
APPROVED FOR PUBLIC RELEASE
OISTRIBUJTION UNLIMITED

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

0D VLSI Memo N6 88-492
December 1988

DTIC
Universal Packet Routing Algorithms ELECI

Tom Leighton, Bruce Maggs, and Satish Rao FEB 06 tg8q

Abstract
4. 'this paper we examinethe packet routing problem in a network independent context.

* 7,-Ow goal is to devise a strategy for routing that works well for a wide variety of networks.
To achieve this goal, 4e partition the routing problem into two stages: a path selection
stage and a scheduling stage.

'In the first stage we find paths for the packets with small maximum distance, d, and small
maximum congestion, c. Once the paths are fixed, both are lower bounds on the time
required to deliver the packets. In the second stage we find a schedule for the movement
of each packet along its path so that no two packets traverse the same edge at the same
time, and so that the total time and maximum queue size required to route all of the
packets to their destinations are minimized. For many graphs, the first stage is easy - we
simply use randomized intermediate destinations as suggested by Valiant. The second
stage is more challenging, however, and is the focus of this paper. Our results include:

1. a proof that there is a schedule of length O(c+d) requiring only constant size queues
for any set of paths with distance d and congestion c,

2. a Randomized on-line algorithm for routing any set of N "leveled" paths on a
bounded-degree network in O(c +d +log N) steps using constant size queues,

3. the first on-line algorithm for routing N-packets in the N-node shuffle-exchange graph
in O(log N) steps using constant size queues, and

4. the first constructions of area and volume-universal networks requiring only O(log N)
slow-down.
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Abstract 1 Introduction

In this paper we examine the packet routing problem in 1.1 Background
a network independent context. Our goal is to devise a The task of designing an efficient packet routing algo-
strategy for routing that works well for a wide variety of rithm is central to the design of mot large-se general
networks. To achieve this goal, we partition the routing
problem into two stages: a path selection stage and a purpose parallel computers. In fact, even the basic unit

scheduling stage. In the first stage we find pathh for of time in some parallel machines is measured in terms

the packets with small maximum distance, d, and small of how fast the packet router operates. For example,

maximum congestion, c. Once the paths are fixed, both the speed of an algorithm in the Connection Machine

are lower bounds on the time required to deliver the is often measured in terms of roting cycles (roughly

packets. In the second stage we find a schedule for the time to route a random permutation) or petit cycles

the movement of each packet along its path so that no (the time to perform an atomic step of the routing al-

two packets traverse the same edge at the same time, gorithm). Similarly, the performance of machines like

and so that the total time and maximum queue size the BBN Butterfly is substantially influenced by the

required to route all of the packets to their destinations speed and rate of successful delivery of its router.

are minimized. For many graphs, the first stage is easy Packet routing also provides an important bridge be.

- we simply use randomized intermediate destinations tween theoretical computer science and applied com-

as suggested by Valiant. The second stage is more puter science; it is through packet routing that a real
machine such as the Connection Machine is able to sim-challenging, however, and is the focus of this paper. ulate an idealized machine such as the CRCW PRAM.Our results include: More generally, getting the right data to the right place

1. a proof that there is a schedule of length O(c + d) at the right time is an important, interesting, and chal-
requiring only constant size queues for any set of lenging problem. Not surprisingly, it has also been the
paths with distance d and congestion c, subject of a great deal of research.

2. a randomized on-line algorithm for routing any set 1.2 Past work
of N "leveled" paths on a bounded-degree network
in O(c+d+log N) steps using constant size queues, The first major result in packet routing is due to

Batcher [3) who devised an elegant and practical al-
3. the first on-line algorithm for routing N-packets gorithm for routing any permutation of N packets on

in the N-node shuffle-exchange graph in O(log N) an N-processor shuffle-exchange graph in log2 N steps.
steps using constant size queues, and The result extends to routing many-one problems pro-

4. the first constructions of area and volume- vided that (as is typically assumed) combining can be
universal networks requiring only (logN) slow- used to merge packets that have a common destination.
un l nNo better deterministic algorithm was found un-

til Ajtai, Komloe, and Szemeredi (I solved a classic
open problem by constructing an O(log N)-depth sort-

This rmewch was supported in pert by the Defense Ad. ing network. Leighton (11] then used this O(N log N)-
vanced Raearch Projects Agency under Contract N00014-7-
K-825, the Office of Naval R eserch under Contract N00014- node network to construct a degree 3 N-node network
86-K-0593, the Air Force under Contract OSR-86-.0076 and capable of solving any N-packet routing problem in
the Army under Contract DAAL-034-K-0171. Tom Leighton O(log N) steps. Although this result is optimal up to
is supported in part by an NSF Presidential Young Investigator constant factors, the constant factors are quite large
Award with matching funds provided by AT&T Bell Labori.
tones and IBM. Bruce MAgP is suppoLed in part by a NSF and the algorithm is of no practical use. Hence, the ef-
Graduate Fellowship. fort to find fast deterministic algorithms has continued.



Thus far, the best small-constant-factor deterministic The lack of a good routing algorithm for the shuffle-
algorithm is an O(log 2 N/ log log N)-step algorithm for exchange graph is one of the reasons that the butterfly
routing on the butterfly. is preferred to the shuffe-exchange graph in practice. ,

There has been comparatively much greater success
in the development of efficient randomized packet rout- In this paper, we take a significant step towards the
ing algorithms. The study of randomized algorithms development of a universal approach to packet rout-
was pioneered by Valiant and Brebner [25] who showed ing. Our approach to the problem differs from previ-
how to route any permutation of N packets in O(log N) ous approaches in that we separate the process of se-
steps on an N-node hypercube with queues of size lecting packet paths from the process of timing packet
O(log N) at each node. Although the algorithm was movements along the paths. More precisely, given any
not always guaranteed to work, it was guaranteed to underlying network, and any selection of paths for the
work with probability at least I - I/N for any permu- packets, we study the problem of timing the movement
tation. This result was improved in a succession of fun- of the packets so as to minimize the total time and
damental papers by Aleliunas [2], Upfal [24], Pippenger maximum queue size needed to route all the packets to
[17], and Ranade [18]. Aleliunas and Upfal developed their. correct destinations.
the notion of a delay path and showed how to route Of course, there must be some correlation between
on the shuffle-exchange and butterfly graphs (respec- the performance of the algorithm and the selection of
tively) in O(log N) steps with queues of size O(log N). the paths. In particular, the maximum distance d tray-
Pippenger was the first to eliminate the need for large eled by any packet is always a lower bound on the time
queues, and showed how to route on a variant of the required to route all packets, as is the congestion c of
butterfly in O(log N) steps with queues of size 0(1). the paths. (The cosgestios of a collection of packet
Ranade showed how combining could be used to ex- paths is the largest number of packets that must tra-
tend the Pippenger result to include many-one routing verse a single edge during the entire course of the rout-
problems, and tremendously simplified the analysis re- n g o
quired to prove such a result. As a consequence of
Ranade's work, it has finally become possible to sir- Viewed in terms of these parameters, then, a routing
ulate a step of an N-processor CRCW PRAM on an problem can be broken into two stages. In Stage 1, we
N-node butterfly or hypercube in O(log N) steps using select paths for the packets so as to minimize c and d.
constant size queues on each edge. In Stage 2, we schedule the movement of the packets

Concurrent with the development of so as to minimize the total time and maximum queue
these hypercube-related packet routing algorithms has size.
been the development of algorithms for routing in ar-
rays. Kunde [8] showed how to route any permutation For many networks, Stage I is easy. We simply use V
of N packets deterministically in (2 + r)vINT steps us- Valiant's paradigm of first routing to a random desti-
ing queues of size 0(1/c). Also, Krizanc, Rajasekaran, nation, and then routing to the correct destination. It
and Tsantilis [7] showed how to randomly route any is easily shown for arrays, butterflies, shuffle-exchange
permutation in 2VW" + 0(log N) steps using constant graphs, etc., that this approach yields values of c and d
size queues. Most recently, Leighton, Makedon and that are within a small constant factor of the diameter
Tollis discovered a deterministic algorithm for routing of the network, which is as well as can be done. More-
any permutation in 2v'" - 2 steps using constant size over, this technique also usually works for many-one
queues, thus achieving the optimal time bound in the problems provided that the address space as randomly
worst case. hashed.

