AVF Control Number: AVF-VSR-193.0988
88-04~15-INT

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 880617W1.09115
Intermetries, Inc.
UTS Ada Real-Time Compiler, Version 202.35
IBM 3083 (5/370)

AD—-A204 214

Completion of On-Site Testing:
27 June 1988

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-56503

Prepared For:
) Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

DTIC
ELECTE
. FEB 14188

DISTRECTION STATEMIRT A

—~— \
Burcoond a0 nublic nvlvogs; !
- PP . . H

ST | 8 9 2 1 3 0

d®

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE SEFOBE COMPLETEING FORM

1. REPORT NUMBER |2. GOVT ACCESSION NO. |3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report. 27 June 1988 to 27 June 1989
Intermetrics, Inc., UTS Ada Real-Tim

Comp 11eré version éOZ 35, IBM 3083 (S’370) 6. PERFORMING ORG. REPORT NUMBER
(Host and Target). (83017 Wl.oQIIE)

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Ada ngnt Program Office £ 27 June 1988

United States Department of Defense Hr—womeER OF PAGES

Washington, DC 20301-3081 50

14. MONITCRING AGENCY NAME & ADDRESS(Ifdifferent from Controlling Office) 15. SECURLTY CLASS (of thisreport)
UNCLASSIFIED

Wright-Patterson Air Force Base, 15a. QECLASSIFICATION/DOWNGRADING

Dayton, Ohio, U.S.A.

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
UTS Ada Real-Time Compiler, Version 202.35, Intermetrics, Inc., Wright-Patterson Air Force Base, IBM 3083

(S/370) under UTS, Version 2.3 (Host and Target), ACVC 1.9.

DD O 1473 e0ITION OF 1 NOV 65 IS OBSOLETE
1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada Compiler Validation Summary Report:

Compiler Name: UTS Ada Real-Time Compiler, Version 202.35
Certificate Number: 880617TW1.09115

Host: Target:
IBM 3083 (S/370) under IBM 3083 (S/370) under
UTsS, Version 2.3 OTS, Version 2.3

Testing Completed 27 June 1988 Using ACVC 1.9

This report has been reviewed and is approved.

s , v

(A -4 P
Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL

Wright-Patterson AFB OH U5433-6503

da Validation Organization
Dr. John F. Xramer
Institute for Defense Analyses
Alexandria VA 22311

Ada J%ént Program Office

Virginia L. Castor
Director

Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES ¢ ¢ &« ¢ o ¢ o o ¢ ¢ o o o o ¢ o o o o &
DEFINITION OF TERMS & & ¢ ¢ « « o o o ¢ o s o o
ACVC TEST CLASSES ¢ + & & o o o o o o o o o o o »

[N Y
N
U W N -
— b b b
1
T E=wnN N

CHAPTER

n

CONFIGURATION INFORMATION

1 CONFIGURATION TESTED ¢ * s & 8 & & s s e ¢ & o LI 2-1
.2 IMPLEMENTATION CHARACTERISTICS « « & o o o o s o o 222

CHAPTER TEST INFORMATION

TEST RESULTS ¢ & ¢ & ¢ o o ¢ ¢ o o o o o o s o o o 3=1
SUMMARY OF TEST RESULTS BY CLASS v « ¢ « o s o « o 3=1
SUMMARY OF TEST RESULTS BY CHAPTER « « « o o« o o+ o 3=2
WITHDRAWN TESTS « 4 ¢ ¢ o o o o « o s ¢ ¢ o s & o 322
INAPPLICABLE TESTS « « ¢ ¢ o o o ¢ o o o o o o » » 32
TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 3-1
ADDITIONAL TESTING INFORMATION ¢ « « ¢ ¢ o« ¢« o « o 3=5

Prevalidation+ . ¢« &

Test Method ¢« ¢ &« « &

Test Site . . . ¢ ¢ o o o « &

o o s o o
N1 ~1-10WV EWN

WWWwLWwwuwuwwww w
L]
W N -

. 3-5
« o o 3-5
. 3-6

. L]
. L]
. .

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS Accession For

¢ NTIS 3RALT

boTT tam 0
CUrrnigig,oed O
CJuLuwiTivatlion

CoFe

Dtstatiution/
Voo - e e——
PoAvalletil sy Crlsn
o i ——

Awntl syeldew

Dist il

i
M

CHAPTER 1

INTRODUCTION

P

-

This Validation Summary Report “VSR) Jhescribes the extent ¢to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-18154.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler wusing the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard. ™

J

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementztions.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compller are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.” The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal 1language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that 1is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, 1Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 27 June 1988 at Intermetrics, Inc., Cambridge
MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street) -
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB 03 45433-6503

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1'

2-

3.

Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Ada Compiler Validation Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1986,

Ada Compiler Validation Capability User's Guide, December 1986.

1-3

N

INTRODUCTION

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard
Applicant

AVF

AVO

Compiler

Failed test
Host
Inapplicable
test

Passed test

Target

Test

Withdrawn
rest

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-18154, February 1983 and IS0 8652-1987.

The agency requesting validation.

The Ada Validation Facility. The AVF 1is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guideiines.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVQ0 provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

An ACVC test that uses features of +the language ¢that a
compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

An ACVC test for which a compiler generates the expected
result.

The computer for which a compiler generates code.

