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Abstract

This thesis advances boundary element techniques to model thermal oxidation of silicon in
* two dimensions. At temperatures encountered in thermal oxidation, silicon dioxide flows

viscoelastically. A reduced-dimension, generalized boundary element method for modeling
such a problem has been developed. With a Laplace transform technique, a viscoelastic
kernel function in derived from Kelvin's solution, which is the fundamental solution to
linear elasticity. Constant-velocity loading is chosen to operate with a wide range of stress
relaxation times. This scheme is capable of replacing boundary element methods
developed for slow viscous flow and elastic deformation. The oxidant diffusion problem is
solved using a standard potential method for Laplace problems. Generated by oxide
growth, stress affects both oxidant diffusion and oxide flow. In particular, it changes the
diffusivity of oxidants and viscosity of oxide, rendering the diffusion and flow problems
nonhomogeneous. Domain solutions are needed for both processes. A unified initial
stress/built-in field formulation has been developed to account for the nonlinear effects,
using interior cells that are placed where stress is significant.-,The interior solutions are
realized with an interfacial source method, whereby an area inegral for a cell is
transformed to a line integral on the perimeter of the cell. It h4 been found that kernel
functions based on Kelvin's solution are deficient in modeling i-compressible materials
with a "hole". A correction method that uses a source term paced at the center of the hole
has been implemented to overcome the numerical problen4
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ABSTRACT

This thesis advances boundary element techniques to model thermal oxidation of
silicon in two dimensions. At temperatures encountered in thermal oxidation, sili-
con dioxide flows viscoelastically. A reduced-dimension, generalized boundary element
method for modeling such a problem has been developed. With a Laplace transform
technique, a viscoelastic kernel function is derived from Kelvin's solution, which is the
fundamental solution to linear elasticity. Constant-velocity loading is chosen to oper-
ate with a wide range of stress relaxation times. This scheme is capable of replacing
boundary element methods developed for slow viscous flow and elastic deformation.
The oxidant diffusion problem is solved using a standard potential method for Laplace
problems. Generated by oxide growth, stress affects both oxidant diffusion and oxide
flow. In particular, it changes the diffusivity of oxidants and viscosity of oxide, render-
ing the diffusion and flow problems nonhomogeneous. Domain solutions are needed for
both processes. A unified initial stress/built-in field formulation has been developed
to account for the nonlinear effects, using interior cells that are placed where stress
is significant. The interior solutions are realized with an interfacial source method,
whereby an area integral for a cell is transformed to a line intgral on the perimeter
of the cell. It has been found that kernel functions based on Kelvin's solution are de-
ficient in modeling incompresible materials with a "hole". A correction method that
uses a source term placed at the center of the hole has been implemented to overcome
the numerical problem.
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Chapter 1

Introduction

Thermal oxidation is a principal process in the fabrication of silicon integrated circuits

(ICs). In this process, silicon wafers are exposed to oxidizing gases at elevated tem-

peratures to produce silicon dioxide on the surface of the wafers. Because of its many

desirable properties, such as low surface states, electrical insulation, and masking abil-

ity against certain dopants, thermal oxide is used in many applications, ranging from

gate insulation for metal-oxide-semiconductor field-effect transistors (MOSFETs) to

dielectric isolation between devices. Together with some other processing characteris-

tics, thermal oxidation currently makes silicon the most widely-used material for solid

state electronic devices.

1.1 Survey of Oxidation Techniques

Oxidation on a silicon wafer can be localized by patterning a layer of masking material

such as silicon nitride in regions where no oxide is desired. Most MOSFET ICs are

produced with the local oxidation of silicon (LOCOS) technique. A typical MOSFET

structure is shown in Fig. 1.1 [1]. To avoid excessive stress exerted on the silicon

substrate during the field oxidation process, a thin layer of pad oxide (relief oxide)

is typically sandwiched between the silicon nitride mask and the substrate. Unfortu-

10
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Figure 1.1: Cross Section of a MOSFET Structure. Only source and gate of the device
* is shown. The field oxide region that becomes narrower as it gets closer to the source

is commonly referred to as the bird's beak.

nately, the pad oxide also promotes lateral oxidation at the edge of the nitride mask.

As a result, the termination region of the field oxide, commonly referred to as the bird's

beak, is widened. Due to physical constraints and processing considerations, the bird's

beak may not be made arbitrarily narrow without introducing serious side-effects.

In order to increase IC system complexity and functionality, devices are scaled

down to improve packing density and operation speed. Consequently the bird's beak

becomes a critical issue as it takes up valuable real estate. Its impact on device

characteristics also becomes equally important as, for a small device, its encroachment

into the active area has a large effect on the local dopants concentration and on

the fringing electric field. Thus an accurate modeling of the formation of the bird's

beak, which is two-dimensional in geometry, will help both process design and device

modeling. One-dimensional process simulation programs cannot perform such a task;
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Figure 1.2: Sidewall Masked Isolation Structure (SWAMI). Basic processing steps and
evolution of the oxide shape.

two-dimensional simulators must be used.

One technique that does not suffer from the formation of the bird's beak is the

sidewall masked isolation (SWAMI) [2]. To create a sloped trench in the silicon sub-

strate, it utilized an anisotropic wet chemical etch that attacks in certain preferred

crystallographic directions. Then, a few more process steps are involved to deposit

and pattern silicon nitride layers to cover all surfaces except the bottom of the trench.

After the field-oxidation step, the trench is filled with oxide. The key steps are out-

lined in Fig. 1.2. Good planarity is maintained, as it can be seen. A bird' beak is

formed near the bottom of the trench, but it does not intrude into the active device

area, which is located at the top.

Trench isolation is emerging as an important isolation technique for high perfor-

mance circuitry. This process uses plasma etching to form trenches in the silicon
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Figure 1.3: Trench Capacitor Cell. After trench is created by plasma etching, a thermal
oxide layer is grown. Then a layer of dielectric (such as silicon nitride) is deposited.
The hole is filled with polysilicon to serve as a capacitor plate.

substrate. Due to directional selectivity of this etching technique, a high aspect ratio

of trench depth to opening width can be achieved, as show in Fig. 1.3 [3]. For a small

substrate real estate, the trench wall can provide a large surface area suitable for use

as a storage capacitor. After thermal oxide is grown and some dielectric material is

deposited, the trench is filled with chemical-vapor deposition (CVD) polysilicon to

serve as one plate for the capacitor. The substrate acts as the other plate. The trench

isolation is used extensively in high-density random-access memory (RAM) such as one

megabit dynamic RAM. This structure is also suitable as a barrier in device isolation

and is being used in bipolar circuits.
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Figure 1.4: Schema tic of a Structure with Dislocations. The slips are formed on (111)
planes. The lower defects density on the right-hand side is due to stress relief provided
by the pad oxide.

1.2 Stress Problems and Measurements

In the LOCOS process, the function of the pad oxide is to reduce (1) stress due to

thermal expansion mismatch between silicon nitride mask and the substrate and (2)

stress generated during the oxidation process. When high enough, stress damages the

underlying silicon substrate, and severely degrades its electrical properties. Defects

usually appear in the form of plane slips on {111} planes, as shown in Fig. 1.4. Stress

also affects the oxidation process itself. The phenomenon of oxide thinning has been

observed in many structures. The reduction in oxide thickness occurs in regions where

stress is significant. Experimental characterizations include gate oxide growth [41 and

oxidation of step-shaped silicon structures [5].

Possibly the most comprehensive experiments on quantifying stress effects on ox-
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idation were done by Kao [6]. Cylindrical structures of different radii were oxidized

at different temperatures. Oxide thickness reductions on both convex and concave

surfaces were measured and plotted against the curvatures, as shown in Fig. 1.5. Be-

cause cylindrical geometry is simple and smooth, the oxide growth behaviors are more

disposed to numerical analysis than other approaches. Kao showed that a model based

on incompressible creeping flow of oxide can be fitted to his experimental data, for

temperatures as low as 800C[71.

Although many processing techniques have been tried to reduce stress level, one

thing has yet to be accomplished is the measurement of actual stress in local oxida-

tions. Intrinsic stress, which is due to volumetric expansion of oxidized silicon, has

been deduced by measuring the degree of bending of silicon wafers in situ [8]. The

viscoelastic relaxation of stress can be detected with X-ray topography that has a

resolution as fine as 1 um [9]. However, it does not provide stress values. Raman

* scattering [10,11] and electron channeling pattern [121 are used to measure residual

stress in the silicon lattice, after oxidation. The level of stress generated during local

oxidations is still a matter of speculation. This is problematic because stress values

produced by numerical simulations are scalable, as explained in Chapter 5.

