AVF Control iMumber: AVF-VS5R-024
: SZT-AVF-024

Adz COMPILER
VALIDATION SUNMARY REPORT:
Certificate Mumber: BBCAD711.09138
TELESOFT/Telel0GIC
TeleGen? SUN-3861 Ads Compiler
Version 1.0

AD-A204- 280

Completion of On-Site Testing:
' 88-0¢-07 :

-

Prepared By:

IABG m.5.H., Dept 527
Einsteinstrasse 20
8012 0ttobrunn
West Germany

Prepared tor:
Ada Joint Program Dffice
v -

United States Department of Defense .
Vashington, D.C. 20301-3081 DTIC I
Q, FEB 1419095 |

“H

- et g - — - tes - —

de iS5 & ;istered trazdemark of the United States Government
fda Jo:nt Drogran Office).

»

‘""bi‘.&il‘ftﬁiﬂi‘ibﬁ“é’fﬁ'ﬁﬁim X

; Appmvadfor' ‘ublie relearns:
| Distribution Unlimitec 89 2 13 084’
k]

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETEING FORM

1. REPORT NUMBER |2. GOVT ACCESSION NO. [3. RECIPIENT’S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Comgller Validation Summary Regort. 7 June 1988 to 7 June 1989
TELESOF /TeleLOGIC, TeleGen2 Sun-3 Ad

Compil eré Version 1.0, Intel 80386 in SUN 38631]6. PERFORMING ORG. REPORT NUMBER
system (Host and Target) (95 0L67 T|. c)ﬁggg)

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
IABG, _

Ottobrunn, Federal Republic of Germany.
9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

IABG, .

Ottobrunn, Federal Republic of Germany.

11. CONTROLLING QFFICE NAME AND ADDRESS 12. REPORT DATE

Ada ngnt Program Office p . 7 June 1988

United States Department of Defense K
Washington, DC 20301-3081 e R pm

14. MONITORING AGENCY NAME & ADDRESS(/fdifferent from Controlling Office) 15. SECURITY CLASS (of this report)

UNCLASSIFIED

IABG, 15a. géﬁksﬁféFICATION/DONNGRADING
Ottobrunn, Federal Republic of Germany.

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
TeleGen2 SUN-386i Ada Compiler, TELESOFT/TeleLOGIC, IABG, Intel 80386 in SUN-386i system under

SunOS, Version 4.0 (Host and Target), ACVC 1.9.

DD 0" 1473 0ITION OF 1 NOV 65 IS OBSOLETE
1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 SUN-386i Ada Compiler
Compiler Version: Version 1.0
Certificate Number: 88060711.09138
Host and Target:
Intel 80386 in SUN-386i system under SunQS, version 4.0

Testing Completed 88-06-07 Using ACVC 1.9

This report has been reviewed and is approved.

IABG m.b.H., Dept SZT
Dr. H. Hummel
Einsteinstrasse 20
8012 Ottobrunn

West Germany

s bt

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

int Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

CHAPTER 1

P b b pb gk

CHAPTER

~

~

CHAPTER

[S%)

WWWwwwwwwww

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

(S RN~ R J% I N I

e S SO U B LD N e

[TV N g

IMPLEMENTATION CRARACTERISTICS

CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES
DEFINITION OF TERMS
ACVC TEST CLASSES

................

CONFIGURATION INFORMATION
CONFIGURATION TESTED

......

TEST INFORMATION

TEST RESULTS
SUMMARY OF TEST RESULTS BY CLASS
SUMMARY OF TEST RESULTS BY CHAPTER
WITHDRAWN TESTS
INAPPLICABLE TESTS

.....

TEST, PROCESSING, AND EVALUATION MODIFICATIONS : '

ADDITIONAL TESTING INFORMATION
Prevalidation
Test Method
Test Site

.............

DECLARATION QF CONFORMANCE

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

* Accession For

. et e A
]
NI HWrNMN

[QS I,]
i
—

« e s a4 . e e e e

€ G G L) G W W WWw
1

OO AU B NP = e

| NTLS GRA&IL
i DTIC T4aB
o Unannounced

D Justivicatien e
;

Gy"
d
0

{ Py N,
¥ DAstr }ut.icn/
Avxilabilltv (‘ das
o ‘Avr‘l and/or

i Speoial

Dist

CHAPTER 1
INTRODUCTION

. ! v

This Validation Summary Report <(VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-18135A.
This report explains all technical terms wused within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.
. Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer iypes.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during wvalidation tfesting. The valication process includes submitting a
syite of standardized tests, the ACYC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler {0 the Ada Standard by zesting that the compiler oproperly
implements legal tlanguage constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted oy the Ada Standard. GSix classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

