Query Q
Select Option A
Press ESC to EXIT

Figure 9. Database Query Menu

From the database menu the user presses the appropriate letter key. If he

desired for example, to know the pipes in a compartment he would press "P". The

piping system query menu (Figure 10) would appear:

21

PIPE SYSTEM QUERIES

Pipes passing through compartment P
Compartments containing pipe system C
Specific pipe system material S
List of pipe systems by material M
Select Option:

Press ESC to EXIT

Figure 10. Piping System Queries

If it is desired at this point to know the specific pipes in a compartment,

the user presses "P", which prompts him for the compartment number desired

(Figure 11).

COMPARTMENT TO QUERY

Compartment No 8-119-9-V

Press ESC to EXIT

Figure 11. Compartment Prompt

The compartment number is entered by the user, as in the example above,

"8-119-9-V" has been entered. The d-BASE III program at this point has sufficient

input to conduct the query and respond. (Figure 12)

22

PIPE SYSTEMS PASSING THROUGH COMPARTMENT 8-119-9-V

System Number: FOS 8-119-11-F

Press <- to BROWSE
Press ESC to EXIT
Press HOME to Print

Figure 12. System Response to Query

The "Press <- to BROWSE" option allows the user to individually view

the database contents for that query. The "Press HOME to Print" option is

provided to print out all the pipes contained in the database for that query, as in

Figure 13.

Pipes Passing Through 8-119-9-V

FOS 8-119-11-F
FOT 8-119-11-F
FOT 8-119-13-F
BAL 8-119-13-F
STR 8-119-11-F
VOID 8-119-15-V
FOR 8-119-11-F

Figure 13. All Pipes Contained in 8-119-9-V

2. Expert System Operation

The expert system is entered from the database system by selecting

"PIPES-Expert System" from the top level database menu (Figure 8), by pressing

the "E" key. The expert system will be activated and the PIPES-Expert System

Menu (Figure 14) will appear.

23

-TROUBLESHOOTING AIRCRAFT CARRIER THROUGH-TANK PIPING SYSTEMS

/Main menu
Tutorial
Graphics
Problem Analyzer
Query Database

Esc:Quit -- Use arrow keys to select -- Enter to activate

Figure 14. Expert System Menu

The operator must select "Problem Analyzer", using the arrow keys, if he

desires to use the system for troubleshooting. If the "Problem Analyzer" is

selected, the screen appears as in Figure 15.

TROUBLESHOOTING AIRCRAFT CARRIER THROUGH-TANK PIPING SYSTEMS

Problem Analysis
Select Tank

Void
Fuel Oil Service
Fuel Oil Storage
Contaminated
JP-5

Esc:Quit -- Use arrow keys to select -- Enter to activate

Figure 15. Problem Analysis Menu

24

From the above menu the user must select the type of tank in which the

problem is being experienced. For example, if the problem is in a fuel oil service

tank the user uses the arrow keys to select "Fuel Oil Service". The fuel oil service

tank problem menu (Figure 16) will prompt the user to narrow the problem

definition by selecting the nature of the casualty from the menu.

TROUBLESHOOTING AIRCRAFT CARRIER THROUGH-TANK PIPING SYSTEMS
Action

Select Tank Problem Analysis

Water in the tank
Overflowing
Foreign particles
Losing fuel
Gaining fuel

Esc:Quit -- Use arrow keys to select -- Enter to activate

Figure 16. Fuel Oil Service Tank Problem Menu

If the problem is "water in the tank", the user selects this menu item with

the arrow keys, and is prompted in the screen below for the compartment number

of the problem tank.(Figure 17)

25

TROUBLESHOOTING AIRCRAFT CARRIER THROUGH-TANK PIPING SYSTEM

Problem Analysis

What is the compartment number of the problem tank? 8-119-11-F

ESC: Quit --Fl-- Print Action Block

Figure 17. Prompt for Compartment Number

The user must type in the correct compartment number of the problem

tank, as for example, 8-119-1 1-F. Prompts will appear (Figure 18) directing the

user to take action as indicated in the upper box labelled "ACTION", and then ask

the user to respond to a question as to the outcome of the action taken. An example

of such a screen is:
TROUBLESHOOTING AIRCRAFt CAPRPTR THROUGH-TANK PIPING SYSTEMS

Action

Pump down fuel oil service tank 8-1 19-Il-F and inspect 2 1/2 inch
void suction line in service tank for cracked or leaking couplings

Problem Analysis
Are there any leaks in the 2 1/2 inch void suction line?

Esc: Quit --Fl-- Print Action Block

Figure 18. Action Prompt

26

After performing the action requested, the user responded with a "yes",

as indicated above, to the question asked by the system. The answer in this case is a

conclusive one, and thus the system responds with te solution to the problem

(Figure 19).

TROUBLESHOOTING AIRCRAFT CARRIER THROUGH-TANK PIPING SYSTEMS

Solution
The void suction line to the outboard void 8-119-15-V is ruptured in
8-19-1 1-F. Empty, clean, gas free, and repair the break in the 2.5 inch
void suction line in 8-119- 1l-F

Esc: Quit --Fl-- Print Action Block

Figure 19. Troubleshooting Solution

27

IV. CONCLUSIONS

A. DATABASE SYSTEM/EXPERT SYSTEM CONNECTION

The development of an expert system which operates efficiently by employing

a database system for data storage, retrieval, queries, and update has significant

advantages. By using readily available software and hardware a valuable tool for

fleet use can readily be built. The combination of d-BASE III and Turbo-Prolog,

both popular economical software products, and a minimum 8086 or 80286 based,

IBM compatible microcomputer produced a reliable, useful tool for assisting

decision making in a complex environment. The advantages of combining the

power of the database system and an expert system are:

• employment of relational data model by the expert system
• higher speed of execution for the expert system
* reduced memory requirements

• greater total system capability/flexibility

• ease of data file construction
" ease of file maintenance

The dBASE program provides the framework for building data files which

enable a relational database model to be employed. The ability to build the

relational model and readily implement it in the database assists understanding the

organization and implementation of the expert system. Speed of execution is gained

in the Prolog program by reducing the number of facts which the interpreter must

process. This is accomplished by storing the facts concerning the configuration of

an aircraft carrier in the database system, rather than as prolog facts. Only the

28

appropriate facts are called from the database and built as Prolog facts for use by

the expert system.

Reduction of memory requirements is achieved by storing the facts in the

database format rather than as prolog facts. The compact storage of the database

files saves the replication of the predicate portion of each Prolog fact. The savings

in memory storage for the configuration of the ship is 50 to 70 percent of that

required for storing large numbers of Prolog facts in the predicate lists.

The utilization of dBASE queries can provide information from the database

which can aid the user in decision making and fault isolation. The database by

virtue of modeling the ship's piping systems has value beyond that of the expert

system. The utility of the database is virtually that of a piping system diagram, and

can assist in isolating systems, isolating compartments, damage control decisions,

casualty control, and normal operation of systems.

The use of dBASE to maintain data files eases maintenance and construction of

files. Because an instance of the database can be used to build more than one fact,

updating the database for the single instance in the database, saves changing

multiple predicates in the expert system. The organization of the database readily

allows location and access of a specific instance needing modification.

B. REFINING THE PROTOTYPE

There are five areas in which the prototype could be further developed to

expand its utility and scope of application.

* The relational model designed for the database system offers the flexibility
to significantly increase the number of attributes, making the database a
more powerful model of the detail of the ship. The potential exists to expand
the database to store enough useful information as to define the exact
configuration of the ship.

29

* For nine of the most important through-tank piping casualties the prototype
is fully operational in a real environment. The expert system can be extended
by the addition of the trouble shooting options offered in the two user
problem selection menus but not installed in the system.

" The installation of this prototype requires the building of the database for
each specific aircraft carrier to which it will be applied to. This capability is
fully provided for in the prototype. It is accomplished by using program
menus for file construction and maintenance.

* The implementation of a maintenance planning function in the expert system,
to include decision making capability for establishing the priority of repairs
and the development of schedules, would add a significant and useful
dimension to the prototype system.

* The expansion of the graphical presentation of the ships piping systems is an
important area in the design of the prototype.

C. POTENTIAL EXPERT SYSTEMS

The application of expert systems to shipboard decision making processes has

extensive scope and potential for making significant impact on the reliability,

correctness, and efficiency of daily shipboard operation. Expert systems, similar

to the one developed in this thesis,could be built for the any of the following unique

engineering casualty control/management problems:

" loss of main engine vacuum

* condensate/feed system salt contamination

* evaporator troubleshooting

• 02N2 plant
* automatic combustion control system

* boiler water/feed water chemistry

* aircraft carrier multi plant engineering drills

The considerable contribution that such development and implementation

would make to fleet readiness is worth further investigation.

30

APPENDIX A. DECISION TREES

Fit tak leelag its ihtak/voidil...olpnUpfblqf
fuel/ saiing wats:? lank-leakil

no noye

Be no Tel

oi ston IVlvo Manifol d
oToo76 vote? P191119 Prble

o
no

Dbts under

Opel Volve Vals
void pumpnoTe

Remove debris

Loltin j[void pumps?

Ihc dut:o- other vold/bilge no Te

O t: suction valves closed'!

yeteB

/k"ead stops v
closed? n pumps?

no-,, Te To
/ \

Close stops Pump void W/sub pump

voi pumps noB will not empty?

T~el

Problem Lns ea id hog
solution vorutu d ipes?

esauvo o no

problem Trace sound tube
souto A/I, leaks flom bleals7

(leaky pipes) I

Prblm solutionl 1 -eminatel

Figure A.1 D.C. Void Will Not Pump

31

Pump void empty, openJiis c il 1 Ppslan?
sea valve lo k?] tallpipo backlowng 1

Yo yes yel

cycle sea valve Prbe Void manifold Prole
leakage stop? y soluion under pressure? Te a I a °l"a°" st

Industrial ?epair
rquiled. cofferda,, Odctor overboard no Tel

open?

I brook In SIT
Open overboard Othr void or oieap
section manifold - no t Icios open?i

yet no
Fi e s ; no yet

L!lIVICn Problem Roles In
bulkhead C o i solution 4th dek

stops openi maIbdsil rsue

/ MY~l nosolution~
Close bulkhea
stops prestore? I nde termin ate

yeo no

oe flooding valve
closed and locked?

yel no
Cy l oseo~ flood valve

lo floo lve no. luction valve blockedmanifold presure? or operating Incorrectly?

[l,,boord ,old, 1
elt ion n - ' I

Indeterm IIIate Tn.. O oonllD~ l,

Figure A.2 DC, Void Pumps But Refills With Water

32

soundinq tbe Problem solution
flear? o open void clear

Ieundig tbe

yo

Oil in hydraolic To' I station tilter no 06iiiM solution]
ItAtion?A clo Clean filte

a1 0a l110 ir
Problem solution

A open?
to

Pill with oil
Ike

Is

piped backwardi?

no

Open void. hydraulic yom--o b m -n

lines damc;ed! l oItInI
RoProblem solution

elector mi1'marked l'- (detective see V voao o) $t t
no

Problem solution

(correct milpiped connectiona)

Figure A,3 Damage Control Void Will Not Flood

33

Vold Tranolse loourn pumpsoveriloving t pei pumps running? yes
overflow stop?

water yes
valno

Idactol lit ofl 0
I Tas prolem

Another educio secure $ductor

in operation? no overflow stop? Void Inboard
Care of contaminated tankiP

S yI~i I J
Iseult $ductor Tel toi~
overflow stop?

I
ale o lo Stripping disclearging

" Ism F~iremain to ballast to eastem tank?
manliold 1ecured? 1o. 73y no

Void inboard no

ot eontain tank? l // Vv
Ieure o /,l valv Iseult Stripping

y5 n ovrflow ,to ? overflow stop?

Stripping discag mn
to contai tak? Soltion Problem

yes lea flooding

Too Valve secured?
JP.S transfer system

yes nopressi ied I
Secure stripping n e

still overfloving? Close valve

overflow stop? locue .11-S puo
no I 'I I overflow top?

Ino Tes no 1
Problemno

IoainProblem yes
ndtrinate solutionPrle

IsolationI

soluton yes pressurised?

Figure A.4 Damage Control Void Overflowing

34

I

wae nIyes Troubleshoot T
filled from?ie truwmnu

so

Doe outboard Tod
contai fuel look in service lank? Tel -JPobe

no~

Outboard Void
bollmouth backilow?

no

Inboard Void Ibad odPrbocontains Iuel pipe lnb ard voidpipes eak? es ~ olutiono

no Tes no0

Inboard vToildse o Refill with
cnanwater? ye uel1 when pumped?

- - ::tCracked bulkheads?

ye s

To# Problem
so 1Solution

S trip FOS
water gonel yes Ttipin Pralve

no olution
noo

Stripping valve dic J e
off stem/lammedi yes SUtion

water in 4tb deck Tank top. airescapos. Problem
aospurmen abve? yes sounding tube leak? 705 S luto

no1 no,-,L:3_l

SiinHeavy Seas?1 Problem
77 0yes Slto

no

Ildermnt 1e

Figure A.8 Water In a Fuel 0il Service Tank

35

Tranier Pimps locut Trunifer

Running of Refuelling? PToo sa - oveilln ef?

no Tel so

i fador being
Fill/tranile, trippingystem Tern used tO s|tri
valve closed? bigve

no s"II o

Overboard
, ./ i I Jdisabarge open?]

Clole transfer dsar opn
Ivalve o overflow stool Be

y4, Open overboard

Soaition I Tel
noi Ioi r

locirll iyileni tined slto

up Ito 11I tank7

Tooi Itripping pump
Toe no lined up correclIy?

Secure recli Pill/triifoe vlve no
overflow ilop? no assembled corroollyl

73/
nSo Correct line up

lipping suction valve Probe
Problem assembled correctlI? solution Yes

youtionI

yel no ilto

111r7i6s suction rbe
correctly assmbled? slto

l eir.l valve Poblem
ssmldcortly?09tlo

of no

Openl service
pipes leaking?

Tel Ila po

7.(\no

Problemndetermincte

Figure A,6 Fuel Oil Service Tank Overflowing

36

Voidn string yet Follio void with

have fulf uel logicI
no

no

Pump void$, open arid

emtIcorrect?

yet

1
Chc ili/tanmfer. service Problem solution

suction, stripping. reire valves o (repair valves)
for dfbti/damage functionall

Inspect piping, leaks?

I T
so no Tee

mProblem

Open P.O~. olutioncil souto

tnk, oundete t ubet
(repair Tr or cIT)

Figure A,7 Fuel Oil Service Tank Loilng Fuel

3
37 .

Transfer Puamp secure Transfer
anning or lefollina? PampI - Overflowing?

so yes Pam.. 1 ,

Tel / lductor bein I

Fill/tnl? S- , ,tipping system 708 used to strip?
valve closed?rbeing a. l

J ' -0 yesI

no # no
Overboard

disclobrge open?
Close transifer
Uvlve - overflow stop? no no

Tel To Opena overboard
* overflow stop?

soI Prbem I
/,otaoy Volvo soltion

ae lined up correctly?

Stripping suction valve Problem no
assembled correctly? solution no

/ orc.t line up
on me Cverilow stop?

Open service Problem To
pipes leoting? | olutlionl

yes mo Problem

Iem inde ate iO

Figure A,$ Fuel Oil Storage Tank Overflowing

38

stuipping pump $ecule pump Problem
In MMI rouning? yes overflow step? yssolution

no

tipping Pumps secure other strippingPrbe
othe lbr $Pagel operating? yes pumps, overflow stop? To- slto

Other equipment syTems lecure other equipment jii
diuch to stripping main s65 overflow step? Toouto

Iductarin MumCheck *ductar line up Pr~~*Iobutlm
i usetoMI e arorboard disabr open? oa o

Main drals bulkhead Lack of eoduator noise? Toes Problem
stops claoed? no lateo off stem? 1solution

Close bulkhead stopPob
overflow s top?,, 7, - o

I

Secure trans1fering fuol yes slto
overflow stop?

no

I nd dter m in ate

Figure A,9 Large Contaminated Tank Overflowing

39

Fuel tlanks In string

losing fuel?

yes no

Open and inpetl no Craks?
void, leky pi p?

yet no

F~i~Tia1FmT Inspeot fourtht desk
Issiutioil ~ on leaks, holes, brook#

in top, S/TI or AMI

IVI no

FI 0blm FIndeterminate
solution

Figure A.1O Fuel/Oil In A Damage Control Void

40

APPENDIX B. RELAUiONAL DIAGRAM

Date~patal

D1t16,am pe ted

COMPARTMENT i]

Pt . ys teu b? bv

Figure 1.A Relational Diagram

41

APPENDIX C. PROGRAM LISTING

* TROUBLE.PRO *

* Driver for the PIPES Expert system.*
* The following files are compiled and linked by the*
* Pipes.prj PROJECT FILE into PLPES.EXE executed from*
* PIPES BASE ill PLUS System*

* DataBase.pro*
* Screen .pro*
* Question.pro*
* Solution.pro*
* VoidNoPm.pro*
* Void~il.pro*
* VoidPump.pro*
* WaterFos.pro*
* WaterFotpro*
* FosLosFl.pro*
* VoidNoFd.pro*
* FosOvrFl.pro*
* VoidOvrFl.pro*
* ~FotOvrFI .pro*
* ContmOvr.pro*
* Fact.pro *

code = 4000

project "PIPES"'

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"
include "AnaGdef.PRO"
include "Pipegraph.PRO"

