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SUMMARY

During the course of this year, we have concentrated on the validation
of the transport element method in two dimensions and its extension to:
three dimensional flow, to reacting flow with finite Arrhenius rates, and to
variable-density flow including the effect of gravity. Comparisons with
experimental data on a reacting shear layer with low heat release show that
the numerical results agree very closely with the measurements of the
velocity statistics, the passive scalar statistics, the product formation
rate and the product thickness. Numerical studies are used to establish the
dependence of the product formation rate on the Reynolds number, the Lewis
number and the Damkohler number. Studies of a variable-density flow focused
on the effects of density gradients on the structure of turbulence in both
the momentum driven and gravity-driven reacting flow. In particular, how
does heat release change the rates of growth and mixing within the layer via
the impact of the expansion field and the baroclinic vorticity generation
due to the density gradients. For this purpose, examples of a horizontal
premixed reacting shear layer and a vertical jet diffusion flame are
analyzed.
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OBJECTIVES
The objectives of this research are:

I. The development of accurate numerical methods which can be utilized
for the integration of the time-dependent, three-dimensional Navier-
Stokes equations and the energy and species conservation equations at
high values of the Reynolds and Peclet numbers and moderate values of
the Damkohler number, and when the heat release is large with respect

to the internal enerqy of the flow.

II. The investigation of the mechanisms of turbulence-combustion
interactions on the basis of the solutions obtained from the numerical
simulations, and the study of how these interactions can be
manipulated to provide more control over the burning process in
turbulent shear flows.

We have been working on the development of grid-free, Lagrangian
schemes: the vortex element and the transport element methods, which can be
used to simulate fields that develop large velocity and scalar gradients.
For the purpose of wvalidating these schemes and analyzing turbulence-
combustion interactions, we are using simulations of the reacting shear
layers in two and three dimensions and in cases when the fuel and oxidizer
are initially flowing in separate streams, and when the premixed reactants
and products are initially flowing in separate streams. Attention has been
focused on the low Mach number compressible flow limit in which spatial
pressure variations are neglected in the thermodynamics of the problem.
Effort is underway to extend the formulation to high Mach number flow in

which this restriction is relaxed.
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Six graduate students are currently working on projects related to the
subject of this research. Their names, Ph.D. thesis titles and expected
dates of completion are listed below in order of seniority. These students
have been partially or totally supported by this grant. Copies of these

theses will be forwarded as soon as they are ready.

1. Heidarinejad, Ghassem, Numerical Simulation of a Reacting Shear Layer
Using The Transport Element Method, December 1988.

2. Najm, Habib, Numerical Study of the Convective Instability of Turbulent
Flames in a Confined Combustor with Sudden Expansion, December 1988.

3. Knio, Omar, Spanwise Structure of a Turbulent Mixing Layer: Solutions
Using 3-D Vortex Methods, September 1989.

4, Krishnar,, Anantha, The Formulation of Compressible Vortex Methods for
the Simulation of Turbulent Reacting Flow, September 1989.

5. Martins, Luis-Filippe, A Hybrid Finite Element, Vortex Method for
Simulation of Internal Flow, December 1989.

6. Soteriou, Marios, started September 1988.




WORK STATUS

The research has been divided into several tasks: formulation of the
numerical schemes, wvalidation of the codes in which these schemes are
implemented, and study of physics of turbulent-combustion interactions in
reacting flow. In the following, a briefing on each project is given.

I. Numerical Simulation of a Reacting Shear Layer

Numerical simulation is applied to study mixing of a passive scalar in
a spatially-developing shear layer, and to investigate the enhancement of
the rate of chemical reaction in a mixing layer formed of separate fuel and
oxidizer streams. The numerical simulations are performed wusing the
transport element method, which we have developed as an extension of the
vortex element method for the solution of the species and the energy
conservation equations at high heat and mass transfer Peclet numbers. The
method is Lagrangian and grid-free, and is based on the accurate
discretization of flow gradients among finite elements which are transported
along particle paths. The core functions of the elements are chosen to
guarantee high spatial accuracy, and may be deformed to capture mild strain
field. Computational elements are only utilized in areas of large flow
gradients, i.e. shear layers or flames, and are redistributed whenever the
flow map becomes severely distorted. The strengths of the elements are
updated according to the source terms in the conservation equations
(a1,n2].”

In the spatially-developing, non-reacting mixing layer, we found that

* References are listed in the Sections on New Publications [A] and
Publications Under Preparation [B].




instantaneous scalar profiles exhibit mixing asymmetry and that the

concentration fractions within the cores are skewed in favor of the high

speed stream due to the asymmetry in the dynamic field. The velocity
statistics and mixing statistics of a passive scalar agree well with the
experimental measurements of Masutani and Bowman in a two-dimensional shear
layer. The rms of the passive scalar and the computed scalar PDF, which can
be used as measures of the mixedness, emphasize the effect of molecular
diffusion on mixing for Peclet numbers in the range of 1000-10000 [A3].

We have extended the computations to a chemically-reacting, spatially-
developing layer assuming that the heat release dnes not change the density
of the flow (the extension to a variable-density flow is described in the
next section). Results of these simulations are compared with the
experimental measurements of Mungal, Dimotakis and Broadwell. The agreement
is very favorable (Bl]. In particular, we obtain the same values for the
rate of product formation and the product thickness as was measured in these
experiments., We are in the process of analyzing the dependence of the rate
of product formation on the Reynolds number, the Lewis number and the
Damkohler.

II. Flow-Combustion Interactions in Premixed Combustion

The interactions between the flow field and the combustion process in a
premixed shear layer are investigated by analyzing the results of numerical
simulation using the transport element method [(A6]. The reaction is
governed by finite-rate Arrhenius kinetics for a single reactant, the
density of the flow is allowed to vary with the temperature, and the
Reynolds number is high. Heat release is moderate and molecular heat and
mass diffusivities are finite, while the Mach number is small. The

thickness of the reaction zone and that of the vorticity layer are of the




same order of magnitude, i.e. turbulence scales are relatively small.
Attention is focused on a single, or two eddies in a temporal shear layer to
limit the computational time. Extension to a spatially developing layer is
discussed in the previous section. ‘

Results indicate that at the early stages, a reacting layer behaves
like a laminar flame. During the growth phase of the eddy, the rate of
burning is strongly enhanced by the entrainment fluxes that lead to the
swelling of the reaction zone. During this phase, the total rate of product
formation can be approximated by the unstrained laminar burning velocity
times the flame length measured along the line of maximum reaction rate.
Following the burning of the eddy core, the strain field along the eddy
boundaries causes a noticeable thinning of the reaction zone, thus curbing
the rise in the rate of burning. During this phase, the rate of burning
expression in the wrinkled laminar flame theory should be modified to
account for the change of the laminar burning velocity with strain.

Baroclinic vorticity generation, due to the acceleration of fluid
elements in the density gradient of the flame, is found to be the most
important mechanism by which combustion alters the flow field in the low
Mach number limit. The baroclinic torque augments the vorticity within the
core while it reduces the vorticity on its outer edges. This enhances the
overall volumetric entrainment into the eddy core, and causes entrainment
asymmetry with a bias towards the products stream. The modified vorticity
field extends the growth, or entrainment period of the eddy and imparts on
it an extra mean convective motion in the direction of the reactants stream.

In all steps of development, the numerical methods are validated by
comparing the numerical solutions with the results of the linear stability

theory of shear layer during the initial stages of development. This




strategy is used to ensure that the physical model utilized in the numerical
solution matches that used in the analytical, or semi-analytical study.
Results for the late, non-linear stages are compared with idealized
experimental data or results of conceptual models.

We are currently working on: (1) extending these computations to a
spatially-developing shear layer with premixed reactants for which
experimental results exist; and, (2) adding the effects of gravity, which
acts an another vorticity generation mechanism, to these computations
[B2,B3]. This is particularly important in the case of momentum/gravity
flame as the jet flame of Roquemore (B4]. We are also looking into
extending the transport element scheme to high Mach number flows in which
spatial pressure variations play an important role.

I11. Three-Dimensional Structure of a Stratified Shear Flow

The main goal of this project is the extension of vortex methods to
three-dimensional flows. The numerical scheme is based on the accurate
discretization of the vorticity field into a number of finite-core,
spherical vortex elements, and the transport of these elements along
particle paths. The vortex scheme is then used to study the formation of
streamwise vorticity which is known to be a precursor to self-turbulization
and mixing transition in shear flows. To validate the scheme, and
understand the underlying physics of the transition process, two examples
are analyzed: an isolated finite-core vortex ring perturbed in the azimuthal
direction, and a periodic shear layer simultaneously perturbed in its
streamwise and spanwise directions.

Results obtained for both cases show the innate tendency of vorticity,
initially aligned in the direction normal to the stream, to form coherent

streamwise structures which have alternating vorticity signs in the spanwise




direction. The formation of streamwise vorticity follows the "maturation"
of the spanwise structure and the evolution of the former is energized by
the strain field of the latter. While the streamwise vorticity is
responsible for the added "turbulization" of the flow, leading to further
mixing enhancement, it does not seem to lead to the disintegration of the
two-dimensional basic structure. Results compare favorably with the
conclusions of the linear stability theory and the available experimental
results [A7,A8].

We aré using the three-dimensional vortex method to simulate a shear
layer and a jet flow. The transport element method has also been extended
to three dimensions to allow the investigation of the effect of streamwise
vorticity on the mixing of scalars within this flow [B6]. Next, we will
implement the Arrhenius reaction mechanism used in the two dimensional

computations to study a three-dimensional reacting shear layer.




NEW PUBLICATIONS DURING 1987-1988:

Al. Ghoniem, A.F., Heidarinejad, G. and Krishnan, A. "Numerical simulation
of A Thermally-stratified Shear Layer Using the Vortex Element Method ," J.
Comput. Phys., 75, 1988, in press.

A2. Ghoniem, A.F., Heidarinejad, G. and Krishnan, A. "On Mixing,
Baroclinicity and the Effect of Strain in A Chemically Reacting Shear
layer," the AIAA 26th Aerospace Sciences Meeting, January 11-14, Reno,
Nevada AIAA-88-0729.

A3. Ghoniem, A.F., Heidarinejad, G. and Krishnan, A. "Turbulence-combustion
Interactions in A Reacting Shear Layer," Lecture Notes in Engineering,
Proceedings of the France-U.S.A. Joint Workshop on Turbulent Reactive Flows,
July 1987, Rouen, France, Springer-Verlag, 1988, in press.

Ad4. Ghoniem, A.F., and Givi, P., "Lagrangian Simulation of A Reacting Shear
Layer at Low Heat Release," AIAA Journal, 26, 1988, in press.

A5. Ghoniem, A.F., "Vortex Methods in Two and Three Dimensions with
Application to Turbulent Shear Flows," Invited paper, Proceedings of the
AIAA/ASME/SIAM/APS 1lst National Fluid Dynamics Congress, Cincinnati, OH,
July 24-28, 1988, p. 658.

A6. Krishnan, A. and Ghoniem, A.F. "Origin and Manifestation of Flow-
Combustion Interaction in A Premixed Shear Layer," Proceedings of the 22nd
Symposium (International) on Combustion, 8-13 Auqust, 1988, Seattle,
Washington, the Combustion Inst.tute, Pittsburg, PA, in press.

A7. Knio, O. M. and Ghoniem, A. F. "On the Formation of Streamwise
Vorticity in Turbulent Shear Flows," the AIAA 26th Aerospace Sciences
Meeting, January 11-14, 1988/ Reno, Nevada, AIAA-88-0728.

A8. Knio, O.M. and Ghoniem, A.F. "Numerical Study of A Three-dimensional
vortex method," submitted for publication at J. Comput. Phys., April 1988,




10

PUBLICATIONS UNDER PREPARATION:

Bl. Heidarinejad, G. and Ghoniem, A.F., "Vortex Simulation of the Reacting
Shear Layer; Investigation of the Limits on the Rate of Burning," for
presentation at the 27th AIAA Aerospace Sciences Meeting, Reno, Nevada,
January 9-12, 1989.

B2. Ghoniem, A.F. anc Krishnan, A, "Baroclinic Effects in Density-
stratified Flows; Part I: A Shear-Driven Flow, Part II: A Gravity-Driven
Flow," to be submitted for publication, J. Fluid Mech, 1988.

B3. Ghoniem, A.F. and Krishnan, A. "Mixing Patterns and the Generation of
Vorticity in Density Stratified Flow," for presentation at the International
Workshop on The Physics of Compressible Turbulent Mixing, Princeton
University, Princeton, N.J., October 24-27, 1988.

B4. Krishnan, A. and Ghoniem, A.F., "Numerical Simulation of the Structure
of A Momentum/Gravity Driven Diffusion Flame," for presentation at the 27th
AIAA Aerospace Sciences Meeting, Reno, Nevada, January 9-12, 1989.

BS5. Ghoniem, A.F., Vortex Methods in Turbulent Reacting Flow, in Numerical
Approaches to Combustion Modeling, ed by E. S. Oran and J. P. Boris, to be
put'lished by the AIAA, 1963,

B6. Knio, O.M. and Ghoniem, A.F. "Three-dimensional Simulation of the
Entrainment Augmentation Due to Streamwise Vortex Structures," for
presentation at the 27th AIAA Aerospace Sciences Meeting, Reno, Nevada,
January 9-12, 1989.

B7. Ghoniem, A.F., Najm, H. and Martins, L.F., "Shear Flow Instability
Behind A Bluff-body, Numerical Simulation and Potential for Control," the
AIAA 2nd Shear Flow Control Conference, Tempe, Arizona, March 13-16, 1989.




11

INTERACTIONS WITH INDUSTRY AND GOVERNMENT LABORATORIES DURING 1987-1988:

During the <course of last year, we have started and/or cemented
collaborative working relations with the following industrial or governmental

laboratories:

1. Wright-Patterson Laboratory; with Dr. M. Roquemore on the modeling of the
jet diffusion flame.

2. General Electric Research Center; with Dr. Sanjay Corea on the study of
turbulent premixed flames and their instability.

3. Sandia National Laboratory; with Drs. R. Lucht and John Kelly and their
associates on the study of bluff-body diffusion flames.

4., Gas Research Institute; with Dr. J. Kezerle.

5. Ford Motor Company.
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Controlling Combustion:
Reacting Flow
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Background

Reacting flow is a complex process in which tur-
bulent fluid motion enhances the mixing between
reactants, and chemical kinetics determines the
rate of reaction in the mixture. The heat release
associated with the reaction supplies the energy
to the flow, and therefore changes its nature. The
study of reacting flow is made more difficult by
the strong coupling between these processes. Con-
sequently, it requires sophisticated instrumenta-
tion or elaborate numerical methods and powerful
computers. Experimental investigations of the
physics of reacting flow depends heavily on the
application of such modern measuring techniques
as laser flourescence methods. These methods

are expensive and sometimes difficult to apply
due to the hostile conditions dominated by high
pressure and temperature within a chemically
reacting flow. Reacting flow plays a critical role
in energy conversion and propulsion systems, in
air pollution and waste incineration phenomena,
in fire spread and in some areas of manufacturing.

Applications: Propulsion Systems, Air Pollution,
Toxic Waste Control and Fire Control

The performance of a propulsion system, such as
an automobile or an airplane, is often measured
by the efficiency of energy conversion, the envi-
ronmental impact in terms of noise and pollution,
and the size and durability of the hardware.
The operation of the system is directly related to
the physics of the reacting flow in which chemi-
cal energy is converted into heat and mechanical
force. In some cases, as in automobile engines, the
challenge is to design the smallest possible en-
gine that will achieve efficient and fast combus-
tion using a variety of fuels and without produc-
ing harmful pollutants. In other cases, as in the
engine of the proposed National Aerospace
Plane, the challenge is to burn large quantities of
fuel in the uncooperative environment of high
pressure and very high, supersonic or hypersonic
speeds. Considerations of stability of operation,
noise and cost are also important if the plane is to
become viable commercially.
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Another set of applications involves air pollu-
tion control. Air pollution is governed by the
transport of active gases from the source and
their chemical reaction with air and water in
the atmosphere. The interaction between the
wind pattern, the earth terrain, the sunlight and
the source of pollutants; which form the compo-
nents of a typical reacting flow, ultimately de-
termines the impact of this source on the environ-
ment. The location and orientation of the source
of pollutants can be optimally determined when
the results of these interactions are analyzed in
advance.

In a related topic, toxic waste incineration,
which is proposed as a solution to the national
problem of how to deal with waste generation,
represents another application of reacting flow
analysis. In waste incineration, the thorough
mixing of toxic by-products with hot gases is ne-
cessary if the destruction of these mutagins by
chemical reaction is to be successfully accom-
plished. One hopes that the products of this
combustion process will be less harmful than the
toxicants being burnt in the incinerator, and that
the energy produced from the burning of these
toxics will be a useful source of heat or power.

Reacting flow plays a critical role
in energy conversion and
propulsion systems, in air
pollution and waste incineration
phenomena, in fire spread and in
some manufacturing processes.

Fire, whether it be a forest fire or the result of an
explosion in a nuclear reactor or supertanker,
spreads by the action of the fluid flow and the
burning of combustible material. In these sys-
tems, fluid motion is determined by the design of
the enclosures, the size and locations of the con-
necting passages and the obstacles inside the en-
closures. The combustibility of the material de-




Figure 1: How Turbulence Enhances Combustion in a Fuel Mixture

pends on the kinetic rates of reactions between
the gases and solids present in these enclosures
and the oxidizing air. Understanding the mecha-
nisms of fire spread and the contribution of each
one of these factors will lead to a better control of
fire spread via the redesign of the passages and
employment of fire retarding material in con-
struction.

The Problem

It is the objective of this research to develop ac-
curate and efficient numerical methods for the
prediction of reacting flow, and to apply these
methods to gain better insight into their funda-
mental physics. Predictive methods will provide
"computer-aided engineering" tools that can be
used to speed up, simplify and reduce the cost of
design. While the design criteria may change ac-
cording to the application described, the funda-
mental issues involved are strongly related to the
physics of the flow which we hope to reveal us-
ing the results of nurnerical experiments.

Mathematical modeling of reacting flow results
in a set of three-dimensional, time-dependent
partial differential equations which govern the
flow within regions of complex geometry. These
equations are impossible to integrate analytical-
ly except for very simple cases. The numerical in-
tegration of the governing equaticns requires high

spatial and temporal resolution to capture all
the phenomena that arise during the develop-
ment of chemical reaction in a turbulent flow.
Thus, very large numbers of grid points or parti-
cles must be used for large numbers of time steps,
requiring the computing power and the memory
size available only on a supercomputer.

In the next section, we present results which
have been obtained for a number of fundamental-
ly and practically important cases: the flow and
combustion in a mixing layer, the flow in a ramjet
engine, the flow inside an internal combustion en-
gine, and the turbulent flow in a pulsed jet.

Results
L Mixing and Combustion in Turbulent Flow

It is well known that turbulence enhances the
mixing between species in a reacting flow. How-
ever, the mechanisms involved are not yet well-
understood. Moreover, turbulent fluid motion
may promote, and at times suppress the rate of
reaction. In this work, and by using "numerical
experiments,” we are trying to understand the
fundamental role of turbulence in reacting flows
which are commonly encountered in practice.

Turbulence is modeled by a concentrated zone of
vorticity, or rotational flow, that initially sep-
arates the cold reactants (blue) and the hot
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Figure 2: Induction Eddies Inside a Reciprocating Engine

products of combustion (red). As time progresses,
an eddy, or a set of eddies emerge within the vor-
ticity zone. Figure 1 shows that the swirling mo-
tion produced by these eddies leads to the en-
trainment of fluids from both sides of the eddies
into their cores where they get mixed (yellow
and green).

II. Flow in an Internal Combustion Engine

The fluid flow during the intake stroke of an in-
ternal combustion engine determines its perfor-
mance. The power output of the engine is con-
trolled by the total amount of air that enters the
cylinder. Its efficiency is determined by the re-
sidual turbulent fluid motion at the end of the
sompression stroke. Both depend on the design
parameters of the engine configuration and its
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speed. In this project, we are developing methods
of numerical simulation to study the effect of both
piston, cylinder and inlet valve geometry, and
the engine speed on the structure of this flow.

Figure 2, shows that the flow inside the cylinder,
as the piston moves to charge the engine, consists
of a jet that penetrates a system of eddies. These
eddies maintain the flow inside the cylinder in a
state of coherent rotation throughout the entire
length of the stroke.

M. Combustion in a Model of a Jet Engine

The mechanism of stabilization of combustion in
the high speed flow inside an ordinary jet en-
gine, or a ramjet engine, is analyzed in terms of
the interaction between the the fluid flow, the




Figure 3: Stabilization by Recirculation of Combustion Products

flame and the geometry of the combustion cham-
ber. Results, shown in Figure 3, reveal that the
flame (white interface) is stabilized by the re-
circulation of the hot products (red) behind the
sudden expansion, as shown by the velocity ar-
rows. The flow-induced oscillations cause a peri-
odic motion of the flame front into the reactant
stream (blue). The underlying flow structure is

composed of a cluster of large eddies, as indicated
by the velocity of the vortex particles (yellow).

IV. Mechanisms of Turbulence
The transition of an initially well organized flow

to a fully-developed turbulent flow is encountered
in all the applications listed above. Whether it




Figure 4: Development of a Vortex Ring Created by a Laminar Jet

is a welcomed event, as in a mixing device, or it
is a problem to be avoided, as in aerodynamic
flows, transition to turbulence occurs in the ma-
jority of applications. In this work, this phe-
nomenon is analyzed in terms of the generation of
small scales in a three dimensional motion due to
the growth of flow instabilities. As an example,
we show in Figure 4 the evolution of a vortex ring
generated by the impulsive motion of a laminar
jet towards the turbulent state. This structure is
formed of a bundle of "vortex" lines that start as
concentric circles and evolve to become a highly
convoluted structure of severely stretched
"worms."

Methodology
The numerical algorithms are designed to inte-

grate the time-dependent, multi-dimensional
partial differential equations that govern react-

ing flow. The algorithms are based on vortex-
particle methods. The methods are employed in
the solution of unsteady, multi-dimensional Na-
vier-Stokes equations and the energy and species
conservation equations. The fundamental scheme
is Lagrangian. In other words, it is based on fol-
lowing a set of elementary fluid particles and
their properties in space and time. To improve
the accuracy of the computations, this algorithm
is used to transport flow gradients by employing a
large number of field particles distributed accord-
ing to the magnitude of the gradient. The mutual
interactions between the fields of these moving
particles determine the evolution of the flow var-
iables such as velocity, concentrations, tempera-
ture and pressure.

This methodology offers very high spatial reso-
lution since the particles can be distributed arbi-
trarily in space to resolve regions of strong varia-

-
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tions and high concentrations. Particle tracking
allows one to observe the physical phenomena in
a very similar way to that which have been used
in experimental investigations. Moreover, the
unsteady form of the calculations emphasizes the
dynamic nature of turbulent reacting flows and
helps shed light on the fundamental mechanisms
of these flows. The methods can also accommo-
date complex geometrical configurations.

The computations are time consuming since they
require the evaluation of mutual interactions be-
tween N particles at each time step. This
amounts to O(NxIN) operations for each flow var-
iable. For high spatial resolutions, N = 1000-
10000 and more if the physical extent of the com-
putational domain is wide. Moreover, the calcu-
lations must be performed for 1000-10000 time
steps to capture the temporal evolution of the
flow. The algorithms are readily vectorizable,
thus requiring CPU time on the order of magni-
tude of one to five hours on the CYBER 205, de-
pending on the dimensionality of the geometry
and the complexity of the chemical reaction.

The algorithms are suitable for the implementa-
tion of parallel processing technology and should
benefit from the installation of the ETA10. Pre-
liminary studies on currently available parallel
processors have confirmed that the parallel effi-
ciency of our algorithm is high. Using the ETA10,
we plan to simulate three dimensional reacting
flows in practical configurations.
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TURBULENCE-COMBUSTION INTERACTIONS IN A REACTING SHEAR LAYER
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ABSTRACT

Turbulence-combustion interactions are analyzed using results of a numerical
simulation of a reacting shear layer. Premixed combustion at finite activation
energy, moderate chemical kinetic rates and finite diffusivities is considered. The
transport element method, a numerical scheme based on the accurate discretization of
the vorticity and the scalar gradient fields into Lagrangian finite elements, is
used to perform the numerical simulation. Processes that lead to burning
enhancement or flame deceleration or possible extinction are analyzed. We find that
the rollup of the shear layer accelerates burning by stretching the reaction
surface. However, by comparing the 1local burning velocities within the shear layer
to that of a laminar flame, we find that stretch, which accompanies the rollup,
decelerates the rate of burning per unit area. This is due to the local cooling
effects associated with the enhanced heat flux out and mass flux into the reaction
zone. Both phenomena are strong functions of the turbulence field and the Damkohler
number .

The preliminary version of this article was presented at the AIAA/SAE/ASME/ASEE 23rd
Joint Propulsion Meeting, La Jolla, CA, June 29- July 1, 1987, AIAA-87-1718.




I. INTRODUCTION

Turbulent combustion is governed by complex interactions between convective and
diffusive transport processes on the one hand, and chemical reaction and heat
release on the other hand. Chemical reactions are strong nonlinear functions of
temperature and species concentrations, and thus their rates are critically
dependent on the transport fluxes which determine these variables. Meanwhile, rates
and magnitudes of heat release, associated with the chemical oxidation of practical
fuels, are large enough to affect the dynamics of the flow, and hence the transport
phenomena. Understanding the outcome of these interactions is an important leap on
the way to achieve better control of burning processes in combustion systems. It is
the objectives of this work to: (1) develop numerical models capable of predicting
turbulent combustion processes; (2) identify the most important modes of turbulence-
combustion interactions; and (3) elucidate the subtle outcome of some of these
interactions. We confine our attention to shear layers since they are relatively
simple to analyze, and since they represent a generic model for many reacting flows.

Turbulent combustion has been the subject of extensive experimental,
theoretical and numerical investigations over the years,l However, many of its
fundamental mechanisms remain unclear.2 Progress in phenomenological turbulent
combustion models, based on the closure of a system of averaged transport equations
which describe the statistical behavior of the aerothermodynamic variables, has made
it possible to produce results which agree with experimental measurements. However,
since some of the interesting dynamics of turbulence-combustion interactions are
hypothesized a priori in these models, solutions do not provide a better
understanding of the phenomena and are limited by the modelling assumptions.

Two problems have been identified as most challenging in the study of
turbulence in reacting flows: the origin of the statistical correlations between
fluctuating quantities; and the nature of the source terms in the energy and species
conservation equations. In turbulent shear layers, the first problem is complicated
by the presence of large scale structures that cannot be modelled by gradient
diffusion terms. The second problem stems from the fact that chemical reactions are
strongly affected by fluctuations in local variables in a nonlinear way, e.g., the
Arrhenius form. 1In the following, the two issues are discussed in more detail.

Time-resolved flow visualization and instantaneous point measurements in
nonreacting and reacting shear layers have revealed the existence of large scale
periodic turbulent structures for a long distance downstream the separation
point.3'4'5'6 It has been shown experimentally, and supported by numerical studies,
that these structures appear via the Kelvin-Helmholtz instability of the vorticity
layer which forms between two initially-separate streams.7 By a different
mechanism, the subharmonic instability, these structures persist through successive
pairings, thus maintaining the periodicity downstream though at different
fréquencies. Qualitatively, it is known that the role played by these structures in
the mixing process is to engulf, then stretch layers of fluids to scales where
molecular diffusion is most effective. The two processes, which have been called




entrainment, may create a bottleneck impeding mixing if the rate of molecular .
diffusion is high due to small scale t'.urbx,\lem:e.8 However, analytical results that
support, or reproduce these effects are not yet available.

The importance of these results in the context of investigating turbulence-
combustion interactions is how the existence of different scales can be properly
represented. Even though gradient diffusion models, which assume that only local
conditions can affect turbulence, may provide an adequate description of the small
diffusive scales, they do not contain enough information to identify the large
convective scales. The latter is a feature of the unsteady flow field and depends
strongly on the initial and boundary conditions. Thus, it must be resolved by
solving the unsteady unaveraged equations wusing accurate schemes, while the effect
of the small scales, for the sake of economy, may be modelled based on an
understanding of the "substructural phenomena."

Since chemical reaction depends on the rate of molecular mixing which, as
previously described, is a consequence of entrainment by the large scales and
diffusion at the small scales, it is important that these two processes be
represented accurately. Overestimating the rate of mixing by turbulence models,
which do not account for the effect of the large scales on the entrainment process,
results in erroneous prediction of coubustion.a'g'lo The solution algorithm must,
therefore, be able to resolve large scale convective structures as well as small
scale diffusive eddies. It should also give careful consideration to their
continuous interactions. Since a typical size of a large scale eddy is on the order
of magnitude of the thin, but finite vorticity layers, they can only be resolved if
the unsteady unaveraged equations are integrated using accurate numerical methods.
These methods must be non-diffusive, i.e. they should not dissipate the flow energy
by distributing it on large cells.

Resolving the unsteadiness of the flows is particularly important in combustion
modelling since chemical source terms are strong nonlinear functions of the
instantaneous values of the temperature and species concentrations, as exemplified
by the Arrhenius form. The magnitudes of the source terms depend on the
fluctuations of the aerothermodynamic variables and, to a lesser extent, on the mean
values. Moreover, since a chemical reaction, which is a time-dependent process,
occurs on the molecular level, using averaged and modelled equations in wnich mixing
is described by mean fluctuations is not expected to properly describe it. An
important aspect of combustion is that the chemistry is a Lagrangian process which
proceeds as fluid elements move. Averaging this intrinsically unsteady process
removes information that cannot be recovered using few moments.

A better description of chemical reaction in an unsteady flow field may be
based on the Lagrangian formulation of the conservation equations. A numerical
scheme, which employs the Lagrangian description of the flow field, should then lead
to more accurate results if fine resolution is achieved. 1In this work, we describe
such numerical simulation algorithmg. Mathematical theories constructed to address
issues of accuracy and convergence are exemplified in (11,12,13].




Numerical simulation of turbulent combustion attempts to minimize the use of
phenomenological modelling. Thus, their results can be used to investigate some of
the mechanisms of turbulence-chemistry interactions. Furthermore, since the
instantaneous behavior of the variables are known at all points and at all times,
accurate simulations offer a method of probing the flow when experimental techniques
are not available. Ultimately, and after validating and verifying the results
against experimental measurements, ab initio predictions can be possible. Finite
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difference methods, spectral methods,IE and vortex methods™  have been utilized
in numerical simulation of nonreacting shear layers. Some have also been extended
to reacting shear layers.m’19 The first two methods are based on Eulerian
description of the flow field, using grids to discretize derivatives of the
aerothermodynamic variables, or to expand these variables in harmonic functions,
respectively. Vortex methods are grid free, Lagrangian schemes, which have been
used to obtain solutions at high Reynolds number.

Vortex methods optimize the computational efforts by distributing computational
elements around regions of high vorticity.zo’z4 However, five factors have limited
their utilization to study combustion problems: (1) Eulerian methods, which were
used to solve the energy and species conservation equations in thin flame sheet
models, seemed, in some sense, to defeat the purpose of using vortex methods to
similate the hydrodynamic field;2> (2) the limit of fast chemistry, which was used
in thin flame sheet models, did not allow realistic finite rate chemical kinetics to
be part of the model;26 (3) vortex methods, while maintaining reasonable accuracy in
the majority of the field, lost resolution within the part of the field where the
strain field is very strong;27 (4) vortex methods were limited to handling
incompressible flows, thus the models neglected the distributed expansicn and the
baroclinic torque generated during combustion; and (5) three-dimensional effects
were only included in specific cases,ze'29 and no attempt has been made yet to
represent small scale dissipation in two-dimensional methods.

In this article, we irtroduce the transport element method. When applied to
obtain a solution of the vorticity transport equation, the method becomes the vortex
element method in which particles are treated as finite elements that accurately
discretize the vorticity field and change their shape, configuration or distribution
to accommodate distortions of the vorticity field caused by the development of
strong strain fields. The transport element method, moreover, extends the concepts
of the vortex element method to obtain solutions of the scalar conservation
equations, which govern reacting flows, in terms of moving Lagrangian gradients.
Both schemes are formulated to preserve the effect of compressibility at low Mach
number. The transport element method is applied to study the evolution of
combustion in a reacting shear layer in premixed gases. Results are used to
investigate different modes of turbulence-combustion interactions in a shear layer,
and to study the outcome of these interactions in different regimes of the governing
parameters. Processes of burning enhancement and flame deceleration or complete
extinction via the effect of stretch which develops within the rolling shear layer
are analyzed in light of the numerical results.
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In Section II, the formulation of the model equations governing a reacting
shear layer at low Mach number is described. In Section III, we give a summary of
the vortex element method, and a comprehensive development of the transport element
method. Emphasis is placed on the latter since it clarifies some subtle issues
regarding the effect of the strain field on the local scalar gradients. In Section
1V, results of the application of these methods to a spatially developing, thermally
stratified mixing layer are described. In Section V, results for a reacting,
temporally developing mixing layer are analyzed. In Section VI, conclusions and

future work are summarized.