- { P

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler., Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted under the direction of the AVF
according to procedures established by the Ada Joint Program Office and
administered by the Ada Validation Organization (AV0). On-site testing was
caompleted 88-06-07 at IABG mbH at Ottobrunn, Federal Republic of Germany.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.5.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
availacle to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

QUSDRE

The Pentagon, Rm 3D-13%9 (Fern S{reet)
Washington DL 20301-3081

or from:
IABG w.b.H., Dept SIT
Einsteinstrasse 20

8012 Ottobrunn
West Germany

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Befe
I

nce Manual for the Ada Programming Language,
ANST/MIL-ST

re
/MIL-STD-1815A, February 1983 and 150 8652-1987.
2. Ada Compiler Vglidation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.
3. Ada Compiler Valid
198

tion Capability Implementers’ Guide, SefTech,
Inc., December .

ida
986

Emmn—

4. Adg Compiler Validation Capability User’s Guide, December 1986.

1-3

INTRODUCTION

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the

Commentary point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form Al-ddddd.

Ada Standard ANSI/MIL-S5TD-1815A, February 1983 and 150 8652-1987.
Apptlicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Adg Compiler Validation Procedures and
Guidelines.

AVO The Ada Vvalidation Organization, The AVQ has oversight
authority over all AVF practices for the purpose of
maintaining & wuniform process for validation of Ada
compilers. The AV0 provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. :n the context of this
report, a compiler 1is any language processor, including
cross-compilers, transiators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that wuses features of the language that a

taest compiler is not required to support or may legiftimateiy
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result,
Target The computer for which a compiler generates code.
Test A program that checks a compiler’s conformity regarding a

particular feature or & combination of reatures to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

fiies.,
Withdrawn An ACYC test found to be incorrect 3nd not used 0 <check
test conformity to the Ada tandard. 4 test may be incorrect

1-4

INTRODUCTION

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard 1is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution, {lass B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test s
passed if no errors are detected at compile time and the program axecutes
to produce 3 PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilat-on listing is examined to verify that every syntax opr
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each (Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message 1indicating the result when it s
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity regquirements placed on a compiler by the Ada
Standard for some nparameters--for exampie, <the number of identifiers
permitted in a compilation or the number ot units in a library--a compiler
may refuse to compile a Class D test and stiil be a conforming compiler.
Therefore, ‘¢ 3 (lass D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to vreject programs containing some
‘eatures 3ddressed by Class & tests during compilation. Therefore, a Class
£ test is rassed by a compiler if it is compiled success<sully and executes
9 oroguce @ PASSED message, or i+ it is rejecied by the compiler for 2n
allowable reagson.

1-5

INTRODUCTION

Class L tests check that incomplete or illegal Ada programs involving
muitipie, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. for
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by aill implementations in separate
tests. However, some tests contain wvalues that require the test to be
customizad according to implementation-specific values--for example, an
illegal file name. A list of +the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is wvalidated. A test that s
inapplicable for one wvalidation 1is not necessarily inapplicable for a
suybsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn “rom the
ACVC and, therefore, is not wused in testing & compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:

Compiler: TeleGen2 SUN-386i Ada Compiler, Version 1.0

ACVC Version: 1.9

Certificate Number: B8060711.09138

Host and Target Computer:

Machine: Intel B0386 in SUN-386i system
Operating System: Sun0S, version 4.0
Memory Size: 8 NB

2.2 IMPLEMENTATION CHARACTERISTICS

One o¢ *he purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
0 diféer, Class D and E tests specifically check for such implementation
differsnces. However, tests in other classes also characterize an
implementation, The tests demonstrate the fellowing characteristics:

2-1

CONFIGURATION INFORMATION

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests DSSAQ03A..H (8
tests), DS6001B, D6400SE..G (3 tests), and 029002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX_INT. This
implementation processes 64 bit integer calculations. (See tests
D4AQ02A, DAADO2B, D4AOCSA, and D4A0D4B.)

Predefined types.

This implementation supports the additional predefined types
LONG_INTEGER and LONG_FLOAT in the package STANDARD. (See tests
B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
vaiue exceeding SYSTEM.MAX_INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT_ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
£24101A.)

Expression evaluation.

Apparently some default initializat:on expressions for record
components are evaluated before any value is checked to belong to
a component’s subtvpe. (See test CIZ117A.)

Assignments for subtypes are performed with the same precision a&s
the base type. (See test C387128.)

This implementation uses no extra bits for extra precision. This
implementation wuses all exirg bits for extra range. (See test
£359034.)

Sometimes NUMERIC_EZRROR is raised when an initeger literal operand
in & comparison or membership test is outsige the range of the

Ll 4

pase tyre. (Se2 tessti C35232A.)