Stage 2 has traditionally been the hard part of rout-
1.3 Our approach ing. Curiously, however, we have found that by ignor-

ing the underlying network and the method of path se-
One deficiency with the state-of-the-art in packet rout- lection, Stage 2 actually becomes easier to solve! Hence
ing is that aside from Valiant's paradigm of "first rout- we will be able to obtain results for routing that are
ing to a random destination," all of the algorithms and both simpler and far more general than existing ap-
their analyses are very specifically tied to the network proaches. Among other things, we will be able to
on which the routing is to take place, as well as to the route on the N-node mesh in O(v/') steps using con-
requirement that packets are first routed to destina- stant size queues with the same algorithm that uses
tions that are (in some sense) random. For example, O(log N) steps and constant size queues on the but-
the butterfly routing algorithms are all quite different terfly. We will also be able to route on the shuffle-
than the array algorithms in the way that queue size exchange graph in O(log N) steps with constant size
is kept constant. Moreover, the butterfly and hyper- queues. Also, we provide the first examples of volume
cube algorithms are so specific to those networks that and area-universal networks that require only O(log N)
no O(log N)-step constant-queue-size algorithm was slowdown by showing how to route efficiently on a fat-
known for the closely related shuffle-exchange graph. tree.
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1.4 Outline of the results counterexamples to most of the simplest on-line algo-
rithms. In other words, for several natural on-line al-

* Our most difficult result is a proof that any set of gorithma.(including the algorithm described in Section
packet paths with congestion c and distance d can be 3) we can find packet paths for which the algorithm
scheduled so as to complete the routing in O(c + d) will construct a schedule using substantially more than
steps using constant size queues. This result is optimal 0(c + d + log N) steps. Several of the counterexamples
up to constant factors, and substantially improves the are included in Section 5.
naive bound of 0(cd) steps and 0(c) size queues. Un-
fortunately, the result is highly nonconstructive, and
therefore is useful only if substantial amounts of off- 2 An O(c + d) off-line algorithm
line computation are available for the routing. On the
other hand, the result is robust in the sense that it pro. In this section we show that for any set of paths with
vides a near-optimal schedule of packet movements for maximum congestion c and maximum distance d, in
any set of paths and any underlying network. Such ro- any network, there is a schedule of length O(c + d) in
bustness is particularly useful when dealing with rout- which at most one packet traverses each edge of the
ing problems on arbitrary distributed networks as in network at each step, and at most 0(1) packets wait
[12]. The proof of the result is contained in Section 2. in each queue at each step. In our routing network

We do not know whether or not there is an on-line model, all packets are stored in queues at the ends of
algorithm that can route any set of paths in 0(c + d) edges. At each time step a packet either waits in a
steps with constant size queues. It is not difficult to queue or traverses an edge and enters the queue at the
devise a randomized on-line algorithm to schedule any end of that edge. We assume that at the beginning and
set of N paths in 0(c + dlog N) steps using queues end of tht routing there is one packet in each queue.
of size O(log N). In special cases, however, we can A schedule for a set of packets simply specifies at each
do better. For example, a slight variant of Ranade's time step which packets move and which wait.
algorithm can be used to schedule on-line any leveled Our strategy for constructing an efficient schedule
set of N paths on a bounded-degree network in O(c + is to make a succession of refinements to the "greedy"
d+log N) steps using constant size queues. By a leveled schedule, S1 , in which each packet moves at every step
set of paths, we mean a set of paths for which each until it reaches its final destination. The length of S
packet starts from a level one node, progresses from a is only d, but it does not meet the requirement that at
level i node to a level i + I node at each step, and ends most one packet traverses each edge of the network at
at a level d node. For example, greedy paths on the each step, since as many as c packets may use an edge. butterfly are leveled in this fashion. The algorithm is in a single step. Each refinement brings us closer to
randomized, but requires only e(log N log log N) bits meeting this requirement by bounding the congestion
of randomness to succeed with high probability. The within smaller and smaller frames of time. A T-frame
proof of this result is included in Section 3. Curiously, is a sequence of T consecutive time steps. The frame
the proof is simpler than the previous proof of the same congestion, C, in a T-frame is the largest number of
result applied specifically to routing random paths in packets that traverse any edge in the frame. The rel.
butterflies [18]. (The fact that Ranade's algorithm can ative congestion, R, in a T-frame is the ratio CIT of
be used in this general context has also been observed the congestion in the frame to the size of the frame.
by Ranade [191.) A refinement transforms a schedule Si with relative

The on-line algorithm for leveled networks can im- congestion at most rMi in any frame of size iP') or
mediately be applied to obtain good routing algo- greater into a schedule Sj+ 1 with relative congestion
rithms for arrays and butterflies. With some extra at most r(0+1) in any frame of size 1('+,) or greater,
effort, it can also be applied to obtain the first con- where r(i+1) f r(') and (+') << I(. (For ease of no-
stant queue size algorithm for routing on the shuffei- tation, we use I and r in place of i() and r().) We shall
exchange graph. It can also be applied to construct a assume without loss of generality that c = d. Thus, at
clas of networks that are area universal in the sense the start, the relative congestion in a d-frame of S, is
that the network in the class with N processors has at most 1. After a series of j = O(log" d) refinements,
area O(N), and can, with high probability, simulate we obtain a schedule S- with relative congestion 0(1)
in 0(log N) steps each step of any other network of in every frame of size 4a or greater, where k0 is some
area O(N). An analogous result is shown for a class of constant. From Sj it is straightforward to construct a
volume universal networks. The details of these appli- schedule of length 0(c+d) in which at most one packet
cations are included in Section 4. traverses each edge of the network at each step, and at