42

PREDICATES

mainmenu
proces(INTEGER)
drawtank(INTEGER)
evaluate(SYMBOL)
problemmenu(LIST,SYMBOL)
problem-ype(SYMBOL,INTEGER)
determine(INTEGER)
contains-fuel
print -tanks(SYMBOL,SYMBOL)
find -string(SYMBOL)
retrieve-tank(SYMBOL,SYMBOL)
ans(CHAR)
convert-Case(SYMBOL,SYMBOL)
get...problem-tank
port -stbd(SYMBOL,SYMBOL)
side(INTEGER,SYMBOL)
inboard-voids
outboard-voids
parsejank.jortstbd(SYMBOL,SYMBOL)
find -inbc -voids(INTEGER)
find-otbc-voids(INTEGER)
assert-in board s(INTEGER)
assert-outboards(INTEGER)
assert-inboard-voids(SYMBOL)
assert_outboard-voids(SYMBOL)
troubleshoot

* ~~~MAIN M1ENUJ

GOAL

pipecover,troubleshoot.

CLAUSES

troubleshoot:-
makewindow(2 1,78,O,24,O, 1,8O),cearwindow,write

("Esc:Quit - Use arrow keys to
select-- -- Enter to activate"),

43

makewindow(22,78,0,"",24,0, 1,80),
write("Esc: Quit -- Fl -- Print
Action Block"),
makewindow(2,7,23,
'TROUBLESHOOTING AIRCRAFT CARRIER THROUGH-TANK

PIPING SYSTEMS",
0,0,24,80),! ,mainmenu.

mainmenu: repeat,
shiftwindow(2),clearwindow,menu(3,14,47,1 4,5,"Main menu",

[I "Tutorial',
"Graphics",
"Problem Analyzer",
"Query Database"],

CHOICE),proces(CHOICE),CHOICE=0O,!,
removewindow(2,I1),removewindow(2 1,1).

proces(0):-retract facts,makewindow(10, 11,2, "EXIT",
18,4,3,50),

write("Are you sure you -.vant to quit? (Y/N):"),
readchar(ANS),
ans(ANS), removewindow(10,1),!.

proces(O):-!,removewindow(1O, 1).

proces(1): -file_str("trouble. hlp ",TXT),di splay(TXT),
clearwindow,!.

proces(1):-!,write(">> trouble.hlp not in default
directory\n").

proces(2) :-repeat,shiftwindow(2),clearwindow,
makewindow(4,78,7,"Piping
Diagrams", 13,5,10,70),
shiftwindow(4),
menu(5 ,47,7, 14,7,"Diagrams" ,["Single Tank",
"Tank String",
"Zones","Tank Sections"],
CHOICE),removewindow(4, 1),
drawtank(CHOICE),CHOICE = 0,!.

proces(3):-repeat,shiftwindow(2),clearwindow,
makewindow(4,78,7,"Problem
Analysis", 13,5,10,70),
shiftwindow(4),
men u(5,47,7, 14,7, "Select Tank", ["Void", "Fuel

44

Oil Service" ,"Fuel Oil Storage",
"Contamninated","JP-5],CHOICE),
determine(CHOICE),CHOICE = 0,!.

proces(4).

ans('y').

ans('Y').

determine(0):-removewindow(4, 1).
determine(l1):-evaluate(void).
determine(1): -retract -facts,removewindow(4, 1).
determnine(2):-evaluate("fuel ..oil-service").
determine(2):-retract-facts,removewindow(4, 1).
determine(3):-evaluate("fuel_ oil-storage").
determnine(3): -retract-facts,removewindow(4, I).
determine(4) :-evaluate(contaminated).
determine(4):-retract~facts ,removewindow(4, 1).
determine(5):-evaluate("JP-5").
determine(5):-retract-facts ,removewindow(4, 1).

evaluate(void):- makewindow(7,47,7, "Action", 1,5,12,70),
assert -emptyjfact,problemmnenu(["Oil in void",

"1Unable to pump",
"Unable to flood",
"Pumps but refills with water",
"Filled with sewage",
"Overflowing" I,void),removewindow(7, 1),?.

evaluate(void):- removewindow(7 ,1).

evaluate(fuel_oil_service):-
makewindow(7,47,7," Action", 1,5,12,70),

assert -empty..fact,!,
problemmenu(1"Water in the tank",
"Overflowing",
"Foriegn particles",
"Losing fuel",
"Gaining fuel"],"fuel oil
service "),removewindow(7, I1),!.

45

evaluate(fuel_oil-service):- removewindow(7,l).

evaluate(fuel oil_storage):-
makewindow(7,47,7, "Action", 1,5,l2,70),
assert-empty-fact,!,
problemmenu(["Water in the tank",
"Overflowing",
"Foriegn particles",
"Losing fuel",
"Gaining fuel"] ,"fuel oil
storage"),removewindow(7, 1),!.

evaluate(fuel oil_storage):- removewindow(7, 1).

evaluate(contaminated):
makewindow(7,47 ,7 ,"Action", 1,5,12,70),
assert-empty-fact,!,
problemmenu(["High percentage of oil in
tank", "Flooding with water",
"Will not take suction",
"Unable to fill",
"Overflowing",
"Draining without suction"],"contaminated"),
removewindow (7,1),!.

evaluate(contaminated) :- removewindow(7, 1).

drawtank(O):-removewindow(4, 1).
draw tank(l1):- makewindow(5 ,47 ,7, " " ,5,5,11,7 0),

shiftwindow(5),
ask-quesjead-ans(TANK," single tank"),
SingleTank(TANK),removewindow(5, 1),!.

draw tank(I): -retrac tfac ts,removewi ndow (5, 1)

drawtank(2).

draw tank(3).

draw tank(4).

problemmenu(LIST,MENU):- shiftwindow(4),clearwindow,
menu(6,30,7, 14,7," ",LIST,CHOICE),
shiftwindow(4), clearwindow,
,problem-type(MENU,CHOICE),
removewindow(4, 1),!.

46

problemmenuL-,-:-retractjfacts,removewindow(7, 1).

get-problem- tank:- ask-cques -read_ans(FOSERVTK,"tankno"),
assert(problem tank(FOSERVTK),problem).

problemjype..,O).

problem-type(void, 1):- get _problemjtank,retrieve contains,
add~problem(5"oil in void"]),
containsjuel,fuelQ),
ask-ques -read-ans(LOSINGFUEL,"losing fuel"),!,
losingfuel(LOSINGFUEL),solution.

problem -ype(void,l1):-!,
ask..ques-read-ans(FOURTH, "fourth deck"),!,
fourthdeck(FOURTH),solution.

problem-type(void,2):
get-problem tank,! ,add~problem(1 "unable to pump"]),
,find~string(STRINGNUM),retrieve string(STRINQ.NUM),!,

ask-ques read_ans(LOSINGFUELWATER,"void losing fuel
water"),!, losinlg..ueI water(LOSING_FUEL_WATER),

solution.

problemjtype(void,3).

problem-type(void,4) :-get-problem-tank,!,

find -string(STRING NUM),retrieve string(STRING NUM),
inboard-voids,
add...problem(["pumps but refills"]),!,
retrieveadjacent(above),!,
ask-ques-read-ans(SEA-VALVE," sea valve
leak"),sea-valvejleak(SEA_VALVE), solution.

problemjtype(v oid,5).

problem-type(void,6).

problem-type("fuel oil service", 1):- !

47

geL-problem-tank,! ,add-problem(["water in
fuel"]),!,

find-string(STRING -NUM),retrieve...string(STRINGNUM),
inboard-voids,outboarc~voids,!,
retrieve adjacent(above),!,
ask...qusj-ead-ans(FILLED,"fuel filled
from"),! ,asserta(filed from(FILLED),
problem), ! ,paste...test("Y"),!,

solution.

problem...type("fuel oil service",2):- 1,
ask...quesjemad-ans(j'overflowing"),!,
retrieve_contains,solution,!.

problem-type(" fuel oil service" ,3).

problemjype('fuel oil service" ,4):- get-problemjtank,
find-string(STRINGNUM),retrieve...string(STRINGNUM),
ask-ques read_ans(OLL,"voids have oil"),
voids_oil(OIL),! ,solution.*/

problem...type("fuel oil service",4):- !,
ask...ques-read_ans(FOURTH, "fourth deck"),!,
fourthdeck(FOURTH),solution.

problem-type(" fuel oil service",5).

problem...type("fuel oil storage", 1):- !

getproblernjank,! ,add~problem(["water in

find-string(STRINGNUM),retrieve...string(STRING NUM),
inboard voids,outboard_voids,!,
retrieve adjacent(above),!,

fo"),assert-filled(FLLLED),
solution.

problem-type(contaminated, 1).

problem...type("JP-5 ", 1).

assert-filled(HLLED):- stijen(FILLED,LEN),LEN <> 0,

asserta(filled from(FILLED),problem),!,

48

fot-paste...test("Y"),!.
assert-filled(J)- ! ,foLpaste-est("N").

contains_fuel:-containsC..,SYSTEM),
frontchar(SYSTEM,.,REST),
frontstr(3 ,REST,SYSJ,
enterjfuelfact(SYS,REST).

contains~fuel.

ask...ques _read_ans(ANSWER,QUJESNO):-!
question(QUES-.NO),
!,readln(INPUT),

convert-case(INPUT,ANS)WER),clearwindow.

convert_case(INPUT,ANSWER): uppeyJower(ANSWER,INPUT).
convert_case(INPUT,ANSWER):- ANSWER = INPUT.

print(TANK-TYPE,WINDOW):-retrieve-tank(TANKTYPEWINDOW),
ni.

print(TANK_TYPE,..):- error(TANKTYPE).

retrieve_tankQ'adjacent fuel" ,WINDOW):-
adjacent -fuel-tanks(TANKS),
print-anks(WINDOW,TANKS),fail.

retrieve--tank(" adjacent fuel"J.:- adjacent fuel...tanks(_).

retrieve -tank("fuel tanks",WINDOW):-
fuel(TANKS),print tanks(WINDOW,TANKS),fail.

retrieve_tank(" fuel tanks",_:- fuel(_).

retrieve-tank("adjacent tanks ",WINDOW)--
adjacentjtanks(TANKS),
printctanks(WINDOW,TANKS),fail.

retrieve-tank("adjacent tanks",-) :- adjacen-tanks(j).

retrieve_tank("string fuel tanks ",WINDOW):
stringjfuel-tanks(TANKS),
print tanks(WINDOW,TANKS),fail.

49

retrieve-tank(" string fuel tanks",_):-
string..fuel-tanks(J.

retrieve-tank("voids in string",WINDOW):-
string-void-tanks(TANKS),
print-tanks(WINDOW,TANKS),fail.

retrieve_tank("voids in string" ,J:- string..yoidtanks(-j.

retrieve-tank("string voids in tank",WINDOW):-
string...voidjin..tank(TANKS),
print-anks(WINDOW,TANKS),fail.

retrieve-tank(" string voids in tank"J..:-
string..oidjinjank(J.

retrieve-tank("inboard voids",WINDOW):-inbd-void(TANK),

print-tanks(WINDOW,TANK),fail.

retriev e-tank(" inboard voids",_) :- inbd-void(..).

retrieve-tank("outboard voids ",WINDOW): - otbd-void(TANK),
print-tanks(WINDOW,TANK),fail.

retrieve-tank(" outboard voids",-):- otbd-void(-).

retrieve-tank(_.,_):- fail.
print -tanks(WINDOW,TANKS) :-!,
position in-window(WINDOW),write(TANKS).

error(" adjacent fuel"): - write(" AT ERR OR"),readchar(_).

error(" fuel tank"): - write("AT ERROR "),readchar(_).

error(" "adjacent tanks"):- write(" AT ERROR "),readchar(J.

error("string fuel tanks"):- write("AT
ERROR"),readchar(_).

error("voids in string"):- write("AT ERROR "),readchar(_).

error("string voids in tank"):- write("AT

50

ERROR"),readchar0-.

error("inboard voids"):- indeterminate,solution,! ,fail.

error(" outboard voids"):- write("AT ERROR "),readchar().
findc-string(STRING NUM):-problem tank(TANK),
fronttoken(TANK,,REST),
fronttoken(REST,..,STR 1),
fronttoken(STRI1,STRING...NO,STR2),
fronttoken(STR2,_,STR3),
fronttoken(STR3,PORT_STBD j,
portstbd(PORTSTBD,SIDE),
concat(STRINGNO,SIDE,STRNGNUM).

inboard-voids:- problem tank(TANK),
parse-tank-porLstbd(TANK, PROBTANK),
str_int(PROB -TANKPROBPORTSTB3D),
find-inbd-voids(PROB PORTSTBD).

outboard-voids:- problem -tank(TANK),
parse-tnk-orkstbd(TANK,PROB -TANK),
str -int(PROBTANKPROBPORT_-STBD),
find -otbd_voids(PROBPORTSTBD).
parsejank4,ort-stbd(TANK,PORTSTBD):
fronttoken(TANK,..,REST),
fronttoken(REST,..,STR 1), fronttoken(STRI1,_,STR2),
fronttoken(STR2,_STR3),
fronttoken(STR3,PORTSTBD,_).

find-inbd-voids(PROBPORT_-STBD):- string-void-tanks(-j,
assert-inboards(PROB_PORTSTBD).

find-inbd-voids(-):- wrir.("error").

find-otbd..yoids(PROBPORT_-STBD):- string~void-tanksL-),
assert-outboards(PROB_PORT..STBD).

find-otbd-voidsQ.):- error('voids in string").

assert-inboards(PROBPORTSTBD):- string..yoid-tanks(TANK),
parse-ankport-stbd(TANK,TANK_PORTSTBD),
str-int(TANK-PORTSTBD,PORT-STBD),
PORT_STBD <PROBPORTSTBD,
assert-inboard-voids(TANK),fail.

assert-inboards(_).

51

assert_inboard_voids(TANK):-
assertz(inbd_void(TANK),problem).

assert -outboards(PROBPORTSTBD):-
string..yoid tanks(TANK),
parsejankjortstbd(TANK,TANK PORTSTBD),
strj-nt(TANKPORT _STBD,PORTLSThD),
PORTSTBD > PROBPORT_-STBD,
assert_outboard_voids(TANK),fail.
assert-outboards(.).

assert-outboard-Voids(TANK):-
assertz(otbd void(TANK),problem).

portstbd(PORT -STBD,SIDE):- strint(PORTSTBDINT),ANS=
INT mod 2,
,side(ANS,SIDE).

side(O,SIDE):- SIDE = ""
sideC.,SIDE):- SIDE = "S".

indeterminate: - retract_facts,assert empty-fact,!,
add~problem(["indeterminate data"]).

* PEPEGDOM.PRO*
* GLOBAL DOMAINS*

GLOBAL DOMAINS
LIST = SYMBOL*
file = datafile
QUES-VAR = SYMBOL
WNO,SCRATTlRFRAMATR,ROW,COL,LEN =INTEGER

KEY = cr ;esc ; break ; tab ;btab ;del ;
bdel ; ins ; end ; home ; function(INTEGER) ; up ; down;
left ; right;
ctrlleft; ctrlright; ctrlend; ctrlhome; pgup; pgdn;
chr(CHAR) ; otherspec

52

* GLOBDEF.PRO*
* GLOBAL DECLARATIONS*

GLOBAL PREDICATES

nondeterm question(SYM[BOL) - (i)
nondeterm vvrite -solution(LIST) -(i)
nondeterm menu(WNO,SCRA1TR,FRAMA1TR,

ROW,COL,STRING,LIST,INTEGER)-(i,i,i,i,i,i,i,o)
nondeterm write-screen(LIST)- (i)
nondeterm repeat
solution
position-in window(SYMBO0L)-(i)
nondeterm retrieve_contains
nondeterm retrieve...adjacent(SYMB OL)-(i)
nondeterm. retrieve...string(SYMBOL)-(i)
nondeterm. adc-problem(LIST)-(i)
append(LIST,LIST,LIST)-(i ,i,o)
nondeterm error(SYMBOL)-(i)
retract-facts
nondeterm print(SYMBOL,SYMBOL)-(i,i)
enterifuelfact(SYMOL,SYMBOL)-(i,i)
comparestring.void_to_contains
nondeterm assert-fact(SYMBOL,SYMBOL)-(i,i)
assert-emptyjfact
nondeterm ask...ques read-ans(SYMiBOL,SYMBOL)-(o,i)

* ANAGDEF.PRO*
* GLOBAL DECLARATIONS*

GLOBAL PREDICATES

nondeterm indeterminate
nondeterm losingfuel(SYMBOL)-(i)
nondeterm pastejtest(SYMBOL)-(i)

53

nondetermn fotpaste..test(SYMBOL)-(i)
nondeterm fourthdeck(SYM[BOL)-(i)
nondleterm losing-fuel-water(SYM[BOL)-(i)
nondeterm voids-oil(SYM[BOL)-(i)
nondeterm sea-valvej- eak(SYM[BOL)-(i)
nondeterm fot..paste(SYMBOL)-(i)
nondeterm assert -filled(SYM[BOL)-(i)
nondeterm fos...pumpjyunjefuel(SYM[BOL)-(i)
nondetermn fot-pump....un~refuel(SYMBOL)-(i)
nondeterm mmr-sti-.pump(SYMBOL)-(i)
nondeterm clear _soundingjtube(SYMBOL)-(i)
nondeterm void_ovrflow(SYMBOL)-(i)

* PIPEGDBASE.PRO*

GLOBAL DATABASE - problem

contains(SYMBOL,SYMBOL)
problem..jank(SYM4BOL)
user_data
first_char(CHAR)
adjacentanks(SYMBOL)
adjacentjfuel-tanks(SYMBOL)
string-anks(SYMBOL)
stringjfuel-tanks(SYMB OL)
string..yoid-tanks(SYMBOL)
string..void-in-tank(SYMBOL)
which-tank-losingjfuel(SYMBOL)
above-tank(SYMBOL)
filled-from(SYMBOL)
otbd- void(SYMBOL)
inbd -void(SYMBOL)
nondeterm fuel(SYMIBOL)
count(INTEGER)
proble~n(LIST)

54

* DATABASE.PRO*

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"

PREDICATES

search_contains(SYMBOL,INTEGER)
search-adjacent(SYMBOL,INTEGER)
search-string(SYM[BOL)
compare contains(SYMBOL,SYMBOL,SYMBOL)
comparejiadjacent(SYMBOL,SYMBOL,SYMBOL,INTEGER)
compare-string(SYMBOL,SYMBOL,SYMBOL)
comparestringto-problem-tank
moredata(file)
find-space(SYMBOL,INTEGER)
spli&.string(INTEGER,SYMBOL,SYMBOL,SYMBOL)
is -space(INTEGER,INTEGER,SYM[BOL)
check_adjacent(SYMIBOL)
check-string(SYMBOL)
which_adjacent(SYMiBOL)
which-tanks-in-.string
find-adjjtanks(SYMBOL)
find -above-tan
find-stringjtanks(SYMBOL)
check-emptyjist(LIST,LIST)
assert-string-.void in-tank(SYMBOL)

CLAUSES
retrieve-adjacent(WILICH):-

openread(datafile," adjacent.txt"), readdevice(datafile),

problem-ank(COMP -NUM), str-len(COMP.NUM,LENGTH),
search-adjacent(COMP.NUM,LENGTH), closefile(datafile),
readdevice(keyboard),

55

which-adjacent(WHCH).
retrieve_adjacent~j:-
closefile(datafile).

which -adacent(WHCH):- WHICH=
"all",adjacent_tanks(TANKS),
find -adj.jans(TANKS).

which-Adjacent(WIICH):- WHICH = "above",find-above-tank.

find-above_tank:-
adjacent-tanks(TANK),str-len(TANK,LEN),LENGTH = LEN -
1 3,frontstr(LENGTH,TANK,jLAST), find...space(LAST,O),
count(COUNT),frontstr(COUNT,LAST,-ABOVE),!,
assertz(above tank(ABOVE),problem).

find_above tank:-!1.

search~adjacent(COMNUMLENGTH):-
readln(PIPESYS),! ,moredata(datafile),
split-string(LENGTH,PIPESYS,COMPNO,SYSTEM),
compareadjacent(COMPJ4UM,COMPNO,SYSTEM,LENGTH).

search-adjacent(.,):- !

compare-adjacent(COMP-NUM,COMPNO,REST,-):-
COMPNUM = COMPNO,!,assertz(adjacent-tanks(REST),
problem).

compare-adjacent(COMP NUM,-,,LENGTH):
search-adjacent(COMP NUM,LENGTH).

find....adj...tanks(TANKS):-
frontchar(TANKS,...,REST),find-space(REST,O),
count(LENGTH),
frontstr(LENGTH,REST,COMPNO,STR 1),
!,check...adjacent(COMNO),findadjanks(STR 1).

find-adj...tanksj:- !.

check..adjacent(COMPNO):- str-jen(COMPNO,LEN),
LAST= LEN - 1,
frontstr(LAST,COMPNO,-,USAGE),US AGE = "F",
assertz(adjacent fuel-tanks(COMPNO),problem).

check...adjacent(j:-!

56

find -space(ADJLTANK,COUNT):- frontchar(ADL-TANK,FRT,REST),
charjint(FRT,VAL),is-space(VAL,COUNT,REST).

is,_space(VAL,COUNT,REST):- VAL<> 32,INCCOUNT
COUNT + 1,!,
fin~space(REST,INCCOUNT),!.

isspace(_,COUNT,_):- asserta(count(COUNT),problem).

retrieve_string(STRINGNUM):-
openread(datafile,"compartment.txt"),
readdevice(datafile),
search_string(STRINGNUM), closefile(datafile),
readdevice(keyboard),
whichtanksjin-string.

retrieve-string(_):-
closefile(datafile),readdevice(keyboard),readchar(-j.

search-string(STRING-NUM):-
readln(DATA),moredata(datafile),
frontstr(4,DATA,STRNO,REST),
comparestring(SThING-NUM,STR-NO,REST),
search~string(STRINGNUM).

search-stringL-):- !.

compare-string(STRING-NUM,STRNO,REST):-
STRING_NUM = STRNO,assertz(string-tanks(REST),problem).

compaestring_,,):- !.

which-tanks-in-string:- string-tanks(TANKS),
find-stringjanks(TANKS),fail.

which-tanks-in-string:- !.

find -stringjtanks(TANKS): - ! ,frontchar(TANKS,..,REST),
check-string(REST).

check-string(TANKS):- str-len(TANKS,LEN), LAST = LEN - 1,
frontstr(LAST,TANKS,-,USAGE),USAGE = "F",
assertz(string-fueltanks(TANKS),problem).

check_string(TANKS):- str Ien(TANKS,LEN), LAST = LEN - 1,

57

frontstr(LAST,TANKS,,USAGE),USAGE = O
assertz(string..yoidjanks(TANKS),problem).

check string():.

retrieve-contains:-
openread(datafile,"contains.txt"),
readdevice(datafile), problem-tank(COMP NM),
str-len(COMP_NUM,LENGTH),
search-contains(COMPNUM,LENGT-), closefile(datafile),
readdevice(keyboard).

retrieve_contains:-
closefile(datafile),readdevice(keyboard).

search-contains(COMPNUM,LENGTH):-
readlIn(PIPES YS),moredata(datafile),
split-string(LENGTH,PLPESYS,COMPNO,SYSTEM),
compare contains(COMP NUM,COMPNO,SYSTEM),
search-contains(COMPNUM,LENGTH).