2-2

CONFIGURATION INFORMATION

Apparently NUMERIC_ERROR is raised when a literal operand in a
fixed~point comparison or membership test is outside the range of
the base type. (See test (45252A.)

Apparently underflow is gradual. (See tests C45524A..17.)

Rounding.

The method used for rounding to integer is apparently round to
even. (See tests C46012A..2.)

The method used for rounding to longest integer is apparently
round to even. (See tests C46012A..7.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4A014A.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds
STANDARD . INTEGER'LAST and/or SYSTEM.MAX_INT, For this
implementation:

No exception is raised when an array type or subtype with more
than SYSTEM.MAX_INT components is declared. (See test (36003A.)

No exception is raised when "LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test €36202A.)

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAX_INT + 2 components. (See test £362028.)

A packed BOOLEAN array having a 'LENETH exceeding INTEGER'LAST
raises no exception. (See test (S52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT_ERROR when the lengtih of a dimension
is calculated and exceeds INTEGER'LAST. (See test (52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengiths must match in array
stice issignments. This implementation raises no 2xception. (See
test £32103Y.)

2-3

CONFIGURATION INFORMATION

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression's subtype is compatible with
the target’'s subtype. In assigning two-dimensional array types,
the expression does not appear fo be evaluated in its entirety
before CONSTRAINT_ERROR 1is raised when checking whether the
expression’s subtype is compatible with the target’'s subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incompiete type with discriminants that is used in an
access type definition with 3 compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression’s subtype is
compatible with the target’s subtype. (See test C52013A.)

Aggregates.

In the evaluation of 3 multi-dimensional aggregate, aill choices
apoear to be evaluated before checking against the index type (See
tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT_ERROR is raised 1if a
bound in a nonnull range of a nonnull agoregate does not belong to
an index subtype. (See test E43211B.)

Recresentation clauses.
An implementation might legitimately place resirictions on
regresentation clauses used by some of the tests. I+ a

re:regentation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

2-4

CONFIGURATION INFORMATION

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests €35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests (355071..J,
C35507M..N, and CSSB16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are not
supported. (See tests C35508I..J and C3S508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. Allocated objects must have a minimum allocation size
of 16 bits. (See test A3900S5B.)

Length clauses with STORAGE_SIZE specifications for access types
are supported. (See tests AJ9005C and C879628.)

Length clauses with STORAGE_SIZE specifications for task types are
supported. (See tests A39005D and CB87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87862C.)

Record representation clauses are supported. An alignment of 16
for the record is reaquired. (See test A39003G.)

Length clauses with SIZE specifications for derived integer 1types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is not supported for procedures. The opragma
INLINE is not supported for functions. {Ses tasts LA30044,
LA30048, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/outsut.

The package SEQUENTIAL_IQ cannot bhe instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, E£2201D, and E£2201E.)

The package DIRECT_I10 cannot be instantiated with wunconstrained
array types and record types wiih discriminants without defaults.
(See tests AE2101H, EEZ2401D, and £:z2401G.)

Lt
[al]
(9]
L el
m
=
-t
-
-
—
-4
[
(¥)
(11

"W

IN_FILE ang OUT_fI
0221020 znd (£2:02

supcortzd for

LR

ioce
ast

@ W

LE ar
£.)

2-5

CONFIGURATION INFORMATION

Modes IN_FILE, OQUT_FILE, and INOUT_FILE are supported for
DIRECT_I0. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL_IO and DIRECT_IO.
(See tests CE21026 and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL_IO and DIRECT_I10. (See tests CE2106A and CE21068B.)

Overwriting to a sequential file does not truncate the file. (See
test CE2208B.)

An existing text file can be opened in OUT_FILE mode, can be
created in QUT_FILE mode, and can be created in IN_FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text 1/0 for reading only. (See tests CE3111A..E (5
tests), CE31148, and CE3115A.)

More than one internal file can be associated with each external
file for sequential [/0 for reading only. (See tests CE2107A..D
(4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct 1/0 for reading only. (See tests CE2107F..I (S
tests), CE2110B, and CE2111H.)

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file
cannot be deleted for SEQUENTIAL_IO, DIRECT_IO, and TEXT_I0. (See
test CE21108.)

Temporary seauential files are given names. Temporary direct
files ara given names. Temoorary ‘iles given names are not
deietad when they are closed. (See tests CE2!08A and CE2108C.)

Generics.

Generic subprogram declarations and bodies c¢an be compiled in
separate compilations.{See test CA101ZA.)

Generic unit bodies and their subunits can be compiled in separate
compitations. (See test CA301:A.)