1.3 Thesis Objective

The goal of undertaking this thesis is to advance numerical techniques for modeling

thermal oxidation in two dimensions. The boundary element method (BEM), which is

also known as the boundary- integral equation method (BIEM), deals with an integral

form of the governing equations. It is particularly attractive for certain classes of linear

physical problems because it offers reduced dimensionality in the system solutions.

Only boundaries are segmented, the enclosed domain does not need any partitioning

as in the finite element method (FEM). Hence the simulation setup process is simple.

. Tasks of the thesis include the extension of the incompressible viscous flow model,
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Figure 1.5: Experimental Data for Cylindrical Structures. (a) A cylindrical silicon
ring. (b) Top view of the ring. After oxidation, oxide thickness is measured on both
the concave and convex surfaces of the cylinder. (c) The vertical axis is the oxide
thickness normalized to that of a flat surface. The horizontal axis is the inverse of the
radius of the silicon boundary.
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developed previously by the author for his Master's thesis, to include models such

as elastic deformation and viscoelastic flow. A method based on Laplace transform

technique is finally developed. It can deal with such a wide range of shear stress

relaxation times that it has supplanted the elastic and viscous flow formulations as the

default model in this project.

Another objective is to investigate methods for incorporating nonlinear effects in

the boundary element method. Unlike the finite element or finite difference methods,

the BEM does not readily model nonlinear problems. Enhancements or approximations

are needed to deal with them. Several attempts had made to approximate the nonlinear

behaviors so as to avoid domain calculations, but they did not provided satisfactory

results. Finally, a unified method utilizing interior cells is developed for both the

diffusion and viscoelastic flow problems. The range of nonlinearity it can handle is

adequate for oxidation modeling.

O 1.3.1 Modeling Considerations

The dynamics that sustain thermal oxidation are (1) the supply of oxidizing species

to react with silicon to form silicon dioxide, and (2) the motion of the newly created

oxide. The main transport mechanism for oxidant is diffusion by which the oxidant

moves from the free oxide surface, through the oxide, to the oxide-silicon interface

where it reacts with silicon. Due to volume expansion, newly formed oxide partly fills

the void left behind by consumed silicon, and partly displaces existing oxide towards

the surface. The role of masking materials like silicon nitride is to block the supply of

oxidants, thus halting the oxidation process locally.

A simple one-dimensional oxidation model has been around for about twenty years.

Developed by Deal and Grove (13J, this is a diffusion model that considers only the

transport of oxidants, while omitting that of the oxide. Its accuracy in predicting

oxide thicknesses has been verified for many oxidation conditions. In one-dimensional0
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problems, mechanics of oxide motion is not considered because it is uniform everywhere

and therefore can be treated as a translation in the space dimensions. This uniformity

condition is violated in the bird's beak region, or in any place that is not planar. Under

such circumstances, one must consider the non-uniform motion of oxide. Viscous flow

or viscoelastic flow are two models that are commonly used for describing the oxide

motion.

Research efforts in modeling thermal oxidation of silicon can be divided in two

camps according to the numerical technique - the finite element method and the

boundary element method. For the oxidant diffusion problem, all formulations are

based on Deal-Grove model. For the oxide motion problem, all three possible models,

namely elastic deformation, viscoelastic flow, and viscous flow, have been considered.

The finite element efforts concentrate on viscous flow model whereas the boundary

element works emphasize on viscoelastic flow. Finite element approaches will be re-

viewed first, followed by the BEM. A survey of applications of the BEM method on

related disciplines will be given at the end.

1.3.2 History of Finite Element Approaches

The finite element method (FEM) is used widely to analyze mechanical structures,

fluid flows, and other continua. Thermal oxidation poses a special problem for the

FEM in that the oxide bulk deforms and expands continuously. The mesh that divides

the bulk into elements must be generated successively with an automatic algorithm.

Thus an important task in applying the FEM to thermal oxidation is to develop a

robust mesh generator.

In using the FEM to simulate local oxidation, Poncet considered a linear elastic

model and a large-strain nonlinear viscoelastic flow model to calculate oxide motion

[14]. Unfortunately, no stress values were provided to judge the numerical aspect of

his approach. Poncet had also investigated the effect of "mechanical stress potential"
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on diffusion. Rafferty incorporates the incompressible viscous model for the oxidation

part of a general-purpose process simulator, SUPREM-IV [15]. Sutardja treated oxide

as an incompressible nonlinear viscous fluid in the oxidation/reflow simulator CREEP

[161. Sutardja also proposed modifications to Kao's model for modeling stress effects

on oxidation.

1.3.3 Boundary Element Formulations

The boundary element method has gained the acceptance as a tool for studying struc-

tural problems. Its greatest claim to fame is its reduced dimensionality feature on

modeling linear problems. Because it only requires the outline definition of a struc-

ture, the analysis process is greatly simplified, especially for three-dimensional prob-

lems. However, a major drawback of the BEM is that it is primarily intended for linear

systems. Techniques for dealing with nonlinearity are not fully developed, and their. efficiencies have yet to be fully demonstrated.

The first general-purpose two-dimensional oxidation simulator was developed by

Chin [171. Chin used the boundary element method to model both diffusion and

flow. However, because the viscous flow problem was solved as a coupled Poisson

systems, domain computations were needed. Later, the author of this report showed

that viscous incompressible flow is a biharmonic system that is subject to the same

reduced-dimension treatment as the diffusion problem [181. Matsumoto investigated

a viscoelastic BEM that, like Chin's approach, needs a mesh to subdivide the domain

[19]. The bending of the silicon nitride mask was modeled as an elastic process. But

despite the large deformation of the thick nitride mask, reported stress values were

relatively small. This suggests the possibility that the stress history is not updated

correctly. Although its constraints are less stringent than those of a FEM mesh, a

dense BEM mesh, as used by Chin and Matsumoto, severely degrades the speed per-

formance. To avoid domain calculations, Isomae used a Laplace transform technique

to model viscoelastic flow of oxide [201. However, numerical approximations to the
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inverse transform are needed.

1.3.4 Other BEM Developments

Thermal oxidation is a rather limited field for the BEM. In other areas, many advances

have been made. The following are relevant to our research efforts. Kaneko consid-

ered the application of the Laplace transform technique to modify Kelvin's solution

121] for viscoelastic deformation, much the same as our approach. However, because

of the narrow interpretation of the constitutive equations, the particular solution is

not adaptable to viscoelastic flow. A new solution needs to be derived. In a different

approach, Tanaka uses the original Kelvin's solution, and makes the elastic modu-

lus and Poisson's ratio time-dependent functions [221. For nonhomogeneous Laplace

problems, Butterfield suggested a "direct method" technique [23]. Our method for

nonhomogeneouz Laplace problems, which is modeled after elastoplastic techniques,

turns out to be similar to Butterworth's, except that ours is an "indirect" formulation.

1.4 Report Outline

Other than the fact that oxide motion is a "higher" order system compared to oxidant

diffusion, these processes share many common features. Therefore they will be pre-

sented in parallel, from the physics, the mathematics, to the numerical approximation.

Chapter 2 describes the basics of thermal oxidation. The oxidant diffusion and

oxide motion issues will be dealt with in order; the physics will be described, but the

mathematics will not be covered extensively. Fundamental concepts, especially those

of solids, will be introduced. Modeling aspects of stress effects will be discussed.

The mathematical backgrounds are extended in Chapter 3 to bring out the charac-

teristics of the systems. Their relation to the boundary element will be studied. The

foundation of Laplace and biharmonic problems will be covered. The use of Laplace
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transform on deriving the viscoelastic kernels will be illustrated. A unified approach

on modeling nonlinearities in diffusion and viscoelastic flow will be presented at the

end of the chapter.

Chapter 4 is on the numerical realization of the integral equations. Basics such as

boundary and domain segmentation, methods for evaluating line integrals, and matrix

solution for multiple domains will be covered. Adaptive iterative techniques required

for solving nonlinear behaviors will also be treated.

Simulations of various problems are shown in Chapter 5. Stress behavior is studied

as a function of relaxation time. Parametric fittings on Kao's experimental data will

be presented, along with a discussion on the scalability of parameter values. Effects

of stress on viscosity of oxide and diffusivity of oxidants will be demonstrated.

Finally, Chapter 6 summarizes work that has been performed and proposes possible.improvements and directions for future investigations.



Chapter 2

Thermal Oxidation Process

Thermal oxidation is typically carried out at 800-1100 *C. Silicon wafers are exposed

to an oxidizing ambient such as dry oxygen, "wet" oxygen, or steam. Wet oxygen is

prepared by passing oxygen through heated water to saturate it with water vapor or

by direct burning of hydrogen gas in an oxygen ambient. From the following chemical

reactions, silicon dioxide is formed:

0 2 +Si - Si02

2H 20 + Si -- SiO 2 + 2H 2.

