
AVF Control Number: AVF-VSR-193.0988
88-04-15-INT

Rt

N

q~do
0
N

I
Ada COMPILER

VALIDATION SUMMARY REPORT:
Certificate Number: 880617W1.09115

Intermetrics, Inc.
UTS Ada Real-Time Compiler, Version 202.35

IBM 3083 (S/370)

Completion of On-Site Testing:
27 June 1988

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

DTIC

H

8 EL9CT0

FE 418

UNCLASSIFIED
SECURIlY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READR SRUC'TINSBEFORE COMPLETEING ORM .
1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 27 June 1988 to 27 June 1989
Intermetrics, Inc. UTS Ada Real-Time
Compiler Version 202.35, IBM 3083 (S/370) 6. PERFORMING ORG. REPORT NUMBER
(Host and Target). (O 1)7 _,_0_IIS-)

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT NUMBERS

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 27June1988
United States Department of Defense 13. NUMBER OF PAGES
Washington, DC 2E301-3081 50 p.

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
UNCLASSIFIED

Wright-Patterson Air Force Base, 15a. uSSIFICATION/DOWNGRADING
Dayton, Ohio, U.S.A. N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
UTS Ada Real-Time Compiler, Version 202.35, Intermetrics, Inc.,Wright-Patterson Air Force Base, IBM 3083
(S/370) under UTS, Version 2.3 (Host and Target), ACVC 1.9.

DD um 1473 EDITION OF 1 NOV 65 IS OBSOLETE

I JAX 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada Compiler Validation Summary Report:

Compiler Name: UTS Ada Real-Time Compiler, Version 202.35

Certificate Number: 880617W1.09115

Host: Target:
IBM 3083 (S/370) under IBM 3083 (S/370) under
UTS, Version 2.3 UTS, Version 2.3

Testing Completed 27 June 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validatidn Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

da-ValidatioA Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Jnt Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

2
I

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-4
1.5 ACVC TEST CLASSES 1-5

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMARY OF TEST RESULTS BY CLASS3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . • 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS Acoess3ton For

NTLS Y AkT

~ -d

.) I 'i

----- -------------------
4 ~ ~ i': yC~ '

CHAPTER 1

INTRODUCTION

This Validation Summary Report R) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.',

Even thoug-a i1 validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a

suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

f-

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by

the compiler but required by the Ada Standard

* To determine that the implementation-dependent behavior is allowed

by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 27 June 1988 at Intermetrics, Inc., Cambridge
MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelinesq Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1-3

INTRODUCTION

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

1-4

INTRODUCTION

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library-a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
7 test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

1-5

INTRODUCTION

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
'o defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use 3mall numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values-for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: UTS Ada Real-Time Compiler, Version 202.35

ACVC Version: 1.9

Certificate Number: 88061WI.09115

Host Computer:

Machine: IBM 3083 (S/370)

Operating System: UTS, Version 2.3

Memory Size: 24 megabytes

Target Computer:

Machine: IBM 3083 (S/370)

Operating System: UTS, Version 2.3

Memory Size: 24 megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. Ho,ver, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

" Capacities.

The compiler correctly processes tests containing loop statements
nested to 17 levels and recursive procedures separately compiled
as subunits nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same declarative part.
Block nesting is not supported to 65 levels. (See tests
D55A03A..H (8 tests), D64005E..G (3 tests), and D29002K.)

• Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64-bit integer calculations. (See tests
D4A002A, D4AO02B, D4AO04A, and D4AOO4B.)

Predefined types.

This implementation supports the additional predefined type
SHORT FLOAT in the package STANDARD. (See tests B86001C and
B8600TD.)

• Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINTERROR during execution. This

implementation raises NUMERIC-ERROR during execution. (See test
E24101A.)

• Expression evaluation.

Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4AO1 4A.)

2-3

CONFIGURATION INFORIMATION

Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX INT components raises no exception. (See test
C36003A.)

No exception is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array type is declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression does not
appear to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to be
evaluated in its entirety before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression does
not appear to be evaluated in its entirety before CONSTRAINTERROR
is raised when checking whether the expression's subtype is

2-4

CONFIGURATION INFORMATION

compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRATNT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Representation clauses.

For this implementation:

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C355071..J,
C3550TM..N, and C55B16A.)

Enumeration representation clauses for derived types are not
supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
not supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are not supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
not supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are not supported. (See
tests A39005E and C87B62C.)

Record representation clauses with an alignment clause are not
supported. (See test A39005G.)

