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The bootstrap estimator of the asymptotic covariance matrix of a function of sample

means or sample quantiles is inconsistent in some situations. A modified bootstrap estimator is

proposed and shown to be consistent under weak conditions. A simulation study shows that in

terms of finite-sample performance, the improvement of this modification is substantial. The

. Thoas . . .
computation of our modified bootstrap estimator is much easwf and cheaper than that of the
+ 13 Showrn

estimator based on the quantiles of the bootstrap distribution. Weshew by simulation that

with the same number of bootstrap replicates (in bootstrap Monte Carlo approximation), the

modified bootstrap estimator is more accurate than the estimator based on the interquartile

range of the bootstrap distribution. /k%mi 2
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1. INTRODUCTION

Let it be an unknown characteristic of a population distribution F. We focus on the fol-
lowing two cases which are frequently encountered in practice: (i) F is k-variate and
L= deF, the mean of F; (ii) F is univariate and p = ( Q(P1),.... @ (Px) )’, where Q(p;) is the
pj-quantile of F. The quantity of interest is 6=g (i), where g is a fixed function from R* 10
R™.

Let X,,..., X,, be independent and identically distributed (i.i.d.) samples from F. A point
estimator of 0 in case (i) is 6= g (}f ), where X = n"z‘.’_’__ lXi is the sample mean. For case (ii),

let é(pj) be the sample pj-quanﬁle based on X,,..., X, and é = ( é(pl),..., é(pk) Y. A point

estimator of  is then 6 = g ().

It is well known that under reasonable conditions n"’(é—e) converges in law (as the sam-

ple size n-—3e0) t0 an m-variate normal distribution with mean zero and covariance matrix Z.
The X is called the asymptotic covariance matrix of 6 and is usually unknown. For assessing

the accuracy of the point estimator 6, we need an estimator of . Obtaining a good estimator
of X is also crucial for making other statistical inferences such as testing hypothesis and setting
confidence region for 6.

Efron (1979) introduced a bootstrap method for variance estimation. Let X7,..., X, be
iid. samples from { X;,.., X, }, X*= n'lzl.'f__ X and 0" be the k-vector of sample quantiles
based on X},.., X,. Let §°=g(X*) if = g(X) and 6"= g(0") if 6 = g(0). The bootstrap

estimator of the asymptotic covariance matrix X of 6 is then

£, =nVar«(8") = nE. (8" -E.6")(8"-E. 8"y, (LD
where E. and Var. are the expectation and variance taken under the bootstrap distribution.
An essential theoretical justification of a variance estimator is its consistency. When g is
the identity function, the bootstrap estimator fq, is consistent. For the case of 6 = X ,
£, =n7I30 X - X)X; -XY > I as.

according to the strong law of large numbers. For the case of 6= é. the consistency of }'5,,
1




was proved by Babu (1986) under some conditions (see Theorem 2).

However, even for smooth differentiable function g, the consistency of ﬁb is not
guaranteed. A counter-example is given in Section 2. To circumvent the inconsistency of the
bootstrap variance estimator, we propose a modified bootstrap variance estimator. Description
of this modification is given in Section 2. The consistency of the modified bootstrap variance
estimator for the cases of functions of sample means and sample quantiles is established (Sec-
tion 2.3). Variance estimators based on the quantiles of the bootstrap distribution, such as a
multiple of the interquartile range of the bootstrap distribution, are also consistent. But the
computation of our modified bootstrap estimator is much easier and cheaper than that of the
bootstrap quantiles. In Section 3, simulation results show that in the case of estimating vari-
ances of functions of sample median, the modified bootstrap estimator significantly out-
performs the original bootstrap estimator and the estimator based on interquartile range of the
bootstrap distribution in terms of finite-sample sampling properties.

2. THE MODIFIED BOOTSTRAP ESTIMATOR
2.1. A Counter-example
The following example shows that the bootstrap estimator (1.1) may be inconsistent.

