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I. SUMMARY

GENERALIZED NON-LINEAR MINIMAL RESIDUAL (GNLMR)
METHOD FOR OPTIMAL MULTISTEPPING

George S. Dulikravich Penn State University
Department of Aerospace Engineering
233 Hammond Building
University Park, PA 16802

One of the extrapolation methods for the acceleration of iterative algorithms is the
Generalized Non-Linear Minimal Residual (GNLMR) concept. It utilizes a number of
intermediate steps when advancing the solution to the next time level. That is,
numerical error at the new time level can be expressed as a sum of intermediate
corrections where each correction is multiplied by a separate acceleration factor which
GNLMR optimizes. The method was originally developed by Kennon and Dulikravich and
then successfully generalized and applied by Huang and Dulikravich to a number of
problems governed by single non-linear partial differential equations. In addition, Huang
has obtained preliminary results where GNLMR was successfully applied to a system of
four nonlinear partial differential equations (mass conservation, two components of linear
momentum equation, and energy equation) governing unsteady two-dimensional flow of
compressible, rotational, inviscid fluid. This system is known as Euler equations of gas
dynamics. The basic integration algorithm was an explicit scheme that utilizes Runge-
Kutta time-stepping and finite volume formulation for spatial discretization. The
algorithm is known as Jameson's scheme and represents the fastest presently available
integration method for Euler equations of gas dynamics.

A new Distributed Minimal Residual (DMR) method for the acceleration of explicit
iterative algorithms for the numerical solution of systems of partial differential equations
has been developed by Lee and Dulikravich. The method is based on the idea of allowing
each partial differential equation in the system to approach the converged solution at its
own optimal speed while at the same time communicating with the rest of the equations
in the system. The DMR method belongs to a general class of the extrapolation
techniques in which the solution is updated using information from a number of
consecutive time steps in such a way that the L2 norm of future residual is minimized.
Unlike in other similar methods, each component of the solution vector is updated using
a separate sequence of acceleration factors. The idea of using different acceleration
factors for each component of a solution vector is similar to that of dynamic
preconditioning. This allows each equation to evolve at its own optimal convergence
rate. Moreover, the acceleration factors are determined from the governing equations so
that only a few consecutive solutions are required for a successful application of the
DMR method. This acceleration scheme was applied to the system of time-dependent
Euler equations of inviscid gasdynamics in conjunction with the finite volume Runge-
Kutta explicit time-stepping algorithm. Using DMR without multigridding, between 30%
and 70% of the total computational efforts were saved in the subsonic compressible flow
calculations. The DMR method seems to be especially suitable for stiff systems of
equations and can be applied to other systems of differential equations and other
numerical algorithms. Specifically, the DMR method was applied to an artificial
compressibility, explicit, Runge-Kutta time stepping algorithm for steady, incompressible,
Navilr-Stokes equations. A two-dimensional analysis computer code in a generalized
cu-vilinear coordinate system was developed and its accuracy has been compared to
known numerical solutions. The algorithm has been successfully accelerated using the
DMR method, resulting in 25%-70% reduction in computing time.
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II. STATUS OF THE RESEARCH

The objective of the research project was to provide a sound mathematical theory
for non-linear iterative acceleration schemes using multiple optimal acceleration factors
and to test the method on several non-linear differential systems. Particular emphasis
was placed on developing computer programs for accelerating the convergence and
enhancing stability of iterative solutions of the non-linear systems of partial differential
equations of fluid mechanics.

Derring the course of this research project, both analytical and software development
aspects were addressed. A general theory of optimal acceleration factors for the multi-
step iterative solution of systems of non-linear partial differential equations based on the
minimal residual concept was developed with the special emphasis on mixed-type ,yst.-ms
of partial differential equations. The new methods was tested on a variety of practical
examples governed by the compressible two-dimensional inviscid flow equations (Euler
equations) and viscous incompressible laminar flow equations (Navier-Stokes equations).
Subsonic and transonic flow fields were calculated for geometries including nozzles,
airfoil cascades, airfoil in an unbounded domain, and a driven cavity problem.

Two graduate students, Mr. Chung-Yuan Huang and Mr. Stephen R. Kennon, have
finished their doctorate degrees in the summer of 1987 at the University of Texas at
Austin, while supervised by Professor George S. Dulikravich from Penn State University
who continued to serve as an adjunct faculty with the University of Texas. Both Dr.
Huang and Dr. Kennon were partially supported by this grant and the preceding grant
from the AFOSR/NM with Professor David M. Young as co-principal investigator. This
fact was acknowledged in their doctoral dissertations.

Dr. Huang has applied GNLMR to a number of scalar nonlinear partial differential
equations and to a system of Euler equations of gasdynamics. He now works as a
postdoctoral Research Scientist with Professor J. Tinsley Oden at the University of
Texas. Dr. Kennon has developed a number of new ideas for finite elements in
gasdynamics including acceleration of iterative algorithms. He now works as an Assistant
Professor in the Aerospace Engineering Department of the University of Texas at
Arlington.

A new graduate research assistant at Penn State was supported with the grant
AFOSR-87-0121. Mr. Seungsoo Lee is a Ph.D. candidate who has developed the DMR
method and applied it to the explicit finite volume Runge-Kutta scheme (Jameson's
algorithm) for Euler equations of gasdynamics. He has derived all the governing
equations in a fully conservative nondimensionalized form suitable for discretization on a
general nonorthogonal curvilinear computational grid.

Recently, Mr. Lee has successfully implemented the DMR concept in an explicit
algorithm for the numerical integration of Navier-Stokes equations of laminar,
incompressible flows through nozzles and cascades.

Another Ph.D. candidate, Mr. Daniel J. Dorney, worked on the analysis of existing
numerical dissipation models and on physically based dissipation formulations for Euler
and Navier-Stokes equations of gasdynamics. Mr. Lee and Mr. Dorney worked together
on implementing DMR in both Euler and Navier-Stokes codes with the physically based
artificial dissipation.

A Visiting Research Scientist, Mr. Ren Bing, was involved on the project at the
Penn State Uni-ersity for six months. He performed a thorough survey of all Total
Variation Diminishing (TVD) type schemes for controlling numerical dissipation.
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Ill. LIST OF PUBLICATIONS AND PRESENTATIONS

1. Huang, C.-Y., and Dulikravich, G. S., "Fast Iterative Algorithms Based on Optimal
Explicit Time-Stepping," Computer Methods in Applied Mechanics and Engineering,
Vol. 63, August 1987, pp. 15-36.

2. Lee, S., Dulikravich, G. S., and Dorney, J. D., "Distributed Minimal Residual (DMR)
Method for Explicit Algorithms Applied to Nonlinear Systems," presented at the
Conference on Iterative Methods for Large Linear Systems, Austin, TX, Oct. 19-21,
1988.
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Based Dissipation for Euler Equations of Gasdynamics," presented at the ASME
WAM '88, Symposia on Advances and Applications in Computational Fluid Dynamics,
Chicago, IL, Nov. 28 - Dec. 2, 1988.
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for Euler Equations of Gasdynamics," AIAA paper 89-0097 presented at the AIAA
Aerospace Sciences Meeting, Reno, NV, January 8-12, 1989.

5. Lee, S. and Dulikravich, G. S., "Acceleration of Iterative Algorithms for Euler
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Incompressible Flows," accepted for presentation at the ASME International Gas
Turbine Conference, Toronto, Canada, June 4-8, 1989.
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Incompressible Navier-Stokes Equations," submitted for presentation at the 5th
International Symposium on Numerical Methods in Engineering, Lausanne,
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IV. PROFESSIONAL PERSONNEL INVOLVED:

1. Dr. George S. Dulikravich, Associate Professor
2. Seungsoo Lee, Graduate Research Assistant, Ph.D. Candidate.
3. Daniel J. Dorney, Lecturer & Graduate Student, Ph.D. Candidate.
4. Ren Bing, Visiting Research Scientist, P.R.C. (05/87 - 11/87).

V. ADVANCED DEGREES AWARDED

1. Chung-Yuan Huang, "Optimization of Explicit Time-Stepping Algorithms and
Stream-Function-Coordinate (SFC) Concept for Fluid Dynamics Problems," Ph.D.
Dissertation, University of Texas at Austin, May 1987.

2. Stephen R. Kennon, "Numerical Solution of Weak Forms of Conservation Laws
on Optimal Unstructured Trianglar Grids," Ph.D. Dissertation, University of
Texas at Austin, August 1987.

VI. INTERACTIONS (COUPLING ACTIVITIES)

1. Lecture delivered at the Computational Fluid Dynamics Branch/Institute for
Computational Mechanics in Propulsion of the NASA Lewis Research Center in
Cleveland, Ohio in May, 1987. Title: "New Concepts in Computational Fluid
Dynamics." Speaker: Prof. G. S. Dulikravich.

2. Dulikravich, G. S., "Optimization of Explicit Multi-Step Algorithms," paper
presented at the First International Conference on Industrial and Applied
Mathematics, Paris, France, June 29-July 3, 1987.
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3. A two-day workshop at the University of Rijeka, Rijeka, Yugoslavia in July,
1987. Title: "Methods of Computational Fluid Dynamics for Turbomachinery,"
speakers: Prof. G. S. Dulikravich and Prof. L. J. Hayes.

4. A one-day visit to Ecole Polytechnique outside of Paris, France in July, 1987 /
and a discussion concerning transonic potential flow computations and influence
of different artificial dissipation models. Prof. G. S. Dulikravich.

5. A one-day visit to Ecole Polytechnique Federale de Lausanne in Switzerland in
July, 1987. Discussion of mutually interesting research on prediction of water
flow fields in hydroturbines and the effects of artificial dissipation on the
results of hydrocodes. Prof. G. S. Dulikravich.

6. Invited lecture delivered at the Department of Aerospace Engineering,
University of Colorado, Boulder, CO in January 1988. Title: "Numerical
Dissipation, Grid Generation and Fast Iterative Algorithms." Speaker: Prof.
G. S. Dulikravich.

7. Invited one-day workshop (G. S. Dulikravich was the only lecturer) on "Inverse
Design and Special Topics in Computational Fluid Dynamics," United
Technologies Research Center, Hartford, CT, March 1988.

8. Lecture, Inst. for Computational Methods in Propulsion, NASA Lewis Research
Center, Cleveland, OH, May 1988.

9. Invited Lecture, Turboinstitut, Ljubljana, Yugoslavia, Sept. 1988.
10. Invited Lecture, Department of Mechanical Engineering, University of Texas,

Austin, TX, Oct. 1988.
11. Invited Lecture, Department of Aerospace Engineering, Ohio State University,

Columbus, OH, Oct. 1988.