2-5

CONFIGURATION INFORMATION

Length clauses with SIZE specifications for derived integer types
are not supported. (See test C87B62A.)

• Pragmas.

The pragma INLINE is supported for procedures and functions. (See
tests LA3004A, LA3OO4B, EA3004C, EA3004D, CA3004E, and CA3004F.)

" Input/output.

The package SEQUENTIAL_.10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT _O cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101H, EE2401D, and EE2401G.)

Modes IN FILE and OUT FILE are supported for SEQUENTIALIO. (See
tests CE2102D and CE27O2E.)

Modes INFILE, OUTFILE, and INOUT FILE are supported for
DIRECT i. (See tests CE2102F, CE2102i, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL IO and DIRECT_1O.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIALIO and DIRECTIO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file does not truncate the file. (See
test CE2208B.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in IN FILE mode.
(See test EE3102C-.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can b associated with each external
file for sequential I/0 for both reading and writing. (See tests
CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal fiie can be associated with each external
file for direct I/O for both reading and writing. (See tests
CE2107F..I (5 tests), CE2110B, and CE2111H.)

2-6

CONFIGURATION INFORMATION

An internal sequential access file and an internal direct access
file can be associated with a single external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file can
be deleted for SEQUENTIAL IO, DIRECTIO, and T-XT IO. (See test
CE211OB.)

Temporary sequential files and temporary direct files are given
names. Temporary files given names are deleted when they are
closed. (See tests CE2108A and CE2108C.)

Generics.

Body and subunits of a generic unit must be in the same
compilation as the specification if instantiations precede them.
(See tests CA2009C and CA2009F.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 267 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 5 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 103 1046 1607 12 14 46 2828

Inapplicable 7 5 246 5 4 0 267

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 190 491 528 237 166 98 137 327 135 36 234 3 246 2828

Inapplicable 14 81 146 11 0 0 6 0 2 0 0 0 7 267

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A A 5902C C35502P
C35904A C35904B C35A03E C.-,A03R C37213H
C37213J C37215C C37215E C37215G C37215H
C38102C C41402A C45332A C45614C A74106C
C85018B C87B04B BC3105A CC1311B AD1AO1A
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 267 tests were inapplicable for the
reasons indicated:

C355081..J (2 tests) and C35508M..N (2 tests) use enumeration
representation clauses for derived types. These clauses are not

supported by this compiler.

C35702B uses LONGFLOAT which is not supported by this
implementation.

3-2

TEST INFORMATION

A39005B and C87B62A use length clauses with SIZE specifications
for derived integer types or for enumeration types which are not
supported by this compiler.

A39005C..D (2 tests), C87B62B and C87B62D use length clauses with
STORAGE SIZE specifications for access types or for task types
which are not supported by this implementation.

A39005E and C87B62C use length clauses with SMALL specifications
which are not supported by this implementation.

A39005G uses a record representation clause with an alignment
clause which is not supported by this compiler.

The following tests use SHORT INTEGER, which is not supported by
this compiler:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55BO7B B55BO9D

" The following tests use LONG INTEGER, which is not supported by
this compiler:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55B07A B55B09C

. C45231D requires a macro substitution for any predefined numeric
types other than INTEGER, SHORT INTEGER, LONGINTEGER, FLOAT,
SHORTFLOAT, and LONGFLOAT. This compiler does not support any
such types.

" C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

" C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

" D55A03E..H (4 tests) use more than 17 levels of loop nesting which
exceeds the capacity of the compiler.

" D56001B uses 65 levels of block nesting which exceeds the capacity
of the compiler.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

" C86001F redefines package SYSTEM, but TEXT IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT I0.

3-3

TEST INFORMATION

" CA2009C and CA2009F compile generic subunits in separate
compilation files. For this implementation, the body and subunits
of a generic unit must be in the same compilation as the
specification if instantiations precede them.

• AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL_10 with unconstrained array types and record types

having discriminants without defaults. These instantiations are
rejected by this compiler.

• AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

" CE3111B assumes that if the same external file is open for both
reading and writing, then characters written may be immediately
re-read, without a new-line/reset/close separating the read and
write. This implementation buffers output and requires that a
reset be issued between writing and reading from the same external
file, if the read wants to be sure to see the effect of the write.

" The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 5 Class B tests.

3-4

TEST INFORMATION

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B49003A B49005A BA1101C4 BC3205D BC3604A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the UTS Ada Real-Time Compiler, Version 202.35, was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the UTS Ada Real-Time Compiler, Version 202.35, using ACVC
Version 1.9 was conducted on-site by a validation team from the AVF. The
configuration consisted of an IBM 3083 (S/370) operating under UTS, Version
2.3.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled on the IBM 3083 (S/370), and all executable tests were linked
and run on the IBM 3083 (S/370). Results were printed from the host
computer.