We consider the univariate case. Let F be a univariate distribution function satisfying
F(x)=1-x"* if x>10 and F(x) = Ix 1" if x<—10, where h is a constant. Thus, F has finite
sth moment for any s<h. In particular, F has finite second moment if h>2. Let t>h be a
constant and g(x) = exp(x’). Following the proof in Ghosh et al. (1984, Example), the

bootstrap variance estimator for the case where @ is either g(f ) or g(é) (with O<p <) is

inconsistent if

X))k 2 as., .1)

where X () = max(X y,..., X,). In fact, under (2.1), nVar«(8") = = a.s.

To show (2.1), note that for any M >0,
P{ n-n+l[g (x(n))]2 <M } SP{ X(n) < nog(M'/zn(n—l)ﬂ)]llt ]




= {1-[log(M *n®~D }* < exp(—n{log(M "n DA} < 72

for large n. Thus, (2.1) follows from the Borel-Cantelli lemma.

2.2. A Modification

The above example shows that the bootstrap variance estimator may diverge to infinity
while the asymptotic variance of 6 is finite. The inconsistency of the bootstrap estimator is
caused by the fact that |l 6" -1 may take éome exceptionally large wvalues, where
x| = (¢x)" for any vector x. A remedy is to truncate 6" -0 at some value. Throughout the

paper, the jth components of 6" and 6 are denoted by é; and 6j, respectively. Let
X )=1(X,,..., X,,) be a k-vector of functions of data satisfying

Tj 2Co and Tj =0() a.s. j'—"—l,...,k, 2.2)

where T is the jth component of T(X') and c is a fixed constant. A modified bootstrap esti-

mator of X is
2, = nVar.(A%), (2.3)
where A*= (Ay,...,Af )’ and
Gy i 66>,
=166 if 16;9;1<r e
| Y if éj'—éj <

In the following we establish the consistency of the modified bootstrap estimator fa

under some weak conditions. Choices of the function T(X ) are discussed in Section 2.4.

2.3. Consistency of the Modified Bootstrap Estimator

Let F be a k-variate distribution function, p = EX, 0 = g (), 6= g(f ) and Vg be the
gradient of g. If E 1X, 12 < e and Vg is continuous in a neighborhood of j, then as n —es,




n'"6-0) > Z in law, (2.5)
where Z has an m-variate normal distribution with mean zero and covariance matrix

= Vg@VarX)(Vg (W)

The proof of the following theorem is given in the Appendix.

Theorem 1. Assume that E X, 2 < o= and g is continuously differentiable in a neighbor-

hood of y. Then the modified bootstrap estimator }:".a (defined in (2.2)-(2.4)) is consistent, i.e.,

as n —yoo,

S ) as.

For the sample quantiles, we consider univariate F. Let the jth component of U be Q (p i)
(pj-quantile of F), 0<p;<1, j=1....k, 8 =g (1), 6 = g(Q), and £, be defined in (2.2)-(2.4). It

is well known that n"’(é—e) converges in law to an m-variate normal distribution with mean

zero and covariance matrix

Z= Vg WAV (W), (2.6)
where A is a kxk symmetric matrix whose (i,j )th element is
N =pi(1-p)[f Q@) Q@) 1<ijsk,
F @ (;)) is the derivative of F at Q (p;) and is assumed to be positive.

We have the following result (the proof is in the Appendix).

Theorem 2., Assume that F is differentiable at Q(p;) with f(Q (®;)>0 and O<p;<1,
Jj=1,...k, where f is the derivative of F. Assume also that E [log(1+1X,1)] < e and g is con-
tinuously differentiable in a neighborhood of p = ( Q@ (p4),.... @ (@) ). Then

f,, =X as.




2.4. Some Practical Issues

The modified bootstrap estimator }5,, is consistent (under the weak conditions in Theorems
1 and 2) for any function T(X) satisfying (2.2). Two choices of the function T(X) for practical

uses are suggested as follows.