II. FORMULATION

The non-dimensional form of the conservation equations governing a two-
dimensional, unsteady reacting flow is summarized in Table I. We assume that
initially, and at all times at the inlet section, a premixed reactant R and a
product P are present at given concentrations Ro and pg in the top high-speed and
bottom low-speed streams, Ul and U2, respectively. For computaticnal simplicity,
chemistry is assumed to be governed by a single-step, irreversible, Arrhenius
reaction of order n. Adding more steps to the chemical kinetics scheme will require
integrating more species conservation equations. The Mach number is assumed to be
small, which leads to the following simplifications in the governing equations: (1)
pressure variation due to the flow field is small compared with the total pressure,
and hence neglected in the equation of state; (2) spatial variations of pressure,
and energy dissipation due to viscosity are neglected in the energy equation; and
(3) acoustic interactions are removed. This isobaric approximation allows partial
decoupling of continuity, momentum and energy equations so that they can be
integrated sequentially instead of simltaneously.3°'31 We assume that the reactant
and product behave as perfect gases with equal molecular weights and specific heats,
and that thermal and mass diffusivities are constants, but not necessarily equal.
The Reynolds number is high and the effect of viscosity is neglected.

The definition of the symbols is as follows: d/dt = 3/3t + u . ¥V is the
Lagrangian derivative along a particle path. u = (u,v) is velocity, x = (x,y) and x
and y are the streamwise and the cross-stream directions, respectively. t is time,
¢ is a velocity potential, w = v e, is a stream function defined such that u, = vx
¢ = (3y/3y,~/3x), and w = ¥ x u is vorticity. e, is the unit vector normal to the
x-y plane. up is a potential wvelocity, ¢ . up = 0, added to satisfy the normal
boundary condition across the boundary of the domain. c¢ is the concentration per
unit mass, T is temperature. V and v2 are the gradient and Laplacian operators,
respectively. Ay W is the rate of formation of products per unit mass per unit
time, W = c; exp(-'ra/'r), and n is th ereaction order. Variables are non-
dimensionalized with respect to the appropriate combination of the velocity of the
high-speed stream Ul, the chamnel height H, the free-stream concentration of R, Cro’

and the free- stream temperature of the reactants at x = 0, Ty- Ta is the




activation energy, non-dimensionalized with respect to (Rg To), Rg being the gas
constant. Q is the enthalpy of reaction, non-dimensionalized with respect to Cp Ty
where C_ is the specific heat at constant pressure. P, = Ul H/a 1s the Peclet

number, where « = k/(pCp) is the thermal diffusivity, taken as a constant. Ag = A
H/Ul is the non-dimensional frequency factor of the chemical reaction-rate constant.

The Damkohler number Da= Af W(cm,Tm), m and '1‘m corresponding to conditions of
maximum reaction rate, is the ratio of flow time to chemical time. Le- o/D is the

Lewis number, and D is the mass diffusivity.

Equation (2) is tihe decomposition of the velocity field into irrotational,
solenoidal and potential components. Equation (3) is obtained by substituting u
into the continuity equation and using p = p T = constant since the flow is
unconfined and is at low Mach number. Equation (5) is obtained by taking the curl
of the momentum equation of an inviscid flow and using Vp = - p du/dt to substitute
for the pressure gradient in the baroclinic torque term to allow the integration of
the equations without explicitly computing the pressure distribution. Equations (6-
8) are the conservation of energy and species, respectively, for a reacting mixture
at finite heat and mass diffusivities. Equation (9) is the equation of state at low
Mach number in an unconfined flow.

The equations form a five-parameter system: Por Lgr Dyr Q and T,- The
properties of the solution and the characteristics of the interaction between the
flow field and the chemical reaction depend on the values, or the combination of
values, of the individual parameters. If the system is not adiabatic, i.e., TR - T°
while Tp = Tg ¥ Q, one more parameter, such as Tp/Tgs Dust be specified in the
formulation, The equations identify four different processes of turbulence-
combustion interactions: (1) the generation of an irrotational velocity due to
volumetric expansion as the temperature rises during heat release, V¢, in Egs.
(2,3); (2) the generation of baroclinic vorticity due to pressure gradient-density
gradient interactions during heat release, Vp x ¥p in Eq. (5); (3) the advection and
straining of the flame structure in Egs. (6,7 and 8); and, (4) the inhomogeniety in
the diffusive fluxes due to non-unity Lewis number in Eqs. (6) and (7).

TABLE I GOVERNING EQUATIONS

REACTION R Ik P (1)
VELOCITY us= V¢ + Wxy + u, (2)
EXPANSION Z -1 (3)
ROTATION Py = - w(x,t) (4)
VORTICITY gt(%) - - :1’2 ¥ x (%E“) (5)




—>

dr 1 2
ENERGY a-E--lz 9°T + AfQW (6)
dc
R 1
REACTANTS X - F, L, vch - AW (7)
dc
P 1
PRODUCTS a-t_-P_e-—L:vch+Afw (8)
STATE p T = constant (9)

III. NUMERICAL METHOD

III.1. THE VORTEX ELEMENT METHOD

An important step in improving the accuracy and extending the application of
vortex schemes to flow fields that develop large strain rates, such as shear layers,
is the formulation of the vortex element method.27 In this method, the vorticity
field is accurately discretized among finite elements that move along particle
paths, or particles that transport finite elements of vorticity. The strain field
is used to redistribute the vorticity among the computational elements as time
progresses so that small scales generated by planar stretch can be captured. This
allows accurate long-time computation of the vorticity field after the strain field
has developed. Capturing the strain field accurately is very important in computing
turbulent flames since: (1) it governs the mixing process, which occurs after the
original fluid layers have been stretched to very small scales, since it defines the
diffusive flux; and (2) it may lead to flame quenching, or to burning enhancement,
due to the generation of strong gradients as will be shown later. Below, we
summarize the method and show how it can be extended to compute a compressible non-
barotropic flow at low Mach number.

The vorticity field is initially discretized among vortex elements of finite
structure. The distribution of vorticity associated with each element is described
by a radially symmetric function, f&' with a characteristic radius, §, such that
most, or all of the vorticity is concentrated within |x—xi| < 8. X, denotes the
center of a vortex element at time t = 0. Vortex elements are initially distributed
within the area where |w| > 0 such that the distance between neighboring elements is
h in the two principal directicns. The accuracy of the discretization depends on
the choice of f&’ the value of h, and the ratio §/h. The strenqgth of the vortex
element located at X, which is denoted by w; is obtained from the solution of the
system of equations:

N
L

w(X,,0) =
b jul

2




where w(x 0) is the vorticity distribution at t = 0. It can be shown that fs(r) -
(1/n 8 ) exp (-r /82) leads to a second-order discretization. We found that for
accurate representation of the vorticity distribution, & must be slightly larger
than h, i.e., §/h ~ 1.1-1.3, and that h must be varied until ||I‘-£l‘ || < € and ||

w(x,0) - £ Wy h2 f (x- -X; ) |l < e. I is the total circulation of the vorticity
field, I'(x) = L I'J K(x - xj), K(r) = oj'rr' f(r')dr’ and r = |x|. I‘i - h2 is the
total circulation of each individual vortex element. || denotes the second norm and

€ is a small number which determines the accuracy.
For an incompressible flow, Eq. (5) leads to the Helmholtz theorem, which
states that vorticity is constant along particle paths, i.e.

N
wix,t) = 'zl ri fs(x-xi(xi,t)) (11)
1=
and
A - w(x (X:,t),t) (12)
dac X

where X is the particle path xi(xi,O) - X;. To obtain the velocity field of a
collection of vortex elements in the form of Eg. (1l1), we note that the stream
function of a single vortex element is obtained by integrating Eq. (4). Using polar
coordinates to integrate this equation for a vortex element placed at x=0, we get
aw&/az = -k(r/8)/r. The velocity field of a single element is thus radially
symmetric since ug= - aws/ar. The velocity field induced by a distribution of
finite-core vortex elements, of shape f8 and strength I‘i located at xi(xi't) is:

N
uw(xlt) = ifl ri Ks(x-xi(xi,t)) (13)
where Ky(x) = - LY'—E"—) K(%) (14)

r

Vortex elements move at the local velocity computed at their centers. As time
progresses, the distance between neighboring elements increases in the direction of
maximum strain such that 4x > h, where Ax is the distance in the direction of
maximm strain defined as Ax = AX.Auw/|du| and 4 is the difference operator. This
leads to a deterioration of the discretization accuracy, which requires that & > ax.
Thus, an algorithm must be used such that when aAx > gh, where 8 ~ 1.5, a
computational element is inserted at the midpoint between the original elements and
8X’' = 80X/2. The circulation of the new element, and that of the original two
neighboring elements, is one third the sum of the circulation of the original two
elemnts.27

For compressible barotropic flow, Eq. (5) shows that d(w/p)/dt = 0. Moreover,
I'= [ w dA, where A is the area, while [ p dA = constant. Thus, the circulation is
constant along a particle path — Kelvin theorem — and Eqs. (11-14) can be used to
compute the evolution of the vorticity and velocity field provided that Eq. (3) is




used to compute the irrotational component of the velocity due to volumetric
expansion, as will be shown in the next section. When Vp x ¥p » 0, the circulation
of each vortex element must be updated each time step. Using the definition of the
circulation in Eq. (5), we get:

g{"f—:-gX(gEu)dx (15)

Since I' = ¢ I‘i K(x-xi), Vo=1C Api fs(x—xi), and Api - Vpi h2 as will be shown in
the next section, Eq. (15) can be written as:

i du
® " T (F) (16)

where, according to the low Mach number approximation, Vp/p= - VI/T, while VT = L
T, fs(x-xi) and AT, = T, h:‘;. In the next section, we will show how to compute Vp,
p, VT and T, Moreover, (du/dt) i is computed by numerically differentiating the
velocity of the vortex element using a high-order formula. Equations (11) and (15)
are integrated using a fourth order Runge-Kutta-Merson method with variable time

step for error control.

I11.2. THE TRANSPORT ELEMENT METHOD

Another important development in the application of particle methods to
reacting flows is the formulation of the transport element method to compute the
temperature and species concentration distributions in a Lagrangian fom.27 In this
scheme, the gradient of the scalar field is discretized into a number of finite
elements using Eq. (10) with w replaced by g = ¥s, where s is a generalized scalar,
being either T or c. Like vortex elements, transport elements are distributed where
|9s|] > 0 and are moved with the local velocity field with time. Particles are used
to transport scalar gradients, however, contrary to vorticity, scalar gradients are
not conserved along particle paths, and should be modified according to the local
straining and tilting of the material elements. The extension of this method to
reacting flow will require changing the gradient transported by each element
according to the reaction source term in Egs. (6,7,8) in a way similar to changing
the circulation with the non-baroclinic torque. Thus, the evolution of the chemical
reaction with time will be computed in a Lagrangian frame of reference as the
interacting species flow. In the following, we describe the conservative form of
the transport element scheme and its extension to solve Egs. (6,7,8).

Initially, the scalar gradient g is discretized on a square mesh hx h
according to

N
9U%;,0) = I gy h* £yxy- X)) (an




where f&' 8§ and h have been defined before, and should be chosen to satisfy the same
requirements. Note that the values of 9 depend on the choice of h and §, and are
obtained by solving the system of linear algebraic equation formed by applying Eq.
(17) to all mesh points. To see how to transport the scalar gradient in a
Lagrangian form, we start by the incompressible, non-diffusive, non-reactive case.
If s is a passive, non-diffusive scalar, the conservation equations for s and g = Vs
are:

%-o (18)
and
gg--g.w—gxu (19)

where w = e,. Thus, s remains constant along a particle path, while g changes due
to the straining and rotation of the material 1line by the local strain field and
vorticity. If the material is exposed to a strong strain in the direction normal to
the gradient, the value of g must increase by the same amount as the stretch in the
material element. This can be seen by expanding of g in terms of n and g, where g =
|]g| and n = g/g, noting that dn/dt = - n x @ / 2 (see Batchelor3°):

gg n=-g(n. %+ % nxe) (20)

Moreover, g = (ds/dn) n ~ (88/4n) n, where &s is the variation of s across a small
material line 8n. The variation of a material vector element &n is given by
d(én)/dt = én . Yu, where &n = é&n n.3° Furthermore, for an incompressible flow,
81.8n = constant along a particle path defined by dx/dt = u(x(X,t),t). From these
kinematic ralations, the variation of the material line &1 along a particle path can
be written as:

g%l n=-38l{n. %+ % nxw) (21i)

From Egs. (20) and (21i), it follows that g/31 = constant along a particle path.
For a graphical representation of this concept, see Fig, 1. Thus, the flux
initialized by Eq. (17) evolves according to:

N
gx,t) = I gy(t) h? £.(x - X (X;,t)) (221)
1=
where
85, 81 (t)
gi(t) - T ni(t) (231)
while

W o ux (X, ,t),t)
e I




where xi(xi'o)'xi' 811 is updated using Eq. (21i) and n . 811/611 = 0. Wwhile
using Eq. (23) is equivalent to wupdating gi(t) according to Eq. (19), applying the
expression in Eq. (23i) guarantees the conservation of ssi. Moreover, instead of
integrating Eq. (21i) to update 811, one can save computational effort by recalling
that 81,(t) = (X, - X_4)/72. Thus, it suffices to move the centers of the
transport elements, while remembering the neighboring elements at t = 0 in order to
compute the scalar flux. Moreover, when an element is inserted between two
neighboring elements, in the direction of maximm strain, the values of 61i are

redistributed between the three elements. This also requires changing h2 in Egs.

(22) and (23) to hi so that the total material area is conserved. In this case, Eq.

(22) becomes

g |
9x,t) = T gi(t) By £40x - X, (X, L)) (22s)
where
Ssi Sli(t)
g;(t) = — 0 n, (t) (23s)
i

For a compressible flow, the above analysis should be modified to reflect the
fact that p 8l1.3n = constant along a particle path. Using the kinematic relations
listed above, Eq. (21i) becomes:

%E(pﬂ)n--p&(n.vu-r%nxu) : (21c)

Thus, g/(p 81) = constant along a particle path. In terms of the variational change
in s, ssi, across a meterial element 811, Eq. (23i) is modified as follows:

s, 81,(t) oy(t)
p4(0) hi(0)

g;(t) = n; (t) (23c)

The value of p is computed using the relation p T = constant, in accordance with the
low Mach number approximation, T = I T, h2 fs(x - xi)‘. Note that the area of the
material element is expanding such that p;(t) hi(t) = constant. Thus,

Ssi GIi(t)
gy (t) = —2 1 0 (e) (23c)
hf(t)
and
N
gx,t) = I gy(t) hi(t) £5(x - X, (X,,t)) (22¢)

Given the location and strength of the transport elements, the scalar
concentration can be computed as follows. By taking the gradient of Vs = g, we get
v%s = ¥.g. The solution of this equation in an infinite domsin can be written as:




s = [ V.g Gdx, where G=-1/2n 1ln r is the Green function of the Poisson equation.
This last equation shows that the transport elements act as sources of strength
equal to the divergence of the scalar flux, V.g. Integrating by parts, one gets s =
J g . WG dx. Using Eqs. (22) and (23) for g, we get:

N
sx;t) = I g(t) h2(t) . W6 (x-X (X ,t)) (24)
where
v, = (_xiﬂ K(%’) (25)

r

where k(r) = [ r’ £(r’) dr’, as defined before. If the distance between neighboring
elements in the direction of principal strains exceeds a maximum distance gh, one
element is inserted halfway between the two elements and the value of 81i and hi are
adjusted for the three elements. A recombination procedure can also be implemented
to curb the growth in the number of computational elements. The need for this
insertion-recombination procedure is more apparent here since the magnitude of the
gradient increases where the strain field is high; and to maintain accuracy, more
elements must be used to transport this gradient.

With finite diffusivity, the first term on the right hand side of Egs. (6-9)
should be simulated in the solution. In gradient form, the conservation eguation

can be written as:
gg--g.w-gxu+avzg (26)

where a is the molecular diffusivity, or the inverse of the Peclet number. At high
speed, this is typically 10%-10°. To solve Eq. (26) using the scheme that we have
developed so far, each element g; must be updated according to the diffusion

equation:

39 . o Pg (27)
T i |

without changing the shape of the core function or the value of g; - Taking & =
8(t), and substituting Eq. (17) into Eq. (27), we obtain dsz/dt = 4a. Thus, to
simulate the effect of diffusion, the core radius must grow according to:

aglitat o (28)

where so is the core radius at t = 0, If the diffusivities of momentum, heat amd
masg are different, the core of the vortex elements and of different scalar
transport elements become different as time progresses. At high diffusivities, or
small Peclet numbers, the cores of the elements will experience rapid growth and §
> gh. In this case, transport elements must be subdivided into elements with




smaller cores while preserving their total strength. However, this will not be used '
here since we are interested in cases where the Peclet number is large. Values
typical to this study are: 80 = h = 0.3, thax ™ 20, o = 0.001, and Smx = 0.41.

If the chemical source term is non-zero, then Eq. (26) is modified to become:

k+1
gg--g.vu—gxau»avzg-r jzl ggjgj (29)

where k is the number of chemical species. Using the definitions of g, the gradient
transported by each element must be modified according to:

k+l
d aw
8¢, = [ 8s (30)
In this case, the element strength should be modified as:
831(t) ali(t)
g;(t) = 3 n;(t) (23r)

hg(t)

while all the kinematic relations, and Eq. (22c) hold as before.

Recognizing the fact that hf(t) appears in the numerators of Egs. (22i), (22s)
and (22c); while it appears in the denominator of Egs. (23i), (23is), (23c), and
(23r), we will define a new quantity 4g; = gihi and rewrite these equations as:

N
glx,t) = I 0g;(t) f5(x - X (X;,t)) (31)
bg; = 8s;(t) 81,(t) n(t) (32)
N
s(x,t) = I 0g;(t) . Wg(x - X (X, L) (33)

Equations (31), (32) and (33) apply for the most general case. The transport
elements generate an expansion field as their temperatures change, according to Eq.
(3). The velocity field associated with this expansion within each element at the

low Mach number limit can be written as:
1 dT

The total velocity produced by the expansion field is:

Ny ar, .2
Y(x,t) = :1 Ti(ag)i h{(t) WGz(x-X (X,,t)) (35)




where h% is the area of the material element which is divided every time one element
is inserted due to stretch and is varied according to mass conservation, and pi(t)
h(t) = constant.

The algorithm of the transport element method proceeds as follows: (1) update
the locations of the elements X; according to the velocity at their centers using
Eq. (12); (2) update the values of 81i and n, either according to the integration of
Eq. (21) or by keeping track of the neighboring elements; (3) update the core radii
of different elements according to the corresponding Peclet number using Eq. (28);
and (4) compute the concentrations of all the scalars using Eq. (24); and (5) update
the value of SSi according to Eg. (30). In most cases, it is possible to use the
same set of particles to transport elements of different scalars, as well as the
vortex elements, resulting in substantial savings in the transport step.

IV. THE SPATIALLY-DEVELOPING, NON-REACTING SHEAR LAYER

The vortex element and the transport element methods are applied to simulate
the initial stages of development of a spatially-developing, thermally-stratified,
two-stream shear layer. On the left boundary of the domain, it is assumed that the
wake region behind the splitter plate, where the two incoming boundary layers merge
to form the shear layer, is negligibly small. Thus, at x = 0; for y > As: u->Ul =
1,7>m =1, and fory<- A, u >U2=0.333, and T » 72" = 0, where - means
"approaches asymptotically". Ag =2 02, while ¢ is the standard deviation of the
Gaussian distribution that describes the vorticity and the scalar gradients and 2 L
is the nominal shear layer thickness at x = 0. The normalized temperature is
defined as T'= (T-T2)/(T1-T2). For the results in Figure 2, &_ = 1/26.4. The
corresponding most unstable wavelength, as predicted by the linear theory, is 0.5.
Within the shear layer, the velocity and temperature distributions are represented
by error functions.

The rate at which vorticity is convected into the upstream side of
computational domain, at x = 0, is dI/dt = 4U.Um, where Um = (Ul + U2)/2. At each
time step, five elements, arranged vertically, are used to discretize this vorticity
according to Eq. (10). The potential velocity component, "p’ is computed by adding
two source flows at x = -2 and y = + 0 and y = - 0 to the velocity field in Eq. (2)
to satisfy the boundary condition at x =0. The no-flow boundary condition across
the solid walls is implemented by using conformal mapping and image vortices with
the opposite sign of vorticity in the transformed plane.7

In the solution of the enerqgy equation, the walls are considered insulated,
dT/dn = 0 where n is the unit vector normal to the wall. To satisfy this boundary
condition, the images of the temperature transport elements in the transformed plane
must have the opposite of the signs of the elements. Energy sources are utilized to
impose the boundary condition at x = 0. At the downstream side of the computational
window, x = 5, vortex and transport elements are deleted. This induces a
perturbation which ensures that the rollup and first pairing will always take place
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within the computational window. Since this perturbation is not applied in an -
organized manner, the resulting shear layer will be considered as an unforced layer.

Figure 2 shows the location and velocity of all vortex elements used in the
computations at four different time steps. The time step of the computations is At
= 0.15. The plots exhibit a very clear and accurate portrait of the rollup. During
rollup, the vorticity within the shear layer is attracted towards the center of a
large eddy, entraining fluid from both sides, and forming what appears to be a
moving focal point of a spiral. Between neighboring large eddies, a zone of strong
strain is developing where the vorticity is depleted and the scalar gradients are
growing. This "braid" zone can be described as a moving saddle point where locally
the fluid flow experiences a separation into two streams; one moving towards the
left and the other moving towards the right with respect to the saddle stagnation
point. Downstream, the process of rollup continues until a stronger perturbation
forces two neighboring eddies to interact in a pairing process. It is important to
stress that the algorithm of inserting elements as the strain field develops is
responsible for maintaining the organization of the calculation for a long time.

The natural frequency of shedding can be defined as fn- Un/x, where A\ is the
wavelength of the large eddy. The corresponding average Strouhal number, as
computed from the computational results, is Sy= l/fn- 0.033. This is the same value
as the frequency of the most unstable mode computed from the linear stability theory
of a spatially developing shear layer under the conditions described above. Results
for the growth rate, average velocity and turbulent statistics were presented in the
study of Ghoniem and Ng7 for the forced shear layer. Comparison with the
corresponding analytical and experimental data were also performed in the same
reference.

If the layer is forced at a frequency close to the most unstable mode by
oscillating the incoming vorticity layer according to &y = ag sin (2 n 2 t), where
dy is displacement of the center of the vortex element due to forcing and ag and 2
are the amplitude and frequency of forcing, the evolution is expected to be more
organized.7 In Fig. 3, we plot the results of such a case with a, = 0.025 and Q =
(xf/un) = 1.33, where A\, is the wavelength of forcing. The evolution of the eddy
which has the forcing frequency through the various stages of rollup is shown
clearly at each time step when moving downstream, or with time when observed from

the same location.

The effect of rollup on the temperature distribution within the eddy is shown
in Fig 4. Here, we plot the temperature distribution across several sections
downstream, superimposed on the distribution of vortex elements at the same
location. 1In these plots, we assume that the thermal diffusivity is negligibly
small, and we concentrate on the effect of the convection field on the entrainment
of hot and cold fluid within the large eddies. Note that the temperature profiles
become more rugged as the core spins further, and that the temperature distribution
is. not symmetric around the midsection of the eddy.

The high resolution of the transport element method demands the use of a large
number of computational elements. Moreover, the number of elements grows rapidly
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with time due to the severe stretch produced in the shear layer. This makes the

computation of a wide window, which contains a number of successive eddies, rather
expensive. In the next section, we direct attention towards a model of this problem
that requires less effort computationally while essentially preserving all the
physical processes involved in the spatially developing layer. This is the temporal
shear layer model in which a computational window that moves at the average speed of
the flow is imposed on a single wavelength while the eddy is growing.

V. TEMPORALLY-DEVELOPING, REACTING SHEAR LAYER

Computational results showing the evolution of a large eddy in a temporal shear
layer are presented in Figure 5. In this case, the boundary conditions are
periodic, i.e., w(x,y,t) = w(x+\y,t) and u(x,y,t) = u(x+\y,t), where X in the
wavelength of the perturbation. Since detailed analysis of the evolution of the
temporal, thermally stratified shear layer was presented in Ghoniem et a1.27, it
will not be repeated here. The qualitative resemblance between the development of
large eddies in a spatial and a temporal shear layer is clearly seen by comparing
Figs. 3 and 5. Moreover, the shedding frequency, i.e. the frequency of the most
amplified mode, is almost the same in both cases. However, the growth rate of the
perturbation is different since it depends on the velocity ratio across the layer; a
parameter that does not appear in the analysis of the temporal layer. Moreover, the
asymmetric growth of the eddies, which is observed in the spatially-growing case,
Fig. 3, is not present in the temporally-developing layer results, Fig. 5.

In the computation of the temporal layer, the window is limited to one
wavelength and one can afford to use more elements within the domain to improve the
resolution. One can also conduct, inexpensively, parametric studies on the effect
of various physical parameters that appear in the model, Egs.(1-9). Thus, the
temporal layer will be used as a model for the spatial layer to study turbulence-
combustion interactions in shear flow. Since the flow is unconfined, the
wavelength 8, is used instead of H to non-dimensionalize the length.

The temperature profile across the midsection of the eddy is exhibited in Fig.
6. The rollup brings fluid from one side to the opposite side, while stretch
increases the gradient across each layer. Thus, the rollup of the shear layer is
the mechanism of entrainment that leads to strong mixing enhancement as the two
fluids diffuse across the stretched interface. The temperature profiles show that
after the relaxation of the first rollup, a secondary instability develops which
forces the core through another turn, creating a more ragged temperature
distribution. It is also noticed, by comparing Figs. 4 and 6, that the asymmetric
growth of the spatially-developing layer is responsible for creating asymmetric
temperature profiles across the midsection of the eddies. The relationship between
these temperature profiles and the asymmetric entrainment observed in experimental
measurements32'33 will be explored in detail in future studies.34




Since rollup is associated with strong stretch that reduces the thickness of
the material layers, it increases the gradients across these intertwining layers,
thus enhancing the diffusion fluxes. Quantitatively, the rate of mixing can be
expressed as M= q .n da, where q is the diffusion flux, n is the unit vector
normal to the material surface, and da is the surface area element. Moreover, for
two—dimensional flow, da = dl, and since q / 81 = constant, then M is proportional
to (81)2. The net result is that stretch by a factor T enhances mixing by a factor
Cz. The quadratic rise in mixing during rollup is expected to have a significant
effect on the rate of reaction.

In the reacting layer calculations, the full system of equations is integrated
using particles which transport vortex elements, temperature gradient elements, and
reactant and product gradients elements. At time t = 0, the vorticity layer and the
flame front coincide, and the thickness of the vorticity layer as well as the flame
thickness are equal. A small sinusoidal perturbation with amplitude € = 0.05 X is
imposed on both distributions. The first case to be computed corresponds to the
following set of parameters: Po= 200, L= 1, A~ 1, Q@ =4, T~ 10 and n = 1. The
corresponding Damkohler number, measured at the conditions of maximum reaction rate,
is around 0.02, and the temperature ratio across the layer is Tp/Tg = 5.*1

Figure 7 shows the results for the reacting shear as the rollup and the
chemical reaction porceed simultaneously. At the early stages, the reacting eddy
strongly resembles the nonreacting eddy shown in Fig. 5. However, as rollup starts,
the following is observed: (1) a swelling, due to the increase in the rate of heat
release, continues as more reactants are entrained into the burning core; (2) the
growth of the instability, as measured by the angle between the major axis of the
elliptical structure and the main stream direction, is encumbered because the
volumetric expansion causes the vorticity intensity to decrease and the eddy to
become weaker and less coherent; and (3) the eddy loses its symmetry and becomes
eccentric due to the asymmetric expansion, and due to the generation of a baroclinic
torque associated with density gradients. As more of the initial core is burnt, the
fluid inside the eddy ceases to spin, contrary to the nonreacting case in which the
secondary instabilities force the core to continue its spinning. Meanwhile
reactants move through the side to enter the reaction region.

These numerical results agree qualitatively with the experimental results of
Keller and Dailys on the reacting premixed shear layer at intermediate values of the
equivalence ratios. The Schlieren photographs of the experiment show that as the
equivalence ratio is increased, the rate of growth of both the individual eddies as
well as the entire shear layer, increase due to heat release. In the meantime, the
rollup of individual eddies slows down, leading to the formation of elliptical

1*In the following results, the value of h in Eq. (23c) was taken as a constant for
all elements and for all times,. In more recent computations, when we varied h
with stretch and expansion, while all the trends were the same, the rate of
reaction was found to be less than what was obtained with constant h. Thus, the
results will only be interpreted qualitatively.
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eddies. The major axes of the eddies remain at a finite angle with respect to the

streamwise direction. Moreover, at low equivalence ratios, most burning occured
within the cores of the eddies, and the flame did not leave the shear layer.

On the same figure, a solid line is plotted through points of maximum reaction
rate. The line indicates where the flame front, or the maximum heat release rate,
is within the shear layer. Below this line, the product concentration approaches
unity and the temperature reaches Tp. During the early stages of rollup, the line
of maximum reaction rate follows one of the material lines closely, i.e., the growth
of perturbation merely changes the topology of the flame front. At later stages,
this line, while staying close to another material 1line, forms a boundary of the
products across which the reactants are entrained into the burning core. Below this
line, where products form, the core almost ceases to rotate. At the last stage of
burning of the eddy, the two sides of the flame within the core burn to close this
entry way, and the flame moves out of the eddy and becomes an ordinary laminar
flame.

The effect of heat release on the structure of the eddy, which is generated by
the rollup of the shear layer, can be seen from the temperature profiles across the
midsection of the wavelength, shown in Fig. 8. Since the Lewis number is one, Cp =
1 -(T- TR)/Q. As reactants are entrained into the core of the growing eddy from
the right side, a Z-shaped flame is formed. At the initial stages where the rate of
entrainment is faster than the rate of burning, the flame extends deeper into the
lower stream. As the reactants within this zone burn, heat is released within the
core of the rotating eddy, causing the eddy to swell, while maintaining its
elliptical shape. The baroclinic vorticity generated around this zone causes the
observed eccentricity of the large eddy. The temperature profiles show that the
higher order instabilities observed in the nonreacting case are suppressed by the
heat release, and that the core of the eddy stops its rotation. As the reactants
within the eddy burn, the flame leaves the structure and moves into the reactants.
This results in the formation of a temperature profile which is very similar to the
temperature profile at t=0.

Figure 7 also shows the effect of rollup on the shape of the flame front,
which, as will be shown in the next paragraph, has a strong effect on the overall
rate of burning and the local burning velocity. In the early stages, and until t ~
7, the flame front maintains its sinusoidal shape and its length is approximately
the same as the flame length at t = 0. In the second stage, and as the eddy starts
to roll up, the flame front forms a fold within the eddy. Within this fold,
reactants are trapped, and a situation in which two flames are burning towards each
other is created. Rollup increases the length of flame front and exposes the flame
to a strong strain. The extent of the fold within the eddy is limited by the
consumption of the reactants trapped between the two sides of the flame front. It
is also limited by the fact that burning inhibits the spinning of the core. The
consumption of reactants and the continuous stretch of the flame reduces the
distance between the two folds around t ~ 15, and the two flames become much closer

to each other than before.




To study the effect of the shear layer on the chemical reaction, we plot the °
total mass of products, Mp, formed since the rollup starts at t = 0 on Fig. 9. At
the early stages, when the flame stretch is negligibly small, the rate of burning is
linear and identical to that of a laminar flame. As the layer starts to roll up,
the area of the reaction surface increases and the flame is convoluted around the
growing eddy. The increase in the flame area, or length in a two-dimensional sense,
Le, due to its folding within the eddy is shown in Fig. 10. The rate of product
formation, ﬁp, which is the slope of the curve in Fig. 9, can be approximated by the
product of the flame length times the average burning velocity along the flame, S,
Since M_ is almost constant in the second stage, then the value of Su must be
decreasing with increasing L. Thus, as the flame stretches, its burning velocity
decreases. This is in accordance with the previous results on stretched laminar
flames at high strain r:a':es."’s'36 In both studies, a drop in the flame burning
velocity and partial extinction was observed as the strain rate was increased.

The drop of the local burning velocity when a strain rate develops along the
flame can be explained as follows. As the strain rate along the flame front becomes
finite and positive, the local gradients normal to the front increase, enhancing the
diffusion fluxes of heat from and of reactants into the flame. This can lead to
flame cooling if the chemical time scale is relatively large, i.e., if the reaction
is not fast enough to produce heat that could balance the cooling effect of the
diffusion fluxes. Moreover, cooler flames burn slower than adiabatic flames. Thus,
strong strain may lead to slower flames at moderate value of the reaction rate.