This paper leaves open the question of whether or most 0(1) packets wait in each queue at each step.
not there is an on-line algorithm that can schedule any In the ith refinement, schedule Si is broken into
set of paths in 0(c+d) steps using constant size queues. blocks of 213 + 212 - I consecutive time steps. Each
We suspect that finding such an algorithm (if one ex- block is rescheduled independently. For each block.
ists) will be a challenging task. Our negative suspi- each packet is assigned a random delay chosen indepen-
cions are derived from the fact that we can construct dently and uniformly from I to I. A packet assigned
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a delay of x must wait for z steps at the beginning R. The remainder of the T-frame consists of a sin-
of the block. In order to bound the queue size and gle frame of size between T and 22' - I steps in which
length of our final schedule, it is crucial that we main- the relative congestion is also at most R. f
tain the invariant that in schedule S+l every packet Let
waits at most once every i0) steps. Thus, instead of Lemma 3 (Lovss) Let Ai,..., A be. set of'bad"

delaying the packet for x consecutive steps at the be- eents each oaw-ng with probability p. Suppose that
ginning of the block, we insert one delay every I steps every bad er .t depends on at most b other bad events
in the first z! steps of the block.1 A packet that is (i.e., every -d event u mutually independent of some
delayed z steps reaches its destination at the end of set of m - o other bad events). If 4pb < 1, then the

the block by step 23 + 212 - I + z. Since some packet prohabilit that no bad event occurs is nonero. fl
may have delay z = I, the rescheduled block must have With theme lemmas in hand, we can proceed with the
length 213 + 212. In order to independently reached- W s s , p w
ule the next block, the packets must reside in exactly
the same queues at the end of the rescheduled block Lemma 4 There is some way of choosing the packet
that they did at the end of the block of Si. Since some delays so that in between the first and last 12 steps of
packets arrive early, they must be slowed down. Thus, a block, the relative congestion in any frame of size
a delay is inserted every I steps in the last I(I - r) It = log2 I or greater is at most ri = r(1 + ci), where
steps of the block. Note that at the beginning of the C1 = O(M)/'j"7.
first block and end of the last block, it is not necessary
to separate the delays by I steps. Proof: With each edge we associate a bad event. For

After adding delays to Si, the congestion may have edge e, a bad event occurs when more than rtT packets
increased in the J2 steps at the beginning and end of use e in any T-frame for T in the range 11 to 21 - 1. To
each block. The following lemma shows that by in- show that no bad event occurs, we need to bound both
creasing the frame size from I to J2 we can bound the the dependence of the bad events and the probability
relative congestion in these regions. that an individual bad event occurs.

We first bound the dependence. At most r(213 +
Lemma 1 The relative congestion in any frame of size 212 - I) packets use an edge in the block 2. Each of
12 or greater is at most r(l + 1/I). these packets travels through at most 213 + 212 - I

other edges in the block. As we shall see later, it will
Proof: After the delays are inserted, a packet can use always be true that r = r(') = 0(l). Thus a bad event
an edge in a T-frame if it used the edge in the frame depends on b = O(1s) other bad events.
or in any of the I steps before the frame in S,. Thus, Now let us compute an upper bound on the proba-
at most r(T + I) packets can use an edge in the T- bility, pl, that more than rill packets use an edge in V
frame. For T > 12, the relative congestion is at most a particular It-frame. Since a packet may be delayed
r(l + 1/I). 1 up to I steps before the frame, any packet that uses e

We now show that there is some way of choosing the in the frame or in any of the I steps before the frame
delays so that in between the first and last J2 steps in Si may use e after the delays are inserted into Si.
we can decrease the frame size substantially without Thus, there are at most r(I + II) packets that can use
increasing the congestion much. The proof makes use e in the frame. For each of these the probability that
of two lemmas. The first is used to bound the relative the packet uses e in the frame after being delayed is
congestion over a wide range of frame sizes. The second at most (l/1). If we assume that no packet uses an
is the quintessential tool of the probabilistic method: edge more than once, then these probabilities are inde-
the Lovasz local lemma [22, pp. 57-58]. pendent. Thus, the probability P, that more than rl I,

packets use the frame is at most

Lemma 2 In any schedule, if the relative congeution r(,+1)
in every frame of size T to 2T- I is at most R then the -k r(I + 1
relative congestion in any frame of size T or greater ts P, _5 2: k , -- Jill)

a t m o s t R .
k = ' !

Let r1 = r(1 + 1). Using the inequalities (1 + z) _< eT,
Proof- Consider a frame of size T, where 7" > 2T- 1. ln(l + X) > • - Z2/2 for 0 :5 x < 1, and () < (ae/b)t

The first (IT'/TJ - I)T steps of the frame can be for 0 < b < a, we have
broken into T-fraxes, each with relative congestion

lBefore the delays for schedule 5.+l have been inserted, a ___ <______
packet is delayed at most once in each block of S,. Prior to 2Throughout the following lemmas we make references to
boating each new delay into a block, we check if it is within quantities such a rl packets or log" I time steps, when in fact
I(') step of the single old delay. If the new delay would be too rI and log4 I may not be integral. Rounding these quantities to
clos to the old delay, then it is simply not-inserted. The loss of integer value when necessary does not affect the correctness of
a single delay in a block has a negligible effect on the probability the proof. For ease of exposition, we shall henceforth cese to
calculations in the lemmas that follow, consider the issue.



For 11 = log2 I and el = ki/v'o1g , we can ensure that at the kth step varies essentially uniformly from 0 to
p :5 1/16, for any constant k2 > 0 by making constant u = k/. For u > log !, or equivalently, k > I log' 1,
k, large enough. we can show that the relative congestion in any frame

Next we need to bound the probability p2 that of size IA or greater has not increased much.
more than r1I: packets use e in any Ix-frame of the The proof uses the Lovasz local lemma as before.
block. There are at most 0(I) 11-frames. Thus The calculation for the dependence is unchanged. The
p2 < O(1)pl. By making the constant k2 large probability p2 that more than rzl, packets use an edge
enough, we can ensure that p2 < 1 / 1 1 , for any con- e in a particular I-frame is given by
stant k3 > 0.

The calculations for frames of size I + I through "'("+V) ri(I + U)
21, - I ate similar. There are at most O(I3) frames p2 5_ (Q'i1/0'h0 - ll/u '

of any one size, and 211 frame sizes between 11 and #=r8l
211 - 1. By adjusting the constants as before, we can
guarantee that the probability p that more than r1T Using the same inequalities as before, we have
packets use e in any T-frame for T between 11 and
21, - I is at most I/k, for any constant k4 > 0. p2 O(e-ri;1c](112-c2l2-11Ic3'21lc'u)).

Finally, since a bad event depends on only b = 0(P)
other bad events, we can make 4pb < I by making k4 For 11 = log2 I, u > log 3 I, it suffices that 2 =
large enough. By the Lovasz local lemma, there is some 0(1)/v/07.I

way of choosing the packet delays so that no bad event For steps 0 to I log3 I, we use the following lemma
occurs. I to bound the frame size and relative congestion.

Although the frame size in the center of each block
has decreased, it has increased from I to 12 in the first Lemma 6 The relative congestion in any frame of size
and last 12 steps of the block. To decrease the frame 12 or greater between steps 0 and Ilog3 3 is at most 4,

size in these regions, we move the block boundaries where 12 = log' I and r4 = r:(1 + 1/log!).
to the centers of the blocks. Now each block of size
213 + 212 has a "fuzzy" region of size 212 in its center
in which the relative congestion in any frame of size Proof: The proof is similar to that of Lemma 1.
12 or greater is r(l + 1/I). In the s steps before and We have now completed our transformation of sched-

after the fuzzy region, the relative congestion in any ule S into schedule S.+,. Let us review the relative

frame of size I, or greater is rl. To reduce the frame congestion and frame sizes in the different parts of a

size in the fuzzy region, we assign a random delay from block of S-+- 1 . Between steps 0 and I log3 I, the rela-
I to 12 to each packet. A packet with delay z waits tive congestion in any frame of size 12 or greater is at

once every 1/z steps in the 13 steps before the fuzzy most N4. Between this region and the fuzzy region, the

region and once every 11/(12 - z) steps in the 13 steps relative congestion in any frame of size I, or greater

after the region. The rescheduled block now has size is at most r2 . In the fuzzy region, the relative con-

213+312. gestion in any frame of size I, or greater is at most

We now show that there is some way of inserting r3. After the fuzzy region, the relative congestion in

delays into the schedule before the fuzzy region that any frame of size 11 or greater is again r2, until step

both reduces the frame size in the fuzzy region, and 213 + 312 - logS I, where the relative congestion in
does not increase either the frame size or the relative any frame of size 12 or greater is r4. For the entire
congestion before the fuzzy region by much. A similar block it is safe to say that the relative congestion in

analysis holds after the fuzzy region. any frame of size 1(i+1) = log4 ! or greater is at most
r = r(l +0(1)//In.