Because the oxidation rate of H20 is much higher than 02, thick oxides are typically

grown in wet oxygen and steam ambients. Dry oxygen is used for growing thin layers

such as gate insulator, where good oxide quality is of utmost importance.

In a one-dimensional thermal oxidation model, the processes of oxidant diffusion

and oxide movement are often lumped together to form a general expression that re-

lates oxide thickness to oxidation time. Extension of such an approach to two or three

dimensions is not feasible. The direction of oxidant diffusion has no bearing on the ox-

ide movement, therefore the two processes must be considered separately, even though

they are tightly coupled. Their mathematical models will be presented to serve as a

foundation for the boundary element method described in the next chapter. A review

22
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on the one-dimensional oxidation model is given, followed by an examination of the

two-dimensional oxidant diffusion model. In the second part of this chapter, a brief

survey of the mechanics of solids and fluids will given. Elastic deformation and incom-

pressible viscous flow will be covered, followed by a generalization to viscoelasticity.

The influence of stress on the oxidation process will also be discussed.

2.1 Diffusion Mechanism

The most widely-used oxidation model was formulated by Deal and Grove [131. This

model primarily concerns with the transport of oxidants from the gas phase to the

oxide and within the oxide, and the chemical reaction that takes place at the silicon

interface. The kinetics of oxide motion is largely ignored. The Deal-Grove model

has been found to be generally valid for temperatures between 700 and 1300 °C, in

atmospheric or reduced pressure [241. In this model, steady-state molecular diffusion

* is assumed to be the main transport mechanism for the oxidizing species. The steady-

state approximation is justified by the low solid solubility of oxidants in silicon dioxide.

As a consequence of their low concentrations, oxidants must move many times faster

than the silicon interface in order to maintain oxidation; thus their relaxation time

is much smaller than that of the moving boundaries. To the oxidants, the silicon

interface appears to be stationary; to the silicon interface, the oxidant flux appears to

be in steady state. A dimensional analysis has been performed by Chin to prove that

the steady-state approximation on the oxidant diffusion process is indeed valid [1].

2.1.1 One-Dimensional Diffusion

Fig. 2.1 shows a one dimensional oxidant profile. Oxidizing species in the gas phase

enter the oxide layer at the free surface; the incoming flux is given by

F1 = h(C" - C.) (2.1)
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Figure 2.1: One-Dimensional Oxidation System. Oxidizing species enter from the
gas phase, diffuse through the oxide, and react with silicon at the silicon interface.
The bulk concentrations at the surface and at the silicon interface are C. and Ci,
respectively.

where h, C', and C. are the gas-oxide mass-transfer coefficient, the equilibrium bulk

concentration (when there is no diffusion), and the surface concentration, respectively.

The flux in the oxide is given by

F2 = -D dC
dx

= D(Co - C) (2.2)do(.)

where D, C,, and d are the diffusion coefficient, the oxidant concentration at the silicon

interface, and the oxide thickness respectively.

F3 is the flux reaching the silicon interface where chemical reaction takes place

to form oxide. The quantity of incoming flux must equal the amount consumed by

the oxidation process. Oxide growth is assumed to be given by koC,, where k, is the
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rate of surface reaction and C, is the interface concentration. We thus have the third

relationship:

F3 = k.C,. (2.3)

In steady state, F, = F2 = F3 as fluxes have to be conserved. Solving the three

simultaneous equations, expressions for C, and C. are obtained,
C"

= k (2.4)
z+ W+--

c, = ((2.5)
k. do1+ K+"!-

Combining Eqs. 2.3 and 2.4, the following differential equation that determines the

oxide growth rate results
ddoN--T = F3

dt
kC (2.6)k kodo

1+: +-'/7"

where N is the number of oxidant molecules required to form a unit volume of oxide.

The solution of Eq. 2.6 is the well-known linear-parabolic oxidation equation which

relates oxidation time, t, to oxide thickness, do:

d + Ado = B(t + r) (2.7)

where

A 2D=

2DC"
N'

Ad, + d2
B

r is the equivalent time required to produce the existing oxide thickness di on bare

silicon. Usually h is removed from the expression for A because it is much larger than

ko.

@ 1 ii I
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Parabolic B = C,e - LLT

Linear B/A = C.,e- EA
r

(11) Silicon (100) Silicon

Dry 02 C, = 7.72 x 102 pLm-/h C2 = 3.71 x 106 pLm/h
C2 = 6.23 x 1016 p.m/h All other parameters same as

for (11) silicon
El = 1.23 eV
E2 = 2.0 eV

H20 (640 torr) C, = 3.86 x 102 p.m 2/h C2 = 0.97 x 109 p.m/h
C2 = 1.63 x 108 p.m/h All other parameters same as

for (I ll) silicon
El = 0.78 eV
E2 

= 2.05 eV

Tablp 2.1: Coefficients for Linear and Parabolic Rates.

There are two limiting cases to the general relationship, Eq. 2.7. When the oxide

is thin, the growth rate is approximately constant since it is limited by the reaction

rate at the silicon interface; do is then given by

B; (t + T). (2.8)

As the oxide grows thicker, the growth rate becomes limited by the diffusion rate of

the oxidant in the oxide. In this case, the growth rate is inversely proportional to

the oxide thickness; the relationship between d and t is then given by the parabolic

equation
d0 % - B(t + r). (2.9)

Hence B/A and B are known as the linear and the parabolic oxidation rate constants

respectively. The values of B/A and B in dry and wet oxygen are given in Table 2.1

[251.

The Deal-Grove model has been found to apply very well to a wide range of condi-

tions. However, it does not account for the rapid initial growth phase in dry oxygen:

when oxide thicknesses is less than 300A, anomalous high oxidation rate is observed.
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Another behavior not predicted by the Deal-Grove model is the nonlinear power-law

dependence of the linear rate rate on the ambient pressure in high-pressure dry ox-

idation. Various modifications to the theory have been proposed to explain these

phenomena [26,27,281.

2.1.2 Oxidant Diffusion in Two Dimensions

The extension of the diffusion model to two and three dimensions is straight forward.

The flux vector given by Fick's first law is,

F = -DVC (2.10)

At the oxide free surface, Eq. 2.1 is replaced by

F .= -h(C - C),

or equivalently by

DE = h(C* - C).
an

where ft is the unit normal vector at the surface pointing away from the bulk. As

mentioned earlier, the mass-transport coefficient h is large; hence C is approximately

C" at the free surface. For all practical purposes, Eq. (2.8) can be replaced by

C-- C.

At the silicon interface, Eq. 2.3 is generalized to

F-fi = k,C

or

D = -k.C. (2.11)

'From now on, we do not use subscripts on C to denote the boundary type. This change is to be
consistent with other expressions,
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To complete the model, the boundary condition at the silicon nitride interface

is considered. Being highly refractory and impermeable to oxidants, silicon nitride is

used extensively as a masking material for local oxidation. Since no significant amount

of oxidants diffuse through the nitride layer, the normal component of the oxidant flux

at the nitride interface is assumed to be zero:

F .- A 0,

or simply

an

2.1.3 Effects of Stress on Oxidant Transport

Stress affects the diffusion of oxidants by way of several mechanisms. The ones that

Kao implemented in his oxidation model are on the reaction rate and the equilibrium

concentration [29). According to Kao's theory, the normal surface traction (i.e. the

force acting perpendicular to the surface) changes the reaction kinetics at the silicon

interface. A positive force impedes the flow of oxide. Since extra energy is required

to overcome the force, the likelihood of an oxidation event for this energy-activated

process is reduced. Similarly, hydrostatic pressure can alter the equilibrium concentra-

tion, C, by reducing the concentration when it is compressive. Hydrostatic pressure

is known to interfere with diffusivity because it removes vacancies needed for diffusion

[30]. Although described but not used in Kao's original model, the diffusivity model

was incorporated in Sutardja's simulation model [161. Finally, it should be noted that

an elastic potential gradient can drive oxidants from from a high pressure area to a

low pressure area [30,141; this process is related to that on C*.

Followed Sutardja's model, only effects on k, and D are considered in the stress

study. Although other mechanisms may be included, they only make the situation

worse by introducing more unknown variables than it is currently possible to resolve.
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The stress formulae are given below:

ks = k.0exp( :) (2.13)

Dt= CMVd
D = Doexp(-.Md) (2.14)

where k, and Do are the original unstressed reaction rate and diffusion coefficient,

p,, is the normal component of the surface traction, aM is the pressure, Vk, and V

are the activation volumes for the reaction rate and diffusivity. The equations are

given in the activation-energy form, to be consistent with other temperature-dependent

expressions. Note that ko and Do are functions of temperature as well.