(1) t;= a constant. This can be used when one has some rough information about the asymp-
totic variance of 6j. For example, the asymptotic variance is unknown but bounded by a posi-
tive constant C. Then T; can be chosen to be any constant © > c',

(2) ;= max(pl ) ;i 1, ¢o) for a small positive constant ¢ and a positive constant p. Clearly this
T; satisfies (2.2) if 8 is strongly consistent. The small constant ¢, is used to prevent T;
approaching zero. With this choice of t;, Ié;-—éjl is replaced by t; when the ratio é;/ éj

differs from one by more than +100p%. A simulation study of the performance of }5‘, with

this choice of t; is given in Section 3.

For numerical evaluation of the bootstrap estimator, Efron (1979) proposed the use of the
Monte Carlo approximation. The same idea can be used here for the evaluation of the
modified bootstrap estimator. That is, we generate iid. samples X}°,.., X;? from
{ X1... X, }, b=1,...B, and calculate A*® (based on X}?,..., X %) according to (2.4). Then use

1B 1B A%\2

to approximate Var. (A*).

2.5. Comparison with the estimator based on bootstrap quantiles

Consider the situation where 0 is a scalar (m=1). Let o be a constant between 0 and /2.
Then the following estimator of the asymptotic variance of n"?(69) is consistent:

%, = [H'(1—0) - H{(@))/ [0 (1-0) — &~ Y(a)],

where @ is the standard normal distribution, H(x) = P«{ n"’(é‘—é)Sx }, and ®(a) and

H(a) are the a-quantile of ® and H, respectively. An example is a=1/4 and £, is a multi-
q

ple of the interquartile range of the bootstrap distribution H.
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Although f.q is consistent and therefore asymptotically equivalent to the modified
bootstrap estimator f‘.a, the computation of f., for any fixed sample size is easier and cheaper

than that of f.q, since the former involves the computation of the second order moment of the

bootstrap distribution H whereas the latter involves the computation of the quantiles of H.

Usually fa and fq have to be approximated by Monte Carlo (see Section 2.4). Obtaining an
accurate Monte Carlo approximation of the second order moment of the bootstrap distribution
H is much easier than obtaining an accurate Monte Carlo approximation of the quantiles of H.
It was shown (Efron, 1987, Section 9) that the Monte Carlo approximation of the second order
moment of H usually requires 100~200 bootstrap replications. On the other hand, the Monte
Carlo approximation of a quantile of H is more costly, requiring 1000~2000 bootstrap replica-

A A
tions. The amount of computation required for 2, is at least 10 times as much as that for 2.

For the same bootstrap replication size B, fq, is much less accurate than fa and is also

less accurate than f.‘,,, when ﬁ,, is consistent. This is shown in the following simulation study.

3. A SIMULATION STUDY

In this section we study by simulation the finite-sample sampling properties of the
modified bootstrap estimator, the original bootstrap estimator and the estimator based on
bootstrap interquartile range in the case of estimating the asymptotic variances of functions of

sample median.

Let é be the sample median based on n=36 i.i.d. samples from a distribution F and

6=¢(Q). Three functions g are considered: (i) g (x)=x; (i) g (x)=x¥4; (iii) g (x)=e*/4. Two
distributions F under consideration are: (i) normal distribution with median (mean) 1.5 and

standard deviation 2; (ii) Cauchy distribution with median 1.5 and scale parameter 2. -

The function t(X') for the modified bootstrap estimator is chosen to be max('/2 Iél, 0.05).
For the evaluation of the three bootstrap estimators, Monte Carlo approximation of size B=500
is used (see Section 2.4).




Table 1 reports the root mean squared errors (rmse) and the biases of the three bootstrap
estimators. The asymptotic variances (denoted by o?) are included. All the results are based
on 2000 simulations on a VAX 11/780 at Purdue University. The IMSL subroutines are used

for generating random numbers.
We summarize the simulation results as follows.

(1) Overall. All three bootstrap variance estimators are up-ward biased. The modified
bootstrap estimator reduces the bias considerably. In terms of the rmse, the modified bootstrap
significantly out-performs the original bootstrap and the bootstrap interquartile range. The
ratio of the rmse of the modified bootstrap estimator to the rmse of the original bootstrap esti-

mator (or the bootstrap interquartile range), denoted by R, is shown in Table 1.