In Fig. 11, we plot the temperature T, the strain rate s, and the rate of
expansion e, along one particular layer of fluid within the reacting eddy. The rate
of expansion is an indication of the rate of temperature rise due to the combined
effect of diffusion and chemical reaction, as seen from Eq. {(6). The layer along
which these parameters are plotted is shown in Fig. 12. FPigure 11 shows that within
the fold of the flame, the temperature is very close to the temperature of maximum
reaction rate, indicating that most of the burning occurs within the eddy core.
This is in agreement with the experimental results.s On the other hand, the
temperature at the side of the eddy which is exposed to the reactants is relatively
low, and burning is not expected to proceed at an appreciable rate there.

When we decrease the frequency factor to A, = 0.5, which reduces the Damkohler
number by the same ratio, we see a stronger effect of stretch and a better
disctinction between the different stages of development. For this case the large
eddy is shown in Fig. 13 at t = 17.57, while the total mass of products is shown in
Fig. 14. The swelling of the eddy is reduced since the rate of chemical reaction is
one half of its value in the first case. Figure 14 shows that at the early stages,
the reaction proceeds in the same way as before: a laminar flame followed by a
stretched laminar flame. Around time t = 14, the slope of the curve of Hp vs. t,
i.e. Mp = Su Lg, increases. While the value of Su is still decreasing as the flame
length increases, its value is somewhat higher than before. A possible explanation
for this phenomenon can be found by observing that the two sides of the flame fold
become much closer around t = 14, as seen in Fig. 7. As the two sides of the flame
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fold approach each other, the temperature of the reactants trapped between the two
sides rises. This leads to an increaze in the burning velocity.

At t = 17.57, the reaction slows down approaching a state of total extinction,
as shown by the total mass of products exhibited in Fig. 14. To explain what
happens around extinction, we refer to Fig. 15. In this figure, plots of T, s, and
e are shown along one particular layer at t = 17.57. The geometry of the same layer
is shown in Fig. 16. Plots for e show that the temperature is falling and the layer
is experiencing cooling. This is in spite of the fact that T corresponds to maximum
reaction rate along most of the layer. Moreover, the values of T and s are now
negatively correlated, i.e. temperature maxima correspond to minima in s, and § and
e are also negatively correlated. The strain thus cools the flame leading to its
eventual extinction

when the frequency factor is lowered further to Ag = 0.25, extinction occurs
earlier at around t = 10, as shown in Fig. 17. A laminar flame at the same
condition shows the expected linear rise in Mp. These results confirm that the
local burning velocity decreases with stretch, and that this phenomena i3 caused by
the imbalance between the rates of diffusion and the rate of the chemical reaction.

VI CONCLUSIONS

Numerical methods enable one to: (1) integrate elaborate and detailed models,
which cannot be done analytically, so that complex mechanisms may be revealed and
analyzed; and (2) provide detailed information about the flow field which may not be
possible using traditional experimental techniques. Computer output, rich in data,
offers the challenge of extracting and presenting valuable information about the
phenomena under investigation. Finding the appropriate diagnostics to probe
computational results represents half the journey to reaching the conclusions.

In this article, we have introduced the transport element method; a Lagrangian
particle scheme based on the discretization of the vorticity and the gradients of
the scalars into finite elements. The particles move along material lines, in
accordance with their transport equations. As strong strains develop in the dynamic
field, the finite elements may change their shape or configuration to accommodate
the distortion which is produced by these strain fields. In case of chemical
reaction: (1) the strength of the elements, i.e. the source strength, changes
according to the rate of reaction; and (2) the chemical heat release induces
volumetric expansion and non-baroclinic vorticity into the dynamic field.

The simplest model which can be proposed to study turbulence-combustion
interactions contain five parameters: (1) the Peclet number which defines the ratio
between the rate of convective and diffusive heating; (2) the Lewis number which
represent the ratio between the rate of heat and mass diffusion; (3) the frequency
factor which defines the ratio between the rate of chemical reaction and mass
convection; (4) the activation energy of the reaction; and (5) the enthalpy of
reaction. The outcome of these interactions can, thus, be presented on a five-




dimension space where one can identify several subdomains for burning enhancement,

flame extinction, flame oscillations, etc. To accomplish this goal, computations
must be performed for a matrix of parameters. The compiled data can then be plotted
on this space. Under the idealization of high activation energy and thin flame
structure, results of the asymptotic analysis can be used to fill some parts of this
space and show the limiting trends38'39'40.

In this article, we presented results for the effect of changing the frequency
factor, which leads to changing the Damkohler number, at fixed values of the rest of
the parameters. We showed that for Pe = 200, Le -1, Ta = 10 and Q =4, at Af- 1.0,
the stretch associated with the rollup of large eddies in the mixing layer enhances
the rate of reaction by extending the flame surface area within the large eddies, in
spite of the fact that the local burning velocity decreases as the flame surface is
stretched. At lower values of Ag, combustion is interrupted under strong stretch,
and the lower the values of Ag become, the earlier the flame is extinguished. This
is due to the fact that the rise in the mass flux into the reaction zone and the
heat flux out of the flame is not balanced by an increase in heat release by
chemical reaction within this zone. The reaction zone is thus cooled, followed by
the extinction of the flame. Work is underway to vary the rest of the controlling
parameters and study their effect on flame stability.

ACKNOWLEDGEMENT

This work was supported by the Air Force Office of Scientific Research Grant
AFOSR 84-0356, the U.S. Department of Energy, Office of Energy Utilization,
Conservation and Utilization Technologies Program Contract DE-AC04-86AL16310, the
National Science Foundation Grant CPE-8404811, and the Edgerton Professorship at
M.I.T.

REFERENCES

1. Libby, P.A. and Williams, F.A., eds., Turbulent Reacting Flows, Springer-
Verlage, Berlin, 1980, xiii + 243 p.

2. Chigier, N.A., ed., Progress in Energy and Combustion Science, special issue on
Turbulent Reacting Flows, 12, (1986) »

Brown, G.L. and Roshko, A., J. Fluid Mech., 64, 775 (1974).

. Ho, C.-H., and Huerre, P., Ann. Rev. Fluid Mech., 16, 365, (1985).

Keller, J.O. and Daily, J.W., AIAA J., 23, 1937, (1985).

Ghoniem, A.F. and Ng, K.K., Phys. Fluids, 30, 706, (1987).
. Broadwell, J.E. and Breidenthal, R.E., J. Fluid Mech., 125, 397, (1982).

3
4
5
6. Mungal, M.G., and Dimotakis, P.E., J. Fluid Mech., 148, 349, (1984).
2
8
9

Driscoll, J.F., Tangirala, V. and cChen, R.H., Combust. Sci. Tech., 51, 75,
{1986).

10. Kelly, J. private commmications.
11. Hald, O., SIAM J. Num. Anal., 16, 726, (1979).




12.
13.
14.
15.
16.
17.

18.

19.
20.
21.

22,
23,
24.

25.

26.
27.
28.
29.

30.
31.

32.
33.
34.
35,

36.

Beale, J.T. & Majda, A., Math. Comp., 39, 28, (1982).
Anderson, C., J. Comput. Phys., 61, 417, (1985).

Corcos, G.M. and Sherman, F.S., J. Fluid Mech., 139, 29, (1984).

Grinstein, F.F., Oran, E.S. and Boris, J.P., J. Fluid Mech., 165, 201, (1986).

Riley, J.J., and Metcalfe, R.W., ATIAA paper 80.0274.

Ashurst, W.T., in Turbulent Shear Flows, ed. Durst et al. (Springer-Verlag,
Berlin, 1979), p. 402.

McMurtry, P.A., Jou, W.A., Riley, J.J., and Metcalfe, R.W., AIAA Journal, 24,
962 (1986). -

Ghoniem, A.F. and Givi, P., AIAA paper 87-0225.
Chorin, A.J., J. Fluid Mech., 57, 785 (1973).

Chorin, A.J., "Vortex models and boundary layer instability." SIAM J. Sci.
Stat. Comput., 1, 1980, pp. 1-24.

Leonard, A., J. Comput. Phys., 37, 289 (1980).

Ghoniem, A.F. and Gagnon, Y., J. Comput. Phys., 68, 342, (1987).

Sethian, J.A. and Ghoniem, A.F., "Validation of the vortex method," J. Comput.
Phys., to appear.

Ashurst, W.T. and Barr, P.K., "Lagrangian-Eulerian calculation of turbulent
diffusion flame propagation,” Sandia Report SAND80-9950, Sandia National
Laboratories, 1982.

Ghoniem, A.F., Chorin, A.J. and Oppenheim, A.K., Phil. Trans. Roy. Soc. Lond.,
A304, 303, (1982).

Ghoniem, A.F., Heidarinejad, G. and Krishnan, A, "Vortex element simulation of
the rollup and mixing in a thermally stratified shear layer," J. Comput. Phys.,
submitted for publication.

Leonard, A. Ann. Rev. Fluid Mech., 17, 523, (1985).

Ghoniem, A.F., Knio, O.M., and Aly, H.F., AIAA Paper 87-0379.
Majda, A., and Sethian, J.A., Combust. Sci. Tech., 42, 185, (1987).

Ghoniem, A.F., Lectures in Applied Mathematics, 24, ed. by A. Ludford, 199,
(Amer. Math. Soc., 1986), p. 199.

Koochesfahani, M.M., Dimotakis, P.,E. and Braodwell, J. E., AIAA Journal, 23,
1985, pp. 1191-1194.

Dimotakis, P.E., AIAA Journal, 24, 1986, pp. 1791-1796.

Krishnan, A., and Ghoniem, A.F., "Baroclinic effect of a density stratified
shear layer,” for presentation at the 1lst National Congress on Fluid Dynamics,
Cincinati, OH, July 1988.

Darabiha, N., Candel, S.N. and Marble, F.E., Combust. Flame, 64, 1986, pp. 203-
217.

Giovangigli, V. and Smooke, M.D., J. Comput. Phys., 68, 1987, pp. 327-345.




37. Rogg, B., "Response and flamelet structure of stretched premixed methane-air
flames,” Combust. Flame, 1987, in print.

38. Clavin, P., Prof. Enerqy Combust. Sci., 11, 1 (1985).

39. Wwilliams, F.A., Combustion Theory, 2nd ed., Benjamin/Cummings, 1985, xxiii +
680 p.

40. Buckmaster, J.D. and Ludford, G.S.S., Lectures on Mathematical Combustion,
SIAM, 1983, V + 126 p.

S
2 és 2 - 1
S $ 4 d ¢+ 44 8= - 8n

(b)

. Schematic sketch showing the evolution of a material layer
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Figure 2. The development of large scale vortex structures in an unforced,
spatial shear layer. Each point in the figure represents a vortex element
and the line attached to it is the velocity vector. The velocity ratio

across the layer is 3:1.




STEP-188 TIME-27.80 ELEMENTS-13363(13383)

STEP-188 TIME-28.20 ELEMENTS-12441(12441)

STEP-199 TIME-28.50 ELEMENTS-11104(11134)

STEP-162 TIME-28.80 ELEMENTS-10857(10657)

Figure 3. The development of large scale vortex structures in a forced,
spatial shear layer with the same velocity ratio as in Pig. 2. The forcing
frequency is 1.333.




*¢ *b1a uy zeket @
103 SUOTIOSS 95015 pIJOSTas $80I0R UOTINGTIISIP ousuﬂu&_ow u:_w ) o.mzmuw

90+300 -VHd IV
28 82- Wil
BLG 2-X

00+300 -VHJWV 00+ 300 -VHd W 00+300 -VHd W
@8°82=MIL 08°82=-MIL 28°82=MI1L
0<O° [ -X #e1°1-X 889°8-X




TIME = 0.00 ELEMENTS = 270

TIME = 16.00 ELEMENTS = 902

TIME = 4.00 ELEMENTS = 310

TIME = 20.00 ELEMENTS = 1263

ELEMENTS = 428

TIME = 8.00

Figure 5. The development of a large eddy in a temporally growing shear

. layer.




ﬁ
" A " " Aed,

o y of
L
"8 A - e, e, e, e U _8 — I S S S I S S N S
0.0 1.0 0.0 1.0
T T
TIME = 0.0 TIME = 12.0
8 8 ——
- W >
4 + 4
! ;
0 y 0Ot 1
!
—8 e - N o . P — -8 -y A e -
0.0 1.0 0.0 1.0
T T
TIME = 4.0 TIME = 16.0
8 e T
| | | +
4 3 T
ot y o} ‘
o - r L
L 1 i 1
8- T 8
0.0 1.0 0.0 1.0
T T
TIME = 8.0 TIME = 20.0

Figure 6. Temperature distribution across the midsection of the large eddy
shown in Fig. 5.




-

3.50

me

T

14.06

Time =

.54

17

Time

in a reacting temporal shear layer
The solid line defines the flame

S.

7. The development of a large
conditions as in Pig.

at the same
front.

Pigure




TEMPERATURE OISTRIBUTION - TEMPERATURE QISTRIBUTIGN
STEP~ 0 TIME- 0.000 X- 6.5 STEP- 160 TIME- B.032 X- 5.8
20w 201

1 1

4

y y

01 01

4 4
-20 —_— —_ -20 —_—

1 5 1

T T 5

m *
TEMPERATURE OISIRIBUTION TEMPERATURE O1STRIBUTION
STEP= 280 TIME~ 14.0S5 X=- 6.8 STEP- 400 TIME~- 20.004 X~ 6.6
20 20;
- L
y y 1
01 01
1
4 1
-20 - =20 — .
5 1
1 T T 5

Figure 8. Temperature distribution a
Lo gl cross the midsection of the reacting




PROOUCT CONCENTRATION FLAME LENGTH
LEWIS NUMBER= 1.000 . PECLET NUMBER=~ 200.0
ZOW
404
M
P L 1
10 £
201
1 4
0 eal— 0 . ————
15 2 1 25
5 . .5 5 £ 5
Figure 9. Total mass of products M Figure 10. The total 1length of the
fgrmed Since t = 0, in the reactina flame in the reacting shear layer of
mixing layer with Ag = 1.0. figure 7.
STR.RATE AND TEMP.ALONG LAYER EXP. RATE ALONG LAYER
ST.=350 T=17.49 LAYER=- 8 ST.~350 T=17.49 LAYER- 8
11 11
"
1 T :
. é \
° o] 0
8
1 1
-1 ' i . -1 ﬁﬁ i -
0 35 0 35
L L
(a) (b)
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ABSTRACT
Numerical simulation, using the transport
element method, is applied to study mixing of a
passive scalar 1In a spatially-developing shear
layer, and to investigate the interaction between
the flow and the chemical reaction in a
temporally-growing, premixed shear layer. In the

first case, instantaneous scalar profiles exhibits
mixing asymmetry and the skewness of concentration
fractions within the cores in favor of the high-
speed stream. Mixing statistics of a passive
scalar agree well with the experimental
measurements of Masutani and Bowman in a two-
dimensional shear layer, and emphasize the effect
of molecular diffusion on mixing. In the second
case, two processes are identified as most
important in flow-chemistry interactions: the
production of vorticity due to baroclinicity, and
the generation of strong entrainment fluxes due to
roll-up. Baroclinic vorticity imparts a finite
veloclity on the growing eddy, delays its
transition into the non-linear stages, and results

in asymmetric entrainment. Results on the
variation of the eddy velocity with density
stratification agree with Dimotakis formula.
Entrainment, leading to the extension of the

apparent flame length, augments the rate of
combustion during the formation of the eddy. At
later stages, flow 3straln reduces the rate of
burning measured along the line of maximum
reaction rate.

I. INTRCDUCTION

Reacting shear layers have been the subject
of extensive investigation as models of turbulent
diffusion and premixed flames (see, e.g., Mungal
and Dimotakis [1], Masutani and Bowman [2], Keller
and Daily [3] and Jou and Riley [4].) The flow
configuration, which represents a generic model cf
many mixing and combustion systems, {8 used to
improve the mixing and to stabilize the chemical
reaction at nigh speeds. It is also simple enough
to allow accurate and detailed experimental
measurement employing modern diagnostic
techniques. The experimental maps can then be
used as data bases in the validatlion of the

Copyright 1988 by A.F. Ghonlem. Published by
the American Institute of Aeronautics and
Astronautics, Inc., with permission.
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numerical modelling and simulation of the same
flow field. In this work, we utilize numerical
simulation to develop a predictive capability for,
and to study the dominant physical processes in a
reacting shear layer,

The extension of the
between the two streams due to the roll-up of the
vorticity layer, and the associated growth of
scalar gradients, lead to the augmentation of
mixing between the two streams. During the course
of the study of mixing iIn a shear layer, it was
found that mixing dynamics depends, to varying
degrees, on: the velocity ratio across the layer,
the molecular diffusivity of the transported
species, the size and frequency of the
perturbation at the upstream boundary, the density
ratio across the layer, and the amount and rate of
heat release. The mechanism governing mixing and,
in particular, how each of these parameters can
quantitatively affect the rate of mixing, has been
under investigation. The 1influence of some
parameters, such as the velocity ratio and the
properties of the perturbations, have been
elaborated, However, that of other parameters are
st{ll not fully understood.

material interface

Improving mixing is one mechanism by which
turbulence can affect combustion, Another
mechanism involves the development of a strong

strain fleld within the combustion zone and along
the reaction fronts. The Interaction between a
premixed combustion zone and a strain field can be
particularly important under non-adiabatic
conditions and when the Lewis number of the
species that controls the rate of chemical
reaction 1is different from unity (Libby and
Williams [5,6] and Darabiha et al. [7]). Changing
the mixture stoichliometry may emphasize the effect
of strain on the combustion process (Keller et al.
[8] and Peters and Williams [9]1.)

In the mean time, heat release due to
combustion i3 expected to influence the dynamic
field in at 1least two ways: volumetric expansion
and baroclinic vorticity generation. Thus, and
depending on the amount and rate of heat release,
turbulent reacting shear layers may have different
dynamics than that of a non-reacting layer. The
processes of interaction between turbulence and
combustion form a closed feedback loop since the
vorticity fileld, which is perturbed by heat
release, controls mixing dynamics.

Lagrangian calculations of mixing of a
passive scalar in a shear layer was first
performed by Ghoniem and Givi {10], using the

scalar element method. This stochastic method is
based on the representation of the mixing species
by a number of "particles" that move with the
local convective velocity and diffuse by random
walk. The method, while lacking resolution within
the areas of strong strain field, was able to
predict the shape of the profiles describing the
mixing statistics. However, some of the numerical




values did not match the experimental
measurements. Because it 1lost resolution around
the areas of strong strain, the method could not
be used in the reacting flow calculatjons.
Moreover, the method could not be extended to
handle compressibility effects.
In a continuing effort
numerical methods for reacting flows, we
formulated the vortex element method and the
transport element method (Ghoniem et al.
[11,12,13). Both methods are based on the
accurate discretization of flow gradients, which
may be the vorticity or the scalar gradients, into
finite elements which are transported along
particle paths. The distortion of the flow map
due to the development of strong strain is
accommodatend by rediscretizing the field of the
transport e&lements among a larger number of
elements distributed in areas of strong strain.
The strength of the vortex elements change with
barocliniecity, and that of the scalar gradient
alements vary with strain and chemical reaction.
In this paper, we present results for the
application of these methods to mixing and
chemical reaction in a shear layer. In Section
IT, the physical model governing a reacting,
premixed shear layer 1is formulated. The dynamic
effect of heat release, associated with volumetric
expansion and the establishment of density and
pressure gradients, are emphasized. The numerical
schemes applied to obtain solutions for the model
equations, the vortex element method and the
transport element method are summarized in Section
II1. Results for mixing in an incompressible,
spatially-growing shear layer are presented and
analyzed in Section 1IV. Experimental data of
Masutani and Bowman [2], which we will call M&B
2], are used to establish the accuracy of the
numerical solution. In Section V, we study
solutions »f a reacting, temporally-growing shear
layer. Mechanisms of entrainment asymmetry due to
density stratification, and augmentation of
reaction due to entrainment are investigated in
detail. The paper is concluded in Section VI.

to develop accurate

II. FORMULATION

The medel is formulated on
following 1issumptions:

(1) at the inlet section, the reactant, R, and

product, P, witn concentrations Cro and Che in the

top high-speed and bottom low-speed streams, flow
at velocities Y! and U2, respectively;
(2) chemistry is governed by a single-step, first-
order, irreversible, Arrhenius reaction, R --~* P;
{3) the Mach number is small, and hence, pressure
is taken a3 a constant i{n the equation of state
and the energy equation;
f4) both the reactant and product behave as
perfect gases with equal molecular weights and
specific heats; and
(5) the thermal and mass diffusivities are
constants, but not necessarily equal, while the
effect of viscosity is neglected.

Under these conditions, the non-dimensional
form of the conservation equations governing a
twi~dimensinnal, unsteady, reacting flow are:

the basis of the
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Trer g M
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Ty = - wix, t) (2)

a @y L1 du

at(;) = 5 Vo X (dt) (3)
o

dT 1 2

—E = F— VT + Af QW (4)

e
ds 1 2
3t Pe T V's =+ Af W (5)

where the velocity is decomposed as: u = V¢ + Vxy
+up, and the equation of state is: p = p T. The

definition of the symbols is: d/dt = 3/3t + u.V, u
= (u,v) is the velocity, x = (x,y) where x is the
streamwise direction and y 1is the cross-stream
direction. t is time, ¢ is a velocity potential,

v =y e, is a stream function defined such that U

= Wxg= (3y/3y,~-39/9x), and w e = Vxu is vorticity.
up is a potential velocity, V.up = 0, added to

satisfy the normal boundary condition across the
boundary of the domain. c¢ is the concentration

per unit mass, T is temperature. V and V2 are the
gradient and Laplacian operators, respectively.

Af W is the rate of product formation per unit

mass per unit time, and W = Cq exp (-Ta/T).

Variables are non-dimensionalized with
regspect to the appropriate combination of the
velocity of the high speed stream U1, the channel
height H, the free stream reactant concentration,
¢, , and the free stream reactant temperature at x

Ea/(RgTo)’ where Ea

Ro

= 0, T. T
o a

activation energy and Rg

is the
is the gas constant. Q =
Qh/(CpTo)’ where Qh is the enthalpy of reaction
and Cp
Pe = U1 H/a 1is the Peclet number,
k/(pCp) is the thermal diffusivity. A, = A H/U1,

f
factor of the chemical

is the specific heat at constant pressure.

where a =

where A is the frequency

reaction rate constant. Le = a/D is the Lewis

number.

Equation (1) is obtained by substituting the
decomposition of u into the continuity equation
and using p = p T = constant since the flow is
unconfined and is at 1low Mach number. Equation
(3) is obtained by taking the curl of the momentum
equation of an inviscid flow and using ¥p = - o
du/dt to substitute for the pressure gradient.
This allows the integration of the equations
without explicitly computing the pressure
distribution. Equations (4) and (5) are the
conservation of energy and species, respectively,
for a reacting mixture at finite thermal and mass
diffusivities. For the reactant, s = cR. the
source term is negative; for the product, s = CP’
For more detail on
see Ghoniem et al.

the source term is positive.
the development of the model,
{12,137,

III. NUMERICAL METHODS
III.t. THE VORTEX ELEMENT METHOD
In this Lagrangian, grid-free scheme, the
vortieity field is discretized among finite
elements that move along particle paths:




w(x,t) =

. Iy fs(x—xi(t)) (6)

N
¢
L
=1

The distribution of vorticity associated with each
element i{s described by a radially-symmetric core
function, rG. with a characteristic radius, §,

such that most, or all of the vorticity is

within r < §, vwhere ra- x2+y2.
initially distributed in the
area where |w| > 0 such that the distance between
neighboring elements is h in the two principal
directions. The accuracy of the discretization

depends on the choice of fG, the value of h, and
the ratio &§/h. A Gaussian distribution, fs(r) =

concentrated
Vortex elements are

(1/52) exp (—r2/62), leads to a second-order
discretization. We found that for accurate
representation of the vorticity distribution, §
must be slightly larger than h, i.e., &/h = 1.3.

The equations describing the vortex scheme
are summarized as follows:

9 = u(y (0),8) €9
dt
N
uw(x,t) - 121 ry Ks(x-xi(t)) (8)
_ by, =x) r
K (x) = = k() (9)

r

where ‘1(0)’x1' and «(r) = Ofr r' f(r') dr'.

According to Eq. (7), vortex elements move at
the local veloclty evaluated at their centers. As
time progresses, the distance between neighboring
elements increases In the direction of maximum
strain rate such that Ay > h, where Ay is the
distance in the direction of maximum strain
defined as Ay = (Au.Ax)/|Au|l and & 1s the
difference operator between neighboring elements,
This leads to a deterioration of the
discretization accuracy since the latter requires
that § > Ax. Thus, an algorithm must be used such
that when Ax > hg,., where hp,./h = 1.5, a
computational element is inserted at the midpoint
between the original elements. The circulation of
the new element, and that of the original two
neighboring elements, is one third the sum of the
circulation of the original two elements, for more

detail on the vortex element method, see Ghoniem
et al. [(11].
When Vp x ¥p s 0, the circulation of the

vortex element must be updated each time step.
Since I' = ¢ ry x(x-xi) and, and Vp/p = - VI/T,

while as will be shown in the next section, VI = £
AT1 fs(x-xi). then:

ffl - fil x (34 (10)
t Ti dt’i

In the next section, we will show how to compute
AT and T. (du/dt)1 is computed by numeriecally

differentiating the velocity of the vortex element
using a high order formula. Equation (10) is
integrated using a fourth order Runge-Kutta-Merson
method with variable time step for error control.

The velocity field produced by the
volumetric expansion  due to  combustion |s
described by the solution of Eq. (1). Written in

terms of Lagrangian
expansion velocity is:

transport elements, the

Ny ar, 2
Vo(x,t) = 121 Ti‘EE’x (L) Vo, (x-x, (t)) (11)
. x.y) r
V06 5 K(G) (12)
r
where hf is the material area associated with

the transport element {.

III.2. THE TRANSPORT ELEMENT METHOD

In this scheme, the gradient of the scalar
field is discretized into a number of finite
elements using Eq. (6) with w replaced by g = Vs,
where 8 is a generalized scalar, being either T or
C:

N
gix,t) = 121 b, (£) fo(x = x () (13)

Similar to vortex elements, transport elements are
distributed where |Vs| > 0 and are transported at
the local velocity flield. However, contrary to
vorticity, scalar gradients are not conserved
along particle paths, and should be modified
according to the local strain and the tilting of
the material elements. Moreover, the evolution of
the chemical reaction with time will be computed
in a Lagrangian frame of reference as the
interacting species flow, In the following, we
summarize the equations describing the transport
element scheme:

Agl(t) = Gsi(t) Gli(t) nl(t) (14)
2 2

85 =65 +Hat (15)
k+1

d dw

— 63, = ) D = (s, ) 63 (16)

dt i 3=1 s dsJ J J
N

s{x,t) = § 8 (t) . VG, (x-x, (t)) an
1=1

where 60 is the core radfus at t =« 0, k is the
number of reacting species, Ds - i Af for cP/cR,
and Ds = Af Q for T. 611 is updated according to
Gli(t) - (xi+1(t)-xi_1(t))/2. 1 and i+1 are

neighboring transport elements in the direction of
maximum strain, ni is the unit vector normal to
§1;, while 61, = [611|. If the distance between

neighboring elements in the direction of principal
strain exceeds a maximum distance, hmax' one

element is inserted half~way between the two
elements and the values of 61i and hi are adjusted

for the three elements. A recombination procedure
is implemented to curb the growth of the number of
computational elements at areas of negative




stretch., The core of the vortex elements and of
different scalar transport elements become
different as time progresses, At high

diffusivities, or small Peclet numbers, the cores
of the elements will experience rapid growth and §
>> h. In this case, transport elements must be
subdivided into elements with smaller cores while
preserving their total strength. However, this
will not be used here since we are interested in
cases where the Peclet number 1is large. For more

detail on the transport element method, see
Ghoniem et al. [12,13].

IV. RESULTS: A SPATIALLY-DEVELOPING
SHEAR LAYER

IV.1. VORTICITY, AND VELOCITY STATISTICS

Results showing the development of the
vorticity field of a shear layer, obtained using
the vortesx method, are depicted in Fig. 1 (see
also Ghoniem and Ng [14,15] and Ghoniem et al
(11,12,131). The plots show the roll-up and
pairing of large vortical structures due to the
growth of '"random" perturbations,. These plots
were obtained for a shear layer which starts at x
= 0.0 with a Gaussian vorticity distribution. The
velocity ratio across the layer 1is 2:1, and the
momentum thizkness at x = 0,0 is 8 = 0.0148. All
the vortex elements wused in the computations are

shown, along with their instantaneous velocity
vectors measured with respect to the mean
velocity. The plots show that the growth of the

layer can be divided into two ranges: the linear
range in which the "random" perturbations organize

the vorticity into "lumps" that concentrate the
vorticity into semi-round structures, and a non-
linear range 1in which the vorticity field is

formed of large eddies that move downstream while
they interact by pairing.

Detailed analysis of the results indicate
that the most-probable shedding frequency of these
eddies correspond to the frequency of the fastest
growing mode predicted by the 1linear theory of a
spatially-developing shear layer. Smaller eddies
with higher frequencies have been observed, but
infrequently. Pairing starts, most often, as soon
as the eddies reach their maximum growth, and
proceeds to join two eddies into a larger
structure, Few eddies escape pairing and,
occasionally, multiple pairing of more than two
eddies is seen. We also found that forcing at a
frequency close to that of the fundamental mode
organizes the shedding at the forcing frequency.
Forcing at subharmonics of the fastest growing
mode accelerates the spread of the 1layer by
promoting earlier pairing. Multiple-eddy pairing

occurs more frequently under these circumstances
[15].

Predicted velocity statistics: averaged
streamwise velocity, root-mean—-square of the

streamwise and cross-stream fluctuations, and
Reynolds shear stress are shown in Figs. 2, 3, 4,
and 5 (see also [14,15].) Figure 6 shows the mean

momentum thickness of the 1layer. The growth rate
within the non-linear range is de/dx = 0.0165.
Note that what we called the 1linear range

(following the definitions of the linear theory of
stability) exhibits a plateau, followed by a small
but exponential rise in 6. In the non-linear
range, the value of 8 increases linearly. The
predicted value of d8/dx, while smaller than the
value measured by M&B [2], falls in the middle of
the scatter of the experimental data documented by
Ho and Huerre [16]. It should noted that M&B [2]
remarked that the growth rate of their layer is
about 15-20 ¥ 1larger than the value measured by
the majority of other experiments. The effect of
difference in the growth rate will appear in all
the comparisons: the experimental profiles are
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Figure 1.

in an unforced shear layer, U1/U2 = 2.0,

Locations and velocity vectors of

all the vortex elements
t = 50,70, 51.00 and 51.30,




1.2 Al T Y T T T T — ¥

1.8+ x = 5.0
x = 3,5, 4,0, 4.5
x = 3.0
0.8t

W-u)/Wnh-ul)
]
o
T

0.4 r

0.2r

-]
2.0 & Qﬂ°u 1 1 1 L1 1

-8.08 -3.04 0.09 g.04 0.08

(Y-Y8)/(X-X@)
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expected to spread into the free streams faster
than the predicted profiles.

The plots show that the averaged streamwise
velocity reaches a self-similar distribution early
downstream, which also resembles the initial error
function velocity distribution of the vorticity
layer. On the other hand, velocity fluctuation
statistics reach a self-similar state some
distance downstream. The transition region for
the development of the velocity fluctuation is
most likely within the region of growth of the
initial perturbation and before a "mature" eddy
has formed.

As shown in Figs. 2 and 3, the numerical
results agree well with the measurements of M&B
[2] in a two-dimensional shear layer. The
agreement will improve substantially {f (y-yo) is

normalized with respect %o the local momentum
thickness 8{x) instead of (x-xo) since this will

absorb the difference between the spread rates of
the two layers. This experiment was selected for
comparison because the two-dimensionality of the
flow was carefully maintained and verified, and
because of the availability of experimental
measurements on mixing statistics before mixing
transition. Some differences between the
numerical predictions and the experimental data,
which may have resultsd in different growth rates,
may be attributed to the relative amplitude of
noigse in the numerical and experimental studies,
and to the expected scatter in experimental
results.

It 1is important to emphasize that the
velocity fluctuations are due to flow unsteadiness
imposed by the formation and interactions of the
large eddies. The unsteadiness arise due to flow
instability, regardless of the boundary conditions
which are steady, and 1lead to the augmentation of
interaction between the two streams via the
fluctuation fluxes, The order of magnitude of
these fluctuations, 1in each direction, is about
20% of the velocity jump across the layer. The
fluctuations are, thus, almost isotropic.

IV.2. MIXING, AND SCALAR STATISTICS

We have used the transport element method to
compute the mixing of a passive scalar in the same
flow. The distribution of the concentration
immediately downstream of the 3splitter plate is
described by an error function, similar to the
velocity profile. The corresponding scalar
gradient is a Gaussian, similar to the vorticity
distribution. The concentration 1is ¢ = 1 in the
bottom low-speed stream, and is ¢ = 0 in the top
high-speed stream. Computations were performed
for different values of the Peclet number to show
the effect of molecular diffusion on mixing
dynamics at high Reynolds numbers.