The compiler was tested using command scripts provided by Intermetrics,
Inc. and reviewed by the validation team. The compiler was tested using
all default switch settings.

The Intermetrics UTS Ada Compiler was invoked using the "aiecomp" command.
A program build (link) was done using "aiebuild." A program library was
created using the "cre cat" command of PLM, the program library manager.
The Report Package and CHECK FILE were compiled into a base program library
before the start of prevalidation testing. Then, each new program library
that is created has access to these packages. This avoids their
recompilation each time a new library is created.

3-5

TEST INFORMATION

The validation testing was controlled using a batch facility on the IBM

3083. Automated testing tools were used to ensure that the same

environment was used for each ACVC test by reinitializing the library

before each ACVC test.

Tests were compiled, linked, and executed (as appropriate) using a single

host computer. Test output, compilation listings, and job logs were

captured on magnetic tape and archived at the AVF. The listings examined

on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Intermetrics, Inc., Cambridge MA and was completed
on 27 June 1988. The IBM 3083 (S/370) was not dedicated to the testing
effort.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

Intermetrics, Inc. has submitted the following
Declaration of Conformance concerning the UTS Ada
Real-Time Compiler, Version 202.35.

A-i

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: Intermetrics, Inc.
Ada Validation Facility: Ada Validation Facility, ASD/SCEL,
Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: UTS Ada Real-Time Compiler Version: 202.35
Host Architecture ISA: IBM 3083 (3/370) OS&VER 0: UTS, 2.3
Target Architecture ISA: IBM 3083 (3/370) OS&VER #: UTS, 2.3

Implementor's Declaration

I, the undersigned, representing Intermetrics, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the compiler(s) listed in this declaration. I declare that Intermetrics,
Inc. is the owner of record of the Ada language compiler(s) listed above
and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for
Ada language compiler(s) listed in this declaration shall be made only in
the owner's corporate name.

4!9ci Z,6l4 Date: Y &/
Intermetrics, Inc.
Dennis Struble, Deputy General Manager

Owner's Declaration

I, the undersigned, representing :ntermetrics, Inc., take full
responsibility for implementation and maintenance of the Ada compiler(s)
listed above, and agree to the public disclosure of the final Validation
Summary Report. I further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I declare
that all of the Ada language compilers listed, and their host/target
performance, are in compliance with the Ada Language Standard
ANSI/MIL-STD- 1815A.

~~ ~ ~~ Date:_______
Intermetrics, Inc.
Dennis Struble, Deputy General Manager

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the UTS Ada Real-Time Compiler, Version 202.35, are described in the
following sections, which discuss topics in Appendix F of the Ada Standard.
Implementation-specific portions of the package STANDARD are also included
in this appendix.

package STANDARD is

type INTEGER is range -2_147_483_647 .. 2_147_483647;

type FLOAT is digits 15 range 2.0**(-205) .. (1.0-2*(-51))*2.0**204;
type SHORTFLOAT is digits 6 range 2.0**(-85) .. 2.0**84;

type DURATION is delta 2.0"*(-14 range -86_400 .. 86_400;

end STANDARD;

B-i

Appendix F. IMPLEMENTATION DEPENDENCIES

This section constitutes Appendix F of the Ada LRM for this
implementation. Appendix F from the LRM states:

The Ada language allows for certain machine-dependencies in a controlled
manner. No machine-dependent syntax or semantic extensions or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementation-dependent pragmas and attributes, certain
machine-dependent conventions as mentioned in Chapter 13, and certain
allowed restrictions on represenitation clauses.

The reference manual of each Ada implementation must include an
appendix (called Appendix F) that describes all implementation-dependent
characteristics. The Appendix F for a given implementation must list in
particular:

1. The form, allowed places, and effect of every implementation-
dependent pragma.

2. The name and the type of every implementation-dependent attribute.

S. The specification of the package SYSTEM (see 15. 7).

4. The list of all restrictions on representation clauses (see 18.1).

5. The conventions used for any implementation-generated name
denoting implementation-dependent components (see 13.4).

6. The interpretation of expressions that appear in address clauses,
including those for interrupts (see 13.5).

7. Any restriction on unchecked conversions (see 13.10.2).

8. Any implementation-dependent characteristics of the input-output
packages (see 14).

In addition, the present section will describe the following topics:

9. Any implementation-dependent rules for termination of tasks
dependent on library packages (see 9.4:13).

10. Other implementation dependencies.

11. Compiler capacity limitations.

B-2

F.1 Pragmas

This section describes the form, allowed places, and effect of every
implementation-dependent pragma.