(2) The modified bootstrap and the original bootstrap. The improvement of the modified
bootstrap over the original bootstrap is larger if the distribution F has heavier tails and/or the
function g (x) has a faster rate of divergence (as Ix | —<0). This indicates that even if the origi-
nal bootstrap estimator is consistent, the modified bootstrap estimator may have a faster con-

vergence rate.

(3) The modified bootstrap and the interquartile range. With the same bootstrap replication
number B=500, the modified bootstrap is much more efficient than the bootstrap interquartile
range: the ratio R is usually about 0.5-0.6. In fact, the bootstrap interquartile range is also
not as good as the original bootstrap estimator in the case where the original bootstrap estima-

tor is consistent.

(4) The effects of distribution tails and function g. The case of F = Cauchy distribution and
g (x) = e*/4 is an exceptional case: the original bootstrap estimator is inconsistent (diverges to
infinity) and the biases and rmse of the other two estimators are also very large. This indicates
that although the modified bootstrap and bootstrap interquartile range estimators are consistent,
the sample size n=36 is not large enough when the distribution F has heavy tails and g (x)
diverges to infinity at a very fast rate. However, the result in Table 1 still clearly shows that
the modified bootstrap estimator is much better.




APPENDIX
Proof of Theorem 1. From Bickel and Freedman (1981), for almost all X, X5,..., the condi-

tional distribution of n'(8*—6) converges to the distribution of Z (given in (2.5)). Let
X1, X3,... be a fixed sequence such that (2.2) holds and the conditional distribution of

n'/’(é. -é) converges to the distribution of Z. Let Ps be the bootstrap conditional probability

and A be an arbitrary nonzero m-vector. For any fixed >0,
| Pof nA(8°—6)0" 0y A<t} = Puf nN(A*A* M <1} |
S1-Pof 16;-8;1 <1, j=1,.k, ] 50

as n—wo, Therefore the conditional distribution of n(A*A*’) converges to the distribution of

ZZ'. Tt remains to show that there is a constant >0 such that
E«(n'1Aa* 1) =0Q) as. (A1)
We now show that (A1) holds with 8=2. Since Vg is continuous in a neighborhood of y,

there are positive constants 1| and M such that
trace ([Vg(x)1'[Vg(x)1} <M if lx—ull <2n.

By the strong law of large numbers, almost surely,
X->p and o' XGXXXY - Var X)) (A2)

Let X;; and f, be the jth components of X; and X, respectively. By the Marcinkiewicz’s

strong law of large numbers, almost surely,
n2y X—X;)* < 160728 (X —EX;;)* - 0 for all j=1,..k. (A3)

Let X, X,,... be a sequence such that (2.2), (A2) and (A3) hold. Then X —pull €1 for large
n. Let I(A) be the indicator function of the set A. Then

n2E. 1A* 14 = n2E, 1A® WT(IX* =X 1<n) + n2E. 1A® 14T (IX*=X Il >n)

< n2E 168" HNY (IX* =X <) + 1t(X)N14n2E T (1X* X 1 >7)

=n2E NVg EHX* -X) N4 (IX =X <) + 1) W4n2E J(IX* =X I>n)  (Ad)




S M2n2E, 1X* =X W4 (1X* =X <) + 40t ) 14n2E, 1X* =X 14 (AS)

< ME~4 1T ) I14)n2E. 1X* =X 14,

where (A4) follows from the mean-value theorem and £* is a point on the line segment
between X* and X, and (A5) follows from
HE*—ull < IX—pll + HE*=X 1 <m+ UX*=X 1.

Under (2.2), 1t(X)1l = O(1). Hence the result follows from
nE(X;-X")Y=0(), (A6)
where )?j' is the jth component of X' A straightforward calculation shows that
n2E(X{-X*)* = n2g (X;-X)* + 3(n~-n BT, (XX

Hence (A6) follows from (A2)-(A3) and thus the result. O

Proof of Theorem 2. From Bickel and Freedman (1981), for almost all X,, X,..., the condi-

tional distribution of n"’(é‘—é) converges to the normal distribution with mean zero and
covariance matrix given by (2.6). Following the same argument in the proof of Theorem 1, we

only need to show (Al).
Replacing X* and X by Q" and 0 in the proof of Theorem 1, we have

n2E, IA* 14 < Cn2E. 100114, (AT)
where C, is a positive constant. Then (A1) follows from (A7) and
n2ENQ"-0N4=0(1) as.
under E [log(141X1)] < e (see Babu, 1986). O
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Table 1. Results of simulation comparison of the modofied bootstrap, the original boot-

strap and the interquartile range estimators.