search-containsQ.,):- L.

split-.string(LENGTH,PLPESYS,COMPNO,SYSTEM):-!,
frontstr(LENGTH,PIPESYS,COMPNO,SYSTEM).

compare~contains(COMP_-NUM,COMPNO,SYSTEM):-
COMPNUM = COMPNO,
assertz(contains(COMPNO,SYSTEM),problem)..

moredata(FILE):- not(eof(FILE)).

addproblem(PROBLEM):- problem(LIST),
check-emptyjist(LIST,PROBLEM).

check_empty~jist(I"jI,PROBLEM):-
,asserta(problem(PROBLEM),problem).

check-emptyjist(LIST,PROBLEM):-
!,append(LIST,PROBLEM,LIST2),
as serta(pro blem(LI S'2) ,problem).

compare-sting-oproblem-tank: - stfing-void-tanksC.),
compare-sting..void-to-contains.

compare..stfing..to...problem-tank: -error(" voids in string").

compare-sting-void-to-contains:- string..yoidjtanks(VOID),

58

contains(_PIPESYS), frontchar(PIPESYS,_,REST),
fronttoken(REST,..,STR 1),
frontchar(STRl,,PIPE),VOID = PIPE,
assert~string...oid in-tan(VOID),fail.

compare..string-v.oid-to-contains.

assertstring...voidjinjank(SYMBOL):-!
assertz(string..void in-tank(SYM[BOL),problem).

* SCREENPRO*

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef. PRO"
include "PipeGdbase.PRO"

PREDICATES
readkey(KEY)
readkeyl1(KE-Y,CHAR,INTEGER)
readkey2(KEY,INTEGER)
answer(CHAR)

CLAUSES
readkey(KEY):-readchar(T) ,answer(T),charjint(T,VAL),
readkey I (KEY ,T,VAL).

readkey I (KEY,_,O) : -! ,readchar(T) ,char-int(T,VAL),
readkey2(KEY,VAL).
readkey I (cr,-, 13):-!.
readkey 1 (esc,...,27): -!.
readkeyl1(chr(T),T,_)

readkey2(up,7 2):-!.
readkey2(d own, 80):-!
readkey2(function(N),VAL) :-VAL>58,VAL<70,N=VAL-58,!.
readkey2(otherspec ,-.

59

answer(T):- user-data,asserta(firstsChar(T)),write(T).
answer(-):- !.

PREDICATES
maxlen(LIST,INTEGER,INTEGER)
listlen(LIST,INTEGER)
writelist(INTEGER,INTEGER,LIST)
index(LIST,INTEGER, SYMBOL)
scroll-screen(LIST)
check -end-oLquestion(LIST)
check...question-Iength(LIST,INTEGER)

* MNENUS*

PREDICATES
menu 1 (ROW,SCRA'ITR,LIST,ROW,INTEGER,INTEGER)
menu2(ROW,SCRATTR,LIST,ROW,lNTEGER,INTEGER,KEY)
request(INTEGER,INTEGER,INTEGER,SYMBO0L)
user-key(INTEGER ,INTEGER,SYMBOL)
userj-equest(INTEGER,INTEGER,SYMBOL)
user-input(KEY,INTEGER,INTEGER,INTEGER)

CLAUSES
menu(WN,SN,FN,LI,KOL.TXT,LIST,CHOICE):-

shiftwindow(2 1),
maxlen(LIST,O,ANTKOL),
listlen(LIST,LEN),ANTLI=LEN,LEN>O,
HH I=ANTLI+2,HH2=ANTKOL+2,

makewindow(WN,SN,FN,TXT,LI,KOL,HHI ,HH-2),
HH3 =ANTKOL,
writelist(O,fll-3,LIST),cursor(O,O),
menu 1 (,SN,LIST,ANThI,ANTKOL,CH),
CHOICE--1 +CH,
removewindow,
shiftwindow(22),
shiftwindow(2).

60

menu 1 (LI,SN,LIST,MAXLI,ANTKOL,CHOICE):
field.attr(LI,O,ANTKOL, 112),
cursor(LI,0),
readkey(KEY),
menu2(LI,SN,LIST,MAXLI,ANTKOL,CHOICE,KEY).

menu2(_,,,.,_,- 1,esc):-!.
menu2(LI ,-,-,-,,CH,function(10)):-! ,CH=LI.
menu2(LI ,-,,-,.,CH,cr):- !,CH=LI.
menu2(LI,SN,LIST,MAXLL.ANTKOL,CHOICE,up):-

LI>O,!,
field-attr(LI,O,ANTKOL,SN),
LI1=LI-1,
menu 1 (LII ,SN,LIST,MAXLI,ANTKOL,CHOICE).

menu2(LI,SN,LIST,MAXLI,ANTKOL,CHOICE,down):-
LI<MAXLI- 1,9!,
field-attr(LI ,O,ANTKOL,SN),
LI1=Ll+1,
menu 1 (LII ,SN,LIST,MAXLI,ANTKOL,CHOICE).

menu2(LI,SN,LIST,MAXLI,ANTKOL,CHOICE,-):-
menu 1 (LI,SN,LIST,MAXLI,ANTKOL,CHOICE).

user-key(ROW,COL,ANSWER):-
asserta(user-data),userrequest(ROWCOL,ANSWrER),
retract(user data).

userjequest(ROW,COL,ANSWER) :- readkey(KEY),
user -input(KEY,REQUE-ST,ROW,COL),
,request(REQUEST,ROW,COL,ANSWER).

userjinput(esc,-1 j-!
userjinput(cr,,,-):- !

userjinput(down 1 ,ROW,COL): - cursor(R,C),R <> ROW,
NROW =R + 1,

scr-char(R,C,CHAR),cursor(NROW,COL),scr -char(R,C,CHAR).
user-input(down, 1,ROW,COL) :- !,cursor(ROW,COL).
user -input(up,1,_,COL):-cursor(R,C),R <> O,NROW = R
- I ,scr_har(R,C,CHAR),
cursor(NROW,COL),scr -char(R,C,CHAR).

userjinput(up, I,ROW,COL): - ! ,cursor(ROW,COL).

61

request(1,ROW,COL,ANSWER):- userjequest(ROW,COL,ANSWER).
request(O,..,-,ANSWER):- readln(ANS),first-char(T),
frontchar(ANSWER,T,ANS),
write(ANSWER),retract(first-Char(T)).
request(- 1I..,..,.: fail.

CLAUSES
index([XlL1,,X):-!
index([jILI,N,X) :- N> 1,N 1=N- 1,index(L,N 1,X).

append([],L,L).
append(IIAhlAt],B ,IAhlC]) :-append(At,B ,C).

maxlen(HIT] ,MAX,M1AX1):-
str-len(H,LEN),
LEN>MAX,!,
maxlen(T,LEN,MAX 1).

maxlen([IT] ,MAX,MAXI1):-maxlen(T,MAX,MAX 1).
maxlen([],LEN,LEN).

listlen([],O).
fistlen([jIT] ,N):-

listlen(T,X),
N=X+1.

writeli st(LI,ANTKOL, [HIT]): -field-str(LI,O,ANTKOL,H),
LII =LI+1 ,writelist(LII1,ANTKOL,T).

write-screen([]).
write-screen([HITJ):-

scroll_screen([HITD),
write-screen(T).

scroll_screen([HIT]):-
cursor(_,COL),
check...questionjlength([H] ,COL),
write(H," "),check end..o-question(T).

scroll_screen(IHIT]):-
scroll(1I,O),write(H),
check-end-oLquestion(T).

62

checkquestion Ilength([HL_],LENGTH):
str-len(H,LEN),MAXLEN = LEN + LENGTH,
MAXLEN < 65.

checkquestion-lengthC,-j:- ni.

checkendcL..question([]).
check -end-o..question(IIHI I):- not(isname(H)).
check_endofquestion():- ni.

positionjin window("problem analysis"):-
shiftwindow(4),nl.

position in-window(action):-
shiftwindow(7),clearwindow,nl.

position in-window(solution) :- shiftwindow(12),nl.

repeat. repeat: -repeat.

* FACT.PRO*

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"

CLAUSES

enter -fuelfact(SYS,COMINO2):-
assert-fact(SYS,COMPNO2),fail.

assert-fact(SYS,COMNON2):-
SYS="FOT" ,assertz(fuel(COMPNO2),problem).

assert_t'act(SYS,COMPNO2):-
SYS= "FOS " ,assertz(fuel(COMPNO2),problem).

63

assert-emptyjfact: - asserta(problem(['"]),problem).

retract_facts:- retractall(..,problem).

PLPEGRAPH.PRO*

include "GrapDecl .PRO"

CONSTANTS
intlist = BGI-ilist

Domains
PointList = intlist*

Constants
PaletteL-ist = intlst

Local data base

Database - graphics
Determ driver(Integer,Integer,String)
Determ, maxcolors(Integer)
Determ maxX(Integer)
Determ maxY(Integer)
Determ graph Coord(Integer,Integer)

* Return Type of Tank*

PREDICATES

64

TankType(STRING,STRING)

CLAUSES
TankType("8-119-9-V" "8-119-9-V DC VOID").
TankType("8-119-7-V","8-119-7-V DC VOID").
TankType("8-119-11-F","8-119-11-F FOS").
TankType("8-119-7-V","8-119-7-V DC VOID").

* Return pipes in compartment *

PREDICATES

Pipes(SYMBOL,INTEGER,INTEGER,INTEGER,INTEGER,INTEGER,SYMB
OL)

CLAUSES
Pipes("8-119-7-V",1 ,- 1,0,- 1,0,"RED").
Pipes("8-119-7-V ",4,-3,0,-3,0, "BLUE").
Pipes("8-119-7-V",1,-6,0,-6,0,"RED").
Pipes(" 8-119-7-V",0,-8,0,- 8,0,"ORANGE").
Pipes("8-119-7-V",2,-15,0,-15,0,"GREEN").
Pipes("8- 119-7-V",0,6,0,6,0,"ORANGE").
Pipes("8-119-7-V",2, 11,0,11 ,-28,"GREEN").
Pipes(" 8-119-7-V",2,13,0,13,0,"GREEN").
Pipes(" 8-119-7-V",2,15,0,15,0,"GREEN").
Pipes(" 8-119-9-V", ,- 1,0,- 1,0,"RED").
Pipes("8-119-9-V",4,-3,0,-3,0,"BLUE").
Pipes("8-119-9-V ", 1 ,-6,0,-6,0, "RED").
Pipes(" 8-119-9-V",0,-8,0,- 8,0,"ORANGE").
Pipes("8-119-9-V",2,- 15,0,- 15,0,"GREEN").
Pipes("8-119-9-V",0,6,0,6,0,"ORANGE").
Pipes(" 8-119-9-V",2,13,0,13,-23," GREEN").
Pipes(" 8-119-9-V",2,15,0,15,0," GREEN").
Pipes(" 8-119-11-F",1,-1,0,-1,0,"RED").
Pipes("8-119-11 -F",4,-3,0,-3,- 10,"BLUE").
Pipes("8-119-11 -F",1 ,-6,0,-6,-25,"RED").
Pipes("8-119-1 I-F",0,-8,0,-8,-28,"ORANGE").
Pipes("8-119-11 -F",2,-15,0,- 15,0,"GREEN").
Pipes("8-119-11 -F",0,6,0,6,-30,"ORANGE").

65

Pipes("8-1 19-1 I1-F",2,15,0,1 5,0, "GREEN").
Pipes(" 8-1 19-15 -V't ,2,15,O,15,-26,"GREEN").

* Return pipename*

PREDICATES
Pipename(SYMBOL,SYMBOL)

CLAUSES
Pipename('RED" ,"Fuel Oil Transfer").
Pipename("BLUE" ,"Fuel Oil Stripping").
Pipename("GREEN", "Ballasting and Main Drain").
Pipename("ORANGE","Fuel Oil Service & Recirc").
Pipename("MAGENTA" ," OverFlow").

* Return name of driver*

PREDICATES
GetDriverName2(lnteger,String)

CLAUSES
GetDriverN ame2 (0, "Detect").
GetDriverName2(l1,"CGA").
GetDriverName2(2,"MCGA").
GetDriverName2(3,"EGA").
GetDriverName2(4, "EG A64").
GetDriverName2(5 ,"EGAMono").
GetDriverName2(6 ," Reserved").
GetDriverName2(7 ,"HercMono").
GetDriverName2(8, "ATT400").
GetDriverName2(9," VGA").
GetDriverName2(1 0,"PC3270").

PREDICATES

66

GetMode(Integer,Integer,String)

CLAUSES
GetNode(cga,cgaHi,"CGAHi"):-!.
GetMode(cga,GraphMode,S):- ! ,format(S,"CGA%" ,GraphMode).
GetMode(mcga,mcgaMed,"MCGAMed"):-!.
Get~lode(mcga,mcgahi,"MCGAI')-! .
GetMode(mcga,GraphMode,S):- ! ,format(S ,"MCGA%" ,GraphMode).
GetMode(ega,egaLo,"EGALo"):-!
GetMode(ega,egaFi,"EGAHi"):- !.
GetMode(ega64,ega64Lo,"EGA64Lo"):-!
GetMode(ega64,ega64Hi,"EGA64Hi"):-!
GetMode(hercMono,,"HercMonoM"):-!
GetMode(egaMono,_,"EGAMonoHi"):-!.
Get~lode(pc3270,,JPC3270Hi"):- !.
GetMode(att400,att400Med,"ATT400Med"):-!
GetMode(att400,att400Hi,"A'IT400Hi"):-!
GetMode(att400,GraphMode,S):-
,format(S ,"ATTf400%" ,GraphMode).
GetMode(vga,vgaLo,"VGALo"):- !.
GetMode(vga,vgaMed,"VGAMedo"):-
GetMode(vga,vgaHi,"VGAI-I"):-!
GetMode(_,,"UnKnown"):-!

* Return name of font*

PREDICATES
GetFontName(Integer,String)

CLAUSES
GetFontName(1 ,"TrixplexFont").
GetFontName(2,"SmallFont").
GetFontName(3,"SansSerifFont").
GetFontName(4,"GothicFont").

67

* Implementation of the C loop: for(I=Cur, j<Max, 1++)*

PREDICATES
nondeterm for(Integer,Integer,Integer)

CLAUSES
for(Cur,..,Cur).
for(Cur,Max,I): Cur2=Cur+ 1, Cur2<Max, for(Cur2,Max,I).

* Mode switching*

PREDICATES
ToGraphic
ToText
KeepColor(integer,integer,integer)

CLAUSES
ToGrapHic:

/* Detect graphic equipment *
DetectGraph(G-D~river, G_Model),
KeepColor(G.DriverG_Model ,G -Mode),
GetDriverName2(G-Driver,GName),
assert(dri ver(GDriver, GMode,G GName)),
envsymbol("BGIDIR",SetValue),
InitGraph(G..Driver,GMode, -, .,SetVal ue),!.

ToText:-
closegrapho.

KeepColor(I,-..,O).
KeepColorC..,Mode,Mode).

68

* Display a status line at the bottom of the screen*

PREDICATES
StatusLine(String)

CLAUSES
StatusLine(Msg):-

max.X(MaxX), maxY(MaxY), SetViewPort(O,O,MaxX,MaxY, 1),
maxColors(MaxColors), MaxCol2=MaxColors,
SetColor(MaxCol2),
SetBkColor(O),
SetTextStyle(default_-Font, horiz -Dir, 1),
SetTextlustify(center -Text, topext),
SetLineStyle(solid-Line,O,nonm..Width),
SetFillStyle(empty.Fill ,O),
TextHeight('H",Height), MaxYH = MaxY-(Height+4),
Bar(O, MaxYH,MaxX,MaxY),
Rectangle(O,MaxYH,MaxX,MaxY),
MaxX2 = MaxX div 2, MaxY2 =MaxY-(Height+2),
OutTextXY(Max.X2,MaxY2, Msg),
Height5 = Height+5, MaxX 1 =MaxX- 1, MaxY5=

MaxY-(Height+5),
SetViewPort(I,Height5 ,MaxX 1,MaxY5, 1).

* Pause until the user enters a keystroke*

PREDICATES
Pause

CLAUSES
Pause:-

readChar(_).

69

* Draw a solid line around the current viewport*

PREDICATES
Draw Border

CLAUSES
DrawBorder:-

maxColors(MaxColors), MaxCoI2 = MaxColors,
SetColor(MaxCol2),

SetBkColor(O),
SetLineStyle(solidLine,O,thick -Width),
GetViewSettings(Left,Top,Right,Bottom,-j,
RL=Right-Left, BT=Bottom-Top,
Rectangle(O,O,RL,BT).

* Establish the main window and set a viewport*

PREDICATES
Full Screen(String)

CLAUSES
Ful IScreen(Header):-

ClearDevice,
maxColors(MaxColors),
SetColor(MaxColors), % Set current color to

white
SetBkColor(O), % Set background to black
TextHeight("H",Height), % Get basic text height
Height5=Height+5, Height4=Height+4,
maxX(Max.X), MaxXlI=MaxX-1,MaxX2=MaxX div 2,
maxY(MaxY), MaxY4=MaxY-(Height4),MaxY5=MaxY-(Height5),
Set ViewPort(O,O,MaxX,Max.Y,1), % Open port to full

screen
SettextStyle(small-font,horiz-dir,0),
SetTextJustify(center_text, top-text),

70

OutTextXY(MaxX2,2,Header),
SetViewPort(0, Height4, MaxX, MaxY4, 1),
DrawBorder,
SetViewPort(1, HeightS, MaxXl ,MaxY5, 1).

Initialize video and Global flags

PREDICATES
Initialize

CLAUSES
Initialize:-

retractall(.., graphics),
ToGraphic,
GetMaxColor(MaxColors), assert(maxcolors(MaxColors)),
GetMaxX(MaxX), assert(maxX(MaxX)),
GetMaxY(MaxY), assert(maxY(MaxY)).

Display PIPES system screen

PREDICATES
PipesScreen

CLAUSES

PipesScreen:-
FullScreen('Piping Improvement And Planning Expert

System"),
GetViewSettings(Left,Top,Right,B ottom,-j,

SetTextStyle(gothic-FONT,horiz..Dir,5),
SetTextlu stify(center Text,centerjText),
maxColors(MaxColor), Color = 1 +round(MaxColor I2.5),
SetColor(Color),
H =Bottom - Top, W = Right - Left,

71

W2 = W div 2, H2 = H div 2,
OutTextXY(W2,H2,"P I P E S"),
StatusLine("Press any key to Continue").

Display a pattern of random dots on the screen

DOMAINS
Pixel = p(Integer,Integer,Integer)
PixelList =Pixel*

PREDICATES
WriteDot
PutPixel s(Pixellist,Integer,Integer,Integer,Integer)
OutPixels(Pixellist)
DelPIxels(Pixellist)
Delay(Integer)

CLAUSES
WriteDot:-

GetViewSettings(Left,Top,Right,Bottom,
H =Bottom - Top,
W =Right - Left,
maxColors(MaxColors),
PutPixels(Points, 1200,H,W,Maxcolors),
DelPixels(Points),
for (0,2,1),

OutPixels(Points),
1<1,
DelPixels(Points),

fail.
WriteDot:- pause,ToText.

PutPixels([1,O,_,-.,_):- !.
PutPixels(Ip(X,Y,Col or)IPointsj ,I,H,W,Maxcolors):-

random(W,X),
random(H,Y),

72

random(MaxColors,Color),
PutPixel(X,Y,Color),
12 =I- 1,
PutPixels(Points,12,H,W,Maxcolors).

OutPixels(I[p(X,Y,Color)IPointsl):-!,
PutPixel(X,Y,Color),
OutPixels(Points).

OutPixels(j).

,PutPixel(X,Y,black),DelPixels(Points).
DelPixels(-j.

Delay(N):- N > O,!,Nl N-i, Delay(N1).
Delay(O).

DISPLAY COVER

PREDICATES

PipeCover

CLAUSES

PipeCover:- !,Initialize, % Set system into
graphic mode

GraphDefaults,
PipesScreen,
WriteDot.

DRAW PipeSystems

PREDICATES

73

SingleTank(SYM[BOL)
Plod~ine(SYNMOL)
WriteNar-ne(SYMBOL,INTEGER,INTEGER)

CLAUSES

SingleTank(CompNo):-
!,Initialize, % Set system into

graphic mode
GraphDefaults,TankType(CompNo,TYPE),
FullScreen(TYPE),
StatusLineC'Press any Key to

Continue"),
setwritemode(O),

setlinestyle(solid-LINE,O,norm_-WIDTH),
PlotLine(CompNo),
pause,ToText.

Plod~ine(CompNo):

pipes(CompNo,COLOR,XPOS,YPOS,XPOS 1,YPOSI1,PIPETYPE),
maxColors(MaxColor),
LineColor--

MaxColor-COLOR,setcolor(LineColor),

GetViewSettings(Left,Top,Right,B ottom,-),
H=Bottom-Top,W=Right-Left,
X=Wdiv2,
XCORR=X div 16 ,XREAL =XCORR*

xPOS,
XPLOT =X + XREAL,
XREAL1 = XCORR * XPOS1I,
XPLOT1 = X + XREAL1,
YCORR =H div 32 ,YREAL = YCORR*

YpoS,
YPLOT =LEFT + YREAL,
YREAL1I = YCORR * YPOSlI,
YPLOT1 = Bottom + YREAL1,

Iine(XPLOT,YPLOT,XPLOT1 ,YPLOT1),APLOTY=YPLOTI -3,

74

arc(XPLOT1 ,APLOTY, 180,0,4),
settextstyle(smallFont,vertDR,0),
SetTextJustify(top..TEXT,top-.TEXT),

TX = XPLOT -

5 ,TY=Top,WriteName(PLPETYPE,TX,TY),
fail.

PlotLine(_).

WriteNane(PIPETYPE,TX,TY):-
,Pipename(PIPETYPE,PIPENAM[E),

outtextxy(TX,TY,PLPENAME).
WriteName(,,-).

* Oil in the Void Tank*

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "AnaGdef.PRO"

PREDICATES

nondeterm cracks(SYMBOL)

CLAUSES

losingfuel("Y"):- add...problem (["losing fuel"]).
losingfuel("N "):- askquesjeadans(CRACKS,"c-acks in

tank "),crack s(CRA CK S).

cracks(" Y") :- :,add-problem(["cracks"]I).
cracks(' N"):- ask-q ue s-eadan s(FOU RTH DECK," "fourth deck"),

,fourthdeck(FOURTHDECK),!.

fourthdeck('Y"):- ! ,add-problem(["4th deck"]),!.
fourthdeck("N"):- ! ,indeterminate,!.

75

* Unable to pump Void Tank*

Project "PIPES"

include "PipeGdoms.PRO"
include "GlobDe t^ PRO"
include "PipeGdbase.PRO"
include "AnaGdef.Pro"

PREDICATES

nondeterm pumpjleaks(SYMBOL)
nondeterm valve -open(SYMBOL)
nondeterm debris(SYM[BOL)
nondeterm void-pumps(SYM[BOL)
nondeterm clean -valve(SYMiBOL)
niondeterm manifold(SYM[BOL)
nondeterm eductor(SYMEBOL)
nondeterm submersible(SYMBOL)
nondetermn bilge(SYMiBOL)
nondeterm bulkhd
nondeterm bulkhd-stops(SYMBOL)
nondeterm. close-valve(SYMBOL)
nondeterm bulkhd-stops-lose(SYM[BOL)
nondeterm pump-racks(SYMBOL)
nondeterm sounding(SYM[BOL)
nondeterm. stringjleaks(SYMBOL)

CLAUSES

losing-fuel-water("Y"):- askqueseadans(W-ICH, "which
tank losing fuel"),
asserta(which-tank-losing-fue(W-HCH)),
ask-ques read-ans(LEAKS,
"ounable pump losing fuel "),pumpjleaks(LEAKS).
losing-fuel-water("N"):-
as-q ue s-read-an s(VALVE_OPEN, "check valve"),

76

valve_open(VALVE OPEN).

pumpjeaks("Y"):- add~problem("leaks"]).
pump jeaks("N"): losing-fuel-water(" N").

valve..open("Y"):- askques read-ans(MANIFOLD,"manifold"),
manifold(MANI]FOLD).

valve...Open("N"):- askques read-ans(VOID-PUMP," void
pump"),void-pumps(VOLDJUPL).

debris("Y"):- ask_quesjeadans(CLEAN, "clean valve"),
clean-valve(CLEAN).

debris("N"):- eductor("N").

void-pumps("Y"): - add...problem(["pumps "]).
void-pumps("N"):- valve-Open("Y").

clean_valve("Y"):- add...problem([I "clean valve"]).
clean_valve("N"):- eductor("N").

manifold("Y "): ask...ques-read-ans(EDUCTOR, "eductor"),
eductor(EDUCTOR).

manifold(" N"): - ask-ques -ead-.an s(DEB RIS, "check
debris"),debris(DEBRIS).

eductor("Y"):- add_p.-oblem("eductor"]).
eductor("N"):-ask...ques...rea-ans(BILGE,bilge),bilge(BILGE).

submersible("Y"):- add-problem([f "submersible"]).
submersible("N"):- ask-ques-read-ans(CRACKS, "cracks in

tank"),pump-cracks(CRACKS).

bilge("Y"):-bulkhd.
bilge("N"):- ask -ques-read-an s(CLOSEVALVE, "close valve"),
close_valve(CLOSEVALVE).

