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I. SUMMARY

GENERALIZED NON-LINEAR MINIMAL RESIDUAL (GNLMR)
METHOD FOR OPTIMAL MULTISTEPPING

George S. Dulikravich Penn State University
Department of Aerospace Engineering
233 Hammond Building
University Park, PA 16802

One of the extrapolation methods for the acceleration of iterative algorithms is the
Generalized Non-Linear Minimal Residual (GNLMR) concept. It utilizes a number of
intermediate steps when advancing the solution to the next time level. That is,
numerical error at the new time level can be expressed as a sum of intermediate
corrections where each correction is multiplied by a separate acceleration factor which
GNLMR optimizes. The method was originally developed by Kennon and Dulikravich and
then successfully generalized and applied by Huang and Dulikravich to a number of
problems governed by single non-linear partial differentiai equations. In addition, Huang
has obtained preliminary resuits where GNLMR was successf{ully applied to a system of
four nonlinear partial differential equations (mass conservation, two components of linear
momentum equation, and energy equation) governing unsteady two-dimensional flow of
compressible, rotational, inviscid fluid. This system is known as Euler equations of gas
dynamics. The basic integration algorithm was an explicit scheme that utilizes Runge-
Kutta time-stepping and finite volume formulation for spatial discretization. The
algorithm is known as Jameson’s scheme and represents the fastest presently available
integration method for Euler equations of gas dynamics.

A new Distributed Minimal Residual (DMR) method for the acceleration of explicit
iterative algorithms for the numerical solution of systems of partial differential equations
has been developed by Lee and Dulikravich. The method is based on the idea of allowing
each partial differential equation in the svstem to approach the converged solution at its
own optimal speed while at the same time communicating with the rest of the equations
in the system. The DMR method belongs to a general class of the extrapolation
techniques in which the solution is updated using information from 2 number of
consecutive time steps in such a way that the Lo norm of future residual is minimized.
Unlike in other similar methods, each component of the solution vector is updated using
a separate sequence of acceleration factors. The idea of using different acceleration
factors for each component of a solution vector is similar to that of dynamic
preconditioning. This allows each equation to evolve at its own optimal convergence
rate. Moreover, the acceleration factors are determined from the governing equations so
that only a few consecutive solutions are required for a successful application of the
DMR method. This acceleration scheme was applied to the system of time-dependent
Euler equations of inviscid gasdynamics in conjunction with the finite volume Runge-
Kufta explicit time-stepping algorithm. Using DMR without multigridding, between 30%
and 70% of the total computational efforts were saved in the subsonic compressible flow
calculations. The DMR method seems to be especially suitable for stiff systems of
equations and can be applied to other systems of differential equations and other
numerical algorithms.  Specifically, the DMR method was applied to an artificial
compressibility, explicit, Runge-Kutta time stepping algorithm for steady, incompressible,
Navicr-Stokes equations. A two-dimensional analysis computer code in a generalized
curvilinear coordinate system was developed and its accuracy has been compared to
known numerical solutions. The algorithm has been successfully accelerated using the
DMR method, resulting in 25%-70% reduction in computing time.




1I. STATUS OF THE RESEARCIH!]

The objective of the research project was to provide a sound mathematical theory
for non-linear iterative acceleration schemes using multiple optimal acceleration factors
and to test the method on several non-linear differential systems. Particular emphasis
was placed on developing computer programs for accelerating the convergence and
enhancing stability of iterative solutions of the non-linear systems of partial differential
equations of fluid mechanics.

During the course of this research project, both analytical and software development
aspects were addressed. A general theory of optimal acceleration factors for the multi-
step iterative solution of systems of non-linear partial differential equations based on the
minimal residual concept was developed with the special emphasis on mixed-type -vst-ms
of partial differential equations. The new methods was tested on a variety of practical
examples governed by the compressible two-dimensional inviscid flow equations (Euler
equations) and viscous incompressible laminar flow equations (Navier-Stokes equations).
Subsonic and transonic flow fields were calculated for geometries including nozzles,
airfoil cascades, airfoil in an unbounded domain, and a driven cavity problem.

Two graduate students, Mr. Chung-Yuan Huang and Mr. Stephen R. Kennon, have
finished their doctorate degrees in the summer of 1987 at the University of Texas at
Austin, while supervised by Professor George S. Dulikravich from Penn State University
who continued to serve as an adjunct faculty with the University of Texas. Both Dr.
Huang and Dr. Kennon were partially supported by this grant and the preceding grant
from the AFOSR/NM with Professor David M. Young as co-principal investigator. This
fact was acknowledged in their doctoral dissertations.

Dr. Huang has applied GNLMR to a number of scalar nonlinear partial differential
equations and to a system of Euler equations of gasdynamics. He now works as a
postdoctoral Research Scientist with Professor J. Tinsley Oden at the University of
Texas. Dr. Kennon has developed a number of new ideas for finite elements in
gasdynamics including acceleration of iterative algorithms. He now works as an Assistant
Professor in the Aerospace Engineering Department of the University of Texas at
Arlington.

A new graduate research assistant at Penn State was supported with the grant
AFOSR-87-0121. Mr. Seungsoo Lee is a Ph.D. candidate who has developed the DMR
method and applied it to the explicit finite volume Runge-Kutta scheme (Jameson’s
algorithm) for Euler equations of gasdynamics. He has derived all the governing
equations in a fully conservative nondimensionalized form suitable for discretization on a
general nonorthogonal curvilinear computational grid.

Recently, Mr. Lee has successfully implemented the DMR concept in an explicit
algorithm for the numerical integration of Navier-Stokes equations of laminar,
incompressible flows through nozzles and cascades.

Another Ph.D. candidate, Mr. Daniel J. Dorney, worked on the analysis of existing
numerical dissipation models and on physically based dissipation formulations for Euler
and Navier-Stokes equations of gasdynamics. Mr. Lee and Mr. Dorney worked together
on implementing DMR in both Euler and Navier-Stokes codes with the physically based
artificial dissipation.

A Visiting Research Scientist, Mr. Ren Bing, was involved on the project at the
Penn State Uniersity for six months. He performed a thorough survey of all Total
Variation Diminishing (TVD) type schemes for controlling numerical dissipation.

—————e .
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PROFESSIONAL PERSONNEL INVOLVED:

1.  Dr. George S. Dulikravich, Associate Professor

2. Seungsoo Lee, Graduate Research Assistant, Ph.D. Candidate.
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1. Chung-Yuan Huang, "Optimization of Explicit Time-Stepping Algorithms and
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Stephen R. Kennon, "Numerical Solution of Weak Forms of Conservation Laws
on Optimal Unstructured Triangular Grids," Ph.D. Dissertation, University of
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INTERACTIONS (COUPLING ACTIVITIES)

I. Lecture delivered at the Computational Fluid Dynamics Branch/Institute for
Computational Mechanics in Propulsion of the NASA Lewis Research Center in
Cleveland, Ohio in May, 1987. Title: "New Coacepts in Computational Fluid
Dynamics." Speaker: Prof. G. S. Dulikravich.

2. Dulikravich, G. S., "Optimization of Explicit Multi-Step Algorithms,” paper
presented at the First International Conference on Industrial and Applied
Mathematics, Paris, France, June 29-July 3, 1987.




3. A two-day workshop at the University of Rijeka, Rijeka, Yugoslavia in July,
1987. Title: "Methods of Computational Fluid Dynamics for Turbomachinery,"
speakers: Prof. G. S. Dulikravich and Prof. L. J. Hayes.

4. A one-day visit to Ecole Polytechnique outside of Paris, France in July, 1987
and a discussion concerning transonic potential flow computations and influence
of different artificial dissipation models. Prof. G. S. Dulikravich.

5. A one-day visit to Ecole Polytechnique Federale de Lausanne in Switzerland in
July, 1987. Discussion of mutually interesting research on prediction of water
flow fields in hydroturbines and the effects of artificial dissipation on the
results of hydrocodes. Prof. G. S. Dulikravich.

6. Invited lecture delivered at the Department of Aerospace Engineering,
University of Colorado, Boulder, CO in January 1988. Title: "Numerical
Dissipation, Grid Generation and Fast Iterative Algorithms." Speaker: Prof.
G. S. Dulikravich.

7. Invited one-day workshop (G. S. Dulikravich was the only lecturer) on "Inverse
Design and Special Topics in Computational Fluid Dynamics," United
Technologies Research Center, Hartford, CT, March 1988.

8. Lecture, Inst. for Computational Methods in Propulsion, NASA Lewis Research
Center, Cleveland, OH, May 1988.

. Invited Lecture, Turboinstitut, Ljubljana, Yugoslavia, Sept. 1988.

10. Invited Lecture, Department of Mechanical Engineering, University of Texas,
Austin, TX, Oct. 1988.

I1. Invited Lecture, Department of Aerospace Engineering, Ohio State University,
Columbus, OH, Oct. 1988.

VIL. NEW DISCOVERIES, INVENTIONS AND PATENTS

Although original, this type of work is not patentabie. Consequently, there were no
discoveries, inventions or patents resulting from this research project.

VIIl. SUGGESTIONS FOR FUTURE RESEARCH

We also developed a DMR version of a transonic Navier-Stokes finite volume code
for two-dimensional shock/boundary layer interaction. In addition, Mr. Lee impiemented
DMR in a two-dimensional implicit ADI (Beam-Warming) solver for incompressible Navier-
Stokes equations. He also developed a fully three dimensional DMR version of an explicit
code for incompressible Navier-Stokes equations. These three codes remain to be tested
especially when using DMR formulation with implicit algorithms.