Lemma 5 There is some way of choosing the packet The following theorem shows that by repeatedly ap-
delays so that between steps I log3 3 and steps 13, the plying this refinement step, we an construct an asymp-
relative congestion in any frame of size I, prlreater is totically optimal schedule.
at most r2 = r(+C 2), where 2 = 0(1)/Vl/F-I, and so
that in the fuzzy region the relative congestion in any Theorem 7 For any set of paths with mazimum con.
frame of size I, or greater is at most r3 = r(1 + 43), gestion c and maximum distance d, there is a schedule
where 63 = 0(1)/V/lj7 of length O(c+d) in which at most one packet traverses

each edge of the network at each step, and at most 0(1)
Proof: Since no delays are inserted into the fuzzy re- packets wait in each queue at each step.
gion, the proof that the frame size has been reduced
in the fuzzy region is analogous to the proof of the Proof: Without loss of generality, assume c = d.
previous lemma. We begin by assigning each packet a random delay

Before the fuzzy region, the situation is more corn- chosen uniformly from 0 to d at the beginning of the
plex. By the kth step, 0 < k < 1s, a packet with delay greedy schedule S1 . Using the Lovasz local lemma.
z has waited zk/1 3 times. Thus, the delay of a packet we can show that there is some way of choosing the



delays so that in the resulting schedule S2 , the relative unconstrained schedule. Hence we can simulate each
congestion is at most r(') = 0(l) in any frame of size step of the unconstrained schedule with O(Ihg n) steps
10i) = logd or greater -of a legitimate schedule. The final schedule consumes

Next, we repeatedly use the refining algorithm to O((d + ' ) log n) = O(c + dlog n) steps to complete
reduce the frame size. The relative congestion r(i+l) the routing and uses O(log n) size queues.
and frame size I('+1 )for schedule S,+ 1 are given by the
recurrences 3.2 An O(c+d+logn) on-line algorithm for lev-

r(+ = (1) i= 1 eled networks
r(')(1 + O(I)/NA -75) i > I Consider any set of n leveled paths spanning d levels

and with congestion c. For simplicity, we will think of the
packets as being distinct (i.e., no combining will be

0+1) logd i = 1 allowed) although our analysis can easily be extended
log4 I(i ) i > 1 to the case where arbitrary combining takes place. We

will allow up to c packets to originate at the same node
which have solutions [U) = 0(l) and rU) = (), and to end at the same node. For this purpose, we will
where j = 0(log" d). allow queues of size c at the first and last levels, but will

We have not explicitly defined the values of r and I restrict queues in the interior levels to have constant
for which the recursion terminates. However, in many size q. The value of q can be any integer (including 1),
places we implicitly use the fact that I is sufficiently and will affect the overall routing time by a constant
large or r is sufficiently small that certain inequalities factor. We will also assume that the underlying net-
hold. The recursion terminates when the first of these work has indegree and outdegree 2, although the result
inequalities fails to hold. When this happens, one of r can easily be extended to networks with any constant
or I is 0(1), which implies that the other is also. degree. In what follows, we show how to route all the

Since a packet waits at most once every i ( ) steps in packets in 0(d + e + log n) steps with high probability
Si, it waits at most once every 11(1) steps in Sj, which without overflowing any queue.
implies both that the queues in Sj cannot grow larger The algorithms for scheduling the packets is identi-
than 0(l) and that the total length of Sj is 0(d). cal to Ranade's algorithm except that we select ran-

Schedule Sj almost satisfies the requirement that at dom keys by which the packets are ordered instead of
most one packet traverse each edge in each step. By ordering based on destination address, as in [21]. In
simulating each step of Sj in 0(l) steps we can meet particular, each packet is assigned a random key and
this requirement with only a factor of 2 increase in the a packet is routed through a node only after all the
queue size and a factor of 0(1) increase in the running other packets with lower keys that are destined to be
time. I routed through the same node have done so. Queues .

Why is this proof so complicated? Using the same are placed at the end of each edge and a packet ad-
basic ideas, it is possible to construct in a much simpler vances forward only if there is already room for the
fashion a schedule of length 2° (0 s " d)d that uses queues packet in its next queue. For simplicity we will as-
of size O(log d). Unfortunately, removing the 20((1 " d) sume that the queue size is at least two, so that once
factor seems to require delving into second order terms a queue contains a packet, it does not become empty
in the probability calculations, and reducing the queue until it transmits an end-of-stream signal. With mi-
size to 0(l) mandates great care in spreading delays nor modifications, the analysis can be made to work
out over the schedule. with queues of size one. To keep things moving, ghost

messages are sent along each edge that is nut trans-
mitting a packet. The ghost message provides the best

3 On-line algorithms lower bound known by the node for the size of the key

3.1 An O(c + dlog n) on-line algorithm of the next packet to be sent. Ghost messages allow
a processor to send a packet forward from one incom-

By applying the type of probabilistic analysis used ing edge without having to wait for actual packets (if
in Section 2, it is fairly straightforward to schedule any) on the other incoming edges (provided, of course
any set of n paths in 0(c + dlog n) steps with queues that the ghost messages on these incoming edges indi-
of size 0(log n). We simply delay the start of each cate that any such packets would have to have higher
packet by a random amount that is chosen uniformly keys). Ghost messages are saved only if they arrive at
from [1, of, ], and then route all the packets forward the head of the queue.
in a synchronized fashion. More precisely, we intro- To prove that the algorithm completes the routing
duce the initial delays and then consider the uncon- in 0(c + d + log n) steps, we use the same delay path
strained schedule without regard for the rule that at argument as Ranade [18] (which, in turn is quite sim-
most one packet traverse any edge in a single step. ilar to the ones used by Aleliunas [2] and Upfal (24)),
With high probability, no more than O(log n) pack- but we simplify the counting part of the analysis. The
ets will want to traverse any edge at any step of the simplified counting has the additional nice feature that



it allows the interior queue sizes to be as small as one, is that they do not have an apparent leveled struc-
which was not possible with Ranade's original analysis. ture. Nevertheless, we can still obtain a good routing
We provide a sketch of the argument in what follows, algorithm for these networks by identifying a leveled-
The complete proof will be included in the full draft of like structure in a large portion of the shuffle-exchange
the paper. graph. The details are included in Section 4.1.