Ganeric package declarations and hocies <can be compiled in
separate compiiations. (Ssa tests 302204C znd BC3205D. These
tests demonstrate *hat the compiler is able to compile generic
package declarations and bocies separateiy, but these tests are

[]
]
(o]

CONFIGURATION INFORMATION

not applicable for the reason given below and in 3.5.)

This implementation creates a dependence between 3 generic body
and those wunits which instantiate it. As allowed by AI-0048/11,
if the body is compiled after a ynit that instantiates it, then
that unit becomes obsolete.

2-7

[ORI O—

CHAPTER 2
TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 265 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating~point precision exceeding that supported
by the implementation and 0 executable tests that use file operations not
supported by the implementation. Modifications to the code, processing, or
grading for 20 tests were required to successfully demonstirate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY QOF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
_____________ A JBL L6l LBl Bl bl oo
Passed 105 1046 1607 17 11 44 2830
Inapplicable 5 S 246 0 7 2 268
Withdrawn 3 2 21 0 1 0 27
TOTAL 113 1083 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY QOF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
............ SR S S - S S : S S0 || N & S 20 ¥< IS U S
Passed 190 494 537 245 166 98 141 327 129 36 232 3 232 2830
Inapplicable 14 78137 3 0 0 2 0 8 0 2 0 21 265
Withdrawn 2 14 3 0 0 t 2 0 0 0 2 1t 2 27
TOTAL 206 586 677 248 166 99 14% 327 137 36 236 4 255 3122

3.4 VITHDRAWN TESTS

The #ollowing 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A £28005C C34004A €353502°P A35902C
C35904A £359048 C3ISA03E C35A03R C37213H
37213y €37215¢C €37218E €372156 C3721%H
c3st1o02c C41402A C433324 €45614C A74106C
€850188 C878048 CCi3118B BC3105A AB1AO1A
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of <eatures
that a compiler is not required by the Ada Standard %o support. OQthers may
depend on the result of another test <that is either inapplicable or
withdrawn. The applicability of a test to an implementation 1S consSidered
each time a validation is attempted. A test that is inapplicable <or one
validation attempt 1is not necessarily inapplicable for a subsequent
attlempt. Ffor this validation attempt, 265 tests were inapplicable for the
reasons indicatad:

C35S081..J (2 tests) and C35508M..N (2 tests) wuse enumeration
representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1). These
clayses are not supported by this compiier.

3-2

TEST INFORMATION

£35702A wuses SHORT_FLOAT which is not supported by this
implementation.

A39005B wuses length <clauses with SIZE specifications for
enumeration types which are not supported by this compiler.

A390056 uses 3 record representation clause which is not supported
by this compiler,

The following tests use SHORT_INTEGER, which is not supported by
this compiler:

€452318 €453048 €455028 C4535038 €45504B
C45504¢E C456118 C456138 C456148 €456318
$45632 B52004¢ C55B078 B55809D

C45231D requires a macro substitution for any npredefined numeric
types other than INTEGER, SHORT_INTEGER, LONG_INTEGER, FLOAT,
SHORT_FLOAT, and LONG_FLOAT. This compiler does not support any
such types.

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

£455310, (€45531P, (455320, and (485532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

C4A012B contains & variable, which is never used (dead variable).
The compiler legitimately does not generate code for operations
with this variable. As a result, at execution time neither of the
exceptions this program tests for are raised, and the test
produces a "failed"-message.

B86001D requires a opredefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSTEN, but TEXT_IQ is made obsolete by
this new definition in this impiementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT_IO.

CA2009C, CAZ2009F, BC3204C, and BC3205D contain instantiations of
generics in cases where the body is not available at the time of
the instantiation. As allowed by AI-00408/11, this compiler
creates 3 dependency on the missing body so that when the actual
body is compiled, the unit containing the instantiation becomes
obsolate,

CA3004E, EZA3004C, and LA3004A wuse the INLINE pragma for
cracequres, which is not sudpor<ed oy this compiler,

3-3

TEST INFORMATION

CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions,
which is not supported by this compiler.

AE2101C, EE2201D, and EE2201E wuse instantiations of package
SEQUENTIAL_IO with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

AE2101H, EE2401D, and EE24016 wuse instantiations of package
DIRECT_I0 with wunconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

CE2107B..E (4 tests), CE2107G..H (3 tests), CE21108B, CE2111D,
CE2111H, CE3111B..E (4 tests), and CE3114B, are inapplicable
because multiple internal files cannot be associated with the same
external file, The proper exception is raised when multiple
adccess is attempted.

The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
€45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (13 tests)
€45524L..2 (15 tests) €45621L..2 (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a lengtn clause to aiter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; ana
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn’'t anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 16 Class B8 tes*s, 3 Class C tests, and 1
Class ¢t test.