Notice that all numerical results with the DMR method were obtained without the
standard acceleration techniques such as explicit and implicit residual smoothing, enthalpy
damping, multigridding and vectorization. These methods could be combined with the
DMR to further accelerate the iterative algorithms.

Furthermore, it would be highly desirable to study the effect of grid clustering, grid
size, grid orthogonality and grid structure on the DMR. In addition, domain partitioning
could be used with different DMR sequences in each domain thus leading to accelerated
parallel processing capabilities.

-
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FAST ITERATIVE ALGORITHMS BASED ON OPTIMIZED
EXPLICIT TIME STEPPING

Chung-Yuan HUANG
Department of Aerospace Engineering and Engincering Mechanics. The University of Texas at Austin,
Austin, TX 78712, U.S. A.

George S. DULIKRAVICH

Department of Aerospace Engineering, Penn State University, University Park. PA 16802. U'.S.A.

Received 9 May 1986
Revised manuscript received 26 September 1986

The Generalized Nonlinear Minimal Residual (GNLMR) method is shown to consistently acceler-
ate and stabilize iterative algorithms for solving nonlinear problems by using the optimized explicit
multistepping. The examples presented in this paper illustrate the beneficial effects of the optimized
multistep algorithm on the computational efficiency and the convergence rate as applied to several
nonlinear problems in fluid dynamics. The significant reduction in computing time when using the
multiple optimized acceleration factors is only negligiblv weighed down by the computation costs due
to the requirements for additional computer storage.

1. Introduction

The relaxation factor used in accelerating an iterative method to obtain the converged
solution plays the same role as the time step size in advancing the transient solution to the
steady-state solution for a time-dependent problem. The classical analyses for the stability of
numerical schemes for solving ume-dependent problems neglect boundary conditions and
assume a uniform computational grid. Furthermore, these analyses are based on linear
equations with constant coefficients and the assumptions of small perturbations and ap-
plicability of Fourier analysis [1.2]. However. Cheng [2] pointed out that the perturbation of
the error in the finite difference calculations may not be small and that the error in the finite
difference calculations may not satisfy the conditions for Fourier series expansion. In addition.
Mitchell and Griffiths [1] pointed out that the errors due to approximate or additional
boundary conditions are represented by modes which are not of Fourier type. Thus, the linear
stability analysis usually results in overly restrictive and even incorrect conclusions.

The numerical experiments performed by Kennon and Dulikravich [3] and Kennon (4]
using the NonLinear Minimal Residual (NLMR) method showed that the usual Courant-
Friedrichs-Lewy (CFL) number limitation for both linear and nonlinear problems can be
significantly exceeded. The NLMR method provided a simple analytic way to determine the

0045-7825/87/83.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)
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optimal acceleration factors for both linear and nonlinear problems. However, thc elementary
time steps used for obtaining the corrections still follow the CFL number limitation conciuded
from the linear analysis.

The generalized nonlinear minimal residual (GNLMR) method developed by Huang,
Kennon and Dulikravich [S] provided a practical analytical ool to determine the exact
stability conditions for both linear and nonlincar problems in arbitrary domains. If accurate
time evolution is required when solving an unsteady problem, the limitation on the time :tep
size can be analytically determined by using the GNLMR method. If transient behavior is of
no interest, the GNLMR method can be applied to determine the optimal value of the time
step size (optimal acceleration factor) to minimize the number of time steps (number of
iterations) for obtaining the steady-state converged solution.

The main objective of this paper is to investigate the effects of the optimized n. ltistep
algorithm on the computational efficiency and on the monotonicity of convergence ratc of the
GNLMR method. The analytic investigation is confirmed on four nonlinear 1est cases: the
one-dimensional and two-dimensional viscous Burgers’ equations and the two-dimensional
incompressible and compressible Stream-Function-Coordinate (SFC) equations [6].

2. Theoretical aspects

2.1. Multistep minimal residual method for linear problems

Let us first consider a well-posed linear initial value problem:

dp/or=Le—F in{2,

®= @ onaf2, (1)
®= ¢ atr=r1,.

Define
ri=le'—f (2)

as the residual vector at time level t. Here, / denotes the scheme-dependent discrete analog of
L, fis the discrete analog of F and also includes boundary terms.

Assume that M steps are used to iterate at each time level ¢. Using the Einstein summation
convention where repeated subscripts are summed, the multistep algorithm for (1) is then
defined as follows:

e =¢' 0,8, m=12,...,M, ©)
where

81=I(Pl_f’

5m=1m~1(61)’ m>1’ (4)

are the corrections at step m. Coefficients w,, are the corresponding relaxation factors to be
determined by minimizing the L, norm of the residual at time level (1 + 1). With the definition
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of residual vector (2) and the help of (3), the following relation can easily be verified:
Pt ds, =r o i, \3)
The L, norm of the residual vector at time level (1 + 1) is then

HrHl

=+ 20, 88,) + (16, 18w, 0, , m.n=1.2...., M. (6)

It should be pointed out that the boundary condition for the corrections &, in (3) is
apparently zero. However, the boundary conditions fc . the residual vector r' and corrections
8, in (5) can be determined either b, extrapolation from the interior points or simply by
setting them equal to zero. The resicual norm will then converge to the norn: of the truncation
error of the difference scheme if the first method is applied and to the machine accuracy if the
second method is applied.

The highest rate of convergence is possible when w,, are the solutions of the following
system of linear equations:

6I''éw, =0 or (r,18,)+(5,,16)w, =0, )
where the rate of convergence I' is defined as

r=—tog(lr" " /i~ . (8)
Multiplying (7) by w,, it follows that

(r'\ 18w, + (15,18 w,w, =0. 9)

Subtracting (9) from (6) and using (7) results in
0 = 10 = 18,0, = (8, 18, ), 0, = “fr,(wmlsm)z 42 <0. (10)

Thus, the residual norms for the multistep minimum residual method show a monotone
convergence behavior which guarantees the stability of the iterative scheme and produces the
highest rate of its convergence.

2.2. Optimization of the Euler scheme for nonlinear problems

For clarity, we consider two-dimensional problems and ¢ quations in conservative form only.
The extension to multidimensional problems and nonconservative equations is then
straightforward.

Tl conservative foua of the governing equations for most engineering problems can be
written as:

do/dm=L N (¢, ¢, ¢,)— F, (11)

D

[N
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where the operators are

L, =dlox. L,=dlay,

and N is the nonlinear differential operator in coordinates x,. Using the Euler one-step,

time-consistent, explicit scheme, the finite difference form of (il) can be written as:
‘F.'wl — ‘F‘ + A'rr' ,

where
r=I N ¢.e V= f

is defined as the residual at time lovel . Therefore, the residual at time level (¢ + 1) can be

expressed as

rr*] — 1,‘}\”(‘?“{ ¢:+1‘ ¢I.*'1) _f-

After expanding the noniincar discretized operator N” in a Taylor series, it follows that

r = LANTE ¢ )+ [(ONTaE D + (BNTagl)(r),
+(aN"o¢!)(r'), A7 + O(AT")) = f .
In summary,

r"1=r'+ap(A.°)”‘ lsp=sP,

where P is the degree of the nonlinearity of the operator N. Equation (16) indicates that the
res’dual at time level (¢ + 1) is a polynomial (henceforth called Residual Polynomial [3] or RP)
of the time step size, Ar. Thus, the L, norm of the residual at time level (¢ + 1) can be

expressed as

-

I

= |IFI1° +2(r, a)Ar) +(a,.a,) A7) (A7), 1<p.q<P.

Equation (17) implies that the residual norm at time level (¢+ 1) is a positive polynomial
(henceforth called Minimizing Polynomial [3] or MP) of the time step size Ar. which is to be
determined. Thus, the convergence of scheme (12) will be guaranteed provided that A~ is
chosen in such a way that I" > 0. The highest rate of convergence can be achieved only when
At is chosen as the optimizer of the minimizing polynomial (17) such that |#'"'|| is an
infimum. However, the determination of the optimizer needs special numerical techniques [7].
To avoid this difficulty, the linearized operator [3-5] of N* may be applied. If N* is truncated

to the first order in A (linearized operator), the approximate residual vector is

t+1
' =r'+aAr,
where

a,=1L[(8N"Ta¢")r + (aN"T3¢,)(r'), + (8N"6¢')(r'),].

e

P
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Then, the approximate MP is
[fr* 117 = 11F)1° + 2(a,. r)AT + (a,. a,)(AT)° . (20)
The optimal time step for the explicit Euler scheme can be easily found as
(A7) oo = ~(a,. r)/la 1" @1

2.3. The generalized nonlinear minimum residual (GNLMR) method

The GNLMR method actually is the application of the methods described in the previous
sections. The multistep algorithm for nonlinear problems is defined as

+

o' =9+ w8, +0(w,). m=12,..., M. (22)
where repeated indices are summed. The correction at the first step if defined as

S =r'=IN(¢" ¢, ¢\) - f. (23)
The correction at step m > 1 is defined as

8, =1[(IN73¢")8,, |+ (ON"13¢" )(8,_,), + (dN"3¢')(5,_)),]. (24)

The coefficients of the higher-order terms of w,, can be obtained by Taylor-series expansion. If
only linear terms of w,, are retained. the residual polynomial (RP) at time level (¢ + 1) can be
expressed by Taylor-series expansion as

rl‘-l - I,,Ny(‘P!.l. ‘F’,‘I- ‘Flr'l) _f
= Iu‘vv[‘pr + wmam‘ ‘p’r + wm(am)x‘ ‘p,\ + wm(am))] _f

=r' + 1 {[(AN"1ag")8,, + (IN10¢ )38,), + (3N"13¢")(8,),w,, + O(w)} .
(25)

Therefore. the minimizing polynomial (MP) at time level (¢ + 1) can be determined as
b0 = 11+ gw,) (26)

where g(w,,) is a polynomial in w,. For a highly nonlinear differential equation. g will be a
complicated multivariable polynomial that depends on the total number of intermediate steps
M that were used and the degree of the nonlinearity of the differential operator N*. Thus. a
fast and accurate procedure of determining the optimizer of MP is required for the GNLMR
method to guarantee the highest rate of convergence. If the linearized operator of N is used.
the method that was described in Section 2.1 can be applied to determine the approximate
optimizer of (26).