2.2 Oxide Motion

In oxidation, the silicon material undergoes a phase change, from single-crystal (or

* sometimes polycrystalline) silicon into an amorphous glass which has an open network

structure and which does not show any long-range crystal order. When a silicon atom

is oxidized to form a silicon dioxide molecule, its volume increases from 20 A3 to 45

,k3; the expansion is approximately 2.25 times. Part of the oxide molecule fills in the

void of the silicon atom, the remaining squeezes into the existing oxide network. On

an atomic level, a high stress is produced. This intrinsic stress is responsible for the

bending of silicon substrate under planar oxidation conditions (311.

As oxidation progresses, the silicon interface recedes into the silicon substrate, while

the free surface moves away from its original position, as shown in Fig. 2.2. From a

macroscopic view, the motion of oxide in one dimension can be treated as a coordinate

translation that does not produce stress and therefore does not require any knowledge

about the mechanical properties of oxide.

For nonplanar surfaces and nonuniform oxidation rate, the mechanical properties

of oxide are needed to define a model for the oxide motion. Interactions with other
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s502 U ' /.: RIGINAL Si INTERFACE* :

SILICON SUBSTRATE

Figure 2.2: Growth of Silicon Dioxide.

materials present in the system, namely the silicon substrate and the silicon nitride

mask, must also be contemplated in two and three dimensional models.

2.2.1 Material Properties

The two solid materials that oxide comes in contact are the silicon substrate and the

nitride mask. The properties of these three materials are dissimilar and may require

different numerical treatments.

Silicon dioxide has been studied extensively for its mechanical properties [32,33].

(But most of these properties are not relevent to thermal oxidation.). Silicon dioxide

is also known as silica; it is usually found in amorphous state. At high temperatures,

it has a tendency to devitrify into crystalline form. Like any other materials, silica

exhibits nonlinear behavior in its elastic properties. The bulk modulus changes with

applied pressure. Under suitably high pressure, silica can be permanently densified.



CHAPTER 2. THERMAL OXIDATION PROCESS 31

Temperature in degrees Centigrade

1400 1300 1200 1100 1000
17 ..A -'

16 . ,
.1s- -

14 -

6 13

C-12

6 7

Rcciprocal of absolute tcmperature x 104

Table 2.2: Equilibrium viscosities for various silica glasses. (A ) type I (IR); (x) type II

(OG with 0.027wt% OH); (.) type II (OG with 0.04wt% OH); (0) type M (Spectrosil)

silica glass.

This phenomenon is also observed in low-temperature oxidation [34].

Oxide is a viscoelastic material that flows readily at high temperatures. Its viscosity

is a strong function of the temperature. Shown in tables 2.2 are viscosities for silica

glasses with different OH concentrations 133,35]. As it is evident from the table,

viscosity is also very sensitive to the presence of water vapor. Water molecules combine

with bridge oxygen ions in the oxide to form stable nonbridging hydrocyl groups [25],

thereby weakening the network structure and greatly reducing the viscosity. Impurities

such as Na and P show similar effects. However, as mentioned in Chapter 1, oxide is

frequently approximated as a viscous incompressible fluid for simplicity.

Silicon nitride is usually deposited by means of chemical vapor deposition. The

chemical structure of pure silicon nitride is Si3N 4. Like oxide, nitride is amorphous.

Its high-temperature behavior is not well characterized, although it is known to crack

readily. In LOCOS, the nitride mask bends during the process. When the oxide is
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removed by etching, the mask only returns partially to the original position. It is

suspected that silicon nitride deforms elastoplastically (plastically). As a first cut,

nitride is modeled as a linear elastic element. If more information is available, it may

be treated as a nonlinear viscoelastic or plastic material.

The silicon substrate on which oxide is grown is a single-crystal material. For obvi-

ous reasons, we would not like to allow the substrate to "flow", deform, or otherwise be

damaged structurally. Defects in the crystal structure is detrimental to the electrical

characteristics of devices built on it. Silicon is therefore treated as an elastic material.

However, having a long-range and well-defined atomic arrangement in the structure,

single-crystal silicon exhibits anisotropy in its mechanical properties - different crys-

tallographic planes have different elastic modulus and Poisson's ratio. For simplicity,

silicon may be treated as if it is an isotropic material.

At this point, it is clear that a general-purpose viscoelastic method that can han-

dle a wide range of stress relaxation is highly desirable. As we will see later in the

next chapter, viscous incompressible flow and elastic deformation can be considered

special cases of viscoelasticity in which the relaxation time is small or oo respectively.

Nonetheless, all the three models will be examined in the following sections to show

their interrelationship.

2.2.2 Mechanics of Solids and Fluids

For many physical systems, it is often adequate to consider only two (or even one)

dimensional models to understand their fundamentals and to perform analysis work.

Their generalization to two or three dimensions is straight forward, as we have seen

earlier in the diffusion process. For elasticity, the converse is true. One has to start

with three-dimensional concepts, and work the way down to one or two dimensions. All

one or two-dimensional problems are based on a particular simplified three-dimensional

behavior. 4



CHAPTER 2. THERMIAL OXIDATION PROCESS 33

Mathematically, diffusion is simpler than elasticity. The former deals with scalars

and vectors, whereas the latter works with vectors and tensors. Vectors specify dis-

placement fields and forces; tensors defines the strain and stress quantities in the ma-

terials. Because of the increased "rank" of parameters, indicial notation is employed

in this report to represent components of interest and to define repeated operations.

When an index letter appears only once in a term, it implicitly takes on a value range

of 1 to N where N is 2 or 3 - the dimension of the system. Thus

a,. = b

is a compact representation for a set of equations:

a, = bl;

a2 = b2;

as = ,sb2.

* If an index letter appears twice in a term, it means summation over the range of 1 to

N. Hence

ao = bicii

is understood to be

a. = b,(cu + c22 + css)

repeated for all possible values of i.

To be compatible with the indicial notation, the principal axis of the global Carte-

sian coordinate, z,y, and z are also referred to as z 1 ,z 2, and z 3 so that they can be

indexed appropriately. Subscripts and superscripts are used throughout the report for

different meanings and purposes. In order to avoid excessive confusion, an index letter

(i,j, or k) appears only as a subscript and only in lower case. The indicial notation,

although concise, is inconvenient at times; hence, the vector notation will be retained

wherever it is more suitable. Note that f and fi are equivalent.
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Figure 2.3: Stress Tensor Diagram.

2.2.3 Stress and Strain Tensors

When a force is applied to a material, the material deforms or reacts accordingly. Like

the diffusion flux, the force is a vector that has a magnitude and a direction. The

resulting stress inside the material is a second order tensor, however. A stress tensor

or dyadic has 9 components:

o.j = a 21 0 22 a 2 3  (2.15)
'31 a3 2 a 3 3 J

Their spatial orientations are illustrated in Fig. 2.3. ol, 0 2 2 , and a33 acts in the

direction perpendicular to the principal planes (whose normals are 1, 1 2 , and 1s);

they are called the normal stress. a12,U13,U 2 1 , a2 3 , a3l, and a32 are shear stress acting

tangent to the planes. In summary, oij is a force acting in the j direction on plane i.

Due to moment conservation, the stress tensor is a symmetric matrix, i.e. acj = 01ii.
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The forces on the 3 principal planes are therefore given by

tI = 0'1ii + 0 12 : 2 + 1Oji3

t2= 021*1 + 0'22*2 + 0'23:k3

t3 = a31*1 + 32 X 2 + a 33 X 3 .

For a plane of arbitrary orientation, the force acting on it is a linear combination of

the 3 t's:

p = nit1 + n 2 t2 + n 3t3

which is, in the indicial notation,

pi nij~

= n , (2.16)

The n's are the "direction cosines" associated with the plane. n is defined to be the

* cosine of the angle between the normal of the plane and the axis * . Eq. 2.16 is one of

the fundamental expressions in mechanics which relates surface traction (i.e. surface

force) to the stress tensor of the continuum.

As diffusion is subject to flux conservation, a mechanics problem obeys force con-

servation, which is given by the equilibrium condition:

aa = b (2.17)

where b is the body force, which may be due to gravity.