A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

An ACVC test found to be incorrect and not used to check
conformity to the Ada Standard. A test may be incorrect

1-4

INTRODUCTION

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard 1is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the c¢lass to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic . error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each (Class C test 1is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE wmessage indicating the result when it 1is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable., If a Class D
teat compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FATLED message when it is compiled and executed. However, the Ada
tandard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
T test is passed by a compiler if it is compiled successfully and executes
to vproduce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

15

INTRODUCTION

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time-~that is, an attempt
to execute the main program must generate an error message before any
declarations in the main vprogram or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
Lo defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These teats produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use 3mall numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A 1list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the t%tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
eriteria given for the test or by showing that the test is irapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that 1is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the

CVC and, therefore, is not wused in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under
following configuration:

Compiler: UTS Ada Real-Time Compiler, Version 202.35

ACVC Version: 1.9

Certificate Number: 88061TW1.09115

Host Computer:

Machine: IBM 3083 (S5/370)
Operating System: UTS, Version 2.3
Memory Size: 24 megabytes

Target Computer:

Machine: IBM 3083 (S/370)
Operating System: UTS, Version 2.3
Memory Size: 24 megabytes

2-1

the

.

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. Hou-cver, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

. Capacities.

The compiler correctly processes tests containing loop statements
nested to 17 levels and recursive procedures separately compiled
as subunits nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same declarative part.
Block nesting is not supported to 65 1levels. (See tests
D55A03A..H (8 tests), D6HOOSE..G (3 tests), and D29002K.)

. Universal integer calculations.

An implementation 1is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 6i-bit integer calculations. (See tests
DUAOQ2A, DUAOO2B, DUAQOUA, and DHAOO4B.)

. Predefined types.

This implementation supports the additional predefined type
SHORT_FLOAT in the package STANDARD. (See tests B86001C and
B86001D.)

. Based literals.

An implementation is allowed to reject a based 1literal with a
value exceeding SYSTEM.MAX_ INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT_ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E241014.)

. Expression evaluation.

Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C3211TA.)

Assigrments for subtypes are performed with the same precision as
the base tvpe. (See test C35712%8.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C359034A.)

Sometimes NUMERIC_ERROR 1is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test Ci52324.)

No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test CU52524.)

Apparently underflow is not gradual. {See tests CUS5524a..Z.)

Rounding.

The method used for rounding to integer is apparently round away
from zero. {(See tests CUu60124..Z.)

The method used for rounding to 1longest integer is apparently
round away from zero. (See tests CU60124..Z.)

The method used for rounding to integer in static universal real
expressions 1is apparently round away from zero. (See test
CHAQ14A.)

CONFIGURATION INFORMATION

. Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD. INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX_INT componerts raises no exception. (See test
C360034.)

No exception is raised when 'LENGTH is applied to an array Lype
with INTEGER'LAST + 2 components. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAX_INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a ‘'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array type is declared. (See test
€52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC_ERROR when the array type is deciared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT ERROR either
vwhen declared or assigned. Alternatively, an implementation may
accept the declaration. However, 1lengths must match in array
slice assignments. This implementation raises NUMERIC_ERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression does not
appear to be evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to be
evaluated in 1ts entirety before CONSTRAINT ERROR is raised when
checking whether the expression’s subtype is compatible with the
target's subtype. (See test C52013A.)

. Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible disceriminant constraint.
This implementation accepts such subtype indications. (See test
E£3810L4.)

In assigning record types with discriminants, the expression does

not appear to be evaluated in its entirety before CONSTRAINT_ERROR
is raised when checking whether the expression's subtype 1is

2-4

CONFIGURATION INFORMATION

compatible with the target's subtype. (See test C520134.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests CU3207A and CU3207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test EU3212B.)

All choices are evaluated before CONSTRAINT_ERROR is raised 1if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test EL3211B.)

Representation clauses.
For this implementation:

An implementation might legitimately place restrictions on
representation c¢lauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests €35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C(C355071I..J,
C35507™..N, and C55B16A.)

Enumeration representation c¢lauses for derived types are not
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
not supported. (See test A39005B.)

Length clauses with STORAGE_SIZE specifications for access types
are not supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE_SIZE specifications for task types are
not supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are not supported. (See
tests A39005E and C87B62C.)

Aecord representation clauses with an alignment clause are not
supported. (See test A39005G.)

2-5

CONFIGURATION INFORMATION

Length clauses with SIZE specifications for derived integer types
are not supported. (See test C87B62A.)

« Pragmas.

The pragma INLINE is supported for procedures and functions. (See
tests LA3004A, LA3004B, EA3004C, EA3004D, CA300UE, and CA3004F.)

. Input/output.

The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types and record types with diseriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT IO cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101H, EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO. (See
tests CE2102D and CE2102E.)

Modes 1IN _FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL IO and DIRECT_IO.
(See tests CE2102G and CE2102K.)

Dynamic¢ creation and deletion of files are supported for
SEQUENTIAL_IO and DIRECT_IO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file does not truncate the file. (See
test CE2208B.)

An existing text file can be opened in OUT_FILE mode, can be
created in OUT_FILE mode, and can be created in IN_FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text I/0 for both reading and writing. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can ha associated with each external
file for sequential I/0 for both reading and writing. (See tests
CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal fiie can be associated with each external

file for direct I/0 for both reading and writing. (See tests
CE2107F..1 (5 tests), CE21108, and CE2111H.)

2-6

CONFIGURATION INFORMATION

An internal sequential access file and an internal direct access
file can be associated with a single external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file can
be deleted for SEQUENTIAL_IO, DIRECT_IO, and TEXT IO. (See test
CE2110B.)

Temporary sequential flles and temporary direct files are given
names. Temporary files given names are deleted when they are
closed. (See tests CE2108A and CE2108C.)

Generics.