VII. NEW DISCOVERIES, INVENTIONS AND PATENTS

Although original, this type of work is not patentable. Consequently, there were no
discoveries, inventions or patents resulting from this research project.

VIII. SUGGESTIONS FOR FUTURE RESEARCH

We also developed a DMR version of a transonic Navier-Stokes finite volume code
for two-dimensional shock/boundary layer interaction. In addition, Mr. Lee implemented
DMR in a two-dimensional implicit ADI (Beam-Warming) solver for incompressible Navier-
Stokes equations. He also developed a fully three dimensional DMR version of an explicit
code for incompressible Navier-Stokes equations. These three codes remain to be tested
especially when using DMR formulation with implicit algorithms.

Notice that all numerical results with the DMR method were obtained without the
standard acceleration techniques such as explicit and implicit residual smoothing, enthalpy
damping, multigridding and vectorization. These methods could be combined with the
DMR to further accelerate the iterative algorithms.

Furthermore, it would be highly desirable to study the effect of grid clustering, grid
size, grid orthogonality and grid structure on the DMR. In addition, domain partitioning
could be used with different DMR sequences in each domain thus leading to accelerated
parallel processing capabilities.
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NORTH-HOLLAND

FAST ITERATIVE ALGORITHMS BASED ON OPTIMIZED
EXPLICIT TIME STEPPING

Chung-Yuan HUANG
Department of Aerospace Engineering and Engineering Mechanics. The University, of Texas at Austin,

Austin, TX 78712. U.S.A.

George S. DULIKRAVICH
Department of Aerospace Engineering, Penn State University., rniversitv Park. P.4 16,802. '.S. A.

Received 9 May 1986
Revised manuscript received 26 September 1986

The Generalized Nonlinear Minimal Residual (GNLMR) method is shown to consistently acceler-
ate and stabilize iterative algorithms for solving nonlinear problems by using the optimized explicit
multistepping. The examples presented in this paper illustrate the beneficial effects of the optimized
multistep algorithm on the computational efficiency and the convergence rate as applied to several
nonlinear problems in fluid dynamics. The significant reduction in computing time when using the
multiple optimized acceleration factors is only negligibly weighed down by the computation costs due
to the requirements for additional computer storage.

. Introduction

The relaxation factor used in accelerating an iterative method to obtain the converged
solution plays the same role as the time step size in advancing the transient solution to the
steady-state solution for a time-dependent problem. The classical analyses for the stability of
numerical schemes for solving time-dependent problems neglect boundary conditions and
assume a uniform computational grid. Furthermore, these analyses are based on linear
equations with constant coefficients and the assumptions of small perturbations and ap-
plicability of Fourier analysis [1. 2]. However, Cheng [2] pointed out that the perturbation of
the error in the finite difference calculations may not be small and that the error in the finite
difference calculations may not satisfy the conditions for Fourier series expansion. In addition.
Mitchell and Griffiths [1] pointed out that the errors due to approximate or additional
boundary conditions are represented by modes which are not of Fourier type. Thus, the linear
stability analysis usually results in overly restrictive and even incorrect conclusions.

The numerical experiments performed by Kennon and Dulikravich [3] and Kennon [4]
using the NonLinear Minimal Residual (NLMR) method showed that the usual Courant-
Friedrichs-Lewy (CFL) number limitation for both linear and nonlinear problems can be
significantly exceeded. The NLMR method provided a simple analytic way to determine the

0045-7825/87/$3.50 © 1987. Elsevier Science Publishers B. (North-Holland)
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optimal acceleration factors for both linear and nonlinear problems. However, the elementary
time steps used for obtaining the corrections still follow the CFL number limitation concluded
from the linear analysis.

The generalized nonlinear minimal residual (GNLMR) method developed by Huang,
Kennon and Dulikravich [51 provided a practical analytical tool to determine the exact
stability conditions for both linear and nonlinear problems in arbitrary domains. If accurate
time evolution is required when solving an unsteady problem, the limitation on the time !tep
size can be analytically determined by using the GNLMR method. If transient behavior is of
no interest, the GNLMR method can be applied to determine the optimal value of the time
step size (optimal acceleration factor) to minimize the number of time steps (number of
iterations) for obtaining the steady-state converged solution.

The main objective of this paper is to investigate the effects of the optimized n. !tistep
algorithm on the computational efficiency and on the monotonicity of convergence rate of the
GNLMR method. The analytic investigation is confirmed on four nonlinear test cases: the
one-dimensional and two-dimensional viscous Burgers' equations and the two-dimensional
incompressible and compressible Stream-Function-Coordinate (SFC) equations [6].

2. Theoretical aspects

2.1. Multistep minimal residual method for linear problems

Let us first consider a well-posed linear initial value problem:

alp r=L9,-F infO

= on &, (1)

P q 0atr= .

Define

r t 1p - f (2)

as the residual vector at time level t. Here, I denotes the scheme-dependent discrete analog of
L, f is the discrete analog of F and also includes boundary terms.

Assume that M steps are used to iterate at each time level t. Using the Einstein summation
convention where repeated subscripts are summed, the multistep algorithm for (1) is then
defined as follows:

(P'+ (P + om"k" , m = 1, 2,. .. M , (3)
where

81=lq,'- f,

8, l-(n) > 1,(4)

are the corrections at step m. Coefficients o. are the corresponding relaxation factors to be
determined by minimizing the L2 norm of the residual at time level (t + 1). With the definition

" I • ' . m l t l I I I l l I I
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of residual vector (2) and the help of (3), the following relation can easily be verified:

t+ = r' +rw,16m =r + tomm. 1 t )

The L. norm of the residual vector at time level (t + 1) is then /

Ilrf*I - Ijr'' + 2w.m(r', 18,,,) + (18,. 1 ,ow n, m, n = 1.2 2.. Al. (6)

It should be pointed out that the boundary condition for the corrections 8,m in (3) is
apparently zero. However, the boundary conditions f(, the residual vector r' and corrections
8, in (5) can be determined either b, extrapolation from the interior points or simply by
setting t',em equal to zero. The residual norm will then converge to the norm of the truncation
error of the difference scheme if the first method is applied and to the machine accuracy if the
second method is applied.

The highest rate of convergence is possible when a). are the solutions of the following
system of linear equations:

aFlco, = 0 or (r', 18) + (16m, 18,),c = 0, (7)

where the rate of convergence 1' is defined as

F = -log(Jlr"' 11 / 11r'l:) . (S)

Multiplying (7) by o,, it follows that

(r', lm) Wm + (18, 18) tom o = 0. (9)

Subtracting (9) from (6) and using (7) results in

Ir' 1IIr- r---(r', 15.)w, = -(15,. l1j)wmto Wf( 8m)2 df <0. (10)

Thus, the residual norms for the multistep minimum residual method show a monotone
convergence behavior which guarantees the stability of the iterative scheme and produces the
highest rate of its convergence.

2.2. Optimization of the Euler scheme for nonlinear problems

For clarity, we consider two-dimensional problems and ( quations in conservative form only.
The extension to multidimensional problems and nonconservative equations is then
straightforward.

Twil conservative foiin of the governing equations for most engineering problems can be
written as:

=L,,N(, p,) - F,(1
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,%here the operators are

L a,/x. L. = r a/ a
/

and N' is the nonlinear differential operator in coordinates x,. Using the Euler one-step,
time-consistent, explicit scheme, the finite difference form of Il) can be written as:

= = + Arr' , (12)

where
IN (pt , , p -f (13)

is defined as the residual at time L'vel 1. Therefore, the residual at time level (t + 1) can be

expressed as

-1A" (( , t+1 , 1 (14)

After expanding the rionlincar discretized operator N" in a Taylor series, it follows that
r"- = {, ( ' €. ' ) + [(N/ '))r (N/')(r')

+ (aN"/< )(r')Ar + O(Ar7)}-f (15)

In summary.

t r' +a,(A7) p , I _- P (16)

where P is the degree of the nonlinearity of the operator N. Equation (16) indicates that the
res'dual at time level (t + 1) is a polynomial (henceforth called Residual Polynomial [31 or RP)
of the time step size, A-,. Thus, the L2 norm of the residual at time level (t + 1) can be
expressed as

IIr"'l112 = Ir'j12 + ,(r', ap)(Ar) + (ap,. a)(A,)"(AT)q . 1 -p , q _ P (17)

Equation (17) implies that the residual norm at time level (t + 1) is a positive polynomial
(henceforth called Minimizing Polynomial [3] or NIP) of the time step size A7. which is to be
determined. Thus, the convergence of scheme (12) will be guaranteed provided that A7 is
chosen in such a way that F > 0. The highest rate of convergence can be achieved only when
Ar is chosen as the optimizer of the minimizing polynomial (17) such that lir"* 11j is an
infimum. However, the determination of the optimizer needs special numerical techniques [7].
To avoid this difficulty, the linearized operator [3-5] of N" may be applied. If N" is truncated
to the first order in Ar (linearized operator), the approximate residual vector is

r* ' l ='r' + aA7, (18)
where

a, ,[(aN Iac )r + (+a )(r + (aN'a¢, )(r'),]. (19)
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Then, the approximate MP is

Ir*+ - = I lr'L - + 2(a,, r')Ar + (a,, a,)(Ar)2. (20) /

The optimal time step for the explicit Euler scheme can be easily found as

(Ar)op, = -(a,, r') / Ila, I . (21)

2.3. The generalized nonlinear minimum residual (GNLMR) method

The GNLMR method actually is the application of the methods described in the previous
sections. The multistep algorithm for nonlinear problems is defined as

,P ( + 6+ O( 2 ). m = 1.2. . (22)

where repeated indices are summed. The correction at the first step if defined as

,= r' = , N(, .'P) -f . (23)

The correction at step m > 1 is defined as

6,+ = _,(,N /8p')8,, + (8N"/84)(,,_), + (aN'a.)( ,,I. (24)

The coefficients of the higher-order terms of o,. can be obtained by Taylor-series expansion. If
only linear terms of w, are retained, the residual polynomial (RP) at time level (t + 1) can be
expressed by Taylor-series expansion as

= l t. N'W,,mf +n1.mp'.p, W1 , ),. -(f

+ I,{[(aN1'),. + (3NV/Ia4)(6,,,)+ + (,N~/a,)(8.,),], + O(w,,)}
(25)

Therefore, the minimizing polynomial (MP) at time level (t + 1) can be determined as

IIr"' 112 = 11r'll ' + g(w, ), (26)

where g(w,,) is a polynomial in w,. For a highly nonlinear differential equation. g will be a
complicated multivariable polynomial that depends on the total number of intermediate steps
M that were used and the degree of the nonlinearity of the differential operator N'. Thus, a
fast and accurate procedure of determining the optimizer of MP is required for the GNLMR
method to guarantee the highest rate of convergence. If the linearized operator of N' is used.
the method that was described in Section 2.1 can be applied to determine the approximate
optimizer of (26).