The GNLMR method requires (M + 1) times larger computer storage to save the correc-
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tions from M intermediate steps than does the single-step nonaccelerated scheme. Some
additional algebraic operations are also required to determine the coefficients of the MP which
are obtained by integrating the corrections over the entire domain. The storage requirement
of the GNLMR method is quite acceptable when compared with the excessive storage
required by the GMRES method (8. 9]. It should be pointed out that the GMRES method
also needs a large number of arithmetic operations not only for orthonormalizing search
directions but also for determining the optimal weighing parameters in updating the iterative
solutions.

3. Numerical examples

Four test cases were used to demonstrate the application, the computational efficiency. and
the monotone convergence behavior of the GNLMR method. Since it was found [5] that the
linearized residual polynomial still guarantees a relatively high convergence rate. it will be
used for all test cases. The first two cases representing the one-dimensional and two-
dimensional viscous Burgers' equation were solved by the time-dependent technique as
described in Section 2.

The last two test cases. the two-dimensional incompressible and compressible stream-
function-coordinate (SFC) equations [6] were solved in their steady-state and nonconservative
form. Liebman’s or Gauss-Seidel's method was applied to determine the correction at each
intermediate iterative step m.

Details about the control parameters such as grid size. stopping criteria, and number of
acceleration factors used for each test case are summarized in Table 1. For all test cases.
comparisons are based on the relative improvement of computational efficiency that can be

Table 1
Summary of the control parameters for numerical test cases

Max. Boundary conditions

no. of for residual and Stopping Grid
Test case w used corrections criteria size
Case 1: 8 Extrapolation from r<t*
ID Burgers’ interior data 11
equation Zero Irfl=10 *
Case 2: 8 Extrapolation from r<io”
2D Burgers’ intertor data S1x 51
equation Zero irffsto"
Case 3: 8 Zero (Iriff<10 " 47 x 11
2D incomp.
SFEC equation
Case 4: 8 Zeto Irif<10 * 61 x 11
2D comp.

SFC equation

4
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obtained using different total number of intermediate steps M. The relative improvement of
computational efficiency n,, is defined as

ny=TyT,. (27)

where T, denotes the computing time spent for the nonaccelerated method and T, denotes
the computing time spent for the acceleration method based on the stopping criteria as
described in Table 1. The results are summarized in Fig. 9.

3.1. Burgers’ equations

According to the notations defined in Section 2. the one-dimensional, viscous Burgers’
equation can be written as

dp/dT=3a/3x[N(¢. ¢,)]. (28)
where .
Np.¢)=—lte + g, . (29)

and v is the viscosity coefficient. In this example » = 0.07 is used. The initial and the boundary
conditions are chosen as follows:

¢(1,7)=0. e(0.7)=1. e(x.0)=1~x. (30)

The two-dimensional, nonlinear, viscous Burgers' equation solved by Ghia et al. [10] was
chosen in the presented test case. According to the notations defined in Section 2, it can be
expressed as

duldt =3/3x[N'(u. u)] +3/9y[N(u, u,)] . (31)
where . . .
N'u,u)=u,— Ay(}u’ —ul), N (u.u)=u, —Ax(iu —uU). (32)

Here, A is a parameter and U is a constant. The values of U and A used in this test case are 0.5
and 2.0, respectively.

The FTCS scheme is applied to discretize (28) and (31). If the linearized form of operator
N is used with M steps at each time level ¢, the residual polynomial is truncated up to its first
order as

RP=rl+l=r’+amwm, (33)
where
a, =93/dx[-¢'8, + v(3,),] (34)

for the one-dimensional case and

a, =0/3x{(dN"/3u)é,, + (aN"3u,)8,),] +3/ay[(aNau)8, + (3N au,)(8,,),]
(35)
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for the two-dimensional case. The corrections §, at each intermediate step m can be
determined by (23), (24). The minimizing polynomial MP for both cases is then

)

Thus, the optimal acceleration parameters w, can be easily determined by solving the
tollowing system of linear equations:

Amnwn = m * (37)
where

A,.=(a,.a,). (38)

b,=-(r'a,). (39)

and A, , is a symmetric matrix of order M.

The boundary conditions of the residual and corrections in (33) were determined by
extrapolating them from the interior points (Case a) or by explicitly enforcing them to be zero
(Case b). The stopping criteria for all cases were such that the computations were terminated
when the asymptotic rate of convergence (Case a) or the norm of the residual (Case b)
approached the machine accuracy.

It must be mentioned that the norm of the truncation error represents the maximum
attainable accuracy of a numerical scheme and is obviously scheme-dependent. It can be seen
from Figs. 2(a) and 4(a) that under the same stopping criteria the residual norms for all cases
converge to the values corresponding to the respective norms of the truncation error.
Moreover, Figs. 1(a) and 2(a) illustrate that the accuracy of the nonaccelerated scheme can be
improved by applying the GNLMR method.

Since the linearized operators were used in these two test cases, the convergence history
shown in Figs. 1-4 exhibit a similar behavior as in the linear problems as solved in our earlier
works [5]. It is obvious that if the GNLMR method is applied. the number of iterations and
the computing time required to achieve the asymptotic rate of convergence are considerably
lowered as compared to the nonaccelerated schemes (Figs. 1(a), 2(2), 3(a) and 4(a)).
Moreover, the time required by the GNLMR method for marching the solution from the
asymptotic state to a fully converged solution is much shorter than with the nonaccelerated
method. The improvement of the computational efficiency that can be obtained using a
different number of intermediate steps M is summarized in Fig. 9.

Although the computational efficiency increases significantly with the increasing number of
intermediate steps M, the improvement becomes less pronounced and even shows a reverse
trend after approximately M =5 in the one-dimensional case. The reason for this unexpected
result is that when using a multistep algorithm, an M X M matrix has to be inverted (directly)
at each time level, t. The number of operations and computing time required for the direct
inversion of a matrix grows very fast with the increase of the matrix size, thus countering the
benefits of adding more intermediate steps in the multistep procedure especially for one-
dimensional problems.

J A~
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Fig. 1(a). Residual norm versus the number of iterations. 1D Burgers' equation.

3.2. Stream-function-coordinate (SFC) equations

The two-dimensional stream-function-coordinate (SFC) equation for an irrotational, invis-
cid, steady flow derived by Huang and Dulikravich [6] is given by:

(Vo= DY — 20, ¥V T (1 + ¥y, =0, (40)

where o represents the compressibility and is equal to zero for incompressible flows. It is
defined as

o=(p*a*ipa)’ =[(y + ) = Iy - HM*?] 70T (41)

~——
S\

T
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Fig. 1(b). Residual norm versus the number of iterations. 1D Burgers' equation.

where p and a denote the local density and the local speed of sound, respectively, and y is the
ratio of the specific heats. The superscript terms denote the characteristic quantities of the
flow. It can be shown [6] that o is an implicit function of y_  and y,, that is

(L+y)ly, =[(y + D" " =21/ [(y - 1)a] . (42)

Let us define

G=Y,., C:= Vs C3= Ve

€=V €=V (43)

Then (40) can be rewritten as
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Fig. 2(a). Residual norm versus the computing time. 1D Burgers' equation.
N(c,.c,, ¢y, ¢cy.c) =0, (44)
or
2 2 _
[e; —a(cy ei)]e, = 2¢ic-¢, + (1 + ¢7)ee =0 (45)

Assume that a uniform computational grid is used (both Ax and Ay are constant) and
central differencing is applied to discretize all derivatives. The finite difference approximation
of the SFC equation can be expressed as

Yo, =[(ys ~ o)A + (1 +y)) A"  [(ys = o) (yoer, + ¥0o0,)(2AX7)
VI, + Y, ) RAE) = Y h Y] (46)

e
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Fig. 2(b). Residual norm versus the computing time. 1D Burgers' equation.

Equation (46) will be referred to as the iterative equation. Most iterative schemes for solving
(46) can be expressed as

yr+l =}’:_,- + wd’ (47)

i ij

where ¢ represents the iteration level, w is the relaxation factor, and 8, , is the correction at
iteration level 1. It is defined as

(48)




G.S. Dulikravich, C.-Y. Huang. Fust algorithms based on time stepping A /

LOGIO(RESNORM) VS. N(ITER). 2-0 BURGERS' EQUATION
OF T T i 1 T -

Y EIGHT ACCELERATION FACTORS USED
2— ——— 3 SEVEN ACCELERATION FACTORS USED
R SIX ACCELERATION FACTORS USED
4——— 4 FIVE ACCELERATION FACTORS USED
o FOUR ACCELERATION FACTORS USED
1.80k M———— —x: THREE ACCELERATION FACTORS USED
4——— i TWO ACCELERATION FACTORS USED
a————— o ONE ACCELERATION FACTOR USED
| e NO ACCELERATION

-l Ay b

)
: £
’ & o.s0r
z
& I
W !
) [« 4 ! 3
et
; 5 |
h g |
b o.oo’-
|
|
~0.60+
!
t
{ :
i
-1,20L- -
{
t

L
360 540 720 900
NUMBER OF ITERATIONS

L
0 180

Fig. 3(a). Residual norm versus the number of iterations. 2D Burgers’ equation.

