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ABSTRACT ---

The bootstrap estimator of the asymptotic covariance matrix of a function of sample

means or sample quantiles is inconsistent in some situations. A modified bootstrap estimator is

proposed and shown to be consistent under weak conditions. A simulation study shows that in

terms of finite-sample performance, the improvement of this modification is substantial. The

computation of our modified bootstrap estimator is much easier and cheaper than that of the

estimator based on the quantiles of the bootstrap distribution. Ne-show by simulation that

with the same number of bootstrap replicates (in bootstrap Monte Carlo approximation), the

modified bootstrap estimator is more accurate than the estimator based on the interquartile

range of the bootstrap distribution.
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1. INTRODUCTION

Let g be an unknown characteristic of a population distribution F. We focus on the fol-

lowing two cases which are frequently encountered in practice: (i) F is k-variate and

I = xdF, the mean ofF; (ii) F is univariate and = (Q(P ) ... Q(Pk) )', where Q(pj) is the

pj -quantile of F. The quantity of interest is 0=g (I), where g is a fixed function from Rk to

m .

Let X ,..., X. be independent and identically distributed (i.i.d.) samples from F. A point

estimator of 0 in case (i) is 6 = g (X), where X -l_,. =,Xi is the sample mean. For case (ii),

let (pj) be the sample pj-quantile based on X 1 ,-.., X. and Q = ( Q(p'),..., Q(pk) )'. A point

estimator of 0 is then 6 = g (Q).

It is well known that under reasonable conditions nl'(O--) converges in law (as the sam-

ple size n -- oo) to an m-variate normal distribution with mean zero and covariance matrix 1.

The . is called the asymptotic covariance matrix of 6 and is usually unknown. For assessing

the accuracy of the point estimator 6, we need an estimator of 1. Obtaining a good estimator

of I is also crucial for making other statistical inferences such as testing hypothesis and setting

confidence region for 0.

Efron (1979) introduced a bootstrap method for variance estimation. Let X* ,..., X,* be

i.i.d, samples from X 1,--., X , X - -_X and * be the k-vector of sample quantiles

based on Xi,..., X,. Let 6*= g(X) if 6= g(X) and 6*= g(Q*) if 6 = g(Q). The bootstrap

estimator of the asymptotic covariance matrix I of 6 is then

±b = nVar, (6 ") = nE.(6-E. 6)(6*-E. 6)'. (1.1)

where E. and Var. are the expectation and variance taken under the bootstrap distribution.

An essential theoretical justification of a variance estimator is its consistency. When g is

A A -
the identity function, the bootstrap estimator Xb is consistent. For the case of 0 = X,

= n(Xi - X)(Xi - Y)' -4 Z as.

A

according to the strong law of large numbers. For the case of 6 = Q, the consistency of T,
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was proved by Babu (1986) under some conditions (see Theorem 2).

However, even for smooth differentiable function g, the consistency of Ib is not

guaranteed. A counter-example is given in Section 2. To circumvent the inconsistency of the

bootstrap variance estimator, we propose a modified bootstrap variance estimator. Description

of this modification is given in Section 2. The consistency of the modified bootstrap variance

estimator for the cases of functions of sample means and sample quantiles is established (Sec-

tion 2.3). Variance estimators based on the quantiles of the bootstrap distribution, such as a

multiple of the interquartile range of the bootstrap distribution, are also consistent. But the

computation of our modified bootstrap estimator is much easier and cheaper than that of the

bootstrap quantiles. In Section 3, simulation results show that in the case of estimating vari-

ances of functions of sample median, the modified bootstrap estimator significantly out-

performs the original bootstrap estimator and the estimator based on interquartile range of the

bootstrap distribution in terms of finite-sample sampling properties.

2. THE MODIFIED BOOTSTRAP ESTIMATOR

2.1. A Counter-example

The following example shows that the bootstrap estimator (1.1) may be inconsistent.

We consider the univariate case. Let F be a univariate distribution function satisfying

F(x)- 1-x-h ifx>10 and F(x) = Ix I-h ifx<-10, where h is a constant. Thus, F has finite

sth moment for any s <h. In particular, F has finite second moment if h >2. Let t >h be a

constant and g (x) = exp(x'). Following the proof in Ghosh et al. (1984, Example), the

bootstrap variance estimator for the case where 4 is either g(X) or g(Q) (with O<p <1) is

inconsistent if

n-n+l[g (X(,,))] 2 -*oo as., (2.1)

where X(,) = max(X1,..., X.). In fact, under (2.1), nVar.(d*) - a.s.

