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SUMMARY

During the course of this year, we have concentrated on the validation
of the transport element method in two dimensions and its extension to:
three dimensional flow, to reacting flow with finite Arrhenius rates, and to
variable-density flow including the effect of gravity. Comparisons with
experimental data on a reacting shear layer with low heat release show that
the numerical results agree very closely with the measurements of the
velocity statistics, the passive scalar statistics, the product formation
rate and the product thickness. Numerical studies are used to establish the
dependence of the product formation rate on the Reynolds number, the Lewis
number and the Damkohler number. Studies of a variable-density flow focused
on the effects of density gradients on the structure of turbulence in both
the momentum driven and gravity-driven reacting flow. In particular, how
does heat release change the rates of growth and mixing within the layer via
the impact of the expansion field and the baroclinic vorticity generation
due to the density gradients. For this purpose, examples of a horizontal
premixed reacting shear layer and a vertical jet diffusion flame are
analyzed.
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OBJECTIVES

The objectives of this research are:

I. The development of accurate numerical methods which can be utilized

for the integration of the time-dependent, three-dimensional Navier-

Stokes equations and the energy and species conservation equations at

high values of the Reynolds and Peclet numbers and moderate values of

the Damkohler number, and when the heat release is large with respect

to the internal energy of the flow.

II. The investigation of the mechanisms of turbulence-combustion

interactions on the basis of the solutions obtained from the numerical

simulations, and the study of how these interactions can be

manipulated to provide more control over the burning process in

turbulent shear flows.

We have been working on the development of grid-free, Lagrangian

schemes: the vortex element and the transport element methods, which can be

used to simulate fields that develop large velocity and scalar gradients.

For the purpose of validating these schemes and analyzing turbulence-

combustion interactions, we are using simulations of the reacting shear

layers in two and three dimensions and in cases when the fuel and oxidizer

are initially flowing in separate streams, and when the premixed reactants

and products are initially flowing in separate streams. Attention has been

focused on the low Mach number compressible flow limit in which spatial

pressure variations are neglected in the thermodynamics of the problem.

Effort is underway to extend the formulation to high Mach number flow in

which this restriction is relaxed.
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PERSONNEL

Six graduate students are currently working on projects related to the

subject of this research. Their names, Ph.D. thesis titles and expected

dates of completion are listed below in order of seniority. These students

have been partially or totally supported by this grant. Copies of these

theses will be forwarded as soon as they are ready.

1. Heidarinejad, Ghassem, Numerical Simulation of a Reacting Shear Layer
Using The Transport Element Method, December 1988.

2. Najm, Habib, Numerical Study of the Convective Instability of Turbulent
Flames in a Confined Combustor with Sudden Expansion, December 1988.

3. Knio, Omar, Spanwise Structure of a Turbulent Mixing Layer: Solutions
Using 3-D Vortex Methods, September 1989.

4. Krishnan, Anantha, The Formulation of Compressible Vortex Methods for
the Simulation of Turbulent Reacting Flow, September 1989.

5. Martins, Luis-Filippe, A Hybrid Finite Element, Vortex Method for
Simulation of Internal Flow, December 1989.

6. Soteriou, Marios, started September 1988.
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WORK STATUS

The research has been divided into several tasks: formulation of the

numerical schemes, validation of the codes in which these schemes are

implemented, and study of physics of turbulent-combustion interactions in

reacting flow. In the following, a briefing on each project is given.

I. Numerical Simulation of a Reacting Shear Layer

Numerical simulation is applied to study mixing of a passive scalar in

a spatially-developing shear layer, and to investigate the enhancement of

the rate of chemical reaction in a mixing layer formed of separate fuel and

oxidizer streams. The numerical simulations are performed using the

transport element method, which we have developed as an extension of the

vortex element method for the solution of the species and the energy

conservation equations at high heat and mass transfer Peclet numbers. The

method is Lagrangian and grid-free, and is based on the accurate

discretization of flow gradients among finite elements which are transported

along particle paths. The core functions of the elements are chosen to

guarantee high spatial accuracy, and may be deformed to capture mild strain

field. Computational elements are only utilized in areas of large flow

gradients, i.e. shear layers or flames, and are redistributed whenever the

flow map becomes severely distorted. The strengths of the elements are

updated according to the source terms in the conservation equations

[A1,A21.

In the spatially-developing, non-reacting mixing layer, we found that

References are listed in the Sections on New Publications [A] and
Publications Under Preparation [B].
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instantaneous scalar profiles exhibit mixing asymmetry and that the

concentration fractions within the cores are skewed in favor of the high

speed stream due to the asymmetry in the dynamic field. The velocity

statistics and mixing statistics of a passive scalar agree well with the

experimental measurements of Masutani and Bowman in a two-dimensional shear

layer. The rms of the passive scalar and the computed scalar PDF, which can

be used as measures of the mixedness, emphasize the effect of molecular

diffusion on mixing for Peclet numbers in the range of 1000-10000 [A3].

We have extended the computations to a chemically-reacting, spatially-

developing layer assuming that the heat release dnes not change the density

of the flow (the extension to a variable-density flow is described in the

next section). Results of these simulations are compared with the

experimental measurements of Mungal, Dimotakis and Broadwell. The agreement

is very favorable [B11. In particular, we obtain the same values for the

rate of product formation and the product thickness as was measured in these

experiments. We are in the process of analyzing the dependence of the rate

of product formation on the Reynolds number, the Lewis number and the

Damkohler.

II. Flow-Combustion Interactions in Premixed Combustion

The interactions between the flow field and the combustion process in a

premixed shear layer are investigated by analyzing the results of numerical

simulation using the transport element method [A6]. The reaction is

governed by finite-rate Arrhenius kinetics for a single reactant, the

density of the flow is allowed to vary with the temperature, and the

Reynolds number is high. Heat release is moderate and molecular heat and

mass diffusivities are finite, while the Mach number is small. The

thickness of the reaction zone and that of the vorticity layer are of the
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same order of magnitude, i.e. turbulence scales are relatively small.

Attention is focused on a single, or two eddies in a temporal shear layer to

limit the computational time. Extension to a spatially developing layer is

discussed in the previous section.

Results indicate that at the early stages, a reacting layer behaves

like a laminar flame. During the growth phase of the eddy, the rate of

burning is strongly enhanced by the entrainment fluxes that lead to the

swelling of the reaction zone. During this phase, the total rate of product

formation can be approximated by the unstrained laminar burning velocity

times the flame length measured along the line of maximum reaction rate.

Following the burning of the eddy core, the strain field along the eddy

boundaries causes a noticeable thinning of the reaction zone, thus curbing

the rise in the rate of burning. During this phase, the rate of burning

expression in the wrinkled laminar flame theory should be modified to

account for the change of the laminar burning velocity with strain.

Baroclinic vorticity generation, due to the acceleration of fluid

elements in the density gradient of the flame, is found to be the most

important mechanism by which combustion alters the flow field in the low

Mach number limit. The baroclinic torque augments the vorticity within the

core while it reduces the vorticity on its outer edges. This enhances the

overall volumetric entrainment into the eddy core, and causes entrainment

asymmetry with a bias towards the products stream. The modified vorticity

field extends the growth, or entrainment period of the eddy and imparts on

it an extra mean convective motion in the direction of the reactants stream.

In all steps of development, the numerical methods are validated by

comparing the numerical solutions with the results of the linear stability

theory of shear layer during the initial stages of development. This



7

strategy is used to ensure that the physical model utilized in the numerical

solution matches that used in the analytical, or semi-analytical study.

Results for the late, non-linear stages are compared with idealized

experimental data or results of conceptual models.

We are currently working on: (1) extending these computations to a

spatially-developing shear layer with premixed reactants for which

experimental results exist; and, (2) adding the effects of gravity, which

acts an another vorticity generation mechanism, to these computations

[B2,B3]. This is particularly important in the case of momentum/gravity

flame as the jet flame of Roquemore (B41. We are also looking into

extending the transport element scheme to high Mach number flows in which

spatial pressure variations play an important role.

III. Three-Dimensional Structure of a Stratified Shear Flow

The main goal of this project is the extension of vortex methods to

three-dimensional flows. The numerical scheme is based on the accurate

discretization of the vorticity field into a number of finite-core,

spherical vortex elements, and the transport of these elements along

particle paths. The vortex scheme is then used to study the formation of

streamwise vorticity which is known to be a precursor to self-turbulization

and mixing transition in shear flows. To validate the scheme, and

understand the underlying physics of the transition process, two examples

are analyzed: an isolated finite-core vortex ring perturbed in the azimuthal

direction, and a periodic shear layer simultaneously perturbed in its

streamwise and spanwise directions.

Results obtained for both cases show the innate tendency of vorticity,

initially aligned in the direction normal to the stream, to form coherent

streamwise structures which have alternating vorticity signs in the spanwise
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direction. The formation of streamwise vorticity follows the "maturation"

of the spanwise structure and the evolution of the former is energized by

the strain field of the latter. While the streamwise vorticity is

responsible for the added "turbulization" of the flow, leading to further

mixing enhancement, it does not seem to lead to the disintegration of the

two-dimensional basic structure. Results compare favorably with the

conclusions of the linear stability theory and the available experimental

results [A7,A81.

We are using the three-dimensional vortex method to simulate a shear

layer and a jet flow. The transport element method has also been extended

to three dimensions to allow the investigation of the effect of streamwise

vorticity on the mixing of scalars within this flow [B6]. Next, we will

implement the Arrhenius reaction mechanism used in the two dimensional

computations to study a three-dimensional reacting shear layer.
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NEW PUBLICATIONS DURING 1987-1988:

Al. Ghoniem, A.F., Heidarinejad, G. and Krishnan, A. "Numerical simulation
of A Thermally-stratified Shear Layer Using the Vortex Element Method ," J.
Comput. Phys., 75, 1988, in press.

A2. Ghoniem, A.F., Heidarinejad, G. and Krishnan, A. "On Mixing,
Baroclinicity and the Effect of Strain in A Chemically Reacting Shear
layer," the AIAA 26th Aerospace Sciences Meeting, January 11-14, Reno,
Nevada AIAA-88-0729.

A3. Ghoniem, A.F., Heidarinejad, G. and Krishnan, A. "Turbulence-combustion
Interactions in A Reacting Shear Layer," Lecture Notes in Engineering,
Proceedings of the France-U.S.A. Joint Workshop on Turbulent Reactive Flows,
July 1987, Rouen, France, Springer-Verlag, 1988, in press.

A4. Ghoniem, A.F., and Givi, P., "Lagrangian Simulation of A Reacting Shear
Layer at Low Heat Release," AIAA Journal, 26, 1988, in press.

A5. Ghoniem, A.F., "Vortex Methods in Two and Three Dimensions with
Application to Turbulent Shear Flows," Invited paper, Proceedings of the
AIAA/ASME/SIAM/APS ist National Fluid Dynamics Congress, Cincinnati, OH,
July 24-28, 1988, p. 658.

A6. Krishnan, A. and Ghoniem, A.F. "Origin and Manifestation of Flow-
Combustion Interaction in A Premixed Shear Layer," Proceedings of the 22nd
Symposium (International) on Combustion, 8-13 August, 1988, Seattle,
Washington, the Combustion Institute, Pittsburg, PA, in press.

A7. Knio, 0. M. and Ghoniem, A. F. "On the Formation of Streamwise
Vorticity in Turbulent Shear Flows," the AIAA 26th Aerospace Sciences
Meeting, January 11-14, 1988/ Reno, Nevada, AIAA-88-0728.

A8. Knio, O.M. and Ghoniem, A.F. "Numerical Study of A Three-dimensional
vortex method," submitted for publication at J. Comput. Phys., April 1988.
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PUBLICATIONS UNDER PREPARATION:

BI. Heidarinejad, G. and Ghoniem, A.F., "Vortex Simulation of the Reacting
Shear Layer; Investigation of the Limits on the Rate of Burning," for
presentation at the 27th AIAA Aerospace Sciences Meeting, Reno, Nevada,
January 9-12, 1989.

B2. Ghoniem, A.F. anC Krishnan, A, "Baroclinic Effects in Density-
stratified Flows; Part I: A Shear-Driven Flow, Part II: A Gravity-Driven
Flow," to be submitted for publication, J. Fluid Mech, 1988.

B3. Ghoniem, A.F. and Krishnan, A. "Mixing Patterns and the Generation of
Vorticity in Density Stratified Flow," for presentation at the International
Workshop on The Physics of Compressible Turbulent Mixing, Princeton
University, Princeton, N.J., October 24-27, 1988.

B4. Krishnan, A. and Ghoniem, A.F., "Numerical Simulation of the Structure
of A Momentum/Gravity Driven Diffusion Flame," for presentation at the 27th
AIAA Aerospace Sciences Meeting, Reno, Nevada, January 9-12, 1989.

B5. Ghoniem, A.F., Vortex Methods in Turbulent Reacting Flow, in Numerical
Approaches to Combustion Modeling, ed by E. S. Oran and J. P. Boris, to be
pullished by the AIAA, 19&i.

B6. Knio, O.M. and Ghoniem, A.F. "Three-dimensional Simulation of the
Entrainment Augmentation Due to Streamwise Vortex Structures," for
presentation at the 27th AIAA Aerospace Sciences Meeting, Reno, Nevada,
January 9-12, 1989.

B7. Ghoniem, A.F., Najm, H. and Martins, L.F., "Shear Flow Instability
Behind A Bluff-body, Numerical Simulation and Potential for Control," the
AIAA 2nd Shear Flow Control Conference, Tempe, Arizona, March 13-16, 1989.



INTERACTIONS WITH INDUSTRY AND GOVERNMENT LABORATORIES DURING 1987-1988:

During the course of last year, we have started and/or cemented

collaborative working relations with the following industrial or governmental

laboratories:

1. Wright-Patterson Laboratory; with Dr. M. Roquemore on the modeling of the
jet diffusion flame.

2. General Electric Research Center; with Dr. Sanjay Corea on the study of
turbulent premixed flames and their instability.

3. Sandia National Laboratory; with Drs. R. Lucht and John Kelly and their

associates on the study of bluff-body diffusion flames.

4. Gas Research Institute; with Dr. J. Kezerle.

5. Ford Motor Company.
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APPENDIX

Copies of the following articles are included:

1. Ghoniem, A.F., "Controlling Combustion: Numerical Simulation of
Reacting Flow," The John von Neumann National SuperComputer Center Annual
Research Report, 1987, pp. 67-72, the John von Neumann National
Supercomputer Center, Princeton, NJ.

2. Ghoniem., A.F., Heidarinejad, G. and Krishnan, A. "Turbulence-
combustion Interactions in A Reacting Shear Layer," Lecture Notes in
Engineering, Proceedings of the France-U.S.A. Joint Workshop on Turbulent
Reactive Flows, July 1987, Rouen, France, Springer-Verlag, 1988, in press.

3. Ghoniem, A.F., Heidarinejad, G. and Krishnan, A. "On Mixing,
Baroclinicity and the Effect of Strain in A Chemically Reacting Shear
Layer," the AIAA 26th Aerospace Sciences Meeting, January 11-14, Reno,
Nevada AIAA-88-0729.

4. Ghoniem, A.F., "Vortex Methods in Two and Three Dimensions with
Application to Turbulent Shear Flows," Invited paper, Proceedings of the
AIAA/ASME/SIAM/APS ist National Fluid Dynamics Congress, Cincinnati, OH,
July 24-28, 1988, p. 658.

5. Krishnan, A. and Ghoniem, A.F. "Origin and Manifestation of Flow-
Combustion Interaction in A Premixed Shear Layer," Proceedings of the 22nd
Symposium (International) on Combustion, 8-13 August, 1988, Seattle,
Washington, the Combustion Institute, Pittsburg, PA, in press.

6. Knio, 0. M. and Ghoniem, A. F. "On the Formation of Streamwise
Vorticity in Turbulent Shear Flows," the AIAA 26th Aerospace Sciences
Meeting, January 11-14, 1988/ Reno, Nevada, AIAA-88-0728.

7. Knio, O.M. and Ghoniem, A.F. "Numerical Study of A Three-dimensional
Vortex Method," submitted for publication at J. Comput. Phys., April 1988.
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Controlling Combustion: Numerical Simulation of
Reacting Flow

Ahmed F. Ghonlem AFOSRT . 9 " T 0
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

Background Another set of applications involves air pbllu-
tion control. Air pollution is governed by the

Reacting flow is a complex process in which tur- transport of active gases from the source and
bulent fluid motion enhances the mixing between their chemical reaction with air and water in
reactants, and chemical kinetics determines the the atmosphere. The interaction between the
rate of reaction in the mixture. The heat release wind pattern, the earth terrain, the sunlight and
associated with the reaction supplies the energy the source of pollutants; which form the compo-
to the flow, and therefore changes its nature. The nents of a typical reacting flow, ultimately de-
study of reacting flow is made more difficult by termines the impact of this source on the environ-
the strong coupling between these processes. Con- ment. The location and orientation of the source
sequently, it requires sophisticated instrumenta- of pollutants can be optimally determined when
tion or elaborate numerical methods and powerful the results of these interactions are analyzed in
computers. Experimental investigations of the advance.
physics of reacting flow depends heavily on the
application of such modem measuring techniques In a related topic, toxic waste incineration,
as laser flourescence methods. These methods which is proposed as a solution to the national
are expensive and sometimes difficult to apply problem of how to deal with waste generation,
due to the hostile conditions dominated by high represents another application of reacting flow
pressure and temperature within a chemically analysis. In waste incineration, the thorough
reacting flow. Reacting flow plays a critical role mixing of toxic by-products with hot gases is ne-
in energy conversion and propulsion systems, in cessary if the destruction of these mutagins by
air pollution and waste incineration phenomena, chemical reaction is to be successfully accom-
in fire spread and in some areas of manufacturing. plished. One hopes that the products of this

combustion process will be less harmful than the
Applications: Propulsion Systems, Air Pollution, toxicants being burnt in the incinerator, and that
Toxic Waste Control and Fire Control the energy produced from the burning of these

toxics will be a useful source of heat or power.
The performance of a propulsion system, such as
an automobile or an airplane, is often measured
by the efficiency of energy conversion, the envi- Reacting flow plays a critical role
ronmental impact in terms of noise and pollution,
and the size and durability of the hardware. in energy conversion and
The operation of the system is directly related to propulsion systems, in air
the physics of the reacting flow in which chemi- pollution and waste incineration
cal energy is converted into heat and mechanical
force. In some cases, as in automobile engines, the phenomena, in fire spread and in
challenge is to design the smallest possible en- some manufacturing processes.
gine that will achieve efficient and fast combus-
tion using a variety of fuels and without produc-
ing harmful pollutants. In other cases, as in the Fire, whether it be a forest fire or the result of an
engine of the proposed National Aerospace explosion in a nuclear reactor or supertanker,
Plane, the challenge is to burn large quantities of spreads by the action of the fluid flow and the
fuel in the uncooperative environment of high burning of combustible material. In these sys-
pressure and very high, supersonic or hypersonic tems, fluid motion is determined by the design of
speeds. Considerations of stability of operation, the enclosures, the size and locations of the con-
noise and cost are also important if the plane is to necting passages and the obstacles inside the en-
become viable commercially. closures. The combustibility of the material de-
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Figure 1: How Turbulence Enhances Combustion in a Fuel Mixture

pends on the kinetic rates of reactions between spatial and temporal resolution to capture all
the gases and solids present in these enclosures the phenomena that arise during the develop-
and the oxidizing air. Understanding the mecha- ment of chemical reaction in a turbulent flow.
nisms of fire spread and the contribution of each Thus, very large numbers of grid points or parti-
one of these factors will lead to a better control of cles must be used for large numbers of time steps,
fire spread via the redesign of the passages and requiring the computing power and the memory
employment of fire retarding material in con- size available only on a supercomputer.
struction.

In the next section, we present results which
The Problem have been obtained for a number of fundamental-

ly and practically important cases: the flow and
It is the objective of this research to develop ac- combustion in a mixing layer, the flow in a ramjet
curate and efficient numerical methods for the engine, the flow inside an internal combustion en-
prediction of reacting flow, and to apply these gine, and the turbulent flow in a pulsed jet.
methods to gain better insight into their funda-
mental physics. Predictive methods will provide Results
"computer-aided engineering" tools that can be
used to speed up, simplify and reduce the cost of L Mixing and Combustion in Turbulent Flow
design. While the design criteria may change ac-
cording to the application described, the funda- It is well known that turbulence enhances the
mental issues involved are strongly related to the mixing between species in a reacting flow. How-
physics of the flow which we hope to reveal us- ever, the mechanisms involved are not yet well-
ing the results of numerical experiments. understood. Moreover, turbulent fluid motion

may promote, and at times suppress the rate of
Mathematical modeling of reacting flow results reaction. In this work, and by using "numerical
in a set of three-dimensional, time-dependent experiments," we are trying to understand the
partial differential equations which govern the fundamental role of turbulence in reacting flows
flow within regions of complex geometry. These which are commonly encountered in practice.
equations are impossible to integrate analytical- Turbulence is modeled by a concentrated zone of
ly except for very simple cases. The numerical in- vorticity, or rotational flow, that initially sep-
tegration of the governing equatirns requires high arates the cold reactants (blue) and the hot
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Figure 2: Induction Eddies Inside a Reciprocating Engine

products of combustion (red). As time progresses, speed. In this project, we are developing methods
an eddy, or a set of eddies emerge within the vor- of numerical simulation to study the effect of both
ticity zone. Figure 1 shows that the swirling mo- piston, cylinder and inlet valve geometry, and
tion produced by these eddies leads to the en- the engine speed on the structure of this flow.
trainment of fluids from both sides of the eddies
into their cores where they get mixed (yellow Figure 2, shows that the flow inside the cylinder,
and green). as the piston moves to charge the engine, consists

of a jet that penetrates a system of eddies. These
II. Flow in an Internal Combustion Engine eddies maintain the flow inside the cylinder in a

state of coherent rotation throughout the entire
The fluid flow during the intake stroke of an in- length of the stroke.
ternal combustion engine determines its perfor-
mance. The power output of the engine is con- m. Combustion in a Model of a Jet Engine
trolled by the total amount of air that enters the
cylinder. Its efficiency is determined by the re- The mechanism of stabilization of combustion in
sidual turbulent fluid motion at the end of the the high speed flow inside an ordinary jet en-
;ompression stroke. Both depend on the design gine, or a ramjet engine, is analyzed in terms of
parameters of the engine configuration and its the interaction between the the fluid flow, the
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Figure 3: Stabilization by Recirculation of Combustion Products

flame and the geometry of the combustion cham- composed of a cluster of large eddies, as indicated
ber. Results, shown in Figure 3, reveal that the by the velocity of the vortex particles (yellow).
flame (white interface) is stabilized by the re-
circulation of the hot products (red) behind the TV. Mechanisms of Turbulence
sudden expansion, as shown by the velocity ar-
rows. The flow-induced oscillations cause a peri- The transition of an initially well organized flow
odic motion of the flame front into the reactant to a fully-developed turbulent flow is encountered
stream (blue). The underlying flow structure is in all the applications listed above. Whether it
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Figure 4: Development of a Vortex Ring Created by a Laminar Jet

is a welcomed event, as in a mixing device, or it ing flow. The algorithms are based on vortex-
is a problem to be avoided, as in aerodynamic particle methods. The methods are employed in
flows, transition to turbulence occurs in the ma- the solution of unsteady, multi-dimensional Na-
jority of applications. In this work, this phe- vier-Stokes equations and the energy and species
nomenon is analyzed in terms of the generation of conservation equations. The fundamental scheme
small scales in a three dimensional motion due to is Lagrangian. In other words, it is based on fol-
the growth of flow instabilities. As an example, lowing a set of elementary fluid particles and
we show in Figure 4 the evolution of a vortex ring their properties in space and time. To improve
generated by the impulsive motion of a laminar the accuracy of the computations, this algorithm
jet towards the turbulent state. This structure is is used to transport flow gradients by employing a
formed of a bundle of "vortex" lines that start as large number of field particles distributed accord-
concentric circles and evolve to become a highly ing to the magnitude of the gradient. The mutual
convoluted structure of severely stretched interactions between the fields of these moving
"worms." particles determine the evolution of the flow var-

iables such as velocity, concentrations, tempera-
Methodology ture and pressure.

The numerical algorithms are designed to inte- This methodology offers very high spatial reso-
grate the time-dependent, multi-dimensional lution since the particles can be distributed arbi-
partial differential equations that govern react- trarily in space to resolve regions of strong varia-
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tions and high concentrations. Particle tracking Ghoniem, A.F., and Givi, P., "Lagrangian Simula-
allows one to observe the physical phenomena in tion of a Reacting Mixing Layer at Low Heat Re-
a very similar way to that which have been used lease," AIAA ournal, 26, July 1988 (in press).
in experimental investigations. Moreover, the
unsteady form of the calculations emphasizes the Ghoniem, A.F., Heidarinejad, G. and Krishnan,
dynamic nature of turbulent reacting flows and A., "Numerical Simulation of a Reacting Shear
helps shed light on the fundamental mechanisms Layer Using the Transport Element Method,"
of these flows. The methods can also accommo- The AIAA/SAE/SAME/ASEE Joint Propulsion
date complex geometrical configurations. Meeting, June 29-July 1, 1987, La Jolla, California,

AIAA-87-1718.
The computations are time consuming since they
require the evaluation of mutual interactions be- Ghoniem, A.F., Heidarinejad, G. and Krishnan,
tween N particles at each time step. This A., 'Turbulence-combustion Interactions in a
amounts to O(NxN) operations for each flow var- Reacting Shear Layer," Lecture Notes in Engi-
iable. For high spatial resolutions, N = 1000- neering, Proceedings of the United States-France
10000 and more if the physical extent of the com- oint Workshop on Turbulent Reactive Flows pp 6-
putational domain is wide. Moreover, the calcu- 10, July, 1987, Rouen, France, ed by Murthy and
lations must be performed for 1000-10000 time Bourghi, Springer-Verlag, in press (invited lec-
steps to capture the temporal evolution of the ture).
flow. The algorithms are readily vectorizable,
thus requiring CPU time on the order of magni- Ghoniem, A.F., Heidarinejad, G. and Krishnan,
tude of one to five hours on the CYBER 205, de- A., "Numerical Simulation of a Thermally Strat-
pending on the dimensionality of the geometry ified Shear Layer Using the Vortex Element
and the complexity of the chemical reaction. method," Tounrnal Computational Physics, 74,

1988 (in press).
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processors have confirmed that the parallel effi- The AIAA 26th Aerospace Sciences Meetings, Jan-
ciency of our algorithm is high. Using the ETA10, uary 11-14, 1988/Reno, Nevada, AIAA-88-0729.
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flows in practical configurations. Najm, H. and Ghoniem, A.F., 'Vortex Simulation
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TULENCE-COMBUSTION INTERACTIONS IN A REACTING SHEAR LAYER
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ABSTRACT

Turbulence-combustion interactions are analyzed using results of a numerical
simulation of a reacting shear layer. Premixed combustion at finite activation
energy, moderate chemical kinetic rates and finite diffusivities is considered. The
transport element method, a numerical scheme based on the accurate discretization of
the vorticity and the scalar gradient fields into Lagrangian finite elements, is
used to perform the numerical simulation. Processes that lead to burning
enhancement or flame deceleration or possible extinction are analyzed. We find that
the rollup of the shear layer accelerates burning by stretching the reaction
surface. However, by comparing the local burning velocities within the shear layer
to that of a laminar flame, we find that stretch, which accompanies the rollup,
decelerates the rate of burning per unit area. This is due to the local cooling
effects associated with the enhanced heat flux out and mass flux into the reaction
zone. Both phenomena are strong functions of the turbulence field and the Damkohler
number.

The preliminary version of this article was presented at the AIAA/SAE/ASME/ASEE 23rd
Joint Propulsion Meeting, La Jolla, CA, June 29- July 1, 1987, AIAA-87-1718.



I. INTRODIUCTION

Turbulent combustion is governed by complex interactions between convective and

diffusive transport processes on the one hand, and chemical reaction and heat

release on the other hand. Chemical reactions are strong nonlinear functions of

temperature and species concentrations, and thus their rates are critically

dependent on the transport fluxes which determine these variables. Meanwhile, rates

and magnitudes of heat release, associated with the chemical oxidation of practical

fuels, are large enough to affect the dynamics of the flow, and hence the transport

phenomena. Understanding the outcome of these interactions is an important leap on

the way to achieve better control of burning processes in combustion systems. It is

the objectives of this work to: (1) develop numerical models capable of predicting

turbulent combustion processes; (2) identify the most important modes of turbulence-

combustion interactions; and (3) elucidate the subtle outcome of some of these

interactions. We confine our attention to shear layers since they are relatively

simple to analyze, and since they represent a generic model for many reacting flows.

Turbulent combustion has been the subject of extensive experimental,

theoretical and numerical investigations over the years.1  However, many of its

fundamental mechanisms remain unclear.2  Progress in phenomenological turbulent

combustion models, based on the closure of a system of averaged transport equations

which describe the statistical behavior of the aerothermodynamic variables, has made

it possible to produce results which agree with experimental measurements. However,

since some of the interesting dynamics of turbulence-combustion interactions are

hypothesized a priori in these models, solutions do not provide a better

understanding of the phenomena and are limited by the modelling assumptions.

Two problems have been identified as most challenging in the study of

turbulence in reacting flows: the origin of the statistical correlations between

fluctuating quantities; and the nature of the source terms in the energy and species

conservation equations. In turbulent shear layers, the first problem is complicated

by the presence of large scale structures that cannot be modelled by gradient

diffusion terms. The second problem stems from the fact that chemical reactions are

strongly affected by fluctuations in local variables in a nonlinear way, e.g., the

Arrhenius form. In the following, the two issues are discussed in more detail.

Time-resolved flow visualization and instantaneous point measurements in

nonreacting and reacting shear layers have revealed the existence of large scale

periodic turbulent structures for a long distance downstream the separation

point.3'4'5'6  It has been shown experimentally, and supported by numerical studies,

that these structures appear via the Kelvin-Helmholtz instability of the vorticity

layer which forms between two initially-separate streams. 7  By a different

mechanism, the subharmonic instability, these structures persist through successive

pairings, thus maintaining the periodicity downstream though at different

frequencies. Qualitatively, it is known that the role played by these structures in

the mixing process is to engulf, then stretch layers of fluids to scales where

molecular diffusion is most effective. The two processes, which have been called



entrainment, may create a bottleneck impeding mixing if the rate of molecular

diffusion is high due to small scale turbulence.8 However, analytical results that
support, or reproduce these effects are not yet available.

The importance of these results in the context of investigating turbulence-

combustion interactions is how the existence of different scales can be properly
represented. Even though gradient diffusion models, which assume that only local

conditions can affect turbulence, may provide an adequate description of the small
diffusive scales, they do not contain enough information to identify the large

convective scales. The latter is a feature of the unsteady flow field and depends

strongly on the initial and boundary conditions. Thus, it must be resolved by
solving the unsteady unaveraged equations using accurate schemes, while the effect

of the small scales, for the sake of economy, may be modelled based on an
understanding of the "substructural phenomena."

Since chemical reaction depends on the rate of molecular mixing which, as
previously described, is a consequence of entrainment by the large scales and

diffusion at the small scales, it is important that these two processes be

represented accurately. Overestimating the rate of mixing by turbulence models,
which do not account for the effect of the large scales on the entrainment process,
results in erroneous prediction of combustion.8 '9 10  The solution algorithm must,

therefore, be able to resolve large scale convective structures as well as small
scale diffusive eddies. It should also give careful consideration to their

continuous interactions. Since a typical size of a large scale eddy is on the order

of magnitude of the thin, but finite vorticity layers, they can only be resolved if
the unsteady unaveraged equations are integrated using accurate numerical methods.
These methods must be non-diffusive, i.e. they should not dissipate the flow energy
by distributing it on large cells.

Resolving the unsteadiness of the flows is particularly important in combustion
modelling since chemical source terms are strong nonlinear functions of the
instantaneous values of the temperature and species concentrations, as exemplified

by the Arrhenius form. The magnitudes of the source terms depend on the
fluctuations of the aerothermodynamic variables and, to a lesser extent, on the mean
values. Moreover, since a chemical reaction, which is a time-dependent process,

occurs on the molecular level, using averaged and modelled equations in which mixing
is described by mean fluctuations is not expected to properly describe it. An
important aspect of combustion is that the chemistry is a Lagrangian process which
proceeds as fluid elements move. Averaging this intrinsically unsteady process
removes information that cannot be recovered using few moments.

A better description of chemical reaction in an unsteady flow field may be

based on the Lagrangian formulation of the conservation equations. A numerical

scheme, which employs the Lagrangian description of the flow field, should then lead
to more accurate results if fine resolution is achieved. In this work, we describe
such numerical simulation algorithms. Mathematical theories constructed to address
issues of accuracy and convergence are exemplified in (11,12,131.