If some packet is delayed by to steps during the In Section 4.2, we show how to adapt the on-line
course of the routing, then there is a delay path of algorithm to efficiently route on fat-trees[13], thus pro-
length I that coincides with to packet paths arranged viding the first examples of area and volume-universal
in order of decreasing key size (working backward). If networks with slowdown O(log N).
f is the number of forward edges in the delay path,
then to qf/2 and 1= d + 2f < d + -Z" The number 4.1 Routing on the shuffle-exchange graph
of possible delay paths is at most In this section, we will show how to apply the tech-

niques of Section 3 to obtain a randomized routing
n4 +w) (2c)" algorithm on the shuffle-exchange graph. It works for

any N packet routing problem with at most one packet

since there are n places that the path can start, 41 ways starting at any node and runs in O(log N) steps using
that it can continue, + ways of locating the points constant size queues.

oice w a t aThe N-node sAuffle-ezchaxge graph is defined for ev-
of incidence with to packet paths, and (2c)pn ways to ery N which is a power of two. Each node of the
pick packets at the points of incidence. (N = 2)-node shuffle exchange graph is associated

If the random keys are chosen from [1, wo], then the with a unique k-bit binary string il..0 Two nodes

probability that the w keys for any delay path are in the t an qae li bia a a & edge if To ale
right ~2 orewsa ot(')t . ectepoaiiy t and &p are linked via ashiffle edge if to' is a left or

right order in at most ( W ) /00. Hence, the probability right cyclic shift of to. Two nodes to and tu' are linked
that there is a delay path corresponding to wo delay is via an ezchange edge if to and &o differ in the least
at most significant bit, ao.

A node of the shuffle-exchange graph is good if it
___ has a unique longest cyclic substring of zeros of length

n4' ( fl <(2() )2A' . !4 ce2) greater than log log N - 1, and it is not node 0. (to =
toW - w 0...0 is not a good node.) Any node that is not a good

node is bad.
For to = f0(d + c + log n), this probability can be made We group the nodes into necklaces consisting of
arbitrarily small, even if q = 1. nodes that are cyclic shifts of one another. A neck-

Note that in the case that w = 8(log n), the pre- lace consists entirely of good nodes or entirely of bad
ceding argument requires only O(log n log log n) bits of nodes since the cyclic length of any substring of zeros
randomness, since the keys lie in the range [1, w], and is unchanged by a cyclic shift. Each good node neck-
we only require that sets of to keys be independent.3  lace consists of log N nodes since each cyclic shift is

different due to the unique longest string of zeros.
4 Apl n We route mainly by using the good node necklaces as

Applications a leveled structure, thus we associate bad nodes with

It is straightforward to apply the algorithm described good necklaces. We show that at most 3 log N bad

in Section 3 to route packets on arrays and butterflies, nodes are associated with any good necklace.

For two-dimensional arrays, the paths of the packets Consider that there are three types of bad nodes,
are selected greedily with each packet first traveling to
the correct row, and then to the correct column. For ar- 1. nodes having a longest string of zeros of length less

rays of higher dimension and butterflies, random path than log log N - 1,
selection works fine, and the resulting time bounds are 2. nodes with more than one group of longest zeros,
within a constant factor of optimal. Some care must
be taken to get around the queues of size c at the first 3. and node to = 0... 0.
and last levels of the network, but this is not difficult
to do. A bad node of type I is mapped to a good node

It is not so clear how to apply the algorithm from by making the least significant bit a one and the
Section 3 to route on networks such as the shuffle- log log N - I most significant bits to zeros. This as-
exchange or the deBruijn graphs, however. The reason sociates the bad node with the lexicographically min-

imum node of a good necklace, since after the trans-
The use of thre ange (I, wJ for the radom keys um [ggte. formation, the highest order bits are composed of theto us by Ranade [191. Emsantialiy the same range am tamed in [211. logsstigf es Onybdoeswchi-

The cnstants in the running time can be reduced by longest string of zeros. Only bad nodes which dif-
the range to fl,n3j. In this case, the number of nadom bits fer from a good necklac. 's lexicographically minimum
required is O(1oe n). node in at most log log N bits are mapped to it, thus at



most 2
'I6 aqN = log N type I bad nodes ae associated contains flip edges. A flip edge links nodes w and e if

with any good necklace. both w and u/ are good nodes with w = al. .. .!L...a o
We map a bad node of type 2 to a good necklace and w' = aa_...Ari..ao and a, is not in the leading

by mapping a bad necklace to a good node necklace. block of zeros of w's representative node.
We take the lexicographically minimum node in a type Note that flip edges extend a group of zeros by at
2 bad node necklace and extends its leading group of most one. Thus no flip edge can create a new leading
zeros by exactly one zero. All the bad*nodes in this group of zeros, since it can only grow the shorter non-
necklace are associated with the specified good neck- leading group of seros to be as big as the leading group.
lace. But then it would lead to a bad node, i.e., a node

To assese the number of bad nodes associated with a having two different longest groups of zeros. This is a
good necklace by this operation, we' consider the lexi- contradiction since flip edges only occur between good
cographicaily minimum node in the good necklace and nodes by definition. Thus flip edges are leveled.
notice that only bad necklaces whose minimum node It is easily shown that the operation of the flip edges
differs in the last bit of the leading block of zeros and can be simulated by the shuffle-exchange graph with
possibly differs in the bit after that is mapped to that only a constant slowdown; each flip edge is composed of
necklace. Thus, at most two bad necklaces are &sso- an exchange edge, a shuffle edge, and possibly another
ciated with any good node and thus only 2 log N bad exchange edge.
nodes of type 2 are associated with any good necklace. We denote by network A the network composed of

Finally, node 0 is simulated by node 1. Note that no the good nodes, the shuffle edges, excluding the shuffle
bad nodes of type 1 or 2 are associated with node i's edges from level log N - 1 to 0, and the flip edges.
necklace. Note that in network A, from any level 0 good node

So in all, at most 3 log n bad nodes ate associated we can reach any necklace with a longest string of zeros
with any good necklace. Recalling that all good neck- having the saum or greater length by correcting bits
laces contain log N nodes, we have N/4 of the shuffle- starting from the end of the leading block of zeros. In
exchange nodes being good. We use these node. to fact, we wish to be able to get from the level 0 node of
perform the bulk of the routing. The basic idea is that a god node necklace to any other good node necklace.
we deterministically route packets from bad nodes to Thus we append a mirror image of the good nodesgood, then use a randomized routing algorithm to route Thswapedamroiagofteodndsbetween good node., and finally determoistically route with flip and shuffle edges to itself so that we can reachpackets from good nodes to bad. We proceed by defin- necklaces with fewer zeros. The leveling is extended ina leveled network on the good node. that the shuffle the natural manner. We call this whole thing networking a eee ewr ntego oehttesufe AA", and note that network A can easily simulate it.
exchange graph can easily simulate with constant over- We denote by network A c sisi it.
head. For any routing problem on the good nodes we We denote by network L, the network consisting of
construct paths in the leveled network with congestion the shuffle edges on the good nodes again excluding
and distance O(logN) with high probability. By w shuffle edges from level log N-I to level 0. Our method
plying the analysis of Section 3, we can then complete of path selection consists of routing from a good node
the routing in O(log N) steps with high probability us- to its level zero node, then routing to a random in-
ing constant sized queues. We conclude by detailing termediate necklace, then routing to the destination
the routing between good and bad nodes. necklace, and finally routing to the appropriate good

node. Thus, the leveled network we route paths in is
composed of network L, network AAr, another network

4.1.1 A leveled network AA', followed by netwrok L. We extend the leveling
in the natural manner ad note that network A can

For each necklace of good nodes, we pick the lexico- ea ur ma e he ote woA
graphically minimum node to be the representative easily simulate the whole thing.

node for the necklace. We denote each good node by
its necklace's representation plus a line under the least 4.1.2 Path selection and congestion
significant bit, which we refer to as the curieun bit .
For example, node 100011 would be written as 000111. We assume that at the start of the routing there at
We define the level of the good node to be the position most b packets starting at any good node. The value
of the underline counting from the left. For example, of 6 depends on the number of bad nodes mapped to
000111 is in level 4. (Note that the representative node any good node which we showed is small.
is in level log N - 1.) For each packet we choose its path by uniformly

The leveling of the nodes just described induces choosing a random necklace to route through before
a leveling of the shift edges but does not necessar- going to its final destination. So the path for a packet
ily induce a leveling of the exchange edges. An ex- consists of a path through L to node 0 of its neck-
change edge even between good nodes may create a lace, the path through AA to its random intermedi-
new longest group of zeros by joining two groups of ate necklace, the path through the second AA' to its
zeros and thus connect two levels which are very far destination necklace, and a path through the second L
apart. To overcome this difficulty we assume the graph to the proper node of the necklace.