The GNLMR method requires (M + 1) times larger computer storage to save the correc-

(7



20 G.S. Duikravich, C.- Y. Huang. Fast algorithms based on time stepping

tions from M intermediate steps than does the single-step nonaccelerated scheme. Some
additional algebraic operations are also required to determine the coefficients of the MP which
are obtained by integrating the corrections over the entire domain. Thk storage requirement
of the GNLMR method is quite acceptable when compared with the excessive storage
required by the GMRES method [8. 9]. It should be pointed out that the GMRES method
also needs a large number of arithmetic operations not only for orthonormalizing search
directions but also for determining the optimal weighing parameters in updating the iterative
solutions.

3. Numerical examples

Four test cases were used to demonstrate the application, the computational efficiency, and
the monotone convergence behavior of the GNLMR method. Since it was found [5] that the
linearized residual polynomial still guarantees a relatively high convergence rate, it will be
used for all test cases. The first two cases representing the one-dimensional and two-
dimensional viscous Burgers' equation were solved by the time-dependent technique as
described in Section 2.

The last two test cases, the two-dimensional incompressible and compressible stream-
function-coordinate (SFC) equations (6] were solved in their steady-state and nonconservative
form. Liebman's or Gauss-Seidel's method was applied to determine the correction at each
intermediate iterative step m.

Details about the control parameters such as grid size, stopping criteria, and number of
acceleration factors used for each test case are summarized in Table 1. For all test cases.
comparisons are based on the relative improvement of computational efficiency that can be

Table I
Summary of the control parameters for numerical test cases

Max. Boundary conditions
no. of for residual and Stopping Grid

Test case w used corrections criteria size

Case 1: 8 Extrapolation from F -- 10 ,
ID Burgers' interior data 41
equation Zero 1 I0

Case 2: I Extrapolation from F - 0
2D Burgers' interior data 51 x 51
equation tcro IIri 10

Case 3: 8cr IirZe o Il 47 x II
2D incomp.
SFC equation

Case 4: 8 /c1 r'H 10 61 x I1
2D comp.
SFC equation

/0
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obtained using different total number of intermediate steps M. The relative improvement of
computational efficiency T, is defined as

17 , = T, T, . (27)

where T,, denotes the computing time spent for the nonaccelerated method and T, denotes
the computing time spent for the acceleration method based on the stopping criteria as
described in Table 1. The results are summarized in Fig. 9.

3.1. Burgers" equations

According to the notations defined in Section 2. the one-dimensional, viscous Burgers'
equation can be written as

aopaT = a/ax[N( p, ,] . (28)
where

N(p. ) +- ;p + (29)

and v is the viscosity coefficient. In this example v = 0.07 is used. The initial and the boundary

conditions are chosen as follows:

0(1, r) =O. (0. r) = I, (x, 0) = I - x. (30)

The two-dimensional, nonlinear, viscous Burgers' equation solved by Ghia et al. [10] was
chosen in the presented test case. According to the notations defined in Section 2, it can be
expressed as

au/ Or = /x[N'(u. u,)] + O/ay[N2(u. u,)] (31)
where

Nt(u, u.) =u,- Ay(1u2 --uU). N2(u~u,,)=u -,kx(1u:-uU). (32)

Here, A is a parameter and U is a constant. The values of U and A used in this test case are 0.5
and 2.0, respectively.

The FTCS scheme is applied to discretize (28) and (31). If the linearized form of operator
N is used with M steps at each time level t. the residual polynomial is truncated up to its first
order as

RP r' =r' + aw,,. , (33)
where

ae = a/ax[-,',, + P(5,)j (34)

for the one-dimensional case and

am = a/ax[(aN'Iau)8,,, + (aN'/8u,)(6,,,, + aay[(aN -/au)a,, + (aN'Iau,)(5,),]
(35)

/
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for the two-dimensional case. The corrections 5,. at each intermediate step m can be
determined by (23), (24). The minimizing polynomial MP for both cases is then

MP = IIr'112 + 2(r'. am)w,,, + (am , a,)oj,(O . (36)

Thus, the optimal acceleration parameters &Wm can be easily determined by solving the
following system of linear equations:

Amnaon = bm , (37)

where
A -n = (am, a,). (38)

bm = -(r', a,,), (39)

and Ann is a symmetric matrix of order M.
The boundary conditions of the residual and corrections in (33) were determined by

extrapolating them from the interior points (Case a) or by explicitly enforcing them to be zero
(Case b). The stopping criteria for all cases were such that the computations were terminated
when the asymptotic rate of convergence (Case a) or the norm of the residual (Case b)
approached the machine accuracy.

It must be mentioned that the norm of the truncation error represents the maximum
attainable accuracy of a numerical scheme and is obviously scheme-dependent. It can be seen
from Figs. 2(a) and 4(a) that under the same stopping criteria the residual norms for all cases
converge to the values corresponding to the respective norms of the truncation error.
Moreover, Figs. l(a) and 2(a) illustrate that the accuracy of the nonaccelerated scheme can be
improved by applying the GNLMR method.

Since the linearized operators were used in these two test cases, the convergence history
shown in Figs. 1-4 exhibit a similar behavior as in the linear problems as solved in our earlier
works [5]. It is obvious that if the GNLMR method is applied, the number of iterations and
the computing time required to achieve the asymptotic rate of convergence are considerably
lowered as compared to the nonaccelerated schemes (Figs. l(a), 2(a), 3(a) and 4(a)).
Moreover, the time required by the GNLMR method for marching the solution from the
asymptotic state to a fully converged solution is much shorter than with the nonaccelerated
method. The improvement of the computational efficiency that can be obtained using a
different number of intermediate steps M is summarized in Fig. 9.

Although the computational efficiency increases significantly with the increasing number of
intermediate steps M, the improvement becomes less pronounced and even shows a reverse
trend after approximately M = 5 in the one-dimensional case. The reason for this unexpected
result is that when using a multistep algorithm, an M x M matrix has to be inverted (directly)
at each time level, t. The number of operations and computing time required for the direct
inversion of a matrix grows very fast with the increase of the matrix size, thus countering the
benefits of adding more intermediate steps in the multistep procedure especially for one-
dimensional problems.

t , i'l I nmm nn lll
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LOG1O(RESNORM) VS. N(ITER), 1-0 BURGERS' EQUATION
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-. 0 NO ACCELERATION

-0,600-

Z
"--0. 900

0

-1.200 1

-1. Soo

0 150 300 450 600 750
NUMBER OF ITERATIONS

Fig. l(a). Residual norm versus the number of iterations. ID Burgers' equation.

3.2. Stream-function-coordinate (SFC) equations

The two-dimensional stream-function-coordinate (SFC) equation for an irrotational, invis-
cid, steady flow derived by Huang and Dulikravich [61 is given by:

(y' - -)y - 2yyvy,, + (1 + ")y* =0. (40)

where o, represents the compressibility and is equal to zero for incompressible flows. It is
defined as

o" = (p*a* /pa)2- =[(y + 1) - 1(y - 1)M*--) ,-, (41)

/3
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LOGIO(RESNORM) VS. N(ITER). 1-0 BURGERS' EQUATION
l I I I I I
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Fig. l(b). Residual norm versus the number of iterations. ID Burgers' equation.

where p and a denote the local density and the local speed of sound, respectively, and Y is the
ratio of the specific heats. The superscript terms denote the characteristic quantities of the
flow. It can be shown [6] that o is an implicit function of y, and y,, that is

(1 + y2)/y, =[( + I)0.v - ) (ri) - 2 1I[( - 1)o-I (42)

Let us define

ct = yr. c, = y , c3 =y ,
C4= ., c5 = y&& (43)

Then (40) can be rewritten as
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LOG1OCRESN ORM) VS, CP UTIME, 1-0 BURGERS' EQUATION
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Fig. 2(a). Residual norm versus the computing time. ID Burgers' equation.

N(c1, c2, CI, c4. c') = 0. (44)
or

C2 a'(C,, cII]c, - 2C'C'c, + (I + C)c~ =0. (45)

Assume that a uniform computational grid is used (both Ax and A~t' are constant) and
central differencing is applied to discretize all derivatives. The finite difference approximation
of the SFC equation can be expressed as

Y,= t(Y* 0- o/AX2 + (I + v/AVT2J fy" - oj)(Y' -. + /(1x

+(I +y2)( y,,,1 v-,,- )/(2AtP2 )-YYYJ (46)
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Fig. 2(b). Residual norm versus the computing time. ID Burgers' equation.

Equation (46) will be referred to as the iterative equation. Most iterative schemes for solving
(46) can be expressed as

Y1,'+= Y/ +co8iy, (47)

where t represents the iteration level, co is the relaxation factor, and 8,,s is the correction at
iteration level t. It is defined as

i +1 = - (48)
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LOGIO(RESNORM ) VS. N(ITER). 2-0 BURGERS' EOUATION
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Fig. 3(a). Residual norm versus the number of iterations. 2D Burgers* equation,

Here, ' is the temporary value of v at iteration level (t + 1) obtained by applying (46) with
any fundamental iterative scheme. In the presented studies, Liebman's method (W = 1) was
used as the fundamental iterative scheme and will be henceforth referred to as the nonacceler-
ated method. Assume that M steps are used in the GNLMR method. The solution is then
updated by using

Y,. = Y +  m = 1,2 ... M, (49)

1-7
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LPG1O(RESNORM) VS. N(ITER), 2-D BURGERS' EQUATION
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Fig. 3(b). Residual norm versus the number of iterations, 2D Burgers' equation.

where 3. are the corrections at each intermediate step r2. They are obtained by successivelN
applying Liebman's method. The optimal values of to., based on a linearized RP can be
determined by solving (37) with

r' =N(c. c;2, I3 C4, C5) Y, (50)

a, [(aN/ac,)(6j., + (aNlac,)(6j, + (N83(,,

+ (c3Nfac)(8.), + (aN/Oc5)(6, . (51)
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LOG10(RESNORM) VS. CPU TIME. 2-D BURGERS' EQUATION2
.
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Fig. 4(a). Residual norm 'ersus the computing time. 2D Burger,," equation

For the incompressible case. a uniform flow around a cascade of doublets was solved [6].
For the compressible case, a subsonic flow with free-stream Mach number M,. = 0.65 around a
NACA 0012 airfoil in a channel with height/chord ratio =3.6 was solved [6].