bulkhd:- ask-ques-read-ans(BUJLKI-D_STOPS,"bulkhd stops"),
bulkhd_stops(BULK-DSTOPS).

bulkhd_stops("Y"):-
ask .ques read_ans(SUBMIERSIBLE, "submersible"),
submersible(SUBMERSIBLE).

bulkhd_stops("N"):- ask qe ea~n(SOSCLOSE,"bulkhd

77

stops close"),
bulkhd-stopss-lose(STOPS-CLOSE).

close -valve("Y"): add-problem(" valves closed"]).
close-valve("N"):- bulkhd.

bulkhd-stopsslose("Y"): add-.problem(I "bilge"]).
bulkhd-stops..close("4"): bulkhd-stops("Y").

pump...cracks("Y"):- add_problem(["cracks"]).
pump-sracks("N"):- ask-ques-read-an s(LEAKS, "leaky pipes"),

stringileaks(LEAKS).

sounding("Y"): add~problem([" sounding tube"]).
sounding("N"):- indeterminate.

string...leaks("Y"):- add-problem([" string leaks"]I).
stringjleaks("N"):- ask-ques read-ans(SOUNDING," sounding
tube"),sounding(SOUNDING).

* Void Tank Pumps but Refills with Water*

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "AnaGdef.PRO"

PREDICATES

cycle -sea - alve(SYMBOL)
void -backflow(SYMBOL)
manifold-pressure(SYMBOL)
void -cracks(SYMBOL)
overboard(S YMBOL)
void -debnis(SYMBOL)
void -breaks(SYMBOL)
void-suction(SYMBOL)

78

open-ovbd(SYMBOL)
holes(SYM[BOL)
close_suction(SYMEBOL)
bulkhd-stops..open(SYMBOL)
close-bulkhc~stops(SYM1BOL)
flooding..yalve(SYMBOL)
close -flood-valve(SYMBOL)
inboard_void(SYM[BOL)

CLAUSES

sea -valvejleak("Y"):- ask-ques read ans(CYCLE,"cycle sea
valve"),cycle sea-valve(CYCLE).

sea -valve -leak("N"):-ask ques read-ans(BACKFLOW,"void
backflow "),voidbackflow(BACKFLOW).

cycle -sea -valve("Y") :- add_problem(["cycle sea valve"]).
cycle..sea....alve("N"): add_problem(["industrial repair"]).

void -backflow("Y"):- ask_ques read_ans(MANIFOLD,"manifold
pressure"),manifold-pressure(MANI]FOLD).

void-backflow("N"):- ask-ques read_ans(CRACKS, "cracks in
tank"),void-cracks(CRACKS).

manifold-pressure("Y"):-ask-ques -eadans(O VERB GARD,
"overboard"),overboard(OVERBOARD).

manifold_pressure("N"): ask...ques...reaans(DEBRIS,
"1check debris "),void-debris(DEBRIS).

void -cracks(" Y"):- add...problem(["void cracks "]).
void -cracks("N"):- ask-ques read_ans(BREAKS,"sounding

tube "),void-breaks(BREAKS).

overboard(" Y"):- ask-quesjeadans(SUCTION, "void suction"),
void -suction(SUCTION).

overboard(" "N"): - ask-.ques-read-ans(OPEN, "open
ovbd"),openovbd(OPEN).

void -debris("Y") :- add...problem(["debris"]).
void -debris("N"):- ask-ques read_ans(INBOARD, "inboard

void "),inboard-void(INBOARD).

inboard-void("Y"):- add-problemf" inboard"]).

79

inboard-void("N"):- indeterminate.

void-breaks("Y"):- add~problem(["breaks"]).
void -breaks("N"): - ask..quesrjead an s(HOLES," holes"),
holes(HOLES).

void -suction("Y"):- ask.ques read_ans(CLOSE,"close
suction"),close- suction(CLOSE).

void-suction("N"):- askques -read-ans(OPEN,"bulkhd
stops opent '),bulkhd-stops..open(OPEN).

open...ovbd("Y"):- add-problem(["open ovbd" I).
open-.ovbd("N"): overboard("Y").

holes("Y"):- add_problem(["holes 4th deck"]).
holes("N"):- indeterminate.

close -suction("Y"):- void_suction("N").
close-suction("N"):- manifold-..pressure("N").

bulkhd -stops..open('Y"):- ask-quesjead-ans(STOPS, "close
bulkhd stops "),close bulkhd-stops(STOPS).

bullchd-stops..open("N"): - manifold~pressure("N").

close -bulkhdstops("Y") :- askques I eadans(FLOODING,
"flooding valve"),flooding-v.alve(FLOODING).

close-bulkhd-stops("N"):- manifold~pressure("N").

flooding-valve("Y".:- indeterminate.
flooding..yalve("N"):- ask_ques__read-ans(FLOOD,
"close flood valve"),close-flood valve(FLOOD).

close -flooc~valve("Y"):- indeterminate.
close-floo-v alve(" N"):- manifolc~pressure("N").

* Damage Control Void Will Not Flood*

project "PIPES"

80

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "AnaGdef.PRO"

PREDICATES

oil-hydro-station(SYMBOL)
clean-station jhr(SYMB OL)
air-escape-open(SYMBOL)
sel -valve-bkwrd(SYMEBOL)
damagehydrojine(SYM1B OL)
sel-nmismarked(SYMEBOL)

CLAUSES

clear-sounding-tube("Y"):- askques read-ans(OIL," oil hydro
station "),oil-hydro station (OIL).

clear-sounding-tube("N") :- add-problem(["sounding tube"]).

oiL-hydro-station("Y") :- ask juesjreadan s(FLTR, "clean
station fltr"),clean_station_fltr(FLTR).

oil-hydro-.station(" N"):- add...problem(["oil hydro station"]I).

clean-station..fltr("Y") :- ask-ques..read.ans(AIR ," air escape
open "),air-escapeopen(AIR).

clean -station-ftr("N"):- add~problem(["clean station
filter"]).

air-escape-.open("Y"): - ask-ques -eac-ans(SEL," sel valve
bkwrd"),selvalvebkwrd(SEL).

air.-scape..open("N"):- add-problem(["air escape open"]).

sel-valve-.bkwrd(" Y"):- ad&..problem(["sel valve bkwrd"]).
sel -valve-bkwrd("N"):- ask...ques-eadans(DAMAGE, "damage

hydro line"),damage-hydrojine(DA MAGE).

damage-hydrojline(" Y") :- add.problem("damage hydro line"]).
damage-hydro-ine("N"):- askques -read ans(SEL,

"sel-mismarked"),sel-fmismarked(SEL).

sel-mismarked("Y"):- add-problem("sel mismarked"]).

81

sel-mismarked("N"):- add-problem(["correct inismark"]).

* Void Overflowing*

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "AnaGdef.PRO"

PREDICATES

trans-..pumpjrun(SYMIBOL)
close-ovrfL-stop(SYMBOL)
eductor -lit-off(SYMBOL)
another-eductor(SYMBOL)
close -edu-ovrfl-stop(SYMBOL)
void -inb(SYMBOL)
bal-last manifold(SYMBOL)
strip-dischrg(SYMBOL)
closeFM-valve(SYMBOL)
close -stip(SYMBOL)
close-sea fid-valve(SYMBOL)
close -valve-ovrfl-stop(SYMBOL)
void -mib -contm(SYMBOL)
dischr-contm(SYMBOL)
cls-stripovrfl valve(SYMBOL)
jp5-rans(SYMBOL)
close~jp5(SYMBOL)
diesel-trans(SYMBOL)

CLAUSES

tran s-.pump...run(" fuel "): - losingfuel(" Y").
tran spump-yun("water"): - ask-quesjread ans(LIT, "eductor lit

82

off"),eductor-lit_off(LIT).

* Overflowing Water*

*eductor -lit -off("Y"):- ask-ques-read-ans(CLOSE, "close
edu ovrfl stop"),close edu-ovrfl-stop(CLOSE).

eductor-lit-off("N"):- ask_ques read-ans(EDUCTOR, "another
eductor"),another eductor(EDUCTOR).

another-eductor("Y"): eductorjlit-off("Y").
another-eductor(" N"):- ask...quesyead~ans(INBD, "void inb"),
void-inb(INBD).

close-edu-ovrfl-stop("Y"):- add...problem(["close eductor"]).
close -edu -ovrfl-stop("N"):- ask..ques read-ans(BALLAST,

"ballast manifold"),ballast-manifold(BALLAST).

voidjinb("Y") :- ask-quesjeadans(STRIP," strip dischrg"),
strip-.dischrg(STRIP).

void-inb("N"):- close-edu-ovrfl~stop("Y")

ballast -manifold(" Y"):- ask_quesjea~ans(CLOSE,"close sea
fid valve"),close sea -fid_valve(CLOSE).

ballast-manifold("N "):- ask_quesjeac~ans(CLOSE, "close FM
valve"),close FM-valve(CLOSE).

strip-ischrg("Y"):- ask-ques read-ans(CLOSE,"close strip"),
close-strip(CLOSE).

stripjischrg("N"):- close_edu_ovrfl-stop("Y").

closeFM...valve("Y"):- add-problemQf"close FM valve"]).
closeFM-valve("N"):-

close-strip("Y"):- close-edu-ovrfl-stop("Y").
close...strip("N"):- add..problem(["close strip"]).

close -sea -fid -valve("Y"):-
close -sea-fid-valve("N"):- ask-ques -ea-ans(CLOSE,

"close valve ovrfl stop"),close valve.-ovrfl-stop(CLOSE).

83

close -valve-ovrfl-stop("Y"):- add-problem(["close ovrfl
stop'T).

close-valve-ovifi-stop("N"):- indeterminate.

* Overflowing Fuel*

close -ovrfl-stop("Y"): add_problem(["close ovrfl stop"]).
close-ovrfl-stop("N"):- ask_quesjea-ans(LNBD,"void inb

contm"),void mnb-contm(INBD).

void -mib_contm("Y"):- ask-quesjea&.ans(DIS,"dischr contm"),
dischr-contm(DIS).

void-mb _contmC'N"):- ask_quesjead..ans(JP5,"jp5 trans"),
jp5_.trans(JP5).

dischr-contm("Y"):- ask-ques-read_ans(CLOSE,"cls strip ovifi
valve"),cls..strip-.ovrfl-valve(CLOSE).

dischr-Contm("N"):- void-imb-contm("N").

cls -strip~ovrfl-valve("Y"): add~problem(["close strip
ovrfl"]).

cls..strip..ovrfl-valve("N"):- void-inb-contm("N").

jp5...trans("Y") :- ask-ques..readans(CLOSE, "close jp5"),
close..jp5(CLOSE).

jp5...trans(" N"): - ask...ques eadans(DIESEL, "diesel trans"),
diesel_trans(DIESEL).

close jp5("Y"):- add-problem(["close JP5 "I).
close..jp5("N"):- jp5-rans("N").

diesel --trans("Y"):- add...problem(["diesel trans"]).
diesel-trans("N"):- ballast-manifold("N").

Water in the Fuel Oil Service/ Fuel Oil Storage Tank

84

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"
include "AnaGdef.PRO"

PREDICATES
nondeterm fuel-paste..test(SYMBOL)
nondeterm knownjtank(INTEGER)
nondeterm outbd_fuel(SYMBOL)
nondeterm void--suction(SYMIBOL)
nondeterm backflow(SYMBOL)
nondeterm fuel-pipes(SYMBOL)
nondeterm fuel-inboard(SYMIBOL)
nondeterm water(SYMiBOL)
nondeterm fuelIeaks(SYM[BOL)
nondeterm pumps refills-fuel(SYN4BOL)
nondeterm fuel-cracks(SYMBOL)
nondeterm x-fer(SYMBOL)
nondeterin stripp...paste(SYMBOL)
nondeterm stripp...blockage(SYMBOL)
nondeterm fuel-stripp-open(SYMBOL)
nondeterm water-above(SYMBOL)
nondeterm skin-of-ship(SYMBOL)
nondetermn heavy-seas(SYMBOL)

CLAUSES

paste-test(" Y"):- filled-from(TANK),
stir len(TANK,LEN),knowntank(LEN).

pastejtest(" N"):- ask-quesjead-ans(OTB D, "fuel outbd
fuel "),outbd_fuel(OTBD).

known-tank(O):- fot-paste-test("N").
known-tank(j):- ask...quesjyead ans(WATER_PA STE, "fuel

waterpaste "),! ,fuel-paste test(WATERPA STE),!.

fuel-paste..test(" Y"):-filledjfrom(TANK),
asserta(problemjank(TANK),problem),

85

fot-paste("Y").
fuel-paste..test("N"):- paste-test("N").

outbd-fuel("Y"):- ask..quesjread-ans(VOIIL-SUCTION,
"fuel void suction"),voidsuction(VOIDSUCTION).

outbdjfuel("N"):- ask-quesjread-ans(BACKFLOW," fuel
backflow"),backflow(BACKFLOW).

void-suction("Y"):- add-problem(["void suction"]).
void-suction(" N"):- position in-window(" action"),
clearwindow,backflow(" N").

backflow("Y") :- ask...quesjead_;ans(CK_PIPES,
"fuel check pipes "),fuelpipes(CKPIPES).

backflow("N"):- ask~que s~read ans(FUEL, "fuel fuel
inboard "),fuel-inboard(FUEL).

fuel-pipes("Y"):- add~problem(["void suction"]).
fuel-pipes("N"):- backflow("N").

fuel-inboard("Y"):- ask...ques_read_ans(LEAKS,
"fuel pipes inboard "),fueleaks(LEAKS).

fuel-inboard("N"):- ask-ques read_ans(WATER, "fuel
water"),water(WATER).

water("Y"):- ask-ques reac-ans(REFILLS,
"opumps refills fuel "),pumps-refills-fuel(REFILLS).

water("N"):- ask_ques read-ans(XFER, "fuel trans
conn "),x-fer(XFER).

f -elI-leaks("Y"):- add..problem("leaks"]).
L.eII eaks("N"):- ask-ques..read-ans(CRACKS, "fuel cracks"),
fuel-cracks(CRACKS).

pumpsjrefills-fuel("Y") :- ask...que sjead-an s(LEAKS, "fuel
pipes inboard "),fueljleaks(LEAKS).

pumps-.refills fuel("N"):- water("N").

fuel -cracks("Y ") :- add...proble(Q ["cracks"]I).
fuel-Cracks("N"):- water("N").

x -fer("Y") :- add...problem(["x-fer" I).
xjfer("N") :- ask-ques read-ans(STRIPP,"st ipp paste"),

86

stripp..paste(STRIPP).

stripp~paste("Y"): askques_ read_ans(BLOCK,"stripp
blockage"),stripp..blockage(BLOCK).

stripppaste("N "):- as&..ques -read-ans(VALVE,"fuel stripp,
open"),fuel-stripp-open(VALVE).

strippjlockage("Y"):- add-problem([" stripp blockage"]).
stripp...blockage("N"):- ask-ques-ead-ans(WATER,

"1water above"),water-above(WATER).

fuel -stripp-open("Y"): add-problem(["stripp open"]).
fuel -stripp..open("N"):- ask..quesjread~ans(WAThR,

"owater above'"),water above(WATER).

water-above("Y"):- ask-ques read-ans(S KIN," skin of
ship"),skin-of -ship(SKIN).

water-above(" N): -ask-ques, read-ans(HEAVY SEA S, "heavy
st.xl,"),heavy-seas(HEAVY-S.EAS).

skin-of-ship("Y"):- add_problem([" skin of ship"]).
ski r-of-ship("N"): - indeterminate.

heivyseas(" Y"):-add-problem(["heavy seas"]).
heavy...seas("N"):- indeterminate.

* Water in the Fuel Oil Storage Tank*

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "AnaGdef.PRO"
include "PipeGdbase.PRO"

PREDICATES
nondeterm fot-outlx-fuel(SYMI3OL)
nondeterm fot-void-suction(SYMBOL)

87

nondeterm foLpipes(SYMBOL)
nondeterm fot-inboard(SYM[BOL)
nondeterm. fot-water(SYMBOL)
nondeterm. foLpumpsjyefills-fuel(SYMEBOL)
nondeterm fot-cracks(SYM[BOL)
nondeterm fot -water _above(SYMBOL)
nondeterm fot-skin -of -ship(SYM[BOL)
nondeterm fot-backflow(SYMBOL)
nondeterm fot-leaks(SYM[BOL)
nondeterm fot-stripp...paste(SYMBOL)
nondeterm fot-stripp...blockage(SYMBOL)
nondeterm fot-stipp..open(SYMBOL)
nondeterm fot-heavy-seas(SYM[BOL)

CLAUSES

fot-pastejest("Y"): filled-from(TANK),!,
asserta'problemj ank(TANK),problem),
ask ques read_ans(WATERPASTE,"fot waterpaste"),
fot paste(WATER PASTE),!.

fotpaste -test("N"):- ask-ques-read-ans(OTBD, "fuel outbd
fuel"1), fot_outbd_fuel(OTBD).

fot-paste(" Y"):- askquesjeadans(HILLED ,'Tot filled
from "),',assert -filled(FILLED).

fot-paste("N"):- fotpaste.test("N").

fot -outbdjfuel("Y"):- ask-ques -read -ans(VOID_SUCTION,
Itfuel void suction"),fot -void-suction(VOID-SUCTION).

fot -eutbc~fuel("N"):- ask-ques-read-ans(BACKFLOW,"fot
backflow"),fotbackflow(BACKFLOW).

fot -void -suction("Y"):- add~problem(["void suction"]).
fot -void -suction("N"):- position in-window("action"),
c Iearwindow,fotbackflow("N").

fot -backflow("Y"):- ask_ques read_ans(CK-PIPES,
"fot check pipes "),fot-pipes(CK-YIPES).

fot -backflow("N"):- ask-ques-read-ans(FUEL," fuel fuel
inboard "),fot-inboard(FUEL).

fot-pipe s("Y"):- add.~.problem(["void suction"]).
fotpipes("N"):- fot-backflow("N").

88

fot-inboard("Y"):- ask..ques read_ans(LEAKS,
"fuel pipes inboard"),fot..jeaks(LEAKS).

fot-inboard("N"):- ask...ques read-ans(WATER,"fuel
water"),fot-water(WATER).

fot -water("Y") :- ask...ques-jead-ans(REFIILLS,
"tpumps refills fuel "),fot..pumps-efils..fuel(REFILLS).

fot_water("N"): - ask...ques-read-ans(STRIPP,"fot stripp
paste"),fot-Stripp..paste(STRIPP).

fot -leaks("Y"):- add...problem(["fot leaks"]).
fot-leaks("N"):- ask...ques...read..ans(CRACKS, "fuel cracks"),
fot- cracks(CRACKS).

fot-pumps-jrefillsj-uel(" Y") :- ask_ques-jeadans(LEAKS,
"fuel pipes inboard"),fot -leaks(LEAKS).

fot-pumps.refils-..fuel("N "):- fot-water("N").

fot -cracks("Y") :- addproblem(["cracks"]).
fot-cracks("N"):- fot-water("N").

fot-stripp..paste("Y"):- ask...ques - ead~ans(BLOCK,"fot
stripp blockage"),foLstripp-blockage(BLOCK).

fot-stripp..paste("N"):- ask...quesjead-ans(VALVE," fot
stripp open "),fot-striipp..open(VALVE).

fot-stripp...blockage("Y') :- add-problem(['Tot stripp
blockage"]).

fot -stripp-blockage("N") :- ask...ques read-ans(WATER,
"water above"),fot water-above(WATER).

fot -stripp..open("Y"):- add-problem([I"stripp open"]).
fotstripp..open("N"):- ask-quesjea-ans(WAT7ER,

"water above"),fot-water-above(WATER).

fot -water -above(" Y") :- ask-quesjeadans(SKIN, "skin of
ship"),fot skin_of..ship(S KIN).
fot -water...above("N"):-ask...quesjyeadans(-ffAVYSEAS, "fot
heavy seas "),fot-heavy..seas(HEAVY...SEAS).

fot -skin-of....ship("Y"):- add...problem(["skin of ship"]).
fot_skin_of-ship("N"): - indeterminate.

89

focheavyseas("Y") :-ad&..problem(["heavy seas"]).
fot-heavyseas("N"):- indeterminate.

Fuel Oil Service Tank Overflowing

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"
include "AnaGdef.PRO"

PREDICATES
pump-overflow(INTEGER)
fill-valve closed(SYMBOL)
stipsys.used(SYMBOL)
eductor -strip(SYMEBOL)
trs-valve..ovrfl(SYMBOL)
recric-fostank(SYMBOL)
ovbd-dis-open(SYMBOL)
strip-ineup(SYM[BOL)
ovbd -ovrfL-stop(SYMBOL)
close-recirc(SYMIBOL)
fill-x-fer(SYM[BOL)
correct-ovrfl-stop(SYMEBOL)
strip-suct-valve(SYMEBOL)
serv-suct-valve(SYMEBOL)
recire-valve(SYMBOL)
pipe-leak(SYMBOL)

CLAUSES

fos-pumpj-un-efuel("Y"):- ask-ques read-ans(PUMP, "pump
overflow"), pump-overflow(PUMP).

fos...pumpmnjrefuel(" N"):- ask_ques read-ans(CLOSE, "fill
valve closed "),fihllvalve-closed(CLOSE).

pump-overflow(" Y"):- pump-run-efuel("N").

90

pump~overflow("N"): askquesjeadans(SYS ," strip sys
used "),strip-.sys,..used(SYS).

fill -valveclosed("Y"):- pump-overflow("N").
fill -valve-losed("N"): ask...ques-jead-ans(TRANS,"trs

valve ovrfl),trsvyalve ovrfl(TRANS).

strip...sys_..used("Y"): ask_ques read-ans(EDUCTOR,"eductor
strip"),eductor -strip(EDUCTOR).

strip-.sys..used("N"):- ask_ques read..ans(RECIRC,"recirc
fostank"),recircjfostank(RECIRC).

eductor -strip("Y"):- ask _ques _read_ans(OVBD,"ovbd dis
open"),ovbd dis-open(OVBD).

eductor-strip("N"):- ask_ques read_ans(LINEUP, "strip
lineup"),stripjineup(LINEUP).

trs-valv'e..ovrfl("Y")-- add_problem(["trs valve ovrfl"]).
trs-valve..ovr("N"):- fill-valve-closed("Y").

recirc-fostank("Y"):- ask_ques readans(STOP, "close
recirc "),c lose-recirc(STOPS).

reciirc-fostank("N"):- ask-ques read...an s(FILL, "fill
xjfer"),fill-x-fer(FLILL).

ovbdjdis..open("Y"):- strip..sys..used(("N").
ovbd-dis-.open("N"):- ask_quesj- ea~ans(STOP,"ovbd ovrfl

stop"),ovbd ovrfl-stop(STOP).

strip-lineup("Y"):- strip...sys._used("N").
strip-ineup("N"): askques read-ans(STOP,"correct ovf1

stop"),correct ovrflstop(STOP).

ovbd-ovrfl..stop(" Y"):- add~problem(["ovbd ovrfl stop"]).