=+ 1

Here, y.’ is the temporary value of y at iteration level (¢ + 1) obtained by applying (46) with
any fundamental iterative scheme. In the presented studies. Liebman’s method (@ = 1) was
used as the fundamental iterative scheme and will be henceforth referred to as the nonacceler-
ated method. Assume that M steps are used in the GNLMR method. The solution is then
updated by using

t+1 __ 0

yl,,‘ “,V,,,+a)m5m. m=1.2,....M. (49)
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Fig. 3(b). Residual norm versus the number of iterations. 2D Burgers' equaticn.

where 8, are the corrections at each intermediate step m. They are obtained by successively
applying Liebman’s method. The optimal values of w, based on a linearized RP can be
determined by solving (37) with

r'= N(e,. cz,\c‘,, e, €)', (50)

a, =[(8N/dc,)(8,), + (8N/dc,)(8,,), + (8N/8¢;)(8,,),,
+(3N78¢,)(8,,) ., + (IN16¢5)(8,.),,] - (31)

1%
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Fig. 4(a). Residual porm versus the computing time. 2D Burgers' equation.

For the incompressible case. a uniform flow around a cascade of doublets was solved [6].
For the compressible case. a subsonic flow with free-stream Mach number M_ =0.65 around a
NACA 0012 airfoil in a channel with height/chord ratio =3.6 was solved [6].

Since linearized operators were used in these two cases. and the boundary conditions for
the residual and corrections in (33) were set to zero. the residual norm wiil converge to
machine accuracy. Therefore, the stopping criteria for these two cases was chosen in such a

L7
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Fig. 4(b). Residual norm versus the computing time, 2D Burgers’ equation.

way that as the residual norm approaches machine accuracy, the computation is forced to
stop.

The iinprovement of the computational efficiency is summarized in Fig. 9. Both cases show
that the computational efficiency is increased significantly by increasing the number of
intermediate steps M.

The numerical results for these two cases are summarized in Figs. 5-8. Both cases exhibit a

Do
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Fig. Residual norm versus the number of iteravons, incompressible SFC equation

common feature that the monotonicity and the rate of convergence tncrease with the increase
of the total number of intermediate steps M. Most importantly. Figs. 6 and & show that with a
specified minimum computing time. the difference in the residual norms between the
nonaccelerated method and the GNLMR method varies between one to eight orders of
magnitude depending on the number of steps used in the GNLMR method. This fact strongly
proves the computational efficiency that can be obtained using the GNLMR method [8].

21
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Fig. 6. Residual norm versus the computing time. incompressible SFC equation.

4. Concluding remarks

Four numerical test cases for nonlinear problems in fluid dynamics were presented to
demonstrate the applicability, computational efficiency. and monotone convergence behavior
of the GNLMR method. It was found that even though the theory of the GNLMR method is
based on the evolution problems and equations in conservative form. the method can be
applied equally successfully to the solutions of steady-state problems governed by equations in

P
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Fig. 7. Residual norm versus the number of iterations. compressible SFC equation.

.

nonconservative form. The results for all test cases show that when applying the GNLMR
method to nonlinear problems, the number of iterations and the corresponding computer time
are considerably lowered by increasing the number of intermediate time steps.

Since the explicit multistep algorithm was emploved in developing the GNLMR method,
the advantage of accelerating the convergence rate of the iterative process is partially offset by
some extra costs. These are caused by the requirements for additional storage in order to save
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Fig. 8. Residual orm versus the computing time, compressible SFC equation.

corrections obtained from each intermedizatc step and by the additional arithmetic operations
to determine the coefficients of the minimizing polynomial. In practice, a maximum gain in
computational efficiency can be obtained with a moderate number (usually not more than five)
of intermediate steps. The requirement for additional storage linearly increases with the
number of intermediate time steps used and represents onlv a fraction of the computer storage
required by the GMRES method [8].
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DISTRIBUTED MINIMAL RESIDUAL (DMR) METHOD FOR EXPLICIT
ALGORITHMS APPLIED TO NONLINEAR SYSTEMS

Seungsoo Lee George S§. Dulikravich Daniel J. Dorney
Graduate Assistant Associate Professor Graduate Assistant

Department cof Aercspace Engineering
Pennsvlvaria State University, University Park, I'a 16872

ABCTRACT

A new algorithm for the acceleration of explicit iterative schemes for
the numerical solution of nonlinear svstems cof partial differential
requations has been developed. The method is based on the idea of allowing
each partial differential equation in the system to approach the converged
solution at its own optimal speed. The DMR (Distributed Minimal Residual)
method introduces a separate sequence of optimal weighting factors to be
used for each component of the general solution vector. The acceleration
scheme was applied to a highly nonlinear coupled system of four
time-dependent partial differential equations of inviscid gasdynamics in
conjunction with the finite volume Runge-Rutta explicit time-stepping
algorithm. Using DMR without multigridding, between 30% and 70% of the
total computational efforts were saved in the subsonic compressible flow
calculations. DMR method offers most time savings when applied to stiff
svstems of equations.

Several attempts have been made to &sccelerate the Iterative
convergence of this method. They include local time stepping, implicit
residual smoothing, enthalpy damping and multigrid techniques. Also, an
extrapolation procedure based on the power method and the Minimal Residual
Method (MR*) were applied to the finite volume Runge-Kutta method. 1In the
MRM, a weighted combination of the corrections at consecutive iteration
levels is extrapolated and the weights are chosen to minimize the Lj norm
of the future residual. The extrapolation was performed without
considering the properties of the governing equations. The GKRLMR
(Generalized Non-Linear Minimal Residual) method utilizes the information
about the governing equations. It has been applied successfully to a
number of scalar nonlinear partial differentizl equations.

Both MRM and GNLMR method are based on using the same values of
optimal weighting factors for the correcticns to every eguation in a system.
Since each component of the solution vector in a system of eguations has
its own convergence speed, the sequence of optimal weights could be allowed
to be different for each component. This concept is the essence of the DMR
method. Thus, for example, we combined corrections from four consecutive
time steps by intreoducing four weighting factors -o each of the four
equations. Hence, a set of sixteen algebraic equations needs (o be solved
to determine the four sequences of four weighting factors in each of them.
The DMR method reguires about 200% more stcrage than the original
non-accelerated algorithm.
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ITERATIVE ACCELERATION AND PHYSICALLY BASED
DISSIPATION FOR EULER EQUATIONS OF GASDYNAMICS
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D. J. Dorney and S. Lee, Graduate Students
Department of Aerospace Engineering
The Pennsylvania State University
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ABSTRACT

A new algorithm for the acceleration of explicit
iterative schemes for a system of partial differential
equations has been developed. The method is based on
the idea of allowing each partial differential
equation in the system to approach the converged
solution at its own optimal speed. The DMR
(Distributed Minimal Residual) method allows a
separate sequence of optimal weighting factors to be

used for each component of the general solution vector.

The acceleration scheme was applied to the system of
time-dependent Euler equations of inviscid gasdynamics
in conjunction with the finite volume Runge-Kutta
explicit time-stepping method with the Jameson's
Artificial Dissipation (AD) terms and the newly
formulated Physicnlly Based Dissipation (PBD) model.
The PBD model uses physical dissipation terms from the
Navier-~Stokes equations of gasdynamics, while
enfureing slip boundary conditions of inviscid
gasdynamics and utilizing spatially varying viscosity
coeificients. Tests were performed for various flow
conditions, including internal flow, flow around a
cylinder and flow over an airfoil with AD and PBD.
Using DMR, between 30% and 70% of the computational
efforts were saved in the subsonic compressible flow
calculations.

INTRODUCTION

When the Euler equations of inviscid gasdynamics
are solved using a central difference scheme (e.g., a
Runge~Kutta time-stepping scheme [1]), decoupling of
0dd and even grid points allows oscillations to
develop which cause instabilities in the numerical
algorithm. These oscillations can be damped by either
explicitly or implicitly adding a certain amount of
artifijcial dissipation [2].

Contempcrary artificial dissipation models for
central difference schemes usually consist of an ad
hoc combination of second order and fourth order
artificial (non-physical) dissipation terms [2]. The
Second order terms are used to damp oscillations in
shock regions, while the fourth order terms ensure
Monotonic convergence to steady state in smooth flow
regions [1,3,4].
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Most of the existing artificial dissipation
formulations are intuitive [5,1). The intuitive
formulations generate artificial dispersion terms (4],
which are partially neutralized by adding higher order
artificial dissipation terms. Only after a
trial-and-error process caan it be found that the
coefficients multiplying second and fourth order
artificial dissipation which are appropriate for very
low speeds are orders of magnitude smaller then the
coefficients that are appropriate for transonic speeds.
It has been shown that using different amounts of
second order and fourth order dissipation can produce
different numerical results that are often misleading,
especially in the case of transonic shocked flows with
separation [6,7].

It can be concluded that the intuitive
formulations for artificial dissipation which have
been favored in the past are only marginally reliable.
Their accuracy is still an open question [6,7,8,9,10]
since there is no known exact solution to the Euler
equations for a shocked flow with inviscid separation.
Thus, the existing artificial dissipation models are
subject to constant modificationa [4,11,12,13] i..
order to meet the requirements posed by different flow
speed regimes.

One objective of this paper is to introduc-
physically consistent [14] model for the dissipa‘: n
to be used in the numerical solution of Euler an’
Navier-Stokes equations. The other objective is to
introduce a new concept for convergence acceleration.