Figure 7 shows the instantaneous profiles of
c at different sections downstream the channel,
superimposed on the instantaneous distribution of
the vortex, or transport elements for the case of
Pe = », The sections are chosen at the centers of

the vortex eddies in Fig. 7a, and across the
braids in Fig. 7Tb. The distributions reveal that,
even at sections far downstream of the splitter
plate, zones of completely wunmixed fluid still
exist within the layer (unmixedness). These zones
correspond to the gulfs, or "tongues", of pure
fluid brought into the layer from either sides by
the inviscid mechanism of entrainment, i.e., the
convective transport of fluid across the

(a)

(p)

Figure 7. 1Instantaneous concentration profiles
superimposed on the vortex elements: (a) across

the mid-sections of the eddies;
braids.

and (b) across the




centerline of the layer by
vorticity layer.
Instantaneous concentration profiles show the
mechanisms of asymmetric mixing, which leads to
the establishement of a preferred-mean
concentrations, cp, different than 0.5 (M&B [2].)

Mixing asymmetry, which arises due to the
asymmetric growth of the eddies during the initial
stages of roll-up, is indicated by the fact that
the profiles are not symmetric around the line ¢ =
0.5 (computations of a temporally-growing mixing
layer, in which flow boundary conditions are
symmetric, show that the concentration profiles
are perfectly symmetric around the line ¢ = 0.5 at
all times.) Asymmetric mixing is thus due to the
asymmetric flow fileld in a spatially-growing

the roll-up of the

layer. The preferred mean concentration is the
value of ¢ most 1likely to be found within the
cores of the structures, As the c-profiles

indicate, under the conditions simulated by our
computations, cp ~ 0.35. Across the braids, the

concentration changes between the free stream
values within a distance on the order of magnitude
the initial shear layer thickness,.

Figure 8 shows the averaged concentration
profiles (a) for different values of the Peclet
number at the same streamwise location; and (b) at
different streamwise locations for the same Peclet
number, both compared with the data of M&B [2].
The mean concentration profiles differ
substantially from the {nitial error function
profile, and develop downstream to form a zone of
almost constant value, between two Inflection
points, around the midsection of the shear layer
and towards the high-speed slide. This constant
value is close to the preferred-mean concentration
within the cores. Diffusion, which generates
strong fluxes around areas of sharp gradients,
tends to make the profiles smoother. However, as
shown by Fig. 8a, diffusion effect on the mean
concentration is minor,.

Comparison between
profiles and the mean

the mean concentration
velocity profile indicates
that the former penetrates further into the free
streams than the latter, This supports the
hypothesis that, in these shear flows, mixing is
entrainment dominated and that entrainment, while
it 13 a consequence of the vorticity-induced
field, acts on the vorticity-free part of the flow
by the Biot-Savart effect. Mixing enhancement by
the roll-up of the shear layer, due to its
intrinsic {nstability, is thus not limited to the
neighborhood of the area where |w| » 0. Instead,
the mixing zone extends further intoc the free
streams as we move downstream. The numerical
results predict the experiment very accurately
(the effect of the faster growth of the
experimental layer, which was indicated earlier,
shows around the free streams especlally on the
high-speed side).

The root-mean-squared concentration
fluctuations are shown in Fig. 9 for (a) different
alues of the Peclet number aL the same sirzamwise
location; and (b) at different streamwise
locations for the same Peclet number, both with
the experimental measurements of M&B [2]. As
expected, at zero molecular diffusion, the maximum
value of c¢' approaches 0.5, the unmixed state,
indicating that the concentration iIn the fluid
passing by the measurement polint is alternating
between the two extreme states. With increasing
levels of molecular diffusion, the maximum value
of ¢' decreases, and the whole profile attalns
smaller values, showing that the limits between
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Figure 8, Time-averaged concentration profiles:

(a) at x = 5.0 for P_ = =, 10%, 10", 7500, 5000
and 2500; and (b) at x = 3.5, 4,0, 4.5 and 5.0 for

Pe = 2500. Symbols correspond to the experimental
data [2].
which the value of ¢ 1is oscillating decreases,

The peak and the wide plateau which are observed
in this distribution correspond roughly to the
transition between the slow stream in which ¢ = 1,
and the mixing core of the eddy.

Figure 9a shows that molecular diffuslon has
a pronounced effect on the concentration
fluctuations, emphasizing the influence of
diffusion on the instantaneous profiles and on the
outcome of time-dependent processes which may take
place within the shear layer, such as chemical
reactions, Figure 9b shows that the concentration
fluctuations reach self-similarity downstream of
the station at which the mean profiles reach self-

similarity, similar to the velocity profiles,
This 1s not surprising since the controlling
transport mechanism here s convection. The

figure also shows that the penetration of the
transported species cannot be measures by its mean
values only. The deviation between the numerical
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experimental data near the high-
to the difference between the
experiment and the numerical

results and the
speed stream is due
growth rates in the

solution. foncentration fluctuation of almost 20%
of the concentration difference between the two
streams Aaccompanies a velocity fluctuation of

almost 20% of the velocity difference between the
two streams (turbulent Prandtl number = 1!}.

The probability-density function of the
concentration across the c¢ross section X = 5 is
showr. in Fig. 10 for two values of Peclet number:
Pe = @ and P_ = 2500. The bimodal shape,

characteristic of non-diffusive entrainment, is
clearly exhibited by the plot, and is Indicative
of the absence of numerical diffusion even at such
distance downstream. At Pe = 2500, concentrations

at intermediate values of ¢ appear,with higher
probability,close to the high-speed side where ¢ -
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Figure 10. Probability-density function of
concentration at x = 5.0 for: (a) P_ = @=; and (b)
e

Pe = 2500, n = (y-yo)/(x—xo).

0. Evidence for the existence of a preferred
concentration within the cores {s given in Fig.
9b, An intermediate peak appears between the two
peaks at ¢ = 0 and ¢ = 1, at a value around c_ ~

p
0.4, M&B [2] show that the value of cp(x) is

displaced towards higher values of ¢, and with
slightly higher probability, as we move
downstream, appearing more prominently at values
of x/8 -~ 100. The value identified by the
numerical simulations at x = 5.0 is ¢ ~ 0.4,
Results in this section show that the
transport element method can be used to accurately
predict the two-dimensional dynamics and mixing in

a spatially~developing shear layer prior to
"mixing transition.” It is also capable of
providing wuniform spatial resolution throughout

the domain and for a long time, as seen by the c~
profiles across the braids. This is an important
step towards computing a reacting shear layer.




V. RESULTS: A CHEMICALL-REACTING,
TEMPORALLY-GROWING LAYER

V.1, FLOW AND TEMPERATURE FIELDS
Computations of a reacting mixing layer have
been performed for an idealized model, a
temporally-growing shear layer. While this is not
a necessary ldealization 1in elther the physical
model or the numerical scheme, it facllitates the
long-time, high-resolution calculation of a
reacting flow at 1low cost. The choice of the
physical parameters that describe the combustion
process was limited to cases for which the
computer-time and memory requirements could be
economically met. High Damkohler number, at which
the chemical reaction proceeds much faster than
the flow, requires a small time step and stiff
integration routines. High activation energy, at
which the flame thickness is very small, generates

sharp gradients, and needs a large number of
transport elements to resolve these gradients.
Large heat release extends the temperature

variation in the field and demands a large number
of transport elements, Therefore, the results
presented here were obtained for moderate values
of all of these parameters and were used to study
the different modes of interaction between the
fluld flow and the chemical reaction.
In the temporally-growing layer,

normalizing velocity is AU/2, where AU = U1-U2,
and the normalizing length is Aw/2. where Am is

the total vorticity thickness of
0.0.

To start, we present the vortex elements and
their velocity vectors for the development of a
non-reacting, uniform-density flow in Fig. 11, as
a base state. For the reacting flow, we show the
vortex elements and their veloclity vectors for the
following parameters: Ta = 5.0, Pe = 200, Le =

1.0, Q = 1.0 and Ar = 2,0, in Fig. 12. 1In both

cases, the initial perturbation is a sinewave with
an amplitude € = 0.05 A, where X = 6.6 A 1s the
wavelength. The perturbation is chosen“so that
its initial growth rate is small enough to allow a
slow increase in the 1length of a typical material
layer until t = 5, It is important to point out
that the Initial vorticity thickness and flame
thickness are not the same. While the former is
chosen to correspond t6 the most unstable linear
mode, the latter is the steady-state laminar flame
thickness as defined by the diffusion and chemical
parameters of the problem, In the second stage, t
> 5, an eddy, which corresponds to a localized
accumulation of the layer vorticlty, forms and
grows to its maximum size. Within this range, the
primary mechaniam of growth is the entrainment of
fluid from both sides into the core of the eddy.
In the final stage, starting around t = 12 and 15
for the non-reacting and reacting eddies,
respectively, entrainment ceases and the eddy
flattens in the streamwise direction,
Compared with the non-reacting
reacting eddy expands due to heat
moves to the right, it exhibits a definite
asymmetry, and {t starts flattening at later
times. The -expansion of the eddy due to heat
release, which was limited to small values, occurs
primarily in the second stage and within the core.
This indicates that most of the burning occurs
during this stage and 1inside the eddy core. The
growth rate of the reacting eddy, measured by the
integral of the perturbation velocity over the
vorticity layer thickness, shown In Fig. 13, is

the

the layer at x =

eddy, the
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Figure 12, Locations and velocity vectors of all
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Figure 13. Integral of the perturbation velocity
for the uniform-density, non-reacting flow and the
reacting flow. (I-I0) = f (u(x,t)-u(x,0)) dx.

the same as that of the non-reacting, uniform-
density eddy. However, the reaction prolongs the
growth phase and delays the start of the
flattening or collapse phase. This explains why
the angle between the major axis of the eddy and
the positive streamwise direction, assuming that
the eddy can be modelled by an ellipse, is smaller
in the non-reacting, uniform-density case than in
the reacting case (for experimental verification,
see Keller and Daily [3].)

Figure 13 also indicates that the total
fluctuations is larger for the reacting eddy than
for the uniform-density, non-reacting eddy,
suggesting that the total volumetric entrainment
is also larger in the former case. Figures 11 and
12 show that in the reacting case, volumetric
entrainment is asymmetric with a bias towards the
hot fluid. Clearly, the gulf, or tongue, of hot
fluid reaches deeper into the eddy than that of
cold fluid. Moreover, the free-stream gulfs reach
deeper/shallower, respectively, than their
counterparts in the non-reacting, uniform-density
case. The origin of the asymmetry will be
investigated in detail in the next section.

The temperature contours for both the non-
reacting, uniform-density and the reacting cases
are plotted in Figs. 14 and 15, respectively.
Figure 14 shows the symmetric development of the
scalar field, accompanying the symmetric evolution
of the dynamic field 1in this case. Although the
Peclet number is finite and moderate, the
temperature distribution remains non-uniform and
steep gradients are still noticeable even near the
center of the core. As time progresses, more
mixed fluid, at T = 1,5 1is entrained into the
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core. The mixed fluid forms along the convoluted
interface by the diffusion across the
concentration surfaces, and is entrained along the
interface towards the core, It also shows that
fluid in an unmixed state has penetrated deep into
the eddy from both sides, similar to the
spatially-developing case in Fig. 7. The final
state of the shear layer can be characterized as
follows: a sSemi-homogeneous core separated from
the free streams by two strained zones of sharp
gradients.

In the analysis of the results of the
reacting case, it 1is helpful to note that the
maximum reaction rate occurs at T = 1.53, and that
the reaction rate reaches one third of its maximum

at T = 1.0 and 1.90, Because the activation
energy is moderate, leading to a thick reaction
zone, we expect that the interaction between the

flow field and the flame cannot be approximated by
a wrinkled laminar flame model. Figure 15 shows
that within the growth stage, 5 < t < 15, the
flame zone is s8lightly thinner around the braids
and is substantially thicker 1in the core zone,
both with respect to the flame thickness at t = O.
The first is due to the strong strain, while the
second is due to the enhanced entrainment, both
associated with the roll-up of the layer and the
formation of a vortex core. Flame thinning due to
the strain along the braids is almost unnoticeable
since the reduction of the flame thickness due to
the strain 1is balanced by the increase in the
flame thickness due to the enhanced diffusion.
Flame thickening is due to negative strain in the
vicinity of the center of the core and the strong
entrainment currents accompanying the roll-up. It
is thus expected that the total reaction rate must
increase within this range since the reaction zone
nhas grown beyond its area (or volume in a three-
dimensional world) at t = 0.
Another factor which
contribute to the increase

is expected to

in the reaction rate

for 10 < £t < 15 is the formation of a flame fold,
or gulf of reactant that penetrates into the
burning core, Within this range, there is a

burning core at the center of the eddy, formed by
the entrainment of reactant at the early stages of
~0ll-up, surrcunded by one flame zone on the top
side and two flame zones on the bottom side. The
two flame zones are approaching each other and
trapping a gulf of reactant in-between, By the
end of the growth stage, t = 15, the core is
almost fully burnt and the flame is on the outer
boundaries of the eddy. Figure 15 shows that for
t > 15, the flame is aligned with the streamlines
of the flow, and 1is exposed to a strong strain
along its own direction.

V.2. RATE OF BURNING

The total mass of products, Mp, formed since

16. The total flame
approximated by the line of maximum

t = 0 i3 shown in Fig,
length, Lf’

reaction rate, is depicted on the same plot. As a
reference case, we also plot the total mass of
products formed due to the propagation of a
laminar flame which has the same initial
conditions and whose length A For t = 5.0,
the rate of product formation is the same as that
of a2 laminar flame and L is almost constant.
Within the growth range, the flame length
increases due to the roll-up of the layer. The

slope of the M -curve, which s the rate of

product formation, ﬂp - M /at,
£ < 15.

is

exhibits a similar

increase in the range of 5 < The rise in
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Figure 16. Total mass of product formed since t =
0 for a laminar flame and a reacting layer, and
the apparent flame length in the latter case.

ﬁp is the same as that in Lf, indicating
that the rate of burning per unit length of the

flame, the burning velocity, remains constant.
15,

continues to increase

Beyond t = ﬁp stays constant while L.f
(the slight decrease in Lf
that

around t = 17 shows a piece of the fold has

been consumed.) SinceM_ =S _ L., where S is
p ua f ua

the average laminar burning velocity of a strained

flame convoluted within the eddy, the average
burning velocity decreases after t = 15, The
reason for this drop will be investigated in

Section V.4,

It is important to point out that the Lr—

curve is used only to characterize the stage of

growth of the eddy and not to define a unique
relationship between ﬁp and Lf. The flame under
investigation Is a "thick" flame in which the

flame thickness is of the same order of magnitude
as the flow gradients. Thus, it is the area of
reaction (or the volume of reaction in a three-

dimensional world) which determines the total rate

of burning. Results in Fig, 15 indicate that
within the second stage of roll-up, the
entrainment stage, the total rate of burning can

be well approximated by
burning velocity of the
apparent flame length.

the product of the laminar
unstrained flame times the
Beyond that, the strain
field and the geometry of the streamlines
associated with roll-up play important roles in
determining the local laminar burning velocity.




V.3. VORTICITY GENERATION BY BAROCLINIC TORQUE

The asymmetric growth of the reacting eddy is
accompanied by: (1) its displacement to the right;
and, (2) the volumetric entrainment of more hot
fluid than cold fluid. The reacting eddy and the
uniform-density, non-reacting eddy are dynamically
different In two aspects: the volumetric expansion
assocliated with heat release, and the stratified
density field. The former is kept small by taking
Q =1, and it is of interest to lsolate the effect
of the latter. Figures 17 and 18 show the vortex
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Figure 18. Temperature contours for the density-
stratifies, non-reacting flow, pt/p2 = 2.0, at t =
10, 15 and 20.

elements and their velocity, and the temperature
contours of a density-stratified, non-reacting
shear layer eddy. These results resemble those of
the reacting eddy in Figs. 12 and 15 (the values
of the temperature are, however, different). The
similarity suggests that the mechanism leading to
the asymmetry in the hydrodynamic fleld is active
in both cases, and that this mechanism depends on
the density gradient within the field.




Referring to Eq. (3), the density fleld can,
«nen  coupled with a pressure field, produce
vorticity that will perturb the initial vorticity
field and thus affect the roll-up of the eddy.
Figures 19, 70 and 21 show the vorticity contours
for the uniform-density, non-reacting case, the
non-reacting  density-stratified case and the
reacting nase. Here also, Figs. 20 and 21 exhibit
4 strong similarity, although some of the
num-rical values are different, indicating that
tne mechanism  of vorticity generation by the
haroclinis torque, VpxVp, is responsible for the
~hanga in the structure of the eddy. Volumetric
2xpansion in the  reacting ~ase, however, weakens
tne vortisity locally by inereasing the area of
the oddy ~ore,

blgures 23 and ?1 show that in a layer formed
of negative vorticity, positive vorticity
ponerated on the high-density side of the layer
Jue to barnclinic effects forms a secondary eddy
1move  the  primary eddy. The secondary eddy,
niving positive vorticity, produces a velocity
fi11 whith propels the primary eddy towards the
~ight, a3 seen in Figs. 12 and 17. The positive
secondary »ddy on the top side of the primary eddy
~eoduces the entrainment  velocities into the eddy
from this side, resulting In less entrainment of
the top, anld fluid than that of the bottom, hot
fluit, as shown in Figs, 12 and 17.

Thus, We have been able to identify the two
observations, the motion to the right and the
isymmetrin entrainment, with the formation of a
positive secondary eddy above the negative primary
~ddy. The conventive velocity of the eddy in a
dnnsity  3tratified flow and the asymmetric
ratrajnment have been  observed experimentally.
Dimotakis T16) suggested the following expression
for this velocity: U = (1 + r /s }/(1 + /s ),

<] up p

where - is the wveloeity ratio across the layer
and wo (3 the density ratio. 1In a temporal frame

nf referaonce, this expression can be rewritten as:

u_ = u_~ a4 =1 =-2Vs /(1 + /s ) (Krishnan and
L i m e} [}

Gnoniem [17]). Figure 22 shows a comparison
hovwenn the numarical predictions of Uy and the

valie3  evalaated using the modified Dimotakis
formala. The nlose agreement shows that the
naroclinin vorticity generation is indeed
responsibla for this asymmetric dynamics. It also
vilidata2s our numerical results,

V.4, FLAME-STRETCH EFFRECTS
Figures 15 and 16 ghow that after the burning
af the rore, t > 15, the rate of product

farmatinn, v , (38 constant while the apparent

D Figure 19. Vorticity contours for the uniform-
langth of trne  flame measured along the line of density, non-reacting flow at t = 5, 10, 15 and
20.

maximum reaction rate, L is increasing. Thus,

£
tne bhurning velncity, averaged over the length of
this flam= length (3 decrecasing., A3 shown in Fig.
195, fthe flame during this perind exists on the
citer edges  of  the large eoddy and  its length

anant be ~asily  approximated by the 1line of flame thickness, causing some reduction in the
MAaximum strain. total rate of burning. A more important effect,

Tn anitlyze this phenomanon  further, we plnt associated with the convoluted nature of the
the strain rate  in  the direction of the local streamlines at this stage, is that the flame does
streamlines in Fig., 23, The figure indicates not exist on a simply-connected region any more,
that, wWhile du-ing the growth stage, 5 <t <15, and that gulfs, islands and intersecting flame
na5t Af he hurning  zone lies on areas where the fronts exist simultaneously. Thus, the simple
shrajn i3 negative, at  the later stages, t > 15, definition of a flame length is not applicable and
mast Af wne hurning  zone coincides with areas of the definition of a local burning velncity may not
“trong positive atrain,  Strong strain reduces the be unique.

14

]




N =

&/ﬁ?

?\@\ :
<

N

>i}

Figure 20. Vorticity contours for the density~ Figure 21. Vorticity contours for the reacting
Stratified, non-reacting flow at t = 10, 15 and flow at t = 10, 15 and 20.
20.

15




RAME)

£0DY CONV.VELOCITY (IN TEMPORAL

© O =

[ B T ST )
R

Dimotakis
formula

=

v Numerical
result

N e U o
T

._.
T

L L 1

L

L

QN 8 &8

. .
g.!

8.2 0.3 2.4 .0

8.5 86 2.7 6.8 2.9 !

o S

@

DENSITY RATIO (S)

Figure 22. Convective velocity
temporal frame of reference
of the density ratio.

of the eddy in a
for different values

PRI SISV DN SN W

L

streamline

the
layer at t = 15

along
shear

Figure 23. Strain rate
direation for the reacting
and 20.

16

VI. CONCLUSIONS

Numerical simulation of mixing and chemical
reaction in a two-dimensional, shear layer has
been performed using the transport element method.
Results have been obtained for a non-reacting,
uniform-density, spatially-growing confined shear
layer, and a reacting, premixed, variable-density,
temporally-growing shear layer. For the first
case, comparisons with the experimental
measurements of M&B [2] were conducted to validate
the results. For the second case, processes of
turbulence-combustion interactions, especially the
effect of vorticity generation by baroclinicity,
of entrainment fluxes and of flame stretch, were
investigated. Major conclusions are:
(1) Velocity and mixing statistics agree well with
the experimental measurements of a two-dimensional
shear layer before mixing transition;
(2) Processes leading to mixing asymmetry and the
establishment of a preferred mixture fraction in a
spatially-growing layer are illustrated;
(3) Mixing asymmetry in a variable-density layer
is found to be due to the generation of vorticity
due to baroclinic torque;
(4) Entrainment associated with roll-up augments
the rate of burning. However, strong strain
reduces the local burning rate at later stages.

Work is underway to extend the simulation of

the spatially-growing shear layer to a reacting,
diffusion flame, and to study the effect of
different chemical parameters on turbulence-
combustion interactions.
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ABSTRACT

Fecent developments in vortex methods in two
and three dimensions are reviewed. Extension to
the solution of scalar conservation equations
using the transport element method is included. &
formulation of a compressible flow simulations {s
presented. Attention is focused on the
construction of the numerical schemes and their
convergence to the solutions of the fluid flow
equations, The numerical accuracy of these
methods is investigated by comparing results of
numerical simulations of {ncompressible flows at
high Reynolds numbers to analytical and
experimental results. Information revealed by the
numerical solutions are discussed.

I. INTRODUCTION

The desire to study high Reynolds flows, in
which molecular diffusion plays an important role
{n a relatively small but finite zones of the
flow, motivates the continued development of
computational schemes in which numerical stab{lity
1s not limited to 1low Reynolds numbers, and in
which numerical diffusion 1is minimized to values
spsaller than those of physical diffusion. The
class of flows of (interest to this work 1s shear
flows at high Reynolds number, including shear
layers, Jets, wakes, recirculating flows and
boundary layers. In these flows, one can define a
major streamwise direction that represents the
mean primary flow. At high Reynolds numbers, the
dominant transport wmechanism of momentum and
scalars, such as species concentration and energy,
is convection in both the streamwise and cross-
stream directions. The cross-streaa convection is
increased substantially with the growth of flow
natural instabilities and their maturation into
fully-developed secondary and higher-order flows.

In spite of the fact that convection
transport dominates these flows, transport by
molecular diffusion cannot be ignored especially
in the cross-stream direction. Molecular
diffusion 1is res_onsible for the diffusion of
vorticity form solid walls, where it is generated
due to the no-slip condition, into the interior of
the flow through the boundary layer. Molecular
diffusion also plays a primary role in the aixing
of streams which are initially heterogeneous, in
terma of species concentration or temperature,
when they are brought into contact by the action

Copyright ¢ 1988 by A, F. Ghoniem. Published by
the American Institute of Aeronautics and
Astronautics, Inc., with permission.

of convection. This 1s particularly important in
reacting flows where mixing must be accomplished
before chemical reaction. Thus, molecular
diffusion cannot be ignored at high Reynolds
mimbers without sacrificing an {mportant part of
the physics od turbulence and aixing.

The numerical simulation of turbulent shear
flows must be based on accurate representations of
both mechanisms at value of the Reynolds number,
and the Peclect number, in the order of magnitude
of 1000-10000. Although the relative contribution
of both transport mechanisms {s determined by the
square root of the Reynolds number, the absolute
contributions of either mechanisms may also be
important {n many problems. Excessive numerical
diffusion can lead to stabilization of flow
instabilities in the case of momentum diffusion,
or to overestimation of the rate of mixing or
reaction in the case of scalar transport. In both
cases, the local flow gradients are determined by
convective mechanisms that distort the flow map,
but actual diffusion fluxes are proportional to
the molecular diffusivity. The extreme case of
infinite Reynolds number flow {n which no mixing,
or vorticity diffusion away from the walls can
occur independent of how strong are the convective
currents illustrates this point.

One more challenge which s encountered in
the numerical simulation of shear flow is the
severe distortion of the flow map as the natural
instabilities of these flows grow into their non-
linear  stages. The maturation of these
instabilities in the "primary flow," which can
normally be characterized by almost parallel
streamlines, results in the establishment of a
"sgcondary flow" with strongly curved streamlines.
Due to the non-linearity of these probleas,
continuous interaction {s expected between these
two artificlally-separated components of the flow.
To capture these changes accurately, one must
relay on numerical schemes with a very high
spatial accuracy, i{.e. very large number of fixed
grid points, or schemes with moving grids in which
the mesh points follow the distortion of the flow
field. The latter class can bde categorized as
Lagrangian schemes.

In particular, if the grid points are used to
represent discrete values of the functions of
interest, i{.e., Lagrangian finite-difference of
finite-element methods, solutions can be obtained
for 1long times after the {nitial phase of
instability growth, These methods tend to loose
accuracy after strong distortion has been
sncountered due to the growth of the
discretization error on a non-uniform mesh. In




this case, regularization and remeshing become
important (for a review, see (Clark [1].) On the
other hand, Lagrangian particle methods, of the
type described in this paper, avoid using
approximation formulae to determine spatial
derivatives on the non-uniform mesh. This is
accomplished by using particles that transport
finfte values of the spatial gradients of the
functions of interest, i.e., transport of
vorticity or scalar gradients instead of velocity
of scalar concentrations. This allows longer time
computations to bde performed without substantial
loss of accuracy due to the distortion of the
underlying grid. These methods, including vortex
methods, are reviewed in this article.

Vortex methods, a particular class of
Lagranglan particle methods, are used to solve the
momentum transport equation. They are based on
the discretization of the vorticity into finite
vortex elements and the transport of these
elements along particle path. The fact that
vorticity is conserved along the particle path in
a two-dimensional, uniform-density flow has made
these method particularly simple for this class of
problems. However, we show that other accuracy
requirements may necessitate the application of
more elaborate vorticity-updating schemes as
vortex elements are moved along particle path.
The extension and application of vortex methods to
three dimensions where the conservation of
vorticity along particle path {s not satisfied {s
also described.

The application of vortex methods to reacting
and compressible flows requires the development of
compatible schemes to compute the transport of
scalars in Largranglan forms. For this purpose,
we have developed the transport element method, a
generalized Lagrangian particle scheme which {s
constructed tS compute solutions of a convective-
diffusive-reactive scalar transport equation. The
formulation of the method is summarized and its
application to a mixing flow at low Mach number
where the momentum and energy equations can be
partially decoupled is presented.

A formulation to extend the applicability of
the transport element method to flows high Mach
number where strong pressure variations are
expected to arise is briefly described. In this
case, the system of conservation equations must be
solved simultaneously, and the spatial variation
of the pressure must be taken {nto account in
computing the aerothermodynamic variables.

. computationally pursued this schewe).

II. VORTEX METHODS IN TWO DIMENSIONS

For a two~dimensional, incompressible,
inviscid flow, the vorticity transport equation
is:

dw

3t +u-VWs=0 (n

where Wxu = w and V- u = 0, In the above, us=
(u,v) 1s the velocity, w is the vorticity, x =
(x,y), t is time anda V¥ = (3/3x,3/3y). If x(X,t)
is a particle path, where X {s the Lagrangian
coordinate of x, {.e. x(X,0) = X, then Eq. (1)

states that w(x(X,t),t) = w(X,0). Morever, u(x,t)

o [ K(x-x') w(x') dx', K(X) = -~ 1/2%r2 (-y,x) and

r2 = x2ey2, This Lagrangian formulation of
vorticity transport is the Dbasis for the
construction of vortex methods.

In vortex methods, the vorticity field {is
discretized into a number oOf vortex elements of

finite and overlapping cores:

N
w(x,t) e § w

2 -
=L h® £, (x-x (X, 1)) (2)

i

where wi; is the vorticity at the center of an
element, N is the total number of vortex elements,
h is the average distance between the centers of

neighboring elements in two principal directions,

hz-hxhy, § is the core radius of a vortex element,
and f; = 1/82 £(r/8) is the core function

describing the distribution of vorticity
associated with an element. The importance of the
core function 1in stabilizing vortex computations
was realized by Chorin and Bernard [2].

Equation (2) is equivalent to expanding a
function w(x,t) in terms a number N of kernel
functions, fg, located at X; and with weights

w(h?. The accuracy of the dlscretization depends

on the choice of f, the initial distribution of
the particles, the determination of the values of
wg, 1 =1,2, ... , N, and the ratio of §/h. The
selection of the core function for a particular
accuracy was extensively discussed in the work of
Hald, e.g. in (3], and Beale and Majda, e.g in
f4]. For the initialization of the values of wi,
we found that collocation on a uniform grid
provides the best long time accuracy (it |is
conceivable that collocation on a non uniform grid
may be a Dbetter choice, but we have not
For more
detail, see Ghoniea et al. (S].

We also found, using extensive numerical
experimentation, that accurate discretization ana
long time accuracy of the computed flow field
require that § > h, In agreement with all the
known convergence theories of vortex methods (for
a recent review,see Anderson and Greengard {6].)
We found that for an initially smooth distribution
of vorticity, §/h = 1.1-1.5 is an optimum choice.
Note that although the core function s
constructed as a fast decaying function, such as
an nth order Gaussian, the fields of {ndividual
vortex elements are strongly overlapping due to
the choice of §. Thus, the 1local value of the
vorticity at a point is determined by the




contributions of many surrounding elements., For
more detail, see Ghoniem et al. [7].

Moreover, the velocity field of a
distribution of vortex elements is given by:

N
u(x,t) = [ w h° K (xmy (X,,8)) (3)
{=1
where
9 - u(x (X0, ()
dat

where Kg(x) = K(x) x(r/8), and x(r) = 2x gfF £fr')
r' dr'.

The generation of strong strain fields,
associated with the growth of perturbations into
the non-linear stages, Increases the distance
between neighboring elements, 8§y, beyond the
"target" value of h. Thus, the accuracy of
spatial discretization, which {s governed by &/h,
is negatively affected. In actual computations,
deterioration of accuracy 1is observed as the
generation of unorganized, random motion on the
scale of h which grow as time progresses. To
avoid this problem, more elements are introduced
in areas where §x > $h where 8 -~ 1.5, and the
circulation of the original elements is locally
redistributed among the newly introduced elements.
Since the circulation of each element is wgh2, and
since the vorticity is conserved along a particle
path, the redistibution of  circulation |is
accomplished by dividing the value of hZ2 of the
original element equally among the newly generated
elements.

For consistency, and to satisfy the condition
of conservation of vorticity, dw/dt = 0, the value

of &2 should also be adjusted so that the ratio of

82/h2 is maintalned conatant in Eq. (1). Thus,
the core radius of an element {is effectively
decreased as the element 1is exposed to strong
positive strain. Note that this could also be
accomplished by replacing a circular element by an
elliptical element whose major axis 1s aligned
with the direction of maximum positive strain and
whose area (s the same as the area of the original
circular element. For an elliptical element, the
major axis stretches and the minor axls |is
shortened so that the total area remains constant
as a strain rield 1is applled. In the extreme
limit of this process, a circular vortex element
becomes a flat vortex sheet with a velocity jump
across its length equal to the local value of the
vorticity wy (Note the similarity with the vortex
sheet algorithms, Chorin [8).) For computational
convenience, however, we chose to use more
circular elements along the major axis instead of
fewver elliptical elements. Elliptical elements
were used by Ting [9] to solve the boundary layer
equations,

The redistribution of vorticity in the
direction of maximum tensile strain requires
maintaining a 1list of near neighbors in the
direction of maximum strain, and updating this
1ist each time step according to the changes in
the vorticity distribution along the layer. This
process s equivalent to uti{lizing a one-
dimensional Lagranglan grid along each individual
layer of vortex elements to preserve the

organization of the computations. It can also be
used to provide Information about the flow map at
any time step since, according to the condition of
incompressibility, one can compute the changes in
the length of the material elements normal to the
layer of vortex elements associated with the
extension of the elements (n the direction of
maximum strain.’

As was mentioned earlier, employing more
elements to discretize the vorticlity in the
direction of maximum strain is equivalent, in some
sense, to distorting the original elements from
their circular shape to elliptical shapes due to
the generation of the strain fileld. By {increasing
the number of vortex elements, we insure that the
underlying grid of computational elements can
capture the i{nstantaneous vorticity distribution
as it evolves with the motion of the flow. The
need to increase the number of elements becomes
clear when realizing that as the flow develops
strong sStrains and curvature, the streamlines
become strongly convoluted and require more
particles to describe their geometry accurately.
On the other hand, reducing the size of the cores
of vortex elements help wminimizing the numerical
diffusion which may accumulate to unacceptabdle
levels if the area on which the vorticity exists
{s alloed to grow beyond its original size.