Since linearized operators were used in these two cases. and the boundary conditions for
the residual and corrections in (33) were set to zero. the residual norm will converge to
machine accuracy. Therefore, the stopping criteria for these two cases was chosen in such a
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LOGIO(RESNORM) VS. CPU TIME, 2-0 BURGERS' EQUATION
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Fig. 4(b). Residual norm versus the computinE time, 2D Burgers' equation.

way that as the residual norm approaches machine accuracy, the computation is forced to
stop.

The improvement of the computational efficiency is summarized in Fig. 9. Both cases show
that the computational efficiency is increased significantly by increasing the number of
intermediate steps M.

The numerical results for these two cases are summarized in Figs. 5-8. Both cases exhibit a

e) 1O
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LOGIO(RESNORM) VS. N(ITER) INCOMP. SFC EQUATION
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common feature that the monotonicitv and the rate of convergence increase with the increase
of the total number of intermediate steps NI. Most importantly. Figs. 6 and 8 show that with a
specified minimum computing time, the difference in the residual norms between the
nonaccelerated method and the GNLMR method varies between one to eight orders of
magnitude depending on the number of steps used in the GNLMR method. This fact strongly
proves the computational efficiency that can be obtained using the GNLMR method 181.
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LOGIO(RESNORM) VS. CPU TIME, INCOMP. SFC EQUATION
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Fig. 6. Residual norm versus the computing time. incompressible SFC equation

4. Concluding remarks

Four numerical test cases for nonlinear problems in fluid dynamics were presented to
demonstrate the applicability, computational efficiency, and monotone convergence behavior
of the GNLMR method. It was found that even though the theory of the GNLMR method is
based on the evolution problems and equations in conservative form. the method can be
applied equally successfully to the solutions of steady-state problems governed by equations in
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LOG1O(RES NORM) VS. N(ITER), COM4P. SFC EQUATION
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Fig. 7. Rcs,dual norm versus the number of iterations, compressible SFC equation.

nonconservative form. The results Aor all test cases show that when applying the GNLMR
method to nonlinear problems, the number of iterations and the corresponding computer time
are considerably lowered by increasing the number of intermediate time steps,

Since the explicit multistep algorithm was employed in developing the GNLMR method,
the advantage of accelerating the convergence rate of the iterative process is partially offset by
some extra costs. These are caused by the requirements for additional storage in order to save
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LOCI O(RESNORM) VS. CPU TIME, COMP. SFC EQUATION
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corrections obtained from each intermedia". step and by the additional arithmetic operations
to determine the coefficients of the minimizing polynomial. In practice, a maximum gain in
computational efficiency can be obtained with a moderate number (usually not more than five)
of intermediate steps. The requirement for additional storage linearly increases with the
number of intermediate time steps used and represents only a fraction of the computer storage
required by the GMRES method [8].
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AbZTRACE

A new algorithm for the acceleration of explicit iterative schemes for

the numerical solution of nonlinear systems of partial differential
equations has been developed. The method is based on the idea of allowing

each partial differential equation in the system to approach the converged

solution at its own optimal speed. The DMR (Distributed Minimal Pesidual)

method introduces a separate sequence of optimal weighting factors to be

used for each component of the general solution vector. The acceleration

scheme was applied to a highly nonlinear coupled system of four

time-dependent partial differential equations of inviscid gasdynamics in

conjunction with the finite volume Runge-Kutta explicit time-stepping

algorithm. Using DMR without multigridding, between 30% and 70% of the

total computational efforts were saved in the subsonic compressible flow

calculations. DMR method offers most time savings when applied to stiff

systems of equations.

Several attempts have been made to accelerate the iterative

convergence of this method. They include local time stepping, implicit

residual smoothing, enthalpy damping and multigrid techniques. Also, an

extrapolation procedure based on the power method and the Minimal Residual

Method (MR"') were applied to the finite volume Runge-Kutta method. In the

MRM, a weighted combination of the corrections at consecutive iteration

levels is extrapolated and the weights are chosen to minimize the L2 norm

of the future residual. The extrapolation was performed without

considering the properties of the governing equations. The GNLMR

(Generalized Non-Linear Minimal Residual) method utilizes the information

about the governing equations. It has been applied successfully to a

number of scalar nonlinear partial differential equations.

Both MRM and GNLMR method are based on using the same values of

optimal weighting factors for the corrections to every equation in a system.

Since each component of the solution vector in a system of equations has

its own convergence speed, the sequence of optimil weights could be allowed

to be different for each component. This concept is the essence of the DMR

method. Thus, for example, we combined corrections from four consecutive

time steps by introducing four weighting factors :o each of the four

equations. Hence, a set of sixteen algebraic equations needs to be solved

to determine the four sequences of four weighting factors in each of them.

The DMR method requires about 200% more storage than the original

non-accelerated algorithm.
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ABSTRACT

A new algorithm for the acceleration of explicit Most of the existing artificial dissipation
iterative schemes for a system of partial differential formulations are intuitive [5,11. The intuitive
equations has been developed. The method is based on formulations generate artificial dispersion terms (4[,
the idea of allowing each partial differential which are partially neutralized by adding higher order
equation in the system to approach the converged artificial dissipation terms. Only after a
solution at its own optimal speed. The DMR trial-end-error process can it be found that the
(Distributed Minimal Residual) method allows a coefficients multiplying second and fourth order
separate sequence of optimal weighting factors to be artificial dissipation which are appropriate for very
used for each component of the general solution vector, low speeds are orders of magnitude smaller then the
The acceleration scheme was applied to the system of coefficients that are appropriate for transonic speeds.
time-dependent Euler equations of inviscid gasdynamics It has been shown that using different amounts of
in conjunction with the finite volume Runge-Kutta second order and fourth order dissipation can produce
explicit time-stepping method with the Jameson's different numerical results that are often misleading,
Artificial Dissipation (AD) terms and the newly especially in the case of transonic shocked flows with
formulated Physiclly Based Dissipation (PBD) model, separation [6,71.
The PBD model uses physical dissipation terms from the It can be concluded that the intuitive
Navier-Stokes equations of gasdynamics, while formulations for artificial dissipation which have
enforcing slip boundary conditions of inviscid been favored in the past are only marginally reliable.
gasdynamics and utilizing spatially varying viscosity Their accuracy is still an open question [6,7,8,9,101
coefficients. Tests were performed for various flow since there is no known exact solution to the Euler
conditions, including internal flow, flow around a equations for a shocked flow with inviscid separation.
cylinder and flow over an airfoil with AD and PBD. Thus, the existing artificial dissipation models are
Using DMR, between 30% and 70% of the computational subject to constant modifications 14,11,12,131 1.,
efforts were saved in the subsonic compressible flow order to meet the requirements posed by different flow
calculations, speed regimes.

One objective of this paper is to introduc-
physically consistent [141 model for the dissipa: n

INTROOUCTION to be used in the numerical solution of Euler an

Navier-Stokes equations. The other objective is to
When the Euler equations of inviscid gasdynamics introduce a new concept for convergence acceleration.

are solved using a central difference scheme (e.g., a Several att'mpts have been made in the past to
Runge-Kutta time-stepping scheme [11), decoupling of accelerate the iterative convergence of the
odd and even grid points allows oscillations to Runge-Kutta method [151. They include local time
develop which cause instabilities in the numerical stepping (I], implicit residual smoothing [11,
algorithm. These oscillations can be damped by either enthalpy damping IlI and multigrid techniques [12,loj.
explicitly or implicitly adding a certain amount of Also, the extrapolation procedure based on the power

. artificial dissipation 121. method and the Minimal Residual Method (MRM) were
Contempcrary artificial dissipation models for applied (161 to the Runge-Kutta method. In the MRM

central difference schemes usually consist of an ad [161, a weighted combination of the corrections at
hoc combination of second order and fourth order consecutive iteration levels are extrapolated and the
artificial (non-physical) dissipation terms [21. The weights are chosen to minimize the L2 norm of the
second order terms are used to damp oscillations in future residual. Since the extrapolation was
shock regions, while the fourth order terms ensure performed without considering the properties of the
monotonic convergence to steady state in smooth flow governing equations, it may upset the solution
regions [1,3,41. procedure. The GNLMR (Generalized Non-Linear Minm,il
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Residual) method [17,18,19,201 used the information
from the governing equations. It has been applied p pU pV
successfully to a number of single nonlinear partial U puU+p FuV + p
differential equations including the Euler equations. 1 ] I

ofotmlwihsfrtecretost vr ep hBoth MRM and GNLMR method use the same sequence Q = v E -D F - pvv + pq (7)
of optimal weights for the corrections to every pe phU Li ypo

equation in a system. Since each component of the 2 o
solution vector has its own convergence speed, the
sequence of optimal weights should be allowed to vary Here
from component to component. Thus, the objective of
this paper is to present the theory constituting the X x

11

Distributed Minimal Residual DMR method and D( _ -todemonstrate the advantages of the new algorithm with 0 = det (x,y) ((xvl YC y (8)
a number of computational examples. det

EULER EQUATIONS OF GASDYNAN'CS Thus

The two-dimensional Euler equations in
conservative form and cartesian coordinates can be kx/D - Yq; qx/D = - yt ; /D = -x q/D - x (9)
Written as

The contravariant components U,V of the velocity
vector are related to the cartesian components uv asQt + Ex + Fy 0 (1) follows

Here, the subscripts t, x, y represent partial U F ] Fuderivatives with respect to time, and to x, y (10)
coordinates, respectively. The general vectors L = ux 1y (i

Q, E, and F are defined as

EXISTING ARTIFICIAL DISSIPATION MODEL

_ A typical stage of the multistage Runge-Kutta

[u u Fpv ( 15] time-stepping scheme for the Euler equations
- pl - p

2
.p] - . pvup I 1,41 is

Q E puv I F pv
2
+p (2)

Lpeoi puho] Lpvho Q(n) . Q(O) + Qn at (E(
n -

1
) 
+ F (n-) + p) (11)

where Pi,j is the artificial dissipation (1,41 given
where p,p,u,v,e

o and h, are the non-dimensional values as
of local density, thermodynamic pressure, x-component
of velocity, y-component of velocity, total mass-
specific energy and total mass-specific enthalpy, P i(Pt - 12
respectively. ,J+1/2" i,j-I,2