Numerical simulation of turbulent combustion attempts to minimize the use of

phenomenological modelling. Thus, their results can be used to investigate some of

the mechanisms of turbulence-chemistry interactions. Furthermore, since the

instantaneous behavior of the variables are known at all points and at all times,

accurate simulations offer a method of probing the flow when experimental techniques

are not available. Ultimately, and after validating and verifying the results

against experimental measurements, ab initio predictions can be possible. Finite
difrnemtos 14,15  - 617

difference methods, 1 spectral methods, and vortex methods have been utilized

in numerical simulation of nonreacting shear layers. Some have also been extended

to reacting shear layers.18'19  The first two methods are based on Eulerian

description of the flow field, using grids to discretize derivatives of the

aerothermodynamic variables, or to expand these variables in harmonic functions,

respectively. Vortex methods are grid free, Lagrangian schemes, which have been

used to obtain solutions at high Reynolds number.

Vortex methods optimize the computational efforts by distributing computational

elements around regions of high vorticity.20'24  However, five factors have limited

their utilization to study combustion problems: (1) Eulerian methods, which were

used to solve the energy and species conservation equations in thin flame sheet

models, seemed, in some sense, to defeat the purpose of using vortex methods to

simulate the hydrodynamic field; 2 5 (2) the limit of fast chemistry, which was used

in thin flame sheet models, did not allow realistic finite rate chemical kinetics to

be part of the model;26 (3) vortex methods, while maintaining reasonable accuracy in

the majority of the field, lost resolution within the part of the field where the

strain field is very strong; 27 (4) vortex methods were limited to handling

incompressible flows, thus the models neglected the distributed expansion and the

baroclinic torque generated during combustion; and (5) three-dimensional effects

were only included in specific cases, 2 8 , 2 9  and no attempt has been made yet to

represent small scale dissipation in two-dimensional methods.

In this article, we irtroduce the transport element method. When applied to

obtain a solution of the vorticity transport equation, the method becomes the vortex

element method in which particles are treated as finite elements that accurately

discretize the vorticity field and change their shape, configuration or distribution

to accommodate distortions of the vorticity field caused by the development of

strong strain fields. The transport element method, moreover, extends the concepts

of the vortex element method to obtain solutions of the scalar conservation

equations, which govern reacting flows, in terms of moving Lagrangian gradients.

Both schemes are formulated to preserve the effect of compressibility at low Mach

number. The transport element method is applied to study the evolution of

combustion in a reacting shear layer in premixed gases. Results are used to

investigate different modes of turbulence-combustion interactions in a shear layer,

and to study the outcome of these interactions in different regimes of the governing

parameters. Processes of burning enhancement and flame deceleration or complete

extinction via the effect of stretch which develops within the rolling shear layer

are analyzed in light of the numerical results.



In Section II, the formulation of the model equations governing a reacting
shear layer at low Mach number is described. In Section III, we give a summary of

the vortex element method, and a comprehensive development of the transport element
method. Emphasis is placed on the latter since it clarifies some subtle issues

regarding the effect of the strain field on the local scalar gradients. In Section

IV, results of the application of these methods to a spatially developing, thermally

stratified mixing layer are described. In Section V, results for a reacting,

temporally developing mixing layer are analyzed. In Section VI, conclusions and

future work are sumnarized.

I I. FORMUT.ATION

The non-dimensional form of the conservation equations governing a two-
dimensional, unsteady reacting flow is summarized in Table I. We assume that
initially, and at all times at the inlet section, a premixed reactant R and a
product P are present at given concentrations CRo and cp0 in the top high-speed and

bottom low-speed streams, U1 and U2, respectively. For computational simplicity,
chemistry is assumed to be governed by a single-step, irreversible, Arrhenius
reaction of order n. Adding more steps to the chemical kinetics scheme will require

integrating more species conservation equations. The Mach number is assumed to be
small, which leads to the following simplifications in the governing equations: (1)

pressure variation due to the flow field is small compared with the total pressure,
and hence neglected in the equation of state; (2) spatial variations of pressure,

and energy dissipation due to viscosity are neglected in the energy equation; and

(3) acoustic interactions are removed. This isobaric approximation allows partial
decoupling of continuity, momentum and energy equations so that they can be
integrated sequentially instead of simultaneously. 30 ' 31 We assume that the reactant

and product behave as perfect gases with equal molecular weights and specific heats,
and that thermal and mass diffusivities are constants, but not necessarily equal.
The Reynolds number is high and the effect of viscosity is neglected.

The definition of the symbols is as follows: d/dt - 3/3t + u . V is the

Lagrangian derivative along a particle path. u - (u,v) is velocity, z - (x,y) and x
and y are the streamwise and the cross-stream directions, respectively. t is time,
* is a velocity potential, * - * ez is a stream function defined such that u - V x

- (a*/ay,-31/3x), and w - V x u is vorticity. ez is the unit vector normal to the

x-y plane. up is a potential velocity, V . u - 0, added to satisfy the normal

boundary condition across the boundary of the domain. c is the concentration per
unit mass, T is temperature. V and 72  are the gradient and Laplacian operators,

respectively. Af W is the rate of formation of products per unit mass per unitn -Ta/T) and n is th ereaction order. variables are non-time, W = cR exp(T/) an nist erato ore. aibl reo-

dimensionalized with respect to the appropriate combination of the velocity of the
high-speed stream Uli, the channel height H, the free-stream concentration of R, CRo,

and the free- stream temperature of the reactants at x - 0, To . Ta is the



activation energy, non-dimensionalized with respect to (Rg To), Rg being the gas
constant. Q is the enthalpy of reaction, non-dimensionalized with respect to Cp T,

where Cp is the specific heat at constant pressure. Pe = Ul H/a is the Peclet

number, where c = k/(pC p) is the thermal diffusivity, taken as a constant. Af = A

H/Vl is the non-dimensional frequency factor of the chemical reaction-rate constant.

The Damkohler number Da= Af W(cm,Tm), cm and Tm corresponding to conditions of

maximum reaction rate, is the ratio of flow time to chemical time. Le- oVD is the

Lewis number, and D is the mass diffusivity.

Equation (2) is the decomposition of the velocity field into irrotational,

solenoidal and potential components. Equation (3) is obtained by substituting u

into the continuity equation and using p - p T - constant since the flow is

unconfined and is at low Mach number. Equation (5) is obtained by taking the curl

of the momentum equation of an inviscid flow and using Vp - - p du/dt to substitute

for the pressure gradient in the baroclinic torque term to allow the integration of

the equations without explicitly computing the pressure distribution. Equations (6-

8) are the conservation of energy and species, respectively, for a reacting mixture

at finite heat and mass diffusivities. Equation (9) is the equation of state at low

Mach number in an unconfined flow.

The equations form a five-parameter system: Pe' Le, Da, o and Ta . The

properties of the solution and the characteristics of the interaction between the

flow field and the chemical reaction depend on the values, or the combination of

values, of the individual parameters. If the system is not adiabatic, i.e., TR - To

while Tp - TR # Q, one more parameter, such as Tp/TR, must be specified in the

fornulation. The equations identify four different processes of turbulence-

combustion interactions: (1) the generation of an irrotational velocity due to

volumetric expansion as the temperature rises during heat release, V+, in Eqs.

(2,3); (2) the generation of baroclinic vorticity due to pressure gradient-density

gradient interactions during heat release, Vp x Vp in Eq. (5); (3) the advection and

straining of the flame structure in Eqs. (6,7 and 8); and, (4) the inhomogeniety in

the diffusive fluxes due to non-unity Lewis number in Eqs. (6) and (7).

TABLE I GOVERNING EQMTICNS

k
REACTION R -- P (1)

VELOCITY u V+ + Vx* + UP (2)

dT (

RO-TIN 2 - -(t) (4)

VORTICITY d ( -) - VP x ( d (5)at P 2 a



ENERGY dT 1 V 2T + Af Q W (6)

REACTANTS dcR 1 V-CR - Af W (7)

" Te Le c~f

dcp 1 2 c +A W (8)

SPe Le P f

STATE p T- constant (9)

III. NU!ICAL METHOD

III.1. THE VORTEX ELEMENT METHOD

An important step in improving the accuracy and extending the application of

vortex schemes to flow fields that develop large strain rates, such as shear layers,

is the formulation of the vortex element method.27  In this method, the vorticity

field is accurately discretized among finite elements that move along particle

paths, or particles that transport finite elements of vorticity. The strain field

is used to redistribute the vorticity among the computational elements as time

progresses so that small scales generated by planar stretch can be captured. This

allows accurate long-time computation of the vorticity field after the strain field

has developed. Capturing the strain field accurately is very important in computing

turbulent flames since: (1) it governs the mixing process, which occurs after the

original fluid layers have been stretched to very small scales, since it defines the

diffusive flux; and (2) it may lead to flame quenching, or to burning enhancement,

due to the generation of strong gradients as will be shown later. Below, w

summarize the method and show how it can be extended to compute a compressible non-

barotropic flow at low Mach number.

The vorticity field is initially discretized among vortex elements of finite

structure. The distribution of vorticity associated with each element is described

by a radially symmetric function, f6, with a characteristic radius, 6, such that

most, or all of the vorticity is concentrated within Ix-Xil < 6. X. denotes the

center of a vortex element at time t - 0. Vortex elements are initially distributed

within the area where Iwj > 0 such that the distance between neighboring elements is

h in the two principal directions. The accuracy of the discretization depends on

the choice of f,' the value of h, and the ratio 8/h. The strength of the vortex

element located at Xi, which is denoted by wi, is obtained from the solution of the

system of equations:

N(Xi0) - E h2 f (Xi-X.) (10)
j-1



where a(X,O) is the vorticity distribution at t - 0. It can be shown that f6(r) -

(1/n 62) exp (-r2 / 2) leads to a second-order discretization. We found that for
accurate representation of the vorticity distribution, 6 must be slightly larger
than h, i.e., 6/h - 1.1-1.3, and that h must be varied until II r - ri{ II < e and II
W(x,0) - Z wi h2 f6(x-Xi) 11 < e. r is the total circulation of the vorticity
field, r(x) - z r. K(x - X.), K(r) - ofrr' f(r')dr' and r - lxi. ri = wi h2 is the
total circulation of each individual vortex element. I denotes the second norm and
e is a small number which determines the accuracy.

For an incompressible flow, Eq. (5) leads to the Helmholtz theorem, which
states that vorticity is constant along particle paths, i.e.

NW(x't) - E ri f 6(x_ x 0i ,t))Ii
i-i

and

dX1 - u(X(Xit),t) (12)

where xi is the particle path X l(Xi,O) - Xi . To obtain the velocity field of a
collection of vortex elements in the form of Eq. (11), we note that the stream
function of a single vortex element is obtained by integrating Eq. (4). Using polar
coordinates to integrate this equation for a vortex element placed at x-0, we get
3*,/3r - -K(r/8)/r. The velocity field of a single element is thus radially
symmetric since ue- - a*6/3r. The velocity field induced by a distribution of
finite-core vortex elements, of shape fa and strength ri located at VX 1it) is:

N
u6(xt) = E ri K x(13)

where K (x) - - (y, -x) K(r) (14)r2

Vortex elements move at the local velocity computed at their centers. As time
progresses, the distance between neighboring elements increases in the direction of
maxi-m- strain such that AX > h, where AX is the distance in the direction of
maxim- strain defined as AX - AX.Au/IAul and A is the difference operator. This
leads to a deterioration of the discretization accuracy, which requires that S > AX.
Thus, an algorithm must be used such that when Ax > Oh, where 0 - 1.5, a

computational element is inserted at the midpoint between the original elements and
AX' - AX/2. The circulation of the new element, and that of the original two
neighboring elements, is one third the sum of the circulation of the original two
elements. 

2 7

For compressible barotropic flow, Eq. (5) shows that d(cp)/dt - 0. Moreover,
r- f w dA, where A is the area, while f p dA - constant. Thus, the circulation is
constant along a particle path - Kelvin theorem - and Eqs. (11-14) can be used to
compute the evolution of the vorticity and velocity field provided that Eq. (3) is



used to compute the irrotational component of the velocity due to volumetric
expansion, as will be shown in the next section. When Vp x Vp # 0, the circulation

of each vortex element must be updated each time step. Using the definition of the

circulation in Eq. (5), we get:

dr p x(d d) dx (15)

Since r - E ri K(X-Xi), VP - E Api fa(x-Xi), and Api - Vpi h2 as will be shown in

the next section, Eq. (15) can be written as:

drid
"r - i x ()i (6

where, according to the low Mach number approximation, Vp/p- - Vr/T, while VT - E
2ATi fa(x-Xi) and AT, - Vri hi. In the next section, we will show how to compute Vp,

p, VT and T. Moreover, (du/dt)i is computed by numerically differentiating the
velocity of the vortex element using a high-order forula. Equations (11) and (15)

are integrated using a fourth order Runge-Kutta-Merson method with variable time
step for error control.

111.2. THE TRANSPORT ELEKENT METHOD
Another important development in the application of particle methods to

reacting flows is the formulation of the transport element method to compute the
temperature and species concentration distributions in a Lagrangian form. 2 7 In this
scheme, the gradient of the scalar field is discretized into a number of finite
elements using Eq. (10) with w replaced by g - Vs, where s is a generalized scalar,
being either T or c. Like vortex elements, transport elements are distributed where

lVsi > 0 and are moved with the local velocity field with time. Particles are used
to transport scalar gradients, however, contrary to vorticity, scalar gradients are
not conserved along particle paths, and should be modified according to the local
straining and tilting of the material elements. The extension of this method to
reacting flow will require changing the gradient transported by each element
according to the reaction source term in Eqs. (6,7,8) in a way similar to changing
the circulation with the non-baroclinic torque. Thus, the evolution of the chemical
reaction with time will be computed in a Lagrangian frame of reference as the
interacting species flow. In the following, we describe the conservative form of
the transport element scheme and its extension to solve Eqs. (6,7,8).

Initially, the scalar gradient g is discretized on a square mesh h x h

according to

N 2
g(Xj,0) - Z gi h f ( i ) (17)



where f 6V 6 and h have been defined before, and should be chosen to satisfy the same

requirements. Note that the values of gi depend on the choice of h and 6, and are
obtained by solving the system of linear algebraic equation formed by applying Eq.

(17) to all mesh points. To see how to transport the scalar gradient in a
Lagrangian form, we start by the incompressible, non-diffusive, non-reactive case.
If s is a passive, non-diffusive scalar, the conservation equations for s and g - Vs
are:

ds (18)

and

- - g . Vu - g x o (19)

where w - w ez . Thus, s remains constant along a particle path, while g changes due

to the straining and rotation of the material line by the local strain field and
vorticity. If the material is exposed to a strong strain in the direction normal to

the gradient, the value of g must increase by the same amount as the stretch in the

material element. This can be seen by expanding of g in terms of n and g, where g -
IgI and n - g/g, noting that dnVdt - - n x e*/ 2 (see Batchelor 30):

Rn1( +. 1 (20)

Moreover, g - (ds/dn) n - (6s/Sn) n, where 6s is the variation of s across a small
material line Sn. The variation of a material vector element 6n is given by
d(6n)/dt - 6n . Vu, where &n - 6n n. 30 Furthermore, for an incompressible flow,
61.Sn - constant along a particle path defined by dX/dt - u(X(X,t),t). From these
kinematic ralations, the variation of the material line 61 along a particle path can
be written as:

d61 1at- - - 61 ( n . Va + n x w ) (21i)

From Eqs. (20) and (211), it follows that g/81 - constant along a particle path.
For a graphical representation of this concept, see Fig. 1. Thus, the flux
initialized by Eq. (17) evolves according to:

N h2
g(x,t) - E gi(t) f 6 (x - X(Xi,t)) (22i)i-i

where

t si 61i(t)

h2(23i)

while

dxj . U(Xi(Xit),t)



where Xi(Xi,O)-Xi. S1i is updated using Sq. (211) and ni . Sl/f ii -0. Weile
using Eq. (23) is equivalent to updating gi(t) according to Eq. (19), applying the

expression in Eq. (23i) guarantees the conservation of 6s. Moreover, instead of

integrating Eq. (21i) to update 61i, one can save computational effort by recalling
that g1i(t) - (Xi+l - Xii)/2. Thus, it suffices to move the centers of the

transport elements, while remembering the neighboring elements at t - 0 in order to
compute the scalar flux. Moreover, when an element is inserted between two

neighboring elements, in the direction of maxim= strain, the values of 61i are

redistributed between the three elements. This also requires changing h2 in Eqs.

(22) and (23) to h so that the total material area is conserved. In this case, Eq.

(22) becomes

N 2
g(x,t) - E 1 g(t) hi fs(x - xi(Xi,t)) (22s)

where

gi(t) - 2i ni(t) (23s)

i

For a compressible flow, the above analysis should be modified to reflect the
fact that P 61.6n - constant along a particle path. Using the kinematic relations
listed above, Eq. (21i) becomes:

d ( 1 1) n-- P 61 ( n . Vu+ n x a ) (21c)

Thus, g/(p 61) - constant along a particle path. In terms of the variational change

in s, 6si, across a mterial element li, Eq. (231) is modified as follows:

gi(t) - ni(t) (23c)Pi(O) h 2(0)

The value of p is computed using the relation p T - constant, in accordance with the

low Mach number approximation, T - E VTi h2  fa(x - Xi). Note that the area of the
material element is expanding such that pi(t) h2(t) - constant. Thus,

(t) si (t) (23c)
gi~t) - h2(t) ni(t)(2)

and
N h2()fx (tt)

g(X't) E 1 gi i () f a (t - (22c)

Given the location and strength of the transport elemnts, the scalar

concentration can be computed as follows. By taking the gradient of Vs - g, we get

V2 s - V.g. The solution of this equation in an infinite domain can be written as:



s - V .g G dx, where G - -1/2n in r is the Green function of the Poisson equation.

This last equation shows that the transport elements act as sources of strength
equal to the divergence of the scalar flux, V.g. Integrating by parts, one gets s -

g . V dx. Using Eqs. (22) and (23) for g, we get:

N
s(xt) - E gt(t) h2(t) . VG (x-xi(Xi,t)) (24)

i=l

where
(x, (r)

SK 8 (25)

where K(r) - I r' f(r') dr', as defined before. If the distance between neighboring

elements in the direction of principal strains exceeds a maximum distance Oh, one
element is inserted halfway between the two elements and the value of 61. and h2 are

1 i
adjusted for the three elements. A recombination procedure can also be implemented
to curb the growth in the number of computational elements. The need for this
insertion-recombination procedure is more apparent here since the magnitude of the
gradient increases where the strain field is high; and to maintain accuracy, more
elements mist be used to transport this gradient.

With finite diffusivity, the first term on the right hand side of Eqs. (6-9)
should be simulated in the solution. In gradient form, the conservation equation
can be written as:

t - - g.Vu - g xa + a Vg (26)

where a is the molecular diffusivity, or the inverse of the Peclet number. At high
speed, this is typically 102-105. To solve Eq. (26) using the scheme that we have
developed so far, each element gj mist be updated according to the diffusion
equation:

agi - V2g (27)

without changing the shape of the core function or the value of gi. Taking 8 -

8(t), and substituting Eq. (17) into Eq. (27), we obtain d62/dt - 4a. Thus, to

simulate the effect of diffusion, the core radius must grow according to:

2 .2 + 4 a t (28)
0

where 80 is the core radius at t - 0. If the diffusivities of mmentum, heat aud

mass are different, the core of the vortex elements and of different scalar

transport elements become different as time progresses. At high diffusivities, or

small Peclet numbers, the cores of the elements will experience rapid growth and 8
>> Oh. In this case, transport elements mist be subdivided into elements with



smaller cores while preserving their total strength. However, this will not be used

here since we are interested in cases where the Peclet number is large. Values

typical to this study are: S- h - 0.3, tmax - 20, a - 0.001, and &max - 0.41.

If the chemical source term is non-zero, then Eq. (26) is modified to become:

-- g . Vu- gxw+ a y 2g + kl gj (29)jml

where k is the number of chemical species. Using the definitions of g, the gradient

transported by each element must be modified according to:

d k+1 (0
at s, i " 1  as-as (30)

In this case, the element strength should be modified as:

gi(t) - si(t) 2ali(t) i(t) (23r)
h4(t) it

while all the kinematic relations, and Eq. (22c) hold as before.

Recognizing the fact that hi(t) appears in the numerators of Eqs. (22i), (22s)

and (22c); while it appears in the denominator of Eqs. (23i), (23is), (23c), and

(23r), we will define a new quantity 6gi - gi h 2 and rewrite these equations as:

N
g(x,t) - IZ Agi(t) fa(x - ;(Xi,t)) (31)

i-l

19, = as i M al i(t) ni(t) (32)

N
s(xt) - 1 6gi(t) . ISd(x - Xj(Xi,t)) (33)

i-i

Equations (31), (32) and (33) apply for the most general case. The transport

elements generate an expansion field as their temperatures change, according to Eq.

(3). The velocity field associated with this expansion within each element at the

low Mach number limit can be written as:

Yi T dTM

The total velocity produced by the expansion field is:

V+(Z't) - N T 2)V
i -i T1 i h (t) S(-Xi(Xi,t)) 

(35)



where h2 is the area of the material element which is divided every time one element

is inserted due to stretch and is varied according to mass conservation, and pi(t)

h?(t) - constant.

The algorithm of the transport element method proceeds as follows: (1) update

the locations of the elements Xq according to the velocity at their centers using

Eq. (12); (2) update the values of 81i and ni either according to the integration of

Eq. (21) or by keeping track of the neighboring elements; (3) update the core radii

of different elements according to the corresponding Peclet number using Eq. (28);

and (4) compute the concentrations of all the scalars using Eq. (24); and (5) update

the value of Ssi according to Eq. (30). In most cases, it is possible to use the

same set of particles to transport elements of different scalars, as well as the

vortex elements, resulting in substantial savings in the transport step.

IV. THE SPATIALLY-DEVELOPING, NCN-REACTING SHEAR LAYER

The vortex element and the transport element methods are applied to simulate

the initial stages of development of a spatially-developing, thermally-stratified,

two-stream shear layer. On the left boundary of the domain, it is assumed that the

wake region behind the splitter plate, where the two incoming boundary layers merge

to form the shear layer, is negligibly small. Thus, at x - 0; for y > As: u + Ul -
*S

1 , T - -1 , and for y < - As, u - U2 - 0.333, and T T2 0, where - means
approaches asymptotically". a2 M 2 ,2, while a is the standard deviation of the

Gaussian distribution that describes the vorticity and the scalar gradients and 2 AS

is the nominal shear layer thickness at x - 0. The normalized temperature is

defined as T*- (T-T2)/(TI-T2). For the results in Figure 2, As - 1/26.4. The

corresponding most unstable wavelength, as predicted by the linear theory, is 0.5.

Within the shear layer, the velocity and temperature distributions are represented

by error functions.

The rate at which vorticity is convected into the upstream side of

computational domain, at x - 0, is dr/dt - NJ.Um, where UM - (Ul + U2)/2. At each

time step, five elements, arranged vertically, are used to discretize this vorticity

according to Eq. (10). The potential velocity component, up, is computed by adding

two source flows at x - - - and y - + 0 and y - - 0 to the velocity field in Eq. (2)

to satisfy the boundary condition at x -0. The no-flow boundary condition across

the solid walls is implemented by using conformal mapping and image vortices with

the opposite sign of vorticity in the transformed plane.
7

In the solution of the energy equation, the walls are considered insulated,

dT/dn - 0 where n is the unit vector normal to the wall. To satisfy this boundary

condition, the images of the temperature transport elements in the transformed plane
ust have the opposite of the signs of the elements. Energy sources are utilized to

impose the boundary condition at x - 0. At the downstream side of the computational

window, x - 5, vortex and transport elements are deleted. This induces a

perturbation which ensures that the rollup and first pairing will always take place



within the computational window. Since this perturbation is not applied in an
organized manner, the resulting shear layer will be considered as an unforced layer.

Figure 2 shows the location and velocity of all vortex elements used in the
computations at four different time steps. The time step of the computations is At

- 0.15. The plots exhibit a very clear and accurate portrait of the rollup. During
rollup, the vorticity within the shear layer is attracted towards the center of a
large eddy, entraining fluid from both sides, and forming what appears to be a

moving focal point of a spiral. Between neighboring large eddies, a zone of strong
strain is developing where the vorticity is depleted and the scalar gradients are
growing. This "braid" zone can be described as a moving saddle point where locally

the fluid flow experiences a separation into two streams; one moving towards the
left and the other moving towards the right with respect to the saddle stagnation

point. Downstream, the process of rollup continues until a stronger perturbation
forces two neighboring eddies to interact in a pairing process. It is important to
stress that the algorithm of inserting elements as the strain field develops is
responsible for maintaining the organization of the calculation for a long time.

The natural frequency of shedding can be defined as fn" UM/X, where X is the
wavelength of the large eddy. The corresponding average Strouhal number, as
computed from the computational results, is St - 

1/f n- 0.033. This is the same value
as the frequency of the most unstable mode computed from the linear stability theory
of a spatially developing shear layer under the conditions described above. Results
for the growth rate, average velocity and turbulent statistics were presented in the
study of Ghoniem and Ng7  for the forced shear layer. Comparison with the
corresponding analytical and experimental data were also performed in the same
reference.

If the layer is forced at a frequency close to the most unstable mode by
oscillating the incoming vorticity layer according to Ay - af sin (2 n of t), where
Ay is displacement of the center of the vortex element due to forcing and af and Qf
are the amplitude and frequency of forcing, the evolution is expected to be more
organized.7  In Fig. 3, we plot the results of such a case with af - 0.025 and 2f .

(XfAUM) - 1.33, where Xf is the wavelength of forcing. The evolution of the eddy
which has the forcing frequency through the various stages of rollup is shown
clearly at each time step when moving downstream, or with time when observed from
the same location.

The effect of rollup on the temperature distribution within the eddy is shown
in Fig 4. Here, we plot the temperature distribution across several sections
downstream, superimposed on the distribution of vortex elements at the same

location. In these plots, we assume that the thermal diffusivity is negligibly

small, and we concentrate on the effect of the convection field on the entrainment
of hot and cold fluid within the large eddies. Note that the temperature profiles
become more rugged as the core spins further, and that the temperature distribution
is. not symmetric around the midsection of the eddy.

The high resolution of the transport element method demands the use of a large
number of computational elements. oreover, the number of elements grows rapidly



with time due to the severe stretch produced in the shear layer. This makes the

computation of a wide window, which contains a number of successive eddies, rather

." expensive. In the next section, we direct attention towards a model of this problem

that requires less effort computationally while essentially preserving all the

physical processes involved in the spatially developing layer. This is the temporal

shear layer model in which a computational window that moves at the average speed of

the flow is imposed on a single wavelength while the eddy is growing.

V. TEMPORALLY-DEVELOPING, REACTING SHEAR LAYER

Computational results showing the evolution of a large eddy in a temporal shear

layer are presented in Figure 5. In this case, the boundary conditions are

periodic, i.e., w(x,y,t) - w(x+X,y,t) and u(x,y,t) - u(x+X,y,t), where X in the

wavelength of the perturbation. Since detailed analysis of the evolution of the

temporal, thermally stratified shear layer was presented in Ghoniem et al.27 , it

will not be repeated here. The qualitative resemblance between the development of

large eddies in a spatial and a temporal shear layer is clearly seen by comparing

Figs. 3 and 5. Moreover, the shedding frequency, i.e. the frequency of the most

amplified mode, is almost the same in both cases. However, the growth rate of the

perturbation is different since it depends on the velocity ratio across the layer; a

parameter that does not appear in the analysis of the temporal layer. Moreover, the

asymmetric growth of the eddies, which is observed in the spatially-growing case,

Fig. 3, is not present in the temporally-developing layer results, Fig. 5.

In the computation of the temporal layer, the window is limited to one

wavelength and one can afford to use more elements within the domain to improve the

resolution. One can also conduct, inexpensively, parametric studies on the effect

of various physical parameters that appear in the model, Eqs.(l-9). Thus, the

temporal layer will be used as a model for the spatial layer to study turbulence-

combustion interactions in shear flow. Since the flow is unconfined, the

wavelength as is used instead of H to non-dimensionalize the length.

The temperature profile across the midsection of the eddy is exhibited in Fig.

6. The rollup brings fluid from one side to the opposite side, while stretch

increases the gradient across each layer. Thus, the rollup of the shear layer is

the mechanism of entrainment that leads to strong mixing enhancement as the two

fluids diffuse across the stretched interface. The temperature profiles show that

after the relaxation of the first rollup, a secondary instability develops which

forces the core through another turn, creating a more ragged temperature

distribution. It is also noticed, by comparing Figs. 4 and 6, that the asymmetric

growth of the spatially-developing layer is responsible for creating asymmetric

temperature profiles across the midsection of the eddies. The relationship between

these temperature profiles and the asymmetric entrainment observed in experimental

measurements 32 ' 3 3 will be explored in detail in future studies. 34



Since rollup is associated with strong stretch that reduces the thickness of

the material layers, it increases the gradients across these intertwining layers,

thus enhancing the diffusion fluxes. Quantitatively, the rate of mixing can be

expressed as - q . n da, where q is the diffusion flux, n is the unit vector

normal to the material surface, and da is the surface area element. Moreover, for

two-dimensional flow, da - dl, and since q / 61 - constant, then A is proportional

2
to (61) 2 . The net result is that stretch by a factor C enhances mixing by a factor

C2. The quadratic rise in mixing during rollup is expected to have a significant

effect on the rate of reaction.

In the reacting layer calculations, the full system of equations is integrated

using particles which transport vortex elements, temperature gradient elements, and

reactant and product gradients elements. At time t - 0, the vorticity layer and the

flame front coincide, and the thickness of the vorticity layer as well as the flame

thickness are equal. A small sinusoidal perturbation with amplitude c - 0.05 X is

imposed on both distributions. The first case to be computed corresponds to the

following set of parameters: Pem 200, Le- 1, Af- 1, Q - 4, Ta- 10 and n - 1. The

corresponding Damkohler number, measured at the conditions of maximum reaction rate,

is around 0.02, and the temperature ratio across the layer is Tp/TR 
- 5. 1

Figure 7 shows the results for the reacting shear as the rollup and the

chemical reaction porceed simultaneously. At the early stages, the reacting eddy

strongly resembles the nonreacting eddy shown in Fig. 5. However, as rollup starts,

the following is observed: (1) a swelling, due to the increase in the rate of heat

release, continues as more reactants are entrained into the burning core; (2) the

growth of the instability, as measured by the angle between the major axis of the

elliptical structure and the main stream direction, is encumbered because the
volumetric expansion causes the vorticity intensity to decrease and the eddy to

become weaker and less coherent; and (3) the eddy loses its symmetry and becomes

eccentric due to the asymmetric expansion, and due to the generation of a baroclinic

torque associated with density gradients. As more of the initial core is burnt, the

fluid inside the eddy ceases to spin, contrary to the nonreacting case in which the
secondary instabilities force the core to continue its spinning. Meanwhile

reactants move through the side to enter the reaction region.

These numerical results agree qualitatively with the experimental results of

Keller and Daily5 on the reacting premixed shear layer at intermediate values of the

equivalence ratios. The Schlieren photographs of the experiment show that as the

equivalence ratio is increased, the rate of growth of both the individual eddies as

well as the entire shear layer, increase due to heat release. In the meantime, the

rollup of individual eddies slows down, leading to the formation of elliptical

l.In the following results, the value of h in Eq. (23c) was taken as a constant for
all elements and for all times. In more recent computations, when we varied h
with stretch and expansion, while all the trends were the same, the rate of
reaction was found to be less than what was obtained with constant h. Thus, the
results will only be interpreted qualitatively.



eddies. The major axes of the eddies remain at a finite angle with respect to the
streamwise direction. Moreover, at low equivalence ratios, most burning occured

within the cores of the eddies, and the flame did not leave the shear layer.
on the same figure, a solid line is plotted through points of maximum reaction

rate. The line indicates where the flame front, or the maximum heat release rate,

is within the shear layer. Below this line, the product concentration approaches

unity and the temperature reaches T p. During the early stages of rollup, the line
of maximum reaction rate follows one of the material lines closely, i.e., the growth

of perturbation merely changes the topology of the flame front. At later stages,

this line, while staying close to another material line, forms a boundary of the

products across which the reactants are entrained into the burning core. Below this

line, where products form, the core almost ceases to rotate. At the last stage of

burning of the eddy, the two sides of the flame within the core burn to close this
entry way, and the flame moves out of the eddy and becomes an ordinary laminar

flame.
The effect of heat release on the structure of the eddy, which is generated by

the rollup of the shear layer, can be seen from the temperature profiles across the

midsection of the wavelength, shown in Fig. 8. Since the Lewis number is one, cR =
1 - (T - TR)/Q. As reactants are entrained into the core of the growing eddy from
the right side, a Z-shaped flame is formed. At the initial stages where the rate of

entrainment is faster than the rate of burning, the flame extends deeper into the

lower stream. As the reactants within this zone burn, heat is released within the

core of the rotating eddy, causing the eddy to swell, while maintaining its

elliptical shape. The baroclinic vorticity generated around this zone causes the

observed eccentricity of the large eddy. The temperature profiles show that the

higher order instabilities observed in the nonreacting case are suppressed by the

heat release, and that the core of the eddy stops its rotation. As the reactants

within the eddy burn, the flame leaves the structure and moves into the reactants.