A careful numerical {nvestigation of the
accuracy of this scheme was conducted by Ghonlem
et al. [5]. The growth of a stationary sinusoidal
perturbation on an infinite shear layer was used
as a case study. For a sample results, see Fig.
1. This problem, besides Its obvious relevance
fundamentally and practically, 1is ideally suited
for a study aimed at checking the accuracy of the
computation and the response of the scheme to the
generation of a strong strain fleld. Numerfcal
results for the growth rate of linear
perturbations, whose amplitudes are 0(0.01) of the
wavelength, vs. the wavelength of the perturbation
was found ‘to agree with the results of the linear
theory over a wide range of perturbation
wavelengths. Another test, done by Ghoniem and Ng
(10], was performed for a spatially-developing
shear layer in which the flow was assumed to be
semi-infinite and the growth of the perturbation
was observed in the mean flow direction. Results

agreed with the linear theory of stability of a

spatially growing layer.

In the non-linear reglme, which 1s
characterized by the formation of large scale
structures due to the roll-up of the vorticity
layer associated with the growth and saturation of
the instability, no theory exists and results must
be checked for self consistency and against
experimental data. Self consistency refers to

numerical convergence and the approximate
satisfaction of differential and integral
constraints. Numerf{cal convergence is achieved

when, as the numerical parameters are refined, one
obtains solutions that become independent of the

nuserical paraseters. An  example for a
differe-tial constraint, which should
approxisately be satisfied by the numerical

solution, is the conservation of vorticity along a
particle path, dw/dt =« O. This implies that an
accurate solution is one {n which if the total
vorticity at the center of each element fis
computed, then wi(yxy,t) should remain constant.
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the layer 1s 1:3, with cold fluid on top.

To validate the numerical scheme, numerical
results were used to compute the flow statistics
which can be compared with experimental data. For
example, the frequency of shedding in a spatially-
developing shear layer was found to match the most
unstable frequency evaluated from the linear
stability theory for spatially growing waves in a
vorticity layer. The wmean growth the momentum
thickness of the layer as it develops downstreas,
which reaches a constant value beyond the linear
range of the instablility (where the growth is
exponenti{al) was found to agree closely with
experimental data on shear layers. To study the
response of the layer to time-dependent boundary
conditions, the inlet flow was assumed to be
harmonically modulated at frequencies different
from the natural shedding frequency, and the
response of the layer was found to correspond
closely to the experimental data. Results wers
used to establish how the shear layer growth, and
the accompanying rate of mixing, can be enhanced
or reduced by applying external forcing. For a
sample of the results, see Fig.2.

velocity of the vortex element,
temperature contour, right, in a temporal mixing layer at time t = 10, 20 and

of the wavelength,

left, and the

Temperature ration across

The mean flow velocity, root mean square and
croas correlations of velocities were shown to
agree closely with experi{mental results on two-
dimensional shear layers in both the unforced and
the forced cases, Fig. 3. Results show that in
the two-dimensional flow, the source of the
fluctuation is the formation of the "secondary”

‘flow associated with the growth of the large scale

vortex structures due to the natural flow
instability, and their subsequent pairing due to
the subharmonic fnstability. Forcing, which can
be used to either promote or suppress these
instabilities, was shown to have a direct impact
on the values and signs of these fluctuations,
suggesting that by employing carefully-designed
forcing functions, one can control the
interactions between the wmean flow and the shear
layer flow (Ghoniem and Ng (10]).
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Figure 2. The location and velocity of vortex elements for an unforced shear
layer at two time steps, top, and a forced shear layer at two time steps,
bottom, showing the organization of large scale vortex shedding under the
influence of forcing. In both cases, the velocity ratio i{s 3:1 with the high
speed fluid on top.
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Figure 3, The average velocity profiles, left, and root mean square
fluctuations, right, for a free shear layer shown on the top of Fig. 2. Here
the velocity ratio is 2:1. Cpen symbols are experimental data and solid lines
are numerical results. x and y are the streamwise and cross-stream directions.




11I. VORTEX METHODS IN THREE DIMENSIONS

For an incompressible, three-dimensional,
inviscid flow, the vorticity transport equation
is:

LI M (5)

at
where o = ¥xu, and V¥ = (3/3x,3/3y,3/3z). In this
case, u = (u,v,w) and x = (x,y,z). The Lagrangian
form of Eq. (5) is de(x(X,t),t)/dt = e(x(X,t),t)

+ Vu, where as before x(X,t) is a particle path
and X is the Lagrangian coordinate, while Wu is
the strain tensor  dujy/dxj. An equivalent
expression which can be used to determine the
vorticity directly is: e(x(X,t),t) = Wx(X,t) -
«(X,0), where Vx is the Jacobian of the flow map

3x1/3Xy (Helmholtz theorem). Moreover, u(x,t) = f

K(x-x') x w(x') dx', where K(x) = -1/4x x/r3.
This Lagrangian formulation {s the basis for the
conastruction of three-dimensional vortex methods.
For reviews, see Chorin [11] and Leonard [12].

Similar to the two-dimensional case, the
vorticity fileld is discretized among elements
{nitially located within volume elements h3. The
vortex elements are then moved along particle
path, xy(Xj,t), while their vorticity is changed
according to the right-hand side of Eq. (5).
Thus:

N
wx,t) = 1 e () n3 £4(x-x, (X, ) (6)
{=1

where in this case, fs(x) = 1/83 £(r/§) and the
rest of the parameters are defined as before.
Note that here one defines vortex balls or spheres
of diameter 4§, and that the core function is
spherically symmetric, while the vorticity vector
associated with an element is wy.

The "total” vorticity vector of an element,
¢1h3. can be expressed i{n terms of more natural
variables T{81y where I'{e wih? is the circulation
of the element which remains constant along a
particle path, and &1y 1s the length of the
material element along the vortex line, §ly= hy

wi/wy, that changes as the material lines
stretchs. The equivalence between wyh3 and Ty8l,

is estadblished by the Helmholtz theorem, while the

permanence of 'y along a particle path is

confirmed by Kelvin's theorem., The formulation in
terms 81 allows the construction of a natural
regridding method which can be used when the
stretch along the vortex lines becomes severe. In
this case, as &1 > Bh, an element in divided into
two elements along the vector 81, while preserving
the total magnitude of T.

All the conditions necessary for the accurate
discretization of the inftfial vorticity fleld in
two dimensions apply to vorticity in three
dimensions. Here, we stress that Eq. (6) 1is
equivalent to the expansion of the function »(x,0)
in terms of a number of core functions fg(x-X{) of
similar shapes and located at X;. For accurate
discretization, it was found that & > h and that
the distribution of X; must allow this condition

to be satisfied everywhere in the field. Both
conditions must be satisfied at all times during
the evolution of the vorticity field. Although we
found that failure to satisfy these conditions
around areas of small concentration of vorticity
may not lead to catastrophic numerical
instabilities, accuracy cannot be guaranteed.

The velocity field produced by the vorticity
distribution expressed by Eq. (6) lis:

N
u(x,t) = § T

PEACAC R RS ALY (1)
and
9% ulgy(X;,0),0) (8)
dat
while

' :
L) =5 Cayyq (X ,00t) = gy (X (.8 (D)

where Kg(x) = K(x} x(r/8) and «(r) = Uz of7 £(r')

r'2 dr'. Equation (9) utili{zes the fact that in
an inviscid flow vortex 1lines are material lines
to reduce the computations. However, {t requires
maintaining data on the immediate neighbors in the
direction of vorticity. Thus, one dimensional
Lagrangian grids are utilized to describe
individual vortex 1lines as arrays of vortex
elements listed by near neighbors, Note that the
conditions that a vorticity field {n a three
dimensional free space is solenoidal, V ¢« = 0,
is implicitly satisfied in Eq. (9).

The accuracy of the three-dimensional vortex
method was extensively investigated in Choniem et
al. [13] and Knio and GChoniem [14,15] by applying
the scheme to investigate the propagation and
stability of vortex rings, and the formation of
streamwise vorticity in a shear layer. It has
analytically been found that the self-induced
velocity of a thin vortex ring, o << R where ¢ is
the core radius and R is the ring radius, is a
function of ¢/R, and the vorticity distribution
within the core, @(r/¢). In this representation,
4 =gand §/h = 1.,5-2.0. The dependence of the
self-induced veloeity on o/R  was properly
recovered form the numerical solutfon when the
overlap between neighboring vortex elements
arranged along the ring axis was strong enough to
allow an accurate representation of the ring
vorticity. When strong overlap was achieved, the
velocity of propagation of the ring reached a
constant value independent of the numerical
parameters.

The long wavelength azimuthal instability of
a thin vortex ring, with a wavelength A >> o, was
observed when the ring was perturbed along its
axis with a number of wave n = 2wR/). The
mechanisam of this instability depends on the
interactions between neighboring sections of the
perturbed vortex ring and thus requires accurate
discretization of vorticity along 1its axis. We
found that the requirements of accurate prediction
of the ring Sself-induced velocity are sufficlent
to allow accurate coaputation of the long wave
instablility. The computed unstable wavenumber k"
e 2w/n", and 1ts growth .rate in the linear range
were found to agree with the predic!ion of the
linear theory. The growing standing waves at K,
contrary to the spinning stable waves at all other




values of k, expend the energy of
stretching the waves in

the flow in
the direction opposite to
the direction of propagation of the ring.
Numerical results reveal that {nitially, and
within the linear range of growth of perturbation,
the waves grow at an angle of 3w/4 with respect to
the direction of propagation of the ring.

In the non-linear range, the growing waves
form almost closed 1loops of vorticity behind the
original ring. These loops are connected to the
original ring via very narrow passages, or necks,
that can be pinched off by the action of
viscosity. Each loop 1is formed of two vortex
rings of opposite signs of vorticity which are
separated by a very small distance. The
separation of these loops from the "parent" ring
may lead to the formation of off-spring vortex
rings with a smaller diameter than that of the
original ring, leading to an interesting cascading
to smaller sizes and to a faster decay of the
original ring. On the other hand, the fact that
these off-springs form in pairs of opposite sings
of vorticity, they may diffuse into each other
causing their vorticity to decay at a fast rate.
In both cases, the formation of these off-springs
due to the growth of the azimuthal instability
provide a mechanism that may lead to the reduction
of the original circulation of the ring. For a
graphics presentation, see Fig. (4).

The study was extended further to investigate
the growth of small wavelength instabilities, A =
g, within the core of the ring and around {its
axis. In this case, one must allow the core of
the ring to deform under the action of the growing
perturbation, Analysis of variations within the
core requires adequate resolution of {ts vorticity
field by wutilizing vortex elements with a core
radius § < g, i{.e. several elements must be used
to describe the vorticity fleld within the core
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th{: vortex rings at the end of the linear range,
top, and long into the non-linear range, bottoa,
shown in the plane and normal to the plane of the

ring.

accurately. We found that the grid used to
discretize the initial vorticity must be chosen
carefully to prov ide enough overlap between
neighboring elements in all direction to guarantee
long time accuracy. Several choices have been
proposed to satisfy these conditions and limit the
number of computational elements.

Computations were performed to find the most
unstable mode, or modes, in this case. The values
of k* was found to be In close agreement with that
predicted by the 1linear theory [for short
wavelength 1nstab111tx in deformable vortex rings.
The exact value of k is, as expected, dependent
on the vorticity distribution within the ring
core, Q(r/ag). The value of k* predicted from this
analysis is much closer to the experimental data
that that predicted by the previous long
wavelength analysis. This short wave instability
indicates that vortex rings are more unstable to
small perturbations. The value of k" increases
almost linearly with the normalized self-induced
velocity of the ring, which is inversely
proportional to o/R in a logarithmic form. Thus,
thin rings, as they become unstable, deform with a
larger number of waves around their perimeters
that thick rings. See Fig. 5.

Spectral analysis of the results at the later
stages show that as the fundamental instability
reaches a saturation state, its harmonic becomes
unstable and starts to grow. The mechanise of
excitation of this frequency is not yet clear.
Examining the vorticity field after the saturation
of the first instability reveals various
fnteresting features, The most important
dynamical change is the presence of a strong
streamwise vorticity component which changes its
sign as one move along the axis of the ring. This
component results from the tilting of the original
vortex lines, initially aligned in the direction
of the ring axis, due to the growth of the
instability. Within each azimuthal wave, two
vortices of opposite signs are formed. It should
be noted that while the perturbation is along the
radial direction, in the final equilibrium state

most of the off-axis vorticity is in the
streamwise direction.
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Figure 5. The most unstable wave vs, the
self-induced velocity of a vortex ring. (x)

experimental data, (*) numerical results, (+) and
(@) and results of analytical stability theories.




The formation of the streamwise vorticity
component seems to stablilize the ring, indicating
that a new equilibrium state (s reached. At this
stage, the core of the ring exhibits helical
deformation around {ts undisturbed axis. The form
of the vortex ring, as exhibited by the plot of
the vortex lines, strongly resembles experimental
pictures of unstable vortex rings. In particular,
the motion of the inner and outer radif{ can be out
of phase, especially at the late stages, and
vorticity start to "leak™ from the back side.
This leak takes the form of 1loops of vortex
filaments which extend far behind the ring in a
form that resembles the simpler picture observed
in the simulations of a thin ring. See Fig. 6.

The formation of streamwise vorticity was
also examined in the temporal shear layer problem.
Here, the shear layer described in Section II is
initially perturbed in the streamwise and the
spanwise directions at the same wavelength and the
same amplitude. Thus, the shear layer, which has
a finite thickness, is experiencing waviness {n
the primary flow direction and in the direction of
vorticity. Results show that during the growth of
the streamwise perturbation, the spanwise mode {s
completely suppressed, and the flow maintains
almost perfect two-dimensionality. The growth
rate of the streamwise i{nstability matches that of
a twe~dimensional flow until the point of maximum
growth of this instability which corresponds to
the formation of a spanwise, large scale,
cylindrical-shaped vortex structure whose axis in
perpendicular to the mean flow. See Fig. 7.

The formation of this structure is
accompanied by what we labelled before as a
secondary flow  whose streamlines are almost
circular. Beyond the point of maturation of the
streamwise instabillity, the spanwise instability
starts to grow causing this large structure to
deform into the streamwise direction. This
deformation leads to the establishment of a
streamwise vorticity component with an alternating
sign along the axis of the cylindrical structure.
wWithin each spanwise wavelength, two streamwise
vortices of opposite signs foram. This feature
looks very much like the azimuthal instability of
the vortex ring if the latter is viewed along its
axis. One more similarity 1is in the magnitude of
absolute value of the streamwise vorticity which
reaches an oscillatory stage at the point of
saximum growth of the secondary flow instability,

Figure 7. Late stages of development of a combined
streamawise and spanvwise perturbations in a
periodic shear layer. The m=middle section shows
the translative instabllity of the core and the
sides show the formation of streamwise vorticity
within the braids. Vortex lines are shown looking
down on the shear layer from the top stream where
the flow i{s from left to right.

Figure 6. Late stages of development of short
wavelength instability on a thick vortex ring.




IV. THE TRANSPORT ELEMENT METHOD

Given that s is a passive, non-diffusive
scalar, the conservation equations for s and g =
Vs are:

ds

at - 0 (10)
and

g% =-g-VWu-gxae (11)

Thus, 8 remains constant along a particle path,
while g changes due to the straining and rotation
of the material 1lines by the local strain ffeld
and vorticity. We restrict attention to the
transport of scalars in two dimensions. If the
material is exposed to a strong strain {n the
direction normal to the gradient, the value of g
mist increase by the same amount as the stretch in
the material element. This can be seen by
deriving an equation that governs g = |g|. To do
this, Eq. (11) must be expnded in terms of g n,
{mplementing kinematical rela*ions that describe
the variations of n = g/g, the unit normal vector
to the (iso-~scalar line. After some lengthy
manipulations, we get:

%g n = -g(n W+ Inx el WHYL  (12)

where WS {is the symmetric part of the strain
t-nsor Wa and 1 s the unit vector normal to n.
Moreover, g = (ds/dn) n -~ (&s8/6n) n, where §s is
the variation of 8 across a small material line
én. The variation of a material vector element 41
can be shown to be governed by the same equation
as Eq. (12) with g replaced by 61. Thus, {t
follows that g/41 = constant along a particle
path, and that the scalar gradient can be computed
from the following relations:

N
g(x,t) = I g (t) b7 £ (x - g (Xg,0) (13)
1=1
where
g3, 61,(v)
5 () - —=t—n () (1)

h

where yx3(X;,t) 1is, as before, a particle path.
Equation (13) is based on the expansion of g in
terms of the core function fgs. All the comments
made before regarding the accuracy of such
representation apply to Eq. (13). Since an i{so-
scalar line is a material line in a non-diffusive
field, 81; can be updated as:

81(t) = (x1+1~X1-1)/2, while ny°1lg = 0. Thus, {t

suffices to move the centers of the transport
elements, while remembering the near neighbors at
t = 0, to compute the scalar flux, When an

element s inserted between two neighdboring

elements, the values of §1; are redistributed

between the three elements and h2 and 62 are
adjusted so that the total material area |s
conserved, while 8s; is conserved. See Section II
for more detail on the refinement of the accuracy
as strong strain flelds grow and the material
lines becomes strongly curved.

For a compressible flow,
should be modified to reflect the fact that, in
this case, an equation similar to Eq. (12) can be
derived with g replaced by p &1. Thus, in this
case, the expression of gy changes to:

83, Gll(t) pi(t)
2
01(0) h

the above analysis

(15)

sl(t) - "i(t)

The value of p {s computed using the relation p T
= constant in the low Mach number approximation,
or pT= p at high Mach number (se Section V).
Given the location and strength of the transport
elements, the scalar concentration are computed by

direct integration over the [flelds of the
transport elements
N 2
s(x,t) = [ si(t) h™ . 906(x-xi(li.t)) (16)
{=1

where Ws(x) = (x,y)}/2xr2 «(r/§). Note that this
formulation is fully compatible with the vortex
method since all the {nformation needed to compute
the scalar transport are already a part of the
vortex computations, including all the expressions
for the Green functions. For extended derivations
and discussions, see Choniem et al. [7,16)].

The effect of molecular diffusion can be
modeled by expanding the cores of the elements
according to the following relation,

82(teat) = 62(t) + 2 & At, where At is the time
step and a {s the molecular diffusivity. This
relation {s obtained by direct substitution of Eq.
(11) into the diffusion equation. A limit should
be imposed on the maximum allowable value of § to
maintain the spatial accuracy of the calculations.
Beyond Spax, an element should be subdivided into
a number .of smaller elements. Another scheme for
implementing the effect of diffusion without
expanding the cores was proposed by Raviart [17].
However, we have not pursued this matter further.

The transport element method was used to
study the transport of species in a heterogeneous
shear layer. Here, we do not have analytical
solutions to verify the numerical accuracy as in
the case of the vorticity calculations. However,
one can use the condition of conservation of
species along particle path, ds/dt = 0, to check
on the consistency of the results. We found that,
provided that the field is accurately discretized
at the initial step, this condition is satisfied
if the core radii of the elements are allowed to
decrease at the rate described in Section II, {.e.
h2/62 remains constant as the elements are
deofrmed. This process guarantees that the scheme .
can capture the large scalar gradient that arise
due to the strong deformations {n the flow that
accompany the evolution of the instability without
introducing a source of numerical diffusion. Note
that a minimum value must be imposed on the
smallest § to limit the number of computational
elements and to avoid dealing with the singularity
at § = 0.

The computations of the mean concentration
and the root mean square of the fluctuations of
concentrations were compared with experimental
results for a two dimensional mixing layer.
Results were obtained for a range of Peclet number
between 1000 and 10000, i.e. intermediate to high,




'

so that the dominant transport process was
convection. The effect of species diffusion was
incorporated to study mixing. Results show that
the resulys of teh numerical simulations agree
closely with the experimental measurements in the
two dimensional shear layer. The effect of
diffusion on the mean scalar distribution is very
small since the overall concentration fleld s
established by the convective currents, which are
called the entrainment currents. Due to tr.: roll-
up of the vorticity layer, fluid from both sides
are engulfed into the large structure and, on the
average, mean values, between the two extremes,
can BYe encountered.

The root mean square of the fluctuations
exhibit stronger dependence on the Peclet number.
Its maximum value, 0.5, can only be achieved at
very high Peclet number, 0(5000 - 10000), where
strong unmixedness is present inside the cores of
the eddies. As the effect of molecular diffusion
increases, it homogenizes the core where the
fluctuation drops below 0.5. In this case, the
profiles show an area of constant value of
fluctuation. In all values of Peclet number which
we have used, O0(100 - 10000), the fluctuations
never reached zero inside the cores, indicating
that the fluid did not reach complete homogeneity.
Another {nteresting feature of these mixing flows,
which has also been observed experimentally, is
the presence of more high speed fluid than low
speed fluid inside the cores. Numerical results
show that this "mixing asymmetry" 1is a direct
consequence of the unequal velocities across the
interface of the layer. See Fig. 8.

The transport element method was extended to
reacting flow and, as briefly mentioned, to flows
with variable density, in Krishnan and Ghoniem
(18] and Ghoniem and Krishnan [19], respectively.
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V. COMPRESSIBLE VORTEX METHODS

We now show how to extend the formulations
developed so far to compressible flow at high Mach
number, We present the derivation for an
isentropic flow {n two dimensions. The governing
equations in this case are:

1 Dp
5 Dt + Veous=>oD (17)

bu _

ot " . b (18)
Ds

Bt " 0 (19)

where p and s are the pressure and entropy,
respectively. The equation of state can be
written as p = C(s) pY, where C(s) is a known
function of entropy and Y 1{s the specific heat

ratio

To derive a compressible vortex scheme which
utilizes the developments described in Sections
III and V, the velocity is identically decomposed
into three components: (1) a solenoidal component
Vx¢, where 9 = y @,, e; is the unit vector normal

in a stream function
(2)
is a

to the x-y plane and ¥
92y =
where ¢
dlnp/dt;
component Ve, governed by V2¢p = 0. The total

velocity 18 u = Wx¢ + Vo + VQp. The three
velocity components can be obtained in terms of
the known distributioni of v rticity, w(x,t),
volumetric dilatation, dlnp/dt(x,t), and the
boundary conditions, respectively, by utilizing
the Green function solution of the Poisson
equations governing the various components. Note
that the forcing functions can all be represented
in terms distributions of cores as before.

governed by -w; an irrotational

velocity potential
(3) a potential

component V¢,

governed by V2¢ = and

Next, we cast the momentum equation in a form
that will allow the evaluation of the pressure
distribution from the acceleration, V¥p = -~ o
du/dt, The acceleration can be computed from the
time~derivative of the particle velocity, a =

(du/dt)y. The pressure can be obtained from the
Green function of the corresponding Poisson
equation. The entropy transport equation

indicates that s(yx(X,t),t) = constant. Knowing
the pressure and the entropy, the density can be
computed from the equation of state: p =
(p/C(8))1/Y, where for a perfect, gas C(s) =

exp(s/cy), and cy is the specific heat at constant

. volume,

The dilatation fleld 1is the time derivative

" of density along the particle path, which can be

‘" in the vortlcity

computed by numerically differentiating the
density along the particle path. The entropy
gradient, needed to evaluate the baroclinic tera
transport equation, is obtained

method applied to Eq.
the method developed {n
Finally, the vorticity

using the transport elemen®
(19). For this purpose,
Section ¥V can be used.
transport equation:

d ,w -1 dC
G T W (20)

11

i{s integrated. The vorticity of
updated each time step according to the value of
the source term in Eq. (20). This completesa the
compressible vortex method. Numerical experiments
are underway to evaluate the performance of this
scheme.

an element s

VI. CLOSURE

One important extension of this work is the
application of vortex methods to internal, wall
bounded flows in which the growth of boundary
layers along solid walls plays a dominant role in
the dynamics of the flow, This extension has
largely been based on the random vortex method in
which the effect of molecular viscosity is taken
into account by adding a Gaussian random component
to the convective motion of the vortex elements
(Cnorin [21].) Extenaive work has been done on
the validation of the method (Choniem and Gagnon
[22] and Sethlan and Ghoniem [23]), showing that
solutions for steady, low TReynolds number flows,
and unsteady, hgih Reynolds number flows converge
to appropriate limits as numerical parameters are
refines. In the Cfirst case, low Reynolds number
results were in close agreement with experimenatl
measurements on velocity distributions within the
flow. In the second case, results weree shown to
converge to oscillatory flow that can be
characterized by a cluster og large scale
vorticies,

The random vortex method was also used to
study recirculating flows at high Reynolds numbers
(Najm and Ghoniem [2u4]). Of particular interest
in these flows is the frequency of vortex shedding
and how it depends on the geometry of the channel
and the inlet condition. Here, strong
organization of the flow structure was observed,
and frequency of shedding as well as mean velocity

distribution were found in agreement with
experimental measurements.
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ABSTRACT

The interactions between the flow field and the combustion process in a
premixed shear layer are investigated using the results of numerical simulation.
The reaction is governed by a finite-rate Arrhenius kinetics, the flow is
compressible and at high Reynolds number, heat release is moderate and molecular
heat and mass diffusivities are finite. The thickness of the reaction zone and
that of the vorticity layer are approximately the same. Lagrangian simulations
are obtained using the vortex and transport element methods.

Results indicate that at the early stages, a reacting shear layer behaves
like a laminar flame. During the growth of the roll-up eddy, the rate of
burning is strongly enhanced by the entrainment fluxes that lead to the swelling
of the reaction 2zone, and the total rate of product formation can be
approximated by the unstrained laminar burning velocity times the flame length
measured along the line of maximum reaction rate. Following the burning of the
eddy core, the strain field along the eddy boundaries causes a noticeable
thinning of the reaction zone and reduces the rate of burning.

Baroclinic vorticity generation due to the acceleration of fluid elements
in the density gradient is the most important mechanism by which combustion
affects the flow field. It augments the overall volumetric entrainment into the
eddy core, and causes an entrainment asymmetry with a bias towards the products.
The generated vorticity extends the growth period of the eddy and imparts on it
an extra mean convective motion.




I. INTRODUCTION

Turbulent combustion is a closed-loop feedback system in which turbulence
augments the mixing process and exposes the reaction zone to stretch and
convolution, while combustion modifies the turbulent field through the effects
of heat release including volumetric expansion and baroclinic vorticity
production. These interactions, introduced to control the combustion process or
arising due to intrinsic flow and chemical instabilities, represent a complex
challenge to analysis and modeling. With an ever increasing need to boost the
power, to curb the emission and to improve the efficiency of combustion, it is
imperative that we improve our understanding of turbulent combustion.1

As a model of turbulent combustion, we have been studying, using numerical
simulations, the fluid dynamics and chemical reaction in a premixed shear layer
(for experimental realization of this flow, see [2]).) This field contains all
the elements composing the feedback loop: the mixing via large-scale entrainment
and small-scale diffusion, the strain field due to the roll-up of vorticity, the
convolution of the streamlines within the evolving eddies, and the generation of
strong density and pressure gradients. Numerical simulation offers a powerful
tool for probing this complicated flow field. The time-dependent evolution of
the spatially-resolved gas dynamic field can be obtained for a range of physical
parameters, and the results can then be analyzed to study the origin and
outcome of the interactions. Using Lagrangian methods, such as the vortex and

3.4

the transport element methods, allows the study of high Reynolds and Peclet

numbers flows since numerical diffusion is small. Numerical simulations have

been conducted for a reacting shear layer with non-premixed reactants.5'6'7

Numerical models utilizing the concepts of wrinkled laminar flames have
been used to study the interaction between a thin flame and the large scales of

turbulencea. These models were based on the assumption that the laminar burning
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velocity was a constant,9 or a weak function of the flame geometry,
that the effect of combustion on the turbulent field was limited to the
volumetric expansion. However, analytical studies show that flow stretch may
play an important role in determining the laminar burning velocity.12
Moreover, recent numerical work confirms that baroclinic vorticity generation
plays an important role on the flame dynamics.11

In this article, we obtain and analyze numerical results for the evolution
of combustion in a perturbed, premixed shear layer. The flame structure,
governed by the chemical and diffusion parameters of the mixture, is described
by the appropriate conservation equations. The flame thickness and the flow
gradients are of the same order of magnitude. Thus, results are expected to
show strong interactions between the flow field and the combustion process. The

analysis of the results will attempt to relate the behavior of this "thick"

flame to the properties of a wrinkled flame model.

II. GOVERNING EQUATIONS

The model we use to investigate turbulence-combustion interactions is that
of a temporally-growing shear layer in which all the conditions are periodic
across the boundaries of the domain. The reactant, R, and product, P, have
concentrations o and Cpo velocities U1 and Uz, and temperatures T1 and T2’ in
the top and bottom streams, y » +® and y - -, respectively. We set UZ= - Uy,
and T,= Tg, where T is the adiabatic flame temperature. The following
idealizations are used to simplify the analysis: (1) the flow is two-dimensional
and compressible; (2) chemistry is governed by a single-step, first-order,
Arrhenius reaction, R —» P, and the rate of reaction is Af W, where W = Cr exp(-

Ta/T); (3) the Mach number is small, and hence, the pressure is constant

(however, Vp # 0 in the momentum equation); (4) the reactant and product behave




as perfect gases with equal molecular weights and specific heats; and (5) the
thermal and mass diffusivities are constants, but not necessarily equal, while
viscous effects are neglected. The equations governing a two-dimensional,

unsteady, unconfined reacting flow, written in non-dimensional form, are:4

2, _14dr
V¢-§a't:_ (1)
G = Lwxw (2)
)
dar 1 2
H'E:f’; VT + AfQW (3)
e e

where the velocity isu= (u,v) = ¥ + Wy + up, d/dt = 3/9t+u.V, x = (x,y)
while x and y are the streamwise and the cross-stream directions respectively, t
is time, ¢ is a velocity potential, ¢y = vy e, is a stream function, where e, is
the unit vector normal to the x-y plane, u = Ux¢y = (3y/9y,-9y/3x), W e, Uxu is
vorticity, Vzw = -w(x,t), up is a potential velocity, v.up- 0, added to satisfy
the boundary conditions around the domain, T is temperature, ¢ is concentration

2

per unit mass, ¥V and V© are the gradient and Laplacian operators, respectively.

For the reactant s = Cr and the source term is negative, while for the product s

a
energy and Rg is the gas constant, Q = Qh/(CpTl), where Qh' Cp(Tf-Tl) is the

= Cp and the source 1is positive. T = Ea/(Rng), where Ea is the activation

enthalpy of reaction and Cp is the specific heat, P= UlAw/a is the Peclet
number, where a = k/(pCp) is the thermal diffusivity, A= A Aw/AU, where A is
the frequency factor of the chemical reaction rate constant, and Lg= o/D is the

Lewis number. Note that ¥p = - p du/dt. Variables are non-dimensionalized with




respect to the appropriate combination of aU/2, AQ/Q, c,., and T,, where AU =

RO 1’

(Ul—UZ) and Aw is the vorticity thickness.

III. NUMERICAL METHODS

I1I1I1.1. THE VORTEX ELEMENT METHOD

In this Lagrangian, grid-free scheme, the vorticity field is discretized
among finite elements, ri, that move along particle paths, xi(t), such that:
wix,t) = I ry fs(x—xi(t)). The vorticity of an element is distributed
according to a radially-symmetric core function, f&' with a characteristic
radius, §, such that most of the vorticity is concentrated within r < §, where
r2= x2+y2. Vortex elements are distributed over the area where |w| > 0 such
that the distance between neighboring elements is h in the two principal
directions. A Gaussian core, fs(r) = 1/(n 82) exp(—r?/&z), leads to a second-
order accuracy, and 8§/h ~ 1.3 is sufficient to provide strong overlap between

neighboring elements. The equations describing the vortex scheme are:3

ax; . u(x, (t),t) (5)
dac
N ( -X) r
vylxt) = = L T AL 22 k(3) (6)
1= r

where xi(0)=xi, and k(r) = ofr r'fs(r')dr'.

Vortex elements move at the local velocity at their centers. As time
progresses, the distance between neighboring elements increases in the direction
of maximum strain rate such that aAx > h, where 8X is the distance in the
direction of maximum strain defined as Ax = (&u.8X)/|du| and A is the difference
operator between neighboring elements. This leads to a deterioration of the

discretization accuracy since accurate discretization requires that & > ax.




Thus, an algorithm must be used such that when ax > hmax' where hmax/h ~1.5, a
computational element is inserted at the midpoint between the original elements.
The circulation of the new element, and that of the original two neighboring
elements, is one third the sum of the circulations of the original two elements.
I111.2. THE TRANSPORT ELEMENT METHOD

In this scheme, the gradient of the scalar field is discretized into a a
number of finite elements: g(x,t) = I 4g, (t) fs(x—xi(t)), where g = Vs  Like
vortex elements, transport elements are distributed where |g| > 0 and are moved
with the local velocity field. Scalar gradients are not conserved along
particle path, and should be modified according to the local straining and
tilting of the material elements. Moreover, the evolution of the chemical
reaction changes the 1local concentration of the interacting species. The

following equations describe the transport element scheme:4

N

s(x,t) = iil 8si(t) SIi(t) “i(t)'ms(""&(t” (7)

§% = sg +d4at (8)
k+1

d aw

(3 SSi = jfl Ds 3§j(sj) ésj (9)

where 60 is the core radius at t = 0, and VG6 = (x,y)/r2 xk(r/8). Ds =+ A for
Cp and Cre réspectively, while D, = A¢ Q for T. 81i is updated according to
Sli(t) = (xi+1(t)_xi-1(t))/2’ while n.81 = 0. If the distance between
neighboring elements in the direction of principal strains exceeds a maximum
distance, hmax’ an element is inserted half-way between the two elements and the
values of 61i and hi are redistributed among the three elements. Elements are

combined at areas of compression to curb the growth of their number.