Calculation of the artificially dissipative termsEquation of state for a calorically perfect gas is done similarly [1,4] for all conservation laws.can be expressed as For example,

p (Y-1) -pe +(u (IV~)-)) (3) PC+ (2)
- P i+6/2,j ' Ci+6/2,j Qi+5/2,j

where Y represents the ratio of specific heats. The - C ( - . . ) (13)
total mass-specific enthalpy, ho, is defined as i+,/2,j i+6,j i+6,j i'j ij

h4 ep ((2)+

0 (4p i,j+6/2 =
ij 6/2 i,j+6/2

For the analysis of flows about arbitrary C4 (8 Q - ' . 1jgeometries, the formulation can be generalized by i,j+6/2 i,j+6 i,j+6 i,j i,(
using, say, fixed body-fitted non-orthogonal where 6 - !1. The remaining terms are defined ascoordinates C and q, so that follows:

- (x,y) - q(x,y) (5)

Thus, in the computational (C,n) domain, the two- (DJ (15)
dimensional Euler equations in a strongly conservative iJ
form become

Qi+6/2,j - Qi+6,j Qi'j (16)
Qt 

+ 
E Fq -0 (6) Qi+6,j * Qi+26,J - i+6,j 

+ 
QiJ (17)

where

ihr i+l,j j - 2Qi i-l,j (18)
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with similar expressions for the other terms of this and
type. The coefficients of second and fourth order
artificial dissipation are defined [4,11, E
respectively, as

(2) /2,j - ia (v . v .1) (19)
i+612J"9, a i,j ; +*,j

(4) - max (0; K
(4 )

-_ (2)max (v ; j )) (20) Fx Ey ql (26)i+612,j i,j ; +6,j - qx qyJ q

with similar expressions for the other terms of this Here, the components of the non-dimensional viscous
type, where K(2) - 1/4 to 1/2 and K

(4
) = 1/128 to 1/64 stress tensor expressed in terms of &,q coordinates

are typical constants 13). Here, the local
"directional pressure sensor" is defined as are:

-Pi ,j - 2p. ri-, + "' U + k (27)
VU - P l,+ 2p, * Pi-lJ (21) E +( yV+ qyVq

- pI(iyU 2p +* ) (2B)

Similarly 
*y

and the non-dimensional heat conduction flux is

-2p1  + Pi (2j Pi,j+l 2 Pi,-2 (2)ij i'j- qx I 2 ((xTt + qx T ) (29)
(Y-l)M Pr

PHYSICALLY BASED DISSIPATION (PBD) MODEL

Here, p" - 2p + X is the longitudinal viscosity
Instead of using an int'iitive non-physical

formulation for the artificial dissipation, we suggest coefficient, M is the Pach number of the uniform flow

that the dissipation should be based on actual at infinity, Pr is the Prandtl number and T is the
physical dissipation, that is, it should be physically absolute temperature. Since Rankine-Hugoniot shock

j ump conditions are possible only (21) if Stokes
consistent. We propose that to solve the Euler hypothesis (1/p - -2/3) is enforced, we use this
equations of inviscid flow, one should actually solve relation in actual computations.
the complete Navier-Stokes equations of viscous and In the PBD formulation, the shear viscosity
heat conducting flow subject to perfect slip boundary coefficient, p, is forced to vary throughout the
conditions and spatially varying coefficients of flowfield by means of an appropriate "sensor". The
viscosity (14]. Thus, the PBD model represents a physical thermodynamic pressure, p, appears in the
physically consistent formulation since the Euler equations of gasdynamics in the form of its first
equations of inviscid gasdynamics represent an extreme derivative. Consequently, we have decided to use the
case of Navier-Stokes equations when the physical pressure sensor which is based on the streamwise first
dissipation becomes negligible, derivative of the pressure, that is,

The Navier-Stokes equations of unsteady, viscous,
laminar flow allowing for heat conduction (assuming
Fourier's law) expressed in non-dimensional form and CP
non-orthogonal curvilinear coordinates can be pj . 2 + v2 1/2 (Upk + VpJ) - Cpsp (30)
summnarized as (u v

I ~Here, C is a user specified constant. Using
Qt * E f -e (E F ) (23) numerical experimentation, we have found that 10 < C <

20 for the range of freestream Mach numbers 0.1 < H. <

where R is the Reynolds number and Ev, Fv incorporate 30. We have experimented with a number of different
e C e "sensors" and found that the three-point average

physically dissipative terms due to shear viscosity, streamwise first derivative of pressure gives a robust
secondary viscosity and heat conductivity. The scheme
generalized viscous flux vectors are *i,j " (Pi-lj + pi,j ) /i-I,j 3 (31)

0 0 Obviously, this is just one among many possible
EI F| suggestions for the "sensor." Other choices might be,

S
= F (24) for example,E' E E2  ; F 6 F 2

E3  F 3  sensor based on divergence:

where Pi,j - C 1 , q (32)

F~ E F~ 1 F1 sensor based on Mach number:E I E2 'x 'y lxx Txy (25)
SI F2 fix 1y1 yx Cyy Pi,jPC(M U MV)/ q (33)
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I

sensor based on M
2
: To minimize Rt l, it is necessary to use the values of

w that satisfy
Pi'j 

= 
P(,(M U M 2V)/1 a34, )

n- aRt 0 (-2)

DISTRIBUTED MINIMAL RESIDUAL (DMR) METHOD awI

Global residual of the finite volume method at time for all m and 1. Thus, from Eq. 41 and Eq. 42 it

level t can be expressed in two dimensions as follows that

at at Ii * a a aFafl dS
r = j dS jj( ldS (3* (Ji ( Q an aQ u

where S is the surface area of the single grid cell

and components Q, E and F of the generalized solution I 3 a 0) a aF n) dSn

vector are defined in Eq. 2. In the case of, say. - I a O n a8 (S 
n 43)

four-sten explicit Runge-Kutt.a algorithm one needs 1 j n

four intermediate time steps to advance the solution m 
a  

aF am
from the global time level (t) to (t-l). a L E 5-n ( (Qa )) dS

ataQ aw" 8  a a~
tm

We plan to use corrections from M previous consecutiveI f

time levels to update the value of Q to (t+l) global Bn { m and isteKoekrdl
time level. Thus, where am - 6 and is the Kronecker delta.

Q . Qt m (3b) Notice that

m

where 1E ,n L an 44
n

aQ q kq 
(44)

m q aq
m - q

I 1 and

'2m  2
m  

L n
S(37) aF n n aF n (45)W q q 5aQ au

L 'L q auqq

m the corrections for each of the I I,1 L Let
and t are t. L e

equations in the system (Eq. 2) at each of the a aEanm a at as
mini.. ., M global time steps. Therefore, substituting Am - -) (E I (-L ) dS (46)

Eq. 36 in Eq. 35, the new local residual for the t' t a a a a aw[
single cell will be

m

Note that Am is not a function of w's. Then, Eq. (43)
t+l a m
r -- E (Qt 0 m F (Qt * 0 3m)) dS (38) becomes

m m

Using a Taylor series expansion truncated after the I J I J H L

first term results in I (r)A Z q A I
ij ijnq

t+l rt -M ( E mF I Let

C
n m

n

Define the global residual Rt as a sum of the squares qA (4A)

of the local residuals, that is, 1 ]

and

Rt t (r ) (r
t
) (40) IJ

ij Bm = (r
t
)
* 

Am (49)

where I and J define the grid size and the superscript
* -i' pnates the transpose. Then, the global residual Then

at the next global time level will be
M L
I I 

n C
nm " 5 (50)

i j n or

a aE m a F m n nm n nm n nm n nm m
* (r - ( a { (L Pm + ( m) dSJ (41) Z ("l Cl + "2 C21  (43 C31 .L CL8) = Bt  (51)
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resulting in a system of LxM equations for the unknown CPU time savings as the locally sonic flow conditions

are approached.

distributed optimal acceleration factors w1 . In the At M = 0.1 the compressible Euler equations

case of two-dimesional Euler equations, L - 4. Thus, become a ;tiff system of partial differential

we must solve the following system of 4xM equations in equations. Figure 8 shows convergence history using

m the AD model with and without DMR. The la:ge CPU time

order to determine the 4xM optimal values of w I savings demonstrate the ability of DMR to treat stiff

systems of equations.(Figure 9).

Figure 10 illustrates the 65x17 H-type chonnel

II 11 11 [I 21 Ml grid with a 10% circular arc bump on the floor.Cll 21 C31 '.1 1.. ....... 41
I: CI I: i" 21 M Figures 11-12 show that at M - 0.5 using the Au

12 22 32 42 12 C42 the PBD model with the DMR yields about 50% savings

C I11 C C Ci21 MI in CPU time. Figures 13 and 14 show that using AD or
13 C23 C33 C43 .!3 .. C43

1I I1 11 1I1 21 HI the PBD model with DMR at M_ 0.6 saves less than 50%

C14 C24 C34 44_ C14 .... C in CPU time. The pressure contours using the AD and

21 21 21 21 21 MI the PBD models were identical at M = 0.6 (Figure 15).
11 I 2 1 C3 1 C4 1 C 1 . .... C 41

Figure 16 shows the 65x33 C-type clustered grid

IM IM, I M" N"2M Md" around a NACA 0012 airfoil. From Figure 17 it

14 24 34 44 14 44 appears that using the AD model and DMR at M - 0.63

dis ner accelerate convergence. From Figure IR, the

IIit is clear that using the PBD model allows the DMR

w B to nerform better even for this transonic shocked

! Il flow case resulting in over 307% saving in the CPU.

S B 2  
Finally, the PBD model was compared to the AD

w I model by applying them to lifting and nonlifting

3 3 transonic flows. The 12nx33 C-type grid around a NACA

1 1 0012 airfoil is shown in Fig,,re 19. Figure 20 shows

4_- B4  (52) isobars using the AD model at M = 0.8, a = 0.00.

2 B 2 gFigure 21 shows isobars when using the PBD model at

L2i N • 0.8, a = 1.25c. Again, the PBD model yields a
'M4 B 4 sharp shock.

We have decided to use M 4, that is, four

consecutive global time steps.

Thus, four sequences of four optimal values of w

were used in Eq. 36 and Eq. 37 to update the solution CONCLUSIONS

to the next global time level.
A new physically based dissipation model has been

RESULTS presented. Advantages of the new model include:

I. The second order dissipation used in the PBD

The PBD and DMR concepts were applied to three model represents actual physically

model test cases: external flow around a cylinder, consistent dissipation from the Navier-

internal channel flow past a 10% circular arc, and Stokes equations for compressible, viscous,

external flow around a NACA 0012 airfoil. heat conducting fluid flow.