We show that this method yields paths with conges. sider the congestion on the edge from A to A'.
* tion O(log N) with high probability. That is, we show We are finished showing how to route packets be-

that the probability of any edge being used by more tween the good nodes in a leveled fashion with path
than clog N packets is O(yir) for some constant c. congestion and distance O(log N) with high proba.

We observe that for the paths in the copies of L, we bility. Thus, by the arguments of section 3 we can
have congestion b log N, since at most b log N packets solve any routing problem on the good nodes in time
start or end in any good necklace. By symmetry we O(log N) using constant sized queues.
claim that the analysis of the path portions in both
copies of AA' is the same. Finally we recall that in
AA', we route packets going to necklaces with same 4.1.3 Packets from bad nodes
or more zeros to the appropriate necklace in network
A and straight across network A", we route the other In this section we show how to deterministically route
packets straight across in network A and use A' to a bad node's packet to its associated good node.
route to the proper necklace. We will show that any Recall that we associated a bad node of type I with
destination necklace gets O(c log n) packets with high the necklace represented by a one in the least signifi.
probability, so the straight across portion of the paths cant or current bit plus log log N - I zeros in the most
should not be a problem. To finish, we give the analysis significant bits. We route these packets in the shuffle
of the congestion due to packets in just network A, and exchange graph by flipping the current bit to a one and
claim that the arguments will hold be symmetry for A'. flipping log log N- I bits to the right to zeros. Thus we

Consider an edge in the first copy of network A. map a bad node to a good necklace at its level log log N
In this half, packets going to necklaces with fewer ze- node.
ros are routed straight across their starting necklace. For any necklace, we have a binary tree, the leaves
There are at most b log N of these, so without loss of of which are mapped to the necklace. Each level of
generality we ignore them. Suppose that e traverses the tree corresponds to one of the log log N bits that
levels m and m + 1. Let z be the number of zeros were flipped. Therefore, we can route packets from the
in the necklace to which e goes. If m < z, then no binary tree leaves to the necklace, and distribute them
packet from any other necklace uses e, since we only along the necklace deterministically. This is easily done
map to a necklace via flip edges after its longest string in log N time with constant queues. The routing from
of zeros. Otherwise, we consider the number of pack- the necklace to the tree is equally trivial. But, we need
ets from other necklaces that can use e. We know to ensure that traffic from the separate binary trees
that only packets from at most 2' other necklaces with does not interfere too much. This is easy since any
I = m - loglogN could have used e since at most bad node is in at most two binary trees; in at most
I bits could have changed by level m + 1. Thus the one as a leaf since any node is mapped to exactly one
number of packets that can use e is at most 2'b log N good node, and in at most one as an internal node since
since each necklace starts with at most b log n packets. the number of zeros between the current node and the
The probability that a specific packet uses e, is the closest one to the left determines a unique level and
number of necklaces that can be reached using e, at the rest of the bits determine a unique tree.
most 2 IoS N-Iog1*S N - 1 (i.e., necklaces which match e's To finish, we consider unleveled nodes of type 2.
necklace in the first I + log log n bits), divided by the These are nodes without a unique longest string of ze-
total number of good necklaces, at least b'" (since ros. Here we extend one of the groups of zeros by one
a constant fraction of the nodes are good and there are zero, making sure not to join two groups of zeros by
log N nodes in a necklace), which is just 2. Thus the inserting a one if necessary, i.e., mimicking the flip op-
probability that more than clog n packets use e can be eration. For any good necklace whose representative is
written 0 1b... only the necklaces represented by 0k 110... and

01-t11... can be mapped to it. Again, at most two bad
, necklaces are associated with any good necklace.

F, (2blg N) (b. For each packet in such a bad necklace we route it
, )N through the node connecting it to the appropriate good

necklace. We perform this movement by pipelining the
The first factor in each term gives the number of ways packets through the edge which connects the two neck-
to choose the packets. The second is the probability laces. We see that this mapping maps at most one
that all these packet use e. The sum is bounded by packet from the bad necklace to a node in the good
0(+,) if we choose c > 2. Thus, the probability necklace. Since we are basically routing on linear ar-
that any of the O(N) edges of this stage has conges- rays of length at most 2 log N, 2 log N steps suffice to
tion more than clog N is then clearly O(V _). For route the packets appropriately. 4 log N steps is suffi-
large enough c, this gives the desired high probability cient to route the packets from two bad necklaces.
result O()b This argument, also provides the proof This finishes the description of the maps to and from
that any random destination necklace receives clog n all the unleveled nodes except for the node w = 0,
packets with high probability, since we need only con- which is easily routed to node 1.



4.2 Construction of area and volume-universal
networks

In this section we construct a clas of point-to-point
networks that are area-universalin the sense that a net-
work in the class with N processors has area O(N) and
can, with high probability, simulate in 0(log N) steps
each message-step of any shared-bus network of area
O(N). The simulation is optimal because a point-to- m=2
point network may require fl(logN) steps to simulate
one step of a shared-bus network. The networks are
baaed on the fat-trees of Greenberg and Leiserson [5] Figure 1: A fat-tue.

and the simulation uses the message routing algorithm
from Section 3.

In a fixed-connection network, processors communi- be its distance from the leaves. Suppose a channel c
cate via wires. Each processor has a bounded number connects cap(c)/2 = 2' switches at level I with cap(c) =
of read and write pins. In a point-to-point network, 21+i switches at level I + 1. Give the switches at level
each wire connects one read pin with one write pin. I labels 0 through 2' - 1 and the switches at level l + I
In each message-step, the processor with the write pin labels 0 through 2'+ ' - 1. Then switch k at level I is
may transmit a message of O(log N) bits to the pro- connected to switches k and k + 21 at level I + 1. The
cessor with the read pin. In a shared-bus network, a following lemma relates the labels of the switches on a
wire may connect many read and write pins. Such a message's path from a leaf to the root.
wire is called a bus. In each message-step, any pro-
cessors wishing to send messages make them available
on their write pins. Then the messages at the write Lemma 8 There is a unique shortest path from any
pins of each wire are combined by some simple rule to leaf to a suntch labeled k at the root, for0 <0 k < M -1,
form a single message. Combining is assumed to re- and that path passes throag a swItch labeled k mod 2'
quire a single message-step, regardless of the number at level 1, for 0 < 1 m.
of messages combined or the rule used.