Body and subunits of a generic unit must be in the same

compilation as the specification if instantiations precede them.
(See tests CA2009C and CA2009F.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF

determined that 267 tests were inapplicable to this implementation. A1l
inapplicable tests were processed during validation testing except for 201

executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 5 tests were required to successfully demonstrate the test objective.

(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B € D E L

Passed 103 1046 1607 12 14 46 2828

Inapplicable 7 5 246 5 y 0 267

Withdrawn 3 2 21 0o 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 _3_4 5 6 _7_8_9 10 11 12 13 14

Passed 190 491 528 237 166 98 137 327 135 36 234 3 246 2828
Inapplicable 4 81 146 11 0 0 6 0 2 o0 o0 0 T 267
Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 67T 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A - E28005C Cc34004A AZ5902C C35502p
C35904A C35904B C35A03E CZAO3R C37213H
C372134J Cc37215C C37215E £37215G C37215H
c38102C cui402a C45332A cus614cC AT4106C
C85018B C87BO4B BC3105A CC1311B AD1AO1A
CE2401H CE32084A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 267 tests were inapplicable for the
reasons indicated:

. C35508I..J (2 tests) and C35508M..N (2 tests) use enumeration
representation clauses for derived types. These clauses are not
supported by this compiler.

. C35702B uses LONG_FLOAT which is not supported by this
implementation.

3-2

TEST INFORMATION

A39005B and C87B62A use length clauses with SIZE specifications
for derived integer types or for enumeration types which are not
supported by this compiler.

A439005C..D (2 tests), CB7B62B and C87B62D use length clauses with
STORAGE_SIZE specifications for access types or for task types
which are not supported by this implementation.

A39005E and C87B62C use length clauses with SMALL specifications
which are not supported by this implementation.

A39005G uses a record representation clause with an alignment
clause which is not supported by this compiler.

The following tests use SHORT_INTEGER, which is not supported by
this compiler:

C45231B CH5304B C45502B CL5503B CU5504B
CU5504E C45611B C45613B C45614B Cli5631B
C45632B B5200U4E C55B07B B55B09D

The following tests use LONG_INTEGER, which is not supported by
this compiler:

c45231C C45304C cus5502C C45503C CLU5504C
C45504F cis5611C cu5613C C45631C chs5632C
B52004D C55BOTA B55B09C

CU5231D requires a macro substitution for any predefined numeric
types other than INTEGER, SHORT_INTEGER, LONG_INTEGER, FLOAT,
SHORT_FLOAT, and LONG_FLOAT. This compiler does not support any
such types.

C45531M, CU5531N, CU5532M, and CU5532N use fine U8-bit fixed-point
base types which are not supported by this compiler.

c4s55310, C45531P, CU455320, and CU5532P use coarse U8-bit
fixed-point base types which are not supported by this compiler.

DSS5A03E..H (4 tests) use more than 17 levels of loop nesting which
exceeds the capacity of the compiler.

D56001B uses 65 levels of block nesting which exceeds the capacity
of the compiler.

B86001D requires a vpredefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT I0.

3-3

TEST INFORMATION

. CA2009C and CA2009F compile generic subunits in separate
compilation files. For this implementation, the body and subunits
of a generic unit must be in the same compilation as the
specification if instantiations precede them.

. AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

. AE2101H, EE2401D, and EE2401G wuse instantiations of package
DIRECT_IO with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

» CE3111B assumes that if the same external file is open for both
reading and writing, then characters written may be immediately
re-read, without a new-line/reset/close separating the read and
write., This implementation buffers output and requires that a
reset be issued between writing and reading from the same external
file, if the read wants to be sure to see the effect of the write.

. The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) €35802L..Z (15 tests)
cus241L..Y (14 tests) C45321L..Y (14 tests)
CU5u21L..Y (14 tests) C45521L..2 (15 tests)
c4s524L..2 (15 tests) Ccl5621L..Z (15 tests)
C4s5641L..Y (14 tests) C46012L..2Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It i3 expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
" implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clauvse to alter the default size of a collection; splitting
a Class B test 1into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of anocher).

Modifications were required for 5 Class B tests.

3-4

TEST INFORMATION

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B49003A B490054A BA1101CH BC3205D BC3604A

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the UTS Ada Real-Time Compiler, Version 202.35, was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the UTS Ada Real-Time Compiler, Version 202.35, using ACVC
Version 1.9 was conducted on-site by a validation team from the AVF. The
configuration consisted of an IBM 3083 (S/370) operating under UTS, Version

2.3.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled on the IBM 3083 (S/370), and all executable tests were linked
and run on the IBM 3083 (S/370). Results were printed from the host
computer.

The compiler was tested using command scripts provided by Intermetrics,
Inc. and reviewed by the validation team. The compiler was tested using
all default switch settings.

The Intermetrics UTS Ada Compiler was invoked using the "aiecomp™ command.
A program build (link) was done using "aiebuild." A program library was
created using the "cre_cat" command of PLM, the program 1library manager.
The Report Package and CHECK_FILE were compiled into a base program library
before the start of prevalidation testing. 'fhen, each new program library
that is c¢reated has access to these packages. This avoids their
recompilation each time a new library is created.

3-5

T_—___::""""""""*

TEST INFORMATION

The validation testing was controlled using a batch facility on the IBM
3083. Automated testing tools were used to ensure that the same
environment was used for each ACVC test by reinitializing the library

before each ACVC test.