Figure I shows the 65x'3
3 

0-type computational

grid around a cylindet. igures 2 and 3 show the 2. The PBD model does not contaminate the

convergence histories using the existing Artificial continuity equation.

Dissipation (AD) model and the Physically Based

Dissipation (PBD) model with and without the 3. The PBD form, ation maintains high accdracy.

application of DNR with M 0.2. Using DNR, the Actually, for flows with stronger shocks,
the PBD formulation gives results comparable

number of iterations o.'eded to achieve the same level to TVD schem-s.

of residual is reduced by almost 5t1. The savings in

computational time is about ',)% (Figures 4 and 5) 4. The PBD concept can he applied to Navier-

using the AD and the T'sD model with the application of Stokes equations, too. The higher order
DMR at M - 0.2. The savings in cpu time can be seen physically consistent dissipation terms can

ae be based on dissipation due to radiation heat

in Table I, which presents the run times and residuals transfer and heat generation due to chemical

for several of the test cases. In Table 1, ResO is reactions.

the starting residual and R-'s is the final residual.

Figures 6 and 7 show convergence histories using 5. An Euler solver with the PBD formulation easily

the AD and the PBD with and without the DMR converts to a Nacier-Stokes solver by fixing thp

model for the M = 0.,. This is a clear indication value of viscosti coefficient and by specifving
no-slip'boundary conditions oi- solid surfaces.

that the present formulation of DMR is incapable of
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A conceptually new method termed Distributed 10. Hughes, T., "Calculations of 2-D Euler Flows
Minimal Residual (nMR) has been developed and

successfully applied to the acceleration of an With a New Petrov-Galerkin Finite Element Method,"

explicit iterative algorithm for the numerical Notes on Num. Fluid Mechanics, Vieweg-Verlag.

solution of a nonlinear system of Euler equations

governing inviscid gasdynamics. The main idea of 11. Raj, P. and Brennan, J., "Improvements to an

using a separate sequence of optimal acceleration Euler Aerodynamics Method for Transonic Flow

factors for each of the equations in the system was Analysis," AIAA paper 87-0040, January 1987.

theoretically formulated a numerically proven on a 12. Chima, R. V., Analysis of Inviscid and Viscous

number of test cases. This means that the partial Flows in Cascades with an Explicit Multiple-Grid

differential equations governing mass, x-momentum,

y-momentum and energy conservation were accelerated Algorithm," NASA TM 8363o, 1983.

a-ccording to their own separate optimal sequences of

acceleration factors that have a common objective of 13. Jameson, A. and Mavriplis, D.,"Finite Volume

minimizing the global residual of the entire system at Solution of the Two-Dimensional Euler Equations on

each consecutive integration time step. DMR in its a Regular Triangular Mesh," AIAA Journal, Vol. 24,

present form works best for low Mach number flows when No. 4, April 1986, pp. 611-618.

the Euler equations become exceedingly stiff. 14. Dulikravich, C. S., Dorney, D. J., and Lee, S. S.,
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ARTIFICIAL DIS5.LPATION METHOD
Cylinder

M INo DNLMR ONLMR ReAs Reso

0 1 1778.12 I735.63 -3.0 -0.7441330
0.2 1774.30 837.39 -2.8 -0.4233154
0.3 2094.92 t 251.21 -3.7 -0.2269995
0.4 2063.57 1835.53 -4.5 -8.1262559E-02

Airfoil

No 7F LMR DNLMR 1 Rs ResO

0.6! 49951 1735.21 -2.9 .1.00906

PHYSICALLY BASED DISSIPATION METHOD
Cylinder

M NoDONLM N Res ResO

0.2 2212.95 1594.33 -2.4 -0. 4341858
0.3 1986.46 1548.8 1 -2.7 -02433041
0.4 2442.75 2164.490 -3.0 -0.1030241// r

Airfoil

M No DNLMR DNLMR Res ResO

10.63, 2612.46 1529.06 j-0.78 09581382 Figure 1.

Table 1. Circlet Computational 0-type grid (65 x 33)

Comparison of CPU time (sec) for Artificial
Dissipation (AD) and Physically Based
Dissipation (PBD)

,.WDWU

-4 .0- -4

%V.'

0.0 200.0 4 00.0 600.0 800.0 1000.0 1.200. 30350070303. 20310. 73
Nunber of iteration o Time

Figure 2. Figure 3.

Circle: convergence history; AD; M.- 0.2. Circle: Convergence history; PBO; Km- 0.2.
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Figure 4. Figure 5.

Circle: CPU history; AD; M-- 0.2. Circle: CPU history; PBD; M.- 0.2.
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Figure 6. Figure 7.

Circle: Convergence history; AD; K.- 0.4. Circle: Convergence history; PBD; M.- 0.4.
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Channel: CPU history; AD; M.- 0.6.
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Channel: CPU history; PBD; 1- 0.6. Channel: Isobars; AD & PB5; Mw- 0.6.
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Figure 16. Figure 17.

NACAOO1.: Computational grid 165 x 33) NACAOOI2: Converqence history; AD; M. 0.63.
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Figure 18. Fgr 9

NACA0012: Convergence history; PBO; Ma,- 0.63. NACA0012: Computational grid 129 x 13)
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Figure 20. Figure 21.

NACA0012: Isobars; AD; M - 0.8;-C- 0.0* NACA0012: Isobars; PBD; M_- 0.8;.C- 0.00.

- C.

Figure 22. Figure 23.

NACA0012: Surface pressure coefficients; NACA0012: Surfacp pressure coefficierts;
AD; M- 0.8;.C- .25! PBD; M.- 0.8;.t- 1.25.
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ABSTRACT

A new algorithm for the acceleration of governing equations. It has been applied
iterative schemes for the numerical solution of successfully to a number of scalar linear and
systems of partial differential equations has been nonlinear partial differential equations.
developed. The method is based on the idea of Both MRM and GNLMR method use the same values
allowing each partial differential equation in the of optimal weights for the corrections to every
system to approach the converged solution at its equation in a system. Nevertheless, since each
own optimal speed. The DMR (Distributed component of the solution vector in a system of
Minimal Residual) metnod allows a separate equations has its own convergence speed, the
sequence of optimal weighting factors to be used sequence of optimal weights could be allowed to
for each equation in the system. The acceleration vary from equation to equation. The authors
scheme was applied to the system of time-dependent believe that this concept underlying the
Euler equations of inviscid gasdynamios in Distributed Minimal Residual (DMR) method is
conjunction with the finite volume Rational similar to the general idea behind the
Runge-Kutta (RRK) explicit time-stepping algorithm. preconditioning techniques. With the
Using DMR without multigrldding, between 30% and preconditioning, the elgenvalues of the system are
70: of the total computational efforts were saved changed so that the different CFL (Courant-
in the subsonic compressible flow calculations. Friedrichs-Levy) number can be used for each
DMR method in its present version seems to be characteristic variable. This pa per presents the
especially suitable for stiff systems of theory constituting the DMR method and
equations. It required less than double amount of demonstrates the advantages of the new algorithm
storage of the original non-accelerated algorithm, with a number of computational examples.

Applications of the DMR to the system of Euler
equations of inviscid gasdynamics are presented.

INTRODUCTION The formulation can be equally well applied to
other systems of differential equations and to

One of the successful, explicit methods usei otner types of numerical integration algorithms.
to solve Euler and Navier-Stokes equations
governing compressible flows subject to the
various flow conditions is the Rational TI!C--DEPENDENT EULER EQUATIONS OF INVISCID
Runge-Kutta (RRK) time-stepping algorithm [1,2L. GASDYNAMiCS
It is based on the finite volume technique with
2nd-4th order blended non-physical (artificial) The system of time-dependent Euler equations of
dissipation [1. Several attempts have been made gaslynamics in two-dimensional space can be
to accelerate the iterative convergence of this written in a general conservative form as
method. They include local time stepping [I],
implicit residual smoothing [13, enthalpy damping a
[1] and multigrid techniques [3]. Also, an - - - . 0 (1)
extrapolation procedure based on the power method 3 an
and the Minimal Residual Method (MRM) were applied where the global solution vectors combining mass,

wteo the finite vollume vectorst momithodmss
[3] to the finite volume Runge-Kutta method x-momentum, y-momentum and energy conservation
together with multigridding. In the MRM [3], a equations are defined as
weighted combination of the corrections at
consecutive i:eratlon levels is extrapolated and
the weights are chosen to minimize the L2 norm of u PU
the future residual. The extrapolation was u1 'U ( &p
performed without considering the specific Q E =
properties of the governing equations. The GNLMR D ov D 0vU - !* .r
(Generalized Non-Linear Minimal Residual) mrthod pe P(e p)UL

14,5,6,7] utilizes the information from the L
Vi3



-Pe terms on tne right hanc sioes of L;. 6 are
FpV 1 similar [i). For example,

SIPuV - nxP

F PoV - n p (2) W {2) -[ 0e o -p )V J i .1 / 2 j D A t i 1 / 2 j I- j i j .