Finally, we have the following definition for the strain or deformation state:

= (. + -) (2.18)

where e is the strain tensor and u = U111 + u2 1 2 is the displacement. This statement

reveals that strain is a unitless parameter quantifying the distortion of a material. As

a linear equation, Eq. 2.18 is for small distortions.
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It is useful at this point to separate the stress and strain tensors into a spherical

part and and a deviatoric part. Given that the spherical (or mean) stress and strain

are rotationally invariant, they are often expressed as scalars:

1
= ; (2.19)

(M = Ci, (2.20)

where subscript M is capitalized to indicate that it is not an index. The deviatoric

stress and strain tensors are obtained from the regular expressions:

9q = a i - 6 JO'M, (2.21)

eq = eq - kcm, (2.22)

where the definition for the Kroncker delta is:

= 1, (i .j)

=0, (~)

The main reason for separating the strain and stress tensor into these two components

is that the spherical part is involved in volume change of the material whereas the

deviatoric part is not. Their behavior are expected to be fundamentally different.

2.2.4 Maximum Shear Stress

A vector, having a direction and a magnitude, is easy to picture regarding its transla-

tion from one coordinate system to another. However, the transformation for tensor is

more difficult to visualize. Consider a rod aligned in the direction and under ten-

sion. It only has a nonzero stress tensor component, namely al. With this particular

global reference, it is not clear that there is any shear stress. In fact, maximum shear

stress does occur on any planes that are inclined at 450 with respect to the axis of the

rod.
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Maximum shear stress is often used as a criterion for determining the plastic yield

threshold and other nonlinear behaviors. Its value may be obtained from the principal

stresses. For any stress state, it is possible to find a local coordinate frame such that

only a',1, a'2 , and a' are nonzero. If these three components are sorted and relabeled

such that a, _> a,. >_ all, the maximum shear stress, as (of another frame) is given

by

as = ( (C - a,,)- (2.23)

Another parameter used for calculating nonlinear effects is the maximum distortion

energy given by

C= [(o, - a,,) 2 + (a, - a,,,)l + (all - ao,,)2] . (2.24)

Both parameters have been used in this investigation. The calculation for the principal

stresses is given in the Appendix.

Eqs. 2.16, 2.17, and 2.18 are some basic concerns that do not depend on the de-

tails of the material types. What decides whether a material is fluid or solid is the

constitutive equations that relates the stress tensor to the strain tensor. The three

basic property models, namely elastic, viscous, and viscoelastic, are examined in the

following sections.

2.2.5 Linear Elasticity

A purely elastic material has perfect memory. When a force is applied to it, it deforms.

However, it will returns to its original shape after the force is removed. Expressed in

terms of the deviatoric and spherical components, the constitutive equation for linear

elasticity is:

sii = 2Ge1, (2.25)

aM = 3KeM (2.26)
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where G and K are the shear and bulk moduli. These moduli may be given in terms

of Young's modulus, E, and Poisson's ratio, v,:

K = E (2.27)
3(1 - 2L,)

G = E (2.28)
2(1 +v)'

Young's modulus is more suitable for uniaxial analysis than for 2 and 3 dimensional

problems. Poisson's ratio is a measure of the compressibility of a material; it ranges

from 0 to 0.5. When v is 0, the material is sid to be totally convressible. At

this point, the decomposition of stress and strain into spherical and deviatoric parts

is not necessary because 2G = 3K. At the other extreme, the material is totally

incompressible when v, is 0.5. Because the bulk modulus is infinite, the relationship

between spherical stress and strain as specified in Eq. 2.28 breaks down. EM must be

zero at all times, but aM can take on any finite value. In other words, deformation

cannot involved volume change in the material.

In a compact form, the relation between stress and strain is expressed as follows:

a, = Ak6jp~k + 2 Aejq (2.29)

where A and ;i are Lamd's constants defined as:

A =E (2.30)(1 + v)(I - 2z)

E
/ = 2(+ i) (2.31)

-G.

When the body force, b, is zero, Eqs. 2.18, 2.17 and 2.29 establish a constraint for

the displacement field u:

IAV2u + (A +/)V(V. iu) = 0. (2.32)

Eq. 2.32 is known as the Cauchy-Navier equation.

Listed in the table below are the mechanical properties of silicon dioxide, silicon,

and silicon nitride:
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Material Silicon Dioxide Silicon Nitride Silicon
Young's Modulus (E), dynes/cm -i 8 x 10" 3.29 x 10ai  3.69 x 1012

Poisson's ratio (V) 0.194 0.266 0.42

Bulk Modulus (K), dynes/cm- 2  4.35 x 1011 2.34 x 1011 7.68 x 1012

Shear Modulus (G), dynes/cm-2  3.35 x 1011 1.3 x 1011 1.3 x 1012

Table 2.3: Elastic properties of oxide, nitride, and silicon.

2.2.6 Two-Dimensional Plane Strain

In making a two-dimensional approximation for a three-dimensional problem, two

approaches may be taken. In plane stress, the domain is assumed to be thin and free

to expand in the third dimension, say Rs, and loading on the boundary does not vary

in the third dimension. This results in the following constraints on the stress and

strain tensors:

e13 = 23= C32 = e31 = 0 (2.33)

a13 = a23 = a32 = 0731 =r033 = 0 (2.34)

E33 = - +-(11 + a22)- (2.35)

In plane strain, the domain is assumed to be long and uniform in the 13direction.

Because it cannot expand in 2s direction, the following constraints are imposed on the

stress and strain tensors:

e13 = 23 = 33 = e32 = e3,1 = 0 (2.36)

a13 = 0'23 = 0'32 = o31 = 0 (2.37)

33 = L'(C 11 + a22). (2.38)

The respective configurations for plane stress and plain strain are illustrated in Fig. 2.4.

For our simulation efforts, we assume all structures are long in the third dimension

and therefore treat them as 2-dimensional plane strain problems. The Cauchy-Navier

equation Eq. 2.32 and other essential relationships remain unchanged for plane strain.

Unless otherwise noted, we will refer to all parameters and functions as if they are for. two-dimensional systems from here on.
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Figure 2.4: Two-Dimensional. Elasticity. (a) Plane stress; (b) plane strain.

2.2.7 Incompressible Viscous Flow

Viscous flow is one model totally different from elasticity. It is totally memoryless -

any deformation is permanent. Stress is only sustained only the material deforms con-

tinuously, i.e. when it flows as a fluid. The dynamical equation for slow incompressible

viscous flow is:

,1 V2v = -VP (2.39)

where j7 is the viscosity, P the hydrostatic pressure, and v = au/at is the velocity.

This parameter is the same as the spherical stress in elasticity but with opposite sign:

P = -oM. A positive aM implies tensile pressure whereas a positive P is compressive.

The flow is subject to the incompressibility condition:

V.v=0 (2.40)

which is the equivalent to the eM = 0 statement for incompressible elasticity.
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2.2.8 Viscoelastic Deformation

Showing intermediate behavior between elastic deformation and viscous flow is a wide

range of viscoelastic materials. They are further classified as Maxwell fluid or Voigt

solid. Like an elastic material, the Voigt solid will return to its original shape after

the applied force is removed. It differs in one aspect - the strain is not only related

to stress but also to stress rate. The Maxwell element behaves like a viscous fluid but

it retains some memory. If the applied force is removed fast enough, it will return

partially to its original position. On the other hand, if it is kept in a distorted state

for an extended period, it will lose all its stress and remain in the new shape.

Formally, viscoelastic stress-strain relationship is given by a time-differential equa-

tion of the form

poa + pir + p2& = q0e + qji + q2! (2.41)

. or by the more compact statement:

Pa" Q (2.42)

where

P = ,p,',;

Q =
t=0

Table 2.2 show some fluid and solid models [361. In general, the material is a solid

if q0 is nonzero. We note that the elastic constitutive equations Eq. 2.26 is a special

case of Eq. 2.42. The time-differential stress-strain relationship can be converted to

different forms to suit the applications - hereditary integral, complex variable, Laplace

transform, and so forth.

Although one may incline to use a high-order differential equation to describe a

* viscoelastic behavior as completely as possible, such an overkill approach may not
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Differential equation
Model Name

Inequalities

0M------ elastic solid q I-

viscous fluid a -q=

O- j[ -- Maxwell fluid o +F& -- qp1

0--- I Kelvin solid a O q + q14

a +ptd - qoe + q4

-- 3-parameter
__Ir _I solid

q, > pqe

Cr + p la q ,' + q;i

'--k 3-parameter

:; 1_0 fluid
Tble- P2. A> q

Table 2. .: Viscoelastic Models
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serve to illuminate the problem. In fact, there may even be difficulties in gathering

sufficient data to estimate the basic p's and q's. Factors such as nonlinearity deserve

more attention in advanced approximations.

For our simulation, we only consider the simplest viscoelastic flow representation.

Here, we assume that the spherical component is purely elastic:

am= 3Kem.