Leiserson was the first to display a class of fixed-
connection networks that could efficiently simulate any For a set Q of messages to be delivered between the
other network of the same area or volume. In [13] he leaves of the fat-tree, we define the load of Q on a
showed that a fat-tree of area O(N) can simulate in channel c, load(Q, c), to be the number of destinations
0(log3 N) bit-steps each bit-step of any fixed connec- of messages in Q for which at least one message must
tion network of area O(N). The simulation used an pass through c. Note that even if many messages with
off-line routing algorithm for fat-trees. On-line rout- the same destination must pass through a channel, that
ing algorithms were l.ter developed by Greenberg and destination contributes at most one to the load of the
Leiserson [5] and Park [16]. None of these routing algo- channel. We define the load factor of Q on c, A(Q, c),
rithms are capable of combining messages to the same to be the ratio of the load of Q on c to the capacity
destination. As a consequence, no scheme for simulat- of c, A(Q, c) = load(Q, c)/cap(c). The load factor on
ing shared-bus networks was known until now. A net- the entire network, A(Q) is simply the maximum load
work that can simulate in 0(1) steps each step of any factor on any channel A(Q) = max, A(Q, c). The load
shared-bus network area of equal area was presented factor is a lower bound on the the number of steps
in [15]. However, the connections in this network are required to deliver Q. We shall assume trat A <_ Mt,
not fixed, but instead processors communicate via re- where k is some fixed constant. We shall sometimes
configurable busses. write A to denote A(Q) when the set of messages to be

A fat-tree network is shown in Figure 1. Its underly- delivered is clear from the context.

ing structure is a complete 4-ary tree. Each edge in the In a leveled fat-tree a switch at the top of an up
4-ary tree corresponds to a pair of oppositely directed channel at level I is connected to itself at the top of
groups of wires called channels. The channel directed the corresponding down channel by a linear chain of
from the leaves to the root is called an up channel; the switches of length 2(m - I). A message may only make
other is called a down channel. The capacity of a chan- a transition from an up channel to a down channel by
nel c, cap(c), is the number of wires in the channel. We traversing a chain. Thus all shortest paths between
call the tree "fat" because the capacities of the chan- leaves in a leveled fat-tree have length 2m. Note that
nels grow by a factor of 2 at every level. A fat-tree of the load of a set of messages on a channel of the leveled
height i has M 2 - 2 2 leaves and M = 2"' vertices fat-tree is identical to the *load on the corresponding
at the root. channel in the fat-tree.

It will prove useful to label the switches at the top The path that a message for destination z in column
and bottom of each channel. Let the level of a switch 2m takes through a leveled fat-tree is determined by



the na-universal hash function[4] Proof: The processors of the shared-bus network B
M-1 ) mo Mare mapped to the processors of the area-universal net.

S mwork U off-line using a recursive decomposition tech-
ph - a mood P mood M, nique as in [13]. In each step, a wire of B is simu-\\if0 lated by routing messages between the processors that

where P is a prime number larger than the number it connects. At each level of the recursion at most
of possible different destinations, and the a, E Zp are O(cap(c) . log N) wires connect the processors mapped
chosen at random off-line. A message with destina- below a channel c with the rest of the network. This
tion z follows up channels until it can reach x without property of the mapping ensures that the load factor
using any more up channels. It then crosses over to of each set of messages used in the simulation of B
a down channel via a chain, and follows down chan- is at most O(log N). At the bottom of the decompo-
nels to z. Note that a message only passes through sition tree, a O(log N) x O(log N) region of the lay-
a channel if it must. Also, all messages with destina- out of B is mapped to each leaf of the fat-tree. The
tion z that pass through channel c pass through switch O(log N) x O(Iog N) mesh connected to the leaf in U
(path(t) mod cap(c)) at the top of c and through simulates this region of B using standard mesh routing
switch (path(z) mod (cap(c)/2)) at the bottom of c. aorithmsI

The following lemma shows that we can use the The study of fat-tree routing algorithms that
scheduling algorithm from Section 3 to route messages perform combining was motivated in part by an
in a fat-tree. abstraction of the volume and area-universal net-

works called the distributed random-access machine
Lemma 9 For any constant cl, there is a constant c2 (DRAM). A host of conservative algorithms for tree
such that the probability that the number of steps re- and graph problems for the exclusive-read exclusive-
quired to deliver a set Q of messages with load factor write (EREW) DRAM are presented in [14]. Re-
A is more than c2(A + log M) is at most 1/MCI. cently we discovered conservative concurrent-read

concurrent-write (CRCW) algorithms that require
Proof: The paths of the messages are first random- fewer steps for some of these problems. Until now,
ized using the universal hash function path. With however, no efficient fat-tree routing algorithms that
high probability, the resulting congestion is c = O(A + perform combining were known. The O(A+log N) step
log M). Each message travels a distance of d = 2m = routing algorithm presented here fills the void.
2 log M. The messages are then scheduled using the Only slight modifications to the area-universal fat-
algorithm from Section 3. 1 tree are necessary to make it volume universal[5]. The

Let us now consider the VLSI area requirements underlying structure of the volume-universal fat-tree is
[23] of. fat-trees. A fat-tree with root capacity a complete 8-ary tree. Instead of doubling at each level,
M and e(M 2) processors has a layout with area the channel capacities increase by a factor of 4. The
O(M 2 log 2 M) that is obtained by embedding the fat- tree has m levels, root capacity M = 221m, and M3 / 2 

-

tree in the tree of meshes[10]. The nodes of the tree 2-4n leaves. The switches at the top of a channel at
of meshes in this layout are separated by a distance level I are labeled 0 through 41 - 1. Switch k at level !
of gM in both the horizontal and vertical directions. is connected to switches k, k + 4, k + 2.4', and k +3.4
Thus, the e(log M) space for the chain associated at level I + 1. A layout with volume O(M 1 2 log31 2 M)
with each processor in the leveled fat-tree can be al- for the fat-tree can be obtained by embedding it in the
located without increasing the asymptotic area of the three-dimensional tree of meshes. As before, a chain
layout. (In fact, it is possible to attach a chain of size of size O(1og8 / 2 M) can be attached to each node of
O(log2 M) to each fat-tree node without increasing the the fat-tree without increasing the asymptotic layout
atea by more than a constant factor.) The leaves of the area and the density of processors can be improved by
fat-tree are separated in the layout from each other by connecting a IgS11 M X lg / 2 M X lgl /2 M mesh to each
a distance of ig M in each direction. We can improve leaf.
the density of processors without increasing the asymp-
totic area of the layout by connecting a Ig M x Ig M
mesh of processors to each leaf. The resulting network 5 Counterexamples to on-line algo-
has e(M 2 log2 M) processors and area e(M 2 log2 M). rithms
The N-processor network in this class has root capacity
e(V// log N), 0(N/ log2 N) leaves, and area 0(N) In this section we give examples where several on-line

The following theorem shows that this class of net- scheduling strategies do poorly. Based on these exam-

works is area-universal, ples, we suspect that finding an on-line algorithm that
can schedule any set of paths in 0(c + d) steps using

Theorem 10 With high probability, an N-processor constant size queues will be a challenging task.
point-to-point fixed.connection network U of area 1(N) In the first example, we describe an N-node network
can simulate in 0(log N) steps each step of any shared- in which a set of packets with maximum congestion and

S bus fized-connection network B of area O(N). maximum distance 0(l) requires f0(log 2 N/log log N)



the total number of nodes in the network to be N,

- - we need k = e9(log N). In this case, we expect some
packet to be delayed (log2 N/log log N) steps in one

_ -- - -copy of the subnetwork. I
It is somewhat unfair to say that the optimal sched-