This results in the formation of a temperature profile which is very similar to the

temperature profile at t-0.

Figure 7 also shows the effect of rollup on the shape of the flame front,

which, as will be shown in the next paragraph, has a strong effect on the overall
rate of burning and the local burning velocity. In the early stages, and until t -

7, the flame front maintains its sinusoidal shape and its length is approximately

the same as the flame length at t - 0. In the second stage, and as the eddy starts

to roll up, the flame front forms a fold within the eddy. Within this fold,

reactants are trapped, and a situation in which two flames are burning towards each

other is created. Rollup increases the length of flame front and exposes the flame

to a strong strain. The extent of the fold within the eddy is limited by the

consumption of the reactants trapped between the two sides of the flame front. It

is also limited by the fact that burning inhibits the spinning of the core. The
consumption of reactants and the continuous stretch of the flame reduces the

distance between the two folds around t - 15, and the two flames become much closer

to each other than before.



To study the effect of the shear layer on the chemical reaction, we plot the

total mass of products, Mp, formed since the rollup starts at t - 0 on Fig. 9. At

the early stages, when the flame stretch is negligibly small, the rate of burning is

linear and identical to that of a laminar flame. As the layer starts to roll up,

the area of the reaction surface increases and the flame is convoluted around the

growing eddy. The increase in the flame area, or length in a two-dimensional sense,

Lf, due to its folding within the eddy is shown in Fig. 10. The rate of product

formation, Rp, which is the slope of the curve in Fig. 9, can be approximated by the

product of the flame length times the average burning velocity along the flame, Su .

Since A is almost constant in the second stage, then the value of Su must be

decreasing with increasing L. Thus, as the flame stretches, its burning velocity

decreases. This is in accordance with the previous results on stretched laminar

flames at high strain rates. 35'36  In both studies, a drop in the flame burning

velocity and partial extinction was observed as the strain rate was increased.

The drop of the local burning velocity when a strain rate develops along the

flame can be explained as follows. As the strain rate along the flame front becomes

finite and positive, the local gradients normal to the front increase, enhancing the

diffusion fluxes of heat from and of reactants into the flame. This can lead to

flame cooling if the chemical time scale is relatively large, i.e., if the reaction

is not fast enough to produce heat that could balance the cooling effect of the

diffusion fluxes. Moreover, cooler flames burn slower than adiabatic flames. Thus,

strong strain may lead to slower flames at moderate value of the reaction rate.

In Fig. 11, we plot the temperature T, the strain rate i, and the rate of

expansion ;, along one particular layer of fluid within the reacting eddy. The rate

of expansion is an indication of the rate of temperature rise due to the combined

effect of diffusion and chemical reaction, as seen from Eq. (6). The layer along

which these parameters are plotted is shown in Fig. 12. Figure 11 shows that within

the fold of the flame, the temperature is very close to the temperature of maximum

reaction rate, indicating that most of the burning occurs within the eddy core.

This is in agreement with the experimental results. 5  On the other hand, the

temperature at the side of the eddy which is exposed to the reactants is relatively

low, and burning is not expected to proceed at an appreciable rate there.

When we decrease the frequency factor to Af - 0.5, which reduces the Damkohler

number by the same ratio, we see a stronger effect of stretch and a better

disctinction between the different stages of development. For this case the large

eddy is shown in Fig. 13 at t - 17.57, while the total mass of products is shown in

Fig. 14. The swelling of the eddy is reduced since the rate of chemical reaction is

one half of its value in the first case. Figure 14 shows that at the early stages,

the reaction proceeds in the same way as before: a laminar flame followed by a

stretched laminar flame. Around time t - 14, the slope of the curve of Rp vs. t,

i.e. Ap - S u Lf, increases. While the value of Su is still decreasing as the flame

length increases, its value is somewhat higher than before. A possible explanation

for this phenomenon can be found by observing that the two sides of the flame fold

become mch closer around t - 14, as seen in Fig. 7. As the two sides of the flawe



fold approach each other, the temperature of the reactants trapped between the two

sides rises. This leads to an increa7e in the burning velocity.

At t - 17.57, the reaction slows down approaching a state of total extinction,

as shown by the total mass of products exhibited in Fig. 14. To explain what

happens around extinction, we refer to Fig. 15. In this figure, plots of T, s, and

e are shown along one particular layer at t - 17.57. The geometry of the same layer

is shown in Fig. 16. Plots for ; show that the temperature is falling and the layer

is experiencing cooling. This is in spite of the fact that T corresponds to maximum

reaction rate along most of the layer. Moreover, the values of T and s are now

negatively correlated, i.e. temperature maxima correspond to minima in s, and s and

e are also negatively correlated. The strain thus cools the flame leading to its

eventual extinction

When the frequency factor is lowered further to Af - 0.25, extinction occurs

earlier at around t - 10, as shown in Fig. 17. A laminar flame at the same

condition shows the expected linear rise in M p. These results confirm that the

local burning velocity decreases with stretch, and that this phenomena i3 caused by

the imbalance between the rates of diffusion and the rate of the chemical reaction.

VI CONCLUSIMNS

Numerical methods enable one to: (1) integrate elaborate and detailed models,

which cannot be done analytically, so that complex mechanisms may be revealed and

analyzed; and (2) provide detailed information about the flow field which may not be

possible using traditional experimental techniques. Computer output, rich in data,

offers the challenge of extracting and presenting valuable information about the

phenomena under investigation. Finding the appropriate diagnostics to probe

computational results represents half the journey to reaching the conclusions.

In this article, we have introduced the transport element method; a Lagrangian

particle scheme based on the discretization of the vorticity and the gradients of

the scalars into finite elements. The particles move along material lines, in

accordance with their transport equations. As strong strains develop in the dynamic

field, the finite elements may change their shape or configuration to accommodate

the distortion which is produced by these strain fields. In case of chemical

reaction: (1) the strength of the elements, i.e. the source strength, changes

according to the rate of reaction; and (2) the chemical heat release induces

volumetric expansion and non-baroclinic vorticity into the dynamic field.

The simplest model which can be proposed to study turbulence-combustion

interactions contain five parameters: (1) the Peclet number which defines the ratio

between the rate of convective and diffusive heating; (2) the Lewis number which

represent the ratio between the rate of heat and mass diffusion; (3) the frequency

factor which defines the ratio between the rate of chemical reaction and mass

convection; (4) the activation energy of the reaction; and (5) the enthalpy of

reaction. The outcome of these interactions can, thus, be presented on a five-



dimension space where one can identify several subdomains for burning enhancement,

flame extinction, flame oscillations, etc. To accomplish this goal, computations

must be performed for a matrix of parameters. The compiled data can then be plotted

on this space. Under the idealization of high activation energy and thin flame

structure, results of the asymptotic analysis can be used to fill some parts of this

space and show the limiting trends3 8 ' 3 9 ' 40 .

In this article, we presented results for the effect of changing the frequency

factor, which leads to changing the Damkohler number, at fixed values of the rest of

the parameters. We showed that for Pe - 200, Le - 1, Ta - 10 and Q -4, at Af- 1.0,

the stretch associated with the rollup of large eddies in the mixing layer enhances

the rate of reaction by extending the flame surface area within the large eddies, in

spite of the fact that the local burning velocity decreases as the flame surface is
stretched. At lower values of Af, combustion is interrupted under strong stretch,

and the lower the values of Af become, the earlier the flame is extinguished. This

is due to the fact that the rise in the mass flux into the reaction zone and the

heat flux out of the flame is not balanced by an increase in heat release by
chemical reaction within this zone. The reaction zone is thus cooled, followed by
the extinction of the flame. Work is underway to vary the rest of the controlling
parameters and study their effect on flame stability.
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Figure 1. Schematic sketch showing the evolution of a material layer
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Figure 2. The development of large scale vortex structures in an unforced,
spatial shear layer. Each point in the figure represents a vortex element
and the line attached to it is the velocity vector. The velocity ratio
across the layer is 3:1.
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Figure 3. The develomnt of large scale vortex structures in a forced,
spatial shear layer with the sam velocity ratio as in Fig. 2. The forcing
frequency is 1.333.
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rigure 5. The development of a large eddy in a temporally growing shear
layer.
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Figure 7. The develrmnt of a large eddy in a reacting temporal shear layer
at the same conditions as in rig. 5. The solid line defines the flame
front.
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Figure 11. (a) the temperature T and the strain rate , (b) the expansion
rate e along layer 8 in the reacting eddy shown in Fig. 7.
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Figure 15. (a) the temperature T and the strain rate s, and (b) the
expansion rate e along layer 3 in the reacting eddy of Fig. 13.
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ABSTRACT numerical modelling and simulation of the same

flow field. In this work, we utilize numerical
simulation to develop a predictive capability for,

Numerical simulation, using the transport and to study the dominant physical processes in a
element method, is applied to study mixing of a reacting shear layer.
passive scalar in a spatially-developing shear The extension of the material interface
layer, and to investigate the interaction between between the two streams due to the roll-up of the
the flow and the chemical reaction in a vorticity layer, and the associated growth of
temporally-growing, premixed shear layer. In the scalar gradients, lead to the augmentation of
first case, instantaneous scalar profiles exhibits mixing between the two streams. During the course
mixing asymmetry and the skewness of concentration of the study of mixing in a shear layer, it was
fractions within the cores in favor of the high- found that mixing dynamics depends, to varying

speed stream. Mixing statistics of a passive degrees, on: the velocity ratio across the layer,
scalar agree well with the experimental the molecular diffusivity of the transported
measurements of Masutani and Bowman in a two- species, the size and frequency of the
dimensional shear layer, and emphasize the effect perturbation at the upstream boundary, the density
of molecular diffusion on mixing. In the second ratio across the layer, and the amount and rate of
case, two processes are identified as most heat release. The mechanism governing mixing and,
important in flow-chemistry interactions: the in particular, how each of these parameters can
production of vorticity due to baroclinicity, and quantitatively affect the rate of mixing, has been
the generation of strong entrainment fluxes due to under investigation. The influence of some
roll-up. Baroclinic vorticity imparts a finite parameters, such as the velocity ratio and the
velocity on the growing eddy, delays its properties of the perturbations, have been
transition into the non-linear stages, and results elaborated. However, that of other parameters are
in asymmetric entrainment. Results on the still not fully understood.
variation of the eddy velocity with density Improving mixing is one mechanism by which
stratification agree with Dimotakis formula. turbulence can affect combustion. Another
Entrainment, leading to the extension of the mechanism involves the development of a strong
apparent flame length, augments the rate of strain field within the combustion zone and along

combustion during the formation of the eddy. At the reaction fronts. The interaction between a
later stages, flow strain reduces the rate of premixed combustion zone and a strain field can be
burning measured along the line of maximum particularly important under non-adiabatic
reaction rate. conditions and when the Lewis number of the

species that controls the rate of chemical
reaction is different from unity (Libby and

Williams [5,6] and Darabiha et al. [7]). Changing
Reacting shear layers have been the subject the mixture stoichiometry may emphasize the effect

Reacingshea laershavebee thesubect of strain on the combustion process (Keller et al.

of extensive investigation as models of turbulent of an te combustion [e].t

diffusion and premixed flames (see, e.g., Mungal [8] and Peters and Williams [9].)

[1],Mastan an Boman[2] KelerIn the mean time, heat release due toand Dimotakis C1], Masutani and Bowman [2], Keller combustion is expected to influence the dynamic
and Daily [3] and Jou and Riley [4].) The flow field in at least two ways: volumetric expansion
configuration, which represents a generic model of and baroclinic vorticity generation. Thus, and
many mixing and combustion systems, is used to depending on the amount and rate of heat release,
improve the mixing and to stabilize the chemical turbulent reacting shear layers may have different
reaction at high speeds. It is also simple enough dynamics than that of a non-reacting layer. The
to allow accurate and detailed experimental processes of interaction between turbulence and
measurement employing modern diagnostic combustion form a closed feedback loop since the
techniques. The experimental maps can then be vorticity field, which is perturbed by heat
used as data bases in the validation of the release, controls mixing dynamics.

Lagrangian calculations of mixing of a
passive scalar in a shear layer was first

performed by Ghoniem and Givi [10], using the
scalar element method. This stochastic method is
based on the representation of the mixing species

Copyright 0 1988 by A.F. Ghoniem. Published by by a number of "particles" that move with the
the American Institute of Aeronautics and local convective velocity and diffuse by random

Astronautics, Inc., with permission, walk. The method, while lacking resolution within
the areas of strong strain field, was able to

2 Graduate research assistante predict the shape of the profiles describing the

2 Graduate research assistant, mixing statistics. However, some of the numerical
3 Graduate research assistant.



values did not match the experimental d ( W _ VP x ()du
measurements. Because it lost resolution around at p 2 dp (3)
the areas of strong strain, the method could not P

be used in the reacting flow calculations.
Moreover, the method could not be extended to dT I V2T + A Q W (4)
handle compressibility effects. dE e Af

In a continuing effort to develop accurate e
numerical methods for reacting flows, we
formulated the vortex element method and the ds 1 7

2  
+ A W (5)

transport element method (Ghoniem et al. dt P L -f
[11,12,13]). Both methods are based on the e e

accurate discretization of flow gradients, which
may be the vorticity or the scalar gradients, into where the velocity is decomposed as: u = Vo + Vx#
finite elements which are transported along +u , and the equation of state is: p - p T. The
particle oaths. The distortion of the flow map P

due definition of the symbols is: d/dt = /t + u.V, u

accommodated by rediscretizing the field of the = (uv) is the velocity, x (xy) where x is the
transport elements among a larger number of streamwise direction and y is the cross-stream
elements distributed in areas of strong strain. direction. t is time, is a velocity potential,

The strength of the vortex elements change with # - ip ez is a stream function defined such that u

baroclinicity, and that of the scalar gradient = Vx= (a /ay,-alp/ax), and w e = Vxu is vorticity.
elements vary with strain and chemical reaction. u is a potential velocity, V. . 0, added to

In this paper, we present results for the PP

application o.f these methods to mixing and satisfy the normal boundary condition across the

chemical reaction in a shear layer. In Section boundary of the domain. c is the concentration

I!, the physical model governing a reacting, per unit mass, T is temperature. V and V
2 

are the
premixed shear layer is formulated. The dynamic gradient and Laplacian operators, respectively.
effect of heat release, associated with volumetric A W is the rate of product formation per unit
expansion and the establishment of density and

pressure gradients, are emphasized. The numerical mass per unit time, and W = cR exp (-Ta/T).

schemes applied to obtain solutions for the model Variables are non-dimensionalized with
equations, the vortex element method and the respect to the appropriate combination of the
transport element method are summarized in Section velocity of the high speed stream U1, the channel
Ill. Results for mixing in an incompressible, height H, the free stream reactant concentration,
spatially-growing shear layer are presented and c and the free stream reactant temperature at x
3nalyzed in Section IV. Experimental data of R°'

Masutani and Bowman [2], which we will call M&B = 0, T. T - E /(R T ), where E is the

r2], are used to establish the accuracy of the activation energy and R is the gas constant. Q =
numerical solution. In Section V, we study g
solutions af a reacting, temporally-growing shear Qh/CTo) where Q is the enthalpy of reaction
layer. Mechanisms of entrainment asymmetry due to and C is the specific heat at constant pressure.
density stratification, and augmentation of P

reaction due to entrainment are investigated in Pe = Ul H/a is the Peclet number, where a =

deta'l. The paper is concluded in Section VI. k/(pC p) is the thermal diffusivity. Af . A H/U1,

where A is the frequency factor of the chemical
reaction rate constant. L - a/D is the Lewis

e

II. FORMULATION number.
The model is formulated on the basis of the Equation (1) is obtained by substituting the

following assumptions: decomposition of u into the continuity equation

(1) at the inlet section, the reactant, R, and and using p = p T = constant since the flow is
product, P, with concentrations c Ro and c Po in the unconfined and is at low Mach number. Equation

(3) is obtained by taking the curl of the momentum
top high-speed and bottom low-speed streams, flow equation of an inviscid flow and using Vp - - p
at velocities Ul and U2, respectively; du/dt to substitute for the pressure gradient.
(2) chemistry is governed by a single-step, first- This allows the integration of the equations
order, irreversible, Arrhenius reaction, R -- * P; without explicitly computing the pressure
f3) the Mach number is small, and hence, pressure distribution. Equations (4) and (5) are the
is taken as a constant in the equation of state conservation of energy and species, respectively,
and tie energy equation; for a reacting mixture at finite thermal and mass
(a) both the reactant and product behave as diffusivities. For the reactant, s - cR, the
perfect gass with equal molecular weights and
specific h-ats; and source term is negative; for the product, s - ep,

(5) the th er1al nd mass diffusivities are the source term is positive. For more detail on
constants, bit not necessarily equal, while the the development of the model, see Ghoniem et al.
effect of viscosity is neglected. [12,13].

Under these conditions, the non-dimensional L

form of the conservation equations governing a
two-dimensional, unsteady, reacting flow are:

1 1 dT III. NUMERICAL METHODS
7() 111.1. THE VORTEX ELEMENT METHOD

In this Lagrangian, grid-free scheme, the
() vorticity field is discretized among finite
(2) elements that move along particle paths:

2



N The velocity field produced by the
w(x,t) r I i fs(X-Xi (t)) (6) volumetric expansion due to combustion is

1i- described by the solution of Eq. (1). Written in
terms of Lagrangian transport elements, the

The distribution of vorticity associated with each expansion velocity is:

element is described by a radially-symmetric core N
function, f', with a characteristic radius, 6, V1(x,t) - ( L.T) h2(t) V0s(X-xi(t)) (11)

such that most, or all of the vorticity is I
2 2 2concentrated within r < 6, where r . x +y

Vortex elements are initially distributed in the Vrj (x,y) (r) (12)
area where JwI > 0 such that the distance between r2

neighboring elements is h in the two principal
directions. The accuracy of the discretization 2
depends on the choice of f', the value of h, and where h is the material area associated with

the ratio 6/h. A Gaussian distribution, f8 (r) - the transport element i.

(1/6 2) exp (-r2 /6 2), leads to a second-order 111.2. THE TRANSPORT ELEMENT METHOD

discretization. We found that for accurate In this scheme, the gradient of the scalar

representation of the vorticity distribution, 8 field is discretized into a number of finite

must be slightly larger than h, i.e., 6/h = 1.3. elements using Eq. (6) with w replaced by g - Vs,

The equations describing the vortex scheme where s is a generalized scalar, being either T or

are summarized as follows: c:
dx N

dx_ u(xi(t),t) (7) g(x,t) - N Agi(t) f 6(x - Xi(t)) (13)
dt iLi

N
u (x,t) - ' r K (x-XI(t)) (8) Similar to vortex elements, transport elements are
w i distributed where lVsi > 0 and are transported at

the local velocity field. However, contrary to
vorticity, scalar gradients are not conserved

K (x) -(Y, -x) ()(9) along particle paths, and should be modified
6 2 6 according to the local strain and the tilting ofr the material elements. Moreover, the evolution of

the chemical reaction with time will be computed
where Xi(O)=Xi, and <(r) 0 r' f(r') dr'. in a Lagrangian frame of reference as the

According to Eq. (7), vortex elements move at interacting species flow. In the following, we

the local velocity evaluated at their centers. As summarize the equations describing the transport

time progresses, the distance between neighboring element scheme:

elements increases in the direction of maximum Ag i(t) = s (t) 61 (t) n i(t) (14)
strain rate such that AX > h, where AX is the
distance in the direction of maximum strain
defined as AX = (Au.Ax)/IAul and A is the 2 . 2 +
difference operator between neighboring elements. 6 =60 4 a t (15)

This leads to a deterioration of the
discretization accuracy since the latter requires
that 6 > AX. Thus, an algorithm must be used such d k+1
that when AX > hmaX , where hmax/h - 1.5, a t 6si = Ds W Cs) 6s (16)

computational element is inserted at the midpoint J 
between the original elements. The circulation of
the new element, and that of the original two N
neighboring elements, is one third the sum of the s(x,t) - I Agi(t) . VG6 (x-xi(t)) (17)
circulation of the original two elements. for more i=i
detail on the vortex element method, see Ohoniem
et al. C11]. where 60 is the core radius at t 0, k is the

When Vp x Vp * 0, the circulation of the number of reacting species, Ds  A for c/,
vortex element must be updated each time step. f PR'
Since r = E r I(x-xi) and, and Vp/p - - Vr/T, and Ds = Af Q for T. 61 is updated according to

while as will be shown in the next section, VT - E 61 i(t) - (xi+1(t)-xi_1(t))/2, I and i+1 are
ATi f 6(x-xi), then: neighboring transport elements in the direction of

dr i ATi du maximum strain, n is the unit vector normal to

d- T d ( 61i , while 61 - 1-1i). If the distance between

neighboring elements in the direction of principal

In the next section, we will show how to compute strain exceeds a maximum distance, hmax' one
AT and T. (du/dt) is computed by numerically element is inserted half-way between the two

differentiating the velocity of the vortex element elements and the values of 1i and hi are adjusted

using a high order formula. Equation (10) is for the three elements. A recombination procedure
integrated using a fourth order Runge-Kutta-Merson is implemented to curb the growth of the number of
method with variable time step for error control, computational elements at areas of negative

3



stretch. The core of the vortex elements and of Detailed analysis of the results indicate
different scalar transport elements become that the most-probable shedding frequency of these
different as time progresses. At high eddies correspond to the frequency of the fastest
diffusivities, or small Peclet numbers, the cores growing mode predicted by the linear theory of a
of the elements will experience rapid growth and 6 spatially-developing shear layer. Smaller eddies
>> h. In this case, transport elements must be with higher frequencies have been observed, but
subdivided into elements with smaller cores while infrequently. Pairing starts, most often, as soon
preserving their total strength. However, this as the eddies reach their maximum growth, and
will not be used here since we are interested in proceeds to join two eddies into a larger
cases where the Peclet number is large. For more structure. Few eddies escape pairing and,
detail on the transport element method, see occasionally, multiple pairing of more than two
Ghoniem et al. [12,131. eddies is seen. We also found that forcing at a

frequency close to that of the fundamental mode

organizes the shedding at the forcing frequency.

I£. RESULTS: A SPATIALLY-DEVELOPING Forcing at subharmonics of the fastest growing

SHEAR LAYER mode accelerates the spread of the layer by
promoting earlier pairing. Multiple-eddy pairing

IV.1. VORrICITY, AND VELOCITY STATISTICS occurs more frequently under these circumstances

Results Showing the development of the [15].

vorticity field of a shear layer, obtained using Predicted velocity statistics: averaged

the vortex method, are depicted in Fig. I (see streamwise velocity, root-mean-square of the
also Ghoniem and Ng [14,151 and Ghoniem et al streamwise and cross-stream fluctuations, and

[11,12,13]). The plots show the roll-up and Reynolds shear stress are shown in Figs. 2, 3, 4,

pairing of large vortical structures due to the and 5 (see also [14,15].) Figure 6 shows the mean

growth of "random" perturbations. These plots momentum thickness of the layer. The growth rate

were obtained for a shear layer which starts at x within the non-linear range is de/dx = 0.0165.

= 0.0 with a Gaussian vorticity distribution. The Note that what we called the linear range

velocity ratio across the layer is 2:1, and the (following the definitions of the linear theory of

momentu thickness at x = 0.0 is e = 0.0148. All stability) exhibits a plateau, followed by a small

the vortex elements used in the computations are but exponential rise in e. In the non-linear

shown, along with their instantaneous velocity range, the value of e increases linearly. The

vectors measured with respect to the mean predicted value of de/dx, while smaller than the

velocity. The plots show that the growth of the value measured by M&B [2], falls In the middle of

layer can be divided into two ranges: the linear the scatter of the experimental data documented by

range in which the "random" perturbations organize Ho and Huerre [161. It should noted that M&B [21

the vorticity into "lumps" that concentrate the remarked that the growth rate of their layer is

vorticity into semi-round structures, and a non- about 15-20 % larger than the value measured by

linear range in which the vorticity field is the majority of other experiments. The effect of
formed of large eddies that move downstream while difference in the growth rate will appear in all

they interact by pairing, the comparisons: the experimental profiles are

Figure 1. Locations and velocity vectors of all the vortex elements
in an unforced shear layer, Ul/U2 = 2.0. t - 50.70, 51.00 and 51.30.

4
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expected to spread into the free streams faster

than the predicted profiles.

The plots show that the averaged streamwise
velocity reaches a self-similar distribution early

downstream, which also resembles the initial error A-

function velocity distribution of the vorticity n.
layer. On the other hand, velocity fluctuation S. . I -- -

statistics reach a self-similar state some :.

distance downstream. The transition region for " ,
the development of the velocity fluctuation is
most likely within the region of growth of the
initial perturbation and before a "mature" eddy

has formed.
As shown in Figs. 2 and 3, the numerical X-3.36 .

results agree well with the measurements of M&B X

[21 in a two-dimensional shear layer. The
agreement will improve substantially if (y-y0 ) is

normalized with respect to the local momentum
thickness O(x) instead of (x-x ) since this will ,'

absorb the difference between the spread rates of % '

the two layers. This experiment was selected for U -

comparison because the two-dimensionality of the l. "

flow was carefully maintained and verified, and

because of the availability of experimental
measurements on mixing statistics before mixing
transition. Some differences between the
numerical predictions and the experimental data,
which may have resultsd in different growth rates, X-4.28 X-4.54

may be attributed to the relative amplitude of

noise in the numerical and experimental studies, (a)
and to the expected scatter in experimental

results.

It is important to emphasize that the
velocity fluctuations are due to flow unsteadiness
imposed by the formation and interactions of the
large eddies. The unsteadiness arise due to flow
instability, regardless of the boundary conditions
which are steady, and lead to the augmentation of

interaction between the two streams via the-S
fluctuation fluxes. The order of magnitude of --', ,

these fluctuations, in each direction, is about
20% of the velocity jump across the layer. The
fluctuations are, thus, almost isotropic.

IV.2. MIXING, AND SCALAR STATISTICS XI.0 X-3.7

We have used the transport element method to

compute the mixing of a passive scalar in the same
flow. The distribution of the concentration
immediately downstream of the splitter plate is

described by an error function, similar to the ,w
velocity profile. The corresponding scalar ''

gradient is a Gaussian, similar to the vorticity
distribution. The concentration is c = 1 in the ., . 'i"'

bottom low-speed stream, and is c - 0 in the top .> ',

high-speed stream. Computations were performed
for different values of the Peclet number to show

the effect of molecular diffusion on mixing
dynamics at high Reynolds numbers.

Figure 7 shows the instantaneous profiles of X.3.9 X-4.5

c at different sections downstream the channel,
superimposed on the instantaneous distribution of (b)

the vortex, or transport elements for the case of
P -. The sections are chosen at the centers of

e
the vortex eddies in Fig. 7a, and across the Figure 7. Instantaneous concentration profiles
braids in Fig. 7b. The distributions reveal that, superimposed on the vortex elements: (a) across
even at sections far downstream of the splitter the mid-sections of the eddies; and (b) across the
plate, zones of completely unmixed fluid still braids.

exist within the layer (unmixedness). These zones
correspond to the gulfs, or "tongues", of pure
fluid brought into the layer from either sides by

the inviscid mechanism of entrainment, i.e., the

convective transport of fluid across the

6



centerline of the layer by the roll-up of the 1.2
vorticity layer.

Instantaneous concentration profiles show the - 1.0 - 10
mechanisms of asymmetric mixing, which leads to 4 1.00
the establishement of a preferred-mean P - 10
concentrations, cp, different than 0.5 (M&B [2].) z 0.8 P. - 7"p 0.• 7500

C..) e
Mixing asymmetry, which arises due to the z P- 5000
asymmetric growth of the eddies during the initial U 2.0
stages of roll-up, is indicated by the fact that 0 Pe
the profiles are not symmetric around the line c -
0.5 (computations of a temporally-growing mixing C 0.4

layer, in which flow boundary conditions are
symmetric, show that the concentration profiles -C

are perfectly symmetric around the line c - 0.5 at 0.2
all times.) Asymmetric mixing is thus due to the e
asymmetric flow field in a spatially-growing
layer. The preferred mean concentration is the 0.0
value of c most likely to be found within the -0.10 -0.05 0.00 0.05 0.10 0.15
cores of the structures. As the c-profiles
indicate, under the conditions simulated by our (Y-YO)/(X-XO)
computations, cp - 0.35. Across the braids, the (a)
concentration changes between the free stream
values within a distance on the order of magnitude 1.2
the initial shear layer thickness.

Figure 8 shows the averaged concentration
profiles (a) for different values of the Peclet - 1.0
number at the same streamwise location; and (b) at
different streamwise locations for the same Peclet
number, both compared with the data of M&B [2]. 0.8

The mean concentration profiles differ Z

substantially from the initial error function 0' .e 65
profile, and develop downstream to form a zone of x- 4.0
almost constant value, between two inflection /
points, around the midsection of the shear layer 0 0.4 1 /
and towards the high-speed side. This constant x . 5.0
value is close to the preferred-mean concentration
within the cores. Diffusion, which generates 0.2
strong fluxes around areas of sharp gradients,
tends to make the profiles smoother. However, as
shown by Fig. 8a, diffusion effect on the mean 0.0

concentration is minor. -0.10 -0.05 0.00 0.05 0.10 0.15
Comparison between the mean concentration

profiles and the mean velocity profile indicates (Y-YO)/(X-XO)
that the former penetrates further into the free (b)
streams than the latter. This supports the Figure 8 Time-averaged concentration profiles:
hypothesis that, in these shear flows, mixing is F 8
entrainment dominated and that entrainment, while (a) at x - 5.0 for P - , 10 , 104, 7500, 5000
it is a consequence of the vorticity-induced and 2500; and (b) at xe= 3.5, 4.0, 4.5 and 5.0 for
field, acts on the vorticity-free part of the flow Pe - 2500. Symbols correspond to the experimental
by the Biot-Savart effect. Mixing enhancement by data [2].
the roll-up of the shear layer, due to its
intrinsic instability, is thus not limited to the
neighborhood of the area where Iwi * 0. Instead,
the mixing zone extends further into the free
streams as we move downstream. The numerical which the value of c is oscillating decreases.
results predict the experiment very accurately The peak and the wide plateau which are observed
(the effect of the faster growth of the in this distribution correspond roughly to the
experimental layer, which was indicated earlier, transition between the slow stream in which c - 1,
shows around the free streams especially on the and the mixing core of the eddy.
high-speed side). Figure 9a shows that molecular diffusion has

The root-mean-squared concentration a pronounced effect on the concentration
fluctuations are shown in Fig. 9 for (a) different fluctuations, emphasizing the influence of
7a'lues of the Peelet numier a6 tne same str-e3-.le diffusion on the instantaneous profiles and on the
location; and (b) at different streamwise outcome of time-dependent processes which may take
locations for the same Peclet number, both with place within the shear layer, such as chemical
the experimental measurements of M&B [2]. As reactions. Figure 9b shows that the concentration
expected, at zero molecular diffusion, the maximum fluctuations reach self-similarity downstream of
value of c' approaches 0.5, the unmixed state, the station at which the mean profiles reach self-
indicating that the concentration in *he fluid similarity, similar to the velocity profiles.
passing by the measurement point is alternating This is not surprising since the controlling
between the two extreme states. With increasing transport mechanism here is convection. The
levels of molecular diffusion, the maximum value figure also shows that the penetration of the
of c' decreases, and the whole profile attains transported species cannot be measures by its mean
smaller values, showing that the limits between values only. The deviation between the numerical

7
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(a5 54 Figure 10. Probability-density function of

fluctuations: (a) at x - 5.0 for Pe 10 , 10 concentration at x - 5.0 for: (a) Pe = ; and (b)

7500, 5000 and 2500; and (b) at x = 3.5, 4., 4.5 P = 2500. n - (y-y )/(X-x o)

and 5.0 for P = 2500. Symbols correspond to the ee

experimental data [21.