ovbd-ovrfl-stop("N"):- strip-.sys-used(" N").

close_recirc("Y"):- add..problem(["close recirc"]).
close_recirc("N"):- recire_fostank("N").

fill -x_fer("Y "):- ask..ques..read-ans(STRIPP, "strip suct
valve "),strip..suctvalve(STR IPP).

fill-x_fer("N"):- add...problem(["fill x-fer"I).

91

correctovrfl..stop("Y"):- add...problem(["correct ovrf
stop"]).

correctovrflstop("N"): -strip...sys-..used("N").

strip...suct-valve("Y"):- ask...quesread-ans(SERV," serv suct
valve"),serv-suct-valve(SERV).

strip...suct...alve("N"):- add-problem(["strip suct valve"]I).

serv_suct-valve("Y"):- ask.quesjread-ans(RECIRC, "recirc
valve"),recirc-v.alve(RECIRC).

serv-suct-valve("N"):- add-problem(["serv suct valve"]).

recirc-valve("Y"):- ask-ques-read-ans(LEAK, "pipe
leak "),pi pe-leak(LEA K).

recirc-valve("N"):- add_problem(["recirc valve"]).

pipejleak("Y"): add...problem(["pipe leak"]).
pipejleak("N"):- indeterminate.

Fuel Oil Service Tank Losing Fuel

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "AnaGdef.PRO"

PREDICATES

pump-pipe-eaks(SYMBOL)
fill -debris(SYMBOL)
refill(SYMBOL)
inspecteaks(SYMIBOL)
open-sound-ube(SYMBOL)
fos-los-fuel-cracks(SYMiBOL)

CLAUSES

92

voids...oil("Y"):- ask...quesjreadans(VOID, "which void has
oil "),retract-facts,assert(problem tank(VOID),p.-oblem),
retrieve -contains,add-problem(["oil in void"]),

contains_fuel,fuel0-,ask..ques read_ans(LOSINGFUEL," losing
fuel"),! ,losingfuel(LOSINGFUEL).

voids..oil("N"):- add~problem(II"fos losing fuel"]),
ask-ques-read-ans(LEAKS,"pump pipe
leaks"),pumppipejeaks(LEAKS).

pump...pipe-leaks("Y"):- askquesjeadans(FWLL, "fill
debris"),fill-debris(FILL).

pump...pipe-leaks("N"):- addproblem(I "leaks"]).

fill-debris("Y"): ask..ques..read-ans(REHILL, "refill"),
refill(REFLLL).

fill-debris("N"): add...problem(["refills"]).

refill("Y"):- ask-ques ryead-ans(LEAKS," inspect leaks"),
inspect-leaks(LEAKS).

refill("N"):- ask-ques r ead-ans(CRACKS,"fos los fuel
cracks"),fos-los-fuel_cracks(CRACKS).

inspect -eaks("Y"): add..problem(["leaks"]).
inspect-leaks("N"):- refill("N").

fos -los-fuel_cracks("Y"):- addproblem(f ["racks"]).
fos-los -fuel_cracks("N"):- ask-ques..read ans(OPEN," open

sound tube"),open-sound-tube(OPEN).

open...sound-tube(" Y"): indeterminate.
opensoundjube("N"):- add-problem(["sound tube"]),

Fuel Oil Storage Tank Overflowing

project "PIPES"

93

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"
include "AnaGdef.PRO"

PREDICATES
pump-overflow(INTEGER)
fill -valve-closed(SYMEBOL)
strp-sysused(SYMBO0L)
eductor _strip(SYMBOL)
trs -valve-ovrfl(SYMBOL)
ovbd-dis...open(SYMEBOL)
strip jineup(SYMBOL)
ovbd -ovrfl-stop(SYMBOL)
fill-x_fer(SYMBOL)
correct_ovrflstop(SYMBOL)
strip-suct-valve(SYMEBOL)
pipe~leak(SYMBOL)

CLAUSES

fot-pump..run...refuel("Y"):- ask..ques read-ans(PUMP,"fot
pump overflow"),pump-overflow(PUMIP).

fot-pump-run-refuel("N'):- ask-ques read-ans(CLOSE," fot
fill valve closed"),filvalvejzlosed(CLOSE).

pump-overflow("Y"):- pumpj:unjefuel("N").
pump_ overflow(" N"): ask-quesjreadjins(SYS ,"fot strip sys

used"), strip-sys..used(SYS).

fill -valve - losed("Y"):- pump-oveflow("N").
fill -v alve - losed("N"): ask..ques-jead..ans(TRANS, ,"for trs

valve ovrfl"),trs-yalve-ovrfl(TRANS).

strip-sys-used("Y"):- ask-ques read-ans(EDUCTOR,"fot
eductor strip"),eductor -strip(EDUCTOR).

stip-sys-used("N"): ask~quesjeadans(FILL,"fot fill
x-fer"),fill-xfer(FLLL).

eductor-strip("Y"):- ask_ques read-ans(OVBD,"fot ovbd dis
open "),ovbd dis-open(OVBD).

eductor-strip("N"):- ask_ques read-ans(LINEUP,"fot strip
lineup"),stip-lineup(LINEUP).

94

trs_valve..ovrfl("Y"): add-problem(["trs valve ovrfl"]).
trs_valve..ovr("N"):- fill-valve-closed("Y").

ovbd-dis..open("Y"): strip...sys...used(("N").
ovbd-dis-.open("N"):- askquesjyead-ans(STOP,"fot ovbd

ovrfl stop"),ovbd ovrfl-stop(STOP).

stripjineup("Y"):- strip...sys..used("N").
stripJineup("N"): ask...ques read_ans(STOP,"fot correct

ovrfl stop"),correct ovrfl-stop(STOP).

ovbd-ovrfl-stop("Y"):- add-problem(["ovbd ovrfl stop"]).
ovbd_ovrfl-stop("N "):- strip...sys-used(" N").

fill -xjfer("Y"):- ask...ques-read-an s(S TRIPP,"'Tot strip suct
valve"),strip...suct-valve(STRIPP).

fill-x-fer("N"):- add-problem(["fill x-fer"j).

correct_ovrfl_stop("Y"):- add-problem(["correct ovrf
stop"]).

correct-ovrlstop("N"):-strip.sys-used("N").

stripsuctvalve("Y"): ask-quesjread-ans(LEAK,"fot pipes
leak"),pipes...leak(LEAK).

strip...suct-valve("N"):- add-problem(["strip suct valve"]).

pipe...leak("Y"):- add-problem("pipe leak"]).
pipejleak("N"):- indeterminate.

* Large Contaminated Tank Overflowing*

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"
include "AnaGdef.PRO"

95

PREDICATES
contpump...verflow(INTEGER)
cont -ovrfLclosed(SYMBOL)
other-sys-used(SYM[BOL)
cont -ovbc~open(SYMBOL)
other-dischrg(SYMBOL)
other_ovrfl_ closed(SYMBOL)
mmr-eductor(SYMBOL)
main-drain(SYMBOL)
gate -off stem(SYMBOL)
cont -blkhd-stop(SYMBOL)
fotpressure(SYMB~OL)
close_transjfuel(SYMBOL)

CLAUSES

mmr-strip-pump(" Y"): ask..quesjreadans(PUMP,"cont pump
overflow"),contpumpoverflow(PUMP).

tor strip-pump(") -q sqej adjns(OP,"other sys
sed),'other-sys..used(OP).

cont-pump~overflow("Y"):- addproblem(["pump overflow"]I).
cont-pump-oveflow("N "):- mmr-strip-pump("N").

cont -ovrflclosed("Y"):- add-problem(I "overflow stops
closed"]).

cont-ovrfl-losed("N"):- other-sys-used("N").

other -.sys-used(" Y"): ask_ques -read -ans(CLOSE,"cont ovrfl
closed "),contovrfl_closed(CLOSE).

other...sys...used("N "):- ask_ques -read....ans(DISCH,"other
dischrg"),other-dischrg(DISCH).

other -dischrg("Y"):- ask_ques -read-an s(OVB D, "other ovrfl
closed "),other-ovrfl_closed(OVB D).

other -dischrg("N"):- ask_ques -read_ans(EDUCTOR,"mmr
ed uctor"),mmr-eductor(EDUCTOR).

other -ovrfl -closed("Y"):- addproblem(["other ovrfl
closed"]).

other-ovrfl-closed("N"):- other-dischrg("N").

96

mmr_eductor("Y"):- ask-ques-read-ans(EDUCTOR,"cont ovrbd
open"),cont ovrbd -ppen(EDUCTOR).

mrnr_eductor("N"):- ask-ques-read_ans(MAIN, "main drain"),
mainjdrain(MAIN).

cont_ovbdopen("Y "):- askquesjeadans(STEM," gate off
stem"),gate off stem(STEM).

cont_ovbdopen('N"):- add~problem(["tovbd open"]).

main_dran("Y"):- ask...ques-read-ans(PRESSURE,"fot
pressure"),fo..pressure(PRESSURE).

main-drain("N"):- ask.ques read_ans(STOP,"cont bulkhd
stop"),cont bulkhd~stop(STOP).

gate-..off stem("Y"): add_problem(["gate off stern"]).
gate...off-stem("N"): mrr._eductor("N").

cont_bulkhdstop("Y"): add.problem([" bulkhd stop"]).
cont_bullchd~stop("N"): main-drain("Y").

fot-pressure("Y"):- ask...ques read-ans(CLOSE, "close trans
fuel "),close_transjfuel(CLOSE).

fot-pressure("N"):- indeterminate.

close_transjfuel("Y"):- addproblem(["trans pressure"]).
cl ose_transjuel (" N "):-indeterminate.

* QUESTION*
Contains the questions for the PIPES system.

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"

CLAUSES

97

* The problem tank number is a mandatory piece of *
* information and is entered in the following format: *
* 8-119-9-V *

question("tankno"):-
position in_window("problem analysis"),
writescreen(["What is the compartment number of the
problem tank?"]).

* The tank number is required to locate the tank to be *
* drawn and is entered in the following format: *
* 8-119-11-F *

question("single tank"):- nl,
write-screen(["Enter compartment number
to be drawn: "]).

* Water in the Fuel Oil Storage Tank *

question("fot filled from"):-
position inwindow("action"),
problem-tank(COMPNUM),position in_window("problem
analysis"),
writescreen(["Which fuel oil storage tank was",
"fuel oil storage tank", COMP_NUM,"filled from?","(press
enter if unknown)"]).

question("fot backflow"):-
otbdvoid(QUES_- VAR),position in_window("action"),
write_screen(["As a precaution to eliminate D.C. Void",
QUESVAR,
"as a possible source","of contamination, pump",
"it to zero and leave empty","until actual source of",
"contamination to","Fuel Oil Storage tank is",

98

"determined. ","Monitor level of",QUES_VAR,"to see if",
"its level rises from fuel","leakage back through",
"void suction tail pipe. ","Alternative is to open,",
"gas free and visually","inspect suction tail pipe in",
QUESVARI),position in-window("problem analysis"),
write_screen(["Does oil flow back into the void?"]).
question("fot check pipes"),QUESVAR),
positionin_window("action"),
writescreen(["The tailpipe in D.C. void", QUES_VAR,
"is backflowing fuel,pump down Fuel Oil storage",
"tank and check the 2 1/2 inch copper-nickle void",
"suction line passing through the service tank."]),
position in window("problem analysis"),
writescreen(["Are any pipes leaking?"]).

question("fot void suction"):- problem-tank(TANK),
position in window("action"),
write_screen(["Pump down fuel oil storage
tank",TANK,"and inspect 2 1/2",
"inch void suction line in storage tank for cracked or
leaking couplings"]),
position in window("problem analysis"),
writescreen(["Are there any leaks in the 2 1/2 inch
void suction line?"]).

question("fot heavy seas"):- position-in_window("action"),
position in window("problem analysis"),clearwindow,nl,
writescreen(["Has the ship been operating recently in
heavy seas, which",
"could have backflowed through the overflow piping into
the service tank?"]).

question("fot stripp open"):-
problem_tank(TANK),position in window("action"),
writescreen(["Disassemble the Fuel Oil Storage
Ballast/","stripping valve for",TANK,".
Inspect for debris under the seat,",
"disc off stem, and correct, free operation"]),
position-in-window(" problem analysis"),
write_screen(["Was the ballast/ stripping valve damaged
or inoperative?"]).

question("fot stripp paste"):-

99

problemjtank(TANK),positin in-window("action"),nl,
writescreen(["Strip Fuel oil storage tank",TANK,
"and perform water paste test"]),
position inwindow("problem
analysis"),writescreen(["Was",TANK,
"successfully stripped of water?"]).

question("fot stripp blockage"):-
problem-tank(TANK),position in-window("action"),
write_screen(["Disassemble the Fuel Oil Storage
Ballast/","stripping valve for",TANK,".
Check for blockage holding the valve in the",
"open position, allowing backflow of water into the
service tank."]),
position in window("problem
analysis"),write-screen(["Was the ballast/ stripping",
"valve blocked open or partially open?"]).

* Water in the Fuel Oil Service Tank *

question("fuel filled from"):-
position in window("action"),
problem-tank(COMPNUM),position in_window("problem
analysis"),
writescreen(["Which fuel oil storage tank was",
"fuel oil service tank", COMP_NUM,"filled from?"]).

question("fuel waterpaste"):- filledfrom(QUESVAR),
position in window("action"),
write_screen(["Do a waterpaste test on fuel oil storage
tank ",QUESVAR,
"."]),position inwindow("problem analysis"),
write_screen(["Is the test positive for water?"]).

question("fuel outbd fuel"):-
position in window("action"),
otbd_void(QUESVAR),
write_screen(["Sound the outboard D.C. void",QUESVAR]),
position in window("problem analysis"),
write_screen(["Does the sounding tape indicate the

100

presence of fuel",
"(May require a waterpaste test)?"]).

question("fuel backflow"):-
otbdvoid(QUESVAR),position in._window("action"),
write_screen(["As a precaution to eliminate D.C. Void",
QUESVAR,"as a possible source of contamination,
pump", "it to zero and leave", "empty until actual
source of","contamination to", "Fuel Oil Service tank
is","determined. ","Monitor level of",QUESVAR,"to see
if","its level rises from","fuel leakage back through",
"void suction tail pipe. ","Alternative is to open,",
"gas free and visually","inspect suction tail pipe in",
QUESVAR]),position inwindow("problem analysis"),
write_screen(["Does oil flow back into the void?"]).

question("fuel check pipes"):- otbdvoid(QUESVAR),
position in window("action"),
write_screen(["The tailpipe in D.C. void", QUES_VAR,
"is backflowing fuel,pump down Fuel Oil service",
"tank and check the 2 1/2 inch copper-nickle void",
"suction line passing through the service tank."]),
position in window("problem analysis"),
write_screen(["Are any pipes leaking?"]).

question("fuel fuel inboard"):-
position inwindow("action"),
position inwindow("problem analysis"),
print("inboard voids","problem analysis"),
write_screen(["Do soundings or waterpaste test indicate
there is fuel","in any of these voids?"]).

question("fuel pipes inboard"):-
position inwindow("action"),
write_screen(["The inboard D.C. void indicates fuel is
present,"]),question("leaking").

question("fuel void suction"):- problemtank(TANK),
position in window("action"),
write_screen(["Pump down fuel oil service
tank",TANK,"and inspect 2 1/2",
"inch void suction line in service tank for cracked or
leaking couplings"]),

101

position-inwindow("problem analysis"),
writescreen(["Are there any leaks in the 2 1/2 inch
void suction line?"]).

question("pumps refills fuel"):-
position in window("action"),
writescreen(["Pump inboard void empty","Take soundings
and do waterpaste",
"test after serveral hours to see if voids refill with
fuel. "]),position-in window("problem analysis"),
writescreen(["Do any voids in the string refill with
fuel?"]).

question("leaking"):- positioninwindow("action"),
writescreen(["pump down void, open, gas free, and check
for leaks",
"on: \n",
" 4 inch fuel oil service suction Nn",
" 5 inch fuel oil transfer to FOS tank Nn",
" 2 inch recirc pipe to FOS tank Nn",

2 1/2 inch stripping pipe to FOS tank n",
heating coils \n"]),position in window("problem

analysis"),
write_screen([" Are any pipes leaking?"]).

question("fuel cracks"):- problem tank(COMPNUM),
position in window("action"),
write_screen(["Piping is not leaking. As a precaution,",
"do not flood inboard D.C. voids. ","Pump, open, gas",
"free, and inspect", COMPNUM, "for cracks in the",
"longitudinal bulkheads near","the weld to the
transverse",
"bulkhead. Check for leaks","at cracks in pipe and
heating",
"coil penetrations in the","lower part of the void."]),
position in window("problem analysis"),
write_screen(["Are there any cracks?"]).

question("fuel water"):- position in-window("action"),
position in window("problem analysis"),
print("inboard voids","problem analysis"),
write_screen(["Is there water in these voids?"]).

102

question("fuel pump"):- position in-window("action"),
write-screen(["Pump void empty as a precaution"]),
position in window("problem analysis"),
write_screen(["Does void refill with fuel?"]).

question("fuel trans conn"):-
position inwindow("action"),
position in_window("problem analysis"),
writescreen(["Is the emergency connection from the Fuel
Oil Service",
"pump suction piping to the Fuel Oil Transfer system ",
"open (normally a locked closed valve)?"]).

question("heavy seas"):- positioninwindow("action"),
position in window("problem analysis"),clearwindow,nl,
write_screen(["Has the ship been operating recently in
heavy seas, which",
"could have backflowed through the overflow piping into
the service tank?"]).

question("fuel stripp open"):- problemtank(TANK),
position in window("action"),
write screen(["Disassemble the Fuel Oil Service",
"stripping valve for",TANK,". Inspect for debris under
the seat,",
"disc off stem, and correct, free operation"]),
position inwindow("problem analysis"),
writescreen(["Was the stripping valve damaged or
inoperative?"]).

question("stripp paste"):-
problemjtank(TANK),position_in-window("action"),
write_screen(["Strip Fuel oil service tank",TANK,
"and perform water paste test"]),
position in window("problem
analysis "),writescreen(["Was",TANK,
"successfully stripped of water?"]).

question("stripp blockage"):-
problemjtank(TANK),position in window("action"),
write_screen(["Disassemble the Fuel Oil Service",
"stripping valve for",TANK,". Check for blockage
holding the valve in the",

103

"open position, allowing backflow of water into the
service tank."]),
position inwindow("problem
analysis"),write-screen(["Was the stripping",
"valve blocked open or partially open?"]).

question("water above"):- position inwindow("action"),
problem_tank(TANK),above._tank(ABOVE),
write.screen(["Open and inspect the compartment
above",TANK,"which is",
ABOVE,"and check for water"]),positionin.window("problem
analysis"),
write_screen(["Is there water in",ABOVE]).

question("skin of ship"):- position inwindow("action"),
writescreen(["Inspect manhole cover, flange coaming,
gasket, deck,",
"pipe penetratings, and sounding tube/ air escape piping
on decks above",
"for deterioration and possible avenues of leakage"]),
position inwindow("problem analysis"),