Tests were compiled, linked, and executed (as appropriate) using a single
host computer. Test output, compilation 1listings, and job logs were
captured on magnetic tape and archived at the AVF. The 1listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Intermetrics, Inc., Cambridge MA and was completed
on 27 June 1988. The IBM 3083 (S/370) was not dedicated to the testing
effort.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

Intermetrics, Inc. has submitted the following
Declaration of Conformance concerning the UTS Ada
Real-Time Compiler, Version 202.35.

A-1

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: Intermetrics, Inc.

Ada Validation Facility: Ada Validation Facility, ASD/SCEL,
Wright-Patterson AFB OH 45433-6503

Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: UTS Ada Real-Time Compiler Version: 202.35
Host Architecture ISA: IBM 3083 {(S/370) OS&VER #: UTS, 2.3
Target Architecture ISA: IBM 3083 (S/370) OS&VER #: UTS, 2.3

Implementor's Declaration

I, the undersigned, representing Intermetrics, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the compiler(s) listed in this declaration. I declare that Intermetrics,
Inc. is the owner of record of the Ada language compiler(s) listed above
and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for
Ada language compiler(s) listed in this declaration shall be made only in
the owner's corporate name.

Date:. é/2¢?/?§'

———

Intermetrics, Inc.
Dennis Struble, Deputy General Manager

Owner's Declaration

I, the undersigned, representing Intermetrics, Inc., take full
responsibility for implementation and maintenance of the Ada compiler(s)
listed above, and agree to the public disclosure of the final Validation
Summary Report. I further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I declare
that all of the Ada language compilers listed, and their host/target
performance, are in compliance with the Ada Language Standard
ANSI/MIL-STD-18154.

&W Date: 6‘/2 O/ 58

Intermetrics, Inc.
Dennis Strubie, Deputy General Manager

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the UTS Ada Real-Time Compiler, Version 202.35, are described in the
following sections, which discuss topics in Appendix F of the Ada Standard.
Implementation-specific portions of the package STANDARD are also included
in this appendix.

package STANDARD is
type INTEGER is range -2_147_483 647 .. 2_147_UB3_6u4T;

type FLOAT is digits 15 range 2.0%#(.205) .. (1.0-2%%(-51))%2,0%#204;,
type SHORT_FLOAT is digits 6 range 2.0%%(-85) .., 2.0%%8y4,

type DURATION is delta 2.0*#(-1%] range -86_400 .. 86_400;

s s e

end STANDARD;

Appendix F. IMPLEMENTATION DEPENDENCIES

This section constitutes Appendix F of the Ada LRM for this
implementation. Appendix F from the LRM states:

The Ada language allows [or certain machine-dependencies sn a controlled
manner. No machine-dependent syntez or semaniic eztensions or
restrictions are allowed. The only allowed smplementation-dependencies
correspond to implementation-dependent pragmas and atiributes, certain
machine-dependent conventions as mentioned in Chapter 18, and certain
allowed restrictions on representation clauses.

The reference manual of each Ada implementation must include an
appendiz [called Appendiz F) that describes all smplementation-dependent
characteristics. The Appendiz F for a given implementation must list in
particular:

1. The form, allowed places, and effect of every implementation-
dependent pragma.

2. The name and the type of every smplementation-dependent attribute.
8. The specification of the package SYSTEM (see 18.7).

4. The list of all restrictions on representation clauses (see 13.1).

S

The conventions used for any implementation-generated name
denoting implementation-dependent components (see 13.4).

6. The interpretation of ezpressions that appear in address clauses,
including those for interrupts (see 18.5).

Any restriction on unchecked conversions (see 19.10.2).
8. Any implementation-dependent characteristics of the input-output
packages (see 14).
In addition, the present section will describe the following topics:

9. Any implementation-dependent rules for termination of tasks
dependent on library packages (see 9.4:13).

10. Other implementation dependencies.

11. Compiler capacity limitations.

B~2

F.1 Pragmas

This section describes the form, allowed places, and effect of every
implementation-dependent pragma.

F.1.1 Pragmas LIST, PAGE, PRIORITY

Pragmas LIST, PAGE, and PRIORITY are supported exactly in the form, in
the allowed places, and with the effect as described in the LRM.

F.1.2 Pragma SUPPRESS

Form:

Pragma SUPPRESS (identifier)

where the identifier is that of the check that can be omitted. This is as
specified in LRM B(14), except that suppression of checks for a
particular name is not supported. The name clause (ON=>name), if
given, causes the entire pragma to be ignored.

The suppression of the following run-time checks, which correspond
to situations in which the exceptions CONSTRAINT_ERROR,
STORAGE_ERROR, or PROGRAM_ERROR may be raised, are
supported: _

ACCESS_CHECK
DISCRIMINANT_CHECK
INDEX_CHECK
LENGTH_CHECK
RANGE_CHECK
STORAGE_CHECK
ELABORATION_CHECK

The checks which correspond to situations in which the exception
NUMERIC_ERROR may be raised occur in the hardware and therefore
pragma SUPPRESS of DIVISION_CHECK and OVERFLOW_CHECK
are not supported.

Allowed Places: As specified in LRM B(14) : SUPPRESS.

Effect:

Permits the compiler not to emit code in the unit being compiled to
perform various checking operations during program execution. The
supported checks have the effect of suppressing the specified check as
described in the LRM. A pragma SUPPRESS specifying an
unsupported check is ignored.

F.1.8 Pragma SUPPRESS_ALL

Form:

Pragma SUPPRESS_ALL

B-3

Allowed Places: As specified in LRM B(14) for pragma SUPPRESS.

Effect: The implementation-defined pragma SUPPRESS_ALL has the same
effect as the specification of a pragma SUPPRESS for each of the
supported checks.