Here, , u, v, p, eo are the density, x and y

components of the velocity vector, thermodynamic where the second and fourth order coefficients
pressure, and mass-specific total energy, rultiplying the flux derivative terms are flow
respectively. In addition, U, V, ,, n and D are adaptive coefficients. The scalinE wltr the area
the contravariant velocity vector components, D and the local time step, Lt, is incluoed C to
non-orthogonal curvilinear computational
coordinates, and determinant of the Jacobian correspond to the formulation of the Eulertransformation a( ,n)/ (x,y), respectively, equations in the transformed plane. A pressure

sensor is introduced to locate regions requiringThe contravariant components U and V of the
velocity vector in the body-conforming (C,n) large amounts of artificial disr:ipatior,. It is
coordinate system are given by based on the second derivative of pressure [1,9]

U - E u r yV (3) p PlI - 2p (10)x () vi " PI+lj + 2Pl Pi-lij

V - n u (4 jj -)

The total energy per unit mass for a calorically The flow adaptive coefficients are then calculated
perfect gas is [1] as:

e-cT , 22 (2) (2)
e vT + uv) (5) Ci+ 1 2 1 k max(V11i, Vij)

where cy is the specific heat at constant volume k(2) 1/4

and T is the absolute temperature. The
:determinant of the Jacobian geometric
*transformation matrix is ) - max(O, (k (4)_ - (2)

i+1/2j i+i/2J
D - Cx n y - y n x  (6 ) k ( )  z 1 /2 5 6 ( 1

The system of time-dependent Euler eouationsFINITE VOL.UME RUNGE-KUTTA TliE-STEPPING ALGORITHM~ Is known to be of hyperbolic type and the boundary

in the finite volume method D3, the conditions should be applied according to the
direction of the characteristics. At the inflowgoverning equations are integrated over each and outflow boundaries, the incoming Riemann

computational cell in the (E,n) computational invariant is specified and the outgoing Riemann
plane. With the help of the divergence theorem, invariant Is extrapolated from the Interior points.
the surface integral is transformed into a SUM of' Also, the entropy and the tangential velocity are
line Integrals. These integrals are discretized prescribed at the inflow. At the outflow, these
with the assumption that the fluxes are constant quantities are extrapolated from the interior of
along the cell faces. Each quantity at the cell the domain.
face is evaluated as the average of the values at At the solid wall, the normal momentum equation i5
the neighboring cell centers (cell centered used to evaluate the wall pressure. 7he
scheme). contravariant velocity component U at the ghost

The cell centered finite volume method is cells inside the solid body is extrapolated, while
identical to the central difference scheme on a the contrevariant velocity component V is
uniform grid. It is known that the central reflected from te wall.
difference scheme produces odd-even decoupling. An exlict unge-Kutta tme-stepping 2,13
To suppress this tendency,the artificial An e dt eoutt testeppin 2imed. sipaion erm ar addd t th disretzedscheme is used to evolve the solution In time.
deqsipation terms are added to the disoretzed The 4th order Runge-Kutta scheme is given by
artificial dissipation terms i1) was used. (0) Qn (12)

dQ - d Q * dnQ (7) Q(l) Q n _t (NQ(0 ) d (0)
7 - d" (13 )

where d is the artIficial dissipation operator and
Q is the vector defined in Eq. 2. The two terms Q(2) Qn - t (NQ(1) ( d(0))
on the right hand side of Eq. 7 are contributions " - -- (1')
from the two computational directions. They can Q(3) - cn -t (N2) d()
be written [I] as; 2 N Q(5

d Q - di+112j - di-1l2j ; d Q - d j+112 - dij_112 Q(4) Q n - At (NQ(3) - dQ(0 )) (16)

(8) Qn-1 (4) (17)
Q Q (17)

2
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where N is the discretizatior operator of tne Using a Taylor series expansion truncated afte
finite volume method. The artificial dissipation the first term results in
is evaluated at the beginning of eac Runge-Kutta
global step and it was not updated during the M __ (_
intermediate steps. Linear stability analysis r - [ F]
indicates that the explicit Runge-Eutta scheme is 
stable if CFL 

< 
2.8. If the grid spacing in (t-,r,)

plane is uniforr- Li - r - I, then the time step __ Lz)] d (2z
is given [9) by an a Q2

8 or

]' - ,% ": 't-* t f:" L(
r - r - J . ) ( L . o ' ) ] d - ( 2 6 )

am aQ an aQ

Define the global residual Rt as a sum of the
n * 2 2 1/2 (19) squares of th, local residuals, t at is,

R
t-  

(rt) ' 
(rt) (27)

where a is the local speed of sound and the

combined time step [9] is J

where I and J define the grid size and the
6t E 6t nsuperscript * designates the transpose of an array.

4t - CPL (20) Then, the global residual at the next global time

Y) level v1_11 be

DISTRIBUTED MINIMAL RESIDUAL METHOD (DMR) I t rr

-- residual of the finite volume method at I r I ;ri j n
time level t can be expressed as

fr ff 'r" I - 2E m.(
r

t  
dS - J ( - dS (21) on (@ ) dS {rt j

where S is the surface of the single grid cell and - r_ 0m)] ds} (28)
components Q, E and F of the generalized solution
vector are defined in Eq. 2. To minimize Rt

' , it is necessary to use the

We plan to use corrections from M consecutive time values of that satisfy
-levels to update the value of Q to (t-1) global
;time level. Thus, t+I

M- - (29)
M

Q Q [(22)
m for all m and L. Thus, from Eq. 29 and Eq. 28 it

follows that
where

irt 'f . nn,

iJ n o

m mLl f [L (I12! (LF E7') dS! 0 (30)
. . . ( 23) . m a

or

m I.
o are the orrectlons and w are the weights If'

for each of the LI- .... L equations in the system . )M, 2 (
'

. fn
a ~ *(sq. 2) at each of the rM-1. M consecutive Z & (-0 dS

global time levels. Therefore, upon substituting i n
Eq. 22 In Eq. 21, the new local residual for the
single cell will be fr

j jr
m I ( F 2L) - S.

M n . m

M ( 2 4 )
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where and 6 is the Kronecker delta. 11 11 C 1 I 2 i"M , K  6kir 6l C C C ..

S(32) 11 21 31 41 11 1 I
(32

Notice that 1H 11 11 11 21
C C C C ..

l n L ,n 12 22 32 42 12 42
RE n r nR ,(33)

L 'q T.. fn
q C I C C C C .... C

and 13 21 1143 12

n(3 ) C C C C ....c

Q q wq Q ,, n )14 24 34 44 14 . 44
q Z

Let ' 2 12- i12 22
m II m a a r C C C c C .... cA2.  -JJ ( Z --- * (- :-. dS (35) 11 21 31 ~ 4 j 11'4

t 25 . an

Note that Am is not a function of is. Then, Eq. " N "N 2
E31 beoIs P IM 1 M IV, 2M M4(31) becomes C C C C C .... C

3 I J M L 14, 24 34 4 1 4 4

i A j n q q A) A (36)

Let 1

W11

rmn m W11
c -q (A q A (37) 2 2

ij 1 P 1

and 33
1 B 1 (41)
4 4

1 1

Then

M L 4 Lq £~n = -£ (39)
n q q %( We have decided to combine four consecutive

time steps (M-4). Since the twodimensional Euler
or equations form a system that has four equations (L

- L), these four sequences of four optimal values
(n C (m;nC rim n ri nC*n of . can then be used in Eq. 23 and Eq. 22 to
I 1it 2 22. 3 3t L) L upate the solution to the next global time level

(40) t1.
resulting in a system of LxM equations for the LxM

n The matrices E/ Q and ?F/DQ that are needed forunknown optimal acceleration factors w In the evaluation of the coefficients in the above matrix
case of two-dimensional Euler equations , L - 4. are given as:
Thus, we must solve simultaneously the following

system of 4xM equations in order to determine the

4xM optimal values of m

4



C Cx RESLTS

Y- 1  
)u - uU (2-Y xu.U All computations were performed on a VAX

I/8550 oeputer in a single precision mode. The

E - 2 frst secuence of tests of DMb was performed on
- - -(u',v - v x v-(0-1)rvu tne internal two-dimensional (L-) flow problemsby" eombh( _ four consecutive global time steps

[0 -1)(u, .2,v Je (Y-1)u UL 0-4). Tnis means that a 16x16 matrix (Eq. 41)
" - h~xneeds to be inverted. Figure I snows the

computational grid for a 10% thick circular bump
In a two dimensional channel. The grid size is

0, E 11 pont5. The calculations were started wit,.
Y..Jcrr flo6 arc 'the D1R was appiiei once after

yU(' _) xv (Y-1)x every 30 iterations. Figure 1 shows the
convergence histories of subsonic flow

(42) calculations with Mao- 0.5. The number of
(2-Y) y 'U (Y-1){y Iterations needed to achieve the same level of

residual is reduced almost t 60%. The
hr -(Y-1)vU YU convergence with the DMR shows smaller
Y oscillations than that of tne original [I] scheme.

It is expected that this behavior continues to the
machine accuracy. The saving in computational

0 time is about 50', for tnis test case.
-1 x(2 The constant pressure contour plots of the

- u ) - uV (2-Y)nxu V entire flow field for both non-accelerated finite
volume RRK scheme and DMR accelerated finite

S -I u 2 V v -1 )n u vulume RRK scheme are shown in FIg. 4 and Fig. 5,
aQ - 2 y x y respectively. The difference between the two is

[ 2v 2  _ not discernable in these contour plots thus
[(Y-1)u -e' v hr -UY-l)uV confirming that DMR method does not adversely

irluence the quality of the solution.
n 0 Results of the second test case are presented
Y in Figs. 6,7,8 and 9. The entire flow field is

r u-"Y-1)r v )r-1) subsonic with M. - 0.55. For this test case, the
y x saving was almost 40% in CPU time. It is

(43) noticeable that the convergence history shows more
32-Y)r y' " oscillatory behavior than for the case with M -

0.5. Another subsonic (M.- 0.6) test case was

hr -(r -vV j tested and the results are shown in Figs. 10, 11,
Y 1and 13 demonstrating that a considerable amount

of computation effort was saved.where h is the specific enthalpy per unit mass and Figs. 14 and 15 show the convergence
T in the ratio of specific heats for a calorically his tories for the transonic shocked flow case with
perfect gas. Mw- 0.675 which is less than the flow choking

Mach number of this channel. Results indicate
In addition to the computer memory required that with the DMR, the convergence rate is not

by the original non-accelerated scheme ,12, improved.
additional memory is needed to implement the DMR.
If the grid points are :xJ and we use M global Similar trends were observed when solving
consecutive time levels to update the solution, Euler equations for a flow around a circle. An
then for the two-dimensional problem the extra 0-type grid consisting of 64x32 grid cells was
memory requirement is approximately L x (2+M) x used. For a moderately compressible subsonic flow
(1-2) x (J-2) and for the three-dimensional Euler (Xm- 0.3), DMR saves (Figs. 18 and 19)
equations the extra memory requirement is approximately 45% of CPU time. It generates
approximately L x (3-M) x (1-2) x (J-2) x (K-2). results (Fig. 20) that are practically
In the two-dimensional case th', represents indistinguishable from the non-accelerated scheme.
approximately 150% increase and in the Wnen the critical free stream Mach number M,- C.4
three-dimensional case this represents was used, Fig. 21 indicates and Fig. 22 confirms
approximately 175% increase in memory requirement that the DMR method in its present form offers
over the original non-accelerated [1 algorithm. practically no gain when compared with the

Three different methods were tested for the non-accelerated algorithm although the computed
boundary conditions on the residuals in the surface Mach numbers (Fig. 23) are equally
integrals of Eq. 35. The first method was to set accurate. Thus, both Ni's bump cas. and circle
the residuals at the ghost cells to be zero. The case indicate that DMR method in its present
second method calculates the residuals at the f'-Culation offers no advantages at transonic
ghost cells from the boundary conditions. The speeds. On the other hand, the system of Euler
third method extrapolates the residuals from the ecuations becomes stiff as the Mach number
interior of the flowflield. It was found that the decreases, thus rapidly reducing the convergence
third method gives the best results, rate of tne non-acceleratec scheme. When using M

= 0.1 (an almost incompressible flow)., Figs. 24
and 25 demonstrate that DMR offers over 70%
savings in the CPU time over the non-accelerated
scneme. Fig. 26 indicates difference in the
computed s,'-face Cp values after 1200 iterations.