write_screen(["Was a path for water to leak into the
service tank found",
"on the fourth deck?"]).

* Fuel Oil Service Tank Losing Fuel *

question("voids have oil"):- position-in window(" action"),
position in window("problem analysis"),
print("voids in string","problem analysis"),
writescreen(["Do any of the above Voids contain
fuel?"]).

question("which void has oil"):-
position inwindow("action"),
position in window("problem analysis"),
print("voids in string","problem analysis"),
write screen(["Which Void contains fuel?"]).

104

* Void Pumps but Refills with Water *

******* ** *** **** ** ** * * * ** * ** * ** * * ** ** **** * ** * **** **

question("sea valve leak"):-
problemjtank(TANK),above_tank(ABOVE),
position in window("action"),
writescreen(["Empty",TANK,"remove tank",
"top cover in",ABOVE,"gas free and visually observe sea
valve","for leakage. "]),position in window("problem
analysis "),writescreen([
"Does sea valve leak?"]).

question("void backflow"):-
position inwindow("action"),writescreen([
"While void is empty and suction secured,","gas free and
enter void,",
"check void suction tailpipe for backflow."]),
position in window("problem analysis"),
writescreen(["Is there backflow?"]).

question("cycle sea valve"):-
problem-tank(TANK),position in window("action"),
writescreen(["Hydraulically cycle sea valve
for,",TANK,"and then pump,",
TANK, "empty."]),position inwindow("problem analysis"),
writescreen(["Observe sea valve,",
"did cycling the sea valve stop leakage?"]).

question("manifold
pressure"):-position in window("action"),writescreen([
"Break flange of void suction valve in machinery
space"," Do not remove",
"all fasteners. "]),position in-window("problem
analysis"),write-screen([
"Is manifold under water pressure?"]).

105

question("void cracks"):- position inwindow("action"),
position-inwindow("problem
analysis"),writescreen(["Are there",
"any cracks in welds at transverse bulkheads",
"or in piping penetrations?"]).

question("overboard"):-position inwindow("action"),
writescreen([
"Check line up of machinery space or pumproom
eductor."," If the",
"firemain supply in open"]),position inwindow("problem
analysis"),
write_screen(["Is the overboard discharge valve",
"of the eductor open?"]).

question("void suction"):- position inwindow("action"),
position inwindow("problem analysis"),
writescreen(["Are other void suction valves open?"]).

question("open ovbd"):-
position inwindow("action"),write-screen([
"Open the overboard discharge."]),
position inwindow("problem analysis"),
writescreen(["Is pressure at the void valve manifold
removed?"]).

question("close suction "):-position-inwindow("action"),
write_screen(["Close all other suction valves in the
machinery space or pumproom."]),
position in-window("problem analysis"),
write_screen(["Is the void manifold under pressure?"]).

question("bulkhd stopsopen"):-
position in window("action"),
write_screen(["Verify that bulkhead stops in the main",
"drain system",
"for the affected machinery space/ pumproom are
closed."]),
position inwindow("problem analysis"),
write_screen(["Are bulkhead stops closed?"]).

question("flooding valve"):-position in_window("action"),
position-inwindow("problem analysis"),

106

write_screen(["Is the sea flooding valve to the
ballast system closed and locked?"]).

question("close bulkhd stops"):-
position inwindow("action"),
write_screen(["Close main drainage systems bulkhead",
"stops."]),position inwindow("problem analysis"),
write_screen(["Is the",
"void manifold under pressure?"]).

question("close flood valve"):-
position in_window("action"),
writescreen(["Close sea flooding valve."]),
position inwindow("problem analysis"),
write_screen(["Is the void manifold under pressure?"]).

question("holes"):-
abovetank(ABOVE),position inwindow("action"),
write_screen(["Open, gas free (if necessary)and",
"inspect the 4th deck compartment",ABOVE,"for holes in
the deck coaming, tank top, gasket or penetrations."]),
position in window("problem analysis"),
write_screen(["Were holes/",
"breaks found in ",ABOVE,"?"]).

question("inboard void"):- problemjtank(TANK),
position in window("action"),print("inboard
voids","action"),
write_screen(["The above voids are located",
"inboard of",TANK,". Pump down these voids, open, gas
free","and inspect",
"2 1/2 inch copper nickle void suction line to",TANK]),
positioninwindow("problem analysis "),writescreen([
"Are any lines leaking?"]).

* Oil in the Void Tank *

question("losing fuel"):- position in window("action"),
position-inwindow("problem analysis"),

107

print("fuel tanks","problem analysis"),
!,problem-tank(COMPNUM),
write_screen(["The above are fuel oil system
associated pipes contained in ", COMP_NUM,". Are any of
these tanks losing fuel?"]).

question("cracks in tank"):- problemtank(COMPNUM),
position_in_window("action"),
writescreen(["Pump, open, gas free,",
"and inspect", COMP_NUM, "for cracks in the
longitudinal bulkheads near the weld", "to the
transverse bulkhead.",
"Check for leaks at cracks","in pipe and heating coil",
"penetrations in the lower part of the void."]),
position inwindow("problem analysis"),
write_screen(["Are there any cracks in ",COMP_NUM,"?"]).

question("fourth deck"):- retrieveadjacent(above),
abovetank(TANK),
position_inwindow("action"),
write_screen(["Inspect fourth deck compartment for oil",
"on deck, loose or deteriorated tank top to void",
"below holes in deck, holes in pipe","penetrations (air
escape,","sounding tube, or TLI."]),
position inwindow("problem analysis"),
write_screen(["Are there any leaks in",TANK,"?"]).

question("void losing fuel water"):-
position in_window("action"),
positioninwindow("problem analysis"),
print("string fuel tanks","problem analysis"),
write_screen(["Are any of the above fuel tanks",
"losing fuel/filling with water?"]).

question("which tank losing fuel"):-
position inwindow("action"),positioninwindow("problem
analysis"),write.screen(["Which tank is losing fuel?"]).

question("check valve"):- positioninwindow("action"),
position in_window("problem analysis"),
write_screen(["Is the void suction valve open?"]).

question("check debris"):- positionjn window("action"),
writescreen(["Disassemble the void suction valve and",

108

"remove bonnet from manifold. Inspect debris/ blockage",
"under the seat."]),
positionin_window("problem analysis"),
write screen(["Was there blockage/ debris under the
valve?"]).

question("void pump"):- positionjn-window("action"),
write_screen(["Open void suction valve."]),
positioninwindow("problem analysis"),
write_screen(["Does the void pump?"]).

question("clean valve"):- position in window("action"),
writescreen(["Clean suction valve."]),
position inwindow("problem analysis"),
writescreen(["Will the void pump?"]).

question(manifold):- position in-window("action"),
position in window("problem analysis"),
writescreen(["Is manifold under water pressure at
suction valve?"]).

question(eductor):- position inwindow("action"),
writescreen(["Check eductor lineup.","Check overboard
discharge suction valve firemain supply.", "(Note: Check
valve clattering",
"means eductor is drawing air)"]),
position in window("problem analysis"),
writescreen(["Is eductor lined up incorrectly?"]).

question(bilge):- position-inwindow("action"),
writescreen(["Check other valves in the machinery",
"space or pumproom."]),
position in window("problem analysis"),
write screen(E"Are bilgewells and other void suction",
"valves all closed?"]).

question(submersible):- problem -tank(TANK),
position in window("action"),
write_screen(["Open",TANK,"pump with submersible pump",
"(Note: NSTM permits pumping oil)"]),
position in window("problem analysis"),
writescreen(["Will tank not pump down?"]).

109

question(tailpipe):- position inwindow(" action"),
positionin_window("problem analysis"),
writescreen(["Is there backflooding through the",
"tailpipe?"]).

question("ovbd discharge"):- position-inwindow("action"),
position in_window("problem analysis"),
write_screen(["Is the eductor overboard discharge",
"open?"]).

question(" sounding tube"):- positionin-window("action"),
write_screen(I"Trace out sounding tube and air",escape."]1),

position in-window("problem analysis"),
writescreen(["Is void flooding through breaks in",
"sounding tube or air escapes?"]).

question("unable pump losing fuel"):- problem_tank(TANK),
position inwindow("action"), write-screen([
"Pump, open, and gas free",TANK,".","Inspect fuel oil",
"transfer/stripping/suction",

"line for leaks."]),
position in window("problem analysis"),
write_screen(["Are pipes leaking?")).

question("bulkhd stops"):- position-in-window("action"),
position in window("problem analysis"),
write_screen(["Are the bulkhead stops closed?"]).

question("close valve"):- positionin_window("action"),
writescreen(["Close all valves."]),
position in window("problem analysis"),
writescreen(["Will void pump now?"]).

question(bulkhd-stopssclose):-
position in_window("action"),
writescreen(["Close the bulkhead stops."]),
position-inwindow("problem analysis"),
writescreen(["Will void pump now?"]).

question("leaky pipes"):- position-inwindow("action"),
problem-tank(TANK), !,retrieve_contains,!,

110

compare-string-void-tocontains,
print("string voids in tank","action"),nl,
write_screen(["Pump down, open, gas free, and check",
"each of the above",
"voids for leaks on the 2 1/2 inch stripping pipe to",
TANK]),position inwindow("problem analysis"),
write_screen(["Are any pipes leaking?"]).

* Void Overflowing *

question("pump run refuel") :- position-inwindow("problem
analysis"),
write screen(["Are any fuel oil transfer pumps running",
"or is the","fuel oil transfer system pressurized due to",
"refueling?"]).

question("pump overflow") :- problemtank(TANK),
position in window("action"),
writescreen(["Secure fuel oil transfer pumps or isolate
the transfer",
"system to the section serving service tank",TANK]),
position in window("problem analysis"),
writescreen(["Is the service tank still overflowing?"]).

* Overflowing Water *

question("strip sys used") :- position-in window("problem
analysis"),write screen(["Is the fuel oil stripping
system being used?"]).

question("trs valve ovrfl") :- problem-tank(TANK),
position-in window("action"),
writescreen(["Close the fill/transfer valve to ",TANK]),
position in window("problem analysis"),
write screen(["Did service tank",TANK, "stop

III

overflowing?"]).

question("eductor strip") :- position in window("problem
analysis"),writescreen(["Is the eductor being used to
strip?"]).

question("recirc fostank") :- problem-tank(TANK),
position-in window("problem analysis"),
writescreen(["Are the fuel oil service pumps
recirculating to",TANK,"?"]).

question("ovbd dis open") :- position in-window("problem
analysis"),write.screen(["Is the eductor overboard
discharge open?"]).

question("strip lineup") :- position in-window("problem
analysis"),write.screen(["Is the stripping pump lined up
correctly?"]).

question("close recirc") :- problem tank(TANK),
position inwindow("action"),
writescreen(["Secure recirc to",TANK]),
positionin-window("problem analysis"),
writescreen(["Did the overflow from service
tank",TANK,"stop?"]).

question("fill xfer") :- problemtank(TANK),
position in window("action"),
writescreen(["Disassemble and inspect the fill/transfer
valve to",TANK]), position in window("problem analysis"),
writescreen(["Was the fill/transfer valve operating
correctly?"]).

question("ovbd ovrfl stop") :- problem-tank(TANK),
position in window("action"),
writescreen(["Open the eductor overboaid discharge"]),
position in_window("problem analysis"),
writescreen(["Is service tank",TANK,"still
overflowing?"]).

112

* Overflowing Fuel*

question(" correct ovrfl stop") :-problemjank(TANK),
position-in window("action"),
write-screen(["Verify correct line up of stripping
pump"]),position - n -window("problem analysis"),
write_screen(["Is service tank"JANK, "still
overflowing?"]I).

question(" strip suct valve") :-problem-tank(TANK),
position-in window("action"),
write-screen(["Disassemble and inspect stripping valve to
service tank",TANK]), position in-window("problem
analysis"),write.screen(I "Is the stripping valve
to",TANK, "operating correctly?"]).

question("serv suct valve") :-problem-tank(TANK),
position-in-window("action"),
write -screen(I"Disassemble and inspect the service suction
valve to",TANKI), position -in -window("problem analysis"),
wrie-screen(f"Is the service suction valve to",TANK,
"toperating correctly?"]).

question("recirc valve") :-problem tank(TANK),
position in-window("action"),
write-screen(["Disassemble and inspect the recirc valve
to" ,TANKI),position in_window("problem analysis"),
write_screen(["Is the recirc valve to",TANK, "operating
correctly?"]).

question("pipe leak") :-problem-tank(TANK),
position-in window(" action"),
write-screen(["Open, gas free, and inspect piping and
structure in",TANK"I), position in window("problem
anal ysi s "),write...screen(["Are any pipes or is any
structure in" ,TANK,"ruptUred or" ," leaking?"]).

113

********* ******** ********** *** ********* ** * ******** ** *****

* Fuel Oil Storage Tank Overflowing *

question("fot pump run refuel")
position in window("problem analysis"),
writescreen(["Are any fuel oil transfer pumps running or
is the","fuel oil transfer system pressurized due to
refueling?"]).

question("fot pump overflow") :- problem tank(TANK),
position-in window("action"),
writescreen(["Secure fuel oil transfer pumps or isolate
the transfer",
"system to the section serving storage tank",TANK]),
positionjin window("problem analysis"),
write_screen(["Is the storage tank still overflowing?"]).

question("fot strip sys used") :-
position-in-window("problem analysis"),
writescreen(["Is the fuel oil stripping system being
used?"]).

question("fot trs valve ovrfl") :- problemtank(TANK),
position in-window("action"),
write_screen(["Close the fill/transfer valve to ",TANK]),
position in window("problem analysis"),
writescreen(["Did storage tank",TANK, "stop
overflowing?"]).

question("fot eductor strip") :- position in window("problem
analysis"),writescreen(["Is the eductor being used to
strip?"]).

question("fot ovbd dis open") :- position in window("problem
analysis"),write-screen(["Is the eductor overboard
discharge open?"]).

question("fot strip lineup") :- position inwindow("problem
analysis"),writescreen(["Is the stripping pump lined up
correctly?"]).

114

question("fot fill x_fer") :- problem-tank(TANK),
position-in-window("action"),
writescreen(["Disassemble and inspect the fill/transfer
valve to",TANK]), position-inwindow("problem analysis"),
write_screen(["Was the fill/transfer valve operating
correctly?"]).

question("fot ovbd ovrfl stop") :- problemtank(TANK),
position-in window("action"),
writescreen(["Open the eductor overboard discharge"]),
position in window("problem analysis"),
write_screen(["Is storage tank",TANK, "still
overflowing?"]).

question("fot correct ovrfl stop") :- problem tank(TANK),
position in window("action"),
write_screen(["Verify correct line up of stripping
pump"]),position in window("problem analysis"),
writescreen(["Is storage tank",TANK," still
overflowing?"]).

question("fot strip suct valve") :- problem tank(TANK),
position-in window("action"),
writescreen(["Disassemble and inspect stripping valve to
storage tank",TANK]), position in window("problem
analysis"),write-screen(["Is the stripping valve
to",TANK,"operating correctly?"]).

question("fot pipe leak") :- problem-tank(TANK),
position in window("action"),
writescreen(["Open, gas free, and inspect piping and
structure in",TANK"]), position in window("problem
analysis"),write screen(["Are any pipes or is any
structure in",TANK,"ruptired or","leaking?"]).

* SOLUTION.PRO *

115

project "PIPES"

include "PipeGdoms.PRO"
include "PipeGdbase.PRO"
include "GlobDef.PRO"

* writesolution predicate is used to determine the *
* appropriate solution to the queries from the user *
* based on the responses given to the *
* proposed questions and facts collected from the *
* pipesystem database. These facts are asserted in *
* the problem(LIST_OFPROBLEMS) fact. *
* The first object in the writesolution predicate *
* is the original problem selected from the problem *
* menu and the clauses are grouped by this *
* object for program clarity. *

* Solution builds the screen display and writes the *
* appropriate solution *

CLAUSES

solution:- position in window("action"),clearwindow,