F.1.4 Pragma INLINE

Form: Pragma INLINE (SubprogramNameCommalList)
Allowed Places: As specified in LRM B(4) : INLINE.

Effect: If the subprogram body is available, and the subprogram is not
recursive, the code is expanded in-line at every call site and is subject to
all optimizations.

The stack-frame needed for the elaboration of the inline subprogram will
be allocated as a temporary in the frame of the containing code.

Parameters will be passed properly, by value or by reference, as for
non-inline subprograms. Register-saving and the like will be suppressed.
Parameters may be stored in the local stack-frame or held in registers,
as global code generation allows.

Exception-handlers for the INLINE subprogram will be handled as for
block-statements.

Use: This pragma is used either when it is believed that the time required for
a call to the specified routine will in general be excessive (this for
frequently called subprograms) or when the average expected size of
expanded code is thought to be comparable to that of a call.

F.1.5 Pragma INTERFACE

Form: Pragma INTERFACE (language_name, subprogram_name)
where the [anguage_name must be an enumeration value of the type
SYSTEM.Supported_Language_Name (see Package SYSTEM
below). .

Allowed Place: As specified in LRM B(3) : INTERFACE.

Effect: Specifies that a subprogram will be provided outside the Ada program
library and will be callable with a specified calling interface. Neither an

Ada body nor an Ada body_stub may be provided for a subprogram for
which INTERFACE has been specified.

Use: Use with a subprogram being provided via another programming
language and for which no body will be given in any Ada program. See

also the LINK_NAME pragma.

F.1.6 Pragma LINK_NAME
Form: Pragma LINK_NAME (subprogram_name, link_name)
Allowed Places: As specified in LRM B(5) for pragma INTERFACE.

Effect: Associates with subprogram subprogram name the name link_name as
its entry point name.

Syntax: The value of link_name must be a character string literal.

Use: To allow Ada programs, with help from INTERFACE pragma, to
reference non-Ada subprograms. Also allows non-Ada programs to call
specified Ada subprograms.

F.1.7 Pragma CONTROLLED
Form: Pragma CONTROLLED (AccessTypeName)
Allowed Places: As specified in LRM B(2) : CONTROLLED.

Effect: Ensures that heap objects are not automatically reclaimed. Since no
automatic garbage collection is is ever performed, this pragma currently
has no effect.

F.1.8 Pragma PACK

Form: Pragma PACK (type_simple_name)

Allowed Places: As specified in LRM 13.1(12)

Effect: Components are allowed their minimal number of storage units as
provided for by their own representation and/or packing.
Floating-point components are aligned on storage-unit boundaries, either
4 bytes or 8 bytes, depending on digits.

Use: Pragma PACK is used to reduce storage size. This can allow records

and arrays, in some cases, to be passed by value instead of by reference.

Size reduction usually imp'ies an increased cost of accessing components.
The decrease in storage sice may be offset by increase in size of accessing
code and by slowing of accessing operations.

B-5

F.1.9 Pragmas SYSTEM_NAME, STORAGE_UNIT,
MEMORY_SIZE, SHARED

These pragmas are not supported and are ignored.

F.1.10 Pragma OPTIMIZE
Pragma OPTIMIZE is ignored; optimization is always enabled.

B-6

F.2 Implementation-dependent Attributes

This section describes the name and the type of every implementation-

dependent attribute.

There are no implementation defined attributes.

certain language-defined, implementation-dependent attributes:

Type

Type

INTEGER.
INTEGER'SIZE
INTEGER'FIRST
INTEGER'LAST

SHORT_FLOAT.
SHORT_FLOAT'SIZE
SHORT_FLOAT'DIGITS
SHORT_FLOAT'MANTISSA
SHORT_FLOAT'EMAX
SHORT_FLOAT'EPSILON
SHORT_FLOAT'SMALL
SHORT_FLOAT'LARGE

SHORT_FLOAT'MACHINE_ROUNDS

SHORT_FLOATMACHINE_RADIX

SHORT_FLOAT'MACHINE_MANTISSA

SHORT_FLOAT'MACHINE_EMAX
SHORT_FLOAT'MACHINE_EMIN

= 32 ~ bits.
= . (2**31)
= (2%*31-1)

= 32 — bits.
== §

= 2]

= 84

= 2.0**(-20)
= 2.0**(-85)
= 2.0**84
== false

= 16

= §

= 63

=64

SHORT_FLOATMACHINE_OVERFLOWS == false

SHORT_FLOAT'SAFE_EMAX
SHORT_FLOAT'SAFE_SMALL
SHORT_FLOAT'SAFE_LARGE

FLOAT.

FLOAT'SIZE

FLOAT'DIGITS
FLOATMANTISSA
FLOAT'EMAX
FLOAT'EPSILON
FLOAT'SMALL
FLOAT'LARGE
FLOATMACHINE_ROUNDS
FLOATMACHINE_RADIX
FLOATMACHINE_MANTISSA
FLOATMACHINE_EMAX
FLOATMACHINE_EMIN
FLOAT'MACHINE_OVERFLOWS

== 252
== 1640.800000#E-83
== 16#0.FFFFF8#E63

== 64 - bits.
=15

= §]

= 204

= 2.0**(-50)
= 2.0**(-205)