3-4

TEST INFORMATION

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B27005A B71001E B71001K B71001Q 871001V
B971014 B97101E BA1101C BA3006A BA3006B
BA3NNT7E BA3008A BA3008B BA3013A

For the following class B and E tests a “PRAGMA LIST(ON);" was inserted at
the beginning of the program in order to have a full compilation listing
produced. If a "PRAGMA LIST(ON)}" is given anywhere in a program source the
compiler assumes that the compilation listing is to be suppressed until the
“PRAGMA LIST(ON)" appears in the program source, even if the compilation
was started with full listing option. The AVO regards this interpretation
0of the Ada Standard as unique and announces further discussions on the
interpretation of PRAGMA LIST.

BZ8001R B2B0OO1V £28002D
Tie following class C tests were modified for the reasons indicated:

£45651A requires that the result of the expression in line 227 be
in the range given in line 228; however this range excludes some
acceptable results. This implementation passes all other checks
of this test, and the AVO ruled that this test is passed.

C46014A contains a variable, that is never used in the oprogram.
To demonstrate an acceptable behavior of the test a line "86.5"
was inserted into the source of C46Q014A:

“I1F IDENT_INT (I1) = 0 THEN COMMENT ("I1 = 0™); END IF;".

Vith this modification the test passes.

£96001A assumes that DURATION'SMALL >= SYSTEM'TICK; however, the
Ada standard does not require such a relation. This
implementation executes delay statements with greater accuracy
than CALENDAR'CLOCK <can resolve, and so the check on line 97 may

arbitrarily fail or not fail. This implementation passes all
pther <checks of this test, and the AVO ruled that the test is
passed.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the SUN-388i Ada Compiler was submitied o the AVF by the applicant for
reyisy, dnaiysis of ‘these results demoncsirated *hat the compiler

succecsseylly passed a'l applicable tesis, and *he comoilar 2xhibited the
exgect2s pehavior on 2ail inapplicaple tests.

3-5

TEST INFORMATION

3.7.2 Test Method

Testing of the SUN-386i Ada Compiler using ACVC Version 1.9 was conducted
at the site of IABG in Ottobrunn, West-Germany, by a validation team from
the AVF. The configuration consisted of a SUN-386i host operating under
Sun0S, Version 4.0.

A1l tests except for the withdrawn tests and tests requiring unsupported
floating-point precisions were copied by TelelLOGIC personel from another
386/Unix-machine to the SUN-386i computer via Ethernet for prevalidation.
The same set of tests was taken for the validation run, tests being checked
for correctness after the wvalidation run. Tests that make use of
implementation-specific values were customized before being downioaded.
Tests requiring modifications during the prevalidation testing were
modified on the SUN-386i after the tests werde downloaded.

The full set of tests was compiled and linked on the SUN-386i, and all
executable tests were run on the SUN-386i. The source code of the tests
and the results produced were transferred via Ethernet to an TABG VAX
computer, from this computer the tests and the results were checked and
archived on magnetic tape.

The compiler was tested using command scripts provided by TelelOGIC AB and
reviewed by the validation team. The compiler was tested using the
following option settings:

Qption Eifect
-y putput verbose progress messages
-1 generate interspersed source-error listing

(B tests only)
- produce executable code for <{main_unit>
(non B non family tests only)

Tests were compiled, linked, and executed (as aporoprigte) using a sSing.#
host computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
by the validation team were also archived.

3.7.3 Test Site

Testing was conducied at IABG mbH at Qttobrunn, Federal Repubiic of Germany
and was completed on B88-06-07.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

TeleLOGIC AB has submitted the following Declaration of
Conformance concerning the SUN-386i Ada Compiler.

DECLARATION OF CONFORMANCE

Compiler Implementor: TELESOFT/TeleLOGIC
Ada Validation Facility: IABG, Munich, West-Germany
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: SUN-386i Ada

Version: 3.20

Host Architecture ISA: Intel 80386 in SUN-386i system
OS&VER #: SunOS, version 4.0

Target Architecture ISA: Same as host

OS&VER #: Same as host

Implementor’'s Declaration

I, the undersigned, representing TELESOFT and TeleLOGIC, have implemented no deli-
berate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that TELESOFT is the owner of record of
the Ada language compiler(s) listed above and, as such, is responsible for maintaining
said compiler(s) in conformance to ANSI/MIL-STD-1815A. All certificates and registra-
tions for the Ada language compiler(s) listed in this declaration shall be made only in the
owner’s corporate name.