Normal distribution
Modified bootstrap Original bootstrap Interquartile range
g(z) | o?*/n | bias rmse bias rmse Rt | bias | rmse R}
z [0.1745 {0.0108 | 0.0985 0.0150 0.1049 10.9390 10.0208 10.1747 |0.5638
z2/4 10.0982 {0.0070 | 0.0722 0.0193 0.0921 }0.7839 |0.0194 {0.1361 {0.5305
e*/4 [0.2191 {0.1252 { 0.3330 0.2211 0.5908 0.5636 10.1363 10.5724 ]0.5818
Cauchy distribution
Modified bootstrap Original bootstrap Interquartile range
g(z) | o*/n | biss rmse bias rmse Rt | bias | rmse R}
z [0.2742 10.0617 | 0.1928 0.1037 0.2605 |0.7401 {0.0782 {0.3495 |0.5516
z3/4 |0.1542 [0.0405 | 0.1747 0.1302 0.4320 0.4044 10.0737 10.3607 |0.4843
e*/4 |0.3442 |0.5556 | 1.6558 [1.03 x 10® [4.56 x 10* [0.0000 [0.8112 [8.3566 [0.1981

tp — rmse of modified bootstrap
= TS

10




REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

28. SECURITY CLASSIFICATION AUTHORITY

s ———
3. OISTRIBUTION / AVAILASIUTY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release, distribution -
unlimited.

T'4. PERFORMING ORGANIZATION REPORT NUMBER(S)

Technical Report #88-29

S. MONITORING ORGANIZATION REPORT NUMBER(S)

Office of Naval Research

68. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYI:':OL 7a. NAME OF MONITORING ORGANIZATION
Purdue University o s !
6c. ADDRESS (Oty, State, and 2iP Code) 7b. ADORESS (City, State, and ZIP Code)
Department of Statistics
West Lafayette, IN 47907
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Of applicadle)

NOOO14-88-K-0170 and "= Crants DilS-8606964

8c. ADDRESS (Cty, State, and 2IP Code)
Arlington, VA 22217-5000

8702620
10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

RN T SRR SRR S

1. TITLE @nclude Security Classification)

A NOTE ON BOOTSTRAP VARIANCE ESTIMATION (Unc'lass1f1ed)

12. PERSONAL AUTHOR(S)

Jun Shao
13a. TYPE OF.REPOR‘I’ 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT
{  Technical FROM 10 June 1988 10
16. SUPPLEMENTARY NOTATION
1. COSATI CODES | 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP suscroup | asymptotic variance, consistency, sample mean,

] sample quantile, truncation

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The bootstrap estimator of the asymptotic covariance matrix of a function of
sample means or sample quantiles is inconsistent in some situations. A modified
bootstrap estimator is proposed and shown to be consistent under weak conditions.

"A simulation study shows that in terms of finite-sample performance, the improvement
The computation of our modified bootstrap
estimator is much easier and cheaper than that of the estimator based on the quantiles
We show by simulation that with the same number of
bootstrap replicates (in bootstrap Monte Carlo approximation), the modified

bootstrap estimator is more accurate than the estimator based on the interquartile

of this modification is substantial.

of the bootstrap distribution.

range of the bootstrap distribution.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
Ouncassireounumited 0 same AS RreT.

Oornc UsERs

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL
Jun Shao

22¢. OFFICE SYMBOL

21!51%?5&%%&%?50 Area Code)

DO FORM 1473, 84 mAR

83 APR edition may be used until exhausted.
All other editions are absolete.

SECURITY CLASSIFICATION OF THiS PAGE
UNCLASSIFIED