== (1.0-2*%(-51))*2.0**204
== f{alse

= 16

= 14

= 63

== -64

= false

These are the values for

FLOAT'SAFE_EMAX
FLOAT'SAFE_SMALL
FLOAT'SAFE_LARGE

Type DURATION.
DURATION'DELTA
DURATION’FIRST
DURATION'LAST
DURATION’SMALL

Type PRIORITY.
PRIORITY'FIRST
PRIORITY'LAST

B-8

= 252
= 18#0.80000000000000#E-63
= 16#0.FFFFFFFFFFFFEO#E63

== 2.0%**(-14) — seconds
= - 86,400

== 86,400

- 2.0*(-14)

- 127
= 127

F.3 Package SYSTEM

package SYSTEM is

type ADDRESS is private; -~ "sm", "/=" defined implicitly;

’

type NAME is (UTS, MVS, OMS, Sperryl1100, MIL_STD_1750A);

SYSTEM_.NAME : constant NAME := UTS ; =-- Target dependent

STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant :== 2%**24: .. 2**3] for XA mode
-- In storage units

-- System-Dependent Named Numbers:

MIN_INT : constant := INTEGER'POS(INTEGER'FIRST) ;

MAX_INT : comstant :== INTEGER'POS(INTEGER'LAST);
MAX_DIGITS : constant := 15;

MAX _MANTISSA : coostant := 3];
FINE_DELTA : constant := 2.0**(-31);
TICK : constant :== 1.0;

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range -127..127;

..

NULL _ADDRESS : constant ADDRESS;
-- Same bit pattera as "null” access value

-« This is the value of 'ADDRESS for pamed numbers.
-« The 'ADDRESS of any object which occupies

storage
-- is NOT equal to this value.

ADDRESS_SIZE : constant := 32;

-- Number of bits in ADDRESS objects,
-- ==+ ADDRESS'SIZE, but static.

ADDRESS _SEGQMENT_SIZE : constant :== 2%*%924;

~- Number of storage units in address segment

type ADDRESS_OFFSET is new INTEGER:
-- Used for address arithmetic

B-9

type ADDRESS_SEGMENT is new INTEGER;
-- Always zero on targets with
-- unsegmented address space.

subtype NORMALIZED_ADDRESS_OFFSET is
ADDRESS_OFFSET range 0 .. ADDRESS_SEGMENT_SIZE - 1;
-- Range of address offsets returned by OFFSET_OF

function "+"(addr : ADDRESS; offset : ADDRESS_OFFSET)
) return ADDRESS;
function "+"(offset : ADDRESS_OFFSET; addr : ADDRESS)
returan ADDRESS;
-« Provide addition between addresses and
-- offsets. May cross segment boundaries on targets
-- where objects may span segments.
-- On other targets, CONSTRAINT_ERROR will be raised
-- when OFFSET_OF(addr) + offset not in
-- NORMALIZED_ADDRESS_OFFSET.

function "-"(left, right : ADDRESS) return ADDRESS_OFFSET;
-- May exceed SEGMENT_SIZE on targets where objects
-- may span segments.
-- On other targets, CONSTRAINT_ERROR
-« will be raised if
-- SEGMENT_OF(left) /= SEGMENT_OF(right).

function "-"(addr : ADDRESS; offset : ADDRESS_OFFSET) return
ADDRESS ;
-- Provide subtraction of addresses and offsets.
-+« May cross segment boundaries on targets where
-« objects may span segments.
-+~ On other targets, CONSTRAINT_ERROR will be raised wh
-- (OFFSET_OF(addr) - offset)
-- not in NORMALIZED_ADDRESS_OFFSET.

function OFFSET.OF (addr : ADDRESS)
return NORMALIZED _ADDRESS_OFFSET;
-« Extract offset part of ADDRESS
-- Always in range 0..seg_size - 1

function SEGMENT_OF (addr : ADDRESS) return ADDRESS_SEGMENT:
-- Extract segment part of ADDRESS
-- (zero on targets with unsegmented address space)

function MAKE_ADDRESS (offset : ADDRESS_OFFSET;
segment : ADDRESS_SEGMENT :== Q)

B-10

return ADDRESS;
«-- Build address given an offset and a segment.
-« Offset may be > seg_size on targets where objects
-- may span segments, in which case it is equiv
-- to "MAKE_ADDRESS(0,segment) + offset”.
-- On other targets, CONSTRAINT_ERROR will be raised
.- when offset not in NORMALIZED_AD 'RESS_OFFSET.

type Supported_Language_Name is (-- Target dependent
-- The following are "foreign”" languages:
ASSEMBLER,
AIE_ASSEMBLER -- NOT a2 "foreign" language - uses AIE RTS
); v

-- Most/least accurate built-in integer and float types

subtype LONGEST_INTEGER is STANDARD.INTEGER;
subtype SHORTEST_INTEGER is STANDARD.INTEGER;

subtype LONGEST_FLOAT is STANDARD.FLOAT;
subtype SHORTEST_FLOAT is STANDARD.SHORT_FLOAT;

private

type ADDRESS is access INTEGER;
-- Note: The designated type here (INTEGER) is

-- irrelevant. ADDRESS is made an access type

-- simply to guarantee it has the same size as

.- access values, which are single addresses.

-- Allocators of type ADDRESS are NOT meaningful.

NULL_ADDRESS : constant ADDRESS := aull;

end SYSTEM ;

B-11

F.4 Representation Clauses

This section describes the list of all restrictions on representation clauses.

“"NOTE: An implementation may limit its acceptance of representation clauses

to those that can be handled simply by the underlying hardware.... If a program
contains a representation clause that is not accepted [by the compiler], then the
program is illegal.” (LRM 13.1(10)).

There are no restrictions except as follows:

a. Length clauses are not allowed.

b.

c.

Address clauses are not allowed.