To show (2.1), note that for any M >0,

P[ n-R+'[g (X(,0]2 < M ) :5 P [ X(.) < [log(M'/n(-12)]
Ift



= (1-[log(M'hn (n )]-ht)n 5 exp(-n [log(M'2n(n-l)] - h /t) < n- 2

for large n. Thus, (2.1) follows from the Borel-Cantelli lemma.

2.2. A Modification

The above example shows that the bootstrap variance estimator may diverge to infinity

while the asymptotic variance of 0 is finite. The inconsistency of the bootstrap estimator is

caused by the fact that 116*--411 may take some exceptionally large values, where

A1* A

IIx II - (xPx)'/2 for any vector x. A remedy is to truncate 0 -0 at some value. Throughout the

paper, the jth components of 6* and 6 are denoted by Of and 0j, respectively. Let

,r(X)=T(X1,.--, X.) be a k -vector of functions of data satisfying

j > c0  and cj = 0(1) a.s. j=l,...,k, (2.2)

where rj is the jth component of c(X) and c0 is a fixed constant. A modified bootstrap esti-

mator of 1- is

a = nVar* (A), (2.3)

where A*= ( A*,...,A )'and

Sif
Aj* = { --- if i 6A-- /lr. (2.4)

--j if 6;-o, <--T,

In the following we establish the consistency of the modified bootstrap estimator ia
under some weak conditions. Choices of the function r(X) are discussed in Section 2.4.

2.3. Consistency of the Modified Bootstrap Estimator

Let F be a k-variate distribution function, ;t = EX1, 0 = g (g), 6 = g (X) and Vg be the

gradient ofg. IfE NX, H2 < -* and Vg is continuous in a neighborhood of g, then as n *-,
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| A
nf' (0-0) - Z in law, (2.5)

where Z has an m-variate normal distribution with mean zero and covariance matrix

1: = Vg ()Var (X 1)(Vg (g))'.

The proof of the following theorem is given in the Appendix.

Theorem 1. Assume that E 11X1 112 < o and g is continuously differentiable in a neighbor-
A

hood of g±. Then the modified bootstrap estimator Z. (defined in (2.2)-(2.4)) is consistent, i.e.,

as n --co,

aY as.

For the sample quantiles, we consider univariate F. Let the j th component of g be Q (pj)

(pj-quantile of F), O<pj<l, j=l,...,k, 0 = g (g), 6 = g(Q), and 1a be defined in (2.2)-(2.4). It

is well known that n' ("--) converges in law to an m-variate normal distribution with mean

zero and covariance matrix

1: = Vg (g)A(Vg (gt))', (2.6)

where A is a k xk symmetric matrix whose (i j)th element is
kii = pi (1-Pj)/[f (Q (Pi)) (Q (Pj ))], l5i <_j.5,

f (Q (pi)) is the derivative of F at Q (pi) and is assumed to be positive.

We have the following result (the proof is in the Appendix).

Theorem 2. Assume that F is differentiable at Q (pj) with f (Q (pj)) >0 and O<pj <1,

j=l,...,k, wheref is the derivative ofF. Assume also that E log(l+IX 1I )] < - and g is con-

tinuously differentiable in a neighborhood of p. = ( Q (p1),..., Q (pk) )'. Then

a -- 2: as.
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2.4. Some Practical Issues
A

The modified bootstrap estimator 1a is consistent (under the weak conditions in Theorems

1 and 2) for any function c(X) satisfying (2.2). Two choices of the function 'c(X) for practical

uses are suggested as follows.

(1) j=S a constant. This can be used when one has some rough information about the asymp-

totic variance of 6j. For example, the asymptotic variance is unknown but bounded by a posi-

tive constant C. Then 'Tj can be chosen to be any constant r > C'1.
A

(2) -rj= max(pI 6j 1, co) for a small positive constant co and a positive constant p. Clearly this

xj satisfies (2.2) if 0 is strongly consistent. The small constant c o is used to prevent rj

approaching zero. With this choice of rj, 10;--Oj I is replaced by tj when the ratio O;/Oj

differs from one by more than ±100p%. A simulation study of the performance of Ya with

this choice of rj is given in Section 3.

For numerical evaluation of the bootstrap estimator, Efron (1979) proposed the use of the

Monte Carlo approximation. The same idea can be used here for the evaluation of the

modified bootstrap estimator. That is, we generate i.i.d. samples X*b,..., X,*b from

(X,..., X,, J, b=1,...,B, and calculate A*b (based on Xlb,..., X *b) according to (2.4). Then use

B-1 b= (A*b - B -11 B A*b )2
..b= 1 -

to approximate Var, (A*).