F.1.1 Pragmas LIST, PAGE, PRIORITY

Pragmas LIST, PAGE, and PRIORITY are supported exactly in the form, in
the allowed places, and with the effect as described in the LRM.

F.1.2 Pragma SUPPRESS

Form: Pragma SUPPRESS (identifier)
where the identifier is that of the check that can be omitted. This is as
specified in LRM B(14), except that suppression of checks for a
particular name is not supported. The name clause (ON=>name), if
given, causes the entire pragma to be ignored.

The suppression of the following run-time checks, which correspond
to situations in which the exceptions CONSTRAINT-ERROR,
STORAGE-ERROR, or PROGRAL.ERROR may be raised, are
supported:

ACCESS-CHECK
DISCRlMvNANTCHECK
INDEX-CHECK
LENGTHCHECK
RANGE-CHECK
STORAGE-CHECK
ELABORATION-CHECK

The checks which correspond to situations in which the exception
NUNvERICERROR may be raised occur in the hardware and therefore
pragma SUPPRESS of DIVISION-CHECK and OVERFLOW-CHECK
are not supported.

Allowed Places: As specified in LR.M B(14) : SUPPRESS.

Effect: Permits the compiler not to emit code in the unit being compiled to
perform various checking operations during program execution. The
supported checks have the effect of suppressing the specified check as
described in the LRM. A pragma SUPPRESS specifying an
unsupported check is ignored.

F.1.3 Pragma SUPPRESS-ALL

Form: Pragma SUPPRESSALL

B-3

Allowed Places: As specified in LRM B(14) for pragma SUPPRESS.

Effect: The implementation-defined pragma SUPPRESS.ALL has the same
effect as the specification of a pragma SUPPRESS for each of the
supported checks.

F.1.4 Pragma INLINE

Form: Pragma INLINE (SubprogramNameCommaList)

Allowed Places: As specified in LRM B(4) : INLINE.

Effect: If the subprogram body is available, and the subprogram is not
recursive, the code is expanded in-line at every call site and is subject to
all optimizations.

The stack-frame needed for the elaboration of the inline subprogram will
be allocated as a temporary in the frame of the containing code.

Parameters will be passed properly, by value or by reference, as for
non-inline subprograms. Register-saving and the like will be suppressed.
Parameters may be stored in the local stack-frame or held in registers,
as global code generation allows.

Exception-handlers for the INLINE subprogram will be handled as for
block-statements.

Use: This pragma is used either when it is believed that the time required for
a call to the specified routine will in general be excessive (this for
frequently called subprograms) or when the average expected size of
expanded code is thought to be comparable to that of a call.

F.1.5 Pragma INTERFACE

Form: Pragma INTERFACE (language.name, subprogram-name)
where the [anguage...aame must be an enumeration value of the type
SYSTEM.Supported-Language-Name (see Package SYSTEM
below).

Allowed Place: As specified in LRM B(5): INTERFACE.

Effect: Specifies that a subprogram will be provided outside the Ada program
library and will be callable with a specified calling interface. Neither an
Ada body nor an Ada body.stub may be provided for a subprogram for
which INTERFACE has been sDecified.

Use: Use with a subprogram being provided via another programming
language and for which no body will be given in any Ada program. See

B-4

also the LINK_.NAN'E pragma.

F.1.6 Pragma LINKNAME

Form: Pragma LINK..NAIVE (subprogram.name, link-name)

Allowed Places: As specified in LRM B(5) for pragma INTERFACE.

Effect: Associates with subprogram subprogram name the name link..name as

its entry point name.

Syntax: The value of link-name must be a character string literal.

Use: To allow Ada programs, with help from INTERFACE pragma, to

reference non-Ada subprograms. Also allows non-Ada programs to call

specified Ada subprograms.

F.1.7 Pragma CONTROLLED

Form: Pragma CONTROLLED (AccessTypeName)

Allowed Places: As specified in LRM B(2) : CONTROLLED.

Effect: Ensures that heap objects are not automatically reclaimed. Since no
automatic garbage collection is is ever performed, this pragma currently
has no effect.

F.1.8 Pragma PACK

Form: Pragma PACK (type..-simplename)

Allowed Places: As specified in LRM 13.1(12)

Effect: Components are allowed their minimal number of storage units as
provided for by their own representation and/or packing.