Record-representation-clause:

Alignment clauses are not supported and the use of an alignment clause will
cause a compile-time error.

Within a record-representation-clause, the object being represented must be
no larger than one 32-bit word.

The range of bits specified must be in the range of 0..31.

Record components, including those generated implicitly by the compiler,
whose locations are not given by the representation-clause, are layed out by
the compiler following all the components whose locations are given by the
representation-clause. Such components of the invariant part of the record
are allocated to follow the user-specified components of the invariant part,
and such components in any given variant part are allocated to follow the
user-specified components of that variant part.

B-12

F.5 Implementation-dependent Components

This section describes the conventions used for any implementation-generated
name denoting implementation-dependent components.

There are no implementation-generated names denoting implementation-
dependent (record) components, although there are, indeed, such components.
Hence, there is no convention {or possibility) of naming them and, therefore, no
way to offer a representation clause for such components.

NOTE: Records containing dynamic-sized components will contain (generally)
unnamed offset components which will "point" to the dynamic-sized components
stored later in the record. There is no way to specify the representation of such
components. :

B-13

F.8 Address Clauses

This section describes the interpretation of expressions that appear in address
clauses, including those for interrupts.

Address clauses are not allowed.

B-14

F.7 Unchecked Conversions
This section describes any restrictions on unchecked conversions.

The source and target must both be of a staticly sized type (other than a
discriminated record type) and both types must have the same static size.

F.8 Input-Output

This section describes implementation-dependent characteristics of the

input-output packages.

(a)

Declaration of type Direct_IO.Count? [14.2.5]
0..Integer’last;

Effect of input/output for access types?
Not meaningful if read by different program invocations

Disposition of unclosed IN_FILE files at program termination? {14.1(7)]
. Files are closed.

Disposition of unclosed OUT_FILE files at program termination? [14.1(7)]
Files are closed.

Disposition of unclosed INOUT_FILE files at program termination? {14.1(7)]
Files are closed.

Form of, and restrictions on, file names? [14.1(1)]
UTS filenames

Possible uses of FORM parameter in I/O subprograms? {14.1(1)]
The image of an integer specifying the UTS file protection on
CREATE.

Where are I/O exceptions raised beyond what is described in Chapter 14?
[14.1(11)]
None raised.

Are alternate specifications (such as abbreviations) allowed for file names? If
so, what is the form of these alternatives? {14.2.1(21)]
No.

When is DATA_ERROR no! raised for sequential or direct input of an
inappropriate ELEMENT_TYPE? [14.2.2(4), 14.2.4(4)]
When it can be assigned without CONSTRAINT_ERROR to 2
variable of ELEMENT_TYPE.

What are the standard input and standard output files? [14.3(5)]
UTS standard input and output

What are the forms of line terminators and page terminators? [14.3(7)]
Line terminator is ASCIL.LF (line feed);
page terminator is ASCILFF (form feed)

Value of Text_1O.Count'last? [14.3(8))]
integer'last

Value of Text_10.Field'last? {14.3.7(2)]
integer'last

B-16

(o) Effect of instantiating ENUMERATION_IO for an integer type? {14.3.9(15)]
The instantiated Put will work properly, but the instantiated Get
will raise Data_Error.

(p) Restrictions on types that can be instantiated for input/output?
Neither direct I/O nor sequential I/O can be instantiated for an
unconstrained array type or for an unconstrained record type
lacking default values for its discriminants.

(q) Specification of package Low_Level 1O? [14.6|
Low_Level_IO is not provided.

B-17

F.9 Tasking

This section describes implementation-dependent characteristics of the
tasking run-time packages.

Even though 2 main program completes and terminates (its dependent tasks,
if any, having terminated), the elaboration of the program as a whole continues
until each task dependent upon a library unit package bas either terminated or
reached an open terminate alternative. See LRM 9.4(13).

B-18

F.10 Other Matters

This section describes other implementation-dependent characteristics of the
system.

a. Package Machine_Code
Will not be provided.

b. Order of compilation of generic bodies and subunits (LRM 10.3:9):
Body and subunits of generic must be in the same compilation as
the specification if instantiations precede them (see AI-00257/02).

F.11 Compii>r Limitations

(a) Maximum length of source line?
255 characters.

(b) Maximum number of "use" scopes?
Limit is 50, set arbitrarily by SEMANTICS as maximum number of
distinct packages actively "used."

(¢) Maximum length of identifier?
255 characters.

(d) Maximum number of nested loops?
24 nested loops.

B-20

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG_IDY (1..254 =>'Ar, 255 =2>11t)
Identifier the size of the

maximum inout line 1length with
varying last character.

$BIG_ID2 (1..254 =>'Ar, 255 =>121)
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 (1..127 =>'A', 128 =>'3', 129..255
Identifier the size of the
maximum input line 1length with
varying middle character.

$BIG_ID4 (1.4127 =>'A', 128 =>4, 129..255
Identifier the size of the
maximum input line 1length with
varying middle character,

$BIG_INT_LIT (1..252 => '0', 253..255 =>"298")
An integer 1literal of value 298
with enough 1leading 2zeroces so
that it is the size of the
maximum line length.

=>'A')

=D'A")

TEST PARAMETERS

Name and Meaning

$BIG_REAL_LIT
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the

maximum line length.

$BIG_STRING1

A string 1literal which when
catenated with BIG_STRINGZ
yields the image of BIG_ID1.

$BIG_STRING2

A string 1literal which when

catenated to the end of
BIG_STRING1 yields the image of
BIG_ID1.

$BLANKS

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_LAST
A universal integer
literal whose value is
TEXT_I0.COUNT'LAST.