2.5. Comparison with the estimator based on bootstrap quantiles

Consider the situation where 0 is a scalar (m=l). Let a be a constant between 0 and 1/2.

Then the following estimator of the asymptotic variance of n '(0--) is consistent:

Zq = [H-1 (1.a) - H-1 (a)]/[V 1(1-) - 0- 1(a)],

/A* Awhere 0 is the standard normal distribution, H(x) = P [n'2(0 O).x ), and 0-1 (a) and

H-1 (a) are the a-quantile of 4) and H, respectively. An example is o.=1/4 and Yq is a multi-

ple of the interquartile range of the bootstrap distribution H.
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Although Eq is consistent and therefore asymptotically equivalent to the modified

AA

bootstrap estimator Xa, the computation of 1. for any fixed sample size is easier and cheaper

than that of Tq, since the former involves the computation of the second order moment of the

bootstrap distribution H whereas the latter involves the computation of the quantiles of H.
A A

Usually 1. and Zq have to be approximated by Monte Carlo (see Section 2.4). Obtaining an

accurate Monte Carlo approximation of the second order moment of the bootstrap distribution

H is much easier than obtaining an accurate Monte Carlo approximation of the quantiles of H.

It was shown (Efron, 1987, Section 9) that the Monte Carlo approximation of the second order

moment of H usually requires 100-200 bootstrap replications. On the other hand, the Monte

Carlo approximation of a quantile of H is more costly, requiring 1000-2000 bootstrap replica-
A A

tions. The amount of computation required for Xq is at least 10 times as much as that for Za.

A 
A

For the same bootstrap replication size B, Tq is much less accurate than 1, and is also

less accurate than Lb when ±b is consistent. This is shown in the following simulation study.

3. A SIMULATION STUDY

In this section we study by simulation the finite-sample sampling properties of the

modified bootstrap estimator, the original bootstrap estimator and the estimator based on

bootstrap interquartile range in the case of estimating the asymptotic variances of functions of

sample median.

Let Q be the sample median based on n=36 i.i.d. samples from a distribution F and

6 =g (Q). Three functions g are considered: (i) g (x)=x; (ii) g (x)=x2/4; (iii) g (x)=ex/4. Two

distributions F under consideration are: (i) normal distribution with median (mean) 1.5 and

standard deviation 2; (ii) Cauchy distribution with median 1.5 and scale parameter 2.
A

The function T(X) for the modified bootstrap estimator is chosen to be max(1/ I I, 0.05).

For the evaluation of the three bootstrap estimators, Monte Carlo approximation of size B =500

is used (see Section 2.4).
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Table 1 reports the root mean squared errors (rmse) and the biases of the three bootstrap

estimators. The asymptotic variances (denoted by o2) are included. All the results are based

on 2000 simulations on a VAX 111780 at Purdue University. The IMSL subroutines are used

for generating random numbers.

We summarize the simulation results as follows.

(1) Overall. All three bootstrap variance estimators are up-ward biased. The modified

bootstrap estimator reduces the bias considerably. In terms of the rinse, the modified bootstrap

significantly out-performs the original bootstrap and the bootstrap interquartile range. The

ratio of the rinse of the modified bootstrap estimator to the rmse of the original bootstrap esti-

mator (or the bootstrap interquartile range), denoted by R, is shown in Table 1.

(2) The modified bootstrap and the original bootstrap. The improvement of the modified

bootstrap over the original bootstrap is larger if the distribution F has heavier tails and/or the

function g (x) has a faster rate of divergence (as Ix I--). This indicates that even if the origi-

nal bootstrap estimator is consistent, the modified bootstrap estimator may have a faster con-

vergence rate.

(3) The modified bootstrap and the interquartile range. With the same bootstrap replication

number B =500, the modified bootstrap is much more efficient than the bootstrap interquartile

range: the ratio R is usually about 0.5-0.6. In fact, the bootstrap interquartile range is also

not as good as the original bootstrap estimator in the case where the original bootstrap estima-

tor is consistent.

(4) The effects of distribution tails and function g. The case of F = Cauchy distribution and

g (x) = ex/4 is an exceptional case: the original bootstrap estimator is inconsistent (diverges to

infinity) and the biases and rinse of the other two estimators are also very large. This indicates

that although the modified bootstrap and bootstrap interquartile range estimators are consistent,

the sample size n =36 is not large enough when the distribution F has heavy tails and g (x)

diverges to infinity at a very fast rate. However, the result in Table 1 still clearly shows that

the modified bootstrap estimator is much better.
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APPENDIX

Proof of Theorem 1. From Bickel and Freedman (1981), for almost all X 1 , X 2,..., the condi-

tional distribution of n' /2(6* -0) converges to the distribution of Z (given in (2.5)). Let