Date: r? Qri: kaﬁ

Q

Telelogic Ada Produdts Division
Stefan Bjornson, Manager, Systems Software

Owner'’s Declaration

I, the undersigned, representing TELESOFT and TeleLOGIC take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above, and agree to the
public disclosure of the final Validation Summary Report. I further agree to continue to
comply with the Ada trademark policy, as defined by the Ada Joint Program Office. I
declare that all of the Ada language compilers listed, and their host/target performance
are in compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

s \ Date:?Qﬁ%JSgs
Telelogic AB, Ada Produkcts Division
Stefan Bjornson, Manager, Systems Software

APPENDIX 3

APPENDIX F OF THE Ada STANDARD

“he onlv allowea mplementation dJependencies cor~espond o mplementation-
J1epenaent vragmas, L0 certain machine-depengent Canveatlions as mentioned in
thapter 13_9? the Ada Stangard, 3Ind to certain allowed restrictions on
"eorgsentatxon clauses. The implementation-derendent cnaracteristics of
“ne Sun-386i Acs Compiier, Version 1.0, are described in the following
§ec;:ans. ynich discuss topics in Apoengix F 0f the Ada Standard.
imcienmentation~specific portions of the pacxage STANDARD are 3iso inciudec
‘A Tn:s apoengix.

APPENDIX F OF THE LANGUAGE REFERENCE MANUAL

Implementation Dependent Pragmas
Implementation Dependent Attributes
Specification of Package SYSTEM
Restrictions on representation clauses
Implementation dependent naming
Interpretation of expressions in address clauses
Restrictions on unchecked conversions

1/0 Package characteristics

Definition of STANDARD

~1 O Ut e WO tD

O o

APPENDIX F OF THE Ada STANDARD

1. Predefined Pragma

pragma LIST(ONIOFF);

It may appear anywhere a pragma is allowed. The pragma
has the effect of generating the source compilation,

The listing will begin at the first pragma list(ON}
statement if no previous pragma list{OFF) statement

was encountered. Otherwise, the listing will begin

at the top of the source.

Implementation Dependent Pragmas
pragma COMMENT(<string_literal >);
It may only appear within a compilation unit.
The pragma comment has the effect of embedding the given
sequence of characters in the object code of the
compilation unit.
pragma LINKNAME(<subprogram_name>>, <string_literal>);
It may appear in any declaration section of a unit.
This pragma must also appear directly after an interface pragma
for the same <subprogram_name>. The pragma linkname has the
effect of making string_literal apparent to the linker.

2. Implementation Dependent Attributes

There are no implementation dependent attributes.

3. Specification of Package SYSTEM
PACKAGE System IS

TYPE Address is Access Integer;
TYPE Subprogram_Value is PRIVATE;

TYPE Name IS (TeleGen2);
System_Name : CONSTANT name := TeleGen2;

Storage_Unit : CONSTANT := 8§;
Memory_Size : CONSTANT := (2 ** 31) -1;

-2

APPENDIX F OF THE Ada STANDARD

— System-Dependent Named Numbers:

Min_Int : CONSTANT := -(2 ** 31);

Max_Int : CONSTANT := (2 ** 31)- I;

Max_Digits : CONSTANT := 15§;

Max_Mantissa : CONSTANT := 31;

Fine_Delta : CONSTANT := 1.0 / (2 ** Max_Mantissa);
Tick : CONSTANT := 10.0E-3;

-- Other System-Dependent Declarations
SUBTYPE Priority IS Integer RANGE 0 .. 63;

Max_Text_lo_Count : CONSTANT := Max_Int;
Max_Text_lo_Field : CONSTANT := 1000;

PRIVATE
TYPE Subprogram_Value IS
RECORD
Proc_addr : Address;
Static_link : Address;
END RECORD;

END System;

4. Restrictions on Representation Clauses
The Compiler supports the lollowing representation clauses:

Length Clauses: for enumeration and derived integer types 'SIZE 1 2)
attribute {(LRM 13.2(a))

Length clauses: for access types 'STORAGE_SIZE attritube (LRM13.2(b))

Length Clauses: for tasks types 'STORAGE_SIZE attribute (LRM 13.2(c))

Length clauses: for fixed point types 'SMALL attribute (LRM13.2(d))

Enumeration clauses: [or character and enumeration types other than

character and boolean (LRM 13.3)
Record representation clauses (LRM 13.4)
Address Clauses: for objects and entries (LRM 13.5(a)(c))

This compiler does NOT support the following representation clauses:

Enumeration clauses: for boolean (LRM 13.3)

3-3
M "SIZE is supported only for values equal or greater than what
the compiler would normally allocate £or the object.
2) Alignment specifications for records are restricted to multiple]
©f 1, 2 or 4 storage-units.

—— - 1

APPENDIX F OF THE Ada STANDARD

Address clauses for subprograms, packages, and tasks (LRM 13.5(b))
Note: The 386-UNIX compiler contains a restriction that allocated
objects must have a minimum allocation size of 16 bits.
5. Implementation dependent naming conventions
“There are no implementation-generated names denoting

implementation dependent. components.