$FIELD_LAST
A universal integer
literal whose value is

TEXT_IO.FIELD'LAST.

$FILE_NAME_WITH_BAD_CHARS

An external file name that
either contains invalid
characters or is too 1long.

$FILE_NAME_WITH_WILD_CARD_CHAR
An external file name that
either contains a wild card
character or is too long.

$GREATER_THAN_DURATION
A universal real literal that
1ies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

Value

(1..249 =>'0', 250..255 =>"69.0E1")

(1..100 =>'4")

(1..154 =>'a', 155 =>'1")

(1..235 ")

1
v

2_147_483_647

2_147_4B3_647

BAD-CHARS #./%1X

WILDCARDS*DONT/MATTER

90_000.0

s TEST PARAMETERS

Name and Meaning Value

$GREATER_THAN_DURATION_BASE_LAST 10_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL_EXTERNAL_FILE_NAME1 BAD~CHARAC/TER
An external file name which
contains invalid characters.

$TLLEGAL_EXTERNAL_FILE_NAMEZ2 NO/MUCH-T00-LONG-NAME~-FOR-A-FILE
An external file name which
is too 1long.

$INTEGER_FIRST -2_147_483_6u8
A universal integer 1literal
whose wvalue is INTEGER'FIRST.

$INTEGER_LAST 2_147_483_647
A universal integer 1literal
whose wvalue is INTEGER'LAST.

$INTEGER_LAST_PLUS_1 2_147 _483_647 + 1
A universal integer 1literal
whose value is INTEGER'LAST + 1.

$LESS_THAN_DURATION -90_000.0
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS~IHAN_DURATION_BASE_FIRST -10_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAX_DIGITS 15
Maximum digits supported for
floating-point types.

$MAX_IN_LEN 255
Maximum input line length
permitted by the implementation.

$MAX_INT 2_147_L83_64T
A universal integer 1literal
whose value is SYSTEM.MAX_INT.

$MAX_INT_PLUS_? 2_147_U83 64T 4 1

A universal integer 1literal
whose value is SYSTEM.MAX_INT+1.

c-3

TEST PARAMETERS

Name and Meaning

Value

$MAX _LEN_INT BASED LITERAL
A universal integer based
literal whose value 1is 2#11#
with enough 1leading 2zeroes in
the mantissa to be MAX_IN_LEN
long.

$MAX_LEN REAL BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zeroces 1in the
mantissa to be MAX_IN_LEN long.

$MAX_STRING_LITERAL
A string literal of size
MAX_IN LEN, including the quote
characters.

$MIN_INT
A universal integer 1literal
whose value is SYSTEM.MIN_INT.

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

(1..2 =>"2:", 3,.252 =>'0°',
253..255 =>"11:")

(10‘3 =>"16:"’ u'1251 =>'0"
252..255 =>"F.E:")

(1 => ', 2,.258 =2>1Ar, 255 =>'"1)

-2_147_4B3_6U8

NO_OTHER_PREDEF_NUM_ TYPE

16#FFFFFFFE#

c-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

. B28B003A: A basic declaration (line 36) incorrectly follows a
later declaration.

. E28005C: This test requires that "PRAGMA LIST (ON);" not
appear in a 1listing that has been suspended by a previous
"PRAGMA LIST (OFF);". The Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

. C34004A: The expression in line 168 yields a value outside
the range of the target type T, but there is no handler for
CONSTRAINT_ERROR.

. C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

. A35902C: The assignment in line 17 of the nominal upper
bound of a fixed-point type to an object raises
CONSTRAINT_ERROR, for that value lies outside of the actual

range of the type.

. C35904A: The elaboration of the fixed-point subtype on line
28 wrongly raises CONSTRAINT_ERROR, because its upper bound
exceeds that of the type.

. C35904B: The subtype declaration that is expected to raise
CONSTRAINT_ERROR when 1its compatibility is checked against
that of various types passed as actual generic parameters
may, in fact, raise NUMERIC_ERROR or CONSTRAINT ERROR for
reasons not anticipated by the test.

D=1

WITHDRAWN TESTS

. C35A03E and C35A03R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point type with a
null range, but the Ada Standard does not support this
assumption.

. C37213H: The subtype declaration of SCONS in 1line 100 is
incorrectly expected to raise an exception when elaborated.

. C372134J: The aggregate in line U451 incorrectly raises
CONSTRAINT_ERROR.

. C37215C, €3T7215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

. €38102C: The fixed-point conversion on 1line 23 wrongly
raises CONSTRAINT_ERROR.

. CY41402A: The attribute 'STORAGE_SIZE 1s incorrectly applied
to an object of an access type.

. CU53324: The test expects that either an expression in 1line
52 will raise an exception or else MACHINE_OVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINE_OVERFLOWS may still be
TRUE.

. CH5614C: The function call of IDENT_INT in line 15 uses an
argument of the wrong type.

. AT4106C, C85018B, C87BOUB, and CC1311B: A bound specified in
a fixed-point subtype declaration 1lies outside of that
calculated for the base type, raising CONSTRAINT_ERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

. BC3105A: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

. AD1AD1A: The declaration of subtype SINT3 raises
CONSTRAINT _ERROR for implementations which select INT'SIZE to
be 16 or greater.

. CE2401H: The record aggregates in lines 105 and 117 contain
the wrong values.

. CE32084: This test expects that an attempt to open the
default output file (after it was closed) with mode IN_FILE
raises NAME ERROR or USE_ERROR; by Commentary AI-00048,
MODE_ERROR should be raised.

D=2