0. Evidence for the existence of a preferred

results and the experimental data near the high- concentration within the cores is given in Fig.

speed stream is due to the difference between the 9b. An intermediate peak appears between the two

growth rates in the experiment and the numerical peaks at c = 0 and c 1 1, at a value around c -

solution. Concentration fluctuation of almost 20% 0.4. M&B [2] show that the value of c (x) is P

of the concentration difference between the two p

streams accompanies a velocity fluctuation of displaced towards higher values of c, and with

almost 20% of the velocity difference between the slightly higher probability, as we move

two streams (turbulent Prandtl number = 1!). downstream, appearing more prominently at values

The probability-density function of the of x/e - 100. The value identified by the

concentration across the cross section x - 5 is numerical simulations at x = 5.0 is c - 0.4.

shown in Fig. 10 for two values of Peclet number: Results in this section show that the

P = and P = 2500. The bimodal shape, transport element method can be used to accurately

characteristic of non-diffusive entrainment, is predict the two-dimensional dynamics and mixing inchaactrisic f nn-dffulveentainent is a spatially-developing shear layer prior to

clearly exhibited by the plot, and is indicative "mixing transition." It is also capable of

of the absence of numerical diffusion even at such 
poiing uniom s ti resotionlth o

disanc donstea. A P 250,conentatins providing uniform spatial resolution throughout

distance downstream. At P e 2500, concentrations the domain and for a long time, as seen by the c-

at intermediate values of c appearwith higher profiles across the braids. This is an important

probability,close to the high-speed side where c - step towards computing a reacting shear layer.
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V. RESULTS: A CHEMICALL-REACTING,
TEMPORALLY-GROWING LAYER

V.1. FLOW AND TEMPERATURE FIELDS Z
Computations of a reacting mixing layer have .":".,

been performed for an idealized model, a ..: .- ------------ -""
temporally-growing shear layer. While this is not - .......

'

a necessary idealization in either the physical rh ' -'--.'

model or the numerical scheme, it facilitates the --.
long-time, high-resolution calculation of a >- Uj
reacting flow at low cost. The choice of the
physical parameters that describe the combustion
process was limited to cases for which the
computer-time and memory requirements could be
economically met. High Damkohler number, at which . -
the chemical reaction proceeds much faster than Li - --

the flow, requires a small time step and stiff .:
integration routines. High activation energy, at Z " l. i/

which the flame thickness is very small, generates F_ ... .........
sharp gradients, and needs a large number of Uf) "o
transport elements to resolve these gradients. rh _ /% - %.i;"°"

Large heat release extends the temperature
variation in the field and demands a large number
of transport elements. Therefore, the results C14
presented here were obtained for moderate values
of all of these parameters and were used to study
the different modes of interaction between the
fluid flow and the chemical reaction.

In the temporally-growing layer, the 1
normalizing velocity is AU/2, where &U - U1-U2,
and the normalizing length is A /2, where A is) "

the total vorticity thickness of the layer at x C 3 .0 .0 . U ) C 3 ® r... '.
To start, we present the vortex elements and -

their velocity vectors for the development of a 0
non-reacting, uniform-density flow in Fig. 11, as Ln
a base state. For the reacting flow, we show the C--
vortex elements and their velocity vectors for the
following parameters: T - 5.0, P . 200, L ea e e
1.0, Q - 1.0 and Af = 2.0, in Fig. 12. In both

cases, the initial perturbation is a sinewave with
an amplitude c - 0.05 A, where A = 6.6 A is the Li
wavelength. The perturbation is chosenwso that Jrzits initial growth rate is small enough to allow a 4:
slow increase In the length of a typical material .
layer until t - 5. It is important to point out f)0 "
that the initial vorticity thickness and flame .
thickness are not the same. While the former is I
chosen to correspond to the most unstable linear >.
mode, the latter is the steady-state laminar flame C4
thickness as defined by the diffusion and chemical
parameters of the problem. In the second stage, t
> 5, an eddy, which corresponds to a localized 0

accumulation of the layer vorticity, forms and Lj

grows to its maximum size. Within this range, the

primary mechanism of growth is the entrainment of
fluid from both sides into the core of the eddy.
In the final stage, starting around t - 12 and 15
for the non-reacting and reacting eddies, 0.0 6.6 23.2
respectively, entrainment ceases and the eddy
flattens in the streamwise direction. X-DISTHNCE

Compared with the non-reacting eddy, the
reacting eddy expands due to heat release, it
moves to the right, it exhibits a definite Figure 11. Locations and velocity vectors of all
asymmetry, and it starts flattening at later the vortex elements for a uniform-density, non-
times. The expansion of the eddy due to heat reacting layer at t - 5, 10, 15 and 20.
release, which was limited to small values, occurs
primarily in the second stage and within the core.
This indicates that most of the burning occurs
during this stage and inside the eddy core. The
growth rate of the reacting eddy, measured by the
integral of the perturbation velocity over the
vorticity layer thickness, shown in Fig. 13, is

9
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f flow
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U, Non-reacting
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C-C)

z / fo i flow andth

U - . /D re ct n fl w (1 10 "- f ,u x t) u xI d-x._"- " ,"

- Li

_0.0 5.0 10.0 15.0 20.0 25.0
2: " TIME
[--0 . \-' , Figure 13. Integral of the perturbation velocity

*- .' / ..... a W  for the uniform-density, non-reacting flow and the
LF"'"', reacting flow. (1-IO) = (u~x,t)-u(x,O)) dx.

the same as that of the non-reacting, uniform-
density eddy. However, the reaction prolongs the
growth phase and delays the start of the
flattening or collapse phase. This explains why

Ln the angle between the major axis of the eddy and

L -. the positive streamwise direction, assuming that
the eddy can be modelled by an ellipse, is smaller
in the non-reacting, uniform-density case than In

0I= CO the reacting case (for experimental verification,
A" "see Keller and Daily [3].)

- , - ... Figure 13 also indicates that the total

fluctuations is larger for the reacting eddy than
,.. * .- for the uniform-density, non-reacting eddy,
C- .suggesting that the total volumetric entrainment

is also larger in the former case. Figures 11 and
12 show that in the reacting case, volumetric
entrainment is asymmetric with a bias towards the
hot fluid. Clearly, the gulf, or tongue, of hot

U, fluid reaches deeper into the eddy than that of
cold fluid. Moreover, the free-stream gulfs reach

u deeper/shallower, respectively, than their
-. _counterparts in the non-reacting, uniform-density

case. The origin of the asymmetry will be
0.0 6.6 13.2 investigated in detail in the next section.

X-DISTANCE The temperature contours for both the non-
reacting, uniform-density and the reacting cases
are plotted in Figs. 14 and 15, respectively.

Figure 12. Locations and velocity vectors of all Figure 14 shows the symmetric development of the
the vortex elements for a reacting layer at t - 5, scalar field, accompanying the symmetric evolution
10, 15 and 20. Reaction parameters are: A = 2.0, of the dynamic field in this case. Although the

Peclet number is finite and moderate, the
Ta = 5.0, Q = 1.0, Pe = 200.0 and Le = 1.0. temperature distribution remains non-uniform and

steep gradients are still noticeable even near the

center of the core. As time progresses, more
mixed fluid, at T - 1.5 is entrained into the

10
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core. The mixed fluid forms along the convoluted o o
interface by the diffusion across the 0 - O_
concentration surfaces, and is entrained along the O

interface towards the core. It also shows that

fluid in an unmixed state has penetrated deep into
the eddy from both sides, similar to the 0 0

spatially-developing case in Fig. 7. The final 6 - - L
state of the shear layer can be characterized as - F
follows: a semi-homogeneous core separated from U-)

the free streams by two strained zones of sharp - C_
gradients. 0-O _0 Reacting

In the analysis of the results of the CD . Reatin
reacting case, it is helpful to note that the Z vi C - layer

Li rt
maximum reaction rate occurs at T - 1.53, and that __] a:_

the reaction rate reaches one third of its maximum
at T = 1.0 and 1.90. Because the activation L- o L_ 0 Laminaramna
energy is moderate, leading to a thick reaction =_ flam

zone, we expect that the interaction between the _Mj (flm

flow field and the flame cannot be approximated by L_ U-)
a wrinkled laminar flame model. Figure 15 shows a:
that within the growth stage, 5 < t < 15, the 0 o

flame zone is slightly thinner around the braids 0-

and is substantially thicker in the core zone,

both with respect to the flawe thickness at t = 0.

The first is due to the strong strain, while the
second is due to the enhanced entrainment, both 9
associated with the roll-up of the layer and the 0 0

formation of a vortex core. Flame thinning due to 0.0 5.0 ]0.0 15.0 20.0 25.0
the strain along the braids is almost unnoticeable

since the reduction of the flame thickness due to TIME
the strain is balanced by the increase in the
flame thickness due to the enhanced diffusion. Figure 16. Total mass of product formed since t

Flame thickening is due to negative strain in the 0 for a laminar flame and a reacting layer, and

vicinity of the center of the core and the strong the apparent flame length in the latter case.
entrainment currents accompanying the roll-up. It

is thus expected that the total reaction rate must
increase within this range since the reaction zone
has grown beyond its area (or volume in a three-

dimensional world) at t = 0.
Another factor which is expected to

contribute to the increase in the reaction rate M is the same as that in Lf, indicating
for 10 < t < 15 is the formation of a flame fold, P

or gulf of reactant that penetrates into the that the rate of burning per unit length of the

burning core. Within this range, there is a flame, the burning velocity, remains constant.

burning core at the center of the eddy, formed by Beyond t - 15, A stays constant while Lf

the entrainment of reactant at the early stages of P f

oll-up, surrounded by one flame zone on the top continues to increase (the slight decrease in Lf

side and two flame zones on the bottom side. The around t = 17 shows that a piece of the fold has
two flame zones are approaching each other and
trapping a gulf of reactant in-between. By the been consumed.) Since Mp = Sua Lf, where Sua is
end of the growth stage, t = 15, the core is the average laminar burning velocity of a strained
almost fully burnt and the flame is on the outer flame convoluted within the eddy, the average
boundaries of the eddy. Figure 15 shows that for burning velocity decreases after t = 15. The

t > 15, the flame is aligned with the streamlines reason for this drop will be investigated in
of the flow, and is exposed to a strong strain Section V.4.
along its own direction. It is important to point out that the Lf-

V.2. RATE OF BURNING curve is used only to characterize the stage of
The total mass of products, Mp, formed since growth of the eddy and not to define a unique

t 0 is shown in Fig. 16. The total flame relationship between Mp and L The flame undertp

length, Lf, approximated by the line of maximum investigation is a "thick" flame in which the

reaction rate, is depicted on the same plot. As a flame thickness is of the same order of magnitude

reference case, we also plot the total mass of as the flow gradients. Thus, it is the area of

products formed due to the propagation of a reaction (or the volume of reaction in a three-

laminar flame which has the same initial dimensional world) which determines the total rate

conditions and whose length is k. For t - 5.0, of burning. Results in Fig, 15 indicate that
the rate of product formation is the same as that within the second stage of roll-up, the

of a laminar flame and Lf is almost constant, entrainment stage, the total rate of burning can

Within the growth range, the flame length be well approximated by the product of the laminar

increases due to the roll-up of the layer. The burning velocity of the unstrained flame times the

slope of the M -curve, which is the rate of apparent flame length. Beyond that, the strain
P field and the geometry of the streamlines

product formation, Mp = dVp /dt, exhibits a similar associated with roll-up play important roles in

increase in the range of 5 < t < 15. The rise in determining the local laminar burning velocity.
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V.3. VORTICITY GENERATION BY BAROCLINIC TORQUE
The asymmetric growth of the reacting eddy is

accompanied by: (1) its displacement to the right;
and, (2) the volumetric entrainment of more hot
fluid than cold fluid. The reacting eddy and the
uniform-density, non-reacting eddy are dynamically
different in two aspects: the volumetric expansion
associated with heat release, and the stratified
density field. The former is kept small by taking
Q - 1, and it is of interest to isolate the effect
of the latter. Figures 17 and 18 show the vortex

j\
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elements and their velocity, and the temperaturecontours of a density-stratified, non-reacting
Figure 17. Locations and velocity vectors of all sIear layer eddy. These results resemble those of
the vortex elements for a density-stratified, non- the reacting eddy in Figs. 12 and 15 (the valuesreacting layer, QI/Q2 = 2.0, at t = 10, 15 and 20. of the temperature are, however, different). The

similarity suggests that the mechanism leading to
the asymmetry in the hydrodynamic field is active
in both cases, and that this mechanism depends on
the density gradient within the field.

13

• •• • n i i I t a t 
CI 

I



Referring to Eq. (3), the density field can,
a;nen coupled with a pressure field, produce
vorticity that will perturb the initial vorticity
field and thus affect the roll-up of the eddy.
Figur-f3 19, 20 and 21 show the vortictty contours 0-
for the iniform-density, non-reacting case, the
non-r ic ting density-stratified case and the
re;ating 'ase. Here also, Figs. 20 and 21 exhibit
. strong similarity, although some of the Il'

num..rioal values are different, indicating that
ho. mecn- hain is m of vorticity generation by the

5.irocl iniI torque, VpxVp, is responsible for the L 4

hinge in the structure of the eddy. Volumetric 7

-xponsi. n in the reacting ase, however, weakens w____---
The vorticity locally by increasing the area of ___

the eddy core. "_"__
igures 20 and 2l show that in a layer formed

of negative vorticity, positive vorticity
g,',nerat-! or the high-density side of the layer
lue to brocLinic effects forms a secondary eddy
move? the primary eddy. The secondary eddy,
having positive vorticity, produces a velocity I
fi.11 wv. h propels the primary eddy towards the
-ight, as seen in Figs. 1? and 17. The Positive

jecondi'y .edy on the top side of the primary eddy
-du~es the, entrainment velocities into the eddy
frcm this 3ide, cesulting in less entrainment of
the top, cold fluid than that of the bottom, hot 0
fltii, as shown in Figs. 12 and 17. 1

Thus, we have been able to identify the two
)bsorvations, the motion to the right and the
isymmetric entrainment, with the formation of a
positive scondary eddy above the negative primary

eddy. The convective velocity of the eddy in a
lensity stratified flow and the asymmetric ' ,

-ntra in mot have been observed experimentally. __"_

0imota~is '161 suggested the following expression
for this velocity: U = (1 + r s )/(I + /s ),0 u p p, )---"- ,T" . ' '

where r is the velocity ratio across the layer

nd >3 the density ratio. In a temporal frame __

of refee.re, this expression can be rewritten as:
u u - = 

I 
- 2 /s /( + Vs ) (Krishnan and

m p p
Ohoniem 7171). Figure 2' shows a comparison
ha .,n the numerical predictions of ut and the

va: 1-3 evl ated ising the modified Dimotakis
fl-mula. The ,close agreement shows that the
oa oelini vorticity generation is indeed
rQ.;ponsthc for thi-3 asymmetric dynamics. It also
vilidates our numerical -esults.

7. a. LATF-TRF1CH EFFECTS
Figures 15 and 16 show that after the burning

•f the core, t > 15, the rate of product

formtion, ', is constant while the apparent Figure 19. Vorticity contours for the uniform-

1.-ngth of tne flame measured along the line of density, non-reacting flow at t 5, 10, 15 and
20.

7aiximum reaction rate, L , is increasing. Thus,

the hurring velocity, averaged over the length of
th.s flam" 1,ngth is decreasing. As shown in Fig.
11, the flamn dring this period exists on the
niter edges of the large eddy and its length
,moot b, ,-, siiy ipproximated by the line of flame thickness, causing some reduction in the

maximum str'in. total rate of burning. A more important effect,
To analyze this phen,)menon further, we plot associated with the convoluted nature of the

the strain rate in the direction of the local streamlines at this stage, is that the flame does
-t.rmlinin in Fig. 73. The figure indicates net exist on a simply-connected region any more,
that, while du-lng the growth stage, 5 < t < 15, and that gulfs, islands and intersecting flame
'n,, n of Th, hun ing zone lies on areas where the fronts exist simultaneously. Thus, the simple
:3 rain in ngative, at the later stages, t > 15, definition of a flame length is not applicable and
mrnst )f 'In,, Th rning zone coincid3 with areas of the definition of a local burning velocity may not
rtrong po 3itiv' strain. ;trong strain reduces the be unique.
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Figure 20. Vorticity contours for the density- Figure 21 . Vorticity contours for the reactingstrattfied, non-reacting flow at t = 10, 15 and flow at t - 10, 15 and 20.20.
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1.0 'VI. CONCLUSIONS

0.9 Numerical simulation of mixing and chemical
reaction in a two-dimensional, shear layer has

S0.8 been performed using the transport element method.
Results have been obtained for a non-reacting,

0.7 uniform-density, spatially-growing confined shear

layer, and a reacting, premixed, variable-density,
_ temporally-growing shear layer. For the first

0.5 Dimotakis case, comparisons with the experimental

formula measurements of M&B [2] were conducted to validate
C .I N uthe results. For the second case, processes of

vL Numerical turbulence-combustion interactions, especially the

result effect of vorticity generation by baroclinicity,
0.2 of entrainment fluxes and of flame stretch, were

L investigated. Major conclusions are:
(1) Velocity and mixing statistics agree well with

0.0 . the experimental measurements of a two-dimensional

0.0 0.! 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 .0 shear layer before mixing transition;
(2) Processes leading to mixing asymmetry and the

DENSITY RATIO (S) establishment of a preferred mixture fraction in a
spatially-growing layer are illustrated;

(3) Mixing asymmetry in a variable-density layer

Figure 22. Convective velocity of the eddy in a is found to be due to the generation of vorticity

temporal frame of reference for different values due to baroclinic torque;

of the density ratio. (4) Entrainment associated with roll-up augments

the rate of burning. However, strong strain

reduces the local burning rate at later stages.

Work is underway to extend the simulation of
the spatially-growing shear layer to a reacting,

diffusion flame, and to study the effect ofj different chemical parameters on turbulence-
combustion interactions.
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Figure 23. Strain rate along the streamline
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ABSTRACT

ricent developments in vortex methods in two of convection. This Is particularly important in
and three dimensions are reviewed. Extension to reacting flows where mixing must be accomplished
the solution of scalar conservation equations before chemical reaction. Thus, molecular
using the transport element method is Included. A diffusion cannot be Ignored at high Reynolds
formulation of a compressible flow simulations is numbers without sacrificing an important part of
presented. Attention Is focused on the the physics od turbulence and mixing.
construction of the numerical schemes and their
convergence to the solutions of the fluid flow The numerical simulation of turbulent shear
equations. The numerical accuracy of these flows must be based on accurate representations of
methods is investigated by comparing results of both mechanisms at value of the Reynolds number,
numerical simulations of incompressible flows at and the Peclect number, in the order of magnitude
high Reynolds numbers to analytical and of 1000-10000. Although the relative contribution
experimental results. Information revealed by the of both transport mechanisms is determined by the
numerical solutions are discussed, square root of the Reynolds number, the absolute

contributions of either mechanisms may also be
important in many problems. Excessive numerical
diffusion can lead to stabilization of flow

I. INTRODUCTION instabilities In the case of momentum diffusion,
or to overestimation of the rate of mixing or

The desire to study high Reynolds flows, in reaction in the case of scalar transport. In both
which molecular diffusion plays an important role cases, the local flow gradients are determined by
in a relatively small but finite zones of the convective mechanisms that distort the flow map,
flow, motivates the continued development of but actual diffusion fluxes are proportional to
computational schemes in which numerical stability the molecular diffusivity. The extreme case of
Is not limited to low Reynolds numbers, and in infinite Reynolds number flow In which no mixing,
which numerical diffusion is minimized to values or vorticity diffusion away from the walls can
smaller than those of physical diffusion. The occur Independent of how strong are the convective
class of flows of interest to this work is shear currents illustrates this point.
flows at high Reynolds number, including shear
layers, jets, wakes, recirculating flows and One more challenge which is encountered in
boundary layers. In these flows, one can define a the numerical simulation of shear flow is the
major streamwise direction that represents the severe distortion of the flow map as the natural
mean primary flow. At high Reynolds numbers, the instabilities of these flows grow into their non-
dominant transport mechanism of momentum and linear stages. The maturation of these
scalars, such as species concentration and energy, instabilities in the "primary flow," which can
is convection in both the streamwise and cross- normally be characterized by almost parallel
stream directions. The cross-stream convection is streamlines, results in the establishment of a
increased substantially with the growth of flow "secondary flow" with strongly curved streamlines.
natural instabilities and their maturation into Due to the non-linearity of these problems,
fully-developed secondary and higher-order flows, continuous interaction is expected between these

two artificially-separated components of the flow.
In spite of the fact that convection To capture these changes accurately, one must

transport dominates these flows, transport by relay on numerical scheme with a very high
molecular diffusion cannot be ignored especially spatial accuracy, i.e. very large number of fixed
In the cross-stream direction. Molecular grid points, or schemes with moving grids In which
diffusion is resonsible for the diffusion of the msh points follow the distortion of the flow
vorticity form solid walls, where it is generated field. The latter class can be categorized as
due to the no-slip condition, into the interior of Lagrangian schemes.
the flow through the boundary layer. Molecular
diffusion also plays a primary role in the mixing In particular, If the grid points are used to
of streams which are initially heterogeneous, in represent discrete values of the functions of
terms of species concentration or temperature, Interest, i.e., Lagrangian finite-difference of
when they are brought Into contact by the action finite-element methods, solutions can be obtained

for long times after the initial phase of
Instability growth. These methods tend to loose

Copyright c 1988 by A. F. Ghoniem. Published by accuracy after strong distortion has been
the Aerican Institute of Aeronautics and encountered due to the growth of theAstronautics, Inc., with permission. discretization error on a non-uniform mesh. In

AstrnauicsInc, wih prmision



this case, regularization and remeshing become II. VORTEX METHODS IN TWO DIMENSIONS
important (for a review, see Clark [13.) On the
other hand, Lagranglan particle methods, of the For a two-dimensional, incompressible,
type described in this paper, avoid using inviscid flow, the vorticity transport equation
approximation formulae to determine spatial is:
derivatives on the non-uniform mesh. This is
accomplished by using particles that transport u VW - 0 (1)
finite values of the spatial gradients of the at

functions of interest, i.e., transport of
vorticity or scalar gradients instead of velocity where Vxu - w and V • u - 0. In the above, u -

of scalar concentrations. This allows longer time (u,v) is the velocity, w is the vorticity, x -
computations to be performed without substantial (xy), t is time and V - (3/3x,3/3y). If X(X,t)

loss of accuracy due to the distortion of the is a particle path, where X is the Lagrangian

underlying grid. These methods, including vortex coordinate of 1, i.e. i(1,0) - X, then Eq. (1)
methods, are reviewed in this article, states that w(X(Xt),t) - w(X,O). Morever, u(x,t)

Vortex methods, a particular class of - f K(x-x') w(x') dx', K(x) - - 1/2sr2 (-y,x) and

Lagrangian particle methods, are used to solve the r
2 

- x
2
+y

2
. This Lagrangian formulation of

momentum transport equation. They are based on vorticity transport is the basis for the
the discretization of the vorticity into finite construction of vortex methods.
vortex elements and the transport of these

elements along particle path. The fact that In vortex methods, the vorticity field is
vorticity is conserved along the particle path in discretized into a number of vortex elements of

a two-dImensional, uniform-density flow has made finite and overlapping cores:
these method particularly simple for this class of N
problems. However, we show that other accuracy w(xt) W h f (x-xi(Xi't)) (2)
requtirements may necessitate the application of ,x
more elaborate vorticity-updating schemes as
vortex elements are moved along particle path.

The extension and application of vortex methods to where wi is the vorticity at the center of an
three dimensions where the conservation of element, N is the total number of vortex elements,
vorticity along particle path is not satisfied is h is the average distance between the centers of
also described. neighboring elements in two principal directions,

The application of vortex methods to reacting h
2

hxhy, 6 is the core radius of a vortex element,

and compressible flows requires the development of and f6 - 1
/
62 f(r/8) is the core function

compatible schemes to compute the transport of describing the distribution of vorticity
scalars in Largrangian forms. For this purpose, associated with an element. The importance of the
we have developed the transport element method, a core function in stabilizing vortex computations
generalized Lagrangian particle scheme which is coreflizng vrt c uao

construted to compute solutions of a convective-
diffusive-reactive scalar transport equation. The Equation (2) is equivalent to expanding a

formulation of the method is summarized and its function w(2,t) in terms a number N of kernel
application to a mixing flow at low Mach number functions, in te a nb n of kernel
where the momentum and energy equations can be
partially decoupled is presented. wih

2
. The accuracy of the discretization depends

A formulation to extend the applicability of on the choice of f, the initial distribution of

the transport element method to flows high Mach the particles, the determination of the values of

number where strong pressure variations are wi , I - 1, 2, ... , N, and the ratio of 6/h. The

expected to arise is briefly described. In this selection of the core function for a particular

case, the system of conservation equations must be accuracy was extensively discussed in the work of

solved simultaneously, and the spatial variation Hald, e.g. in [3] and Beale and Majda, e.g in

of the pressure must be taken into account In [e. For the Initialization of the values of wi ,
computing the aerothermodynamic variables. we found that collocation on a uniform grid

provides the best long time accuracy (it is

conceivable that collocation on a non uniform grid

may be a better choice, but we have not

-computationally pursued this scheme). For more
detail, see Ghoniem et al. (5].

We also found, using extensive numerical

experimentation, that accurate discretization and
long time accuracy of the computed flow field
require that 6 > h, in agreement with all the
known convergence theories of vortex methods (for

a recent review,see Anderson and Greengard (6].)
We found that for an initially smooth distribution

of vorticity, 6/h - 1.1-1.5 is an optimum choice.

Note that although the core function is
constructed as a fast decaying function, such as
an nth order Gaussian, the fields of individual
vortex elements are strongly overlapping due to

the choice of 6. Thus, the local value of the
vorticity at a point is determined by the

2



contributions of many surrounding elements. For organization of the computations. It can also be

more detail, see Ghoniem et al. [7]. used to provide Information about the flow map at
any time step since, according to the condition of

Moreover, the velocity field of a incompressibility, one can compute the changes in

distribution of vortex elements is given by: the length of the material elements normal to the

N layer of vortex elements associated with the

u(xt) I W h
2 
K(x-xi(XIt)) (3) extension of the elements in the direction of

i-l maximum strain.
where As was mentioned earlier, employing more

dXi = u( 1 (X4t),t)() elements to discretlze the vorticity In the

3--- direction of maximum strain Is equivalent, in some

sense, to distorting the original elements from

their circular shape to elliptical shapes due to
where K6 (x) - 1(x) mc(r/8), and (r) - 2w 0 1r trr') the generation of the strain field. By increasing

r' dr'. the number of vortex elements, we insure that the

underlying grid of computational elements can
The generation of strong strain fields, capture the Instantaneous vortIcity distribution

associated with the growth of perturbations into as it evolves with the motion of the flow. The
the non-linear stages, increases the distance need to increase the number of elements becomes

between neighboring elements, 6X, beyond the clear when realizing that as the flow develops
"target" value of h. Thus, the accuracy of strong strains and curvature, the streamlines
spatial discretization, which is governed by 6/h, become strongly convoluted and require more

is negatively affected. In actual computations, particles to describe their geometry accurately.
deterioration of accuracy is observed as the On the other hand, reducing the size of the cores

generation of unorganized, random motion on the of vortex elements help minimizing the numerical

scale of h which grow as time progresses. To diffusion which may accumulate to unacceptable
avoid this problem, more elements are introduced levels if the area on which the vorticity exists
in areas where 6X > Oh where B - 1.5, and the is alloed to grow beyond its original size.

circulation o the original elements is locally
redistributed among the newly introduced elements. A carerul numerical investigation of the

Since the circulation of each element is wih
2
, and accuracy of this scheme was conducted by Ghoniem

since the vorticity is conserved along a particle et al. [5]. The growth of a stationary sinusoidal
path, the redistibution of circulation is perturbation on an infinite shear layer was used

accomplished by dividing the value of h 2 of the as a case study. For a sample results, see Fig.
original element equally among the newly generated 1. This problem, besides Its obvious relevance

elements. fundamentally and practically, is ideally suited

for a study aimed at checking the accuracy of the
For consistency, and to satisfy the condition computation and the response of the scheme to the

of conservation of vorticity, dw/dt - 0, the value generation of a strong strain field. Numerical

of 62 should also be adjusted so that the ratio of results for the growth rate of linear

perturbations, whose amplitudes are 0(0.01) of the
8
2
/h

2 
is maintained constant in Eq. (1). Thus, wavelength, vs. the wavelength of the perturbation

the core radius of an element is effectively was found'to agree with the results of the linear

decreased as the element Is exposed to strong theory over a wide range of perturbation
positive strain. Note that this could also be wavelengths. Another test, done by Ghoniem and Ng
accomplished by replacing a circular element by an [10], was performed for a spatially-developing

elliptical element whose major axis is aligned shear layer in which the flow was assumed to be
with the direction of maximum positive strain and semi-infinite and the growth of the perturbation
whose area is the same as the area of the original was observed in the mean flow direction. Results

circular element. For an elliptical element, the agreed with the linear theory of stability of a
major axis stretches and the minor axis is spatially growing layer.
shortened so that the total area remains constant

as a strain field Is applied. In the extreme In the non-linear regime, which is
limit of this process, a circular vortex element characterized by the formation of large scale
becomes a flat vortex sheet with a velocity jump structures due to the roll-up of the vorticity

across its length equal to the local value o the layer associated with the growth and saturation of

vorticity wi (Note the similarity with the vortex the instability, no theory exists and results must
sheet algorithm, Chorin [8).) For computational be checked for self consistency and against
convenience, however, we chose to use more experimental data. Self consistency refers to
circular elements along the major axis instead of numerical convergence and the approximate
fewer elliptical elements. Elliptical elements satisfaction of differential and integral
wore used by Ting [9] to solve the boundary layer constraints. Numerical convergence Is achieved
equations. when, as the numerical parameters are refined, one

obtains solutions that become independent of the
The redistribution of vorticity in the numerical parameters. An example for a

direction of maximum tensile strain requires differetial constraint, which should

maintainlng a list of near neighbors in the approximately be satisfied by the numerical
direction of maximum strain, and updating this solution, is the conservation of vorticity along a
list each time step according to the changes in particle path, dw/dt - 0. This Implies that an

the vorticity distribution along the layer. This accurate solution is one in which if the total
process is equivalent to utilizing a one- vorticLty at the center of each element Is
dimensional Lagrangian grid along each individual computed, then wi(Xi,t) should remain constant.
layer of vortex elements to preserve the

3



C - .... ... ... ...... ......... .. ..
RM - -- -

( ",,i '-CD .7 ,,,,.... .

U,

7"7

-)

-iT

Figure 1. The location and velocity of the vortex element. left, and thetemperature contour, right, In a temporal mixing layer at time t - 10, 20 and25. Initial perturbation is 0.01 of the wavelength. Temperature ration acrossthe layer is 1-3, with cold fluid on top.

To validate the numerical scheme, numerical The mean flow velocity, root mean square andresults were used to compute the flow statistics cross correlations of velocities were shown towhich can be compared with experimental data. For agree closely with experimental results on two-example, the frequency of shedding in a spatially- dimensional shear layers in both the unforced anddeveloping shear layer was found to match the mst the forced cases, Fig. 3. Results show that inunstable frequency evaluated from the linear the two-dimensional flow, the source of thestability theory for spatially growing waves In a fluctuation Is the formtion of the "secondary"vorticity layer. The man growth the momentum 'flow associated with the g~rowth of the large scalethickness of the layer as It develops downs~tream, vortex structures due to the natural flowwhich reaches a constant value beyond the linear instability. and their subsequent pairing due torange of the Instability (where the growth is the subharmonle Instability. F~orcing, which canexponential) was found to agree closely with be used to either promote or suppress theseexperimental data on shear layers. To study the instabilities, was shown to have a direct impactresponse of the layer to time-dependent boundary on the values and signs of these fluctuations,conditions, the Inlet flow was assumed to be suggesting that by employing arefully-deinodharmonically modulated at frequencies different forcing functions, one can control thefrom the natural shedding frequency, and the interactions between the mean flow and the shear
response of the layer was found to correspond layer flow (Ghonien and gl (101).
closely to the experimental data. Results were
used to establish how the shear layer growth, and
the accompanying rate of mixing, can be enhanced
or reduced by applying external forcing. For a
sample of the results, see Fig.2.

- ,



Figure 2. The location and velocity of vortex elements tor an unforced shear
layer at two time steps, top, and a forced shear layer at two time steps,
bottom, shiowing the organization of large scale vortex shedding under the
influence of forcing. In both cases, the velocity ratio is 3:1 with the high
speed fluid on top.