Several att-:mpts have been made in the past to
accelerate the iterative convergence of the
Runge-Kutta method [15]. They include local time
stepping (1], implicit residual smoothing (1],
enthalpy damping [!] and multigrid techniques {12,16].
Also, the extrapolation procedure based on the power
method and the Minimal Residual Method (MRM) were
applied {16] to the Runge~-Kutta method. In the MRM
(16}, a weighted combination of the corrections at
consecutive iteration levels are extrapolated and the
weights are chosen to minimize the Ly norm of the
future residual. Since the extrapolation was
performed without considering the properties of the
governing equations, it may upset the solution
procedure. The GNLMR (Generalized Non-Linear Min:m.l
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Residual) method [17,18,19,20] used the information

from the governing equations. It has been applieq
successfully to a number of single nonlinear partial
differential equations including the Euler equations.

Both MRM and GNLMR method use the same sequence
of optimal weights for the corrections to every
equation in a system. Since each component of the
solution vector has its own convergence speed, the
sequence of optimal weights should be allowed to vary
from component to component. Thus, the objective of
this paper is to present the theory constituting the
Distributed Minimal Residual DMR method and
todemonstrate the advantages of the new algorithm with
a number of computational examples.

EULER EQUATIONS OF GASDYNAM'CS

The two-dimensional Fuler equations in
conservative form and cartesian coordinates can be
written as

Q +E +F =0 (n

Here, the subscripts t, x, y represent partial
derivatives with respect to time, and to X, ¥y
coordinates, respectively. The general vectors

6. E, and F are defined as

p ] pu_ pv

- pu - puz* - pvu

Q = |[pv E =/ puv F = pv24p 2)
peg puhg | pvhy

where p,p,u,v,e, and h, are the non-dimensional values
of local density, thermodynamic pressure, x-component
of velocity, y-component of velocity, total mass-
specific energy and total mass-specific enthalpy,
respectively.

Equation of state for a calorically perfect gas
can be expressed as

1 (gu)z ( v)2
P= D (pe, - 5 (FBE + 2EEL)) (3)

where Y represents the ratio of specific heats. The
total mass-specific enthalpy, h,, is defined as

- B
h° e * P (4)

For the analysis of flows about arbitrary
geometries, the formulation can be generalized by
using, say, fixed body-fitted non-orthogonal
coordinates § and n, so that

€ = E(x,y) ; 0 = q(x,y) (5)
Thus, in the computational (£,n) domain, the two-

dimensional Euler equations in a strongly conservatijve
form become

Qt + EE + F“ =0 (6)

where
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P pU ‘ pv
pu pul+pg puv  + pp
1 1 1
Q= LA E = 5 pvU+pf F = plevW + py (7)
pe ph U ph v
[¢] [}
Here
3 |
(&,n) !
D=det (§212y . 1 (8)
(x,y) det (B(x,v) ch yq

Thus
D= H D = - ; j = -~ H =
{xl yn “x/ yE {y/D x'l qy/D xE (9)

The contravariant components U,V of the velocity
vector are related to the cartesian components u,v as
follows

’ S by ’ (10)
v = qx ny v
EXISTING ARTIFICIAL DISSIPATION MODEL
A typical stage of the multistage Runge-Kutta
(15] time-stepping scheme for the Euler equations
[1,4]) is
Q(n) - Q(o) +a ot (Eén-l) . F;n-l) . P) (i)

where Pl,j is the artificial dissipation [1,4} given
as

P =( ¢

s A
1,97 P25 P12, *

W - p
RSNV MIPLIR S

Calculation of the artificially dissipative terms
is done similarly (1,4) for all conservation laws.
For example,

£ e £
Pieo/2,5 " Civas2,5 Uess2,j
W g £t
€ied/2,5 Cies,y Uds; 7 855 QY a3
n - (D) n
Pi,gear2 " €1, 5e08/2 O, jess2
_ (W) nn - nn
i,5v0/2 i 508 Qjes T 8 5 Q) (s
where § = X1, The remaining terms are defined as
follows:
1
ai,j - —_— (15)
(D At )1.j
ot -0 -q (16
40/2,5 " Qen,5 " U, 4 )
£E - -
Yoo, 5 " Ueza, g T Vg, ¢ Y g an
ge -
Ql,j Qi*l,j ZQi,j + Qi-l.j (18)
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with similar expressions for the other terms of this
type. The coefficients of second and fourth order
artificial dissipation are defined [4,1},
respectively, as

2) - (2) €, €&
€i43/2,) Bl'j 3 max (vi.j H “i*d.j) (19)
(4) 4 2
ti*C/Z,j = max (0; K( ) l( )max (“E?j H vifb,j)) (20)

with similar expressions for the other terms of this
type, where x ~ 1/4 to 1/2 and x{4) = 1/128 vo 1/64
are typical constants [3). Here, the local
“"directional pressure sensor” is defined as

JEE | Pieng T %5t Pioy 21)
L Pyar,y P20 5 * Pl
Similarly
pi el 2p, . * P, .
“"", - 1,3+ i, i,j-1 (22)
SR P TIPS

PHYSICALLY BASED DISSIPATION (PBD) MODEL

Instead of using an intuitive non-physical
formulation for the artificial dissipation, we suggest
that the dissipation should be based on actual
physical dissipation, that is, it should be physically
consistent. We propose that to solve the Euler
equations of inviscid flow, one should actually solve
the complete Navier-Stokes equations of viscous and
heat conducting flow subject to perfect slip boundary
conditions and spatially varying coefficients of
viscosity [14]. Thus, the PBD model represents a
physically consistent formulation since the Euler
equations of inviscid gasdynamics represent an extreme
case of Navier-Stokes equations when the physical
dissipation becomes negligible.

The Navier-Stokes equations of unsteady, viscous,
laminar flow allowing for heat conduction (assuming
Fourier's law) expressed in non-dimensional form and
non-orthogonal curvilinear coordinates can be
summarized as

1 v v
+E_+F — (E, + F (23
Qt € n * Re ( £ n) )
wvhere Re is the Reynolds number and Ez, F: incorporate

physically dissipative terms due to shear viscosity,
secondary viscosity and heat conductivity. The
generalized viscous flux vectors sre

0 0
v 1 El v i Fl
E x| Eafs o= F, (24)
E; F3
where
Ey E2 Ex Ey Txx ‘xy (25)
RETRRE B B N MR Tyx Tyy
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and
EJ Ex Ey xx 1xy u
F = 1
3 M My yx 'yy
& Ey q
- q (26)
Ny ny

NHere, the components of the non-dimensional viscous
stress tensor expressed in terms of £,n coordinates

are:

Tk " u" (Equ . nxun Y + A (EyvE + qu“) (27)

Tay TP Qg nguy

and the non~dimensional heat conduction flux {is

+ EXVE + "xvn) (28)

S
qQ = (. T, + 0. T ) (29)
* (v-nm e X & M

Here, p" = 2y + A is the longitudinal viscosity

coefficient, M_ is the Mach number of the uniform flow
at infinity, Pr is the Prandt] number and T {s the
abaolute temperature. Since Rankine-Hugoniot shock
jump conditions are possible only [21) if Stokes
hypothesis (A/p = -2/3) i{s enforced, we use this
relation in actual computations.

In the PBD formulation, the shear viscosity
coefficient, p, is forced to vary throughout the
flowfield by means of an appropriate “sensor”. The
physical thermodynamic pressure, p, appears in the
equations of gasdynamics in the form of its first
derivative. Consequently, we have decided to use the
pressure sensor which is based on the streamwise first
derivative of the pressuce, that is,

C
B, . " (Upp *+ Vp ) =Cp (30)
i,j (u2 . v2)1/2 g n s
Here, C is a user specified constant. Using
numerical experimentation, we have found that 10 < C <

20 for the range of freestream Mach numbers 0.1 < M_ <

30. We have experimented with a number of different
“"sensors"” and found that the three-point average
streamwise first derivative of pressure gives a robust
scheme

tHy D3 (31)

Vi T Mgt R .

Obviously, this is just one among many possible
suggestions for the "sensor.” Other choices might be,

for example,

sensor based on divergence:
by mclve W (32)

sensor based on Mach number:

“1,j-pc(nzumnv)/| 9 3
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sensor based on MZ:

2 2 - .
LL.o= pCIMIU+MIV) /| (34)
u1.1 wet € n I

DISTRIBUTED MINIMAL RFESIDUAL (DMR) METHOD

GClobal residual of the finite volume method at time
level t can be expressed in two dimensions as

t. f g% as = -f| (g% . %f> ds (35

where S is the surface area of the single grid cell
and components Q, E and F of the generalized solution
vector are defined in Eq. 2. In the case of, say,
four-sten explicit Runge-Kutta algorithm one needs
four intermediate time steps to advance the solution
from the global time level (t) to (t+l).

We plan to use corrections from M previous consecutive
time levels to update the value of Q to (t+}) global
time level. Thus,

M
Qt*l . Q[ . Z " (36)
m
where
™o, m |
Yr 4y
m m
Y &
" = LB (37
Lo
and AT are the corrections for each of the t = 1,...,L
equations in the system (Eq. 2) at each of the
mal,..., M global time steps. Therefore, substituting

Eq. 36 in Eg. 35, the new local residual for the
single cell will be

M
m 3 t m
e g F @ . Y A as (38

m

ar-1z

41__11 [gE E (Qt

Using a Taylor series expansion truncated after the
first term results in

t+ gE m Q_ aF
r Z”[ac‘ ™ e S G e 9

Define the global residual R! as a sum of the squares
of the local residuals, that is,

* t

) (40)

:u
]
[ad e Ral

J
Z %)
j

wvhere I and J define the grid size and the superscript
* dccipnates the transpose. Then, the global residual
at the next global time level will be

13 M
1, t_ 8 8 n, 3 3F n *
%% {r g”{aa 5 )+ 5 (5g P as)
t . E (g_ (QE nm) N a oF .m
2 [| 3¢ Gq 5 (5g A1 ds) (a1)
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To minimize R“]. it is necessary to use the values of

Lh that satisfy
= Q (a2}

for all m and . Thus, from Eq. 4] and Eq. 42 it
follows that

1J o m
£ an_ 3 (9F an
i (' {][ ( < m) * 5 Ge ) =91 as)
i] uy wy
1M
3 8F n *
- ? § E i laE (-— ") e 5 (5 01 ) (43

ggan_),a_(aran
dn aQ
|3 |

)) ds}

[

L

where CLLI {a" & and & , is the Kronecker delta.
mn k k!