Floating-point components are aligned on storage-unit boundaries, either
4 bytes or 8 bytes, depending on digits.

Use: Pragma PACK is used to reduce storage size. This can allow records
and arrays, in some cases, to be passed by value instead of by reference.

Size reduction usually implies an increased cost of accessing components.
The decrease in storage site may be offset by increase in size of accessing
code and by slowing of accessing operations.

B-5

F.1.9 Pragmas SYSTEMNAME, STORAGE-UNIT,
MEMOR YSIZE, SHARED

These pragmas are not supported and are ignored.

F.1.1O Pragma OPTIMIZE

Pragma OPTIMIZE is ignored; optimization is always enabled.

B-6

F.2 Impl ementation- dependent Attributes

This section describes the name and the type of every implementation-
dependent attribute.

There are no implementation defined attributes. These are the values for
certain Ilanguage-de fined, imp lementation-dependent attributes:

Type INTEGER.
INTEGER'SIZE - 32 - bits.
INTEGER'FIRST - - (2**31)
INTEGER'LAST - 2311

Type SHORTFL OAT.
SHORTYFLOAT'SIZE - 32 - bits.
SHORT!FLOAT'DIGITS - 6

SHORTYFLOATMNTISSA -21
SHORTYFLOATMAX -84
SHORTYFLOAT'EPSILON -2.0*(-20)
SHORTYLOAT'SMALL - 2.0**(-85)

SHORTYFLOAT'LARGE - 2.0*'84
SHORT-LOAT'MACH3hJE-ROUNDS - false
SHORT..FLOAT'MACHNEJRADDC - 16
SHORT-YLOATMACHIhJE-MANTISSA - 6
SHORTFL OAT YMACHIINE-DAEAX =63
SHORTFLOAT'AACE...REMIN -4
SHORTYFLOATNMACHINE.OVERFLOWS - false
SHORT-YLOAT'SAFE..EMAX - 252
SHORT-YLOAT'SAFE-.SMALL - 16#0.800000#E-83
SHORT..YLOAT'SAFE-LARGE - 16#01.F FFF S#E63

Type FLOAT.
FLOAT'SIZE - 64 - bits.
FLOAT'DIGITS - 15
FLOATMANTISSA =51
FLOAT'EMAX = 204

FLOAT'EPSILON - 2.0**(-50)
FLOAT'SMALL - 2.0*(-2O5)
FLOAT'ARGE - (1 .0-2*(.51))2.0*2G4
FLOAT'MACHNE.ROUNDS = false
FLOAT'ACHINE..RADDC = 16
FLOAT"AAC1ENEYANTISSA = 14
FLOATr'MACHNE-.EMAX = 63
FLOATIMACHflNE..EMLN =--64

FLOAT'MACHINE...OVERFLOWS =false

B- 7

FLOAT'SAFE..EMAX - 252
FLOAT'SAFE..SMALL - 16#0.80000000000000#E-63
FLOAT'SAFEJ.ARGE - 16#.FFFFFFFFFFFFEO#E63

Type DURATION.
DURATION'DELTA -2.O**(.14) - seconds

DtJRATION'FIRST - -86,400

DURATIONI'AST - 86,400

DTJRATION'SMALL am 2.O**(-14)

Type PRIORITY..
PRIORITY'FIRST - -127
PRIORITY'LAST - 127

B-8

F F.3 Package SYSTEM

package SYSTEM1 is

type ADDRESS is private; -- "-", "/=" defined implicitly;

type NAME is (UTS, MVS, GvS, Sperryll00, MILSTD_1750A);

SYSTELNAME : constant NAME := UTS ; -- Target dependent

STORAGEUNIT : constant := 8;
MEMRYSIZE constant :- 2**24; -- 2'31 for XA mode

In storage units

-- System-Dependent Named Numbers:

MININT : constant := INTEGER'POS(INTEGER'FIRST);
MAXINT constant :- INTEGER'POS(INTEGER'LAST);
MAX-DIGITS : constant :- 15;
MAX.ANTISSA : constant :- 31;
FINE-DELTA : constant :- 2.0 *(-31);

TICK : constant :- 1.0;

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range -127..127;

-- Implementation-dependent additions to package SYSTEM --

NULL.ADDRESS : constant ADDRESS;
-- Same bit pattern as "null" access value
-- This is the value of 'ADDRESS for named numbers.
-- The 'ADDRESS of any object which occupies storage
-- is NOT equal to this value.

ADDRESS-SIZE : constant :- 32;
-- Number of bits in ADDRESS objects,
.... ADDRESS'SIZE, but static.