XI, X 2.... be a fixed sequence such that (2.2) holds and the conditional distribution of

n, (A*-0) converges to the distribution of Z. Let Ps be the bootstrap conditional probability

and X be an arbitrary nonzero m-vector. For any fixed t >0,

I P. n ,'( -0)(6-4)'; < t P -P n;L'(A" A'), < t ) I

1 -P." id* i < 9,:=l,...,k, -+o

as n - . Therefore the conditional distribution of n (A A*') converges to the distribution of

ZZ'. It remains to show that there is a constant 8>0 such that

E*(n' 1 1A* 11)2 ' = 0 (1) as. (Al)

We now show that (Al) holds with 8=2. Since Vg is continuous in a neighborhood of g.,

there are positive constants 'q and M such that

trace ([Vg (x)]'[Vg (x)]) M if 11 x --p _ 21.

By the strong law of large numbers, almost surely,

S-- p. and n-1 7,M =(Xi-X)(Xi-X)' -4 Var(X 1). (A2)

Let Xij and Y be the jth components of Xi and X, respectively. By the Marcinkiewicz's

strong law of large numbers, almost surely,
n-24(X-) 4  1(Xj-EXj) 4 - 0 for all j=l,...,k. (A3)

Let X 1, X2,... be a sequence such that (2.2), (A2) and (A3) hold. Then IIX- I11 < il for large

n. Let I (A) be the indicator function of the set A. Then

n2E, NIA* U14= n 2E. 11 A* U 41 (11,Y* -Y,11:11) + n 2E. 11IA* 1141 (IY-, 11 1 >TI)

s5 n2ZE. I1( *-.41141(lIY*-Yll5rl) + II't(X)1I4n2E.I(IIX*_ II >Tl)

= n 2E. II Vg ( _F ) 11-X)41( IIY*k-X lar1) + IIC(X) II4n 2E. I( IIX* -Y II >i) (A4)
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M2n2E. 11 1- 41 ( 11* -11 Hn) + 11-4 l(X) 114n2E, 11X*-_Y ii4  (A)

5 (M2+rj-4 iI z(X) 114)n2E, 11,* -Y 114,

where (A4) follows from the mean-value theorem and 4* is a point on the line segment

between X and Y, and (A5) follows from

,14*-jgI :, <,-A ll + i -,II < n+ I,1" -I.

Under (2.2), II t(X)II = 0(1). Hence the result follows from

in2 E ( 0*)4 = O(1), (A6)

where is the jth component of Xk. A straightforward calculation shows that

n2E. (X*-X )4 = n-2 _=(Xjj-Yj)4 +3(n-2-n-3)[jn j)2]2.

Hence (A6) follows from (A2)-(A3) and thus the result. 03

Proof of Theorem 2. From Bickel and Freedman (1981), for almost all X 1, X21..., the condi-

tional distribution of nhh(-*-) converges to the normal distribution with mean zero and

covariance matrix given by (2.6). Following the same argument in the proof of Theorem 1, we

only need to show (Al).

Replacing 7 and A7 by Q* and Q in the proof of Theorem 1, we have

n2E 11A* 1145 C In 2E, 11A*E.Q*-- 114,  (A7)

where CI is a positive constant. Then (Al) follows from (A7) and

n2E. 11 Q114 -o(1) a.s.

under E[log(1+X 1 I)] < - (see Babu, 1986). 0
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7ble 1. Results of simulation comparison of the modofied bootstrap, the original boot-
strap and the interquartile range estimators.

Normal distribution

Modified bootstrap Origial bootstrap Interquartile range

g(X) o2 /n bias rinse bias rinse R bias rinse It

x 0.1745 0.0108 0.0985 0.0150 0.1049 0.9390 0.0208 0.1747 0.538

z2/4 0.0982 0.0070 0.0722 0.0193 0.0921 0.7839 0.0194 0.1361 0.5305

ex/4 0.2191 0.1252 0.3330 0.2211 0.5908 0.5636 0.1363 0.5724 0.5818

Cauchy distribution

Modified bootstrap Original bootstrap Interquartile range

g(z) au2/n bias rinse bias rinse Rt bias rinse Rt

x 0.2742 0.0617 0.1928 0.1037 0.2605 0.7401 0.0782 0.3495 0.5516

x2/4 0.1542 0.0405 0.1747 0.1302 0.4320 0.4044 0.0737 0.3607 0.4843

es/4 0.3442 0.5556 1.6558 1.03 x 10' 4.56 x 104 0.0000 0.8112 8.3566 0.1981

= rinse of modified bootstrap

rmse
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