When VpxVp = 0, the circulation of each vortex element must be updated each

time step. Since ' =L riK(x—xi) and, and Vp/p = - VI/T, then:

dar ATi

e (g%’i (10)
i
(dudt) is computed by numerically differentiating the velocity of the vortex
element using a high-order formula. The velocity field produced by volumetric
expansion due to heat release is described by the solution of Eq. (1). Written

in terms of Lagrangian transport elements, this expansion velocity is:

4

vt = 1 4 (G, ne) v lx-x;(t)) (11)
1

i=1 T

where h? is the area associated with the transport element i. For detailed

derivation and validation of the transport element method, see [4] and [13].

IV. RESULTS
IV.1l. THE GAS DYNAMIC FIELD

Results were obtained for following parameters: Af = 0.5, Ta= 6.0, Pe=
1000, L= 1.0 and Q = 2.0. The choice of the physical parameters that describe
the combustion process was limited to cases for which the computer-time and
merory requirements could be met economically. Results will be used to study
the modes, and outcome of the interaction between the fluid flow and the
combustion process.

Figure 1 depicts the vortex elements and their velocity vectors for the
non-reacting eddy (NR) and the reacting eddy (R) at t = 10, 15 and 17.5. 1In
both cases, the initial perturbation is a sinewave with an amplitude € = 0.05 ),
where A\ = 6.6 Aw is the wavelength. The initial vorticity thickness corresponds

to the most unstable mode of the layer, while the flame thickness is that of a




steady-state laminar flame as defined by the diffusion and chemical parameters
of the problem. Results show that the growth of the eddy can be divided into
three stages: (1) in the first stage, t < 5, the increase in the length of a
typical material layer and the entrainment is small; (2) in the second stage, 5
< t < 15, an eddy, which corresponds to a concentration of vorticity, forms and
grows by entraining fluid from both side into its core leading to the stretching
of the material lines; and (3) in the third stage, t > 15, entrainment ceases
and the eddy collapses, or flattens in the streamwise direction.

Compared with the non-reacting eddy, the reacting eddy expands due to heat
release, it moves in the direction of the reactant stream, it exhibits a
definite asymmetry, and it starts collapsing at later times. The expansion of
the eddy due to heat release occurs primarily in the second stage and within the
core, indicating that most of the burning occurs during this stage and inside
the eddy core. It is also observed that the reaction prolongs the growth phase,
ending at t = 15 in the reacting eddy wvs. t = 12 in the non-reacting eddy, and
delays the start of the flattening phase suggesting that volumetric entrainment
is larger in the reacting eddy. The delayed collapse of of the reacting eddy
explains why the angle between the major axis of the eddy and the reactant
stream, assuming that the eddy can be represented by an ellipse, is smaller for
the non-reacting than for the reacting eddy. This phenomenon was first observed
experimentally.2

Figure 1 shows that in the reacting eddy, volumetric entrainment is
strongly asymmetric with a bias towards the hot fluid. The qulf of hot fluid
reaches deeper into the eddy than the qulf of cold fluid. Moreover, they reach
deeper/shallower, respectively, than their counterparts in the non-reacting,
uniform-density case. To confirm this observation, we plot the temperature

contours for NR and for R, at t = 10, 15 and 17.5, in Fig. 2. The plots




indicate that, while the penetration from both sides is symmetric in the non-
reacting eddy, more hot fluid than cold fluid has reached into the core of the
reacting eddy. Asymmetric entrainment has experimentally been observed in

14 It should be noted that the maximum reaction rate

density-stratified flows.
occurs at T = 2.19 , decaying to 20 % of the maximum value at T = 1.15 and 2.92
respectively.

Figure 2 indicates that during the growth stage, 5 < t < 15, the flame
thickness, with respect to its value at t = 0, is thinner at the braids, the
side arms of the eddy, and is thicker in the core. The first is due to the
strong strain and the second is due to the enhanced entrainment, both associated
with the formation of a coherent vortex core. Flame thinning due to the strain
along the braids is moderate since the reduction of the flame thickness due to
the strain field is balanced by the increase in the flame thickness due to the
enhanced diffusion fluxes. Flame thickening is due to negative strain in the
vicinity of the center of the core and the strong entrainment currents which
accompany the roll-up.

IV.2. THE BURNING RATE

The total mass of products, Mp’ formed since t = 0 is shown in Fig. 3.

The total flame length, Le, approximated by the line of maximum reaction rate,

is depicted on the same plot. As a reference case, we also plot the total mass

of products formed due to the propagation of a laminar flame, of constant length

X\, v.ich has the same initial conditions. For t < 4, the rate of product
formation, ﬁp = de/dt, is the same as that of a laminar flame and Lf is
constant. Within the growth range, and as Lf stretches due to roll-up, ﬁp

increases. It is important to point out that the Lg-curve is used only to
characterize the stages of growth of the eddy and not to define a unique

relationship between ﬁp and Le. The flame under investigation is a "thick"




flame in which the flame thickness is of the same order of magnitude as the flow
gradients, and it is the area of the reaction zone (or its volume in a three-
dimensional sense) that determines the total rate of burning.

The rise in the burning rate during the second stage is due to the
swelling of the reaction zone within the core region and the formation of a
flame fold, or a qulf of reactant that penetrates into the burning core. Within
this stage, there is a burning core at the center of the eddy, formed by the
entrainment of reactants at the early stages of roll-up, surrounded by one flame
zone on the reactant side and two flame zones on the product side. The two
flame zones on the product side approach each other, trapping a gulf of
reactants in between. Figure 3 shows that, in the range of 5 < t < 10, ﬁp
exhibits a similar increase as in Lg, indicating that the average burning rate
per unit flame length, Sua' remains constant. Therefore, within this stage,
the total rate of burning can be approximated by the product of the laminar
burning velocity of the unstrained flame times the flame length measured along
the line of maximum reaction rate, ﬁp = sua Le. A wrinkled laminar flame model
may, thus, be used to approximate the rate of product formation during this
stage.

IV.3. THE EFFECT OF STRAIN

Beyond t = 10, Fig. 3 shows that ﬁp stays approximately constant while the
apparent flame length, measured along the line of maximum reaction rate, L,
continues to rise. In this stage, the major portion of the flame exists on the
outer boundaries of the eddy and is exposed to a strong strain field.
Comparison between streamline plots and the temperature contours, the latter is
depicted in Fig. 2, reveals that for t > 10, the flame is almost aligned with

the streamlines and that its thickness is smaller than its wvalue at t = 0.

Moreover, due to the geometrical convolution of the streamlines and the
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formation of cusps and islands, its difficult to rigorously define a flame
length, or to associate the flame length with the line of maximum reaction rate.
The temperature contours indicate that although the 1line of maximum reaction
rate is increasing, the area of the reaction zone, or the "thick" flame, may
not be increasing.

Without any extra entrainment of reactants, the flame becomes strained
along the boundaries of the eddy. The reason for the reduction of the flame
thickness is the presence of a strong strain along the flame front. This is
illustrated by Fig. 4, where the strain rate in the direction of the local
streamlines is plotted for t = 10, 15 and 17.5. The figure indicates that,
while during the growth stage, 5 < t < 10, most of the burning zone lies on
areas of negative strain, at the later stages, t > 10, most of the burning zone
coincides with areas of strong positive strain. Clearly, within this range,
neither the line of maximum reaction rate is representative of a flame length,
nor the laminar burning velocity is the same as the value for the unstrained
flame since the flame thickness has been reduced (see [15,16] for an
illuminating discussion on the effect of strain on the burning velocity). Thus,
a simple wrinkled laminsr flame model may not be able to accurately describe the
combustion in this stage.

IV.3.BAROCLINIC GENERATION OF VORTICITY

The asymmetric growth of the reacting eddy is accompanied by its
displacement in the direction of the reactant stream and the asymmetric
volumetric entrainment of more hot fluid than cold f£luid. Close inspection
reveals that the reacting eddy and the uniform-density, non-reacting eddy are
dynamically distinct in two ways: the volumetric expansion associated with heat
release which produces an irrotational velocity field expressed by Eq. (1); and

the presence of a stratified-density field which generates vorticity at a rate
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governed by Eq. (2). It is of interest to isolate the consequences of the two
effects.

For this purpose, numerical experiments were conducted for a reacting
shear layer in which the baroclinic term in Eq. (2) was set to zero, i.e.
d(w/p)/dt = 0. In this case, the developing eddy was perfectly symmetric around
its center and the eddy remained at the center of the domain; hence it was
concluded that the volumetric expansion cannot produce the action observed in
Figs. 1 and 2. On the other hand, numerical experiments were performed for a

density-stratified, non-reacting shear layer, i.e. V¢ = 0 and A_ = 0, In this

£
case, the developing eddy strongly resembled the reacting eddy in Figs. 1b and
2b (volumetric expansion in the reacting case slightly weakens the vorticity by
increasing the area of the eddy core),. This confir.ed the hypothesis that
baroclinic vorticity generation represents the most important dynamic role of
combustior in this field.

As seen from Eq. (2), fluid elements accelerating in a density gradient
generate vorticity whose sign depends on the orientation of Vp with respect to
(du/dt). In the flow field we are investigating, the density gradient is
initially positive and the initial wvorticity is negative (clockwise). If the
wavelength is divided into four quarters, then negative vorticity is produced
along the second and third quarters since the acceleration is negative, and
positive vorticity is produced along the first and fourth quarters since the
acceleration is positive. This is shown in Fig. 6 which depicts the vorticity
contours for the uniform~density NR and for R at t = 10, 15 and 17.5. The plots
show that the extra negative vorticity gets entrained into the core of the eddy,
strengthening the "primary" eddy, while the positive vorticity generated on the
reactant side forms a secondary eddy. A stronger primary eddy entrains more

fluid, as indicated before. The secondary eddy produces a velocity field which
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propels the primary eddy in the direction of the reactant stream, as seen in
Fig. 1. The positive secondary eddy on the reactant side reduces the
entrainment velocities into the primary eddy from this side, resulting in less
volumetric entrainment of the reactants than that of the products.

Thus, we have been able to correlate the two actions, the motion of the
primary eddy in the direction of the reactant stream and the asymmetric
entrainment, with the formation of a positive secondary eddy due to the
baroclinic vorticity generation. Both effects were observed experimentally in a

14

density-stratified flow. The numerical prediction of the convective velocity

13 The

of the primary eddy agrees well with the values measured experimentally.
close agreement proves that baroclinic vorticity generation is indeed

responsible for this asymmetric dynamics, and validates the numerical results.

V. CONCLUSIONS

Numerical simulation, using the vortex and transport element methods, has
been used to study the interactions between the flow field and the combustion
process in a premixed shear layer. Results are obtained at conditions for which
the flame thickness and the flow gradients are of the same order of magnitude
and are analyzed to identify the interplay between the flame structure and the
flow fields. Major conclusions are:
1. Entrainment associated with the roll-up and the formation of an eddy leads to
the swelling of the core and the establishment of a thick reaction zone during
the growth period of the eddy. This enhances the rate of burning by the ratio
of the instantaneous 1length of the 1line of maximum reaction rate to the
unperturbed length of the material layer.
2. At later times, a major portion of the reaction zone exists on the boundary

of the core where the strain is positive. The convolution of the streamlines
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obscures the definition of the flame 1length, and the thinning of the reaction
zone locally reduces the laminar burning velocity below the unstrained value.

3. The wrinkled flame model, which states that ﬁp = S, Lg, can be used to
approximate the burning rate during the initial growth phase of the eddy
provided that L¢ is measured along the 1line of maximum reaction rate. During
the later stages, however, Sua is found to decrease if Lf is defined as before.
4. Baroclinic vorticity generation, associated with the interaction between the
hydrodynamic pressure gradient and density field, contributes strongly to the
dynamics of the shear layer. Stronger entrainment and entrainment asymmetry
have been attributed to the formation of wvorticity of the same sign as the
original vorticity within the core, and vorticity of the opposite sign along the
boundary between the eddy and the reactants, respectively. Since entrainment
plays an important role in determining the rate of burning, baroclinicity must

also affect the rate of burning during roll-up.
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FIGURE CAPTION

Figure 1. Vortex elements and their velocity vectors for: (a) the non-reacting
eddy; and (b) the reacting eddy at t = 10, 15 and 17.5 .

Figure 2. Temperature contours for (a) the non-reacting eddy; and (b) the
reacting eddy at t = 10, 15 and 17.5. Minimum temperature, top contour, is 1
and maximum temperature, bottom contour, is 3, while increment between two
neighboring contours is 0.133.

Figure 3. Total product formation in: a reacting shear layer; and a laminar
flame at the same conditions. Shown also is the apparent flame length in the
reacting eddy (Lp).

Figure 4. Contours of the strain rate in the direction of streamlines for the
reacting eddy at t = 10, 15 and 17.5. Increment between neighboring contours is
0.05.

Figure 5. Vorticity contours for: (a) a non-reacting shear layer; and (b) a
reacting shear layer at t = 10, 15 and 17.5. Solid lines indicate negative
vorticity and broken lines are for positive vorticity. Increment between two
neighboring contours is 0.06 for (a) and 0.12 for (b).
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ABSTRACT

The formation of streamwise vorticity is a
precursor to self-turbulization and mixing
trangsition in shear flows. In this work, three-
dimensional numerical simulation 18 used to study
the formation of streamwise vorticity in turbulent
flows which can be characterized by well-defined
initial concentrations of vorticity. Two examples
are analyzed: an isolated finite-core vortex ring
perturbed in the azimuthal direction, and a
periodic shea~ layer simultaneously perturbed in

its streamwise and spanwise directions. The
numerical scheme is based on the accurate
1iscretization of the vorticity field into a

number of finite-core, spherical vortex elements,
111 the transport of these elements along particle
paths. Results show the innate tendency of
vorticity, initiatly aligned in the direction
normal to the stream, to form coherent streamwise
structures whinh have alternating vorticity signs
in the gspanwise direction. The formation of
streamwise vorticity follows the "maturation™ of
the spanwise structure and the evolution of the
former is energized by the strain field of the
latter, While the streamwise vorticity is
responsible faor the added “"turbulization” of the
flow, leading to further wmixing enhancement, it
1nes not seem tn lead to the disintegration of the
two-dimensional struztures.

[. INTRODUCTION

Experimentil studiss of turbulent free shear
flows, in~luding shear layers, jets and isolated
vortex ~ings, in non-reacting and reacting flows,
nave revealed the presence of structures which
form a3z a  result of perturbing the initial flow
(e.g., for planar shear layers: Roshko [1],
Breidenthal 72], Bernal and Roshko {3]); for jets:
Zrow and Thampagne {41, Yule [5] and Roquemore et

al. TA1; and for vortex rings: Maxworthy [7]).
Elaborate linear stability analyses have been
apnlied <o investigate the various modes that

of thesr structures
fe.g., Michalke and

contribute £ty the formatinn
and their fundamental Hrigin
Hermann "8, Piarrehumhert and Widnall [9], and
Aidnall and Tsai _107]). Mumerical analysis, as
applied *t5 model  nroblem3, has  bHeen used to
3imulate the ann-linear stages of development of
thege jastarilities, and £ quantify *neir state
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as they reach "quasi-equilibrium" with the flow
(e.g., Corcos and Sherman [11], and Lin and Corcos
[12] and Ghoniem et al. [13]).

In shear flows, two types of structures,
depending on the orientation of the vorticity with
respect to the main flow, have been identified:
spanwise (radial in axisymmetric flows) structures
and streamwise structures. The former, which most
often precedes the latter, has been extensively
investigated using the three methods of analysis.
It arises as a result of the Kelvin-Helmholtz
instability of shear layers and grows to form
spanwise coherent structures. These "fundamental"”
structures pair to form 1larger structures as they
are perturbed by the '"subharmonic modes" (Ho and
Huerre [14]3.) Vortex rings issuing at the latter
stages of evolution of an axisymmetric jet, are
examples of these structures. The streamwise, or
secondary structures, .arise as the spanwise
(azimuthal) perturbation of the two-dimensional
flow grows. Analyses of these structures have
been elaborated by, e.g., Plerrehumbert and
Widnall [9] and Corcos and Lin [15].

Three~dimensional numerical simulations of
planar turbulent shear layers have been reported.
Couet and Leonard [16], using a vortex-in-cell
method, computed the initial stages of development
of a temporally-developing shear layer. Riley and
Metcalf [17,18], applying a pseudo-spectral
method, produced similar results, Ashurst and
Meiburg [19], utilizing the vortex filament method
of Leonard [20,217, computed the growth of
perturbations on a temporally-developing shear
layer using one or two rows of vortex elements to
represent the vorticity layer. Lowery et al.
(221, using a hybrid spectral-finite difference
method, extended the calculations to a spatially-
growing shear layer. Inoue [23], applying the
vortex filament method, reported results for a
confined spatially-growing shear layer which
starts with a single row of vortex elements.

Results of these calculations have been
instrumental in disecting the interesting physics
ot turbulent shear layers. However, when using
grid-based methods [17,18,22] the Reynolds number
must be kept at small values, and diffusion is
expected to play an important role in determining

the strength and dynamics of the growing
streamwise vortices. In Lagrangian schemes
[19,23], more elements should be used in the

cross-stream direction to discretize the initial
vorticity accurately. Moreover, the developing
strain field, both normal to and in the direction
of the vortex lines, extends the distance between
neighboring vortex elements, which may deteriorate
the long-time accuracy of the scheme (Ghoniem et
al. [241.) Thus, more work is needed to improve
the accuracy and robustness of these schemes if
they are to be wused 1in analyzing the late stages
of development of high-Reynolds-number flow fields
that develop strong strains and sharp gradients.




In this work, we apply the vortex element
method described in Ghoniem et al, [13] to study
the stability and formation of streamwise vortices
in free shear flows. The method is based on the
aceurate discretization of the vorticity field
in . spherically-symmetric vortex vector elements
whose cores ars large enough to provide strong
overlap among neighboring elements. The motion of
the =2lements is followed 1in a Lagrangian frame of
reference., The vortex vector elements change
their vorticity according to the local stretch,
Wwhile their direction is determined by the tilting
of tha material lines. The velocity is computed
as the summation over the fields of the vortex
2lements, which are evaluated from the integral of
the Biost-Gavart law over individual vorticity
cores. Substantial overlap s maintained by the
proper selection of the core radius of the vortex
2lements, and by increasing the number of vortex
al-mants to capture the small scales which develop
iue to the strain field.

In nur previous article [13], the method was
1pplied to study the instability of a thin-tube
mydel and 1 torus model of a vortex ring. The
~2s54" s of both models were used to validate the
schem and check on  its  accuracy. The proper
strategy of initializing the strength of the
vore2x aeleaments and of selecting the numerijcal
saramaters v maintain the accuracy for long time
W3S also  described. In this work, the vortex
alerment method i{s used to study the evolution of
streamWise vorticity generated as a consequence of
the linea~ instability of a vortex ring, and of a
plana~ periodis  shear layer. We direct our
artention towards the processes which energize and
promorne the growth of the streamwise vorticity in
both fields.

In Section
madel and of  tne

II, summaries of the physical
numerical scheme are presented.

in Sectinon III, results on the early and late
stages of instahility of the field of a vortex
ring are discussed. In Section IV, similar

results are ohtained and analyzed for the periodic

shear layer, In both cases, we concentrate on the

formation of streamwise vorticity and investigate
its dyna~i~al properties. In Section V, we
i{=rusa major conclusions.

I1. FORMULATION AND NUMERICAL SCHEME

formulated in terms of the
msteady, incompressible,
motion. To use a numerical

The problem is
tnree-1imensinnal,
inviscid equations of

vortex method, e resort to the vorticity
transport form of the equations:
W, Ve w T (1
3t
us=u - u (2)
N p
Cixex') K wx
U o= - - t (xox') ¢ wix') Ax’ (3)
o - .
‘ Px-x"|
wrhero g o= T W i3 the velocity in the X =
fg 20 Airesrions, Y ois time, w o= T<u 3 the
fart ity et wo= Ty R ), and V i3 the
"y oz
goatienn St tar, Squatinn 1) describes the
teangnant Af varticity along particle path and {ts
cann o mitant 3teet o along 1%s own direction by the
3-nion of  tan strain finald. fauation  (2)

L8]

expresses the decomposition of the velocity into a
solenoidal and an irrotationa. component. The
first component, uw, is obtained from the Biot-

(3), if the vorticity field
second component, up. is added to

Savart integral, Eq.
is known. The

satisfy the potential boundary condition, i.e. if
u =

p
is the unit vector normal to the boundary and Ub

2
Vo then V"¢ = 0 and (Vo+uw).nb = Ub, where n

is the velocity normal to the boundary.

The numerical solution starts by discretizing
the initial vorticity field, w(X,0), on a grid,
which may be non uniform, of sides (hx,hy,hz). At

the corners of the grid, vortex elements of finite
spherical cores are placed, Each vortex element

is characterized by a core radius, §, a core
function, fé(r) = 1/63f(r/6) where r = |x-x'|, a
circulation, ri’ and a material vector element
that describes how the vorticity is distributed

along the axis of the element, Ali. The core

function and core radius are the same for all
elements, and are invariant with time. The choice
of the f_ and 6/hm is important for the accurate

§

discretization of the vorticity field, and for
preserving the long time accuracy of the
computations. Similar schemes were used by Chorin
[25,26,27] to study boundary layer transition and
the evolution and properties of turbulence, by
Mosher [28] to study the interaction between
vortex rings and by Shirayama et al. [29] to
compute the flow around aerodynamic bodies. For
analysis of three-dimensional vortex schemes, see
Beale and Majda [30,31,32], Greengard [33],
Anderson and Greengard [34], and Beale [35].

From Kelvin's theorem, the circulation of an
element is constant as it moves along a particle
path. Moreover, from Helmholtz theorem, vorticity
changes with the stretch of the material element
Ali(t). Thus, the equations governing the

ax

discretized vorticity field can be written as:

N
wix,t) = ig? Ty A%, () fo(x-x,) (4)
N (x-x,) x A% x-x; |
] i i i
uw =5 .2 Ti 3 x( 3 (5)
i=1 [x=x,1
xi(t+At) = xi(t) + zAt u, At (6)
Ali(t«At) = Ati(t) + EM M.i(t) . Vu1 At (7

i Xi is the Lagrangian coordinate
of a vortex element

where xi(O) = X

and X is the particle path.

The EAt in Eqs. (6) and (7) indicates a numerical,

single-step integration formula, and «x(r) =

2
unofrf(r')r'“dr'. The value of A!i.Vui in Eq. (T)

is computed by numerically differentiating the
veloecity field along the vorticity vector,

As the flow develops strong strain along the
vortex lines, the local vorticity intensifies and

lAli] > ho .- To maintain the resolution of the

computations, elements experiencing severe stretch




must be split into two
the vorticity. For more
element scheme, see Ghoniem et al. [13].

For the isolated vortex ring calculations, u

in the local direction of
detail on the vortex

= 0, For the calculation
layer, periodicity is

of the periodic shear
assumed 1in the streamwise
and spanwise directions. The velocity field
produced by a periodic vorticity field can be
computed using a summation over an infinite series
in two indices. Since the contribution of a

vortex element to the velocity field decays at a

rate of Ix-xil—Z' a cut-off radius can be used to

set a limit on the number of terms used from the
series. Taking advantage of the smoothness of the

solution of V2¢ = 0 within the computational
domain, more saving can be achieved by computing
the contribution of the series on a grid. The
solution at an arbitrary 1location can then be
found by interpolation.

III. RESULTS: ISOLATED VORTEX RING

IITI.1. INSTABILITY OF A VORTEX RING

The first flow field which we use to study
the mechanism of formation and the evolution of
streamwise vorticity is that of an isolated vortex
ring. The radius of the ring, where the vorticity
reaches a maximum, is R, the core radius is o (¢
can be chosen as a nominal radius where the
vorticity reaches a well-defined fraction of its
maximum), and the circulation of the ring is T.
The vorticity of the ring is represented by
several vortex elements whose cores, §, are
smaller than that of the ring, &6 < ¢. The vortex
ring is thus modeled by a number of elementary,
overlapping vortex rings arranged within its core.
The motion of the vortex elements throughout the
cross section of the ring allows substantial
deformation of 1its core at different radial
stations. Therefore, higher-order radial modes
assocliated with the instability of vortex rings
are expected to be properly captured.

The vorticity of the ring, initially in the
azimuthal direction, ws(x,O), is discretized among

the vortex elements by solving a linear system of
equations formed by the application of Eq. (4) to
a three-dimensional radial mesh covering the ring
core. In this case, it is more convenient to use
cylindrical zoordinates (p,8,z) where p i3 the
radial direction measured from the center of the
ring, 8 is the azimuthal {1irection and z is the
direction of propagation of the ring. Using Eq.
(4) to compute the strength of the vortex elements
ensures that the numerical value of the vorticity

at the mesh corner , [ FiAl‘Fﬁ(x—xi). i{s equal to

that of the initial
u(Xi,O).

vorticity of the ring,

Note that the vorticity associated with

i i where AVi
is the volume of the materi{al element.
The mesh s constructed wusing Nc

an elementary vortex is w, = TiAlt/AV

cross
sectinrs nf the ring, separated by angle A8=2w/No,

and Nr pnints within each ~ross section. Within

the core of the ring, the clements are arranged on
nircles, starting with one element at the center
of the core p = R, and separated by a radial
distance Ar. The vorticity of the ring {3 assumed
to bhe uniform in the azimuthal direction, and
hence, we only solve Nr equations for the

vorticity of the elements within a particular
cross section. The ring core vorticlty
distribution is taken as third-order Gaussian, ¢
being the standard deviation.

The effect of the discretization parameters
on the accuracy of the simulation has extensively
been investigated in Knio and Ghoniem [36]. In
the following, we present a brief summary of the
results. Three different meshes are used to
discretize the vorticity of the ring within its
core: a uniform radial mesh, a staggered radial
mesh (in both the radial stations within the core
have the same .wumber of elements), and an equi-
spaced radial mesh in which the number of elements
increases as we move outwards to maintain the
distance between neighboring elements
approximately the same. The mesh coordinates and

the core radius of the elements are varied to
satisfy the following conditions: (a) the core
radius, §, should be large enough to provide
overlap between neighboring elements; (b} the

order of magnitude of the vortici{ty of the
elements at different radial stations is the same;
and (c) the total circulation of the vortex
elements equals the circulation of the ring.

Tests for the discretization accuracy of the
vorticity field are performed for a ring with o/R
= 0.25 for the following cases: (1) a uniform mesh
with Nr =0, 17, 25 and 33; (2) a staggered mesh
with Nr = 17, 25 and 33; and (3) an equi-spaced
mesh with Nr = 19 and 37. Results of the

computations are shown in Table I for the nine -
cases. The normalized Self-induced velocity is V

= V/(T/U4xR). The accuracy of the discretization

of: B, = flw(X,O)-Imiféldx.

In light of these results, the

is measured in terms

following conclusions can be made:

(1) To satisfy the above conditions, (a)-(c), the
core radius of the vortex elements must decrease
at a slower rate than the separation between
elements. This is in agreement with the
convergence results of Beale and Majda [31,32];
(2) The computed values of the propagation

velocity, V = 3.387, and the total circulation of
the ring, ' = 2.0, are within less than 0.5% for
all cases;

(3 E, decreases substantially when an equi-spaced

mesh, which guarantees maximum overlap
neighboring elements, is used.

To study the effect of the discretization
parameters on the time-dependent solution, we

apply the method to investigate the evolution of
the instability of the ring. Seven cases are
computed for a ring with ¢/R = 0.275, whose self-

induced velocity is V = 3.30.

among

Vorticity

discretization is performed using the uniform mesh
Wwith Nr = 9, 17 and 33, the staggered mesh with Nr

= 17 and 25, and the equi-spaced mesh with Nr = 19

and 37. To start within the linear range of
i{nstability, the ring is perturbed in the radial
direction by a number of sinewaves, n, around its
axis. The amplitude of the wave is e¢/R = 0.02.
*
In all cases, the unstable mode 18 found at n =
*
12, except for the case with Nr = 9 in which n =

10. Figure 1 shows the evolution of the amplitude
of the excited wavenumber for the seven cases.
The results are in close agreement, with the
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Figure 1. Amplitude of the excited wavenumber, n =
n* = 12, for a vortex ring with o/R = 0.275 using
a uniform mesh (U) with Nr = 9, 17 and 33, a

staggered mesh (S) with Nr = 17 and 25, and an
equi-spaced mesh (E)} with Nr = 19 and 37.

exception of the first mesh with Nr = 9 which

Results
the seven

shows a stable mode at this wavenumber,.
on evolution of the instability for
cases lead to the following conclusions:

(1) For accurate simulations using the vortex
method, overlap between the vortex elements must
be maintained at all times. When this condition

is violated, convergence of the results may not be
achieved. We have reached the same conclusion
before by analyzing the accuracy of the
discretization, and by analyzing the stability of
the thin tube approximation [13];

(?2) At least two radial stations in the mesh are
needed tO ensure accurate prediction of the
unstable mode in vortex rings. This is expected
since the instability observed here corresponds to

the second radial mode which should be properly
represented by the vorticity mesh. A single
radial station within the core is not sufficient

for proper resolution of this mode;
(3) A sufficiently small time step, At, must be
used in Eqs. (6) and (7).

Results indicate that the growth of the
unstable mode can excite its higher harmonics.
The amplitudes of the exciting frequency and its
first harmonic, are plotted in Fig. 2 for the five
cases for which conditions (a)-(c¢) hold: the
uniform mesh with Nr = 17, the staggered mesh with

Nr = 17 and 25, and the equi-spaced mesh with Nr =

19 and 37. Note that the growth of the amplitude
of the unstable mode and its first harmonic are in
cloge agreement for the five cases. This confirms

our connlusions regarding the convergence of the
simulation. »
The unstable mode number, n , was computed

for two more rings: o/R = 0.325 and 0,375, with
corresponding normalized self-induced velocities

v = 3,13 and 2.98. For this purpose, the

vortinity was discretized on a uniform mesh with

twn radial stations within the ring core and with
»

N =
r
= 19 and 9,

17. Results show th.i for the two rings, n

regpectively. Comparison between the

predictions of Widnall and Tsai ([10], Widnall,
Bliss and Tsai [37], the experimental measurements
of Widnall and Sullivan (38] and our computed
results is shown {n Fig. 3.

-2.0 v T T \n
25|
-3.0r
-3.5¢

Y

-4.0

LOG(A)

-4.5

-5.0

-5.5 r

-6.0 =

TIE

Figure 2. The growth of the excited wavenumber, n

*
=n =12, and its harmonic, n = 24, for the ring
of Fig. 1 using a uniform mesh (U) with N, =17, a

staggered mesh (S) with Nr = 17 and 25, and an
equi-spaced mesh (E) with Nr = 19 and 37.
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Figure 3. The computed unstable wavenumber (*)
plotted against the normalized velocity of

propagation V. The results are
analytical prediction of Widnall, Bliss and Tsail
(371 for a ring with constant vorticity (o), a
ring with fourth order vorticity distribution (+)
and with the experimental results of Widnall and
Sullivan (381 (x).

compared to the




TABLE I
SUMMARY OF DISCRETIZATION RESULTS

a/R = 0.25, T = 2.0

N o ar r V/25.13 E %100
UNIFORM MESH

9 0.67 0.630 2.01806 0.13572 6.6U46

17 0.56 0.397 2.01296 0.13567 7.697

25 0.52 0.300 2.00073 0.13599 6.988

33 0.50 0.240 2.01686 0.13563 6.877
STAGGERED MESH

17 0.56 0.397 2.0033 0.13518 7.252

25 0.55 0.300 2.0005 0.13370 4.340

33 0.50 0.245 1.9925 0.13447 4,190
EQUI-SPACED MESH

19 0.56 0.393 2.0093 0.13474 7.782

37 0.56 0.320 1.9941 0.13477 0.996
ITT.2. FORMATION OF STREAMWISE VORTICITY

To study the evolution of streamwise

vorticity on an isolated vortex ring, we plot

perspective views of a ring with ¢/R = 0.27% in
Fig. 4. The ring 1is 1initially perturbed at the

*
unstable mode, n = 12, and results are plotted at

t = 30, 60, 90 and 120. The perturbation grows in
both the radial and streamwise directions causing
substantial non-uniform deformation around the
axis of the ring, and the generation of streamwise
vorticity. The amount of deformation can be
measured by the growth of the total number of
vortex elements used in the discretization of the
vorticity field. While this number stays ccnstant

*
in all the stable cases, for n < n, it increases

as soon as the instability grows beyond the linear

range for n = n‘. For this ring, the number of
elements grew from 2040 to 6396 for t = 0 to 140,
In the initial stages, and within the linear
range t < 20, waves do not rotate around the axis
of the ring, while their amplitudes grow
exponentially, as shown in Figs. 1 and 2. This is
in agreement with the numerical results of Ghoniem
et al. -13], and the analytical results of Widnall

and Tsai [10]. For t > 20, non-linear effects
grow, extending the outer part of each wave
radially outwards while tilting it in the

direction opposite tn the direction of propagation

of tne ring. The inner part of the wav2 moves
radially inwards while it is tilted in the
direction of propagation of the ring. For t > 99,

Fig. 4 shows that the
redistributed around the
A numbe~ of sectors a2gqual to the number of waves.
The outer part of each sector stretches opposite
to the direction of propagation of the ring, while
the inner part elongates forwards.