.ADDRESSSE,---'vENT _SIZE : constant :- 2**24;
-- Number of storage units in address segment

type ADDRESS-OFFSET is new INTEGER;
-- Used for address arithmetic

B-9

type ADDRESSSEGvIENT is new INTEGER;

-- Always zero on targets with

-- unsegmented address space.

subtype NORMALIZED-ADDRESS_-OFFSET is

ADDRESS-OFFSET range 0 .. ADDRESSSEGMENTSIZE I;
-- Range of address offsets returned by OFFSET-OF

function "+"(addr : ADDRESS; offset : ADDRESS-OFFSET)

return ADDRESS;

function "+"'(offset : ADDRESS-OFFSET; addr : ADDRESS)

return ADDRESS;

-- Provide addition between addresses and

-- offsets. May cross segment boundaries on targets

-- where objects may span segments.

On other targets, CONSTRAINT-ERROR will be raised
-- when OFFSETOF(addr) + offset not in

-- NORMALIZEDADDRESSOFFSET.

function "-"(left, right : ADDRESS) return ADDRESS-OFFSET;

-- May exceed SEGM1ENTSIZE on targets where objects

-- may span segments.

-- On other targets, CONSTRAINT-ERROR

-- will be raised if

-- SEGENTOF(Ieft) /-SECMENTOF(right).

function "-"(addr : ADDRESS; offset ADDRESS-OFFSET) return

ADDRESS;
-- Provide subtraction of addresses and offsets.

-- May cross segment boundaries on targets where

-- objects may span segments.

-- On other targets, CONSTRAINT-ERROR will be raised wh

-- (OFFSETOF(addr) - offset)
- - not in NORMALIZEDADDRESSOFFSET.

function OFFSET-OF (addr : ADDRESS)

return NORMALIZEDADDRESSOFFSET;
-- Extract offset part of ADDRESS
-- Always in range 0..seg-size - I

function SEGENTOF (addr : ADDRESS) return ADDRESSSEMIENT;

-- Extract segment part of ADDRESS

- (zero on targets with unsegmented address space)

function MAKEADDRESS (offset ADDRESS-OFFSET;

segment ADDRESSSEGENT :- 0)

B-10

return ADDRESS;
-- Build address given an offset and a segment.

-- Offset may be > seg.size on targets where objects

-- may span segments, in which case it is equiv

-- to "MAKEADDRESS(O,segment) + offset".

-- On other targets, CONSTRAINT-ERROR will be raised
when offset not in NORPM!LIZEDADTRESSOFFSET.

type SupportedLanguageName is (-- Target dependent
-- The following are "foreign" languages:

ASSEMBLER,

AIE..ASSEZMLER -- NOT a "foreign" language - uses AIE RTS

-- Most/least accurate built-in integer and float types

subtype LONGEST-INTEGER is STANDARD.INTEGER;

subtype SHORTEST-INTEGER is STANDARD.INTEGER;

subtype LONGEST-FLOAT is STANDARD.FLOAT;

subtype SHORTEST-FLOAT is STANDARD.SHORTFLOAT;

private

type ADDRESS is access INTEGER;

-- Note: The designated type here (INTEGER) is

-- irrelevant. ADDRESS is made an access type

-- simply to guarantee it has the same size as

-- access values, which are single addresses.

-- Allocators of type ADDRESS are NOT meaningful.

NULL-ADDRESS : constant ADDRESS := null;

end SYSTEM

B-I

F.4 Representation Clauses

This section describes the list of all restrictions on representation clauses.

"NOTE: An implementation may limit its acceptance of representation clauses
to those that can be handled simply by the underlying hardware.... If a program
contains a representation clause that is not accepted [by the compiler/, then the
program is illegal." (LRM 13.1(10)).

There are no restrictions except as follows:

a. Length clauses are not allowed.

b. Address clauses are not allowed.

c. Record-representation-clause:

Alignment clauses are not supported and the use of an alignment clause will
cause a compile-time error.

Within a record-representation-clause, the object being represented must be
no larger than one 32-bit word.

The range of bits specified must be in the range of 0..31.

Record components, including those generated implicitly by the compiler,
whose locations are not given by the representation-clause, are layed out by
the compiler following all the components whose locations are given by the
representation-clause. Such components of the invariant part of the record
are allocated to follow the user-specified components of the invariant part,
and such components in any given variant part are allocated to follow the
user-specified components of that variant part.

B- 12

F.5 Implementation-dependent Components

This section describes the conventions used for any implementation-generated
name denoting implementation-dependent components.