And the deviatoric part is a Maxwell fluid governed by a first order differential equa-

tion: 1a a 8 E

Its corresponding mechanical model is a linear spring in series with a viscous dashpot,

as depicted in Table 2.2. Note that the spherical component must display a solid

behavior - a fluid loses stress and allows indefinite compression, producing a mass. conservation problem.

2.2.9 Nonlinear Effects of Stress

All the models described earlier are idealized linear approximation. They may be aug-

mented to included certain nonlinear stress effects. Consider a elastic problem whose

stress-strain curve is shown in Fig. 2.5. For small stress (or strain), the relationship

is linear from 0 up to P; it starts to depart from the straight line and become non-

linear for larger stress. If the material is able to return to 0 after the applied stress

is removed, it is nonlinear elasticity that we are working with. If the material has

experienced irreversible slip on the atomic level, it may only return to the position R.

In this case, we are dealing with elastoplaticity or plasticity.

For our modeling efforts, we ignore the nonlinear elastic moduli or plasticity - we

are only concerned with the stress effects on viscosity in viscous and viscoelastic flow.

Note that the derivation of the nonlinear viscoelasticity BEM is based on plasticity.
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aP

0 R

Figure 2.5: Nonlinear Elasticity and Plasticity. The material is linear from 0 to P; it
exhibits a nonlinear behavior from P to Q. If it able to return to 0 when the applied
stress is removed, the material is elastic. If it can only return to R, it is said to suffer
from permanent plastic deformation.



CHAPTER 2. THERMAL OXIDATION PROCESS 45

In Kao's viscous flow model, the following formulation is used to modify the vis-

cosity [29]:

7[ ) . (2.43)

However, as pointed out by Rafferty 1151, this model can induce positive feedback for

certain geometries. What happens is that a large negative (compressive) stress causes

the viscosity to increase, this in turns drives the stress more negative, until the solution

blows up2 . Using the same viscous flow model, Sutardja eliminated the instability by

changing Eq. 2.43 to [16]
SsV0 /2kT (2.44)17 --217osinh(orsV/2kT )•

Because the maximum shear stress os is defined to be a positive quantity, the viscosity

will always be equal or less than its nominial value. Thus the system is stable. However,

in order to get a good fit with Kao's experimental data, Sutardja was required to use

a truncated function for the diffusivity:

D = Do x min (exp( D),Dmax). (2.45)

The value for Dmax is sometimes as low as Do. To constraint D so that it does not

exceed its nominal value is not physical. If compressive stress can reduce diffusivity,

tensile stress should enhance it. In Deal-Grove oxidation model, the retardation effect

of intrinsic stress on diffusivity is probably incorporated in the various parameters.

When the stress level is reduced, the actual diffusivity can be higher than its nominal

value. Of course, there is a limit as to how much diffusivity can be boosted by tensile

stress before other effects, such as fracturing, set in.

We propose the following model for viscosity:

-- = (1cM) ,1) osV, 2/kT (2.46)
-x kT sinh(OsV,2/kT)

which is a combination of Eqs. 2.43 and 2.44. We retain the pressure dependency for

the following two reasons. First, in Kao's experiments, the main difference between a
2If a viscoelastic flow model is used instead, the solution will always be stable because the worst

that can happen is that the material becomes elastic when the viscosity goes to infinity. But now it
* suffers from a different misbehavior- a sudden solidification from a viscoelastic fluid to an elastic solid.
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concave surface and a convex one is the sign of the pressure term, as far as stress effects

are concerned. The pressure is tensile in the convex case, yet no significant overshoot

in oxide thickness is observed for any curvatures. This suggests that the viscosity of

oxide is less than its normal value for the convex structures. Second, researchers have

proposed that shear action help to densify silica under pressure by interlocking the

SiO 2 network [32]. The same interlocking mechanism, which requires the assistance

of compressive pressure, may make it more difficult for Si-O bonds to break, hence

increasing the viscosity. Because of geometric considerations, shear stress is always

present in oxide. By choosing a suitable V,/V, 2 ratio, we can assure that Eq. 2.46 is

always stable.



Chapter 3

Boundary Element Formulations

The equations for diffusion and mechanics are presented in Chapter 2. In this chapter

we shall examine and understand their mathematical characteristics and significance.

These properties serve as the foundation for the boundary element method (BEM). The

* development of the boundary element technique will be laid out in detail. Variations

of implementation techniques will be described.

It will be shown that both oxidant diffusion and oxide flow are simple boundary

value problems (BVP's). The definition of a BVP is that the solution within the

enclosed domain is uniquely determined by the boundary conditions. Many physical

systems are BVP's in nature. The DC operation of a bipolar or field-effect transistor

is one such example. The terminals or boundary contact points are the emitter, base,

and collector for the bipolar device, or source, gate, and drain for the field effect

transistor. For a given set of terminal voltages, there will be some well-defined current

flowing through these terminals. However, the modeling of semiconductor devices is

complicated and involved because the systems are highly nonlinear. Linear BVP's

are eaier to solved; in particular, the so-called Laplace and biharmonic problems are

especially amenable to the boundary element method.

As its other more generic name - the boundary-integral equation method - im-

47
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plies, the BEM involves the solution of some integral equations at the boundary. No

domain calculations are necessary, exception for nonlinear problems. This reduced di-

mension feature, i.e. solving a three-dimensional system as a surface problem (which

is two-dimensional), and a two-dimensional system as a line problem (which is one-

dimensional) is very attractive for many applications.

3.1 Laplace Problems

The solutions for many physical problems of interest, such as electrostatic potential in

insulators, steady-state heat flow and steady-state diffusion, satisfy Laplace's equation:

V1§ = 0 (3.1)

where D denotes the primary parameter of the system. For the three examples, § is

the potential, the temperature distribution, or the concentration of diffusing species,

respectively. The secondary parameter of these systems is the lux", a vector element

defined as

F = -DV§ (3.2)

where F is interpreted to be the electric field, thermal energy flux, or particle flux,

and D is the dielectric constant, thermal conductivity, or diffusivity.

The Laplacian condition arises from a conservation law on the flux

V. F = 0 (3.3)

which states that the divergence of F is zero, i.e. electric field, heat energy, or diffusing

particles must conserve.

Substituting Eq. 3.2 into Eq. 3.3, the following expression is obtained,

VD. V§ + DV2 § = 0. (3.4)

This equation becomes Laplace's equation (Eq. 3.1) if D is uniform so that VD = 0.

In other words, § is Laplacian if the system is homogeneous.
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The solution to a Laplace problem is uniquely determined by its boundary condi-

tions, which may be given in the following forms:

* 40 itself -a Dirichlet boundary condition.

aip
* a--, the normal derivative of 0 - a Neumann boundary condition.

a-0
* aik + P-j- = -1 where a, 0, and -1 axe constants. This generalized expression is

called a Robin condition.

A function f(z, y) that satisfies Laplace's equation for two dimensions is also known

as a harmonic function, a term ostensibly comes from complex analysis1 . The mean

value theorem states that the value of a harmonic function at point p is equal to the

average of its values over the area of any circle centered on p [37]. From this theory, we

obtain the statement that the maximum (or minimum) of f(z, y) in the domain n must

occur on the enclosing boundary IF. This consequently guarantees the uniqueness of-

the solution: if two functions fil(z, y) and f2 (z, y) are harmonic inside fl and are found

to match along r, they must be identical within fl: if the difference fi (x, y) - f2(z, y)

(which is also harmonic) is zero on r, it has to be zero everywhere in fl, as dictated

by the maximum principle.

We have thus seen the foundation of the BEM Laplace problem: if v - can somehow

find a certain function that is harmonic inside (1 and that matches the prescribed

condition on r, we know that we have obtained the solution for 0. Indeed, we never

need to figure out what is happening inside fl during the computation process, although

we can if we want to.

The determination of a solution that fits the prescribed boundary condition can be

accomplished in several ways. First, a polynomial series in z and y may be used. As

1 The periodic logarithmic kernel mentioned later in this chapter is in fact obtained from a complex
function, as it will be shown later.
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an illustration, five terms are shown below:

F(x,y) = A + Bx + Cy + Dzy + E(zx- y') (3.5)

This particular harmonic function has five unknown coefficients, therefore it can be

used to match "five" boundary conditions. If there are fewer boundary conditions,

some terms in Eq. 3.5 have to be removed. Conversely, if there are more, higher

polynomial terms such as x- zy2 must be added. If the problem is periodic, say in

the 1 direction, the following trigonometric series may be used:
N

G(x, y) = Z(a,t cos(nz) + 6,,sin(nx)][c,,exp(ny) + d,,exp(-ny)J. (3.6)
n= 1

Eqs. 3.5 and 3.6 are distinctly different - they do not seem to be able to yield the same

result. This is because the number of "boundary conditions" is assumed to be finite.