1.2 8.3 .

1.0 x - 5.0 o .25 5.0
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-0.08 -6.04 O. .04 0.0 -g. "P I. .04 0.8
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Figure 3. The average velocity profiles, left, and root mean square
fluctuations, right, for a free shear layer shown on the top of Fig. 2. Here
the velocity ratio is 2:?. Open symbols are experimental data and solid lines
are numerical results. x and y are the streamwise and cross-stream directions.
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I1. VORTEX M THODS IN THREE DIMENSIONS to be satisfied everywhere in the field. Both
conditions must be satisfied at all times during

For an incompressible, three-dimensional, the evolution of the vorticity field. Although we
inviscld flow, the vorticity transport equation found that failure to satisfy these conditions
is: around areas of small concentration or vorticity

. may not lead to catastrophic numerical

Tt u " - Vu (5) instabilities, accuracy cannot be guaranteed.

The velocity field produced by the vorticity

where a - Vxu, and V - (3/3x,8/8y,a/az). In this distribution expressed by Eq. (6) is:

case, u - (u,v,w) and x - (x,y,z). The Lagrangian N

form of Eq. (5) is d*(X(X,t),t)/dt - s(XCX,t),t) u~xt) r 81 (t) Ks(I - ,(Xj,t)) (7)
V VU, where as before x(X,t) is a particle path t (

and X is the Lagrangian coordinate, while VU is

the strain tensor aui/axj. An equivalent and
expression which can be used to determine the
vorticity directly is: .(X(X,t),t) - VX(Xt) . dxi - u('I(Xit),t) (8)

e(X,O), where V1 is the Jacoblan of the flow map dt
axi/3Xj (Helnholtz theorem). Moreover, u(x,t) - f while

K(x-z') x a(i') dx', where K(x) - -1/4w x/r3 . 61 1_ (X
This Lagrangian formulation is the basis for the I(t) ( X1 +( 1 +1,t) - 1 1 W (9)

construction of three-dimensional vortex methods.
For reviews, see Chorin [11] and Leonard [121. where K6(x) *(x) c(r/6) and ie(r) - 4w 0fr f(r')

Similar to the two-dimensional case, the r'2 dr'. Equation (9) utilizes the fact that in
vorticity field is discretized among elements an inviscid flow vortex lines are material lines

initially located within volume elements h
3 . The to reduce the computations. However, it requires

vortex elements are then moved along particle maintaining data on the immediate neighbors in the

path, 1i(Xit), while their vorticity is changed direction of vorticity. Thus, one dimensional
according to the right-hand side of Eq. (5). Lagrangian grids are utilized to describe
Thus: individual vortex lines as arrays of vortex

N elements listed by near neighbors. Note that the
3 conditions that a vorticity field in a three

I(x,t) - I i(t) h .6(x-1(X±.t)) (6) dimensional free space is solenoidal, * 0,

ii is implicitly satisfied in Eq. (9).

where in this case, fS(x) = 1/63 f(r/6) and the The accuracy of the three-dimensional vortex
rest of the parameters are defined as before, method was extensively investigated in Choniem et

Note that here one defines vortex balls or spheres al. 113) and Knio and Ghoniem [14,15) by applying

of diameter 6, and that the core function is the scheme to investigate the propagation and

spherically symmetric, while the vortidity vector stability of vortex rings, and the formation of
associated with an element is u. streamwise vorticity in a shear layer. It has

analytically been found that the self-induced

The "total" vorticity vector of an element, velocity of a thin vortex ring, a << R where o is

alh3, can be expressed in terms of more natural the core radius and R is the ring radius, is a
variables rt~li where r1- wih 2 is the circulation function of a/R, and the vorticity distribution

within the core, Q(r/o). In this representation,
of the element which remains constant along a 6 - a and 8/h - 1.5-2.0. The dependence of the

self-induced velocity on ait was properly
particle path, and all  is the length Of the sefidcd vlit on /R wsppry

recovered form the numerical solution when the

material element along the vortex line, 6li- hi  overlap between neighboring vortex elements
arranged along the ring axis was strong enough to

that changes as the material lines allow an accurate representation of the ring

stretchs. The equivalence between uah3 and ra1li vorticity. When strong overlap was achieved, the

Is established by the Helmholtz theorem, while the. velocity of propagation of the ring reached a
constant value independent of the numerical

permanence of rl along a particle path is parameters.

confirmed by Kelvin's theorem. The formulation in
terms 61 allows the construction of a natural The long wavelength azimuthal instability of

regrLdding method which can be used when the a thin vortex ring, with a wavelength I >> a, was

stretcI along the vortex lines becomes severe. In observed when the ring was perturbed along its

this case, as 61 > Sh, an element In divided into axis with a number of wave n - 21R/1. The

two elements along the vector 81, while preserving mechanism of this instability depends on the

the total magnitude of r. interactions between neighboring sections of the
perturbed vortex ring and thus requires accurate

All the conditions necessary for the accurate discretization of vorticity along its axis. We

discretization of the initial vorticity field in found that the requirements of accurate prediction

two dimensions apply to vorticity in three of the ring self-induced velocity are sufficient

dimensions. Here, we stress that Eq. (6) is to allow accurate computation of the long wave

equivalent to the expansion of the function *(x,O) instability. The computed unstable wavenumber k

in terms of a number of core functions f6(x-1i) of * 2w/n', and its growth rate in the linear range

similar shapes and located at 11 . For accurate were found to agree with the predlelion of the

discretization, it was found that 6 > h and that linear theory. The growing standing waves at k

the distribution of X1 must allow this condition contrary to the spinning stable waves at all other



values of k. expend the energy of the flow in accurately. We found that the grid used to

stretching the waves in the direction opposite to discretize the initial vorticity must be chosen

the direction of propagation of the ring. carefully to provide enough overlap between

Numerical results reveal that Initially, and neighboring elements in all direction to guarantee

within the linear range of growth of perturbation, long time accuracy. Several choices have been

the waves grow at an angle of 3w/4 with respect to proposed to satisfy these conditions and limit the

the direction of propagation of the ring. number of computational elements.

In the non-linear range, the growing waves Computations were performed to find the most

form almost closed loops of vorticity behind the unstable mode, or modes, in this case. The values

original ring. These loops are connected to the of k* was found to be in close agreement with that

original ring via very narrow passages, or necks, predicted by the linear theory for short

that can be pinched off by the action of wavelength instabiliti in deformable vortex rings.

viscosity. Each loop is formed of two vortex The exact value of k is, as expected, dependent

rings of opposite signs of vorticity which are on the vorticity distribution within the ring

separated by a very small distance. The core, Q(r/a). The value of k" predicted from this

separation of these loops from the "parent" ring analysis is much closer to the experimental data

may lead to the formation of off-spring vortex that that predicted by the previous long

rings with a smaller diameter than that of the wavelength analysis. This short wave instability

original ring, leading to an interesting cascading indicates that vortex rings are more unstable to

to smaller sizes and to a faster decay of the small perturbations. The value of k* increases

original ring. On the other hand, the fact that almost linearly with the normalized self-induced

these off-springs form In pairs of opposite sings velocity of the ring, which is inversely

of vorticity, they may diffuse into each other proportional to a/R in a logarithmic form. Thus,

causing their vorticity to decay at a fast rate. thin rings, as they become unstable, deform with a

In both cases, the formation of these off-springs larger number of waves around their perimeters

due to the growth of the azimuthal instability that thick rings. See Fig. 5.

provide a mechanism that may lead to the reduction

of the original circulation of the ring. For a Spectral analysis of the results at the later

graphics presentation, see Fig. (4). stages show that as the fundamental instability

reaches a saturation state, its harmonic becomes

The study was extended further to Investigate unstable and starts to grow. The mechanism of

the growth of small wavelength instabilities, % % excitation of this frequency is not yet clear.

a, within the core of the ring and around its Examining the vorticity field after the saturation

axis. In this case, one must allow the core of of the first instability reveals various

the ring to deform under the action of the growing interesting features. The most important

perturbation. Analysis of variations within the dynamical change is the presence of a strong

core requires adequate resolution of its vorticity streamwise vorticity component which changes its

field by utilizing vortex elements with a core sign as one move along the axis ot the ring. This

radius 6 < a, i.e. several elements must be used component results from the tilting of the original

to describe the vorticity field within the core vortex lines, initially aligned in the direction

of the ring axis, due to the growth of the

instability. Within each azimuthal wave, two

3 3" vortices of opposite signs are formed. It should
be noted that while the perturbation is along the
radial direction, in the final equilibrium state

most of the off-axis vorticity is in the

streanwise direction.
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Figure 4. The growth Of long azimuthal waves on a

this vortex rings at the end of the linear range., iue5 h otuntbewv s h
top, and long into the non-linear range. bottom, Fgr .Th otusalewv s hshown in the plane and normal to the plane of the self-induced velocity of a vortex rin. (x)

experimen tal data. (*) numerical results. (-) and

rin. .(o) and results of analytical stability theories.
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The formation of the streamwise vorticity
component seems to stabilize the ring, indicating
that a new equilibrium state is reached. At this
stage, the core of the ring exhibits helical
deformation around its undisturbed axis. The form
of the vortex ring, as exhibited by the plot of
the vortex lines, strongly resembles experimental
pictures of unstable vortex rings. In particular,
the motion of the Inner and outer radii can be out
of phase, especially at the late stages, and
vorticity start to "leak" from the back side.
This leak takes the form of loops of vortex
filaments which extend far behind the ring in a
form that resembles the simpler picture observed
in the simulations of a thin ring. See Fig. 6.

The formation of streamwise vorticity was
also examined in the temporal shear layer problem.
Here, the shear layer described in Section II is
initially perturbed in the streamwise and the
spanwise directions at the same wavelength and the
same amplitude. Thus, the shear layer, which has
a finite thickness, is experiencing waviness in
the primary flow direction and in the direction of
vorticity. Results show that during the growth of
the streamwise perturbation, the spanwise mode is
completely suppressed, and the flow maintains
almost perfect two-dimensionality. The growth Figure 6. Late stages of development of short
rate of the streamwise instability matches that of wavelength instability on a thick vortex ring.
a two-dimensional flow until the point of maximum
growth of this instability which corresponds to
the formation of a spanwise, large scale,
cylindrical-shaped vortex structure whose axis in
perpendicular to the mean flow. See Fig. 7.

The formation of this structure is
accompanied by what we labelled before as a
secondary flow whose streamlines are almost
circular. Beyond the point of maturation of the
streamwise instability, the spanwise instability
starts to grow causing this large structure to
deform into the streamwise direction. This
deformation leads to the establishment of a
streamwise vorticity component with an alternating
sign along the axis of the cylindrical structure.
Within each spanwise wavelength, two streamwise
vortices of opposite signs form. This feature
looks very much like the azimuthal instability of
the vortex ring if the latter is viewed along its
axis. One more similarity is in the magnitude of
absolute value of the streamwise vorticity which
reaches an oscillatory stage at the point of
maximum growth of the secondary flow instability.

Figure 7. Late stages of development of a combined
streamwise and spanwise perturbations in a
periodic shear layer. The middle section shows
the translative instability of the core and the
sides show the formation of streanwise vorticity
within the braids. Vortex lines are shown looking
down on the shear layer from the top stream where
the flow Is from left to right.

• • •m |8



IV. THE TRANSPORT ELEMENT METHOD For a compressible flow, the above analysis
should be modified to reflect the fact that, in

Given that s is a passive, non-diffusive this case, an equation similar to Eq. (12) can be
scalar, the conservation equations for s and g - derived with g replaced by p 61. Thus, in this
Vs are: case, the expression of gj changes to:

ds Is 81(I P 1t (15)Ft 0 (10) gi(t) - (0) 1 2 t t (I(t)

and

i - a - Vu -g x m (11) The value of p is computed using the relation p T
dt - constant in the low Mach number approximation,

or p T - p at high Mach number (se Section V).

Thus, s remains constant along a particle path, Given the location and strength of the transport
while g changes due to the straining and rotation elements, the scalar concentration are computed by
of the material lines by the local strain field direct Integration over the fields of the
and vorticity. We restrict attention to the transport elements
transport of scalars in two dimensions. If the N
material is exposed to a strong strain in the s(xt) - (t) h VG (x-Xi(Xit)) (16)
direction normal to the gradient, the value of g i-1
must increase by the same amount as the stretch in
the material element. This can be seen by
deriving an equation that governs g - IgI. To do where VGS(i) - (xy)/2wr2  K(r/6). Note that this
this, Eq. (11) must be expnded in terms of g n, formulation is fully compatible with the vortex
implementing kinematical rela~tons that describe method since all the information needed to compute
the variations of n - g/g, tht unit normal vector the scalar transport are already a part of the
to the iso-scalar line. After some lengthy vortex computations, including all the expressions
manipulations, we get: for the Green functions. For extended derivations

1 and discussions, see Ghoniem et al. [7,16].

dt 2 The effect of molecular diffusion can be
modeled by expanding the cores of the elements

where VUs is the symmetric part of the strain according to the following relation,

t nsor Vu and 1 is the unit vector normal to n. 82 (t+At) _ 62 (t) + 2 a at, where At is the time
Moreover, s - (ds/dn) n - (Gs/6n) n, where 6s is step and a is the molecular diffusivity. This
the variation of s across a small material line relation is obtained by direct substitution of Eq.
6n. The variation of a material vector element 61 (11) Into the diffusion equation. A limit should
can be shown to be governed by the same equation be imposed on the maximum allowable value of 6 to
as Eq. (12) with g replaced by 61. Thus, it maintain the spatial accuracy of the calculations.
follows that g/61 - constant along a particle Beyond 6max, an element should be subdivided into
path, and that the scalar gradient can be computed a number of smaller elements. Another scheme for
from the following relations: implementing the effect of diffusion without

N expanding the cores was proposed by Raviart [17).

g(xt) - z gi(t) h
2 f (z - Ji(Xi't)) (13) However, we bave not pursued this matter further.

i1I The transport element method was used to
where study the transport of species in a heterogeneous

63 61 (t) shear layer. Here, we do not have analytical

(t) t (14) solutions to verify the numerical accuracy as in
h 2 n1 (t) the case of the vorticity calculations. However,

one can use the condition of conservation of
where XI(Xi,t) is, as before, a particle path. species along particle path, ds/dt - 0, to check
Equation (13) is based on the expansion of g in on the consistency of the results. We found that,
terms of the core function f6 . All the comments provided that the field is accurately discretized
made before regarding the accuracy of such at the Initial step, this condition is satisfied
representation apply to Eq. (13). Since an iso- if the core radii of the elements are allowed to
scalar line is a material line in a non-diffusive decrease at the rate described in Section II, i.e.
field, 611 can be updated as: h2 /62  remains constant as the elements are

- (xi+,i-X-i)/2, wihile m 1 1 - 0. Thus, it deofrmed. This process guarantees that the scheme
can capture the large scalar gradient that arise

suffices to move the centers of the transport due to the strong deformations in the flow that
elements, while remembering the near neighbors at accompany the evolution of the instability without
t . 0, to compute the scalar flux. When an introducing a source of numerical diffusion. Note
element Is inserted between two neighboring that a minimum value must be imposed on the

smallest 6 to limit the number of computational
elements, the values of 81, are redistributed elements and to avoid dealing with the singularity

between the three elements and h2 and 62 are at 6 - 0.
adjusted so that the total material area is
conserved, while 6s1 is conserved. See Section II The computations of the mean concentration
for more detail on the refinement of the accuracy and the root mean square of the fluctuations of
as strong strain fields grow and the material concentrations were compared with experimental
lines becomes strongly curved, results for a two dimensional mixing layer.

Results were obtained for a range of Peclet number
between 1000 and 10000, i.e. intermediate to high,
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so that the dominant transport process was 1.2
convection. The effect of species diffusion wasP
incorporated to study mixing. Results show that
the resulys of teh numerical simulations agree - 1.9 e
closely with the experimental measurements in the P e 10
two dimensional shear layer. The effect of 7500
diffusion on the mean scalar distribution is very Z Pe T
small since the overall concentration field is P 5000

established by the convective currents, which are .e . 2500
called the entrainment currents. Due to t?-: roll- 105

up of the vorticity layer, fluid from both sides T
are engulfed into the large structure and, on the 0.4
average, mean values, between the two extremes,
can 1e encountered. 9.2 A

The root mean square of the fluctuations
exhibit stronger dependence on the Peclet number.
Its maximum value, 0.5, can only be achieved at 0.8
very high Peclet number, 0(5000 - 10000), where -9.19 ..95 9.19 9.15
strong unmixedness is present inside the cores of
the eddies. As the effect of molecular diffusion 1.9
increases, it homogenizes the core where the
fluctuation drops below 0.5. In this case, the P e -
profiles show an area of constant value of ggP -105

fluctuation. In all values of Peclet number which : 4
we have used, 0(100 - 10000), the fluctuations Z 9.7 Pe .10
never reached zero inside the cores, indicating . ' T500that the fluid did not reach complete homogeneity. 7
Another interesting feature of these mixing flows, 9.5 / e 5000
which has also been observed experimentally, is P
the presence of more high speed fluid than low 0.4
speed fluid inside the cores. Numerical results ( .
show that this "mixing asymmetry" is a direct * .
consequence of the unequal velocities across the 9.2
interface of the layer. See Fig. 8.9.

The transport element method was extended to .
reacting flow and, as briefly mentioned, to flows
with variable density, in Krishnan and Ghonien -0.19 -9.05 0.09 9.95 9.10 9.1L5
(18] and Ghonlem and Krishnan [L19, respectively. (Y-YI)/(X-Xo)

Figure 8. Average concentration, top, and R.M.S of
fluctuations for the mixing layer shown in Figs. 2
and 3. Solid lines are numerical results and open
symbols are experimental data. Pe is the Peclet
number. Boundary conditions at the inlet section
correspond to c - 0 in top stream and c - 1 in
bottom stream.
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V. COMPRESSIBLE VORTEX ,THODS

We now show how to extend the formulations is integrated. The vorticity of an element is

developed so far to compressible flow at high Mach updated each time step according to the value of
number. We present the derivation for an the source term in Eq. (20). This completes the

isentropic flow in two dimensions. The governing compressible vortex method. Numerical experiments
equations in this case are: are underway to evaluate the performance of this

scheme.
12 V- u- 0 (17)O t

Du 1Dt VP

Ds
t

where p and s are the pressure and entropy,

respectively. The equation of state can be
written as p - C(s) py, where C(s) is a known VI. CLOSURE
function of entropy and Y is the specific heat One important extension of this work is the
ratio application of vortex methods to internal, wall

To derive a compressible vortex scheme which bounded flows in which the growth of boundary

utilizesot developmes sevribed iSc twios layers along solid walls plays a dominant role inutilizes the developments described in Sections the dynamics of the flow. This extension has
III and V, the velocity is identically decomposed largely been based on the random vortex method in

into three components: (I) a solenoidal component which the effect of molecular viscosity is taken
into account by adding a Gaussian random component

to the x-y plane and * In a stream function to the convective motion of the vortex elements
(Chorn (21).) Extensive work has been done on

governed by the validation of the method (Ghoniem and Gagnon

component V4, where 4 is a velocity potential [22] and Sethian and Ghoniem [23)). showing that
- dlnp/dt; and (3) a potential solutions for steady, low 'Reynolds number flows,

governed by and unsteady, hgih Reynolds number flows converge

component V*p, governed by V
2
*p - 0. The total to appropriate limits as numerical parameters are

refines. In the first case, low Reynolds number
velocity is u tx$ + V + Vp. The three results were in close agreement with experimenatl
velocity components can be obtained In terms of measurements on velocity distributions within the
the known distributionL of v rticity, W(xt), flow. In the second case, results weree shown to
volumetric dilatation, dlnp/dt(x,t), and the converge to oscillatory flow that can be
boundary conditions, respectively, by utilizing characterized by a cluster og large scale

the Green function solution of the Poisson
equations governing the various components. Note

that the forcing functions can all be represented The random vortex method was also used to

in terms distributions of cores as before, study recirculating flows at high Reynolds numbers
we cast the momentum equation in a for (Najm and Ghoniem [24]). Of particular interest

Next, w al t the el uation a p re in these flows Is the frequency of vortex shedding
that will allow the evaluation of the pressure and how it depends on the geometry of the channel

distribution from the acceleration, Vp - - p and the inlet condition. Here, strong

du/dt. The acceleration can be computed from the ani the fow su re s roed
tim-deivaiveof heparicl veociyorganization of the flow structure was observed,

time-derivative of the particle velocity, a and frequency of shedding as well as mean velocity
(du/dt)X. The pressure can be obtained from the distribution were found in agreement with

Green function of the corresponding Poisson distributo ere fndg n
equation. The entropy transport equation experimental measurements.
indicates that s(j(X,t),t) - constant. Knowing
the pressure and the entropy, the density can be
computed from the equation of state: p -
(p/C(s))

11 /
, where for a perfect, gas C(s) -

exp(s/cv), and cv is the specific heat at constant
volume. ACUIOLEDEIT

The dilatation field Is the time derivative

of density along the particle path, which can be! coputd b nuerially diferetiaing theThis work is supported by the Air Force
computed by numerically differentiating the Office of Scientific Research Grant AFOSR 84-0356,

gradient, needed to evaluate the baroclinie term The National Science Foundation Grant CBT-8709465,

in the vorticity transport equation, is obtained and the Department of Energy Grant DE-FGO
1 -

using the transport element method applied to Eq. 87AL4'4875. Computer support is provided a grant
(ig). For this purpo se, the method developed in from the John von Neumeann Computer Center.

Section V can be used. Finally, the vorticity Results shown in the paper were obtained by
transport equation: doctoral candidates 0. Knio, A. Krishnan and G.

He idar inej ad.
d ( ) -! C Vsx~p (20)

dt o Yp2C(s) ds

..
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ABSTRACT

The interactions between the flow field and the combustion process in a
premixed shear layer are investigated using the results of numerical simulation.
The reaction is governed by a finite-rate Arrhenius kinetics, the flow is
compressible and at high Reynolds number, heat release is moderate and molecular
heat and mass diffusivities are finite. The thickness of the reaction zone and
that of the vorticity layer are approximately the same. Lagrangian simulations
are obtained using the vortex and transport element methods.

Results indicate that at the early stages, a reacting shear layer behaves
like a laminar flame. During the growth of the roll-up eddy, the rate of
burning is strongly enhanced by the entrainment fluxes that lead to the swelling
of the reaction zone, and the total rate of product formation can be
approximated by the unstrained laminar burning velocity times the flame length
measured along the line of maximum reaction rate. Following the burning of the
eddy core, the strain field along the eddy boundaries causes a noticeable
thinning of the reaction zone and reduces the rate of burning.

Baroclinic vorticity generation due to the acceleration of fluid elements
in the density gradient is the most important mechanism by which combustion
affects the flow field. It augments the overall volumetric entrainment into the
eddy core, and causes an entrainment asymmetry with a bias towards the products.
The generated vorticity extends the growth period of the eddy and imparts on it
an extra mean convective motion.



2

I. INTRODUCTION

Turbulent combustion is a closed-loop feedback system in which turbulence

augments the mixing process and exposes the reaction zone to stretch and

convolution, while combustion modifies the turbulent field through the effects

of heat release including volumetric expansion and baroclinic vorticity

production. These interactions, introduced to control the combustion process or

arising due to intrinsic flow and chemical instabilities, represent a complex

challenge to analysis and modeling. with an ever increasing need to boost the

power, to curb the emission and to improve the efficiency of combustion, it is

imperative that we improve our understanding of turbulent combustion.
1

As a model of turbulent combustion, we have been studying, using numerical

simulations, the fluid dynamics and chemical reaction in a premixed shear layer

(for experimental realization of this flow, see (21.) This field contains all

the elements composing the feedback loop: the mixing via large-scale entrainment

and small-scale diffusion, the strain field due to the roll-up of vorticity, the

convolution of the streamlines within the evolving eddies, and the generation of

strong density and pressure gradients. Numerical simulation offers a powerful

tool for probing this complicated flow field. The time-dependent evolution of

the spatially-resolved gas dynamic field can be obtained for a range of physical

parameters, and the results can then be analyzed to study the origin and

outcome of the interactions. Using Lagrangian methods, such as the vortex and

the transport element methods, 3,4 allows the study of high Reynolds and Peclet

numbers flows since numerical diffusion is small. Numerical simulations have

been conducted for a reacting shear layer with non-premixed reactants.
5'6'7

Numerical models utilizing the concepts of wrinkled laminar flames have

been used to study the interaction between a thin flame and the large scales of

turbulence8 . These models were based on the assumption that the laminar burning
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, - velocity was a constant, or a weak function of the flame geometry,I 0'I and

that the effect of combustion on the turbulent field was limited to the

volumetric expansion. However, analytical studies show that flow stretch may

play an important role in determining the laminar burning velocity.12

Moreover, recent numerical work confirms that baroclinic vorticity generation

plays an important role on the flame dynamics.
I1

In this article, we obtain and analyze numerical results for the evolution

of combustion in a perturbed, premixed shear layer. The flame structure,

governed by the chemical and diffusion parameters of the mixture, is described

by the appropriate conservation equations. The flame thickness and the flow

gradients are of the same order of magnitude. Thus, results are expected to

show strong interactions between the flow field and the combustion process. The

analysis of the results will attempt to relate the behavior of this "thick"

flame to the properties of a wrinkled flame model.

II. GOVERNING EQUATIONS

The model we use to investigate turbulence-combustion interactions is that

of a temporally-growing shear layer in which all the conditions are periodic

across the boundaries of the domain. The reactant, R, and product, P, have

concentrations cRo and cPo, velocities U1 and U2, and temperatures T1 and T2, in

the top and bottom streams, y 4 +- and y 4 --, respectively. We set U2= - Ul,

and T2= Tf, where Tf is the adiabatic flame temperature. The following

idealizations are used to simplify the analysis: (1) the flow is two-dimensional

and compressible; (2) chemistry is governed by a single-step, first-order,

Arrhenius reaction, R -4 P, and the rate of reaction is Af W, where W = cR exp(-

Ta/T); (3) the Mach number is small, and hence, the pressure is constant

(however, Vp * 0 in the momentum equation); (4) the reactant and product behave
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as perfect gases with equal molecular weights and specific heats; and (5) the

thermal and mass diffusivities are constants, but not necessarily equal, while

viscous effects are neglected. The equations governing a two-dimensional,

unsteady, unconfined reacting flow, written in non-dimensional form, are:
4

1 dT

d (1)

dt ( ; -3 Vp x Vp (2)

dT 1 2d T T + Af Q W (3)
e

ds 1 V2 s+ A W (4)
t -P L f

where the velocity is u = (u,v) = V + Vx* + u, d/dt - a/3t+u.V, x - (x,y)

while x and y are the streamwise and the cross-stream directions respectively, t

is time, * is a velocity potential, * = * ez is a stream function, where ez is

the unit vector normal to the x-y plane, u- Vx* = (8*/ay,-a*/ax), w ez - Vxu is

vorticity, V2 = -W(x,t), up is a potential velocity, V.u p7 0, added to satisfy

the boundary conditions around the domain, T is temperature, c is concentration

per unit mass, V and V2  are the gradient and Laplacian operators, respectively.

For the reactant s = cR and the source term is negative, while for the product s

= Cp and the source is positive. Ta= Ea/(RgT1 ), where Ea is the activation

energy and Rg is the gas constant, Q = Qh/(CpTI), where Qh- Cp(Tf-T1 ) is the

enthalpy of reaction and Cp is the specific heat, Pe= UISOt/ is the Peclet

number, where o = k/(pC p) is the thermal diffusivity, Af= A V/U, where A is

the frequency factor of the chemical reaction rate constant, and Lem o/D is the

Lewis number. Note that Vp = - p du/dt. Variables are non-dimensionalized with
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respect to the appropriate combination of AU/2, At/21 cRo, and T1, where AU =

(Ul-U2 ) and A is the vorticity thickness.

III. NUMERICAL METHODS

III.1. THE VORTEX ELEMENT METHOD

In this Lagrangian, grid-free scheme, the vorticity field is discretized

among finite elements, ri , that move along particle paths, xq(t), such that:

((x,t) = E ri f(x-Xi(t)). The vorticity of an element is distributed

according to a radially-symmetric core function, f,' with a characteristic

radius, 6, such that most of the vorticity is concentrated within r < 6, where

r2= x2+y2 . Vortex elements are distributed over the area where (wj > 0 such

that the distance between neighboring elements is h in the two principal

directions. A Gaussian core, f6(r) = i/(n 62) exp(-r 2/62 ), leads to a second-

order accuracy, and 6/h - 1.3 is sufficient to provide strong overlap between
3

neighboring elements. The equations describing the vortex scheme are:

dXi = u(Xi(t),t) (5)

N 2Y x )  K( ) 6
u (x,t) =- r i (y (6)i=1 r

where xi(O)=X i , and K(r) = Or r'f6(r')dr'.

Vortex elements move at the local velocity at their centers. As time

progresses, the distance between neighboring elements increases in the direction

of maximum strain rate such that AX > h, where AX is the distance in the

direction of maximum strain defined as Ax = (Au.AX)/IAuI and A is the difference

operator between neighboring elements. This leads to a deterioration of the

discretization accuracy since accurate discretization requires that 6 > AX.
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Thus, an algorithm must be used such that when 6X > hmax, where hm/h - 1.5, a

computational element is inserted at the midpoint between the original elements.

The circulation of the new element, and that of the original two neighboring

elements, is one third the sum of the circulations of the original two elements.

111.2. THE TRANSPORT ELEMENT METHOD

In this scheme, the gradient of the scalar field is discretized into a a

number of finite elements: g(x,t) - Z Agi(t) fS(x-Xi(t)), where g - Vs Like

vortex elements, transport elements are distributed where Igi > 0 and are moved

with the local velocity field. Scalar gradients are not conserved along

particle path, and should be modified according to the local straining and

tilting of the material elements. Moreover, the evolution of the chemical

reaction changes the local concentration of the interacting species. The

following equations describe the transport element scheme:
4

N
s(x,t) = E 6si(t) 61i(t) ni (t).VG 6(x-Xi(t)) (7)

i=1

62 82 + 4 t (8)
0

d k+l dW6si = z=I Ds - (s.) 6s (9)

where 6o is the core radius at t = 0, and VG= (x,y)/r2 K(r/6). Ds - ±Af for

C and cR, respectively, while Ds = Af Q for T. 61i is updated according to

61 i(t) = (X+ 1 (t)-xi(t))/2, while n.61 - 0. If the distance between

neighboring elements in the direction of principal strains exceeds R maximum

distance, hmax , an element is inserted half-way between the two elements and the

values of 61i and hi are redistributed among the three elements. Elements are

combined at areas of compression to curb the growth of their number.
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When VpxVp o 0, the circulation of each vortex element must be updated each

time step. Since r = E riK(x-Xi ) and, and Vp/p - - VT/T, then:

di ATi du
= T x (10)

(du/dt) i is computed by numerically differentiating the velocity of the vortex

element using a high-order formula. The velocity field produced by volumetric

expansion due to heat release is described by the solution of Eq. (1). Written

in terms of Lagrangian transport elements, this expansion velocity is:

N 1  dT 2
Wx't) = E T. (-) t)i VG (x-) (t)) (i

i=l i 1

where is the area associated with the transport element i. For detailed
1

derivation and validation of the transport element method, see [4] and [13].

IV. RESULTS

IV.A. THE GAS DYNAMIC FIELD

Results were obtained for following parameters: Af -0.5, Ta= 6.0, P e=

1000, L e= 1.0 and Q = 2.0. The choice of the physical parameters that describe

the combustion process was limited to cases for which the computer-time and

memory requirements could be met economically. Results will be used to study

the modes, and outcome of the interaction between the fluid flow and the

combustion process.

Figure 1 depicts the vortex elements and their velocity vectors for the

non-reacting eddy (NR) and the reacting eddy (R) at t - 10, 15 and 17.5. In

both cases, the initial perturbation is a sinewave with an amplitude c = 0.05 X,

where X = 6.6 A is the wavelength. The initial vorticity thickness corresponds

to the most unstable mode of the layer, while the flame thickness is that of a
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steady-state laminar flame as defined by the diffusion and chemical parameters

of the problem. Results show that the growth of the eddy can be divided into

three stages: (1) in the first stage, t < 5, the increase in the length of a

typical material layer and the entrainment is small; (2) in the second stage, 5

< t < 15, an eddy, which corresponds to a concentration of vorticity, forms and

grows by entraining fluid from both side into its core leading to the stretching

of the material lines; and (3) in the third stage, t > 15, entrainment ceases

and the eddy collapses, or flattens in the streamwise direction.