----- Iule for this example has length O(c + d) = 0(l),
m , P- -- since ghosts and EOS signals must travel a distance

of 0(log N). However, even if the EOS signals are re-
placed by packets with the appropriate ranks, the max-
imum distance is only O(log N), and thus the optimum

Figure 2: Example I. schedule has length O(log N).
The second example is quite general. The following

observation shows that for any deterministic strategy

steps to be delivered using the strategy of Section 3. in which the order in which packets are chosen to pass
This example does not contradict the results of Section through a switch is independent of the future paths

3, since the network has e(log2 N) levels. However, of the packets, there is a network and a set of paths

it shows that reducing the maximum congestion and with maximum congestion c and maximum distance d
maximum distance below the number of levels will not in which the schedule produced has length cd. This ob-
necessarily improve the running time. servation covers strategies such as giving priority to the

packet that has spent the most (or least) time waiting

Observation 11 For the strategy of Section 3, tere in queues, and giving priority to the packet that arrives
is an N-node directed acyclsc network of degree 3 and first at a switch. The network has the disadvantage of

a set of paths with maximum congestion c = 3 and having degree c and size c".

maximum distance d = 3 where the expected length of Observation 12 For any deterministic strategy in

the schedule is fl(log2 N/log log N). which the order in which packets are chosen to pass
through a switch does not depend on the paths that the

Proof: The network consists of many disjoint copies of packets take after they pass through the switch, there
the subnetwork pictured in Figure 2. The subnetwork is a network and a set of paths with congestion c and
is composed of k/log k linear chains of length k, where maximum distance d for which the schedule produced
k shall later be shown to be e(log N). The second has length cd.
node of each linear chain is connected to the second
to last node of the previous chain by a diagonal edge. Proof: We construct the example for congestion c and
We assume that at the end of each edge there is a maximum distance d, E(c, d), recursively. The network
queue that can store 2 packets. Initially, the queue consists of c copies of the network for E(c, d- 1) fet iing
into the first node of each chain contains an (EOS) into a single edge e. For each copy of E(c,d - 1), the
end-of-stream signal and one packet, and the queue strategy schedules some packet to arrive at e last. Ve
into the second node contains two packets. A packet's extend the path of this packet so that it traverses t in
destination is the last node in the previous chain. Each E(c, d). The maximum distance of the new set of pat h 3
packet takes the diagonal edge to the previous chain is d and the congestion c. The length of the schedu,'
and then the last edge in the chain. Thus, the length T(c, d), is given by the recurrence
of the longest path is d = 3. T(c, d - 1) + c d > I

When the ranks r:...,rss/tqb of the packets T(c,d) c d> I
pl,...,pa/log kare chosen so that ri < r +forl < id=
3k/log k, packet p3a,/ Ie requires fn(k 2 /log k) steps to and has solution T(c, d) = cd. I
reach its destination. The scenario unfolds as follows. The third and fourth examples show that simple
Packets p, and p2 take a diagonal edge in the first two scheduling strategies fail even in much smaller net-
steps. These packets cannot advance until the EOS works.
reaches the end of the first chain, in step k. In the
meantime, ghosts with ranks rl, r2, and r3 , travel down Observation 13 For the strategy in which the packet
the second chain, but packet p3 blocks an EOS signal with the farthest distance left to travel or the farthest
from traveling down the chain. Packets p4 and ps are total distance to travel is given priority, there ts an
waiting for this EOS signal. They cannot advance until N-node network with diameter O(V/N) and a set of
step 2k. In this fashion, the delay is propagated down paths with congestion O(v-'R) and maximum distance
to packet P3At/ltog . O(v/W) for which the schedule produced has length

A simple calculation reveals that the probability that 1(N).
ri < rjg. for 1 < i < 3k/logk is 1/200). Thus, if
we have 29(k) copies of the subnetwork, we expect the Proof: The network consists of vW/2 linear chains.
ranks of the packets to be sorted in one of them. For Chain i is composed of v1 " + i nodes. It meets chain
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Figure 3: Example 3. Figure 4: Exnple 4.

i - 1 at node i and at every second node after that up unlimited capacity. We also assume that each node can
to node vr'- i. Thus chain i and i - I share their ith, only send a message on a single output edge., without
i + 2th,...vY - ith nodes. Figure 3 shows the network loss of generality.

for VN = 8. The network again consists of many copies of a sub-
We have VN" packets starting in a queue at the first network.

node of each chain. Each packet simply traverses its We construct our subnetwork so that d = c -
chain to the the end. We assume that any queue has k/log k. The subnetwork consists of a linear chain of
unlimited size.

Note that the packets in chain i have higher priority length d, with loops of length Vd2 between adjacent

than those in the chain i - I whenever they meet since nodes (see figure 4). Of the d packets, the highest pri-

the chain i packets travel one farther than those in ority V 2 use the first v2 loops as their path. The next
chain i - i. highest priority Vd' packets use the linear chain for Vd

We claim that at every meeting point between chain steps and then use v2 - I loops as their path, and so
i- I and i, the packets in chain i - 1 are delayed by all on.
the packets in chain i. This implies the theorem since It is easily seen that the ith group of vQ pack-
the packets in the first chain would be delayed by VW ets delays the packets with lower priority by d - iv'

* packets at each of VN_/'2 meeting points, resulting in steps. Thus the last packet experiences an C?(dvrd) =
a total delay of fl(N). O((k/lo g k)312) delay.

We prove the claim by induction on chain number Once again we need the packets to be in some pe-
and the number of meeting points. It certainly holds cific order, which can be shown to happen with high
for the last two chains, i.e., the nodes of the last chain cii rder whic h c e o thenewith hg
arrive at the single meeting point at the same time as i r ativn enough i o f th sotrk.iAs
those of the second to last and have higher priority. So in Observation 11, it is not hard to show this requires
we assume that it is true for the chain i and wish to k = e(log N). i
prove that it is true for the chain i - 1.

At the first meeting point of the chains the packets
arrive at the same time since chain i has not met any 6 Remarks
other chain and the packets in chain i - 1 are not de-
layed by any packet to the left. Thus the packets in The scheduling algorithm from Section 3 can be used
chain i - I are delayed. To finish, we assume that the as a subroutine in algorithms for sorting and emulat-
packets in chain i - I have been delayed for the first j ing shared memory machines on bounded degree net-
meeting points and claim that the chain i - 1 packets works. By using the algorithm in place of the routing
meet the chain i packets at the j + Ist meeting point, algorithm in (21], it is possible to sort N packets in
since chain i - l's packets have been delayed in the O(log N) steps on an N-node butterfly using constant
intervening node. size queues. (This observation has been made previ-

ously by Pippenger (17], Ranade [19], and Reif [20].)
Observation 14 For the strategy of assigning each A shared memory machine with a large address space
packet a random rank and giving priority to the packet can be emulated by randomly hashing the memory lo-
with the lowest rank, thre is an N-node network with cations to the nodes of a butterfly as in [6] and [18).
diameter O(log N/log log N) and a sect of paths with The hashing ensures that the congestion of the packets
maximum distance d = O(log N/log log N) and con. implementing each memory access step is small. The
gestion c = O(logN/loglogN) where the expected algorithm from Section 3 can be used to schedule the
ength of the schedule is f((log N/log log N)3 1 2). the movements of these packets. A more complete de-

scription of these applications will be provided in the. Proof: In this example we assume that queues have full paper.
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