In actuality, the boundary conditions vary continuously along r, therefore these series

should be infinite and shr.-ld produce identical results. In a numerical solution, only

a finite number of samples of the boundary conditions are used, in conjunction with a

finite series approximation.

The two techniques mentioned above have a common drawback, namely, the order

of the series depends on the number of sampling points. One would like to use an

approximating function that does not have this dependency so that the solution can be

generated in a straightforward manner. Green's function fulfills such a requirement. It

is a characteristics solution to the governing equation of the system, Laplace's equation

in this case. All BEM formulations rely on Green's function for solutions.

The BEM may be classified into two different categories according to its formula-

tions. the direct method and the indirect method. The indirect method is also known

as the potential, source, or classic method. The direct method also known as Green's

third identity for Laplace problems and Somigliana's formula for elasticity [38].

The direct method is so called because the unknown boundary parameters are

expressed directly in terms of the known parameters, namely the boundary conditions. I
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For the indirect method, an intermediary solution must be explicitly obtained before

the unknown boundary parameters can be computed. On computational efficiency,

both methods are approximately the same - they both require a matrix multiplication

and a matrix inversion (solution), only the order of these operations is different.

The direct method is preferred by many users because its error-weighing method

is similar to that of the finite element method and also because of its alleged better

accuracy. With the absence of intermediary sources, it is readily interfaciable with

the finite element method or the finite difference method. The indirect method, on

the other hand, is conceptually simpler. Also, parameters of various types are readily

extractable or implementable, as it will be shown.

From a physical standpoint, the indirect method is actually more "direct" than the

direct method because it models what goes on physically at the boundary, such as the

application of electrical charges or loading forces. Since it is the method that we use,

* we shall begin with a description of the indirect method.

3.1.1 Indirect Method

Consider a two-dimensional potential problem. Suppose that the potential distribution

in the enclosed region, (I, shown in Fig.3.1 is to be modeled by distributed charges on

the boundary, r, [391. The potential generated by these sources will be

= D r p(q)o*(p - q)dr (3.7)

where D is the potential at p, p is the charge distribution and 4'(p-q) = log lp-qj is

the logarithmic potential at p due to a point charge at q. 0 (p - q) is Green's function

for Laplace problems because it satisfies Laplace's equation everywhere except at the

sourc point:

V 20f(q) = 27r8(q) (3.8)

where 6(q) is a Dirac delta function. Eq. 3.7 is commonly referred to as Fredholm's

* integral equation of the first kind. The function 0* is called a kernel or a kernel function
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G Positive

G Negative

Figure 3.1: Source Distribution Technique for Potential Problems

and p is an unknown function.

Let's assume that a solution to the source distribution p has been determined. The

potential it generates will be correct on r and inside 02. Moreover the electric field can

be readily obtained, as shown below in both vectorial and indicial forms:

E = -VI

= - p(q)VO*(p-q)dr (3.9)

axi
f =)a0( - q)dr

where we have omitted the dielectric constant for simplicity.

If, instead of potential, electric field is specified at the boundary, we have a Neu-

mann problem. As the boundary condition is given by 8c/an, the equation for deter-
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mining the source distribution is

0 = - (3.10)

= am - q)dr (3.11)

Note that a Neumann problem is ill-specified in the sense that if -Ib(p) is a solution to

the potential distribution, 'I(p)+c where c is an arbitrary constant is also a permissible

solution. (As a homogeneous solution, c does not contribute to the boundary condition

ai/an.) To guarantee a unique solution, an additional normalization equation on p

is required:

f p(q)dr = o. (3.12)

It has the effect of preassigning a value for c.

What has been described is basically the boundary element method of simple-

source distribution [38,401. It is also called the single-layer formulation. For Dirichlet

*problems, the double-layer method of the following form is sometimes employed [381:

(p)= frp(q)o-ad*log(p-q)dr (3.13)

r 8n
(q) a (p - q) + 7rp(P) (onr)dr (3.14)

where a/anq is the normal derivative at q with respect to q. The 7r term in Eq. 3.14

results from the integration over the singularity at q = p. The name "double layer"

comes from the observation that ao8 /an is potential due to a dipole charge whose

axis is normal to the surface - hence it appears that the domain is enclosed by two

layers of boundary charges.

Eq. 3.14 is known as a Fredholm integral equation of the second kind. It produces a

diagonally dominant matrix ideal for numerical calculations. It can also be solved very

efficiently using the Liouville-Neumann series [41]. However the kernel functions be-

come highly singular if we attempt to compute V4, numerically. Thus our application

uses the single source :)rmulation.
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Poisson's Equation

The Laplace condition implies the domain is source-free; i.e. there are no electrical

charges, heat sources, or diffusing species sources for the respective systems. If the

domain has sources, Poisson's equation applies:

V2c(p) = p(p) (3.15)

where p is the source density. Consequently, Eqs. 3.7 and 3.14 will have an additional

expression to account for the domain contributions:

1 f p(q)4(p - q)dfl (3.16)

The Poisson condition often arises when the domain is nonhomogeneou. If that is

the case, the domain source p is dependent on the boundary condition.

3.1.2 Direct Method

To derive the direct method for potential problems, we start with the divergence

theorem:

fn V.Fdn = fr.FfPV " (3.17)

If we subtract the solution for F = PV4 from the solution for F = 4Vb, where 0 and

are scalars, we obtain Green's second identity:

j(,V20i _ OV 24,)dnl =0 f ?PLO dr. (3.18)

If we replace 4, and tb with 4" and - defined earlier for the indirect method, we obtain

the direct formulation:

2rD (p) = r - p 6,11(q) 84'(q - p) (q)] dr - f4 0.(q - p)V2,(q)dn,

(3.19)
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which is better known as Green's third identity or Green's formula. If the domain is

source-free, the domain integral on the right-hand side of Eq. 3.19 can be removed.

To determine the unknown boundary parameters, p is set to r and o is expressed

in terms of at/an or vice versa 2. One advantage of Green's formula is that Eq. 3.19

does not contain a source function. On the other hand, it is tedious to determine V4

inside fl - it requires the second derivatives of 0* to do so. These highly singular

second derivatives are not needed by the indirect method.

3.1.3 Periodic Kernels

So far, the form of domain that we are concerned with is a simple, closed region. There

are many situations in which one would like to work with a periodic structure that

extends from z = -oo to z = oo. In this configuration, the upper boundary r, and

* the lower boundary r, axe separated and never touch. The solution for D is given by

(p) f j P.(p)0*(q - p)dr + 0 A(p) *(q - p)dr (3.20).
,-00 41,-00

Assuming the dimensions are normalized, the following conditions will always be sat-

isfied:

( (p) = -(p+2nm-1)

p(p) = p(p+2nrk^)

for any integer n. Given its periodic nature, the indefinite integral can be reduced to

an integral over a period:

L p(q)'(p - q)dr-_ p(q) *(p - q)dr

by introducing a periodic kernel:
0

n=-eo

= 1 log [2 (cosh(ly) - cos(z))

2 This description is oversimplified. The left-hand side 'of Eq. 3.19 actually contains a scale factor
that depends on the shape of the boundary. See [38,40,421 for details.
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which is obtained from the real part of this complex-variable expression [41]:

91{log [sini(z + sy)]}I.

The singularities of 4* are located at 2nirtk for any integer n. By applying Taylor series

expansion on cosh(y) and cos(x),

cosh(y) ; 1 + y'/2;

cos(x) s 1 -x/2,

it can be shown that 4* reduces to the non-periodic version near the origin:

S(p ; 0) 4'(P).

For jyj -- 0, we have this approximation:

- 1y
2

which is Green's function for one-dimensional Laplace problems. The far-field analysis

is a very useful tool because it deals with a simplified one-dimensional behavior that

reveals the source activities at y = 0.

3.1.4 Source Formulation for Oxidant Diffusion

Having covered the principles of the BEM for Laplace problems, we now describe its

application on modeling oxidant diffusion.

First, it will be shown that diffusion is a Laplace problem. Consider Fick's second

law of diffusion:
ac
--- = -V.F

In steady state, ac/at = 0. Thus the flux is divergence-free:

V . F = -V(DVC) (3.21)

= 0. (3.22)
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If D is uniform throughout the oxide, as it will be initially assumed, Eq. (2.12) is

reduced to Laplace's equation:

V 2 C =0. (3.23)

With the indirect BEM method, the oxidant distribution is given by this statement,

C(p) = f p(q)o'(p - q)dr, (3.24)

where p is interpreted as the 'source' or 'sink' for oxidants.