[t is interesting to note that at the later

vorticity of the ring is
azimuthal direction into

stages, t » 90, the core deformation is different
2% 1ifferent radial 1locations and that the inner
and outer radii may not follow the same pattern,

The figure indicates
adges of the

that the inner
vorticity core may
phase, and that deformations At a scale smaller
than that of the perturbing wave are observed.
This suggests that frequencies different than the
perturbation frequency may be present at later
times, The first harmonic was obsarved to grow in
the non-linear range in Fig. 2.

and outor
move in anti-

v

Figure 4. Perspective views of 3 vortex ring with
g/R= 0.275, excited at the linearly unstable mode,

*
n=n =12, depicted at t = 30, 60, 90 and 120,
and taken from the point of view of an observer
standing ahead of the ring and looking at an angle

of ¢ = 60° with respect tn the direction of
propagation. The ring is represented by all the
vortex tubes used in the computations, and it

propagates upwards.




The growth of streamwise vorticity, measured
by the value of [ Iwzl dA computed in the za-plane
where z, is the average value of =z within the
ring, 1is shown in Fig. 5. At t = Q, w, = 0 since
the initial vorticity of the ring, me. is

perturbed by moving the vortex elements in the
radial direction only. The growth of w, is

negligibly small within the linear range, rises
fast for 20 < t < 80, and tends to stabilize for t
> B0. The oscillation of the curve for later
times is an indication that parts of the core of
the vortex ring experience some rotation even
after the "maturation" of the azimuthal
instability.

Three perspective views of the vortex ring
are shown in Fig. 6 at t = 140, Vortex lines
elongate in the streamwise direction on the outer
radii of the ring, reaching a maximum extension
opposite to the direction of propagation of the
ring and then fold backwards towards the ring
centerline. On the other hand, vortex lines on
the inner radii of the ring stretch in the
direction of propagation of the ring, reaching a
maximum extension and then fold back and move
towards the ring center line. The mechanism of
vortex line folding maintains the ring coherent.

Figure 7 shows the streamwise vorticity
contours, W, at three sections in the direction

of propagation of the ring at t = 140, Within
each sector, the core of the vortex rings
experiences a displacement into and out of the
direction of propagation of the ring, resulting in
the formation of alternating signs of streamwise
vorticity. Note that the sections of the core
that move radially outwards produce streamwise
vorticity opposite to the direction of propagation
of the ring, and vice versa.
To complete the picture of the vorticity

distribution within a perturbed ring, we plot w

5]
at four azimuthal sections within the ring core in
Fig. 8. The vorticity contours show clearly how
the core moves forwards and backwards in the
direction of propagation of the ring as we move
along the ring axis.
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12r ° o Figure 6. Three perspective views of the vortex
ok i ring shown in Fig. U4 taken at t =140, ¢ = 0%, 60°
and 90°. The ring propagates upwards (and out of
N 8t ° ° J the page.)
° - -] °
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Figure 5. Evolution of the streamwise vorticity
IIwZIdR a7ronss the midsection of the ring, z = za,

of the vortex ring shown in Fig. U,
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IV. RESULTS: PERIODIC SHEAR LAYER

IV.1. INSTABILITY OF A SHEAR LAYER
The second flow field which
the formation of streamwise
evolution of a perturbation
flow is that of a periodically excited, planar
shear layer. In this case, the initial state is
that of a vorticity layer with a finite thickness,
measured by 2¢ where g 13 the standard deviation
of the second-order Gaussian that describes the
vorticity distribution within the layer, and
finite streamwise velocity jump, AU. Initially,
the spanwise vorticity, wy. is wuniform in the

we use to study
vorticity due to the
in a two-dimensional

streamwise x-direction, and spanwise y-direction.

Thus, my(x,o) = AU/ (VT o) exp(-zz/cz) where z is

the cross-stream direction.
velocity distribution is u(x,0) = AU/2 erf (y/o),
where erf is the error function. The layer is
perturbed by sinewaves in both the streamwise and
the spanwise directions. The wavelength of the
perturbation, i, in both directions corresponds to
the two-dimensional most unstable mode. The
amplitude of the perturbation is kept small, € =
0.02 A, to capture the 1linear stages of growth of
both perturbations. The perturbation is applied
by moving the vortex elements in the cross-stream
direction according to the sinewaves,

We start by presenting a sample of results
for the two-dimensional case. In Fig. 9, we show
the location and velocity of all vortex elements
used in the computation of a strictly two-
dimensional shear layer, i.e. without allowing any
changes in the spanwise directions. At time t =
0, the vorticity is discretized among elements
distributed on a grid of 5 x 20 points in the z-
direction and the x~direction, respectively.
Extensive analysis of this flow field has been
documented in Ghoniem et al. [24], and will not be
repeated here. Results show the different stages
of development cf the layer: the linear stage, the
formation of a spanwise core, and the flattening,
or collapse of the core. The computed linear

growth of the perturbation, I = d ln I/dt = 0.215
wnere I = f|u{x,t)-U(x)|dx, integrated over the
entire domain., The value predicted by the linear
theory is 0.22. Thus, the simulation is capable
of accurately capturing the growth of the
perturbation through the 1linear stages (an
accurate initialization of the strength of the
vortex elements 1is, however, very important for
predicting the growth rate of the Instability).

In the non-linear phase, which starts as soon
as the central 1layer reaches a vertical position
around t = 6, a strong, planar strain field
accompanies the formation of a coherent core at
the center of the wavelength of the perturbation.
The strain field is strongest at the center of the
core, where vorticity 1{s accumulating, and near
the boundaries of the domain, where vorticity is
pulled towards the center, In the meantime, the
structure of the vorticity field changes from a
uniform distribution into a concentrated region of
elliptical-like shape. The average diameter of
this structure is almost A/2, and the vorticity
distribution within the structure decays radially-
outwards away from 1{ts center, as shown by the
vorticity contours depicted in Fig. 10.

When the vorticity 1is perturbed in both the
streamwise and spanwise directions, {ts growth
develops a three-dimensional flow. In this case,
the vorticity layer is discretized using a grid of
5%x20x25 elements in the 2-, the x-, and the y-

The corresponding

]

direction, respectively. Figures 11 and 12 depict
the projection of the location of the vortex
elements on the x-z plane and the x-y plane,
respectively. In each figure, vortex elements
which were initially aligned 1in the spanwise
111 lon are connected to show the axial stretch
of vor.icity and the areas of deformation of the
vortex lines, Three-dimensional perspectives of
the shear layer are shown in Fig. 13. The
relative displacement of vortex elements show the
magnitude and direction of the 1local velocity.
The figures indicate that the initial growth ra'e
of the streamwise perturbation far exceeds that of
the spanwise perturbation, leading to the
formation of a spanwise eddy, as in the strictly
two-dimensional case.
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Figure 9. Location and
vortex elements for the
layer. t = 6, 12 and 18.
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Figure 10. Contours of spanwise vorticity, my, for

the two-dimensional shear layer. t =6, 12 and
18. In this, and the following figures,
continuous/broken line indicate +ve/~ve vorticity,
respectively.

Figure 11. The location of the vortex elements for
the three-dimensional shear layer projected on the
x-z plane, t = 6, 12, 18, and 24.
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Figure 12. The location of the

layer projected on the x-y plane. t = 6,
Within the linear stage, the vorticity
remains aligned with the spanwise direction, as

seen from Fig. 12. Vortex lines do not experience
any noticeable stretch, only some tilting as the
material lines deform. The linear growth of the
streamwise component of the perturbation
suppresses that of the spanwise component. Around
t = 10.0, and with the inception of a strong
spanwise eddy along the center of the domain, the
wiggles in the spanwise direction start to grow.
The rate of growth of these wiggles is highest
within the braids, where the straln fleld is
strongest, indicating that the presence of a
°trong strain field is necessary for the
development. of a streamwise component of vorticity
within the braids.

During the formation
the strain field is
the houndaries of

of the spanwise eddy,
strongest near the center and
the domain. The vorticity
“#ithin the braids suffers the strongest stretch
along  its axis while the vorticity which is
arcumulating within the core remains, to a large
2xtent, aligned with the spanwise direction. The
axial streteh of the braid vorticity {s tied up to
the strain field produced by neighboring spanwise
addies and the formation of stagnation points, or

331dle points, qear the houndaries of the domain.
Wnile the stagnation points act to anchor the
vnrtex lines at hoth ands in the spanwise
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vortex elements for the three~dimensional shear

12, 18 and 24,

direction, the strain field created by the cores
pulls the mid-section of the vortex lines inwards.

As depicted by Fig. 11, the vorticity within
the braids is continuously entrained into the
cores in the form of "hair-pin" vorticity lines,
around both the top side and the bottom side of
the large eddy. In a strictly two-dimensional
flow, this process will deplete the braids of
their initial vorticity. However, as was observed
experimentally, some streaks of streamwise
vorticity can detected between the spanwise
eddies [2]. The formation of these streamwise
voi tex rods is not expected to affect the flow
within the shear layer in a prominent way since
the vorticity that remains in the braids at the
later stages 1is a very small fraction of the
initial vorticity. However, it is still important
in areas between the spanwise cores since it tends
to form, as will be shown next, zones of counter-
rotating vortex rods that characterize the braids.

In the second stage, and while the eddy is
reaching its maximum size by entraining vorticity
from the shear layer, the strain field acting on
the spanwise core promotes the growth of the
perturbation along its spanwise axis. The growth
of the perturbation along the spanwise core can be
first detected at t = 11 - 12, where the projected
lengths of the vortex lines on the x-z plane start
to grow beyond their values at t = 0. Moreover,

be

<_——




Figure 13. A perspective view of

shown in terms of all the vortex tubes used

and 24.

Fig. 12 shows that, near the center of the plane,
wiggles start to grow non uniformly along the
spanwise dire~tion. It 1is 1interesting to point

out that the growth of the wiggles inside the core
and within the braids is out of phase.

The vorticity within the core experiences
most of its axial stretching during the second and
third stages of growth, i.e. for t > 10. During
the second stage, and while the core is reaching
its maximum size, only those vortex lines that are
close to the axis get strained. With the spanwise
straining of the vortex lines within the core, its
spinning becomes slower than that of a strictly
two-dimensional flow, Beyond t = 14, and within
the third stage, the perturbation grows on more
vortex 1lines within the core, generating a
stronger 3treamwise vorticity component. The
displacement of the vortex lines, originally
aligned with the spanwise direction, into the
streamwise directinn continues until the entire
vorticity core has been partly deformed.

11

the development of the three-dimensional layer,

in the computations. t = 6, 12, 18

Between t = 10 =~ 18, and when the spanwise
eddy exhibits most coherence, the wiggle spreads
throughout the entire core. After the third
stage, t > 18, and while the cross section of the
core is slowly flattening, the vorticity
approaches a state of semi-equilibrium. At this
stages, two modes of spanwise instability are
observed: the braid instability leading to the
formation of the "hair-pin" vortices, or vortex
rods which become lined up between the large
cores, and the core instability which deforms the
spanwise eddy in the spanwise direction.




IV.2. FORMATION OF STREAMWISE VORTICITY
Figure 14 depicts the development of the
spanwise vorticity, my, on an x~z plane at y =

6.6. The figures show strong resemblance to the
vorticity field in the strictly two-dimensional
case, indicating that the growth of the spanwise
perturbations ""~s not alter substantially the
two-dimensional urderlying flow. The amplitude of
the wiggle that grows along the spanwise eddy is
small with respect to the wavelength.
Figures 15 and 16 exhibit the evolution of

the streamwise vorticity, W in two y-z planes: x

= 2,0 and x = 6.6, The first plane shows a cut
through the braids and the second plane shows a
cut through the core. The streamwise vorticity

distribution within the braids, as mentioned
before, results from the straining of the vortex
lines near the boundaries of the domain during the
roll-up of the core. Since most of the vorticity
within the braids is depleted during roll-up, wy

is relatively weak. There 1is a remarkable
similarity between these vorticity contours and
those produced by Lin and Corcos [12) using a
simplified model for the evolution of the
vorticity eddies within the braids., More detailed
comparisons will be presented in the future.
Figure 15 reveals that there is only one row
of Streamwise eddies within the braids during
roll-up. Within one spanwise wavelength, the
layer forms two eddies of opposite signs. Thus,
the sign of vorticlty wiituin the braids alternates
as we move In the spanwise direction, indicating
that this vorticity is actually the w, component

of the -elongating vortex lines as they are
strained by the spanwise cores. At the early
stages, these large streamwise eddies possess
elliptical cores with their major axes aligned

with the spanwise direction. At later stages,
around t = 29, the two eddies become more rounded
and somewhat more "compact". This is due to the

extreme elonzation of the braids between two
neighboring spanwise eddies, leading to the
extension of a vortex 1line that may exceed the
perturbation wavelength. At the latest stages, t
= 24, the two eddies collapse to form two distinect
vortex rods separated by a distance less that i/2.

The stirreamwise vorticity contours, shown in
Fig. 16, 1indicate that, per wavelength 1in the
spanwise direction, there are six main eddies
arranged in two columns and three rows, The two
eddies on the top and the two eddies on the bottom
are extensions of the braid eddies; they have the
same signs and the same coordinates, but they have
twice the vorticity of the braid eddies when
intersected at x = 2, The vorticity distribution
can be explained by the inspection c< the geometry
of the vortex tubes shown in the sketch in Fig.
17. This sketch was generated by examining the
geometry of individual vortex tubes and
identifying their contribution to the vorticity
field at several streamwise and spanwise cross-
sections. The sketch shows only the vortex tubes
whirh contribute to the vorticity distribution in
the x=h.6 plane. The six main eddies depicted in
Fig. 16 can be decomposed into ten elementary
eddies: eight eddies from the braids which join to
form four cores at the central plane x =6.6 and
two eddies raesulting from the streamwise
displacement of the spanwise core.

The two central eddies which appear in the
vorticity contours on the x = h.6 plane are the
intersections of this plane with the spanwise
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Figure 14. Contours of the spanwise vorticity, my'
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Figure 17. Sketch of the geometry of the vortex
lines showing the 1location of the spanwise core
and the axial deformation of the braids.

eddy. Clearly the spanwise eddy experiences
bending along the spanwise direction which moves
the vortex lines forwards and backwards in the
streamwise direction, This i3 a manifestation of
the "translative” instablility which was discovered
in the work of Pierrehumbert and Widnall [9].
Figure 18 shows the streamwise vorticity contours
plotted on three sections x = 3.3, x = 4.4 and x =
5.5, all computed at t = 24, The streamwise
vorticity in the spanwise core appears between x =
3.3 and 4.4, 1indicating the streamwise extent of
the core, Section x = 5.5 shows how two hair-pin
vortices join to form the top and bottom eddies
sbgerved at x = 6.6,

Figure 19 shows the distribution of the
velocity components in the y-z plane, v and w,
computed on a grid at the x = 6.6 plane. The
presence of the spanwise vorticity, and its growth
with time, are clearly indicated by the direction
and magnitudes of the velocity vectors. The
growth of the streamwise vorticity, measured by
Jlw_ |dA, computed at the x=6.6 plane, is shown in
Fig. 20. As seen in the computations of an
isolated vortex ring, w is very small during the
linear stages rf development of the spanwise core,
It grows steadily with the formation of a strong
strain field due to the roll-up and the formation
of spanwise cores, and approaches a stationary
oscillating state during the flattening of the
core {n the last stage.

14

figure 18. Contours of the streamwise vorticity,
wx, shown in y-z planes located at x = 3.3, 4.4

and 5.5, all at t =
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V. CONCLUSIONS

Three-dimensional numerical simulation using
tne vortex element method has been used to study
the instability and the evolution of streamwise
vorticity in two commonly-encountered flow fields:
an isolated vortex ring and a perturbed shear
layer, The ~onvergence of the numerical scheme is
investigated by a detailed study of the effect of
the numerical parameters on tlie prediction of the
unstable mode which grows on 3 vortex ring. The
non~linear growth of tnis mode leads to the
formition of a streamwise vorticity component with
an 1lternating sign along the axis of the ring. A
stady of the structure of the ring core after the
weowth of this  azimuthal instability reveals that
the oore deforms on a conical surface, bending the

vortex line forwards and backwards in the
direction of propagation of the ring, while they
Rlal) mov ing radially inwards and outwards,
reapeotively., In spite of the growth of the

streamwise vorticity, the ring stays coherent and
the flow remains, on the average, two-dimensional.

In the shear layer, the initial growth rate
af rhe streamwWise component of the perturbation
~xe-oeds that of  the spanwWise component, resulting
in the farmation of spanwise vorticity cores,
wWrapped with streamdise  vorticity rods. Similar
ti the yartax ring, the spanwise cores are subject
tH 1 spinwiss  instability that bends the core
farwirids and hackwards in the streamwise

forming A strong streamwise vorticity
~=mpanent  of  alternating sign in  the spanwise
ti~ention. The braids, on the other hand, are
carmed of vortex rods that, during their excursion
into the free  stream, bend into and out of the
streamwise  direction., Here also, the flow
romains, on  the 1verage two-dimensional and the
~nres maintain their coherence.

direation,

cortox
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ABSTRACT

A three-dimensional vortex method based on the discretization of the
vorticity field into vortex vector elements of finite spherical cores is
constructed for the simulation of inviscid incompressible flow. The velocity
is obtained by summing the contribution of individual elements using the Biot-
Savart law desingularized according to the vorticity cores. Vortex elements
are transported in Lagrangian coordinates, and vorticity is redistributed,
when necessary, among larger number of elements arranged along its direction.
The accuracy and convergence of the method are investigated by comparing
numerical solutions to analytical results on the propagation and stability of
vortex rings. Accurate discretization of the initial vorticity field is shown
to be essential for the prediction of the linear growth of azimuthal
instability waves on vortex rings. The unstable mode frequency, growth rate
and shape are in agreement with analytical results. The late stages of
evolution of the instability show the generation of small scales in the form
of hair-pin vortex structures. The behavior of the turbulent vortex ring is
in good qualitative agreement with experimental data.
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I INTRODUCTION

The subject of this paper is the construction and validation of a
Lagrangian, grid-free vortex method for the simulation of three-dimensional,
unsteady, inviscid, incompressible flow. In these flows, as exemplified by
shear layers, jets and wakes, vorticity remains confined to a small fraction
of the total volume of the field while experiencing rapid and large
distortion. Kinematically, vorticity is transported along particle paths
while its magnitude is modified according to the strain field. Moreover, if
the vorticity field and boundary conditions are specified, the velocity field
can be computed by direct integration. Thus, a complete simulation scheme of
the flow can be built on the tracking of the vorticity field in Lagrangian
coordinates. These facts make vortex methods in which the vorticity field is
represented by a finite number of localized vortex elements particularly
attractive. Using these methods, accurate numerical simulation of complex
non-linear flows can be achieved at a limited computational effort.

In a three-dimensional flow, several forms of instability may arise
sequentially or simultaneously. As a result of these multiple instabilities,
rapid and strong distortions of the flow map and the vorticity field are
observed. The changes in the vorticity field can pose serious challenges to
computational methods that attempt to capture the late stages of development
using grids of fixed coordinates. Moreover, the changes in the vorticity
distribution are associated with the formation of length scales which are
smaller than those that existed at early times by the action of the strain
field in the direction of the vortex lines. This makes it necessary to employ
a scheme of local grid refinement as time progresses.

The desire to resolve small scale, streamwise structures in turbulent
shear flows constitutes the motivation behind the task of constructing three-

dimensional vortex methods. While the ultimate goal of this work is the




development of numerical solutions of the Navier-Stokes equations at high
Reynolds number in complex geometry, we limit our attention in this paper to
the construction and validation of a vortex method for the solution of the
incompressible Euler equations in free space. The scheme is based on the
discretization of the vorticity field into a number of vortex vector elements
with finite point-symmetric cores, and following the motion of these elements
in Lagrangian coordinates. The vortex vector elements change their vorticity
according to the local stretch, while their direction is determined by the
tilting of the material lines. The velocity is computed by summing over the
fields of individual vortex elements which is evaluated from the
desingularized Biot-Savart integral.

The evolution of vortex rings in an inviscid flow is selected as a case
study for the validation of the proposed vortex method. The choice of this
problem was motivated by the following reason. There exist two different
linear stability theories, based on a non-deforming core model and a more
accurate deforming core model, indicating that a vortex ring is unstable to
azimuthal bending waves around its perimeter [1-4]. Experimental data which
support the results of the linear theory of the deforming core model are also
available [5-9]. Another attractive feature of vortex rings at high Reynolds
numbers lies in the fact that the finite-amplitude wave breaking of the
azimuthal instability does not lead to a substantial increase in the size of
the support of the vorticity field. Instead, the process 1leads to the
formation of a turbulized vortex ring, a ring of approximately the same
dimensions as the original ring but with a highly turbulent core [3]. The
volume over which computational elements should be distributed is thus not
expected to increase substantially under the action of the strain field.
Meanwhile, the growth of the number of computational elements, if necessary,

will be mainly due to vortex stretching.




The paper is organized as follows. The formulation of the vortex method
is described in Section II. The study of propagation and stability of vortex
rings are tackled using two different physical models for their structure. 1In
Section III, we use the thin tube model in which the core of the ring is
assumed to be small and non-deformable. A more accurate model, where the
dynamics of the flow within the core of the physical vortex are properly taken
into account, is used in Section 1IV. Computations are performed for rings
with different core-to-radius ratios and results of both models are compared
to analytical expressions for the propagation velocity, to the predictions to
the linear theory of vortex ring instability, and to experimental data. The
simulations are then extended beyond the linear range of growth of the
azimuthal instability to study the formation of a turbulent vortex ring. In
Section V, we present conclusions regarding the convergence of the scheme and

a discussion of the properties of vortex rings.




II FORMULATION AND NUMERICAL SCHEME
II.1. EQUATIONS OF MOTION

The motion of an incompressible, inviscid fluid is governed by the Euler

equations:
Veu=0 (1)
9
a—"‘:l+u-Vu=—Vp (2)

expressing the conservation of mass and momentum, respectively. In these
equations, x = (x,y,z) is the position vector, u = (u,v,w) is the velocity, t
is time, V= (9/9x,3/3y,9/3z) is the gradient operator and p is pressure.
Variables are non-dimensionalized with respect to the appropriate combination
of a charactcristic length, a characteristic velocity and the density. The

governing equations can be rewritten in terms of the vorticity w, defined as:
w=9xu (3)

by taking the curl of Eq. (2). Using Eq. (1) and the fact that, by
definition, the vorticity forms a solenoidal vector field, we obtain the

vorticity transport equation:

ow
3t +u-° Vo=w-+ Y (4)

Equation (4) indicates that the vorticity moves along a particle path
while it is being tilted and stretched with the evolving strain field, Wu.
This can be seen by comparing the vorticity transport equation with the

equation governing the evolution of a differential material element &§x:
gtax+u-vsx-sx-vu (5)

This comparison yields the well-known Helmholtz theorem.




I1f the vorticity distribution is known, the velocity can be evaluated
from the integration of Egs. (1) and (3). Based on the uniqueness of the
decomposition of a vector field, the velocity can be split into two components

as follows:

u=u, + up (6)

where L is a solenoidal field and up is an potential field. Furthermore, we

assume the existence of a vector stream function ¢ satisfying:

uw =9Uxvy (7

By construction, u, satisfies the continuity equation since V-Vxy vanishes
identically. Substituting Eq. (6) into Eq. (3) and assuming that y itself is

divergence-free, we get:

Py = -0 (8)

The solution of this equation is given by:
¥(x) = [ G(x-x') w(x’) dx’ (9)

where x’ is the position of the volume element dx’, and

G(x) = g (10)

is the Green function of the Poisson equation in three dimensions, where r =
|x|{. As shown by Batchelor (10], the vector stream function ¥ given by the
above expression is solenoidal, as previously assumed, if the boundaries of
the domain extend to infinity. Equation (6) states that the velocity can be
written as the sum of a rotational component induced by the vorticity field in
an unbounded space and a potential component required to satisfy the boundary
conditions. For an unbounded domain with no interior boundaries, up vanishes

identically.




The velocity component u  can be evaluated from Egs. (7) and (9),

yielding the well-known Biot-Savart law:

u(x) = [ K{x-x') x w(x') dx’ (11)
where
K(x) = - 3= X (12)

r

Next, we show how to use Egs. (4), (5) and (11) to construct a vortex scheme.
1I.2. NUMERICAL SCHEME

The construction of the numerical method starts with the discretization
of the initial vorticity field into a number of vortex vector elements, each
with vorticity w,, on a three-dimensional mesh. The support of the initial
vorticity is divided into volume elements dVi, i =1, 2, ..., N, and the

vorticity is written as:

N
w(x,0) = ifl w, (0) dvi £5(x-X.) (13)

where xi is the center of the volume element dvi’ and w, is the vorticity
associated with the element i. The vorticity associated with each element is
smoothed in a small neighborhood of X, according to a spherical core function
f6 with a core radius 8. The core function f6 is chosen to satisfy the
following conditions: (1) [ fa(x) dex= 1 and f& converges to the Dirac delta
function &(.) in the sense of distributions as 8 » 0; (2) the induced velocity
field away from the core is the same as that induced by a concentrated vortex
element, i.e., the core function decays at a fast rate; and (3) the velocity

field of a finite vortex element is non-singular at its center. Let:

1 r
f& = E} f(g) (14)




T

where £ > 0 for r < 8 and vanishes rapidly for r > 8§, so that § represents the
radius of the shpere where most of the vorticity is concentrated. Note that
if f& was chosen to be the Dirac delta function, Eq. (13) would represent the
distribution of singular vortex elements. In what follows, a core function

will always be used and § will be taken as a positive number larger than the

distance between the centers of neighboring elements. The accuracy of the
discretization in Eq. (13) depends on: (1) the ratio §/h, where h is the
distance between neighboring elements; (2) the choice of the core function,
f&’ and (3) the scheme used to determine of the values of w .

From the analysis of the computational results, we found that best
accuracy is obtained for values of § larger than the distance between
neighboring elements. This last requirement, & > h, will ensure that the core
functions associated with neighboring elements are highly overlapping. This
condition has been widely used in the analysis of the convergence properties
of vortex algorithms [11-14), and it has been enforced in two-dimensional
vortex simulations to improve the accuracy of the results [15,16]. 1In the
computations, this condition will be satisfied even when the use of cubic
volume elements is not practical. 1In this case, 4V = hx hy hz, and 8§ > h is
replaced by § > max {hx,hy,hz}.

The accuracy of the discretization also depends on the shape of the core
function £. The analysis of Beale and Majda [17] outlines a procedure that
describes the construction of core functions which satisfy the above
conditions and yield schemes of arbitrary high spatial order. 1In this work,

the third order Gaussian core function:

3

£(r) = 735 e (15)




. -

is used. This core function, which was proposed by Leonard [18], has been
shown to yield a second order discretization by Beale and Majda [17].

The accuracy of the computation also depends on the method used to find
wi(O). Three methods have been proposed: (1) using a point measure of the

vorticity, uﬁ(O) - axxi,O); (2) using an average of the vorticity, wi(O) dVi -

J o(X,0) dX; and (3) solving the system of linear equations resulting from the
application of Eq. (13) to the mesh points xi' i=1,2, .. ., N. In the two-
dimensional version of the scheme, we found that the last algorithm yields the
most accurate results for the initial wvorticity discretization and for the
initial development of the flow field. Thus, in the following computations,
we use the last scheme to distribute the initial vorticity among the vortex
elements.

Equation (13) remains unchanged if the quantity o, dvi is replaced by ri
Bxi, where axi = (xi+1_xi—l)/2 is a small material 1line segment in the
direction of the local vorticity vector at X, and ri is the circulation. This
substitution becomes unambiguous if the centers of the vortex elements are
carefully chosen to lie on the vortex 1lines of the initial vorticity field so
that both I, and éX, are well defined according to the initial vorticity
distribution, and if the index i increases incrementally in the direction of
w. In this representation, axi is associated with a material line segment and
ri remains constant along a particle path, in accordance with Kelvin’s
theorem. As a consequence of the Helmholtz theorem, derived by comparing Egs.
(3) and (4), the evolution of 5xi, which will be denoted by 8xi(t), can be

related to the vorticity w, can be related as follows:

|aﬁ(0)l

X, |

n&(t) =

8, () e
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Using Eq. (16), the vorticity distribution expressed by Eq. (13) evolves

according to:

N
wixt) = I T; 8 (t) £5(x-X;(t)) (17)
1=

In this expression, x&(t) is the coordinate of the material particle initially
at X, so that xi(O) - X is the Lagrangian coordinate of this point, and
SXE(O) - 8xi. A vortex element is thus described by (r,x,ax)i. The evolution
of the material line element, and the vortex vector element, 8xi is governed
by Eq. (5). Since X; is the position of a material particle and 8xi is the

material line, their evolution is governed, respectively, by:

ax
F& = ulx(t),t) (18)
ffﬁsxi = 8x; + (X (t),t) (19)

The solution of Eq. (4) is thus replaced by Eq. (17) and the solutions of Egs.
(18) and (19).

The velocity field u in Eqs. (18) and (19) can be obtained by
substituting Eq. (17) into Eq. (11) and performing the integration. The
result of the integration, which represents a discrete desingularized version

of the Biot-Savart law, Egq. (11), is given by:

N (x—-xi) X 8xi )
1 i
u = - I T, K(+=) (20)
R

2

where K(r) = 4n OIr f(r') r'® dr' and r, = |x—xi|. For the core function

given in Eq. (15), the corresponding expression of k is:
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3
K(r) =1 - e ¥ (21)

Using a first-order time integration of Egs. (18) and (19), the vortex
element center, xi, and the wvortex vector, 8xi, can be approximated,

respectively, by:

xi(t+At) = xi(t) + u(xi(t),t) ot (22)

and
Bxi(t+At) - 8xi(t) + SXi(t) . Vu(xi(t),t) At (23)

The velocity gradient Yu, can be evaluated analytically by differentiating the
velocity expression in Eq. (19), as proposed by Anderson and Greengard [19].
However, in order to reduce the computational effort, the following approach
is adopted. The velocity gradient along the vorticity vector can be

approximated by:

u(x,((t),t) = ulx,_,(t),t) (24)

X, VU(Xi(t).t) =

Substituting Eq. (24) into Eq. (23) and using Eq. (22), we get,

Xj 4 (t+ot) = x;_,(t+ot) (25)

8xi(t+At) =
2

This approach explicity enforces the soleniodality of the vorticity field.
The vortex filament scheme of Leonard ([18,20]) and the vortex stick scheme of
Chorin ([21-23] employ similar, but not identical devices to account for the
change of vorticity as material lines are strained. 1In our computations, a

second-order time integration is used to move the points X:
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x; = X (t) +u(x;,t) ot
and (26)

* *
O UL L

xi(t+At) = Xi(t) +
2

As mentioned before, this scheme implicitly enforces the connectivity of the
vortex lines. It, thus, ensures that the vorticity field remains solenoidal,
V-w = 0, irrespective of how accurate time integration or discretization of
the vorticity field are.

As the flow develops strong stretch along the vortex lines, the value of
Sxi increases and the amount of vorticity carrie.’ by each vortex element
grows. To maintain a uniform resolution, a vortex element is split into two
elements each with §x = 8xi/2 and T = ri, whenever the magnitude of |6xi|
exceeds thax’ This amounts to redistributing the vorticity field among a
larger number of elements to prevent the deteriorati~on of the accuracy of the
discretization as the distance between neighboring elements increases due to
the strain field.