)

Notice that

L n
9E n n 3E 3N
3q n = g uq 3Q o (44)
q
and
L n
IF n n 3F an_
36 n = E “q 30 o (45)
Let
m £ an" 3 3F an ,
Ay = [[ ( Q au”) * o aQ =01 ds (46)
] l

Note that A" is not a function of w's. Then, Eq. (43)

t
becomes

1)  wq lwbL o N
T GH AT =Y T I TN Ay AT (47)
13 - - g 2
i i jnagqg
Let
nm 1 n.* m
cl =YY (A)A (48)
gt . q 3
i)
and
13 "
By =33 (7 Ay : (49)
i)
Then
ML n .nm m
JJw c/ =8 (507
ng 9 9 1
or
M n _.nm n nm n nm n _nm m
E () Cyp * 9p Cqy * 43 Cqp *ooeee vup G By O
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resulting in a system of LxM equations for the unknown
m

distributed optimal acceleration factors vy In the

case of two-dimesional Euler equations, L = 4. Thus,

we must solve the following system of 4xM equations in
m

order to determine the 4xM optimal values of vy

TNt R L R L Y w |
Cip . S S S Ca
TSt R TR L S Ml
€2 S35 G2 Gl S12 oo G
1ol 1 a2l Ml
€13 C33 S35 Gz Gz oo Cas
N .1 1l a2l Ml
cly o clb el el - Sl
21 21 21 21 L2l M1
Ch Cn S5 S| Shao Ca
IM° M’ M M’ ZM: : MA:
Cla 20 S Cual Cla oo Cun |
1 1
“) 8
1
ui Bé
1 1
vy By
1 !
u, | = | B (52)
2 2
¥y By
‘M h
L% ) L%

We have decided to use M = 4, that is, four
consecutive global time steps.

Thus, four sequences of four optimal values of w
were used in Eq. 36 and Eq. }7 to update the solution
to the next global time level.

RESULTS

The PBD and DMR concepts were applied to three
model test cases: external [low around a cylinder,
internal channel flow past a 10% circular arc, and
external flow around a NACA 0012 airfoil.

Figure | shows the 65x37 O-type computational
grid around a cylinder. VFtigures 2 and 3 show the
convergence histories using the existing Artificial
Dissipation (AD) model and the Physically Based
Dissipation (PBD) model with and without the

application of DMR with M_ = 0.2. Using DMR, the

aumber of iterations n:eded ton achieve the same level
of residual is reduced by almost 57%. The savings in
computational time is about "0N% (Figures &4 and 5)
using the AD and the PBD model with the application of

DMR at M_ = 0.2. The savings in cpu time can be seen

in Table 1, which presents the run times and residuals
for several of the test cases. In Table 1, ResO is
the starting residual and Res is the final residual.

Figures 6 and 7 show convergence histories using
the AD and the PBD with and without the DMR

model for the M_ = 0.4. This is a clear indication
that the present formulation of DMR is incapable of

CPU time savings as the locally sonic flow conditions
are approached.

At M_ = 0.] the compressible Euler equations
become a stiff system of partial differential
equations. Figure 8 shows convergence history using
the AD model with and without DMR. The la:ge CPU time
savings demonstrate the ability of DMR to treat stiff
systems of equations (Figure 9).

Figure 10 illustrates the 65x17 H-type channel
grid with a 10% circular arc bump on the floor.

Figures 11-12 show that at M_ = 0.5 using the au .«
the PBD model with the DMR ylelds about 50% savings

in CPU time. Figures 13 and 14 show that using AD or
the PBD model with DMR at M_ = 0.6 saves less than 502
in CPU time. The pressure contours using the AD and
the PBD models were identical at M_ = 0.6 (Figure 15).

Figure 16 shows the 65x33 C-type clustered grid
around a NACA 0012 airfoil. From Figure 17 it

appears that using the AD model and DMR at M_ = 0.63

dneq nnt accelerate convergence. From Figure 1R, the

it is clear that using the PBD model allows the DMR
to perform better even for this transonic shocked

o

flow case resulting in over 30% saving in the CPU.

Finally, the PBD model was compared to the AD
model by applying them to lifting and nonlifting
transonic flows. The 1279x33 C~type grid around a NACA
0012 airfoil is shown in Figure 19. Figure 20 shows

isobars using the AD model at M_ = 0.8, a = 0.0°.
Figure 21 shows isobars when using the PBD model at
M = 0.8, ac= 1.25%°. Again, the PBD model yields a
sharp shock.

CONCLUSIONS

A new physically based dissipation model has been
presented. Advantages of the new model include:

1. The sacond order dissipation used in the PBD
model represents actual physically
consistent dissipation from the Navier-
Stokes equations for compressible, viscous,
heat conducting fluid flow.

2. The PBD model does not contaminate the
continuity equation.

3. The PBD form ation maintains high accuracy.
Actually, fcr flows with stronger shocks,
the PBD formulation gives results comparable
to TVD schem.s.

s

The PBD concept can be applied to Navier-
Stokes equations, too. The higher order
physically consistent dissipation terms can
be based on dissipation due to radiation heat
transfer and heat generation due to chemical
reactions.

5. An Euler solver with the PBD formulation easilv
converts to a Navier-Stokes solver by fixing the
value of viscositv coefficient and by specifving
no-slip ‘boundary conditions or solid surfaces.
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A conceptually new method termed Distributed
Minimal Residual (NPMR) has been developed and
successtully applied to the acceleration ot an
explicit iterative algorithm for the numerical
solution of a nonlinear system of Euler equations
governing inviscid gasdynamics. The main idea of
using a separate sequence of optimal acceleration
factors for each of the equations in the system was
theoretically formulated a numerically proven on a
number of test cases. This means that the partial
differential equations governing mass, X-momentum,
y-momentum and energy conservation were accelerated
according to their own separate optimal sequences of
acceleration factors that have a common objective of
minimizing the global residual of the entire system at
each consecutive integration time step. DMR in its
present form works best for low Mach number flows when
the Euler equations become exceedingly stiff.
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ARTIFICIAL DISS IPATION METHOD
Cylinger
(M | NoDNLMR | ONLMR [ Res | Res0
01 | 177812 | 73563 3.0 | .0.7441330
0.2 | 177430 837.39 2.8 | -0.4233154
0.3 | 2094.92 1251.21 .37 | .0.2269985
04 | 2063.57 1835.53 45 | -8.1262550E-02
Airtoil

M [ No DNLMR | DNLMR Tﬂes | Reso

063140951 | 173521 | .28 | 1009068

PHYSICALLY BASED DISSIPATION METHOD

Cylinder

M | NoONLMR | ONLMR | Res | Reso

02 | 221295 | 159433 | -24 | -0.4341858
03 | 198646 | 154881 | -27 | -0.2433041
04 | 244275 | 2164490 | -30 | -0.1030241
Airfoil

M )'No DNLMR | DNLMR | Res

{ -0.78 | 09581382

| ResO

0631 261248 | 1529.06

Table 1.

Comparison of CPU time (sec) for Artificial
Dissipation (AD) and Physically Based
Dissipation (PBD)
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ABSTRACT

A new algorithm for the acceleration of
iterative schemes for the numerical solution of
systems of partial differential equations has been
developed. The method is based on the idea of
allowing each partial differential equation in the
system to approach the converged solution at its
own optimal speed. The DMR (Distributed
Minimal Residual) method allows a separate
sequence of optimal weighting factors to be used
for each equation in the system. The acceleration
scheme was applied to the system of time-dependent
Euler equations of inviscid gasdynamics in
conjunction with the finite volume Rational
Funge-Kutta (RRK) explicit time-stepping algorithm.
Using DMR without multigridding, between 302 and
70% of the total computational efforts were saved
in the subsonic compressible flow calculations.
DME method in its present version seems to be
especially suitable for stiff systems of
equations. It required less than double amount of

" storage of the original non-~accelerated algorithm.

INTRODUCTION

One of the successful, explicit methods usec
to solve Evler and Navier-Stokes equations
governing compressible flows subject to the
various flow conditions is the Rationail
Runge-Kutta (RRK) time-stepping algorithm [1,2].
It {s based on the finite volume technique with
2nd-lth order blended non-physical (artificial)
dissipation [1]. Several attempts have been made
to accelerate the iterative convergence of this
method. They include local time stepping [13],
implicit residual smoothing [1], enthalpy damping
(1] and multigrid techniques [3]. Alsoc, an
extrapolation procedure based on the power method
and the Minimal Residual Method (MRM) were applied

73] to the finite volume Runge-Kutta method
together with multigridding. 1In the MRM [3], a
weighted combination of the corrections at
consecutive {ieration levels {s extrapolated and
the weights are chosen to minimize the Ly norm of
the future residual. The extrapolation was
performed without considering the specific
properties of the governing equations. The GNLMR
(Generalized Non-Linear Minimal Residual) m-thod
{4,5,6,7) utilizes the information from the

governing equations. It has been applieg
successfully to a number of scalar linear and
nornlinear partlal differential equations.