makewindow(1 2,23,7,"Solution",8,5, 10,70,1,255,
'N201\1 87\200\1 88205\1 86"),problem(PROBLEMLIST),!,
position in window("solution"),
write-solution(PROBLEMLIST),retractfacts,
readchar(_),removewindow(12,1),!.

solution:- retractfacts.

* OIL IN A VOID TANK *

writesolution(["oil in void","losing fuel"]):-
problem-tank(COMP_NUM),

116

fuel(COMPNO2),writescreen(["A fuel oil",
"transfer/stripping/suction line to",COMPNO2,
"is cracked/holed in",COMP_NUM,".","Pump, open, clean,",
"gas free, and repair ruptured pipe."]).

write-solution(["oil in void" ,"cracks"]):-
problem_tank(COMPNUM),
retrieve-adjacent(all),print(" adjacent
fuel",solution),!,
writescreen(["The cause of the fuel in void",
COMPNUM,"is a crack in the bulkhead into",
"one of the above tanks"]).

write-solution(["oil in void","4th deck"]):-
abovetank(FOURTHDECK),
problemjtank(COMP_NUM),write screen(["Fuel in",COMPNUM,
"is coming from a break in",FOURTHDECK,
"above."]).

* UNABLE TO PUMP VOID TANK *

write solution(f["unable to pump","leaks"]):-
problemjtank(TANK),
writescreen(["The cause of ",TANK," not pumping",
"is that it is refilling from a fuel oil tank in the",
"string through a leak in the",
"fill/transfer/stripping/service piping inside",TANK]).

writesolution(["unable to pump","pumps"]):-
problemjtank(TANK),
writescreen(["The cause of ",TANK," not pumping is",
"that the correct suction valve in the machinery",
"space/pump room was","not open."]).

writesolution(["unable to pump","clean valve"]):-
problem-tank(TANK), write_screen(["The cause of",
TANK, "not", "pumping is debris/foriegn object/rag",
"blocking the suction","valve from functioning."]).

117

write_solution(["unable to pump", "eductor"]):-
problem-tank(TANK), writescreen(["The cause
of',TANK,"not",
"pumping is one of the following:"
"A. eductor overboard discharge not open",
"B. eductor firemain supply not open",
"C. eductor suction valve not open",
"D. firemain isolated from firemain supply valve"]).

writesolution(["unable to pump","valves closed"]):-
problemjtank(TANK), writescreen(["The cause of ",TANK,
"not pumping is another suction valve or bilge well",
"valve in the","machinery space/pumproom is open",
"causing" a loss of vacuum to",TANK]).

writesolution(["unable to pump","bilge"I):-
problem_tank(TANK), write_screen(["The cause of",
TANK,"not pumping is a bulkhead stop to another",
"machinery space/","pumproom is open."]).

write_solution(["unable to pump","submersible"]):-
problemjtank(TANK), write_screen(["The cause of",TANK,
"not pumping is the sea flooding valve",
"is stuck open or has debris",
"nder the seat or there is a large opening to",
"the sea."]).

writesolution(["unable to pump", "cracks"]):-
problemtank(TANK), write_screen(["The cause",
"of',TANK,"not pumping is cracks in (1)bulkhead",
"structure generally near ","welds to tranverse",
"bulkheads or (2)around piping ","penetrations into",
"adjacent tanks or (3)to the sea."]).

write_solution(["unable to pump","sounding tube"]):-
problemtank(TANK), write_screen(["The cause of', TANK,
"not pumping is that it is reflooding through a break",
"in the sounding tube outside the tank or a break in",
"the air escape","allowing water to flow from an",
"exterior source into the void."]).

writesolution(["unable to pump","string leaks"]):-

118

problemjtank(TANK), writescreen(["The cause of',
TANK,"not pumping is it is refilling from a leak",
"in a void suction line","to another void in the",
"string."]).

* WATER IN A FUEL OIL SERVICE TANK *

writesolution(["water in tank","outboard void"]):-
otbd_void(QUESVAR),
writescreen(["The outboard D.C. void", QUES_VAR,
"indicates oil present, pump down, open and gas free",
"problem Fuel Oil Service tank and check the 2 1/2",
"inch copper-nickle void suction line for leakage,",
"particularly at silver braze fittings."]).

* Water in the Fuel Oil Service/ Fuel Oil Storage Tank *

writesolution(["water in fuel","void suction"])
problemtank(TANK),
otbdvoid(OUTBOARD),!,
write_screen(("The void suction line to the",
"outboard void",OUTBOARD,
"is ruptured in ",TANK,".","Empty, clean, gas free,",
"and repair the",
"break in the 2.5 inch","void suction line in",TANK]).

writesolution(["water in fuel","leaks"]) :-
inbdvoid(INBOARD), writescreen(["A fuel oil ",
"service/ transfer/ stripping pipe is leaking in",
INBOARD,". Do not",
"flood ",INBOARD,". Empty, clean, gas free,and",
"repair the break in the failed pipe in",INBOARD 1).

write-solution(["water in fuel", "cracks"])

119

problem.tank(TANK), inbd void(INBOARD),
writescreen(["There are cracks in ",INBOARD,
"allowing water to ","leak into ",TANK,
" Do not flood ",INBOARD,". Empty, clean, gas ",

"free ",INBOARD, "and",TANK,
"and repair bulkhead cracks." 1).

write_solution(["water in fuel","x-fer"]):-
write_screen(["The emergency connection from ",

"the fuel oil service pump suction piping directly to
the fuel oil","transfer system was open or leaking",
"through. Close and lock the ",
"valve or repair it. "]).

writesolution(["water in fuel","stripp blockage"]):-
problemjtank(TANK),
write_screen(["The stripping valve to ",TANK,
"is being held open by ","foriegn matter or is",
"damaged, allowing water to backflow through ",
"the stripping line into the service tank."]).

writesolution(["water in fuel","stripp open"])
problem-tank(TANK),
writescreen(["The stripping valve to ",TANK,
"is inoperative, the "," disc is off the stem, or",
"the disc is jammed in the closed position ",
"preventing",TANK," from being stripped. "]).

writesolution(["water in fuel","skin of ship"])
problem-tank(TANK),
above_tank(ABOVE),
write_screen(["The source of water in ",TANK,
"is a leak from the ","fourth deck compartment",
"above, ",ABOVE,". The tank top, tank top ",
"flange coaming, deck, gasket, stuffing tube,or a",
"piping penetration is allowing water to enter ",

TANK 1).

write_solution(["water in fuel","heavy seas"])
problemjtank(TANK),
writescreen(["Water from high seas is backing through",
"the service tank overflow piping through a stuck or",
"leaking check valve, back ","into the service",tank,",

120

TANK 1).

* WATER IN THE FUEL OIL STORAGE TANK *

writesolution(["water in fuel","fot leaks"])
inbd_void(INBOARD), write_screen(["A fuel oil ",

"transfer/ ballast/ stripping pipe is leaking in",
INBOARD,". Do not flood ",INBOARD,
". Empty, clean, gas free, and repair the",
"break in the failed pipe in",INBOARD 1).

* VOID PUMPS BUT REFILLS WITH WATER *

* * ** ** * * **** * ** ** * ** ** ** ** ******* *** ** * ****** * ***** * ** * *** *1

write_solution(["pumps but refills", "industrial
repair"]):- writescreen(["The sea flooding valve is",
"leaking through and will not reseat. ",
"The valve must be cofferdamed and repaired by an",
"industrial activity."]).

writesolution(["pumps but refills","cycle sea valve"]):-
write_screen(["Debris under the seat of the sea valve",
"or other obstruction",
"was released, allowing the valve to be reseated when",
"cycled."]).

write_solution(["pumps but refills","void cracks"]):-
problem-tank(TANK),
write_screen(["Cracks in bulkheads are allowing",
TANK,"to refill","from adjacent flooded voids.",
"Pumping adjacent voids will",
"remove source of water. Industrial repairs",
"required. "l).

write_solution(["pumps but refills", "debris"]):-

121

problemjtank(TANK),
writescreen(["Debris under the seat of the",
"void suction valve","allowed water to",
"back from the main drain system through the suction",
"valve into the void",TANK]).

write_solution(["pumps but refills","open ovbd"]):-
problemtank(TANK),
write_screen(["The eductor overboard was closed",
"allowing fire main", "pressure to leak back",
"through suction valve to void",TANK]).

write_solution(["pumps but refills","breaks"]):-
problemtank(TANK),
writescreen(["The source of water refilling void",TANK,
"was a break in sounding tube or airescape piping",
"or a missing","sounding cap providing a path for",
"flooding from another source above."]).

writesolution(["pumps but refills", "holes 4th deck"]):-
problemjtank(TANK),
abovetank(ABOVE),
writescreen(["The source of water refilling void",TANK,
"was a break in the deck, tank top cover,manhole",
"covering or piping penetrations in",ABOVE]).

writesolution(["pumps but refills","inboard void"]):-
problem_tank(TANK),
inbdvoid(INBOARD),
write_screen(["The source of water refilling void",
TANK,"was a break in the void suction line in",
INBOARD]).

writesolution(["indeterminate data"]):-
write_screen(["The answers provided thus far are",
"not sufficient to","determine a cause, retrace",
"your answers through","the system again,and if',
"possible provide additional information."]).

122

* PipesMain.prg is the main menu for the Pipes *
* database system *

SET TALK OFF
CLEAR
SET STATUS OFF
SET BELL OFF
SET COLOR TO +G,BG/B,R,B
SelOpt = .T.
DO WHILE SelOpt
Selopt = .F.
SET FORMAT TO pipesmain
Option =..
READ
CLOSE FORMAT
DO CASE
CASE Option =""

EXIT
CASE Option "A"
AddSel = .T.
DO WHILE Addsel

AddSel = .F.
Add =i t..
SET FORMAT TO addscr
READ
CLOSE FORMAT
DO CASE

CASE Add =..
AddSel = .F.

CASE Add = "A"
do contedit
Addsel = .T.

CASE Add = "B"
do compedit

CASE Add = "C"
do pipesedit

CASE Add = "D"
do adjedit

OTHERWISE
AddSel =.T.

ENDCASE
SelOpt = .T.

123

ENDDO
CASE Option ="Q"

do pipequery
SelOpt = .T.

CASE Option = "P"
do pipeprint
SelOpt = .T.

CASE Option = "B"
CLEAR
RUN pipesbk.bat
Selopt = .T.

CASE Option = "R"
CLEAR
RUN pipesrs.bat
SelOpt = .T.

CASE Option = "E"
RUN SET BGIDIR=c5dbasebgi
RUN Pipes
SelOpt = .T.

OTHERWISE
SelOpt = .T.

ENDCASE
ENDDO
SET STATUS ON RETURN

* PipeQuery is the main query menu for the Pipes *
* database system *

SET COLOR TO +G,BG/B,R,B
ON ESCAPE RETURN
Choice = .T.
DO WHILE Choice
Choice = .F.
SET FORMAT TO pipequery
Option =
READ
CLOSE FORMAT
DO CASE
CASE Option =..

CHOICE = .F.
CASE Option = "C"

124

do access
CHOICE = .T.

CASE Option ="P
ChkSel = .T.
DO WHIILE Oiksel

CbkSeI = .F.
PipeOpt = ti

SET FORMAT TO pipesys
READ
CLOSE FORMAT
DO CASE

CASE PipeOpt ="i"i

CbkSel = .F.
CASE PipeOpt = P
do passing
Chksel = .T.

CASE PipeOpt = "C"
do pipecont
Chksel = .T.

CASE PipeOpt = "S"
do specmat
Chksel = .T.

CASE PipeOpt = M
do material
Chksel = .T.

OTHERWISE
ChkSel = .T.

ENDCASE
Choice = .T.
ENDDO

CASE Option = "A"
do adjtank
CHOICE = .T.

CASE Option = "L"
do Lpaint
CHOICE = .T.

CASE Option = "S"
do strings
CHOICE = .T.

CASE Option = T
do TankType
CHOICE = .T.

CASE Option = "I"

125

do inboard
CHOICE = .T.

CASE Option ="
do custqry
CHOICE = .T.

OTHERWISE
Choice = .T.

ENDCASE
ENDDO
RETURN

* CompEdit.prg is used to add new records to the *
* database or modify records that already exists *

* UPPER(COMP_NUM) is the KEY field for the COMPARTMENT
* database

USE compartment INDEX compno
SET COLOR TO +G,BG/B,R,B
ON ESCAPE EXIT
Adding = .T.
DO WHILE Adding
CLEAR
CLOSE FORMAT
@ 3, 20 SAY "COMPARTMENT DATABASE UPDATE"
@ 22, 7 SAY "Press ESC to EXIT"
CompNo = SPACE(14)
@ 10,5 SAY "Enter the Compartment Number" GET CompNo;
FUNCTION "!"

READ

* Create a Search Variable
Search = UPPER(CompNo)

* RETURN if no input

IF Search = ""
Adding = .F.
LOOP

ENDIF

* Check database for compartment number

126

SEEK Search
SET FORMAT TO compscr && open format file

* Edit if found

IF FOUND()
READ

ENDIF

* ADD if not found

IF .NOT. FOUND()
APPEND BLANK
REPLACE CompNum WITH UPPER(CompNo)
READ

ENDIF

ENDDO (while adding)
REINDEX
ERASE COMPARTM.TXT
COPY TO COMPARTM FIELDS STRING,COMPNUM TYPE DELIMITED
WITH
BLANK
CLOSE ALL
RETURN

* AdjEdit.prg is used to add new records to the *
* database or modify records that already exists *

* UPPER(COMPNUM) is the KEY field for the COMPARTMENT
* database
USE adjacent INDEX adjcomp
SET COLOR TO +G,BG/B,R,B
ON ESCAPE EXIT
Adding = .T.
DO WHILE Adding
CLEAR
CLOSE FORMAT
@ 3, 20 SAY "ADJACENT TANK DATABASE UPDATE"
@ 22, 7 SAY "Press ESC to EXIT"
CompNo = SPACE(14)
@ 10,5 SAY "Enter the Compartment Number" GET CompNo;

127

FUNCTION "!"

READ

* Create a Search Variable
Search = UPPER(CompNo)

* RETURN if no input

IF Search = ""

ADDING = .F.
LOOP

ENDIF

* Check database for compartment number

SEEK Search
SET FORMAT TO adjscr && open format file

* Edit if found

IF FOUND()
READ

ENDIF

* ADD if not found

IF .NOT. FOUNDO
APPEND BLANK
REPLACE ComptNum WITH UPPER(CompNo)
READ
IF READKEY 0 <= 36
DELETE
PACK

ENDIF
ENDIF

ENDDO (while adding)
REINDEX
ERASE ADJACENT.TXT
COPY TO ADJACENT TYPE DELIMITED WITH BLANK
CLOSE ALL
RETURN

128

* PipesEdit.prg is used to add new records to the *
* database or modify records that already exists *

USE pipesyst INDEX pipesys,pipename
Adding = .T.
DO WHILE Adding

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
pipesys = SPACE(20)
System = SPACE(35)
SET FORMAT TO pipestart
READ
CLOSE FORMAT

* Create a Search Variable
IF pipesys # ""
Search = UPPER(pipesys)
SET ORDER TO 1

ELSE
IF System #..

Search = UPPER(system)
SET ORDER TO 2

ELSE
Search

ENDIF
ENDIF

* RETURN if no input

IF Search = "..
Adding = .F.
LOOP

ENDIF

* Check database for compartment number
Looking = .T.

SEEK Search
SET FORMAT TO pipescr && open format file
RKQUIT = 12

129

* Edit if found

IF FOUND()
SET COLOR TO +G,BG/B,R,B
READ
IF READKEY0 = RKQUIT
Looking = .F.

ENDIF
DO WHILE Looking .AND..NOT. EOF0
SKIP
IF SYSNUM = Search .or. Pipe-Sys = Search
READ
IF READKEY0 = RKQUIT
Looking = .F.

ENDIF
ELSE

Looking = .F.
ENDIF

ENDDO(while looking)
ENDIF

* ADD if not found

IF .NOT. FOUND() .AND. READKEY0 # RKQUIT
APPEND BLANK
IF pipesys # ""
REPLACE SYSNUM WITH UPPER(pipesys)

ENDIF
IF System #'...

REPLACE Pipe-Sys WITH UPPER(System)
ENDIF
READ
IF Pipe-Sys =" .OR. SYSNUM =..

DELETE
PACK

ENDIF
ENDIF

ENDDO (while adding)
REINDEX
CLOSE ALL
RETURN

130

* ContEdit.prg is used to add new records to the *
* database or modify records that already exists *

USE contains INDEX contcomp,contsys
Adding = .T.
DO WHILE Adding
CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
CompNo = SPACE(14)
System = SPACE(18)
SET FORMAT TO contstart
READ
CLOSE FORMAT

* Create a Search Variable

IF CompNo #" "
Search = UPPER(CompNo)
SET ORDER TO 1
ELSE

IF System #.
Search = UPPER(System)
SET ORDER TO 2

ELSE
Search =..

ENDIF
ENDIF

* RETURN if no input

IF Search = ""

Adding = .F.
LOOP

ENDIF

* Check database for compartment number
Looking = .T.

SEEK Search
SET FORMAT TO contscr && open format file
RKQUIT = 12

131

* Edit if found

IF FOUND()
SET COLOR TO +G,BG/B,R,B
READ
IF READKEY0 = RKQUIT
Looking = .F.

ENDIF
DO WHILE Looking .AND..NOT. EOF0
SKIP
IF COMPTNUM = Search
READ
IF READKEY0 = RKQUIT
Looking = F.

ENDIF
ELSE
Looking = .F.

ENDIF
ENDDO(while looking)

ENDIF

* ADD if not found

IF .NOT. FOUNDO .AND. READKEY0 # RKQUIT
APPEND BLANK
IF CompNo # ""

REPLACE CompT_Num WITH UPPER(CompNo)
ENDIF
IF System #
REPLACE SysNum WITH UPPER(System)

ENDIF
READ
IF SysNum = " .OR. CompTNum

DELETE
PACK

ENDIF
ENDIF

ENDDO (while adding)
REINDEX
ERASE CONTAINS.TXT

132

COPY TO CONTAINS TYPE DELIMITED WITH BLANK
CLOSE ALL
RETURN

* Access.prg is used to query the adjacent database *
* for the above tank to get access to an eightdeck tank *

USE adjacent INDEX adjcomp
SET COLOR TO +G,BG/B,R,B
ON ESCAPE EXIT
compno = SPACE(14)
SET FORMAT TO access
CLEAR
READ
CLOSE FORMAT

* Create a Search Variable
Search = UPPER(CompNo)

* RETURN if no input

IF Search =" "

CLOSE ALL
RETURN

ENDIF

* Check database for compartment number

SEEK Search
SET FORMAT TO adjprt

* Show if found

IF FOUNDO
READ

ELSE
@ 10,16 CLEAR to 13,60
@ 11,25 SAY "Not an eightdeck compartment"
wait ""

ENDIF
CLOSE ALL
RETURN

133

* TankType.prg is used to list compartments *
* by type *

USE compartm
ON ESCAPE RETURN
Listing = .T.
DO WHILE Listing
CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
Tank = SPACE(10)
SET FORMAT TO tanktype
READ
CLOSE FORMAT

* Create a Search Variable
DO CASE
CASE Tank =""

Listing = .F.
LOOP

CASE Tank = "S"
Search = "FOS"
ComName =" Fuel Oil Service"

CASE Tank ="T"
Search = "FOT"
ComName =" Fuel Oil Storage"

CASE Tank = "V"
Search = "VOID"
ComName =" Void"

CASE Tank = "C"
Search = "CONT"
ComName =" Contaminated"

CASE Tank = "J"
Search = "P-5"
ComName =" JP-5"

OTHERWISE
@12, 21 SAY "Invalid selection"
@ 13, 21 SAY "Press any key to continue"
wait ""
LOOP
ENDCASE

134

* Check database for pipe system number

Looking = .T.
LOCATE FOR UPPER(USAGE) = Search
ANS =""
SET FORMAT TO tankscr && open format file
RKQUIT = 12
RKPRINT = 2

* SHOW if found

IF FOUND()
STORE RECNO() TO saverec
STORE "USAGE" TO Sparam
STORE ComName+" Compartments" TO Title