To study the accuracy and convergence of this scheme, we compute the
propagation and the linear stability of a vortex ring using two models: the
thin tube model and the vortex torus model. Results of each model are
compared with the corresponding linear theory of stability. We continue the
computations beyond the 1linear range to illustrate the dynamics of the
vorticity field at the later stages of development of the flow.
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III RESULTS FOR THE THIN TUBE MODEL

This is a simplified model of a vortex ring. In this model, the cross
section of the ring, with core radius ¢, is represented by one vortex element
with core radius § = o. This "thin tube" model, while resembling the thin
filament approximation proposed by Leonard [18), differs by the following. In
the filament approximation, the core maintains its vorticity distribution as
the filament is deformed. In the thin tube model, the relative motion of
neighboring elements can affect the local vorticity distribution within the
tube. Although this is not expected to cure the limitations of the thin
vortex ring approximation, especially in determining the stability behavior of
the vortex ring, we start with this case for its simplicity and computational
efficiency. The model is used as a test case to examine the effect of the
vortex element length, h, and the time step, 4t, on the accuracy of the
computations.
IT1I1.1. SELF-INDUCED VELOCITY

The physical ring, of radius R, is divided along its axis into N vortex
elements, each of length h = axi = 2nRN, i = 1, 2, .. ., N. To ensure
overlap between neighboring elements, we use § > h so that the vorticity
within the core can be accurately discretized by the vortex elements. The
vorticity distribution across the section of the ring, Q(X), is best
approximated by a second-order Gaussian distribution with a standard deviation
¢. Equation (20) is used to evaluate the self-induced velocity, V, by summing
the contribution of the elements around the ring. Results are compared with
the analytical expression of Saffman [24] for a thin vortex ring: ; =
In(8R/0) ~ C, where G = 4nRV,/T is the normalized velocity and C is a constant
which depends on the vorticity distribution within the core. For a second-
order Gaussian distribution C = 0.558 and ¢ is the standard deviation of the

Gaussian curve.
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A comparison between the computed value of G, using different values of
N, and the analytical value is shown in Fig. 1 €£for o/R = 0.1, 0.2 and 0.3.
The results indicate that strong overlap between neighboring vortex elements,
8§ ~ 2h, is necessary for the accurate prediction of ;. It also shows that, as
the ring becomes thinner, more elements are required to achieve accurate
discretization, i.e. N grows as R/o increases. Therefore, for a fixed core
size, the number of elements required for accurate discretization grows with
the curvature of the ring. The computed self-induced ring velocities are in
good agreement with the values evaluated from the analytical expression for
thin rings, while they are somewhat higher for thick rings. This is expected
since the analytical expression was derived wunder the assumption that o/R <<
1.0.
III.2. STABILITY OF A THIN RING

A more interesting problem, which provides a test for the accuracy of the
time-dependent calculations, is the growth of small perturbations on the
vortex ring. There exists a rigorous linear theory for the stability of
vortex rings in two forms: (1) for a ring with a non-deformable core,
performed by Widnall and Sullivan [1]); and (2) a more elaborate theory where
the dynamics of the flow within the core and its deformation are taken into
account, reported in Widnall et al. (2], Widnall [25] and Widnall and Tsai
{3]. The results of the current thin tube model will be compared to the
predictions of the first analysis. In Section 1V, the results of the vortex
torus calculations, in which a number of elements are used to represent the
ring cross section, will be compared with the theory of the deformable core.

To study the linear stability of thin rings using the thin tube model, a
radial perturbation, with amplitude ¢ = 0.02R and wavenumber n, is imposed on
the axis of the vortex ring. The wavenumber is the number of waves that are

fitted along the entire length of the ring axis. The size of the perturbation




15

varies in the azimuthal direction as 4p = € sin(n8), where p denotes the
radial direction in the plane of the ring and © is the azimuthal angle. At t
= 0, the ring lies in the x-y plane, the z-direction being the streamwise
direction, and the vortex elements are displaced so that p = R + Ap. We start
with n = 1 and increase the wavenumber by an increment of one. The time step
used is At = 0.10 and the selected value of circulation is I = 2.0. Results
are obtained for rings with ¢/R = 0.10, 0.15, 0.20 and 0.25, and are analyzed
in terms of the growth of the perturbation in the radial and streamwise
directions. 1In the following, only the case of o/R = 0.1 is discussed in
detail.

For n < n.. where n

N is the wavenumber of the neutrally stable mode, the

ring spins around its unperturbed axis at a frequency xt that depends on the
value of n. The motion described by any point on the ring, with respect to
the unperturbed axis of the ring, is that of an ellipse whose major axis is in
the radial direction and the minor axis is in the streamwise direction (if the
perturbed ring is opened to form a rectilinear vortex, it will resemble a
corkscrew spinning at a frequency Xr and, hence, these bending waves are also
called helical waves). The sense of rotation of the ring is the same as that

of the ring vorticity. The frequency of rotation, \_, starts low at small n,

r
grows to a maximum and then decreases again as n moves towards n,. The
amplitudes in the p-direction and z-direction are shown in Fig. 2 for n = 2,
5, 8 and 12. The figure shows that the radial perturbation produces a
streamwise perturbation of almost the same magnitude. These modes are
characterized as being linearly stable since their amplitudes remain bounded.
At n= n., the wave neither grows nor rotates. For o/R = 0.1, and nn -
13 the ring remains in its original plane without bending, as depicted in Fig.

3. For the next mode, n" = 14, the wave grows in the radial direction and

then in the streamwise direction so that the total amplitude grows
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exponentially in time, i.e., the ring becomes linearly unstable, as shown in
Fig. 4. Moreover, wave rotation is not observed. At higher values of n, n >
n*, the ring is stabilized again and the eigenfunctions behave in a similar
way to those corresponding to n < n., with the exception that the major axis
of the ellipse is now in the streamwise direction and the sense of rotation of
the wave is reversed. The wave amplitudes in the p and z-directions are shown
in Fig. 5 for n = 15 and 19.

Similar observations are made for rings with o/R = 0.15, 0.20 and 0.25.
In all cases, the unstable mode n* is a bifurcation in the eigenfunction that
corresponds to Ar = 0. In Fig. 6, Ar, normalized with respect to rynz, is

plotted against the non-dimensional wavenumber defined as k = no/R. The

unstable mode k* = n*a/R ~ 1.25 corresponds to a non-rotating mode, xr =0,
for all the values of o/R. This is in agreement with the analytical results
of Widnall and Sullivan [1] for the stability of rings with non-deformable
cores. They observed that a mode becomes unstable when the self-induced
rotation of the wave balances the rotation induced by the ring, and the energy
of the perturbation is expent in stretching the wave amplitude.

In order to check on the accuracy of the computations, we varied the
discretization parameter h by using more elements around the ring axis.
Figure 7 shows the growth of the amplitude of the perturbation ap =V Ap2+622,
computed using an increasing number of elements for the unstable mode of a
ring with o/R = 0.2, n* = 7. Although N = 30 is the smallest number of
elements required to satisfy the condition & > h, we notice that N = 90 is
necessary to compute the growth rate accurately. This is the same number of
elements required for the accurate prediction of the self-induced velocity of
the unperturbed ring, G = 3,1309, as seen in Fig. 2. Using this value of N

was also necessary for the discrete vorticity field, Q(X), to become

independent of N. This is not surprising since the stability of the wave

]




17

depends strongly on the velocity and strain field induced by the ring on the
perturbation. The growth rate o defined as o, = d(log ap)/dt, is computed
from Fig. 7 as 0.162. The analytical value of o for the same value of V is
o = 0.157 [1].

The effect of the time step, At, on the computed results is studied in a
similar way. Figure 8 shows the growth of the wave amplitude for o/R = 0.2,
using N = 100, employing decreasing values of At. For At < 1.0, the
computations are almosty insensitive to the choice of At. Results diverge for
At > 1.0, showing an accelerated growth of the perturbation accompanied with a
high rate of stretch along the ring. For the other cases of o/R, the
computations were repeated using &t = 0.05 but yielded no appreciable change
in the results. 1In the following computations, we wuse At = 0.10 for rings
having the same value of circulation.

In Fig. 9, we plot the critical wave number n* against the self-induced

~velocity 6, used to characterize the ring, for the four cases of ¢/R. We have
reproduced on the same figure the analytical results of Widnall and Sullivan
[1] for the non-deformable core model, and their experimental results. The
results agree well with the results of the stability theory of vortex rings
with non-deformable cores. The model, as expected, is unable to describe the
stability characteristics of a vortex ring with a deformable core. The
computed results are, however, closer to the experimental data than those
obtained by the long wave stability analysis. This seems to support earlier
speculation that the wuse of vortex elements allows small first order
deformation in the vorticity core of the ring which causes the computed
results to behave slightly better than those of the corresponding linear
theory.

I1I.3. SHAPE OF INSTABILIY
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The growth of the perturbation is now examined by observing the
deformation it develops along the vortex ring, i.e. the eigenfunction of the
instability. Figure 10 depicts two views of the vortex elements, connected
along the direction of vorticity, for a ring with ¢/R = 0.25, at t = 140, 180,
210 and 230. The ring is initially perturbed at n" = 6 with ¢/R = 0.02.
According to the results, the evolution of the instability can be divided into
three stages. In the linear stage, t < 140, the perturbation grows as a
standing wave, as predicted by the linear theory and verified by the analysis
of the numerical results in the previous section. The growth of the number of
vortex elements, and concomitantly the vorticity, is negligibly small.

In the non-linear stage, 140 < t < 190, the amplitude of the instability
continues to grow, but the condition of zero rotation is no longer satisfied.
Due to this growth, the peaks of the waves extend radially outwards, while
they are stretching in the direction opposite to the direction of propagation
of the ring. The peaks suffer a strong stretch that sends them away from the
original axis of the ring, generating counter-rotating vortex rods, or hairpin
vortices. In the meantime, the valleys of the wave rotate slowly, forming
flat connections between neighboring hairpins.

At the later stages, t > 190, violent stretching of the hairpin vortices,
with an exponential growth of the total arclength of the ring, is observed.
However, the outward-reaching, inverted U-shaped vortices, the hairpin
vortices, do not continue to move outwards. Instead, they fold backwards,
stretching towards the original axis of the ring. In the meantime, the number
of elements used to discretize the ring continues to increase, growing from N
=90 at t = 0 to N =802 at t = 230. This catastrophic growth of the number
of elements forced us to stop the computations at this time. Similar
exponential growth of vorticity has been observed before in models that employ

thin filament approximations of vorticity structures, e.g., [26,27].
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As has been shown before, the thin tube model does not allow enough
changes within the core of vorticity to capture higher order radial bending
modes that support the short wave instability observed experimentally. To
overcome this limitation, a more detailed description of the ring in which the
core vorticity is discretized into a number of vortex elements with § < ¢, is

used in Section IV. We call this model the vortex torus.
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IV RESULTS FOR THE VORTEX TORUS

This is a more elaborate model of a vortex ring. The terminology is
motivated by the way the physical ring is discretized. The core of the vortex
ring is represented by several vortex elements whose cores are smaller than
that of the enclosing torus, 8§ < wo. The vortex ring is thus modeled by a
number of thin vortex tubes arranged within its core, forming a vortex torus.
Note that we still call the physical object a ring, while the model is
labelled as torus. The motion of the elements throughout the cross section of
the torus allows substantial deformation of its core at different radial and
azimuthal stations. Therefore, higher-order radial modes associated with the
instability of vortex rings, as observed in the linear stability analysis, are
expected to be properly simulated. The larger the number of elements arranged
in the radial direction within the torus core, the higher the order of the
radial instability which can be captured by the simulations.
IV.1. DISCRETIZATION OF THE VORTICITY CORE

The initial vorticity of the vortex elements, uﬁ(O), is computed by
solving a linear system of equations formed by applying Eq. (17) to a three-
dimensional radial mesh within the torus. The centers of the vortex elements
are located at the centers of the mesh cells, and the left hand side of Eg.
(17) is set equal to the total vorticity of the vortex ring at the center of
the vortex element. This ensures that the numerical value of the vorticity at
the mesh center is equal to that of the initial vorticity of the ring. The
mesh is constructed using N, cross sections of the torus separated by an angle
46 = Zn/Nc, and N, points within each cross section. The elements within each
cross section of the ring are arranged on N radial locations. 1Initially, the
vorticity of the ring, 2 is aligned with the azimuthal 6-direction and is
independent of 6. The coordinate system which is used to describe the ring is

shown in Fig. lla. Thus, N, equations are solved for the initial vorticity of
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the elements within a particular cross section. The initial vorticity within

the core of the ring is taken as as third-order Gaussian distribution:

3
Q (1) = —12 exp(- 53) eq (27)
ac o

where e is the unit vector along the unperturbed ring axis, r is measured
from the center of the vorticity core, as shown in Fig. lla, a = n/3 v(2/3), o
is the standard deviation of the Gaussian and y denotes the Gamma function.
The constant a is chosen so that the normalized circulation of the vortex ring
is 2, and 2 is positive so that the ring moves in the positive z~direction in
a right-handed reference frame.

Three different meshes are used to discretize the vorticity of the ring,
as shown in Fig. 1lb. Mesh I is a uniform radial mesh; mesh II is a staggered
radial mesh; and mesh III is an equi-spaced radial mesh. In meshes I and 1I,
all the radial stations within the core have the same number of elements. 1In
mesh I, the elements are aligned on radial rays, while in mesh II, they are
radially staggered. In both cases, the radial distance between neighboring
elements increases as we move outwards. In mesh III, the number of elements
increases as we move outwards to maintain the radial distance between
neighboring elements approximately the same. In all cases, the number of
elements in the 6-direction for each radial location, Nc’ was chosen such that
the self-induced velocity of individual thin tubes were accurately predicted
according to the analysis in the previous section.

Many choices of the mesh and of the core of the vortex elements would
satisfy Eq. (13). The locations of the centers of the vortex elements, and
the core radius of the elements, &, are chosen to satisfy the following
conditions: (a) the element core radius should be large enough to ensure

overlap between neighboring elements; and (b) the order of magnitude of the
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vorticity of the elements at different radial stations is the same to optimize
the utilization of the elements; and (c) the total circulation of the elements
is as close as possible to the circulation of the ring. when it was not
possible to satisfy the three conditions simultaneously, a cowpromise which
favored the enforcement of condition (c) was used.

Tests for the accuracy of the discretization of the vorticity field were
performed for a ring with o/R = 0.275 for the following cases: (1) mesh I with
Nr =9, 17, 25 and 33; (2) mesh II with Nr = 17, 25 and 33; and (3) mesh III
with Nr = 19, 37 and 61, all shown in Fig. 11b. The results of the
computations are summarized in Table I. The accuracy of the discretization is
measured in terms of: (1) the deviation of the computed value of I' from the
intended value of 2; (2) the predicted value of the self-induced velocity; (3)
the error in the vorticity field El = 1,/T IAlge(r) - wb(r,O)ldA, where A is
the cross-sectional area of the vortex torus; and (4) the predicted most
unstable mode n*. In light of the results of the first three quantities, the
following observations can be made:

(1) To satisfy the conditions €for accurate discretization, the core

radius of the vortex elements, §, must decrease at a slower rate than the

separation between elements, h. In each case, the results show that §
decreased slightly while the number of elements was doubled. This is in

agreement with the convergence results of Beale and Majda [12,13};

(2) The computed values of the self-propagation velocity, 6, are within

less than 0.5% variation for all cases. This is despite the larger error

in the vorticity discretization, El' A similar trend is shown in the
values of I'. The fact that both G and T are integrals, or averages, of
the vorticity field explains why the error diminishes.

(3) E1 decreases substantially when an equi-distance mesh, which

guarantees the maximum overlap among the vortex elements at the outer
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radial stations, is used. Note that when wusing mesh I with Nr = 25 and

33 and mesh II with N, = 33, it was not possible to satisfy condition (a)

at the outermost radial 1location of the elements, which resulted in a

non-diminishing E,. Using almost the same number of elements in mesh III

resulted in an order of magnitude drop in the error.
IV.2. STABILITY OF A VORTEX TORUS

To investigate the effects of the discretization parameters on the
evolution of the instability of the ring, the torus with o/R = 0.275 was
initially perturbed by fitting n sinewaves with an amplitude €¢/R = 0.02 along
the perimeter. The number of cross sections along the 6-direction was chosen
so that at least 10 elements were used to fit a single sinewave. The
integration time step ot = 0.10, and the computations were carried for 1000
time steps. To obtain an accurate measure for the evolution of the
perturbation around the torus, the computed energy spectrum of the ring was

“examined. The energy spectrum was evaluated by computing the discrete Fourier
transform of the energy calculated at 200 points evenly distributed along a
circle of radius p = R, located at z = Z,r 2, being the average streamwise
location of the vortex elements, In the following section, we will
investigate the growth of the perturbation in the physical plane.

Figure 12 shows the evolution of the amplitude of the excited wavenumbers
n=17, 8, 9, 10, 11 and 12 using mesh I with Ns = 1 and Nr =9, At n=7 and
8, the amplitudes oscillate without growth, indicating that the ring is stable
to these waves. For n= 9 and 10, the amplitudes grow exponentially at the
early stages, t < 30, and continue to grow at a more moderate rate at later
times. The rate of growth is higher for n = 10, indicating that this is the
fastest growing mode n". For n > n*, the amplitudes of the waves oscillate
and a stable behavior is observed. The computations were repeated using mesh

I with N = 2 and N = 17, and the results are plotted in Fig. 13 showing the




24

evolution of the amplitudes of the waves n = 9, 10, 11, 12 and 13. These
results show that 10 > n < 13 are stable waves, while n = 11 and 12 are
unstable waves. Here, n* =12 corresponds to the most unstable perturbation.
By repeating the computations for N = 25 and 33 using mesh I, we
confirmed that n* = 12, As shown in Table I, the same value for the most
unstable wavenumber was obtained using mesh II with N. = 17 and 25, and using
mesh III with N, = 19 and 37. A more detailed account of the results of these
computations is shown in Fig. 14. These results indicate that mesh I with N,
= 9 did not provide enough resolution to capture the correct unstable mode.
More careful inspection of Fig. 14 reveals that while the early behavior of
the results of mesh I with N, = 25 and 33 agree with those obtained using the
other discretization parameters at early time, they diverge at later times.
Comparison of the evolution of the instability, when computed using the
eight discretization meshes, reveal the following:
(1) At least two radial locations within the core are needed to ensure
accurate prediction of the unstable mode in vortex rings. Wwhen we used
mesh I with N, = 1, the resolution of the vorticity field could not
capture the correct wavenumber of the unstable mode. This is expected
since the instability observed here, according to iie results of the
linear theory, corresponds to the second radial mode which should be
properly represented. A single radial station within the core is not
sufficient for proper resolution of this mode. Note that using more than
two locations did not affect the value of n'.
(2) For accurate simulations using the vortex method, overlap between the
elements must be maintained at all times. When this condition is not
observed, convergence of the results may not be achieved. Note that the

loss of overlap is responsible for 1large error in the estimate of the
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initial amplitude of the perturbation for mesh I with N, = 25 and 33, as

seen from Fig. 14.

(3) The prediction of the unstable mode and the evolution of the

instability are independent of the initial location and number of vortex

elements when: (a) overlap between neighboring elements is ensured, (b)

at least two radial stations within the core are present and (c) a

sufficiently small time step At is used.

These conclusions were further confirmed by inspecting the long time
energy spectrum for the five cases for which conditions (a)-(c) hold, mesh I
with N = 17, mesh I1 with N = 17 and 25, and mesh III with N, - 19 and 37.
Figure 15 shows the behavior of the unstable wavenumber, n* = 12, and its
first harmonic, n = 24, for the five cases. The response of the unstable mode
and that of its harmonic are in close agreement for the five cases. For cases
where overlap was not maintained, the generation of the first harmonic was not
observed.

To derive the relationship between ; and n*, the computations were
repeated for rings with o/R = 0.325, 0.375 and 0.45. The corresponding self-
induced velocity was 6 = 3,13, 2.98 and 2.79. The tori were discretized on
mesh I using Nr = 9 and 17, and were perturbed as for the o/R = 0.275 case.
Results are summarized in Table 1I1I, and plotted on Fig. 16. These results
indicate that the relationship between the unstable wavenumber and normalized
self-induced velocity derived by using a single radial station within the core

is not accurate. The computed results obtained by using two or more radial

stations are in excellent agreement with the results of the linear theory, and
in very good agreement with experimental data. It is interesting to note that
using two radial locations for vorticity discretization, we find two amplified
wavenumbers. This indicates that the ring is unstable to a narrow frequency

band and that, in reality, both modes may grow simultaneously [3].
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IV,.3. SHAPE OF INSTABILITY

The shape of a vortex ring undergoing deformation due to the growth of
azimuthal instability is now analyzed wusing the results of numerical
simulation based on the vortex torus model. We study the evolution of a ring
perturbed at the most unstable wavenumber and compare the results with
observations made by the linear stability theory, starting with analysis of
the evoclution of the flow field of a ring perturbed at a stable wavenumber.

Figure 17 depicts two views of the vortex torus with o/R = 0.275 when
perturbed by a stable wavenumber n = 9, at time t = 10, 40, 70, 100, computed
using mesh II with N = 17. These views are generated by projecting the lines
connecting the vortex elements initially aligned along vortex lines on the
planes normal and parallel to the direction of propagation of the ring. The
figure shows that the vorticity core experiences a mild deformation due to the
motion of individual vortex elements around the original axis of the torus.
However, the amplitude of the perturbation remains bounded while the waves
rotate around the axis of the ring, as seen by the exchange of peaks and
valleys at the same azimuthal location around the ring. The frequency of
rotation of the waves is the same as that predicted by the curve in Fig. 13.
The number of vortex elements used to discretize the vorticity field of the
ring remains constant during the entire run, N = 2040, indicating that the
corresponding vorticity stretch is negligibly small.

Figure 18 shows perspective views of the same vortex torus when perturbed
at the most unstable wavenumber, n* = 12, depicted at time t = 30, 60, 90,
120. During the initial stages, and within the 1linear range of the
instability, the waves do not rotate around the axis on the ring while their
amplitudes grow at an exponential rate. The growth of the perturbation as
standing waves has been predicted by the 1linear stability theory. The

perturbation grows in the radial and streamwise directions causing substantial
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non uniform deformation around the ring. At t > 30, while the rate of growth
subsides due to the onset of non-linear dynamics, the deformation of the ring
continues to reshape the vorticity structure. The figure shows that the outer
sections of the standing waves continue to extend radially outwards while they
are being tilted in the direction opposite to the direction of propagation of
the ring. On the other hand, the inner parts of the waves extend inwards
towards the center of the ring while they are being tilted opposite to the
direction of propagation of the ring. During this stage, the entire cross
section of the core moves almost in phase. This process leads to a
redistribution of the ring vorticity into a number of sectors equal to the
number of waves.

At later stages, t > 90, the core experiences more deformation due to the
motion of different radial locations at different speeds. The figure shows
that the inner and outer radii of the ring move in anti-phase, leading to
deformations at scales smaller than the scale of the initial perturbation.
The formation of small scales can be examined by 1looking at the long time
enerqgy spectrum. Figure 19 displays the time-change of the amplitude of the
perturbation wavenumber, n*, and of its higher harmonics, 2n* and 3n*, showing
how higher harmonics are energized after the saturation of the fundamental
frequency. It is interesting to observe that the generation of small scales
takes the form of an energy cascade in which successively excited wavenumbers
are higher harmonics of the most unstable wavenumber. This is also associated
with severe stretching of the vortex lines, as indicated by the growth of the
number of vortex elements from N = 2040 at t = 0 to N = 6936 at t = 140 where
we had to terminate the computations.

Three perspective views of the vortex ring at t = 140 are éhown in Figq.
20. The figure shows that vortex 1lines at the outside radii elongate along

the negative z-direction reaching a maximum in the direction opposite to that
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of propagation of the ring and then fold forwards towards its center. On the
other hand, vortex lines at ‘the inside radii of the ring stretch along the
positive z-direction reaching a maximum in the direction of propagation of the
ring and then fold backwards towards its center. The mechanism of vortex line
folding maintains the ring coherent and is responsible for the formation of
the hairpin vortices. The shape of the ring at the later stages is in
agreement with experimental observation [8,9]. This suggests that these
hairpin vortex structure, which were also observed in the late stages of
development of the thin tube model, represent fundamental forms for vortex

lines in turbulent flows.




SUMMARY OF DISCRETIZATION RESULTS FOR A RING WITH o/R = 0.275

UNIFORM MESH I

N, N
9 1
17 2
25 3
33 4

S

8/R
0.1875
0.1550
0.1425
0.1425

STAGGERED MESH II

17 2
25 3
33 4

EQUI-SPACED MESH III

19 2
37 3
61 4

0.1550
0.1512
0.1250

0.1550
0.1550
0.1500

Ar/R

0.1700
0.1087
0.0900
0.0650

o

.1090

Q

.0825

o

.0762

0.1080
0.0910
0.0705
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TABLE I

.0033
.9993
.0089
.9988

.0027
.0011
.0014

.0007
.9992
.9999

<

3.277
3.291
3.285
3.297

3.290
3.265
3.303

3.281
3.296
3.297

E1x100
3.5047
3.4472
2.8073
3.4559

3.4250
2.1934
2.3219

3.1814
0.4120
0.3480

10
12
12
12

12
12

12
12
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TABLE II

SUMMARY OF THE COMPUTED UNSTABLE WAVENUMBER USING MESH I

o/R = 0.275

o/R = 0,325

=/

HEOOONO
- o

o/R= 0.375

HOooJgoWwm o

(=]

o/R = 0.45

WO JOoYUT e

* indicates the most unstable

stable
neutral
unstable
stable
stable

Nr =9
stable
unstable,
unstable
stable
stable

Nr = 17

stable
stable
unstable,
unstable
stable

stable
unstable
unstable
stable

stable
unstable,
unstable
stable

stable
unstable,
unstable
stable
stable




31

V DISCUSSION AND CONCLUSIONS

In this work, a three-dimensional vortex method for the solution of the
unsteady, inviscid, incompressible flow equations is constructed, and its
convergence and accuracy are investigated. The method is applied to the study
of the evolution of unstable vortex rings in an unbounded fluid. Two models
for the vorticity core of the ring are introduced, a thin tube model where the
vorticity of the core is concentrated into a single vortex element, and a
vortex torus model where several elements are used to represent the core
cross-section. Computed results for both models are compared to analytical
predictions of the number of waves of the unstable mode and the properties of
the corresponding eigenfunction of the linear stability problem.

The following numerical parameters have been shown to play an important
role in the accuracy and convergence of vortex methods: the smoothing core, £;
the ratio of core radius to separation between neighboring elements, §/h; the
numerical integration procedure; the time step A4t; and the vorticity
initialization procedure. In our numerical study of the scheme, the approach
we followed was to view the three-dimensional vortex method as an extension of
its two-dimensional counterpart. In doing that, and due to the expensive
nature of the computations, we have implicitly taken advantage of results
which had already been established in the two-dimensional case and have not
experimented with those areas where analytical analysis is more revealing. In
particular, the effect of the smoothing function, which has been shown to
control the spatial convergence order of scheme [17]), was not studied. A
single second-order time integration scheme was adopted for all the
computations and we were content to verify that the results were insensitive
to decreasing the time step.

This study has revealed two crucial ingredients in the application of

three-dimensional vortex methods, namely the procedure of discretization of
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the initial vorticity field and the method of maintaining overlap between
neighboring elements. Accurate discretization of the vorticity field into
overlapping elements is found necessary for convergence of the results. The
accuracy of the discretization, which is shown to depend on the mesh and the
core radius of the elements, can be measured by the deviation from the target
profile. The initialization procedure has to be further constrained by the
condition that neighboring elements must have overlapping cores. Wwhen this
last condition was not satisfied, results were found to diverge rapidly. Best
results were obtained when the initial mesh is chosen so that the distance
between neighboring elements is almost the same in all directions. Finally,
it is also shown that maintaining overlap between neighboring elements at all
times is necessary. This is achieved through the redistribution of the
vorticity field intc a larger number of elements when the strain field causes
separation between neighboring elements to exceed the core radius. An
analogous situation is encountered in the two-dimensional case [16] where
overlap can be lost due to strain normal to the direction of the local
vorticity vector. We have not experienced such a problem in the case of the
vortex ring since the instability did not cause substantial growth of the core
itself.

Results of the thin tube model are found to be in good agreement with the
results of the corresponding linear theory. In this model, the dynamics of
the vorticity core are neglected, and the instability of the vortex ring is
spuriously predicted [2]). The model is in poor agreement with experimental
data, however, the behavior of real unstable vortex rings is qualitatively
obtained. The study shows that the unstable wave number corresponds to a non-
rotating mode and that the unstable wavenumber increases with the normalized
self-induced velocity of the ring. Results for the vortex torus model are in

excellent agreement with theoretical results on the stability of real vortex
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rings and in good agreement with experimental data. They suggest that the
numerical constraints discussed above have to be supplemented with the
condition that the initial mesh where the vorticity is discretized should be
appropriate for the physics of the problem to be properly represented. The
vortex ring is found unstable to perturbations 1lying in a small overlapping
band around the critical wavenumber.

The evolution of the instability beyond the linear range indicates that
the onset of the turbulization of the core of vorticity is associated with
harmonics of the unstable mode, excited in succession in the form of a
discrete energy cascade. The ring is substantially deformed around the
azimuth and hairpin vortices are generated at the edges of the vorticity core.
While a qualitatively similar behavior was obtained by using the thin tube
model, the shape of the vortex torus is more realistic and in much better

agreement with experimental observation.
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FIGURE CAPTIONS
Figure 1. Normalized self-induced velocity of the ring, V = V/(T/4nR), vs. the

number of vortex elements around the perimeter, N. The analytical results of
Saffman [23] are represented by straight lines. o/R = 0.1 » 0; o/R = 0.2 2 +;
o/R= 0.3 » v,

Figure 2. Evolution of the amplitude of the perturbation in the radial - and
streamwise z-direction for a vortex ring with o/R = 0.1, computed using the
thin tube approximation. Both amplitudes are normalized with respect to the
initial perturbation, ¢/R = 0.02, and time is normalized with respect to R /T
The wavenumber n = 2, 5, 8 and 12 as indicated.

Figure 3. Amplitude of the perturbation for the ring of Fig. 2 and n = n = 13.

Figure 4. Amplitude of the perturbation for the ring of Fig. 2 excited at the
unstable wavenumber n"= 14.

Figure 5. Amplitude of the perturbation for the ring of Fig. 2 perturbed at n
= 15 and 19 arranged from the top.

Figure 6. Frequency of rotation xr, normalized with respect to R%/r, vs. non-
dimensional wavenumber K, defined as K = no/R. ¢/R = 0.1 » v; o/R = 0,15 » *;
o/R= 0.2 »Y); o/R= 0.25 » (diamond).

Figure 7. The growth of the natural logarithm of the unstable mode amplitude,
n* = 7, for the ring +ith o/R = 0.2, computed using N = 30-140 with increments
of 10.

Figure 8. The growth of the unstable wavenumber for the ring of Fig. 7 using
ot = 2.0, 1.0, 0.5, 0.4, 0.3, 0.2, and 0.1, all using N = 100.

Figure 9. The computed wavenumber of the most unstable mode n* (8) vs. the
normalized self-induced velocity, V, compared with the analytical (o) and
experimental (x) results of Widnall and Sullivan [1].

Figure 10. The form of the vortex ring with o/R = 0.25 excited at the unstable
wavenumber n* = 6. The plots are obtained by projecting the ring on planes
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parallel and normal to its direction of propagation at t = 140, 180, 210 and
230, respectively, arranged from the top.

Figure 11. (a) The geometry of the vortex tortus, (b) Schematic cross-sections
of the vortex torus showing the 1location of the vortex elements for various
meshes used in the computations.

Figure 12. Evolution of the natural logarithm of the amplitude of the excited
modes for the vortex ring with o/R = 0.275 using mesh I and N, = 9.

Figure 13. Natural logarithm of the amplitude of the excited modes for the
ring of Fig. 13 using mesh I and N, = 17.

Figure 14. Evolution of the natural 1logarithm of the most unstable mode n* =
12 for the ring of Fig. 12 using: mesh I with Nr =9, 17, 25 and 33; mesh II
with N = 17 and 25; and mesh III with N = 19 and 37.

Figure 15. Natural logarithm of the amplitude of the unstable mode, n*, and
its first harmonic, n = Zn*, for the ring of Fig. 12 using mesh I with Nr -
17, mesh 11 with Nr = 17 and 25; and mesh III, with Nr = 19 and 37.

Figure 16. The wavenumber of the most unstable mode, n*, computed using mesh I
with N, = 9 ( diamgnd ) and N, = 17 (*), plotted against the normalized self-
induced velocity, V, compared with the analytical results of Widnall et al.
[2] for a ring with constant (square) and quadratic (+) wvorticity
distributions. The results of Fig. 9 are also included.

Figure 17. The form of the vortex torus with o/R = 0.275 perturbed at n = 9 at
t = 10, 40, 70 and 100, respectively, arranged from the top. The results are
obtained using mesh I with N, = 17, and shown in terms of the lines connecting
neighboring vortex elements arranged in the vorticity direction.

Figure 18. Perspective views of the vortex torus of Fig. 17 excited at n' =12
depicted at t = 30, 60, 90 and 120, taken from the point of view of an
observer standing ahead of the ring and 1looking at an angle B8 = 60° with
respect to the direction of propagation. The ring is represented by all vortex
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tubes used in the computations, connected in the direction of vorticity, and
the ring is propagating in the upward direction.

Figure 19. Natural logarithm of the amplitude of perturbation wavenumber, n*,
and of its higher harmonics, 2n" and 3n" for the the ring of Fig. 18.

Figure 20. Three perspective views of the vortex ring of Fig. 18 at t = 140.
The plots are generated as in fiqure 18 with § = 0°, 60° and 90°.
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