Both MRM and GCNLMR method use the same values
of optimal weights for the corrections to every
equation in a system. Nevertheless, since each
component of the solution vector in a system of
equations has its own convergence speed, the
sequence of optimal weights could be allowed to
vary from equation to equation. The authors
believe that this concept underlying the
Distributed Minimal Residual (DMR) method is
sirilar to the general idea behind the
preconditioning techniques. With the
preconditioning, the eigenvalues of the system are
changed so that the different CFL (Courant-
Friedrichs-Levy) number can be used for each
characteristic variable. This paper presents the
theory constituting the DMR method and
demonstrates the advantages of the new algorithm
with a number of computational examples.
Aprlications of the DMR to the system of Euler
equations of inviscid gasdynamics are presented.
The formulation can be equally well applied to
other systems of differential equations and to
otner types of numerical integraticn algorithms.

NDENT EULER EQUATIONS OF INVISCID
cs

Tne system of time-dependent Euler equations of
gasiynamics in two-dimensional space can be
written in a general conservative {orm as

3. 2, 26
3% 3 T an o O ()

where the global solution vectors combining mass,
x-zementum, y-momentum and energy conservation

eguations are defined as

P oU
- 1 pu c. 1 pul + Exp
b ov D]ovy « £.r
pe o(eo« pit



pV
puV + np
Df{ovV + n
yp
o(eo‘ pv

Here, o, u, v, p, ey are the density, x and y
components of the velocity vector, thermodynamic
pressure, and mass-specific total energy,
respectively. 1In addition, U, V, &, n and D are
the contravariant velocity vector components,
non-orthogonal curvilinear computational
coordinates, and determinant of the Jacobian
transformation 3(§,n)/3(x,y), respectively.

The contravariant components U and V of the
velocity vector in the body-conforming (£,n)

coordinate system are given by

Ueg utEy (3

Y

- +
v n, v nyY (%)

The total energy per uni*t mass for a calorically
perfect gas is

e = ch + %(uz'vz) (5)

]

‘where ¢, is the specific heat at constant volume
iand T i{s the absolute temperature. The
‘determinant of the Jacobian geometric

‘D = g

transformation matrix is

y Cynx (6)

FINITE VOLUME RUNGZ~KUTTA TIMZ-STEPPING ALGORITHM

In the finite volume method [1], the
governing equations are integrated over each
computational cell {n the (E,n) computational
plane. With the help of the divergence theorerm,
the surface integral is transformed into a sum of
line integrals. These integrals are discretized
with the assumption that the fluxes are constant
along the cell faces. Each quantity at the cell
face is evaluated as the average of the values at
the neighboring cell centers (cell centered
scheme).

The cell centered finite volume method is
identical to the central difference scheme on a
uniform grid. It is known that the central
difference scheme produces odd-even decoupling.
To suppress this tendency,the artificial
c:ssipation terms are added to the discretized
equation [1]. The mixture of 2nd and uth order
artificial dissipation terms [1]) was used.

- + 7
aQ dEQ an (7)
where d is the artifjcial dissipation operator and
Q is the vector defined in Eq. 2. The two terms
on the right hand side of Eg. 7 are contributions
from the two computational directions. They can
be written [1] as:
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Tne terms on the right hanc siges of Lg. & are

similar [1]. For example,
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where the second and fourth order coefficlents
rultiplying the flux aerivative terms are fiow
azaptive coefficients. The scaling with the are:z
U and the local time step, &4t, is incluaed (&) to
correspond to the formulation of the Euler
equations in the transformed plane. A pressure
sensor {s introduced to locate regions requiring

large amounts of artificfal diszipatior. It is
based on the second derivative of pressure {1,3)
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The flow adaptive coefficients are then calculated
(1] as:

(2) (2)

€iers2s " K max(v1¢1j. Vij)
K@z
(&) ) (2)
€ia1/2 " max{0, (x ‘- ci*i/zj)]

(ny -
K = 1/256 (1)

The system of time~dependent Euler equations
i{s known to be of hyperbolic type anc¢ the boundary
conditions should be applied according to the
direction of the characteristics. t the inflow
and outflow boundaries, the incoming Riemann
invariant is specified and the outgoing Ri{emann
invariant is extrapolated from the interior points.
Also, the entropy and the tangentizl velocity are
prescrived at the {nflow. At the outflow, these
quantities are extrapolated from the interior of
the domain,
At the solid wall, the normal momentur egquation is
used to evaluate the wall pressure. The
contravariant veiocity component U at the ghost
cells inside the solid body i{s exirapolatec, while
the contravariant velocity component V is
reflected from the wall.

An explicit Runge-Kutta time-stepping [2,%)
scheme is used to evolve the solution in time.
The 4th order Runge-Kutta scheme is given by

QP . (12)
o) L gt - B (gl®) L g )
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where N is the discretizalion operalor of the
finite volume method. The artificlial dissipation
is evaluated at the beginning of each Runge-Kutta
global step and 1¢ was not updated during the
intermediate steps. Linear stabllity analysis
indicates that the explicit Runge-Kutta scheme is
stable {f CFL £ 2.8. If the grid spacing in (&,n)
plane is uniform &L = Lrn = )}, then the time step
is given [9] by

]
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where a {s the local speed of sound and the
combined time step [G] is

i Bt ot
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DISTRIBUTED MINIMAL RESIDUAL METHOD (DMR)

a
L£&~S residual of the finite volume methoc at
time level t can be expressed as

.
P )2

£

l

[f
ds = -} (—E + g%) ds (21)

ar
cr

where S is the surface of the single grid cell and
compenents Q, E and F of the generalized solution

-

vector are delinec in Eq. 2.

-we plan to use corrections from M consecutive time
;levels to upcate tne value of Q to (t+1) global
; time level. Thus,
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and Az are the corrections and m? are the weights

for each of the ='...,L equations in the system
(Eq. 2) at each of the m=1,..., M consecutive
global time levels. Therefore, upon substituting
Eq. 22 in Eq. 21, the new local residual for the
single cell will be
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Using a Taylor series expansion truncated af:er
the first term results {n
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Derine the global residual k' as a sum of the
sguares of th¢ local residuals, tiat s,

J
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i

where I and J define the grid slze and the
superscript * designates the transpose of an array.
Ther, the global residual at the next global time

level will be
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values of w? that satisfly
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for all m and L. Thus, from E¢. 29 and Eq. 28 it

follows that
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where 23—-{Lm 6 .1 anc¢ & is the Kronecker delta.
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Notice that
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Note that AT fs not a function of w's. Then, Eg.
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resulting in a system of LxM equations for the LxM
unknown optimal acceleration factors wr. In the

case of two-dimensionzl Euler equations, L = &.
Thus, we must solve simultaneously the following

system of UxM equations in order to determine the

4xM optimal values of “E
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We have decided to comblne four consecutive
time steps (M=l). Since the twodimensional Euler
eguations form a system that has four equations (L
= L}, these four sequences ¢f four optimal values
¢f w can then be used in Eg. 23 anc¢ Zg. 22 to
upzate the solution to the next global time level

L1,

The matrices 3Z/3Q anc¢ 2F/3Q that are needed for
evaluation of the coefficients in the above matrix
are given as:
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where h is the specific enthalpy per unit mass and
Y in the ratio of specific heats for a calorically
per{ect gas.

In addition to the computer memory reaquired
by the original nor-accelerated scneme [11,
additional memory is needed to implement the DMR.
If the grid points are IxJ and we use M global
consecutive time levels to update the solution,
then for the twe-dimensional problem the extra
memory requirement is approximately L x (2+M) x
(I-2) x (J-2) and for the three-dimensicnal Euler
equations the extra memory requirement is
approximately L x (3+M) x (I-2) x (J-2) x (¥-2).
In the two-dimensional case thi: represents
approximately 15C% increase and in the
three~dimensional case this represents
approximately 175% increase in memory requirement
over the original non-accelerated [1] algorithm.

Three different methods were tested for the
boundary condltions on the residuals in the
integrals of Eq. 35. The first method was to set
the residuals at the ghost cells to be zerc. The
second method calculates the residuals at the
ghost cells from the boundary conditions. The
third method extrapoliates the residuals from the
interior of the flowfield. It was found that the
third method gives the best results.

+7

RISULTS

All computations were performec cn & VAX
1" /BE50 computer in a singie precision mode. The
f.rst secuence ¢f tests of DMP was performed on
the internal two-cdimensional (L=L) flow problems
oy combir ‘¢ four consecutive global time steps
(M=4). This means that a 16x16 matrix (Eg. L%)
needs to be invertec. Figure 1 shows the
computational grid for a V0% thick circular bump
irn a two dimensional channel. Tne grid size is
€2x17 points. The calculations were startecd witr
uriferm filow and the DOME was applief ornce after
every 30 iterations. Figure 1 shows the
convergence histories of subsonic flow
calculations with Mg= 0.5. The number of
{terations needed to achieve the same level of
residual i{s reducec almost t - 60%. The
convergence with the DMR shcws smaller
oscillations than that of tne original [1] schere.
It is expected that this behavior continues to the
machine accuracy. The saving {n computational
time is about 50% for this test case.

The constant pressure contour plots of the
entire flow field for both non-accelerated finite
volume RRKE scheme and DMR accelerated finite
vulume RRK scheme are shown in Fig. U4 and Fig. 5,
respectively. The difference between the two s
not discernable {n these contour plots thus
confirming that DMR method does not adversely
influence the quality of the solution.

Results of the second test case are presented
in Figs. 6,7,8 and 9. The entire flow field is
subsonic with Mg = 0.55. For this test case, the
saving was almost Y40Z in CPU time. It is
ncticeable that the convergence history shows more
cscillatory behavior than for the case with M =
C.5. bknother subsonic (Mg = 0.6) test case was
tested and the results are shown in Figs. 10, 11,
72 ang 13 demonstrating that a considerable amourt
¢l computation effort was saved.