6. Expressions that appear in address specifications are interpreted
as the first storage unit of the object.

7. Restrictions on Unchecked Conversions
Unchecked conversions are allowed between any types unless the
target type is an unconstrained record or array type.

8. 1/O Package Characteristics

Instantiations of DIRECT_IO and SEQUENTIAL_IO are supported with
the following exceptions:

* Unconstrained array types.

* Unconstrainted types with discriminants without default
values,

* Multiple internal files opened to the same external file may
only be opened for reading.

* In DIRECT_IO the type COUNT is defined as [ollow:
type COUNT is range 0..2_147_483_647;
* In TEXT_IO the type COUNT is defined as follows:
type COUNT is range 0..2_147_483_646;
* In TEXT_IO the subtype FIELD is defined as follows:

subtype FIELD is INTEGER range 0..1000;

APPENDIX F OF THE Ada STANCARD

9. Definition of STANDARD

For this target system the numeric types and their properties are as follows:

Integer types:
INTEGER

size = 16
first == -32768
last == +32767

LONG_INTEGER

size = 32
first == -2147483648
last = +2147483647

Floating-point types:

FLOAT
size = 32
digits = 6

'‘small = 2.58494E-26
arge = 1.93428E+25
machine_radix = 2
machine_mantissa = 24
machine_emin = -125
machine_emax == 4127

(W]
)
(9]}

APPENDIX f OF THE Ada STANDARD

LONG_FLOAT

size = 64

digits == 15

‘small = 1.94469227433161E-62
large = 2.57110087081438E+61
machine_radix = 2
machine_mantissa = 53
machine_emin = -1021
machine_emax = +1023

Fixed-point types:
SHORT_FIXED

size == 16

delta = 24#1.0#te-15

first = -1.00000

last = +1.0 - 2#1.0#e-15

FIXED

size = 32

delta = 2#1.0¢#te-31

first = -1.00000

last = +1.0 - 2#1.0#e-31

DURATION
size = 32
delta = 2#1.0#e-14
first = -86400

last = +86400

O~

APPENDIX €
TEST .PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes yse of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test 1is run. The values used for this validation are given
below.

$BIG_ID1 {(1..199 => A", 200 => '1")
Identifier the size of the
maximum input line length with
varying last character.

$BIG_1D2 (1..199 => A7, 200 => '2")
ldentifier the size of the
maximum input line length with
varying 1ast character.

$BI1G6_1ID3 (1..100=>7A7,101=>73",102..200=>"A")
Identifier the size of the
maximum input line lengih with
varying middlie character.

$BIG_ID4 {1..100=>7A",101=>"4",102..200=>"4")
identifier the size of the
maximum inpu¢t line {ength with
varying middle character.

$8IG_INT_LIT 11..197=>70") & "298"
&n integer literal of vaiue 298
with enough leading zeroes so
tnat it is the size ofr tnhe
maximum line {eagin.

TEST PARAMETERS

Name_dand _Meaning__ - Value ___ - - - ———

$BIG_REAL_LIT (1..195=>'0") & "690.0"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
paximum line length.

$BIG_STRING! (1=0""",2..101=>"A7,102=>""")
A string literal which when
catenated with BIG_STRINGZ
yields the image of BIG_IDI.

$BIG_STRING2 (1=>""",2,.100=>"A",101=>"1",102=>"'"")
A string literal which when
catenated to the end of
BIG_STRINGI vyields the image of
BIG_IDL.

$BLANKS (1..180 => * ")
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_LAST 2147483646
A universal integer
literal whose value is
TEXT_I10.COUNT'LAST.
$FIELD_LAST : 1000
A universal integer
literal vhose value is
TEXT_IO.FIELD'LAST.
$FILE_NAME_VITH_BAD_CHARS X1121QR$4%"Y
An external file name that %
either contains invalid
characters or is too long.
$FILE_NAME_WITH_WILD_CARD_CHAR Y
An external file name that
either contains a wild card
character or is too long.
$GREATER_THAN_DURATION 86401.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.
-2

Name_and Mesning . ___

$GREATER_THAN_DURATION_BASE_LAST
A universal real Yiteral that is
greater than DURATION’BASE'LAST.

$ILLEGAL_EXTERNAL FILE_NAME1

An external file name which
cantains invalid characters.
$TLLEGAL _EXTERNAL FILE_NAME2
An external file name which
is too long.
$INTEGER_FIRSY
A yniversal integer literal
whose value is INTEGER’FIRSY.
$INTEGER_LAST
A universal integer literal
whose wvalue is INTEGER’LAST.
$INTEGER_LAST_PLUS_ 1
A universal integer literal

whose value is INTEGER'LAST + 1.