Compared with the non-reacting eddy, the reacting eddy expands due to heat

release, it moves in the direction of the reactant stream, it exhibits a

definite asymmetry, and it starts collapsing at later times. The expansion of

the eddy due to heat release occurs primarily in the second stage and within the

core, indicating that most of the burning occurs during this stage and inside

the eddy core. It is also observed that the reaction prolongs the growth phase,

ending at t = 15 in the reacting eddy vs. t = 12 in the non-reacting eddy, and

delays the start of the flattening phase suggesting that volumetric entrainment

is larger in the reacting eddy. The delayed collapse of of the reacting eddy

explains why the angle between the major axis of the eddy and the reactant

stream, assuming that the eddy can be represented by an ellipse, is smaller for

the non-reacting than for the reacting eddy. This phenomenon was first observed

experimentally.
2

Figure 1 shows that in the reacting eddy, volumetric entrainment is

strongly asymmetric with a bias towards the hot fluid. The gulf of hot fluid

reaches deeper into the eddy than the gulf of cold fluid. Moreover, they reach

deeper/shallower, respectively, than their counterparts in the non-reacting,

uniform-density case. To confirm this observation, we plot the temperature

contours for NR and for R, at t = 10, 15 and 17.5, in Fig. 2. The plots
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indicate that, while the penetration from both sides is symmetric in the non-

reacting eddy, more hot fluid than cold fluid has reached into the core of the

reacting eddy. Asymmetric entrainment has experimentally been observed in
14

density-stratified flows. It should be noted that the maximum reaction rate

occurs at T = 2.19 , decaying to 20 % of the maximum value at T - 1.15 and 2.92

respectively.

Figure 2 indicates that during the growth stage, 5 < t < 15, the flame

thickness, with respect to its value at t - 0, is thinner at the braids, the

side arms of the eddy, and is thicker in the core. The first is due to the

strong strain and the second is due to the enhanced entrainment, both associated

with the formation of a coherent vortex core. Flame thinning due to the strain

along the braids is moderate since the reduction of the flame thickness due to

the strain field is balanced by the increase in the flame thickness due to the

enhanced diffusion fluxes. Flame thickening is due to negative strain in the

vicinity of the center of the core and the strong entrainment currents which

accompany the roll-up.

IV.2. THE BURNING RATE

The total mass of products, Mp, formed since t - 0 is shown in Fig. 3.

The total flame length, Lf, approximated by the line of maximum reaction rate,

is depicted on the same plot. As a reference case, we also plot the total mass

of products formed due to the propagation of a laminar flame, of constant length

X, ,.:ich has the same initial conditions. For t < 4, the rate of product

formation, Ap = dMp/dt, is the same as that of a laminar flame and Lf is

constant. Within the growth range, and as Lf stretches due to roll-up, AP

increases. It is important to point out that the Lf-curve is used only to

characterize the stages of growth of the eddy and not to define a unique

relationship between Mp and Lf. The flame under investigation is a "thick"
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flame in which the flame thickness is of the same order of magnitude as the flow

gradients, and it is the area of the reaction zone (or its volume in a three-

dimensional sense) that determines the total rate of burning.

The rise in the burning rate during the second stage is due to the

swelling of the reaction zone within the core region and the formation of a

flame fold, or a gulf of reactant that penetrates into the burning core. Within

this stage, there is a burning core at the center of the eddy, formed by the

entrainment of reactants at the early stages of roll-up, surrounded by one flame

zone on the reactant side and two flame zones on the product side. The two

flame zones on the product side approach each other, trapping a gulf of

reactants in between. Figure 3 shows that, in the range of 5 < t < 10, Ap

exhibits a similar increase as in Lf, indicating that the average burning rate

per unit flame length, Sua , remains constant. Therefore, within this stage,

the total rate of burning can be approximated by the product of the laminar

burning velocity of the unstrained flame times the flame length measured along

the line of maximum reaction rate, Mp = Sua Lf. A wrinkled laminar flame model

may, thus, be used to approximate the rate of product formation during this

stage.

IV.3. THE EFFECT OF STRAIN

Beyond t = 10, Fig. 3 shows that Ap stays approximately constant while the

apparent flame length, measured along the line of maximum reaction rate, Lf,

continues to rise. In this stage, the major portion of the flame exists on the

outer boundaries of the eddy and is exposed to a strong strain field.

Comparison between streamline plots and the temperature contours, the latter is

depicted in Fig. 2, reveals that for t > 10, the flame is almost aligned with

the streamlines and that its thickness is smaller than its value at t - 0.

Moreover, due to the geometrical convolution of the streamlines and the



formation of cusps and islands, its difficult to rigorously define a flame

length, or to associate the flame length with the line of maximum reaction rate.

The temperature contours indicate that although the line of maximum reaction

rate is increasing, the area of the reaction zone, or the "thick" flame, may

not be increasing.

Without any extra entrainment of reactants, the flame becomes strained

along the boundaries of the eddy. The reason for the reduction of the flame

thickness is the presence of a strong strain along the flame front. This is

illustrated by Fig. 4, where the strain rate in the direction of the local

streamlines is plotted for t = 10, 15 and 17.5. The figure indicates that,

while during the growth stage, 5 < t < 10, most of the burning zone lies on

areas of negative strain, at the later stages, t > 10, most of the burning zone

coincides with areas of strong positive strain. Clearly, within this range,

neither the line of maximum reaction rate is representative of a flame length,

nor the laminar burning velocity is the same as the value for the unstrained

flame since the flame thickness has been reduced (see [15,161 for an

illuminating discussion on the effect of strain on the burning velocity). Thus,

a simple wrinkled laminar flame model may not be able to accurately describe the

combustion in this stage.

IV.3.BAROCLINIC GENERATION OF VORTICITY

The asymmetric growth of the reacting eddy is accompanied by its

displacement in the direction of the reactant stream and the asymmetric

volumetric entrainment of more hot fluid than cold fluid. Close inspection

reveals that the reacting eddy and the uniform-density, non-reacting eddy are

dynamically distinct in two ways: the volumetric expansion associated with heat

release which produces an irrotational velocity field expressed by Eq. (1); and

the presence of a stratified-density field which generates vorticity at a rate
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governed by Eq. (2). It is of interest to isolate the consequences of the two

effects.

For this purpose, numerical experiments were conducted for a reacting

shear layer in which the baroclinic term in Eq. (2) was set to zero, i.e.

d(w/p)/dt = 0. In this case, the developing eddy was perfectly symmetric around

its center and the eddy remained at the center of the domain; hence it was

concluded that the volumetric expansion cannot produce the action observed in

Figs. 1 and 2. On the other hand, numerical experiments were performed for a

density-stratified, non-reacting shear layer, i.e. V# - 0 and Af - 0. In this

case, the developing eddy strongly resembled the reacting eddy in Figs. lb and

2b (volumetric expansion in the reacting case slightly weakens the vorticity by

increasing the area of the eddy core). This confirwed the hypothesis that

baroclinic vorticity generation represents the most important dynamic role of

combustior in this field.

As seen from Eq. (2), fluid elements accelerating in a density gradient

generate vorticity whose sign depends on the orientation of Vp with respect to

(du/dt). In the flow field we are investigating, the density gradient is

initially positive and the initial vorticity is negative (clockwise). If the

wavelength is divided into four quarters, then negative vorticity is produced

along the second and third quarters since the acceleration is negative, and

positive vorticity is produced along the first and fourth quarters since the

acceleration is positive. This is shown in Fig. 6 which depicts the vorticity

contours for the uniform-density NR and for R at t = 10, 15 and 17.5. The plots

show that the extra negative vorticity gets entrained into the core of the eddy,

strengthening the "primary" eddy, while the positive vorticity generated on the

reactant side forms a secondary eddy. A stronger primary eddy entrains more

fluid, as indicated before. The secondary eddy produces a velocity field which



* 13

propels the primary eddy in the direction of the reactant stream, as seen in

Fig. 1. The positive secondary eddy on the reactant side reduces the

entrainment velocities into the primary eddy from this side, resulting in less

volumetric entrainment of the reactants than that of the products.

Thus, we have been able to correlate the two actions, the motion of the

primary eddy in the direction of the reactant stream and the asymmetric

entrainment, with the formation of a positive secondary eddy due to the

baroclinic vorticity generation. Both effects were observed experimentally in a

density-stratified flow.14 The numerical prediction of the convective velocity

of the primary eddy agrees well with the values measured experimentally.13 The

close agreement proves that baroclinic vorticity generation is indeed

responsible for this asymmetric dynamics, and validates the numerical results.

V. CONCLUSIONS

Numerical simulation, using the vortex and transport element methods, has

been used to study the interactions between the flow field and the combustion

process in a premixed shear layer. Results are obtained at conditions for which

the flame thickness and the flow gradients are of the same order of magnitude

and are analyzed to identify the interplay between the flame structure and the

flow fields. Major conclusions are:

1. Entrainment associated with the roll-up and the formation of an eddy leads to

the swelling of the core and the establishment of a thick reaction zone during

the growth period of the eddy. This enhances the rate of burning by the ratio

of the instantaneous length of the line of maximum reaction rate to the

unperturbed length of the material layer.

2. At later times, a major portion of the reaction zone exists on the boundary

of the core where the strain is positive. The convolution of the streamlines
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obscures the definition of the flame length, and the thinning of the reaction

zone locally reduces the laminar burning velocity below the unstrained value.

3. The wrinkled flame model, which states that Ap - Su  Lf, can be used to

approximate the burning rate during the initial growth phase of the eddy

provided that Lf is measured along the line of maximum reaction rate. During

the later stages, however, Sua is found to decrease if Lf is defined as before.

4. Baroclinic vorticity generation, associated with the interaction between the

hydrodynamic pressure gradient and density field, contributes strongly to the

dynamics of the shear layer. Stronger entrainment and entrainment asymmetry

have been attributed to the formation of vorticity of the same sign as the

original vorticity within the core, and vorticity of the opposite sign along the

boundary between the eddy and the reactants, respectively. Since entrainment

plays an important role in determining the rate of burning, baroclinicity must

also affect the rate of burning during roll-up.
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FIGURE CAPTION

Figure 1. Vortex elements and their velocity vectors for: (a) the non-reacting
eddy; and (b) the reacting eddy at t - 10, 15 and 17.5 .

Figure 2. Temperature contours for (a) the non-reacting eddy; and (b) the
reacting eddy at t - 10, 15 and 17.5. Minimum temperature, top contour, is 1
and maximum temperature, bottom contour, is 3, while increment between two
neighboring contours is 0.133.

Figure 3. Total product formation in: a reacting shear layer; and a laminar
flame at the same conditions. Shown also is the apparent flame length in the
reacting eddy (LF).

Figure 4. Contours of the strain rate in the direction of streamlines for the
reacting eddy at t - 10, 15 and 17.5. Increment between neighboring contours is
0.05.

Figure 5. Vorticity contours for: (a) a non-reacting shear layer; and (b) a
reacting shear layer at t = 10, 15 and 17.5. Solid lines indicate negative
vorticity and broken lines are for positive vorticity. Increment between two
neighboring contours is 0.06 for (a) and 0.12 for (b).
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ABSTRACT

The formation of streamwise vorticity is a as they reach "quasi-equilibrium" with the flow
precursor to self-turbulization and mixing (e.g., Corcos and Sherman [11], and Lin and Corcos

transition in shear flows. In this work, three- [123 and Ghonlem et al. [13]).
dimensional numerical simulation is used to study In shear flows, two types of structures,
the formation of streamwlse vorticity in turbulent depending on the orientation of the vorticity with

flows which can be characterized by well-defined respect to the main flow, have been identified:

initial concentrations of vorticity. Two examples spanwise (radial in axisymmetric flows) structures
are analyzed: an isolated finite-core vortex ring and streamwise structures. The former, which most
perturbed in the azimuthal direction, and a often precedes the latter, has been extensively

periodic shear layer simultaneously perturbed in investigated using the three methods of analysis.
its streamwise and spanwise directions. The It arises as a result of the Kelvin-Helmholtz
numerical scheme is based on the accurate instability of shear layers and grows to form

liscretization of the vorticity field into a spanwise coherent structures. These "fundamental"

number of finite-core, spherical vortex elements, structures pair to form larger structures as they
ind the transport of these elements along particle are perturbed by the "subharmonic modes" (Ho and

paths. Results show the innate tendency of Huerre [14].) Vortex rings issuing at the latter
vorticity, initially aligned in the direction stages of evolution of an axisymmetric jet, are
normal to the stream, to form coherent streamwise examples of these structures. The streamwise, or

structu-es which have alternating vorticity signs secondary structures, arise as the spanwise

in the spanwise direction. The formation of (azimuthal) perturbation of the two-dimensional
3treamwise vorticity follows the "maturation" of flow grows. Analyses of these structures have
the spanwise structure and the evolution of the been elaborated by, e.g., Pierrehumbert and
former is energized by the strain field of the Widnall [9] and Corcos and Lin [15].

latter. While the streamwise vorticity is Three-dimensional numerical simulations of
responsible for the added "turbulization" of the planar turbulent shear layers have been reported.

flow, leading to further mixing enhancement, it Couet and Leonard [16], using a vortex-in-cell
does not seen to lead to the disintegration of the method, computed the initial stages of development

two-dimensional structures, of a temporally-developing shear layer. Riley and
Metcalf [17,18], applying a pseudo-spectral
method, produced similar results. Ashurst and

Meiburg [19], utilizing the vortex filament method
1. INTRODUCrION of Leonard [20,21], computed the growth of

perturbations on a temporally-developing shear

Experimenti' studies of turbulent free shear layer using one or two rows of vortex elements to
flows, including shear layers, jets and isolated represent the vorticity layer. Lowery et al.

vortex rings, in non-reacting and reacting flows, [22], using a hybrid spectral-finite difference
h3 v r-,vealed the presence of structures which method, extended the calculations to a spatially-
form as a result of perturbing the initial flow growing shear layer. Inoue [23], applying the

(e.g., for plana" shear layers: Roshko [1], vortex filament method, reported results for a

Br-identhal '2], Bernal and Roshko E31; for jets: confined spatially-growing shear layer which
,row and hampagne [4], Yule [51 and Roquemore et starts with a single row of vortex elements.
al. F6]; and for vortex rings: '4axworthy [7]). Results of these calculations have been

Fliborate iinea- stability analyses have been instrumental in disecting the interesting physics
applied to investigate the various modes that of' turbulent shear layers. However, when using
contibute ta the formation of these structures grid-based methods [17,18,22] the Reynolds number

and thei" fjndam,'ntil origin (e.g., Michalke and must be kept at small values, and diffusion is
H""mnn ',, Perrhumh~rt and Widnall [g], and expected to play an important role in determining
4jdnall ani Tsai "1). !Numerical analysis, as the strength and dynamics of the growing

: p'ied t- noed I problems, has 1)-n used to streamwlse vortices. In Lagrangian schemes
,:ui-t th' non-lin~ar stages of d1velopment of [19,23], more elements should be used in the

thiso i t in it iti3, and to qucntify their state cross-stream direction to discretize the initial

vorticity accurately. Moreover, the developing

strain field, both normal to and in the direction

of the vortex lines, extends the distance between
neighboring vortex elements, which may deteriorate

-p g Q '8 by A.P. i Published by the long-time accuracy of the scheme (Ghoniem et
0 al. [24].) Thus, more work is needed to improve

of)r s A., ton uc and the accuracy and robustness of these schemes if
cwith perision, they are to be used in analyzing the late stages

3raduat" dt of development of high-Reynolds-number flow fields

c A33ro-iai- p-)f.,3,3or, an3ociat- f-I low, AIAA. that develop strong strains and sharp gradients.



In this work, we apply the vortex element expresses the decomposition of the velocity into a
method described in Ghonlem et al. [131 to study solenoidal and an irrotational component. The

the stability and formation of streamwise vortices first component, u , is obtained from the Biot-
in free shear flows. The method is based on the Savart integral, Eq. (3), If the vorticity field

accurate discr-tization of the vcrticity field is known. The second component, u , is added to
in' spherically-symmetric vortex vector elements p

whose cores are large enough to provide strong satisfy the potential boundary condition, i.e. if
overlap among neighboring elements. The motion of U = V$ then V2 0 and (V+u).n - U1, where n

the elements is followed in a Lagrangian frame of p rb b b

reference. The vortex vector elements change is the unit vector normal to the boundary and Ub

their vorticity according to the local stretch, is the velocity normal to the boundary.
while their direction is determined by the tilting The numerical solution starts by discretizing
of the material lines. The velocity is computed the initial vorticity field, w(X,O), on a grid,

as the summation over the fields of the vortex which may be non uniform, of sides (h ,h ,h ). At

elements, which are evaluated from the integral of x y z
the Bit-Savart law over individual vorticity the corners of the grid, vortex elements of finite

cores. Substantial overlap is maintained by the spherical cores are placed. Each vortex element
proper selection of the core radius of the vortex is characterized by a core radius, 6, a core

elements, and by increasing the number of vortex function, f (r) = 1/6
3
f(r/6) where r Ix-x' , a

el-,ments to capture the small scales which develop 6

lue to the strain field. circulation, ri, and a material vector element
In our previous article [133, the method was that describes how the vorticity is distributed

applied to study the instability of a thin-tube
mdel and torusdel el of a vortex ring. The along the axis of the element, At. The core
resu! s of both models were used to validate the function and core radius are the same for all

s1h1me- and oheck on its accuracy. The proper elements, and are invariant with time. The choice

strategy of initializing the strength of the of the f and 6/h is important for the accurate
vortex elements and of selecting the numerical 6 max

-arseters tn maintain the accuracy for long time liscretization of the vorticity field, and for

was ilso described. In this work, the vortex preserving the long time accuracy of the

e.nment method is used to study the evolution of computations. Similar schemes were used by Chorin

st'eamwise vorticity generated as a consequence of [25,26,271 to study boundary layer transition and
The linear instability of a vortex ring, and of a the evolution and properties of turbulence, by

plans" periodi: shear layer. We direct our Mosher [28] to study the interaction between
attention towards the processes which energize and vortex rings and by Shirayama et al. [291 to

p-mote the growth of the streamwise vorticity in compute the flow around aerodynamic bodies. For

botn fields, analysis of three-dimensional vortex schemes, see

:n Section 1I, summaries of the physical Beale and Majda [30,31,321, Greengard [331,
model and of th- numerical scheme are presented. Anderson and Greengard [34], and Beale [351.
in Section !I:, results on the early and late From Kelvin's theorem, the circulation of an

stages of instability of the field of a vortex element is constant as it moves along a particle
ring are discussed. In Section IV, similar path. Moreover, from Helmholtz theorem, vorticity
results are obtaned and analyzed for the periodic changes with the stretch of the material element

shear lay;or. In both cases, we concentrate on the At (t). Thus, the equations governing the

formation of streanwise vorticity and investigate discretized vorticity field can be written as:

its dyna-4cal properties. In Section V, we
i~cuss major ,onclusions. N

N(x,t) r At Ct) f6 (x-xi) (4)

II. FORMULATION AND NUMERICAL SCHEME 1 N (x-x1) x AL1  Ix-xji
The problem is formulated in terms of the U . r I - <(--) (5)

tnree-dimensional, insteady, incompressible, i1 ix-x 11
inviscid equations of motion. To use a numerical
vortex method, we resort to the vorticity Xi(t+At) = X.(t) + EAt Ui At (6)
transport form of the equations:

At I (t+Lt) = 1i (t) + EAt A i(t) • VU At (7)

U u U (2) where x1(0 ) = Xi, X i is the Lagrangian coordinate
P of a vortex element and XI is the particle path.

- * X' The in Eqs. (6) and (7) indicates a numerical,

ux-x' 3 single-step integration formula, and K(r) =

m Wrf(r')r'
l 

dr' . The value of i .VU I In Eq. (7)
wb',"e U = ',',w i3 h' velocity in the x 0

z . t~O~ is t w~, '7xu !s the is computed by numerically differentiating the
,and V is the velocity field along the vorticity vector.

As the flow develops strong strain along the

n - in '1) doscribes the vortex lines, the local vorticity intensifies and
n3oCt of ,'i'Lt ang porticl path and ito JA1il ' hma x . To maintain the resolution of the

..... .'t3t"'- 
'  

n its o-r di ection by th

sf t t -t n fie-1d. tquatinn (2) computations, elements experiencing severe stretch



must be split into two in the local direction of vorticity of the elements within a particular
the vorticity. For more detail on the vortex cross section. The ring core vorticity

element scheme, see Ghoniem et al. [13]. distribution is taken as third-order Gaussian, a

For the isolated vortex ring calculations, u being the standard deviation.
. FThe effect of the discretization parameters* 0. For the calculation of the periodic shea-

layer, periodicity is assumed in the streamwise on the accuracy of the simulation has extensively

and spanwise directions. The velocity field been investigated in Knio and Ghoniem [36]. In

produced by a periodic vorticity field can be the following, we present a brief summary of the

computed using a summation over an infinite series results. Three different meshes are used to

in two indices. Since the contribution of a discretize the vorticicy of the ring within its

vortex element to the velocity field decays at a core: a uniform radial mesh, a staggered radial

-2 mesh (in both the radial stations within the core

rate of 'x-x
-

, a cut-off radius can be used to have the same Lumber of elements), and an equi-

set a limit on the number of terms used from the spaced radial mesh in which the number of elements

series. Taking advantage of the smoothness of the increases as we move outwards to maintain the

2 distance between neighboring elements
solution of V s = 0 within the computational approximately the same. The mesh coordinates and
domain, more saving can be achieved by computing the core radius of the elements are varied to

the contribution of the series on a grid. The satisfy the following conditions: (a) the core

solution at an arbitrary location can then be radius, 6, should be large enough to provide
found by interpolation. overlap between neighboring elements; (b) the

order of magnitude of the vorticity of the

elements at different radial stations is the same;
III. RESULTS: ISOLATED VORTEX RING and (c) the total circulation of the vortex

elements equals the circulation of the ring.
III.1. INSTABILITY OF A VORTEX RING Tests for the discretization accuracy of the

The first flow field which we use to study vorticity field are performed for a ring with a/R

the mechanism of formation and the evolution of = 0.25 for the following cases: (1) a uniform mesh

streamwise vorticity is that of an isolated vortex with N = 9, 17, 25 and 33; (2) a staggered mesh
ring. The radius of the ring, where the vorticity r

reaches a maximum, is R, the core radius is u (a with Nr - 17, 25 and 33; and (3) an equi-spaced

can be chosen as a nominal radius where the mesh with N - 19 and 37. Results of the
vorticity reaches a well-defined fraction of its r

maximum), and the circulation of the ring is r. computations are shown in Table I for the nine

The vorticity of the ring is represented by cases. The normalized self-induced velocity is V

several vortex elements whose cores, 6, are - V/(r/4R). The accuracy of the discretization
smaller than that of the ring, 6 < a. The vortex
ring is thus modeled by a number of elementary, is measured in terms of: Ei

overlapping vortex rings arranged within its core. In light of these results, the

The motion of the vortex elements throughout the

cross section of the ring allows substantial following conclusions can be made:
deformation of its core at different radial (1) To satisfy the above conditions, (a)-(c), the

core radius of the vortex elements must decrease
higher-order radial modes at a slower rate than the separation between

associated with the instability of vortex rings elements. This is in agreement with the
are expected to be properly captured, convergence results of Beale and Majda [31,32];

The vorticity of the ring, initially in the (2) The computed values of the propagation
azimuthal direction, 9(X,O), is discretized among

h velocity, V = 3.387, and the total circulation of
the vortex elements by solving a linear system of the ring, r = 2.0, are within less than 0.5% for
equations formed by the application of Eq. (14) to all cases;

a three-dimensional radial mesh covering the ring (3) E decreases substantially when an equi-spaced

core. In this case, it is more convenient to use 1

cylindrical coordinates (p,9,z) where p is the mesh, which guarantees maximum overlap among

radial direction measured from the c-nter of the neighboring elements, is used.
ring, B is the azimuthal lirection and z is the To study the effect of the discretization

direction of propagation of the ring. Using Eq. parameters on the time-dependent solution, we
(4) to compute the strength of the vortex elements apply the method to investigate the evolution of

ensures that the numerical value of the vorticity the instability of the ring. Seven cases are

at the mesh corner , E rI Ali f (x-X i
)
, is equal to computed for a ring with a/R - 0.275, whose self-

that of the initial vorticity of the ring, induced velocity is V - 3.30. Vorticity

W(X 0). Note that the vorticity associated with discretization is performed using the uniform mesh
with N = 9, 17 and 33, the staggered mesh with N

an elementary vortex is w At /AV where AV r r
i i I I 17 and 25, and the equi-spaced mesh with N - 19

is the volume of the material element. r

"he mesh is constructed using N cross and 37. To start within the linear range of
c instability, the ring is perturbed in the radial

sectiors of the ring, separated by angle AR=2m/N direction by a number of sinewave3, n, around its

and N points within each cross section. Within axis. The amplitude of the wave is c/R - 0.02.
r

the core of the ring, the clements are arranged on In all cases, the unstable mode is found at n -

circles, starting with one element at the center 12, except for the case with N - 9 in which n*

of the core p = R, and separated by a radial r

distance Ar. The vorticity of the ring is assumed 10. Figure I shows the evolution of the amplitude

to b uniform in the azimuthal direction, and of the excited wavenumber for the seven cases.

hence, we only solve N equations for the The results are in close agreement, with the

r



-2.0 predictions of Widnall and Tsai [10], Widnall,

Bliss and Tsai [37], the experimental measurements
-2.5 SU,Si7 of Widnall and Sullivan [38] and our computed

-3.0 -,37results is shown in Fig. 3.

-3 .5 
" 19

J-U,33

-4.5

-5. -

-5.5 7-2.5
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0 20 40 0 80 100 -3.5
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Figure 1. Amplitude of the excited wavenumber, n -4.5

n* - 12, for a vortex ring with aIR - 0.275 using

a uniform mesh (U) with N r 9, 17 and 33, a -5.0

staggered mesh (S) with N 17 and 25, and an Sr -5.5S2
equi-spaced mesh (E) with N - 19 and 37.

r -8.9

0 20 40 60 so IO

TIME

exception of the first mesh with Nr = 9 which

shows a stable mode at this wavenumber. Results
on evolution of the instability for the seven Figure 2. The growth of the excited wavenumber, n

cases lead to the following conclusions: - n - 12, and its harmonic, n - 24, for the ring
(1) For accurate simulations using the vortex of Fig. 1 using a uniform mesh (U) with N r 17, a

method, overlap between the vortex elements must r

be maintained at all times. When this condition staggered mesh CS) with Nr  - 17 and 25, and an

is violated, convergence of the results may not be equl-spaced mesh (E) with N - 19 and 37.
achieved. We have reached the same conclusion r

before by analyzing the accuracy of the
discretization, and by analyzing the stability of

the thin tube approximation [131;
(2) At least two radial stations in the mesh are

needed to ensure accurate prediction of the
unstable mode in vortex rings. This is expected 14
since the instability observed here corresponds to
the second radial mode which should be properly
represented by the vorticity mesh. A single 12 x 1 0
radial station within the core is not sufficient +
for proper resolution of this mode; 10 a
(3) A sufficiently small time step, At, must be
used in Eqs. (6) and (7). a

Results indicate that the growth of the n 8 X + 0

unstable mode can excite its higher harmonics. x + a
The amplitudes of the exciting frequency and its 8 x + a

first harmonic, are plotted in Fig. 2 for the five
cases for which conditions (a)-(c) hold: the a

uniform mesh with N r 17, the staggered mesh with 4r

N = 17 and 215, and the equi-spaced mesh with N rr r 2 i

19 and 37. Note that the growth of the amplitude 2.0 2.5 3.0 3.5 4.0

of the unstable mode and its first harmonic are in
close agreement for the five cases. This confirms
our conclusions regarding the convergence of the V
simulation. ,

The unstable mode number, n , was computed
for two more rings: a/R - 0.325 and 0.375, with Figure 3. The computed unstable wavenumber (*)
corresponding normalized self-induced velocities plotted against the normalized velocity of

V - 3.13 and 2.98. For this purpose, the propagation V. The results are compared to the
vorticity was discretizel on a uniform mesh with analytical prediction of Widnall, Bliss and Tsai
two "a11 9 stations within the ring core and with [37] for a ring with constant vorticlty (c), a

N - 17. R',sults show th.- for the two rings, n* ring with fourth order vorticity distribution C.)
r and with the experimental results of Widnall and

10 and 9, -espectively. Comparison between the Sullivan [38] (x).
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TABLE I
SUMMARY OF DISCRETIZATION RESULTS

o/R = 0.25, f = 2.0

N r a Ar r V/25.13 E1 x100

UNIFORM MESH
9 0.67 0.630 2.01806 0.13572 6.646

17 0.56 0.397 2.01296 0.13567 7.697

25 0.52 0.300 2.00073 0.13599 6.988

33 0.50 0.240 2.01686 0.13563 6.877

STAGGERED MESH
17 0.56 0.397 2.0033 0.13518 7.252

25 0.55 0.300 2.0005 0.13370 4.340

33 0.50 0.245 1.9925 0.13447 4.190

EQUI-SPACED MESH
19 0.56 0.393 2.0093 0.13474 7.782
37 0.56 0.320 1.9941 0.13477 0.996

111.2. FORMATION OF STREAMWISE VORTICITY
To study the evolution of streamwise

vorticity on an isolated vortex ring, we plot

perspective views of a ring with a/R - 0.275 in
Fig. 4. The ring is initially perturbed at the

,
unstable mode, n - 12, and results are plotted at

t - 30, 60, 90 and 120. The perturbation grows in
both the radial and streamwlse directions causing

substantial non-uniform deformation around the
axis of the ring, and the generation of streamwise
vorticity. The amount of deformation can be
measured by the growth of the total number of
vortex elements used in the discretization of the

vorticity field. While this number stays constant

in all the stable cases, for n < n , it increases

as soon as the 4nstability grows beyond the linear
*

range for n = n . For this ring, the number of
elements grew from 2040 to 6396 for t = 0 to 140.

In the initial stages, and within the linear
range t < 20, waves do not rotate around the axis
of the ring, wnile thei, amplitudes grow
exponentially, as shown in Figs. 1 and 2. This is
in agreement with the numerical results of Ghoniem
et al. :13], and the analytical results of Widnall
and Tsai [10]. For t > 20, non-linear effects

grow, extending the outer part of each wave
radially outwards while tilting it in the

direction opposite to the direction of propagation
of the ring. The inner part of the wave moves
radially inwards while it is tilted in the
direction of propagation of the ring. For t > 90,
Fig. 4 shows that the vorticity of the ring is
redistributed around the azimuthal direction into

a numbe- of sectors equal to the number of waves.

The nuter part of each sector stretches opposite
to the direction of propagation of the ring, while
the inner part elongates forwards.

It is interesting to note that at the later

stages, t > 90, the core deformation is different
it lifferent radial locations and that the inner
and outer radii may not follow the same pattern. Figure 4. Perspective views of I vortex ring with
The figure indicates that the inner and outer O/R- 0.?75, excited at the linearly unstable mode,
edges of the vorticity core may move in anti-
phase, and that deformations at a scale smaller n = n = 12, depicted at t - 30, 60, 90 and 120,
than that of the perturbl ,7 wave are observed, and taken from the point of view of an observer
This siggsts that frequencies different than the standing ahead of the ring and looking at an angle
perturhatton frequency may be present at later of s . 600 with respect to the direction of
time5. Tn first harmonic was observed to grow in propagation. The ring is represented by all the
th non-linear range in Fig. 2. vortex tubes used in the computations, and it

propagates upwards.



The growth of streamwise vorticity, measured
by the value of f IwzI dA computed in the za-plane

where za is the average value of z within the

ring, is shown in Fig. 5. At t - 0, wz = 0 since

the initial vorticity of the ring, w., is

perturbed by moving the vortex elements in the

radial direction only. The growth of wz is

negligibly small within the linear range, rises
fast for 20 < t < 80, and tends to stabilize for t

> 80. The oscillation of the curve for later
times is an indication that parts of the core of
the vortex ring experience some rotation even
after the "maturation" of the azimuthal

instability.
Three perspective views of the vortex ring

are shown in Fig. 6 at t - 140. Vortex lines
elongate in the streamwise direction on the outer
radii of the ring, reaching a maximum extension

opposite to the direction of propagation of the
ring and then fold backwards towards the ring
centerline. On the other hand, vortex lines on

the inner radii of the ring stretch in the
direction of propagation of the ring, reaching a
maximum extension and then fold back and move
towards the ring center line. The mechanism of
vortex line folding maintains the ring coherent.