There are no implementation-generated names denoting implementation-
dependent (record) components, although there are, indeed, such components.
Hence, there is no convention (or possibility) of naming them and, therefore, no

way to offer a representation clause for such components.

NOTE: Records containing dynamic-sized components will contain (generally)
unnamed offset components which will "point" to the dynamic-sized components
stored later in the record. There is no way to specify the representation of such
components.

B- 13

F.6 Address Clauses

This section describes the interpretation of expressions that appear in address

clauses, including those for interrupts.

Address clauses are not allowed.

B-14

F.7 Unchecked Conversions

This section describes any restrictions on unchecked conversions.

The source and target must both be of a staticly sized type (other than a
discriminated record type) and both types must have the same static size.

B- 15

F.8 Input-Output

This section describes implementation-dependent characteristics of the
input-output packages.

(a) Declaration of type Direct-JO.Count? [14.2.5j
..Integer'last;

(b) Effect of input/output for access types?
Not meaningful if read by different program invocations

(c) Disposition of unclosed INFILE files at program termination? [14.1(7)]
. Files are closed.

(d) Disposition of unclosed OUT-FILE files at program termination? [14.1(7)]
Files are closed.

(e) Disposition of unclosed INOUT.F E files at program termination? 114.1(7)]
Files are closed.

(f) Form of, and restrictions on, file names? [14.1(1)1
UTS filenames

(g) Possible uses of FORM parameter in I/O subprograms? [14.1(1)]
The image of an integer specifying the UTS file protection on
CREATE.

(h) Where are I/O exceptions raised beyond what is described in Chapter 14?
[14.1(11)1

None raised.

(i) Are alternate specifications (such as abbreviations) allowed for file names? If
so, what is the form of these alternatives? [14.2.1(21)]

No.

(j) When is DATA-ERROR not raised for sequential or direct input of an
inappropriate ELEMENTTYPE? [14.2.2(4), 14.2.4(4)]

When it can be assigned without CONSTRAINT_ERROR to a
variable of ELEMENT.TYPE.

(k) What are the standard input and standard output files? [14.3(5)]
UTS standard input and output

(1) What are the forms of line terminators and page terminators? [14.3(7)]
Line terminator is ASCILLF (line feed);
page terminator is ASCII.FF (form feed)

(m) Value of TextJO.Count'last? f14.3(8)1

integer'last

(n) Value of TextJO.Field'last? [14.3.7(2)]
integer'last

B-16

(o) Effect of instantiating E.NUMERATION.O for an integer type? [14.3.9(15)]
The instantiated Put will work properly, but the instantiated Get
will raise Data.Error.

(p) Restrictions on types that can be instantiated for input/output?
Neither direct I/O nor sequential I/O can be instantiated for an
unconstrained array type or for an unconstrained record type
lacking default values for its discriminants.

(q) Specification of package LowLevelIO? [14.61
Low..Level.IO is not provided.

B-17

F.9 Tasking

This section describes implementation-dependent characteristics of the
tasking run-time packages.

Even though a main program completes and terminates (its dependent tasks,
if any, having terminated), the elaboration of the program as a whole continues
until each task dependent upon a library unit package has either terminated or
reached an open terminate alternative. See LRM 9.4(13).

B- 18

F.1O Other Matters

This section describes other implementation-dependent characteristics of the

system.

a. Package Machine-Code
Will not be provided.

b. Order of compilation of generic bodies and subunits (LRM 10.3:9):

Body and subunits of generic must be in the same compilation as

the specification if instantiations precede them (see AI-00257/02).

B-19

F.11 Compilir Limitations

(a) Maximum length of source line?
255 characters.

(b) Maximum number of "use" scopes?
Limit is 50, set arbitrarily by SEIVA-NTICS as maximum number of
distinct packages actively "used."

(c) Maximum length of identifier?
255 characters.

(d) Maximum number of nested loops?
24 nested loops.

B-20

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG_ID1 (1..254 ->'A', 255 ->'I')
Identifier the size of the
maximum innut line length with
varying last character.

$BIG ID2 (l..254 >'A', 255 =>'2')
Identifier the size of the
maximum input line length with
varying last character.

$BIG _D3 (l..127 >'A', 128 :>3't, 129..255 =>'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG ID4 (l..127 =>'A', 128 >41', 129..255 =>'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG INT LIT (l..252 => '0', 253..255 =>"298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT (l..249 =>'0', 250-.255 =>"69.0El")

A universal real literal of

value 690.0 with enough leading
zeroes to be the size of the

maximum line length.