$LESS_THAN_DURATION
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range aof DURATION.

$LESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'fFIRST.

SMAX_DIGITS

Maximum digits supported for

flcating~point types.
SMAX_IN_LEN
Maximum input line length

permitted by the implementation.

SNAX_INT
A yniversat
whose value 1§

integer literal
SYSTEM.MAX_INT.

SMAX_INT_2Lys 1
A yntversal in
whioss viiyge is 5Y8

TEST PARAMETERS

131072.0

BAD_CHARACTER24/2

(1..120 => 'A”}

~32768

32767

32768

-86401.0

~131072.90

2147483647

[0
-

4748

©w

648

~r

TEST PARAMETERS

Name_and _Meaping

$MAX_LEN_INT_BASED_LITERAL
A universal integer based
literal whose value is 2H11H
with enough leading zeroes in
the mantissa to be MAX_IN_LEN
long.

$MAX_LEN_REAL_BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX_IN_LEN long.

$MAX_STRING_LITERAL

A string literal of size
MAX_IN_LEN, including the quote
characters.
$MIN_INT
A universal integer literal
whose value is SYSTEM.MIN_INT.
$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,

SHORT_FLOAT,
LONG_FLOAT, or

SHORT_INTEGER,
LONG_INTEGER.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero bit
talls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

"2t & (3..197=>'07) & “ti1:°

"16:" & (4..196=>'0") & "F.E:"

(1=>""7,2..199=>7A,200 =>""")

-2147483647

$NANE

16BFFFFFFFCH

b d
“vy
had}
m

APPENDIX D

VITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard, The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
“"Al-ddddd” is to an Ada Commentary.

BZ2BO0O3A: A bgssic declaration (line 36) wrongly follows a later declaration,

E28005C: This test requires that "PRAGMA LIST (ONJ);’ not appear in a listing
that has been suspended by a previous "pragma LIST (OFF);"; the Ada
Standard is not clear on this point, and the matter will be reviewed
by the ARG.

C34004A: The expression in line 168 wrongly yields a value outside of the
range of the target type T, raising CONSTRAINT_ERROR.

£35502P: Equality operators in lines 62 & 69 should be inequality operators,

£35902C: Line 17’s assignment of the nomimal upper bound 0f a fixed-point type
to an object of that type raises CONSTRAINT_ERROR, for that value lies
outside of the actual range of the type.

T35904A: The elaboration of the fixed-point subtype on line 2B wrongly riises
CONSTRAINT_ERROR, because its upper boung exceeds that of the type.

C35904B: The subtype declaration that is expecied to raise CONSTRAINT_ZRROR
when its compatibility is checked against that of various tvpes
passed as actual generic parameters, may in ‘act raise NUMERIC_ZRROR
or CONSTRAINT_ERROR for reasons not anticipated by the test.

C35A03E, These tests assume that atiribute 'MANTISSA returns O when appliied to
$ R: 3 fixed~point type with a null range, but the Ada St{andard doesn’t
support this assumption.

C37213H: The subtype declzration of SCONS in line 100 is wrongly expected to
rzise an exceptlion when elgeoraied.

372:15d: The aggregate in line 451 wrongly raises CONSTRAINT_ERRCR.

D-1

WITHDRAWN TESTS

P
A

£38102C:
414024A:

C45332A:

C45614C:
A74106C,
€850188,
C87B048,
CC1311B:
BC3105A:

AD1AQ1A:

CE2401H:

CE3208A:

Various discriminant constraints are wrongly expected to be incom-
patible with type CONS.

The fixed-point conversion on line 23 wrongly raises CONSTRAINT_ERROR.
'STORAGE_SIZE is wrongly applied to an object of an access type.

The test expects that either an expression in line 52 will raise an
exception or else MACHINE_OVERFLOWS is fALSE. However, an implemen-
tation may evaluate the expression correctly using a type with a
wider range than the base type of the operands, and MACHINE_OVERFLOVWS

may still be TRUE.

REPORT.IDENT_INT has an argument of the wrong type (LONG_INTEGER).

A bound specified in a fixed-point subtype declaration lies outside of
that calculated for the base type, raising CONSTRAINT_ERROR. Errors
of this sort occur in lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253
of the four tests, respectively {(and possibly elsewhere).

Lines 159..168 are wrongly expected to he illegal; they are legal.

The declaration of subtype INT3 raises CONSTRAINT_ERROR for imple-
mentations that select INT'SIZE to be 16 or greater.

The record aggregates in lines 105 & 17 contain the wrong values.
This test expects that an aitempt to open the default output file

(after it was closed) with mode IN_FILE raises NAME_ERROR or
USE_ERROR; by Commentary AI-00048, MODE_ERROR should be raised.