1r, orcer to account for tht different local i~ ~ enron, S. F..,* arc -- '~.c

characteristic behavior of the transonic flow, 'it "Optimal Accelerat.4on Factors for Iterative

should be possible to use differelt'sets of Solution of Linear arnd Norlinear Differentil:

egtsfor different regions of the flowfield. Systems," Zorputer Methocs in knpliec

Astne a-tlficia: diss--natior. terms c2,_ bc Meonan!c n nI e:(

:*n.cc.-parated inr the formul;ation Of the DMF.. 1 n 357-367.

addition, the optimal frequency of app. Yig the . enosF,'Otml ceeatnFaos

DM$ ~eO5t.<e rveslgced. 'n the present for :tera.4 ve Sut c:. :_,Lnear and
investigatic * DM, was applied by combining four Nonlinear Differential Systems," kIAA Paper

consecutive tiesteps after every thirty time &5- '62, January 1965. Renc, Nevaca.
steps.

Fua., 'ennr , E. F.., anc.u-c
NoL:ce that all nrie-ical results were 0. -, "le:.eralizel Non-inear Miimral

obtained without the stand ard acceleration sdul(Lh) etofrIeaie
tecniuessuh a epliitand implicit residual Algorithms," Journal of Computational and

smoothing, enthalpy damping, multigridding and Applied Mathematics. 16, 1986, pp. 215-232.
ve'torization. These methods could be added to
further accelerate the algorithm. 7- Huang, C. Y., and Dulikravich, G. S., "Fast

CONCLUION'SIterative Algorithms Based on. Optimized
CONLUSONSExplicit Time-Stepping,' Computer tMethods in,

A cocepualv ne mehodApplied Mechanics and Engineering, 63, August
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Minimal Residual (DMR) has1 been developed and197,p.i36

successfully applied to the acceleration of an 8. Caughey, C. A. and Turkel, E., "Effects of
explicit finite volume Iterative algorithm for the Numerical Dissipation or. Finite-Volume
numerical solution of a nonlinear system of Euler Solutior- of Compressible Flow Problems, AIAA
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conservation were accelerated according to their
own separate optimal sequences of acceleration
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global time level. The method seems to offer
significant time savings especially for stiff
Fystems cf differential ecuations.
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I NTRODIJCTION

One of the successful, explicit methods used to solve Euler and Navier-Stoke

equations governing compressible flows is the finite volume Runge-Kutta time-stepping

algorithm [1]. Several attempts have been made to accelerate the iterative convergence

of this method. These acceleration methods are based on local time stepping [11, implicit

residual smoothing [1], enthalpy damping [I] and multigrid techniquc.: [2]. Also, an

extrapolation procedure based on the power method and the Minimal Residual Metho.

(MRM) were applied [2] to the Jameson's multigrid algorithm. The MRM has not heer:

shown to accelerate the scheme without multigridding. It uses same values of optimal

weights for the corrections to every equation in a system, 1 each component of the

solution vector in a system of equations is allowed to have its own convergence speed,

then a separate sequence of optimal weights could be assigned to each equation. This

idea is the essence of the Distributed Minimal Residual (DMR) method [3] wich is based

on the General Nonlinear Minimal Residual (GNLMT-,) concept [4].

TIME-DEPENDENT EULER EQUATIONS

The system of time-dependent Euler equations of gasdynamics in a two-dimensional space

can be written in a general conservative form [I] as

aQ +F

where the global solution vectors combining mass, E-momentum. 7?-momentum and

energy conservation equations are defined as

pU 1:+ puV+%

P eFPU FED P fUI + F- 1  PV ry
L eo + p)U 4e. + p)V



Here, t, P. u, , p, e. are time, density, x and y components of the velocity

vector, thermodynamic pressure, and mass-specific total energy, respectively. In addition,

U, V, ., , and D are the contravariant velocity vector components, non-orthogonal

curvilinear computational coordinates, and determinant of the Jacobian of the

transformation, 3aFr),'a,x,v), respectively.

DISTRIBUTED MINIMAL RESIDUAL (DMR) METHOD

Local residual of the fini" -volume method at the global time level t can be expressed as
=f 6 ff + OF')drt  Y fds -I' c7tsr
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where S is the surface of the single grid cell and the components Qt Et and F,

are defined in Eq. 2. In the DMR, corrections from M consecutive time levels are used

to update the value of Q to (t+l) global time level. Thus,

t+1 t (Q =Q + (4)

where
tM

fZr = (5)
,Z.L A L

Here, LM are the corrections computed with the basic algorithm and tj

are the weights for each of the I-I equations in the system (Eq. 2) at each of the

m=l,..., %I consecutive time levels. Therefore, the new local residual for the single grid

cell will be
. t + i

r t 1 = _ r ~ ( + It~
-- --) dS (6)

Using a Taylor series expansion of Et and Ft - ' in time and truncating it

after the first term results in

rt-I = r t 
_ a ff ( O~t Fp) + -- )dS (7)

• '-",. OQ N ( ff }s 9Q

.. ..........



Def ine the global residual Rt"l at the global time level (t+I) as a sum of the

squares of tfl local residuals, that is.

t1.

where 1 and J define the grid size and the superscript * designates the transpose, Thle

e''_jctive is to find optimum v lues of L sequences of M values of 1jm that w~ill

minimize the global residual R~' at the next global time le ~L- (t+l). To minimize

P" I. it is necessary to use the values t,, that satisfy

= 03

for all m and 1. Thus, from Eq. 7, 8 and 9 it follows that

NI a ' r

ZZ(r' - f'7 + fP I fl dS)'

2' + 0 (10)

where

__=(4tM 
(11

and 6 , is the Kronecker delta. Notice that

L (2

q

Let

Atm 
= ff (E ) (1 a ]d (13)

Note that A is not a function of Wis. Then. Eq. (10) becomes



I JML 1

EZZE (A'r) A'~ .0 Am (1(4)
1 jq q q

Let

I Ic nn =, (A r ' A: m  r3. W r) A m  f 5
q1 7 q I i I

The result is a system of LxM equations

Z (,, ' C Cnm + tn Cnm. .+  pCnm+ B m (16)
n 1 11 2 21 3 31 L LI I

for the LxM unknown optimal acceleration factors u' .  The DMR applied to theI

finite volume scheme [1] in two-dimensiona! case needs approximately 15IO increase and

in the three-dimensional case it needs approximately 175% increase in computer memory

over the original non-accelerated algorithm [1). Boundary conditions on the residuals in

the integrals of Eq. 13 used extrapolation of the residuals from the interior of the

flowfi eld,

RESULTS

All computations were performed on a VAX 11/8550 computer in a single precision

mode. The first sequence of tests was performed on the internal two-dimensional (L

flow problems by combining four consecutive time steps (M = 4). This means that a

16x]6 matrix (Eq. 16) needs to be inverted. The test geometry was a 10% thick circular

half airfoil on a wall of a straight two dimensional channel. The H-type grid size was

65x17 points. The calculations were started with uniform flow and the DMR was applied

once after every 30 steps performed with the original unaccelerated code [13. Figures I

and 2 depict the convergence histories of flow calculations with NIM = 0.5 and Mo

= 0.675. For the entirely subsonic flow (M, = 0.5) the number of itc.ations needed to

achieve the same level of residual is reduced almost by 60%, while the saving in



computational time is about 50%. Both figures indicate that DMR in its present versi':;

does not accelerate transonic flow (Mo 0.675) computations. Superimposed constant

pressure contours (Fig. 3) of the entire flow field for both the non-accelerated and the

DMR accelerated schemes confirm that DN R method does not adversely influel':- thtz

quality of the solution.

The secc J test case was a flow ar und a circle. An 0-type radially c, stered gric

consisting of 64x32 grid cells was used. We applied DMR after every 60 iterations by

combining four consecutive time levels. When the critical free stream (Moo = 0.4) was

used, Figs. 4 and 5 indicate that the DMR method in its present form offers practically

no gain. At very low free stream Mach number! the system of Euler equations become',

very stiff, thus rapidly reducing the convergence ra:e of the non-accelerated scheme.

On the other hand, when using M% = 0. 1, the DMIR offers over 70% savings in the

CPU time (Fig. 5) over the non-accelerated scheme.

Notice that all numerical results were obtained without the standard acceleration

techniques such as explicit and implicit residual smoothing, enthalpy damping.

multigridding and vectorization. These methods could be added to further accelerate the

algorithm. The method seems to offer substantial time savings when applied to

compressible flow codes at low Mach numbers.

CONCLUSIONS

A new method for the acceleration of explicit iterative algorithms for the numerical

solution of systems of partial difterential equations has been developed. The method is

based on the idea of allowing each partial differential equation in the system to approach

the converged solution at its own optimal speed while at th, same time communicating

with the rest of the eqL:tions in the syst.m. The DMR (Distributed Minimal Residual/

method computes a separate sequence of optimal acceleration factors to be used for each



component of the general solution vector. The acceleration scheme was applied to the

system of time-dependent Euler equations of inviscid gasdynamics in conjunction with th,

finite volume Runge-Kutta explicit time-stepping algorithm. Using DMR without

multigridding. between 39( and 7,, of the total computational efforts were saved in the

subsonic compressible flow calculations. The DMR method seems to be especially suitable

for stiff systems of equations and can be applied to other systems of differential

equations and other numerical algorithms.
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Figure 1. Convergence histories in terms of iteration numbers: non-accelerated

( -)and DMR accelerated ( _ ) algorithm: channel flow.

Figure 2. Convergence histories in terms of the CPU time: non-accelerated (-

and D.MR accelerated algorithm: channel flow.

Figure 3. Constant pressure contours for DN4R accelerated algorithm: transonic

channel flow with M = 0.675.

Figure 4. Convergence histories in terms of iteration numbers: non-accelerated

-( ) and DMIR accelerated (- ) algorithm: circle flow

Figure 5. Convergence histories in terms of the CPU time: non-accelerated (-

and DMR accelerated ( ) algorithm: circle flow
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