Figs. 14 and 15 show the convergence
tistorles for the transcnic shocked flow case with
M= 0.675 which is less than the flow choking
Mach numbe~ of this channel. Results i{ndicate
that with the DMR, the convergence rate is not
improvec.

Similar trends were observed when solving
Euler equations for a flow around a circie. An
C-type gric¢ consisting of 64x32 grid cells was
used. For a moderately compressible subsonic flow
(Moo= 0.3), DMR saves (Figs. 18 ang 19)
approximately 45% of CPU time. It generates
results (Fig. 20) that are practically
indistinguishable from the non-accelerated scheme.
when the critical free stream Mach number Mg = C.&
was used, Fig. 21 indi{cates and Fig. 22 confirms
that the DMR method {n its present form offers
practically no gain when compared with the
non-accelerated algorithm although the computed
surface Mach numbers (Fig. 23) are equally
accurate. Thus, both Ni's bump cas: and circle
case indicate that DMR method in its present
fecrrulation offers nc advantages at transonic
pzeds. On the other hand, the system of Euler
uations becomes stiff as the Mach number
reases, thus rapidly reducing the convergence
e of tne non-acceleratec scheme. Wher using Mg
.1 (an almost incompressible flow), Figs. 24
and 25 demonstrate that DMP offers over 70%
savings in the CPU time over the non-accelerated
scheme. ig. 26 incicates difference in the
computed su~face Cp values after 7200 iterations.
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for the different local

In order LO account
characteristic behavior of the transonic fiow, it
should be possible to use Cifferent ‘'sets of
welgnts for different regions of the flowfielc.
Alsc, tne artificial dissipation terms could be
incerporated in the formulation of the DMR., In
addition, the optimal frezuency of appiving the
DMZ needs t: e ifnvestigatec. In the present
investigatic , DMR was apglied by combining four
consecutive time steps after every thirty time
steps.

Notice that all numericel results were
obtalned without the standard acceleration
techniques such as explicit and implicit residual
smoothing, enthalpy damping, multigridding and
vertorization. These methods could be added te
further accelerate the algorithm.

CONCLUSIONS

h conceptually new method termed Distributed
Minimal Residual (DMR) has been developecd and
successfully applied to the acceleration of an
explicit finite volume {terative algorithm for the
numerical solution of a norlinear system of Euler
equations governing inviscid gasdynamics. The
main idea of using a2 separate sequence of optimal
acceleration factors for eash of the equations in
the system was theoretically formulated a
numerically demonstrated with a number of examples.
This means that the partial differential equations
governing mass, x-momentur, y-momentum and energy
conservation were accelerated according to their
own separate optimal sequences of acceleration
factors that have a common objective of minimizing
the global residual of the entire system at each
global time level. The method seems to cifer
significant time savings especially for stiff
systems cf differential eguations.
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INTRODUCTION

One of the successful, explicit methods wused to solve Euler and Navier-Stokes
equations governing compressible flows is the finite volume Runge-Kutta time-stepping
algorithm [1]. Several attempts have been made to accelerate the iterative convergence
of this method. These acceleration methods are based on local time stepping [1], implicit
rasidual smoothing [1], enthalpy damping [1] and multigrid technique. [2). Also, an
extrapolation procedure based on the power method and the Minimal Residual Methao
(MRM) were applied {2] to the Jameson's multigrid alporithm, The MRM has not been
shown to accelerate the scheme without multigridding. 1t uses same values of optimal
weights for the corrections to every equation in a system. 1|  each component of the
solution vector in a svstem of equations is allowed to have its own convergence speed,
then a separate sequence of optimal weights could be assigned to each equation. This
idea 1s the essence of the Distributed Minimal Residual (DMR) method [3] wnich is bused
1 on the General Nonlinear Minimal Residual (GNLMR) concept {4].

TIME-DEPENDENT EULER EQUATIONS
The system of time-dependent Euler equations of gasdynamics in a two-dimensional space

can be written in a general conservative form {1} as

ihal
+

b
+

EASR (1)
o

where the global solution vectors combining mass, §-momentum. n-momentum and

energy conservation equations are defined as
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Here, t, £ u, v, D, &, are time, density, x and v components of the velocity
vector, thermodynamic pressure, and mass-specific total energy, respectively. In addition,
U, V, ¢, nand D are the contravariant veloCity vector components, non-orthogonal

Sy 0

curvilinear computational coordinates, and determinant of the Jacobian of the

transformation, 3£ /& X,v), respectively.
DISTRIBUTED MINIMAL RESIDUAL (DMR) METHOD

Local residual of the fini- -volume method at the giobal time level t can be expressed as

a2

_orp & o o (BB, OF!
r‘-J,rddS~_ff(éE+m)cs (

where S 1s the surface of the single grid cell and the components Q', E' and F
are defined in Eq. 2. In the DMR, corrections from M consecutive time levels are used

to update the value of Q to (1+1) global time level. Thus,

N
Qt+]=Qt+Z o (4
where
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1
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Here, A™ are the corrections computed with the basic algorithm and u]"’

i

are the weichts for each of the  I=l....L equations in the svstem (Eg. 2) at each of the
m=l,..., M consecutive time levels. Therefore, the new local residual for the single grid

cell will be

t+l t+1
=1 o B, F 3
s (S s 7o) ds (&)

~

Using a Taylor series expansion of E'*! and F'"! in time and truncating it

after the first term results in
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Define the global residual R'™! at the global time level (t+l) as a sum of the

squares of t! ° local residuals, that is.

1 J .
Rul - Z E: (rul) (r“l‘) (8)

where 1 and J define the grid size and the superscript * designates the transpose. The
ehjective is to find optimum v:lues of L sequences of M values of u;’“ that will
minimize the global residual R'*! at the next global time le ¢l (1+1). To minimize

RY7 0t is necessary 1o use the values w™ that satisfy
3 4 3

t-1
a(;‘::n = 0 (9/\
|
for all m and . Thus, from Eq. 7, 8 and 9 it follows that
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and 6, is the Kronecker delta. Notice that
L
.()n = ﬁ n 2
Zq oSN hq (12)
Let
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Note that A]’“ is not a funztion of ws. Then, Eq. (10) becomes
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The result is a syvstem of LxM equations
M .
R O S S S N O S n = B" i
% ( 1 Cn Y C'.ll Y Csl * "y CLI ) 1 (16)

for the LxM unknown optimal acceleration factors u;'“. The DMR applied to the

finite volume scheme [11 in two-dimensional case needs approximately 150% increase and

in the three-dimensional case it needs approximately 175% increase in computer memory
over the original non-accelerated algorithm [!]. Boundary conditions on the residuals in
the integrals of Eq. 13 used extrapolation of the residuals from the interior of the
flowfield.

RESULTS

All computations were performed on a VAX 11/8550 computer in a single precision
mode. The first sequence of tests was performed on the internal two-dimensional (L = <.
flow problems v combining four consecutive time steps (M = 4). This means that a
16x16 matrix (Eq. 16) needs to be inverted. The test geometry was a 10% thick circular
half airfoil on a wall of a straight two dimensional channel. The H-type grid size was
€5x17 points. The calculations were started with uniform flow and the DMR was applied
once after every 30 steps performed with the original unaccelerated code {1]. Figures |
and 2 depict the convergence histories of flow calculations with My = 0.5 and M

= 0.675. For the entirely subsonic flow (N_ = 0.5) the number of itccations needed to

achieve the same level of residual is reduced almost bv 60%. while the saving in

Y




computationa! time is about 50%  Both figures indicate that DMR in its present \ersion
does not accelerate transonic flow (M, = 0.675) computations. Superimposed constant
pressure contours (Fig. 3) of the entire flow field for both the non-accelerated and the
DMR  accelerated  schemes  confirm  that DMR  method does not adversely influerce the
quality of the solution.

The secc d test case was a flow ar und a circle.  An O-type radially ¢! stered gric
consisting of 64x32 grid cells was used. We applied DMR after every 60 iterations by
combining four consecutive time levels. When the critical free stream (M_ = 0.4) was
used, Figs. 4 and S indicate that the DMR method in its present form offers practically
no gain. At very low free stream Mach numbers the system of Euler equations become:

3 very stiff, thus rapidly reducing the convergence ra:e of the non-accelerated scheme.
On the other hand, when using M, = 0.1, the DMR offers over 70% savings in the
CPU ume (Fig. 5) over the non-accelerated scheme.

Notice that all numerical results were obtained without the standard acceleration
) | techniques cuch as explicit and implicit residual smoothing, enthalpy damping.
multigridding and vectorization. These methods could be added to further accelerate the
aleorithm. The method seems to  offer subsiantial time savings when applied to
1' compressible flow codes at low Mach numbers.
CONCLUSIONS

A new method for the acceleration of explicit iterative algorithms for the numerical
solution of syvstems of partial difterential equations has been developed. The method is
based on the idea of allowing each partial differential equation in the system to approach
the converged solution at its own optimal speed while at the same time communicating
with the rest of the equztions in the syst:m. The DMR (Distributed Minimal Residuah

method computes a separate sequence of optimal acceleration factors to be used for each

7




component of the general solution vector. The acceleration scheme was applied to the
svstem of time-dependent Euler equations of inviscid gasdynamics in conjunction with the
finite volume Runge-Kutta explicit time-stepping algorithm. Using DMR without
multigridding. between 30% and "% of the total computational efforts were saved in the
subsonic compressible flow calculations. The DMR method seems to be especially suitable
for suff systems of equations and can be applied to other systems of differential
equations and other numerical algorithms.
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