$BIG STRING1 (1..100 =>'A')

A string literal which when

catenated with BIG STRING2

yields the image of BIGIDI.

$BIGSTRING2 (1..154 =>'A', 155 =>'I')

A string literal which when

catenated to the end of

BIGSTRING1 yields the image of

BIGID1.

$BLANKS (l..235 =>' ')

A sequence of blanks twenty

characters less than the size

of the maximum line length.

$COUNT._LAST 2_147_483_647

A universal integer

literal whose value is

TEXT IO.COUNT 'LAST.

$FIEL-D_LAST 21471483647

A universal integer

literal whose value is

TEXT O. FIELD'LAST.

$FILENAMEWITHBAD CHARS BAD-CHARS#./%!X
An external file name that

either contains invalid
characters or is too long.

$FILE NAMEWITHWILDCARD CHAR WILDCARDS*DONT/MATTER

An external file name that

either contains a wild card

character or is too long.

$GREATERTHAN DURATION 90000.0

A universal real literal that

lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

TEST PARAMETERS

Name and Meaning Value

$GREATERTHAN DURATIONBASELAST 10_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGALEXTERNAL FILENAME 1 BAD-CHARAC/TER
An external file name which
contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 NO/MUCH-TOO-LONG-NAME-FOR-A-FILE
An external frile name which
is too long.

$INTEGERFIRST -21 47_483_648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER LAST 2_147_483_647
A universal integer literal
whose value is INTEGER tLAST.

$INTEGER LAST PLUS 1 2147_483_647 + 1
A unive-rsal - integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -90_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATIONBASEFIRST -10_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAX INLEN 255
Maximum input line length
permitted by the implementation.

SMAXINT 211471483-647
A universal integer literal

whose value is SYSTEM.MAXINT.

$MAX_ NT_PLUS 1 2_147_483_647 1 1
A universal integer literal
whose value is SYSTEM.MAX INT+1.

C-3

TEST PARAMETERS

Name and Meaning Value

$MAX_LENINT BASEDLITERAL (1..2 =>"2:", 3..252 =>'',

A universal integer based 253..255 =>"11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAX LENREALBASED LITERAL (1..3 =>"16:", 4..251 =>'O'1
A universal real based literal 252..255 =>"F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX STRING_LITERAL (1 => '"', 2..254 >'A', 255 >'"')

A string literal of size
MAXIN LEN, including the quote
characters.

$MININT -21 47_483_648
A universal integer literal
whose value is SYSTEM.MININT.

$NAME NO OTHERPREDEFNUMTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,

SHORTFLOAT, SHORT INTEGER,
LONG_FLOAT, or LONGINTEGER.

$NEG BASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

• B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

" E28005C: This test requires that "PRAGMA LIST (ON);" not
appear in a listing that has been suspended by a previous
"PRAGMA LIST (OFF);". The Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

" C3O004A: The expression in line 168 yields a value outside
the range of the target type T, but there is no handler for
CONSTRAINT ERROR.

" C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

A35902C: The assignment in line 17 of the nominal upper
bound of a fixed-point type to an object raises
CONSTRAINTERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line
28 wrongly raises CONSTRAINT-ERROR, because its upper bound
exceeds that of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its compatibility is checked against
that of various types passed as actual generic parameters
may, in fact, raise NUMERIC ERROR or CONSTRAINTERROR for
reasons not anticipated by the test.

D-1

WITHDRAWN TESTS

" C35AO3E and C35A03R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point type with a
null range, but the Ada Standard does not support this
assumption.

" C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

" C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINTERROR.

" C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

" C38102C: The fixed-point conversion on line 23 wrongly
raises CONSTRAINTERROR.

" C41402A: The attribute 'STORAGESIZE is incorrectly applied
to an object of an access type.

. C45332A: The test expects that either an expression in line
52 will raise an exception or else MACHINE OVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINE OVERFLOWS may still be
TRUE.

" C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

" A74106C, C85018B, C87BO4B, and CC1311B: A bound specified in
a fixed-point subtype declaration lies outside of that
calculated for the base type, raising CONSTRAINT ERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

BC3105A: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

AD1AO1A: The declaration of subtype SINT3 raises
CONSTRAINTERROR for implementations which select INT'SIZE to
be 16 or greater.

CE2401H: The record aggregates in lines 105 and 117 contain
the wrong values.

CE3208A: This test expects that an attempt to open the
default output file (after it was closed) with mode IN FILE
raises NAME ERROR or USEERROR; by Commentary AI-0048,
MODE ERROR should be raised.

D-2