STORE "comprt" TO prtfile
SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEY(= RKQUIT
Looking = .F.

ENDIF
IF READKEY(= RKprint
do fprint
Looking = .F.

ENDIF

DO WHILE Looking .AND..NOT. EOF0
CONTINUE
IF FOUND()
READ
IF READKEY0 = RKQUIT
Looking = .F.

ENDIF
IF READKEY0 = RKPRINT
do fprint
Looking = .F.

ENDIF
ELSE

Looking = .F.
ENDIF

ENDDO(while looking)
ENDIF

ENDDO

135

SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

*************** ***** ***** *** **** ***** ***** ***********

* Passing.prg is used to find pipesystems passing *
* through a speified compartment *

USE contains INDEX contcomp
ON ESCAPE RETURN
NoExit = .T.
DO WHILE NoExit

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
CompNo = SPACE(14)
SET FORMAT TO PasStart
READ
CLOSE FORMAT

* Create a Search Variable
IF CompNo # ".
Search = UPPER(CompNo)

ELSE
Search -..

ENDIF

* RETURN if no input

IF Search = ""

NoExit = .F.
LOOP

ENDIF

* Check database for compartment number
Looking = .T.

SEEK Search
ANS - 1"
SET FORMAT TO passscr && open format file
RKQUIT = 12
RKPrint = 2

136

* SHOW if found

IF FOUNDO
STORE RECNO() TO saverec
STORE "Compt_Num" TO Sparam
STORE "Pipes Passing Through Compartment "+ComptNum;
TO Title
STORE "sysprt" TO prtfile
SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEY0 = RKQUIT
Looking = .F.

ENDIF
IF READKEY0 = RK-print
do fprint
Looking = .F.

ENDIF

DO WHILE Looking .AND. .NOT. EOF0
SKIP
IF COMPTNUM = Search
READ
IF READKEY0 = RKQUIT
Looking = .F.

ENDIF
IF READKEY0 = RKprint
do fprint
Looking = .F.

ENDIF
ELSE

Looking = .F.
ENDIF

ENDDO(while looking)
ELSE
@ 10,16 CLEAR to 11,60
@ 9,25 SAY "Not a valid compartment"
@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"
wait ""
ENDIF

ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL

137

RETURN

* Material.prg is used to find the pipe systems *
* made of a specific material *

USE pipesyst INDEX pipemat
SET COLOR TO +G,BG/B,R,B
ON ESCAPE RETURN
NoExit = .T.
DO WHILE NoExit

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
pipemat = SPACE(10)
SET FORMAT TO Pipemat
READ
CLOSE FORMAT

* Create a Search Variable

IF pipemat # ""

Search = UPPER(pipemat)
ELSE

Search =..
ENDIF

* RETURN if no input

IF Search = ""

NoExit = .F.
LOOP

ENDIF

* Check database for pipe system number
Looking = .T.

SEEK Search
ANS = ""
SET FORMAT TO lspecmat && open format file
RKQUIT = 12
RKPRINT = 2

* SHOW if found

138

IFFOUNDO
STORE RECNO() TO saverec
STORE "Material" TO Sparam
STORE "List of pipe systems that are made of "+pipemat;

TO Tide
STORE "sysprt" TO prtfile
SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEY0 = RKQUIT
Looking = .F.

ENDIF
IF READKEY0 = RK-print
do fprint
Looking = .F.

ENDIF

DO WHILE Looking .AND. .NOT. EOF0
SKIP
IF Upper(Material) = Search
READ
IF READKEY0 = RKQUIT
Looking = .F.

ENDIF
IF READKEY0 = RKPRINT
do fprint
Looking = .F.

ENDIF
ENDIF

ENDDO(while looking)
ELSE

@ 12,16 CLEAR to 11,58
@ 9,25 SAY "No pipes of that material"
@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"
wait ""
ENDIF

ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

139

* Adjtank.prg is used to query the adjacent database *
* for the tanks surrounding the specified tank *

USE adjacent INDEX adjcomp
SET COLOR TO +G,BG/B,R,B
ON ESCAPE EXIT
AdjCont = .T.
DO WHILE AdjCont
compno = SPACE(14)
SET FORMAT TO passtart
CLEAR
READ
CLOSE FORMAT

* Create a Search Variable
Search = UPPER(CompNo)

* RETURN if no input

IF Search = "..

AdjCont = .F.
LOOP

ENDIF

* Check database for compartment number

SEEK Search
RKQUIT = 12
RKPRINT = 2

ANS = ."
SET FORMAT TO adjtank

* Show if found

IF FOUND()
READ
IF READKEY0 = RKQUIT
AdjCont = .F.
ENDIF
IF READKEY0 = RK_PRINT

STORE RECNO() TO saverec
STORE "ComptNum" TO Sparam
STORE "Compartments adjacent to "+ComptNum;

140

TO Title
STORE "adjprt" TO prtfile
do fprint

ENDIF
ELSE

@ 10,16 CLEAR to 11,60
@ 9,25 SAY "Not a valid compartment"
@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"
wait ""

ENDIF
ENDDO
CLOSE ALL
RETURN

* InbdTank.prg is used to find inboard compartments *

USE compartm INDEX compno
ON ESCAPE RETURN
NoExit = .T.
DO WHILE NoExit

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
Indb =" "..
SET FORMAT TO inbdtank
READ
CLOSE FORMAT

* Create a Search Variable
DO CASE

CASE inbd =""

NoExit = .F.
LOOP

CASE inbd = "T"
do findinbd

CASE Tank = V.

do voidinbd
OTHERWISE

@ 12, 12 SAY "Invalid selection"
@ 13, 12 SAY "Press any key to continue"
wait""

141

LOOP
ENDCASE

ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

* Findinbd.prg is used to find the inboard *
* tank of a specified compartment *

ON ESCAPE RETURN
NoExit = .T.
DO WHILE NoExit

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
CompNo = SPACE(14)
SET FORMAT TO PasStart
READ
CLOSE FORMAT

* Create a Search Variable

IF CompNo # "..
Search = UPPER(CompNo)
ELSE

Search =..

ENDIF

* RETURN if no input

IF Search = "..
NoExit = .F.
LOOP

ENDIF

* Check database for compartment number

Looking = .T.

SEEK Search
ANS =..
SET FORMAT TO findinbd && open format file
RKQUIT = 12

142

RKPrint = 2

* SHOW if found

IF FOUND()
Stmo = STRING
Strlen = LEN(Strno)
chkstr=- SUBSTR(Strno,strlen, 1)
DO CASE

CASE UPPER(chkstr) = "S"
side = "PORT"

CASE UPPER(chkstr) = "P"
side = "STBD"

OTHERWISE
@ 21,12 SAY "ERROR

ENDCASE
Use Adjacent INDEX adjcomp
SEEK Search
IF FOUND()
SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEY0 = RKQUIT
Looking = .F.

ENDIF
ELSE
@ 10,16 CLEAR to 11,60
@ 9,25 SAY "Not a valid compartment"
@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"
wait ""

ENDIF
ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

* SpecMat.prg is used to find the material a *
* specific pipe system is made from *

USE pipesyst INDEX pipesys
ON ESCAPE RETURN
Looking = .T.

143

DO WHILE Looking
SET COLOR TO +G,BG/B,R,B
SET FORMAT TO PasSys
CLEAR
System = SPACE(18)
READ
CLOSE FORMAT

* Create a Search Variable
Search = UPPER(System)

* RETURN if no input

IF Search = .".
Looking = .F.
LOOP

ENDIF

* Check database for pipe system

SEEK Search
RKQUIT = 12

* Show if found

SET FORMAT TO specmat && open format file
IF FOUND()
ANS = y...

SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEY0 = RKQUIT
Looking = .F.

ENDIF
ELSE

@ 10,18 CLEAR to 11,60
@ 10,27 SAY "Not a valid pipe system"
wait to..

ENDIF
ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

144

* PipeCont.prg is used to find compartment *
* through which a speified pipe system passes *

USE contains INDEX contsys
ON ESCAPE RETURN
NoExit = .T.
DO WHILE NoExit
CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
System = SPACE(18)
ANS = "

SET FORMAT TO PasSys
READ
CLOSE FORMAT

* Create a Search Variable
IF System # ""
Search = UPPER(System)

ELSE
Search -""

ENDIF

* RETURN if no input

IF Search = "..
NoExit = .F.
LOOP

ENDIF

* Check database for pipe system number
Looking = .T.

SEEK Search
ANS = it it

SET FORMAT TO pcontscr && open format file
RKQUIT = 12
RKPRINT = 2

* SHOW if found

IF FOUND()

145

STORE RECNO() TO saverec
STORE "SYSNUM" TO Sparam
STORE "Compartments Containing "+SYSNUM TO Title
STORE "contprt" TO prtfile
SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEY(= RKQUIT
Looking = .F.

ENDIF
IF READKEY0 = RKprint
do fprint
Looking = .F.

ENDIF

DO WHILE Looking .AND. .NOT. EOF0
SKIP
IF SysNum = Search
READ
IF READKEY0 = RKQUIT
Looking = F.

ENDIF
IF READKEY0 = RKPRINT
do fprint
Looking = .F.

ENDIF
ELSE

Looking = .F.
ENDIF

ENDDO(while looking)
ELSE
@ 10,16 CLEAR to 11,60
@ 9,25 SAY "Not a valid pipe system"
@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"
wait ""
ENDIF

ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

146

* Strings.prg is used to find the compartments *
* in a speified string *

USE compartment
ON ESCAPE RETURN
NoExit = .T.
DO WHILE NoExit
CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
StrNo = SPACE(10)
SET FORMAT TO String
READ
CLOSE FORMAT

* Create a Search Variable
IF StrNo #" "
Search = UPPER(StrNo)

ELSE
Search =

ENDIF

* RETURN if no input

IF Search = ""
NoExit = .F.
LOOP

ENDIF

* Check database for string number
Looking = .T.

LOCATE FOR STRING = Search
ANS = "..
SET FORMAT TO strscr && open format file
RK_.QUIT= 12
RKPrint = 2

* SHOW if found

IF FOUND()
STORE RECNO() TO saverec

147

STORE "STRING" TO Sparan
STORE "Compartments in STRING "+STRING;
TO Title
STORE "comprt" TO prtfile
SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEY0 = RKQUIT
Looking = .F.

ENDIF
IF READKEY0 = RKprint
do fprint
Looking = .F.

ENDIF

DO WHILE Looking .AND. .NOT. EOF0
CONTINUE
IF FOUND()
READ
IF READKEY 0 = RKQUIT
Looking = .F.

ENDIF
IF READKEY0 = RKprint
do fprint
Looking = .F.

ENDIF
ELSE
Looking = .F.

ENDIF
ENDDO(while looking)

ELSE
@ 10,16 CLEAR to 11,60
@ 9,29 SAY "Not a valid string"
@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"
wait ""
ENDIF

ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

148

* ***** *** * *** ******** **** ******* ********************* ****

* Stradj.prg is used to find the compartments *
* surrounding a specific string *

USE compartment
ON ESCAPE RETURN
NoExit = .T.
DO WHILE NoExit
CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
StrNo = SPACE(10)
SET FORMAT TO String
READ
CLOSE FORMAT

* Create a Search Variable
IF StrNo # ""
Search = UPPER(StrNo)

ELSE
Search

ENDIF

* RETURN if no input

IF Search = ""

NoExit = .F.
LOOP

ENDIF

* Check database for string number
Looking = .T.

LOCATE FOR STRING = Search
ANS - ""
SET FORMAT TO stradj && open format file
RKQUIT = 12
RKPrint = 2

* SHOW if found

IF FOUND()
SRSTR = UPPER(COMPNUM)

149

USE ADJACENT INDEX adjcomp
SEEK SRSTR
IF FOUND()

tankport = UPPER(PORT)
tankstbd = UPPER(STBD)
CLOSE DATABASES
strsearch = tankport
USE COMPARTMENT INDEX compno
SEEK strsearch
IF FOUND()
PortStr = STRING

ELSE
PortStr =

ENDIF
strsearch = tankstbd
GO TOP
SEEK StrSearch
IF FOUND()
StbdStr = STRING

ELSE
StbdStr =

ENDIF
IF PortStr # . .AND. StbdStr #

Search = PortStr OR. StbdStr
ELSE

IF PortStr #.
Search = PortStr

ELSE
IF StbdStr #

Search = StbdStr
ELSE

Search =""
ENDIF

ENDIF
ENDIF
IF SEARCH #..

GO TOP
LOCATE FOR STRING Search
IF FOUND()
STORE RECNO() TO saverec
STORE "COMPT_NUM" TO Sparam
STORE "Compartments Surrounding STRING "+StrNo;
TO Title

150

STORE "strprt" TO prtfile
SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEY0 = RKQUIT
Looking = F.

ENDIF
IF READKEY0 = RKprint
do fprint
Looking = F.

ENDIF
DO WHILE Looking .AND..NOT. EOF0
CONTINUE
IFFOUND0
READ
IF READKEY0 = RKQUIT
Looking = .F.

ENDIF
IF READKEY0 = RK-print
do fprint
Looking = .F.

ENDIF
ELSE

Looking = .F.
ENDIF

ENDDO(while looking)
ENDIF

ELSE
@ 10,16 CLEAR TO 11,60
@ 9,25 SAY "Invalid data in Search"
@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+";

to continue"
ENDIF

ENDIF
ELSE
@ 10,16 CLEAR to 11,60
@ 9,29 SAY "Not a valid string"
@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"
wait ..

ENDIF
ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL

151

RETURN
******** ** ********* ** ****** ******* **

* Fprint.prg is used to print queries *

SET CONSOLE OFF
SET MARGIN TO 4
Linect = 1
pagect = 1
pageln = 55
GOTO Saverec
SET PRINT ON
CLEAR
@ 23,10 SAY "Press any key to stop printing..."
ON KEY DO Interrupt
* Print header

? SPACE((80-LEN(TITLE))*.5)+Title
9

Linect = 3

*Print Query Info

DO WHILE .NOT. EOF0
IF &Sparam = Search

do &prtf'de
ELSE

SET PRINT OFF
EJECT
SET CONSOLE ON
RETURN

ENDIF

* See if a page break is needed

IF Linect >= Pageln
EJECT
Pagect = Pagect + 1
? SPACE((80-LEN(TITLE))*.5)+Title

9

9

Linect = 3
ENDIF
SKIP

152

ENDDO
SET CONSOLE ON
ON KEY
SET PRINT OFF
EJECT
RETURN

* Pipeprint.prg allows user to build a report form *

* and send it to the screen or printer *

SET SAFETY OFF
CLEAR
Dir *.DBF
DbFile = SPACE(8)
@ 22,2 SAY "Enter Database Filename: "GET DbFile
READ
USE &DbFile
CLEAR
DIR *.frm
Rfile = SPACE(8)
Printer = "N"
@ 22,2 SAY "Enter a new filename for the report form"
@ 23,2 SAY "or reuse an existing form from above:"
@ 23,41 GET Rfile
READ

* Build REPORT FORM

IF Rfile # ""
MODIFY REPORT &Rfile

* PRINT

CLEAR
STORE "TO Printer, PMacro
@ 15,5 SAY "Send data to printer? (Y/N)" GET Printer
PICT "!"
READ
IF Printer = "Y"
PMacro = "TO PRINT"
WAIT "Prepare printer, then press any key to continue..."

153

ENDIF
REPORT FORM &Rfile &PMacro

ENDIF
IF Printer = "Y"
EJECT

ENDIF
SET FILTER TO
CLOSE ALL
WAIT "Press any key to return"
RETURN

* Passprt.prg is Fields to be printed for query pipes *
* passing through a compartment *

?SPACE(5)+SYSNUM
Linect = Linect + I

* Strprt.prg is Fields to be printed for query *
* compartments in specific string *

?SPACE(5)+COMP_NUM
Linect = Linect + 1

* Adjprt.prg is Fields to be printed for query *
* compartments adjacent to specified compartment *

?SPACE(5)+FWD
?SPACE(5)+AFT
?SPACE(5)+STBD
?SPACE(5)+PORT
9

Linect = Linect + 5

* AddrQry.prg lets user build a custom query form or use *
* an existing form. Also allows user to direct data to *
* printer *

SET SAFETY OFF
CLEAR
Dir *.DBF

154

DbFile = SPACE(8)
@ 22,2 SAY "Enter Database Filename: "GET DbFile
READ
USE &DbFile
CLEAR
DIR *.QRY
Qfile = SPACE(8)
@ 22,2 SAY "Enter a new filename for the query form"
@ 23,2 SAY "or reuse an existing form from above:"
@ 23,41 GET Qfile
READ
IF Qfide #
MODIFY QUERY &Qfile
GO TOP
IF EOF0
CLEAR
? "Warning... no records match search criterion!"

9

WAIT
ENDIF(EOF)

ENDIF(Qfile)
CLEAR
DIR *.frm
Rfile = SPACE(8)
@ 22,2 SAY "Enter a new filename for the report form"
@ 23,2 SAY "or reuse an existing form from above:"
@ 23,41 GET Rfile
READ

* Build REPORT FORM

IF Rfile # ""
MODIFY REPORT &Rfile

* PRINT

CLEAR
STORE "TO Printer, PMacro
@ 15,5 SAY "Send data to printer? (Y/N)" GET Printer
PICT "!"
READ

IF Printer = "Y"
PMacro = "TO PRINT"

155

WAIT "Prepare printer, then press any key to continue..."
ENDIF

REPORT FORM &Rfile &PMacro
ENDIF
IF Printer = "Y"
EJECT

ENDIF
SET FILTER TO
CLOSE ALL
Wait "Press any key to continue"
RETURN

* CustQry.prg lets user build a custom query form or use *
* an existing form. Also allows user to build a *
* report form and send it to the screen or printer *

SET SAFETY OFF
CLEAR
Dir *.DBF
DbFile = SPACE(8)
Printer = "N"
@ 22,2 SAY "Enter Database Filename: "GET DbFile
READ
USE &DbFile
CLEAR
MODIFY QUERY pipes
GO TOP
IF EOF0

CLEAR
? "Warning... no records match search criterion!"

9

WAIT
ENDIF(EOF)
CLEAR
DIR *.frm
Rfile = SPACE(8)
@ 22,2 SAY "Enter a new filename for the report form"
@ 23,2 SAY "or reuse an existing form from above:"
@ 23,41 GET Rfile
READ

* Build REPORT FORM

156

IF Rfile #""
MODIFY REPORT &Rfile

* PRINT

CLEAR
STORE" "TO Printer, PMacro
@ 15,5 SAY "Send data to printer? (Y/N)" GET Printer
PICT "!"
READ
IF Printer = "Y"
PMacro = "TO PRINT"
WAIT "Prepare printer, then press any key to continue..."

ENDIF
REPORT FORM &Rfile &PMacro

ENDIF
IF Printer = "Y"
EJECT

ENDIF
SET FILTER TO
ERASE Pipes.qry
CLOSE ALL
WAIT "Press any key to return"
RETURN

* PipesBk is the floopy disk backup for the Pipes *
* database and expert system *

CLEAR
RUN pipesbk.dat
RETURN

******************** ***** ** ***** ***** *** ** ******* ** ** *

* PipesRs is the floopy disk restore for the Pipes *
* database and expert system *
* *** * ********* ** *** ************ *** *** ****** ************ **

CLEAR
@ 10,12 SAY "Place disk containing files in Drive A and
Close door"
9
WAIT " Press any Key to continue"

157

RUN pipesrs.dat
RETURN

158

LIST OF REFERENCES

1. Carrier Life Enhancing Repairs (CLER) Program Engineered Maintenance
Plan (Tank and Void Zoning, Tank Top, Piping, and Section), Naval Sea
Systems Command Detachment PERA (CV), Bremerton, Washington,
October 1987.

2. Rowe, N. C., Introduction to Artificial Intelligence through Prolog, Prentice-
Hall, 1987.

3. Borland International, TURBO PROLOG, Version 2.0, Reference Guide,
1988.

4. Ashton-Tate, d-BASE III PLUS, Version 3.0, Reference Manual, 1986.

159

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center .. 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 .. 2
Naval Postgraduate School
Monterey, California 93943-5002

3. C urriculum O fficer ... j
Code 37
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5000

4. CD R I. B. Clayton .. 2
COMNAVAIRPAC Code 73
NAS North Island, California 92135

5. LT P. R . Boozer .. 2
128 Brody Road
Chapin, South Carolina 29036

6. A ssociate Professor C. T. W u ... 1.... I
Code 52Wu
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

160