Figure 7 shows the streamwise vorticity

contours, w Z, at three sections in the direction

of propagation of the ring at t = 140. Within
each sector, the core of the vortex rings

experiences a displacement into and out of the
direction of propagation of the ring, resulting in
the formation of alternating signs of streamwise
vorticity. Note that the sections of the core

that move radially outwards produce streamwise
vorticity opposite to the direction of propagation

of the ring, and vice versa.
To complete the picture of the vorticity

distribution within a perturbed ring, we plot we

at four azimuthal sections within the ring core in
Fig. 8. The vorticity contours show clearly how
the core Moves forwards and backwards in the

direction of propagation of the ring as we move

along the ring axis.

14

12 a Figure 6. Three perspective views of the vortex

10 ring shown in Fig. 4 taken at t -140. -= 00, 600

and 900. The ring propagates upwards (and out of

00 the page.)0 o
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2 00
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Figure 5. Evolution of the streamwise vorticity

f w zJdA across the midsection of the ring, z - z

of the vortex ring shown in Fig. 4.
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IV. RESULTS: PERIODIC SHEAR LAYER direction, respectively. Figures 11 and 12 depict

the projection of the location of the vortex

IV.1. INSTABILITY OF A SHEAR LAYER elements on the x-z plane and the x-y plane,

The second flow field which we use to study respectively. In each figure, vortex elements

the formation of streamwise vorticity due to the which were initially aligned in the spanwise

evolution of a perturbation in a two-dimensional ai, ton are connected to show the axial stretch

flow is that of a periodically excited, planar of vordicity and the areas of deformation of the

shear layer. In this case, the initial state is vortex lines. Three-dimensional perspectives of

that of a vorticity layer with a finite thickness, the shear layer are shown in Fig. 13. The

measured by 20 where a is the standard deviation relative displacement of vortex elements show the

of the second-order Gaussian that describes the magnitude and direction of the local velocity.

vorticity distribution within the layer, and The figures indicate that the initial growth rate

finite streamwise velocity jump, AU. Initially, of the streamwise perturbation far exceeds that of

the spanwise vorticity, wy, is uniform in the the spanwise perturbation, leading to the
formation of a spanwise eddy, as in the strictly

streamwise x-direction, and spanwise y-direction. two-dimensional case.

Thus, w y(X,O) = AU/(Vir a) exp(-z 2/a 
2
) where z is

the cross-stream direction. The corresponding
velocity distribution is u(x,O) - AU/2 erf (y/o),
where erf is the error function. The layer is
perturbed by sinewaves in both the streamwise and

the spanwise directions. The wavelength of the
perturbation, X, in both directions corresponds to

the two-dimensional most unstable mode. The
amplitude of the perturbation is kept small, c -

0.02 X, to capture the linear stages of growth of "
both perturbations. The perturbation is applied M.-

by moving the vortex elements in the cross-stream -

direction according to the sinewaves.
We start by presenting a sample of results

for the two-dimensional case. In Fig. 9, we show
the location and velocity of all vortex elements

used in the computation of a strictly two-
dimensional shear layer, i.e. without allowing any

changes in the spanwise directions. At time t =

0, the vorticity is discretized among elements
distributed on a grid of 5 x 20 points in the z-

direction and the x-direction, respectively."V
Extensive analysis of this flow field has been . /f
documented in Ghoniem et al. [24], and will not be " / \\
repeated here. Results show the different stages
of development Of the layer: the linear stage, the

formation of a spanwise core, and the flattening,
or collapse of the core. The computed linear

growth of the perturbation,I d In I/dt - 0.215

where I flu(xt)-U(x)Idx, integrated over the

entire domain. The value predicted by the linear
theory is 0.22. Thus, the simulation is capable

of accurately capturing the growth of the
perturbation through the linear stages (an
accurate initialization of the strength of the
vortex elements is, however, very important for
predicting the growth rate of the instability).

In the non-linear phase, which starts as soon
as the central layer reaches a vertical position

accompanies the formation of a coherent core atarcon e the 6, ainstrongsplnar ran fireld ," - - _"-a. ,

the center of the wavelength of the perturbation. ' ,
The strain field is strongest at the center of the /
core, where vorticity is accumulating, and near
the boundaries of the domain, where vorticity is
pulled towards the center. In the meantime, the
structure of the vorticity field changes from a

uniform distribution into a concentrated region of
elliptical-like shape. The average diameter of

this structure is almost A/2, and the vorticity
distribution within the structure decays radially-

outwards away from its center, as shown by the
vorticity contours depicted in Fig. 10.

When the vorticity is perturbed in both the
streamwlse and spanwise directions, its growth

develops a three-dimensional flow. In this case, Figure 9. Location and velocity vector of the

the vorticity layer is discretized using a grid or vortex elements for the two-dimensional shear

5x20x25 elements In the z-, the x-, and the y- layer. t - 6, 12 and 18.

8
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Figure 10. Contours of' spanwise vorticity, w , f'or

the two-dimensional shear layer. t =6, 12 and
18. In this, and the following figures,
continuous/broken line indicate +ve/-ve vorticity,
respectively.

Figure 11. The location of' the vortex elements for
the three-dimensional shear layer projected on the
x-z plane. t =6, 12, 18, and 24J.

9
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Figure 12. The location of the vortex elements for the three-dimensional shear
layer projected on the x-y plane. t - 6, 12, 18 and 24.

Within the linear stage, the vorticity direction, the strain field created by the cores
remains aligned with the spanwise direction, as pulls the mid-section of the vortex lines inwards.
seen from Fig. 12. Vortex lines do not experience As depicted by Fig. 11, the vorticity withinany noticeable stretch, only some tilting as the the braids is continuously entrained into thematerial lines deform. The linear growth of the cores in the form of "hair-pin" vorticity lines,
streamwise component of the perturbation around both the top side and the bottom side ofsuppresses that of the spanwise component. Around the large eddy. In a strictly two-dimensional
t = 10.0, and with the inception of a strong flow, this process will deplete the braids ofspanwise eddy along the center of the domain, the their initial vorticity. However, as was observed
wiggles in the spanwise direction start to grow. experimentally, some streaks of streamwise
The rate of growth of these wiggles is highest vorticity can be detected between the spanwise
within the braids, where the strain field is eddies [2]. The formation of these streamwise
strongest, indicating that the presence of a voLex rods is not expected to affect the flow-trnnq strain field is necessary for the within the shear layer in a prominent way sincedevelopment of a streamwise component of vorticity the vorticity that remains in the braids at the
within the braids. later stages is a very small fraction of the

During the formation of the spanwise eddy, initial vorticity. However, it is still importantthe strain field is strongest near the center and in areas between the spanwise cores since it tendsthe boundaries of the domain. The vorticity to form, as will be shown next, zones of counter-
within the braids suffers the strongest stretch rotating vortex rods that characterize the braids.along its axis while the vorticity which is In the second stage, and while the eddy is
'IcJcumulating within the core remains, to a large reaching its maximum size by entraining vorticity
extent, aligned with the spanwise direction. The from the shear layer, the strain field acting onaxial stretch of the braid vorticity Is tied up to the spanwise core promotes the growth of the
the strain field produced by neighboring spanwise perturbation along its spanwise axis. The growth-ddies and the formation of stagnation points, or of the perturbation along the spanwise core can besaddle points, near the boundaries of the domain, first detected at t - 11 - 12, where the projected
While th" stagnation points act to anchor the lengths of the vortex lines on the x-z plane start
vortex linos at both ends in the spanwise to grow beyond their values at t - 0. Moreover,

10



Figure 13. A perspective view of the development of the three-dimensional layer,
shown in terms of all the vortex tubes used in the computations. t - 6, 12, 18
and 24.

Fig. 12 shows that, near the center of the plane, Between t - 10 - 18, and when the spanwise
wiggles start to grow non uniformly along the eddy exhibits most coherence, the wiggle spreads

spanwlse dire-tlon. It is interesting to point throughout the entire core. After the third
out that the growth of the wiggles inside the core stage, t > 18, and while the cross section of the
and within the braids is out of phase, core is slowly flattening, the vorticity

The vorticity within the core experiences approaches a state of semi-equilibrium. At this
most of its axial stretching during the second and stages, two modes of spanwise instability are

third stages of growth, i.e. for t > 10. During observed: the braid instability leading to the
the second stage, and while the core is reaching formation of the "hair-pin" vortices, or vortex
its maximum size, only those vortex lines that are rods which become lined up between the large
close to the axis gpt strained. With the spanwise cores, and the core instability which deforms the
straining of thp vortex lines within the core, its spanwise eddy in the spanwise direction.
spinning becomes slower than that of a strictly
two-dimensional flow. Beyond t . 14, and within
the third stage, the perturbation grows on more
vortex lines within the core, generating a
stronger streamwlse vorticity component. The
displacement of the vortex lines, originally
aligned with the spanwise direction, Into the
streamwise direction continues until the entire
vorticity core has been partly deformed.

ii



IV.2. FORMATION OF STREAMWISE VORTICITY
Figure 14 depicts the development of the

spanwise vorticity, w y, on an x-z plane at y

6.6. The figures show strong resemblance to the
vorticity field in the strictly two-dimensional

case, indicating that the growth of the spanwise
perturbations "-s not alter substantially the
two-dimensional underlying flow. The amplitude of
-he wiggle that grows along the spanwise eddy is
small with respect to the wavelength.

Figures 15 and 16 exhibit the evolution of
the streamwise vorticity, w x. in two y-z planes: x -

- 2.0 and x - 6.6. The first plane shows a cut

through the braids and the second plane shows a
cut through the core. The streamwise vorticity
distribution within the braids, as mentioned
before, results from the straining of the vortex
lines near the boundaries of the domain during the
roll-up of the core. Since most of the vorticity
within the braids is depleted during roll-up, wx

is relatively weak. There is a remarkable

similarity between these vorticity contours and
those produced by Lin and Corcos [12] using a
simplified model for the evolution of the
vorticity eddies within the braids. More detailed
comparisons will be presented in the future.

Figure 15 reveals that there is only one row
of streamwise eddies within the braids during
roll-up. Within one spanwise wavelength, the
layer forms two eddies of opposite signs. Thus, F
the sign of vorticity wi (iin the braids alternates
as we move in the spanwise direction, indicating
that this vorticity is actually the wi component

of the elongating vortex lines as they are

strained by the spanwise cores. At the early
stages, these large streamwise eddies possess
elliptical cores with their major axes aligned
with the spanwise direction. At later stages,
around t -20, the two eddies become more rounded
and somewhat more "compact". This is due to the
extreme elongation of the braids between two

neighboring spanwise eddies, leading to the
extension of a vortex line that may exceed the
perturbation wavelength. At the latest stages, t
- 24, the two eddies collapse to form two distinct
vortex rods separated by a distance less that X/2.

The st,eamwise vorticity contours, shown in
Fig. 16, indicate that, per wavelength in the
spanwise direction, there are six main eddies
arranged In two columns and three rows. The two

eddies on the top and the two eddies on the bottom
are extensions of the braid eddies; they have the
same signs and the same coordinates, but they have
twice the vorticity of the braid eddies when
intersected at x = 2. The vorticity distribution

can be explained by the inspection c ' the geometry
of the vortex tubes shown in the sketch in Fig.
17. This sketch was generated by examining the
geometry of individual vortex tubes and

identifying their contribution to the vorticity
field at several streamwise and spanwise cross-
sections. The sketch shows only the vortex tubes
which contribute to the vorticlty distribution in !
the x-6.6 plane. The six main eddies depicted in

Fig. 16 can be decomposed into ten elementary

eddies: eight eddies from the braids which Join to
form four cores at the central plane x -6.6 and
two eddies resulting from the streamwise
displacement of the spanwise core.

The two central eddies which appear in the Figure 14. Contours of the spanwise vorticity, wy,
vorticity contours on the x - 6.6 plane are the

Intersections of this plane with the spanwise shown in the x-z plane located at y - 6.6. t - 6,

12, 18 and 24.

12
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eddy. Clearly the spanwise eddy experiences . ,
bending along the spanwise direction which moves
the vortex lines forwards and backwards in thestreamwise direction. This is a manifestation of ( ,"the "translative" instability which was discovered 

.

in the work of Pierrehumbert and Widnall [9.
Figure 18 shows the streamwise vorticity contouro

plotted on three sections x v3.3, x = and x W
5.5, all computed at t = 2 . The streamwise
vorticity in the spanwise core appears between x ........

3.3 and 4.c, indicating the streamise extent ofthe core. Section x = 5.5 shows how two hair-pin _ ',,g

vortices Join to form the top and bottom eddies
hbserved at x = 6.6.

Figure 19 shows the distribution of thevelocity components in the y-z plane, v and w,

computed on a grid at the x 6.6 plane. The
presence of the spanwise vorticity, and its growth

with time, are clearly indicated by the diection

and magnitudes of the velocity vectors. The ore.
growth of the streamwise vorticity, measured by

Of i edA, computed at the x=6.6 plane, Is shown in y -,
Fig. 20. As sen in the computations of an .isolated vortex ring, , is very small during the- - -. . '

liea sags fdevelopment of the spanwise core.
It grows steadily with the formation of a strongstrain field due to the roll-up and the formation Figure 18. Contours of the streamwise vorticity,of spanwise cores, and approaches a stationary w , shown in y-z planes located at x - 3.3, I4.I
oscillating state during the flattening of the x

core in the last stage. and 5.5, all at t - 24.

14
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ABSTRACT

A three-dimensional vortex method based on the discretization of the
vorticity field into vortex vector elements of finite spherical cores is
constructed for the simulation of inviscid incompressible flow. The velocity
is obtained by summing the contribution of individual elements using the Biot-
Savart law desingularized according to the vorticity cores. Vortex elements
are transported in Lagrangian coordinates, and vorticity is redistributed,
when necessary, among larger number of elements arranged along its direction.
The accuracy and convergence of the method are investigated by comparing
numerical solutions to analytical results on the propagation and stability of
vortex rings. Accurate discretization of the initial vorticity field is shown
to be essential for the prediction of the linear growth of azimuthal
instability waves on vortex rings. The unstable mode frequency, growth rate
and shape are in agreement with analytical results. The late stages of
evolution of the instability show the generation of small scales in the form
of hair-pin vortex structures. The behavior of the turbulent vortex ring is
in good qualitative agreement with experimental data.
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I INTRODUCTION

The subject of this paper is the construction and validation of a

Lagrangian, grid-free vortex method for the simulation of three-dimensional,

unsteady, inviscid, incompressible flow. In these flows, as exemplified by

shear layers, jets and wakes, vorticity remains confined to a small fraction

of the total volume of the field while experiencing rapid and large

distortion. Kinematically, vorticity is transported along particle paths

while its magnitude is modified according to the strain field. Moreover, if

the vorticity field and boundary conditions are specified, the velocity field

can be computed by direct integration. Thus, a complete simulation scheme of

the flow can be built on the tracking of the vorticity field in Lagrangian

coordinates. These facts make vortex methods in which the vorticity field is

represented by a finite number of localized vortex elements particularly

attractive. Using these methods, accurate numerical simulation of complex

non-linear flows can be achieved at a limited computational effort.

In a three-dimensional flow, several forms of instability may arise

sequentially or simultaneously. As a result of these multiple instabilities,

rapid and strong distortions of the flow map and the vorticity field are

observed. The changes in the vorticity field can pose serious challenges to

computational methods that attempt to capture the late stages of development

using grids of fixed coordinates. Moreover, the changes in the vorticity

distribution are associated with the formation of length scales which are

smaller than those that existed at early times by the action of the strain

field in the direction of the vortex lines. This makes it necessary to employ

a scheme of local grid refinement as time progresses.

The desire to resolve small scale, streamwise structures in turbulent

shear flows constitutes the motivation behind the task of constructing three-

dimensional vortex methods. While the ultimate goal of this work is the
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development of numerical solutions of the Navier-Stokes equations at high

Reynolds number in complex geometry, we limit our attention in this paper to

the construction and validation of a vortex method for the solution of the

incompressible Euler equations in free space. The scheme is based on the

discretization of the vorticity field into a number of vortex vector elements

with finite point-symmetric cores, and following the motion of these elements

in Lagrangian coordinates. The vortex vector elements change their vorticity

according to the local stretch, while their direction is determined by the

tilting of the material lines. The velocity is computed by summing over the

fields of individual vortex elements which is evaluated from the

desingularized Biot-Savart integral.

The evolution of vortex rings in an inviscid flow is selected as a case

study for the validation of the proposed vortex method. The choice of this

problem was motivated by the following reason. There exist two different

linear stability theories, based on a non-deforming core model and a more

accurate deforming core model, indicating that a vortex ring is unstable to

azimuthal bending waves around its perimeter [1-4]. Experimental data which

support the results of the linear theory of the deforming core model are also

available [5-9]. Another attractive feature of vortex rings at high Reynolds

numbers lies in the fact that the finite-amplitude wave breaking of the

azimuthal instability does not lead to a substantial increase in the size of

the support of the vorticity field. Instead, the process leads to the

formation of a turbulized vortex ring, a ring of approximately the same

dimensions as the original ring but with a highly turbulent core [3]. The

volume over which computational elements should be distributed is thus not

expected to increase substantially under the action of the strain field.

Meanwhile, the growth of the number of computational elements, if necessary,

will be mainly due to vortex stretching.
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The paper is organized as follows. The formulation of the vortex method

is described in Section II. The study of propagation and stability of vortex

rings are tackled using two different physical models for their structure. In

Section III, we use the thin tube model in which the core of the ring is

assumed to be small and non-deformable. A more accurate model, where the

dynamics of the flow within the core of the physical vortex are properly taken

into account, is used in Section IV. Computations are performed for rings

with different core-to-radius ratios and results of both models are compared

to analytical expressions for the propagation velocity, to the predictions to

the linear theory of vortex ring instability, and to experimental data. The

simulations are then extended beyond the linear range of growth of the

azimuthal instability to study the formation of a turbulent vortex ring. In

Section V, we present conclusions regarding the convergence of the scheme and

a discussion of the properties of vortex rings.
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II FORMULATION AND NUMERICAL SCHEME

II.1. EQUATIONS OF MOTION

The motion of an incompressible, inviscid fluid is governed by the Euler

equations:

V • u- 0 (1)

au
- + u • Vu= -Vp (2)

expressing the conservation of mass and momentum, respectively. In these

equations, x - (x,y,z) is the position vector, u - (u,v,w) is the velocity, t

is time, V - (a/ax,a/ay,a/az) is the gradient operator and p is pressure.

variables are non-dimensionalized with respect to the appropriate combination

of a characteristic length, a characteristic velocity and the density. The

governing equations can be rewritten in terms of the vorticity w, defined as:

W = V x u (3)

by taking the curl of Eq. (2). Using Eq. (1) and the fact that, by

definition, the vorticity forms a solenoidal vector field, we obtain the

vorticity transport equation:

awT--- + u • VW - W • Vu (4)

Equation (4) indicates that the vorticity moves along a particle path

while it is being tilted and stretched with the evolving strain field, Vu.

This can be seen by comparing the vorticity transport equation with the

equation governing the evolution of a differential material element &X:

at6X + u • V 6X - 6X • Vu (5)

This comparison yields the well-known Helmholtz theorem.
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If the vorticity distribution is known, the velocity can be evaluated

from the integration of Eqs. (1) and (3). Based on the uniqueness of the

decomposition of a vector field, the velocity can be split into two components

as follows:

u - U + up (6)

where u. is a solenoidal field and up is an potential field. Furthermore, we

assume the existence of a vector stream function * satisfying:

u = v x (7)

By construction, uW satisfies the continuity equation since V.Vx* vanishes

identically. Substituting Eq. (6) into Eq. (3) and assuming that * itself is

divergence-free, we get:

V2 M -6) (8)

The solution of this equation is given by:

#(x) - I G(x-x') w(x') dx' (9)

where x' is the position of the volume element dx', and

1
G(x) - 4 (10)

is the Green function of the Poisson equation in three dimensions, where r -

jxi. As shown by Batchelor (101, the vector stream function * given by the

above expression is solenoidal, as previously assumed, if the boundaries of

the domain extend to infinity. Equation (6) states that the velocity can be

written as the sum of a rotational component induced by the vorticity field in

an unbounded space and a potential component required to satisfy the boundary

conditions. For an unbounded domain with no interior boundaries, up vanishes

identically.
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The velocity component u can be evaluated from Eqs. (7) and (9),

yielding the well-known Biot-Savart law:

u(x) - I K(x-x') x o(x') dx' (11)

where
1lx

K(x) - - - (12)
r

Next, we show how to use Eqs. (4), (5) and (11) to construct a vortex scheme.

11.2. NUMERICAL SCHEME

The construction of the numerical method starts with the discretization

of the initial vorticity field into a number of vortex vector elements, each

with vorticity wi , on a three-dimensional mesh. The support of the initial

vorticity is divided into volume elements dVi, i - 1, 2, .. , N, and the

vorticity is written as:

N
w(x,O) - E w.(0) dVi f (x-Xi) (13)

i=l

where Xi is the center of the volume element dVi, and *i is the vorticity

associated with the element i. The vorticity associated with each element is

smoothed in a small neighborhood of X. according to a spherical core function

f6 with a core radius S. The core function f6  is chosen to satisfy the

following conditions: (1) f f8(x) dx - 1 and f& converges to the Dirac delta

function 6(.) in the sense of distributions as 6 -+ 0; (2) the induced velocity

field away from the core is the same as that induced by a concentrated vortex

element, i.e., the core function decays at a fast rate; and (3) the velocity

field of a finite vortex element is non-singular at its center. Let:

f f( ) (14)8 V
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where f > 0 for r < 6 and vanishes rapidly for r > 8, so that 8 represents the

radius of the shpere where most of the vorticity is concentrated. Note that

if f6 was chosen to be the Dirac delta function, Eq. (13) would represent the

distribution of singular vortex elements. In what follows, a core function

will always be used and 6 will be taken as a positive number larger than the

distance between the centers of neighboring elements. The accuracy of the

discretization in Eq. (13) depends on: (1) the ratio 6/h, where h is the

distance between neighboring elements; (2) the choice of the core function,

f,; and (3) the scheme used to determine of the values of Wc.

From the analysis of the computational results, we found that best

accuracy is obtained for values of 6 larger than the distance between

neighboring elements. This last requirement, 6 > h, will ensure that the core

functions associated with neighboring elements are highly overlapping. This

condition has been widely used in the analysis of the convergence properties

of vortex algorithms [11-14J, and it has been enforced in two-dimensional

vortex simulations to improve the accuracy of the results [15,16]. In the

computations, this condition will be satisfied even when the use of cubic

volume elements is not practical. In this case, dV - hx hy hz, and 8 > h is

replaced by 6 > max h x,h y,h z.

The accuracy of the discretization also depends on the shape of the core

function f. The analysis of Beale and Majda [17] outlines a procedure that

describes the construction of core functions which satisfy the above

conditions and yield schemes of arbitrary high spatial order. In this work,

the third order Gaussian core function:

3 -r3f(r) - e (15)
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is used. This core function, which was proposed by Leonard [18], has been

shown to yield a second order discretization by Beale and Majda [17].

The accuracy of the computation also depends on the method used to find

Wi(0 ). Three methods have been proposed: (1) using a point measure of the

vorticity, wi(0) - w(Xi,0); (2) using an average of the vorticity, Ad.(0) dVi -

I w(X,O) dX; and (3) solving the system of linear equations resulting from the

application of Eq. (13) to the mesh points Xi, i - 1, 2, .. ., N. In the two-

dimensional version of the scheme, we found that the last algorithm yields the

most accurate results for the initial vorticity discretization and for the

initial development of the flow field. Thus, in the following computations,

we use the last scheme to distribute the initial vorticity among the vortex

elements.

Equation (13) remains unchanged if the quantity wi dVi is replaced by ri

where i - (X+l-Xi_l)/2 is a small material line segment in the

direction of the local vorticity vector at Xi and ri is the circulation. This

substitution becomes unambiguous if the centers of the vortex elements are

carefully chosen to lie on the vortex lines of the initial vorticity field so

that both ri and 6X. are well defined according to the initial vorticity

distribution, and if the index i increases incrementally in the direction of

w. In this representation, &Xi is associated with a material line segment and

ri remains constant along a particle path, in accordance with Kelvin's

theorem. As a consequence of the Helmholtz theorem, derived by comparing Eqs.

(3) and (4), the evolution of 6Xi, which will be denoted by xS(t) , can be

related to the vorticity wi can be related as follows:

co (0) I
i(t) 1 ( x(t) (16)Jasil
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Using Eq. (16), the vorticity distribution expressed by Eq. (13) evolves

according to:

N
w(x,t) = r ri  xi(t) fs(x-X1 (t)) (17)

i-i

In this expression, Xj(t) is the coordinate of the material particle initially

at Xi so that Xi(0) - Xi is the Lagrangian coordinate of this point, and

&Xi(0) - 6X.. A vortex element is thus described by (r,x,86x). The evolution

of the material line element, and the vortex vector element, 6)q is governed

by Eq. (5). Since )q is the position of a material particle and 6xq is the

material line, their evolution is governed, respectively, by:

dxi
Tt- . u(Xi(t),t) (18)

d6xi- oxi4 " Vu(xi(t),t) (19)

The solution of Eq. (4) is thus replaced by Eq. (17) and the solutions of Eqs.

(18) and (19).

The velocity field u in Eqs. (18) and (19) can be obtained by

substituting Eq. (17) into Eq. (11) and performing the integration. The

result of the integration, which represents a discrete desingularized version

of the Biot-Savart law, Eq. (11), is given by:

I N (x-xi) x axi ,(r(i
T- i- r i I x-xi3 ) (2)

where K(r) - 4n 0 Tr f(r') r'2 dr' and ri - Ix-XII. For the core function

given in Eq. (15), the corresponding expression of K is:



K(r) 1 - er 3  (21)

Using a first-order time integration of Eqs. (18) and (19), the vortex

element center, Xi, and the vortex vector, 6)q, can be approximated,

respectively, by:

xi(t+6t) - Xq(t) + u(xq(t),t) at (22)

and

6)x(t+At) - 6xi(t) + &Xi(t) • Vu(Xi(t),t) at (23)

The velocity gradient Vui can be evaluated analytically by differentiating the

velocity expression in Eq. (19), as proposed by Anderson and Greengard [19].

However, in order to reduce the computational effort, the following approach

is adopted. The velocity gradient along the vorticity vector can be

approximated by:

&x' VU(xi(t)1t) - u(Xi+l(t),t) - u(Xi-l(t)'t) (24)

2

Substituting Eq. (24) into Eq. (23) and using Eq. (22), we get,

Xi+ 1 ( t+at) - x_ 1(t+At) (25)
2

This approach explicity enforces the soleniodality of the vorticity field.

The vortex filament scheme of Leonard [18,20J and the vortex stick scheme of

Chorin [21-23J employ similar, but not identical devices to account for the

change of vorticity as material lines are strained. In our computations, a

second-order time integration is used to move the points X':
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)q- x(t) + u(xit) At

and (26)

u(Xt) + U (Xi,t)
X1(t+At) xi(t) + 2t

As mentioned before, this scheme implicitly enforces the connectivity of the

vortex lines. It, thus, ensures that the vorticity field remains solenoidal,

V-w- 0, irrespective of how accurate time integration or discretization of

the vorticity field are.

As the flow develops strong stretch along the vortex lines, the value of

6)q increases and the amount of vorticity carrie." by each vortex element

grows. To maintain a uniform resolution, a vortex element is split into two

elements each with 6x = 6Xi/2 and r = ri, whenever the magnitude of 16X1i

exceeds 2hmax . This amounts to redistributing the v'orticity field among a

larger number of elements to prevent the deterioratiin of the accuracy of the

discretization as the distance between neighboring elements increases due to

the strain field.

To study the accuracy and convergence of this scheme, we compute the

propagation and the linear stability of a vortex ring using two models: the

thin tube model and the vortex torus model. Results of each model are

compared with the corresponding linear theory of stability. We continue the

computations beyond the linear range to illustrate the dynamics of the

vorticity field at the later stages of development of the flow.
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III RESULTS FOR THE THIN TUBE MODEL

This is a simplified model of a vortex ring. In this model, the cross

section of the ring, with core radius a, is represented by one vortex element

with core radius 6 - a. This "thin tube" model, while resembling the thin

filament approximation proposed by Leonard [18], differs by the following. In

the filament approximation, the core maintains its vorticity distribution as

the filament is deformed. In the thin tube model, the relative motion of

neighboring elements can affect the local vorticity distribution within the

tube. Although this is not expected to cure the limitations of the thin

vortex ring approximation, especially in determining the stability behavior of

the vortex ring, we start with this case for its simplicity and computational

efficiency. The model is used as a test case to examine the effect of the

vortex element length, h, and the time step, At, on the accuracy of the

computations.

III.1. SELF-INDUCED VELOCITY

The physical ring, of radius R, is divided along its axis into N vortex

elements, each of length h = 6Xi = 2nR/N, i - 1, 2, .. ., N. To ensure

overlap between neighboring elements, we use & > h so that the vorticity

within the core can be accurately discretized by the vortex elements. The

vorticity distribution across the section of the ring, 2(X), is best

approximated by a second-order Gaussian distribution with a standard deviation

a. Equation (20) is used to evaluate the self-induced velocity, V, by summing

the contribution of the elements around the ring. Results are compared with

the analytical expression of Saffman [241 for a thin vortex ring: V-

ln(8R/a) - C, where V - 4nRv/r is the normalized velocity and C is a constant

which depends on the vorticity distribution within the core. For a second-

order Gaussian distribution C = 0.558 and a is the standard deviation of the

Gaussian curve.
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A comparison between the computed value of V, using different values of

N, and the analytical value is shown in Fig. 1 for a/R - 0.1, 0.2 and 0.3.

The results indicate that strong overlap between neighboring vortex elements,

6 - 2h, is necessary for the accurate prediction of V. It also shows that, as

the ring becomes thinner, more elements are required to achieve accurate

discretization, i.e. N grows as R/a increases. Therefore, for a fixed core

size, the number of elements required for accurate discretization grows with

the curvature of the ring. The computed self-induced ring velocities are in

good agreement with the values evaluated from the analytical expression for

thin rings, while they are somewhat higher for thick rings. This is expected

since the analytical expression was derived under the assumption that v/R <<

1.0.

111.2. STABILITY OF A THIN RING

A more interesting problem, which provides a test for the accuracy of the

time-dependent calculations, is the growth of small perturbations on the

vortex ring. There exists a rigorous linear theory for the stability of

vortex rings in two forms: (1) for a ring with a non-deformable core,

performed by Widnall and Sullivan [1]; and (2) a more elaborate theory where

the dynamics of the flow within the core and its deformation are taken into

account, reported in Widnall et al. [2], Widnall [25] and Widnall and Tsai

(3]. The results of the current thin tube model will be compared to the

predictions of the first analysis. In Section IV, the results of the vortex

torus calculations, in which a number of elements are used to represent the

ring cross section, will be compared with the theory of the deformable core.

To study the linear stability of thin rings using the thin tube model, a

radial perturbation, with amplitude c = 0.02R and wavenumber n, is imposed on

the axis of the vortex ring. The wavenumber is the number of waves that are

fitted along the entire length of the ring axis. The size of the perturbation
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varies in the azimuthal direction as 6p = c sin(ne), where p denotes the

radial direction in the plane of the ring and e is the azimuthal angle. At t

- 0, the ring lies in the x-y plane, the z-direction being the streamwise

direction, and the vortex elements are displaced so that p - R + Ap. We start

with n - 1 and increase the wavenumber by an increment of one. The time step

used is At - 0.10 and the selected value of circulation is r - 2.0. Results

are obtained for rings with a/R - 0.10, 0.15, 0.20 and 0.25, and are analyzed

in terms of the growth of the perturbation in the radial and streamwise

directions. In the following, only the case of a/R - 0.1 is discussed in

detail.

For n < nn, where nn is the wavenumber of the neutrally stable mode, the

ring spins around its unperturbed axis at a frequency Xr that depends on the

value of n. The motion described by any point on the ring, with respect to

the unperturbed axis of the ring, is that of an ellipse whose major axis is in

the radial direction and the minor axis is in the streamwise direction (if the

perturbed ring is opened to form a rectilinear vortex, it will resemble a

corkscrew spinning at a frequency Xr and, hence, these bending waves are also

called helical waves). The sense of rotation of the ring is the same as that

of the ring vorticity. The frequency of rotation, Xr, starts low at small n,

grows to a maximum and then decreases again as n moves towards nn. The

amplitudes in the p-direction and z-direction are shown in Fig. 2 for n - 2,

5, 8 and 12. The figure shows that the radial perturbation produces a

streamwise perturbation of almost the same magnitude. These modes are

characterized as being linearly stable since their amplitudes remain bounded.

At n - nn, the wave neither grows nor rotates. For aiR - 0.1, and nn -

13 the ring remains in its original plane without bending, as depicted in Fig.

3. For the next mode, n - 14, the wave grows in the radial direction and

then in the streamwise direction so that the total amplitude grows
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exponentially in time, i.e., the ring becomes linearly unstable, as shown in

Fig. 4. Moreover, wave rotation is not observed. At higher values of n, n >

n , the ring is stabilized again and the eigenfunctions behave in a similar

way to those corresponding to n < nn, with the exception that thre major axis

of the ellipse is now in the streamwise direction and the sense of rotation of

the wave is reversed. The wave amplitudes in the p and z-directions are shown

in Fig. 5 for n - 15 and 19.

Similar observations are made for rings with a/R - 0.15, 0.20 and 0.25.
*

In all cases, the unstable mode n is a bifurcation in the eigenfunction that

corresponds to Xr = 0. In Fig. 6, Xr normalized with respect to F/R 2 , is

plotted against the non-dimensional wavenumber defined as k - no/R. The
* *

unstable mode k n a/R - 1.25 corresponds to a non-rotating mode, Xr - 0,

for all the values of a/R. This is in agreement with the analytical results

of Widnall and Sullivan [1] for the stability of rings with non-deformable

cores. They observed that a mode becomes unstable when the self-induced

rotation of the wave balances the rotation induced by the ring, and the energy

of the perturbation is expent in stretching the wave amplitude.

In order to check on the accuracy of the computations, we varied the

discretization parameter h by using more elements around the ring axis.

Figure 7 shows the growth of the amplitude of the perturbation ap = / 2+az2,

computed using an increasing number of elements for the unstable mode of a

ring with v/R - 0.2, n - 7. Although N - 30 is the smallest number of

elements required to satisfy the condition 6 > h, we notice that N - 90 is

necessary to compute the growth rate accurately. This is the same number of

elements required for the accurate prediction of the self-induced velocity of

the unperturbed ring, V - 3.1309, as seen in Fig. 2. Using this value of N

was also necessary for the discrete vorticity field, 2(X), to become

independent of N. This is not surprising since the stability of the wave
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depends strongly on the velocity and strain field induced by the ring on the

perturbation. The growth rate x, defined as a - d(log a p)/dt, is computed

from Fig. 7 as 0.162. The analytical value of ox for the same value of V is

ax- 0.157 [1].

The effect of the time step, at, on the computed results is studied in a

similar way. Figure 8 shows the growth of the wave amplitude for q/R - 0.2,

using N - 100, employing decreasing values of at. For At < 1.0, the

computations are almosty insensitive to the choice of at. Results diverge for

At > 1.0, showing an accelerated growth of the perturbation accompanied with a

high rate of stretch along the ring. For the other cases of a/R, the

computations were repeated using at - 0.05 but yielded no appreciable change

in the results. In the following computations, we use at - 0.10 for rings

having the same value of circulation.

In Fig. 9, we plot the critical wave number n against the self-induced

velocity V, used to characterize the ring, for the four cases of q/R. We have

reproduced on the same figure the analytical results of Widnall and Sullivan

[1] for the non-deformable core model, and their experimental results. The

results agree well with the results of the stability theory of vortex rings

with non-deformable cores. The model, as expected, is unable to describe the

stability characteristics of a vortex ring with a deformable core. The

computed results are, however, closer to the experimental data than those

obtained by the long wave stability analysis. This seems to support earlier

speculation that the use of vortex elements allows small first order

deformation in the vorticity core of the ring which causes the computed

results to behave slightly better than those of the corresponding linear

theory.

111.3. SHAPE OF INSTABILIY
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The growth of the perturbation is now examined by observing the

deformation it develops along the vortex ring, i.e. the eigenfunction of the

instability. Figure 10 depicts two views of the vortex elements, connected

along the direction of vorticity, for a ring with q/R - 0.25, at t - 140, 180,

210 and 230. The ring is initially perturbed at n* - 6 with c/R - 0.02.

According to the results, the evolution of the instability can be divided into

three stages. In the linear stage, t < 140, the perturbation grows as a

standing wave, as predicted by the linear theory and verified by the analysis

of the numerical results in the previous section. The growth of the number of

vortex elements, and concomitantly the vorticity, is negligibly small.

In the non-linear stage, 140 < t < 190, the amplitude of the instability

continues to grow, but the condition of zero rotation is no longer satisfied.

Due to this growth, the peaks of the waves extend radially outwards, while

they are stretching in the direction opposite to the direction of propagation

of the ring. The peaks suffer a strong stretch that sends them away from the

original axis of the ring, generating counter-rotating vortex rods, or hairpin

vortices. In the meantime, the valleys of the wave rotate slowly, forming

flat connections between neighboring hairpins.

At the later stages, t > 190, violent stretching of the hairpin vortices,

with an exponential growth of the total arclength of the ring, is observed.

However, the outward-reaching, inverted U-shaped vortices, the hairpin

vortices, do not continue to move outwards. Instead, they fold backwards,

stretching towards the original axis of the ring. In the meantime, the number

of elements used to discretize the ring continues to increase, growing from N

- 90 at t = 0 to N - 802 at t = 230. This catastrophic growth of the number

of elements forced us to stop the computations at this time. Similar

exponential growth of vorticity has been observed before in models that employ

thin filament approximations of vorticity structures, e.g., [26,271.
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As has been shown before, the thin tube model does not allow enough

changes within the core of vorticity to capture higher order radial bending

modes that support the short wave instability observed experimentally. To

overcome this limitation, a more detailed description of the ring in which the

core vorticity is discretized into a number of vortex elements with 6 < a, is

used in Section IV. We call this model the vortex torus.
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IV RESULTS FOR THE VORTEX TORUS

This is a more elaborate model of a vortex ring. The terminology is

motivated by the way the physical ring is discretized. The core of the vortex

ring is represented by several vortex elements whose cores are smaller than

that of the enclosing torus, 6 < a. The vortex ring is thus modeled by a

number of thin vortex tubes arranged within its core, forming a vortex torus.

Note that we still call the physical object a ring, while the model is

labelled as torus. The motion of the elements throughout the cross section of

the torus allows substantial deformation of its core at different radial and

azimuthal stations. Therefore, higher-order radial modes associated with the

instability of vortex rings, as observed in the linear stability analysis, are

expected to be properly simulated. The larger the number of elements arranged

in the radial direction within the torus core, the higher the order of the

radial instability which can be captured by the simulations.

IV.A. DISCRETIZATION OF THE VORTICITY CORE

The initial vorticity of the vortex elements, wi(O), is computed by

solving a linear system of equations formed by applying Eq. (17) to a three-

dimensional radial mesh within the torus. The centers of the vortex elements

are located at the centers of the mesh cells, and the left hand side of Eq.

(17) is set equal to the total vorticity of the vortex ring at the center of

the vortex element. This ensures that the numerical value of the vorticity at

the mesh center is equal to that of the initial vorticity of the ring. The

mesh is constructed using Nc cross sections of the torus separated by an angle

60 - 2n/Nc, and Nr points within each cross section. The elements within each

cross section of the ring are arranged on Ns radial locations. Initially, the

vorticity of the ring, 99' is aligned with the azimuthal 0-direction and is

independent of e. The coordinate system which is used to describe the ring is

shown in Fig. lla. Thus, Nr equations are solved for the initial vorticity of
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the elements within a particular cross section. The initial vorticity within

the core of the ring is taken as as third-order Gaussian distribution:

1 r 3

2O(r) = ---2 exp(- a ) e8  (27)

where ee is the unit vector along the unperturbed ring axis, r is measured

from the center of the vorticity core, as shown in Fig. lla, a - n/3 y(2/3), a

is the standard deviation of the Gaussian and y denotes the Ganma function.

The constant a is chosen so that the normalized circulation of the vortex ring

is 2, and 2 e is positive so that the ring moves in the positive z-direction in

a right-handed reference frame.

Three different meshes are used to discretize the vorticity of the ring,

as shown in Fig. llb. Mesh I is a uniform radial mesh; mesh II is a staggered

radial mesh; and mesh III is an equi-spaced radial mesh. In meshes I and I,

all the radial stations within the core have the same number of elements. In

mesh I, the elements are aligned on radial rays, while in mesh II, they are

radially staggered. In both cases, the radial distance between neighboring

elements increases as we move outwards. In mesh III, the number of elements

increases as we move outwards to maintain the radial distance between

neighboring elements approximately the same. In all cases, the number of

elements in the 9-direction for each radial location, Nc, was chosen such that

the self-induced velocity of individual thin tubes were accurately predicted

according to the analysis in the previous section.

Many choices of the mesh and of the core of the vortex elements would

satisfy Eq. (13). The locations of the centers of the vortex elements, and

the core radius of the elements, 6, are chosen to satisfy the following

conditions: (a) the element core radius should be large enough to ensure

overlap between neighboring elements; and (b) the order of magnitude of the
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vorticity of the elements at different radial stations is the same to optimize

the utilization of the elements; and (c) the total circulation of the elements

is as close as possible to the circulation of the ring. When it was not

possible to satisfy the three conditions simultaneously, a compromise which

favored the enforcement of condition (c) was used.

Tests for the accuracy of the discretization of the vorticity field were

performed for a ring with a/R - 0.275 for the following cases: (1) mesh I with

Nr - 9, 17, 25 and 33; (2) mesh II with N - 17, 25 and 33; and (3) mesh III

with Nr = 19, 37 and 61, all shown in Fig. lb. The results of the

computations are summarized in Table I. The accuracy of the discretization is

measured in terms of: (1) the deviation of the computed value of r from the

intended value of 2; (2) the predicted value of the self-induced velocity; (3)

the error in the vorticity field E1 = 1/1 JAI9e(r) - wo(r,O)IdA, where A is

the cross-sectional area of the vortex torus; and (4) the predicted most

unstable mode n . In light of the results of the first three quantities, the

following observations can be made:

(1) To satisfy the conditions for accurate discretization, the core

radius of the vortex elements, 6, must decrease at a slower rate than the

separation between elements, h. In each case, the results show that &

decreased slightly while the number of elements was doubled. This is in

agreement with the convergence results of Beale and Majda [12,13];

(2) The computed values of the self-propagation velocity, V, are within

less than 0.5% variation for all cases. This is despite the larger error

in the vorticity discretization, E1. A similar trend is shown in the

values of r. The fact that both V and r are integrals, or averages, of

the vorticity field explains why the error diminishes.

(3) E 1 decreases substantially when an equi-distance mesh, which

guarantees the maximum overlap among the vortex elements at the outer
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radial stations, is used. Note that when using mesh I with Nr - 25 and

33 and mesh II with Nr - 33, it was not possible to satisfy condition (a)

at the outermost radial location of the elements, which resulted in a

non-diminishing E1. Using almost the same number of elements in mesh III

resulted in an order of magnitude drop in the error.

IV.2. STABILITY OF A VORTEX TORUS

To investigate the effects of the discretization parameters on the

evolution of the instability of the ring, the torus with q/R - 0.275 was

initially perturbed by fitting n sinewaves with an amplitude e/R - 0.02 along

the perimeter. The number of cross sections along the 0-direction was chosen

so that at least 10 elements were used to fit a single sinewave. The

integration time step bt - 0.10, and the computations were carried for 1000

time steps. To obtain an accurate measure for the evolution of the

perturbation around the toruz, the computed energy spectrum of the ring was

examined. The energy spectrum was evaluated by computing the discrete Fourier

transform of the energy calculated at 200 points evenly distributed along a

circle of radius p = R, located at z - Za, za being the average streamwise

location of the vortex elements. In the following section, we will

investigate the growth of the perturbation in the physical plane.

Figure 12 shows the evolution of the amplitude of the excited wavenumbers

n = 7, 8, 9, 10, 11 and 12 using mesh I with Ns M 1 and Nr = 9. At n - 7 and

8, the amplitudes oscillate without growth, indicating that the ring is stable

to these waves. For n - 9 and 10, the amplitudes grow exponentially at the

early stages, t < 30, and continue to grow at a more moderate rate at later

times. The rate of growth is higher for n - 10, indicating that this is the
* *

fastest growing mode n For n > n , the amplitudes of the waves oscillate

and a stable behavior is observed. The computations were repeated using mesh

I with Ns = 2 and Nr = 17, and the results are plotted in Fig. 13 showing the
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evolution of the amplitudes of the waves n = 9, 10, 11, 12 and 13. These

results show that 10 > n < 13 are stable waves, while n - 11 and 12 are

unstable waves. Here, n - 12 corresponds to the most unstable perturbation.

By repeating the computations for Nr - 25 and 33 using mesh I, we

confirmed that n - 12. As shown in Table I, the same value for the most

unstable wavenumber was obtained using mesh II with Nr - 17 and 25, and using

mesh III with Nr - 19 and 37. A more detailed account of the results of these

computations is shown in Fig. 14. These results indicate that mesh I with Nr

- 9 did not provide enough resolution to capture the correct unstable mode.

More careful inspection of Fig. 14 reveals that while the early behavior of

the results of mesh I with Nr = 25 and 33 agree with those obtained using the

other discretization parameters at early time, they diverge at later times.

Comparison of the evolution of the instability, when computed using the

eight discretization meshes, reveal the following:

(1) At least two radial locations within the core are needed to ensure

accurate prediction of the unstable mode in vortex rings. When we used

mesh I with Ns - 1, the resolution of the vorticity field could not

capture the correct wavenumber of the unstable mode. This is expected

since the instability observed here, according to ui~e results of the

linear theory, corresponds to the second radial mode which should be

properly represented. A single radial station within the core is not

sufficient for proper resolution of this mode. Note that using more than

two locations did not affect the value of n*.

(2) For accurate simulations using the vortex method, overlap between the

elements must be maintained at all times. When this condition is not

observed, convergence of the results may not be achieved. Note that the

loss of overlap is responsible for large error in the estimate of the
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initial amplitude of the perturbation for mesh I with Nr - 25 and 33, as

seen from Fig. 14.

(3) The prediction of the unstable mode and the evolution of the

instability are independent of the initial location and number of vortex

elements when: (a) overlap between neighboring elements is ensured, (b)

at least two radial stations within the core are present and (c) a

sufficiently small time step At is used.

These conclusions were further confirmed by inspecting the long time

energy spectrum for the five cases for which conditions (a)-(c) hold, mesh I

with Nr = 17 , mesh II with Nr = 17 and 25, and mesh III with Nr -1 9 and 37.

Figure 15 shows the behavior of the unstable wavenumber, n - 12, and its

first harmonic, n - 2 , for the five cases. The response of the unstable mode

and that of its harmonic are in close agreement for the five cases. For cases

where overlap was not maintained, the generation of the first harmonic was not

observed.

To derive the relationship between V and n , the computations were

repeated for rings with a/R - 0.325, 0.375 and 0.45. The corresponding self-

induced velocity was V - 3.13, 2.98 and 2.79. The tori were discretized on

mesh I using Nr = 9 and 17, and were perturbed as for the q/R - 0.275 case.

Results are summarized in Table II, and plotted on Fig. 16. These results

indicate that the relationship between the unstable wavenumber and normalized

self-induced velocity derived by using a single radial station within the core

is not accurate. The computed results obtained by using two or more radial

stations are in excellent agreement with the results of the linear theory, and

in very good agreement with experimental data. It is interesting to note that

using two radial locations for vorticity discretization, we find two amplified

wavenumbers. This indicates that the ring is unstable to a narrow frequency

band and that, in reality, both modes may grow simultaneously [3].
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IV.3. SHAPE OF INSTABILITY

The shape of a vortex ring undergoing deformation due to the growth of

azimuthal instability is now analyzed using the results of numerical

simulation based on the vortex torus model. We study the evolution of a ring

perturbed at the most unstable wavenumber and compare the results with

observations made by the linear stability theory, starting with analysis of

the evolution of the flow field of a ring perturbed at a stable wavenumber.

Figure 17 depicts two views of the vortex torus with v/R - 0.275 when

perturbed by a stable wavenumber n - 9, at time t - 10, 40, 70, 100, computed

using mesh II with Nr= 17. These views are generated by projecting the lines

connecting the vortex elements initially aligned along vortex lines on the

planes normal and parallel to the direction of propagation of the ring. The

figure shows that the vorticity core experiences a mild deformation due to the

motion of individual vortex elements around the original axis of the torus.

However, the amplitude of the perturbation remains bounded while the waves

rotate around the axis of the ring, as seen by the exchange of peaks and

valleys at the same azimuthal location around the ring. The frequency of

rotation of the waves is the same as that predicted by the curve in Fig. 13.

The number of vortex elements used to discretize the vorticity field of the

ring remains constant during the entire run, N - 2040, indicating that the

corresponding vorticity stretch is negligibly small.

Figure 18 shows perspective views of the same vortex torus when perturbed

at the most unstable wavenumber, n = 12, depicted at time t - 30, 60, 90,

120. During the initial stages, and within the linear range of the

instability, the waves do not rotate around the axis on the ring while their

amplitudes grow at an exponential rate. The growth of the perturbation as

standing waves has been predicted by the linear stability theory. The

perturbation grows in the radial and streamwise directions causing substantial
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non uniform deformation around the ring. At t > 30, while the rate of growth

subsides due to the onset of non-linear dynamics, the deformation of the ring

continues to reshape the vorticity structure. The figure shows that the outer

sections of the standing waves continue to extend radially outwards while they

are being tilted in the direction opposite to the direction of propagation of

the ring. On the other hand, the inner parts of the waves extend inwards

towards the center of the ring while they are being tilted opposite to the

direction of propagation of the ring. During this stage, the entire cross

section of the core moves almost in phase. This process leads to a

redistribution of the ring vorticity into a number of sectors equal to the

number of waves.

At later stages, t > 90, the core experiences more deformation due to the

motion of different radial locations at different speeds. The figure shows

that the inner and outer radii of the ring move in anti-phase, leading to

deformations at scales smaller than the scale of the initial perturbation.

The formation of small scales can be examined by looking at the long time

energy spectrum. Figure 19 displays the time-change of the amplitude of the

perturbation wavenumber, n , and of its higher harmonics, 2n* and 3n , showing

how higher harmonics are energized after the saturation of the fundamental

frequency. It is interesting to observe that the generation of small scales

takes the form of an energy cascade in which successively excited wavenumbers

are higher harmonics of the most unstable wavenumber. This is also associated

with severe stretching of the vortex lines, as indicated by the growth of the

number of vortex elements from N - 2040 at t - 0 to N - 6936 at t - 140 where

we had to terminate the computations.

Three perspective views of the vortex ring at t = 140 are shown in Fig.

20. The figure shows that vortex lines at the outside radii elongate along

the negative z-direction reaching a maximum in the direction opposite to that
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of propagation of the ring and then fold forwards towards its center. On the

other hand, vortex lines at the inside radii of the ring stretch along the

positive z-direction reaching a maximum in the direction of propagation of the

ring and then fold backwards towards its center. The mechanism of vortex line

folding maintains the ring coherent and is responsible for the formation of

the hairpin vortices. The shape of the ring at the later stages is in

agreement with experimental observation [8,9]. This suggests that these

hairpin vortex structure, which were also observed in the late stages of

development of the thin tube model, represent fundamental forms for vortex

lines in turbulent flows.
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TABLE I

SUMMARY OF DISCRETIZATION RESULTS FOR A RING WITH q/R - 0.275

UNIFORM MESH I

Nr  Ns  S/R Ar/R r V ElxI00 n

9 1 0.1875 0.1700 2.0033 3.277 3.5047 10

17 2 0.1550 0.1087 1.9993 3.291 3.4472 12

25 3 0.1425 0.0900 2.0089 3.285 2.8073 12

33 4 0.1425 0.0650 1.9988 3.297 3.4559 12

STAGGERED MESH II

17 2 0.1550 0.1090 2.0027 3.290 3.4250 12

25 3 0.1512 0.0825 2.0011 3.265 2.1934 12

33 4 0.1250 0.0762 2.0014 3.303 2.3219 -

EQUI-SPACED MESH III

19 2 0.1550 0.1080 2.0007 3.281 3.1814 12

37 3 0.1550 0.0910 1.9992 3.296 0.4120 12

61 4 0.1500 0.0705 1.9999 3.297 0.3480 -
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TABLE II

SUMMARY OF THE COMPUTED UNSTABLE WAVENUMBER USING MESH I

a/R= 0.275 n Nr = 9 Nr - 17

7 stable
8 stable
9 unstable* stable
10 unstable stable
11 stable unstable.
12 stable unstable
13 stable

v/R- 0.325 n Nr = 9 Nr - 17

6 stable
7 neutral ,
8 unstable stable
9 stable unstable*
10 stable unstable
11 stable

q/R= 0.375 n Nr = 9 N r = 17

5 stable
6 unstable*
7 unstable stable
8 stable unstable*
9 stable unstable
10 stable

q/R - 0.45 n Nr = 9 Nr - 17

4 stable
5 unstable* stable
6 unstable unstable*
7 stable unstable
8 stable
9 stable

indicates the most unstable
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V DISCUSSION AND CONCLUSIONS

In this work, a three-dimensional vortex method for the solution of the

unsteady, inviscid, incompressible flow equations is constructed, and its

convergence and accuracy are investigated. The method is applied to the study

of the evolution of unstable vortex rings in an unbounded fluid. Two models

for the vorticity core of the ring are introduced, a thin tube model where the

vorticity of the core is concentrated into a single vortex element, and a

vortex torus model where several elements are used to represent the core

cross-section. Computed results for both models are compared to analytical

predictions of the number of waves of the unstable mode and the properties of

the corresponding eigenfunction of the linear stability problem.

The following numerical parameters have been shown to play an important

role in the accuracy and convergence of vortex methods: the smoothing core, f;

the ratio of core radius to separation between neighboring elements, 6/h; the

numerical integration procedure; the time step At; and the vorticity

initialization procedure. In our numerical study of the scheme, the approach

we followed was to view the three-dimensional vortex method as an extension of

its two-dimensional counterpart. In doing that, and due to the expensive

nature of the computations, we have implicitly taken advantage of results

which had already been established in the two-dimensional case and have not

experimented with those areas where analytical analysis is more revealing. In

particular, the effect of the smoothing function, which has been shown to

control the spatial convergence order of scheme [17], was not studied. A

single second-order time integration scheme was adopted for all the

computations and we were content to verify that the results were insensitive

to decreasing the time step.

This study has revealed two crucial ingredients in the application of

three-dimensional vortex methods, namely the procedure of discretization of
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the initial vorticity field and the method of maintaining overlap between

neighboring elements. Accurate discretization of the vorticity field into

overlapping elements is found necessary for convergence of the results. The

accuracy of the discretization, which is shown to depend on the mesh and the

core radius of the elements, can be measured by the deviation from the target

profile. The initialization procedure has to be further constrained by the

condition that neighboring elements must have overlapping cores. When this

last condition was not satisfied, results were found to diverge rapidly. Best

results were obtained when the initial mesh is chosen so that the distance

between neighboring elements is almost the same in all directions. Finally,

it is also shown that maintaining overlap between neighboring elements at all

times is necessary. This is achieved through the redistribution of the

vorticity field into a larger number of elements when the strain field causes

separation between neighboring elements to exceed the core radius. An

analogous situation is encountered in the two-dimensional case 1161 where

overlap can be lost due to strain normal to the direction of the local

vorticity vector. We have not experienced such a problem in the case of the

vortex ring since the instability did not cause substantial growth of the core

itself.

Results of the thin tube model are found to be in good agreement with the

results of the corresponding linear theory. In this model, the dynamics of

the vorticity core are neglected, and the instability of the vortex ring is

spuriously predicted [2]. The model is in poor agreement with experimental

data, however, the behavior of real unstable vortex rings is qualitatively

obtained. The study shows that the unstable wave number corresponds to a non-

rotating mode and that the unstable wavenumber increases with the normalized

self-induced velocity of the ring. Results for the vortex torus model are in

excellent agreement with theoretical results on the stability of real vortex



33

rings and in good agreement with experimental data. They suggest that the

numerical constraints discussed above have to be supplemented with the

condition that the initial mesh where the vorticity is discretized should be

appropriate for the physics of the problem to be properly represented. The

vortex ring is found unstable to perturbations lying in a small overlapping

band around the critical wavenumber.

The evolution of the instability beyond the linear range indicates that

the onset of the turbulization of the core of vorticity is associated with

harmonics of the unstable mode, excited in succession in the form of a

discrete energy cascade. The ring is substantially deformed around the

azimuth and hairpin vortices are generated at the edges of the vorticity core.

While a qualitatively similar behavior was obtained by using the thin tube

model, the shape of the vortex torus is more realistic and in much better

agreement with experimental observation.



34

REFERENCES

1. Widnall, S.E. and Sullivan, J.P. "On the stability of vortex rings," Proc.
Roy. Soc. London A332, 1973, pp. 335-353.

2. Widnall, S.E., Bliss, D.B. and Zalay, A. "The instability of short waves
on a vortex ring," J. Fluid Mech., 66, 1974, pp. 35-47.

3. Widnall, S.E. and Tsai, C.-Y. "The instability of the thin vortex ring of
constant vorticity," Proc. Roy. Soc. London A1334, 1977, pp. 273-305.

4. Saffman, P.G. "The number of waves on unstable vortex rings," J. Fluid
Mech., 84, 1978, pp. 625-639.

5. Maxworthy, T. "The structure and stability of vortex rings," J. Fluid
Mech., 51, 1972, pp. 15-32.

6. Maxworthy, T. "Turbulent vortex rings," J. Fluid Mech., 64, 1974, pp. 227-
239.

7. Maxworthy, T. "Some experimental studies of vortex rings," J. Fluid Mech.,
81, 1977, pp. 625-639.

8. Lugt, H. Vortex Flow in Nature and Technology, Wiley, 1983.

9. Van Dyke, M. An Album of Fluid Motion, Parabolic, 1982.

10. Batchelor, G.K. An Introduction to Fluid Dynamics, Cambridge University
Press, 1967.

11. Beale, J.T. and Majda, A. "Vortex methods I: Convergence in three
dimensions," Math. Comput., 39, 1982, pp. 1-27.

12. Beale, J.T. and Majda, A. "Vortex methods II: Higher order accuracy in two
and three dimensions," Math. Comput., 39, 1982, pp. 29-52.

13. Hald, 0. "The convergence of vortex methods II," SIAM J. Num. Anal, 16,
1979, pp. 726-755.

14. Hald, 0. and Del Prete, V.M. "Convergence of vortex methods for Euler
equations," Math. Comput., 32, 1978, pp. 791-809.

15. Ghoniem, A.F., Heidarinejad, G. and Krishnan, A. "Numerical simulation of
a reacting shear layer using the transport element method," AIAA Paper 87-
1718, 1987.

16. Ghoniem, A.F., Heidarinejad, G. and Krishnan, A. "Numerical simulation of
a thermally stratified shear layer using the vortex element method," J. Coup.
Phys., in press, 1988.

17. Beale, J.T. and Majda, A. "Vortex methods II: Higher order accurate vortex
methods with explicit velocity kernels," I. Comp. Phys., 58, 1985, pp. 188-
208.

18. Leonard, A. "Computing three-dimensional incompressible flows with vortex
elements," Ann. Rev. Fluid Mech., 17, 1985, pp. 525-559.



* ' 35

19. Anderson, C. and Greengard, C. "On vortex methods," SIAM J. Num. Anal.,
22, 1985, pp. 413-440.

20. Leonard, A. "Vortex methods for flow simulation," J. Comp. Phys., 37,
1980, pp. 289-335.

21. Chorin, A.J., "Vortex models and boundary layer instability," SIAM J. Sci.
State. Comput., Vol. 1, 1980, pp. 1-21.

22. Chorin, A.J., "Estimates of intermittency, spectra and blow-up in
developed turbulence," Comrun. Pure Appl. Math., Vol. 34, 1981, pp. 853-866.

23. Chorin, A.J. "The evolution of a turbulent vortex," Comm. Math. Phys., 83,
1982, pp. 517-535.

24. Saffman, P.G. "The velocity of viscous vortex rings," Stud. Appl. Math.,
49, 1970, pp. 371-380.

25. Widnall, S.E. "The structure and dynamics of vortex filaments," Ann. Rev.
Fluid Mech., 8, 1976, pp. 141-165.

26. Siggia, E.D. "Collapse and amplification of a vortex filament," Phys.
Fluids, 28, 1985, pp. 794-805.

27. Pumir, A. and Siggia, E.D. "Vortex dynamics and the existence of solutions
to the Navier-Stokes equations," Phys. Fluids, 30, 1987, pp. 1606-1626.



36

FIGURE CAPTIONS
Figure 1. Normalized self-induced velocity of the ring, V - V/(r/4nR), vs. the

number of vortex elements around the perimeter, N. The analytical results of

Saffman (231 are represented by straight lines. q/R - 0.1 - o; q/R - 0.2 - +;

v/ - 0.3 -* v.

Figure 2. Evolution of the amplitude of the perturbation in the radial p- and

streamwise z-direction for a vortex ring with a/R - 0.1, computed using the

thin tube approximation. Both amplitudes are normalized with respect to the

initial perturbation, c/R - 0.02, and time is normalized with respect to R2/r.

The wavenumber n - 2, 5, 8 and 12 as indicated.

Figure 3. Amplitude of the perturbation for the ring of Fig. 2 and n - nn- 13.

Figure 4. Amplitude of the perturbation for the ring of Fig. 2 excited at the

unstable wavenumber n - 14.

Figure 5. Amplitude of the perturbation for the ring of Fig. 2 perturbed at n

- 15 and 19 arranged from the top.

Figure 6. Frequency of rotation Xr, normalized with respect to R2/r, vs. non-

dimensional wavenumber K, defined as K = no/R. a/R - 0.1 -+ v; o/R - 0.15 -*

a/R - 0.2 - ); a/R - 0.25 - (diamond).

Figure 7. The growth of the natural logarithm of the unstable mode amplitude,

n- 7, for the ring iith q/R - 0.2, computed using N - 30-140 with increments

of 10.

Figure 8. The growth of the unstable wavenumber for the ring of Fig. 7 using

At- 2.0, 1.0, 0.5, 0.4, 0.3, 0.2, and 0.1, all using N - 100.

Figure 9. The computed wavenumber of the most unstable mode n (a) vs. the

normalized self-induced velocity, V, compared with the analytical (o) and

experimental (x) results of Widnall and Sullivan [1].

Figure 10. The form of the vortex ring with */R - 0.25 excited at the unstable
*wavenumber n - 6. The plots are obtained by projecting the ring on planes
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parallel and normal to its direction of propagation at t - 140, 180, 210 and

230, respectively, arranged from the top.

Figure 11. (a) The geometry of the vortex tortus, (b) Schematic cross-sections

of the vortex torus showing the location of the vortex elements for various

meshes used in the computations.

Figure 12. Evolution of the natural logarithm of the amplitude of the excited

modes for the vortex ring with q/R - 0.275 using mesh I and Nr = 9.

Figure 13. Natural logarithm of the amplitude of the excited modes for the

ring of Fig. 13 using mesh I and Nr - 17.
*

Figure 14. Evolution of the natural logarithm of the most unstable mode n -

12 for the ring of Fig. 12 using: mesh I with Nr - 9, 17, 25 and 33; mesh II

with Nr - 17 and 25; and mesh III with Nr - 19 and 37.

*

Figure 15. Natural logarithm of the amplitude of the unstable mode, n , and

its first harmonic, n = 2n , for the ring of Fig. 12 using mesh I with Nr -

17, mesh II with Nr - 17 and 25; and mesh III, with N - 19 and 37.

Figure 16. The wavenumber of the most unstable mode, n , computed using mesh I

with N - 9 ( diamond ) and Nr = 17 (*), plotted against the normalized self-
induced velocity, V, compared with the analytical results of Widnall et al.

[2] for a ring with constant (square) and quadratic (+) vorticity

distributions. The results of Fig. 9 are also included.

Figure 17. The form of the vortex torus with q/R - 0.275 perturbed at n - 9 at

t - 10, 40, 70 and 100, respectively, arranged from the top. The results are

obtained using mesh I with Nr - 17, and shown in terms of the lines connecting

neighboring vortex elements arranged in the vorticity direction.

*

Figure 18. Perspective views of the vortex torus of Fig. 17 excited at n - 12

depicted at t - 30, 60, 90 and 120, taken from the point of view of an

observer standing ahead of the ring and looking at an angle 0 - 600 with

respect to the direction of propagation. The ring is represented by all vortex
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tubes used in the computations, connected in the direction of vorticity, and

the ring is propagating in the upward direction.

Figure 19. Natural logarithm of the amplitude of perturbation wavenumber, n*,

and of its higher harmonics, 2n* and 3n* for the the ring of Fig. 18.

Figure 20. Three perspective views of the vortex ring of Fig. 18 at t - 140.

The plots are generated as in figure 18 with 1 - 00, 600 and 900.
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