In the literature, parameters for oxidation are commonly given in terms of B and

B/A, not in C', k., and D. By multiplying all C's with k,/N and redefining p in

Eq. 3.24 to be pk,/N, the oxidant diffusion problem may be strictly expressed in terms

of B/A and B. Eq. 3.24 now becomes a oxide 'growth rate' distribution equation

G(p) = f p(q)o*(p - q)dr (3.25)

where G(p) is the oxide growth rate if silicon is present at p.

The boundary conditions for the free oxide surface and the oxide-silicon interface

are replaced by B
G=- (3.26)

A
and

AOG- an = G. (3.27)

respectively. The Neumann boundary condition for the nitride interface remains un-

changed:
8G

an = 0. (3.28)

Oxidant diffusion is a mixed boundary value problem involving three different types

of boundary conditions. The source distribution technique is flexible in dealing with

such a problem. We observe that both Eqs. 3.7 and 3.11 share the same source p, thus

either one of them may be used on different parts of the boundary to describe the

problem, depending on whether the boundary conditions are Dirichlet or Neumann.

* A linear combination of both produces the Robin boundary condition.
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3.2 Biharmonic Problems

The oxide motion process, be it elastic deformation or viscous flow, can be shown

to be a boundary value problem related to the Laplace problem. The solution to an

elastic deformation or incompressible viscous flow in two-dimension is biharmonic or

Bi-Laplacian:

V 4' = 0 (3.29)

where the bi-Laplace operator is given as

V4 - (V 2 )2

a4  2 a+ a4

"- az az2 'z ~

for two dimensions.

Like a Laplace problem, a biharmonic problem is also a BVP whose solution is

uniquely determined by the boundary conditions. The specification of the solution

requires a pair of boundary conditions from the list: l, agl/an, V2 T, a(V 2 %)/an.
Once again, one must be careful in picking the proper pair. If IQ is not uniquely

specified anywhere on the boundary, the system becomes ill-defined because %F + c,

where c is constant, is also a permissible solution.

Laplace's equation can be considered a special case of the biharmonic problem. If

a function f is harmonic:

V2f = 0,

it always satisfies the bi-Laplace equation:

V'f = V2 (V 2f)

-- V0

= 0

A Laplace problem may also be solved as a biharmonic problem by using V 2,k - 0 as
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one of the boundary conditions on r. Since V2 P is Laplacian, V 2 is zero everywhere

inside (I, thus T also satisfies Laplace's equation.

At one time, nonlinear oxidant diffusion was implemented as a biharmonic prob-

lem. The idea is that nonhomogeneity in the diffusion coefficient results in pseudo

domain-sources. By assuming the pseudo domain-source density to be Laplacian, the

system becomes biharmonic, hence domain calculations can be avoided. However, only

passable results were obtained.

3.2.1 Biharmonic Kernel Functions

Biharmonic kernel functions can be readily generated from the harmonic counterparts.

We note that if f(z, y) is harmonic, then

* f(z, y) itself is also biharmonic, as noted earlier.

* zf(z,y) is biharmonic, since V (zf(z, y)) = 2V2 =O.

* Similarly, yf (z, y) is biharmonic.

* (z2 +y 2)f(zy) is also biharmonic, because V'(z+y)f(zy) - V[4f+4(x +
afy)l =0.

There are more varieties than the Laplace system. As it will be shown later, we will

only dealing with this pair:

= log lrl-

= logIr

yo
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where the term z is added to q to make it compatible with the period version. The

corresponding periodic version is given by:

S= Z (z+2nr)log r+2nr*iI

= -- i ylogjr+2n7r* 1I

There is no simple functional form for 4,. But as discussed in a previous article [18],

its derivatives do:

84,' 1 1 sinh(y)A= log[2(cosh(y) - cos(x))] - 2Ycosh~y) -cosz)

ao (3.30)= y

O, . 1 sin(X)

49xV = 2cosh(y) - cos()

= ya. (3.31)

We note that, for both periodic and aperiodic versions, the first and second deriva-

tives of OA, Ok, and 0 share many common terms. Thus it is appropriate at this point

to introduce a set of basis functions consisting of

4,, .1 'k.2, X2 0,*1, X2 -0,2 , X2,11, X2 0,,12

where indicial notation is used and the asterisk (*) is dropped for simplicity. The

subscript ", i" denotes derivatives in the i direction; thus,

a20
24,, axay

These expressions are combined in various ways to generate the desired Green's func-

tions for diffusion, viscous flow, elastic deformation and viscoelastic flow.
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3.2.2 Generic BEM for Oxide Motion

We are working with three oxide motion models. Except for the kernels, their bihar-

monic BEM formulation are similar in most respects. For this reason, we will present a

template BEM framework here, delaying the derivation of the kernels until we discuss

the mathematics of the appropriate motion model.

Biharmonic BEM resembles Laplace BEM in many ways. The displacement vector

u parallels the scale potential 'b. The surface traction p is similar to 49',/an. The

stress tensor a~i is analogous to V0. There are also the direct and indirect methods

for biharmonic BEM. Somigliana's formula parallels Green's formula. The vector

potential method described below is an extension to the scalar source used in the

oxidant diffusion modeling.

.Vector Potential Method

In indicial notation, the displacement field produced by boundary sources is given by

u(p) = fr pj(q)ut4(q - p)dF (3.32)

where a's are the "loading" sources and u?. is the displacement in the zi direction due

to a loading source in the zj direction.

Similarly, the formula for stress is

ar,,(p) r Pk(q) a*T,(q - p)dr. (3.33)

Using the definition pi = norij~ (Eq. 2.16), we obtained the statement for surface

traction:

pi(p) =jp,(q)p,(q- p)dr. (3.34)

Conceptually, pi defines loading forces at the boundary, as shown in Fig. 3.2.
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Figure 3.2: Vector Potential Formulation. The source density pi defines loading forces
applied at the boundary r.

Somigliana's Formula

Somigliana's formula is the foundation for the direct method on elasticity. It is of the

form:

u(p) =f u,,P3 (p - q) + puj(p - q)dr+ft41 (p-q)3 (p-q)d (3.35)

where the normal direction ft (embedded in pi) refers to the dummy boundary point

q. As we can see, the procedure to obtain stress information for interior points is

rather cumbersome - it requires the derivatives of ui, and that means a new set of

kernel functions: u,? and p!-t.
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3.2.3 Incompressible Slow Viscous Flow

In solving an incompressible flow problem, it is customarily to express the velocity

vector in terms of a scale parameter called stream function. The z and y components

of the velocity vector v = v,* + vt k is related to the stream function T by

V, = C1 (3.36)

u- -a'IF (3.37)

By this arrangement, V always satisfies the incompressibility equation:
a2 X a2 1

V.v -
axay axay

=0

provided IQ is a smooth function in the domain of interest.

It is known that the stream function for incompressible viscous flow is biharmonic

[431:
V'q, = 0

and that the hydrostatic pressure is a harmonics conjugate function to the vorticity
w - V q

aw aP
17T ay (3.38)

aw aP17 -Fy 45x=

Thus the stress tensor is given by:

17 = az +  , ,. (3.39)

Now we select -01 and O as Green's functions corresponding to force loading in the

11 and 12 directions respectively. The complete set of kernel functions are given below:

Vii = -(X 2 O,2 + .) (3.40)
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V12 X 20,1 (3.41)

v111 = -2(X20,12 + 2 0,1)7 (3.42)

o,11 = 2(2,1i- 0,2)17 (3.43)

122 = 2z 2 ,12 7 (3.44)

V2 1 = X20.1 (3.45)

V22 = (X2 0, 2 - ,) (3.46)

o,211 = 2(z 2 ,11 - ,2)77 (3.47)

0212 = 2X2 , 12t7 (3.48)

a222 = -2(z 2 , 11 + 0,2)7 (3.49)

where the first subscript digit denotes the direction of the loading force.

3.2.4 Elastostatic Deformation

Accor 0.ng to Papkovich and Neuber [38], a general solution u that satisfies the Cauchy-

Navier equation (Eq. 2.32) can be generated from

u(p) = h(p) - 4(1 - V(p .h(p) + f(p)) (3.50)

where

V 2h(p) = 0, (3.51)

V2f(p) = 0. (3.52)

If we let f = 0 and l = Ipl-l 1 , we obtain the fundamental solution for the

elastostatic problem. Also known as Kelvin's solution, it consists of the stress and

displacement fields generated by a point force in an infinite 3-dimensional medium.

The body force is applied at the origin r = 0 in the 11 direction, as it is evident from

the fact that the Laplacian is violated by a Dirac delta function centered at that point:

V2 pl- 1 :, = -4r6(p)31,. (3.53)
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To get the solutions for loading forces applied in the other two principal directions, we

change K to 1Ipl- 1 and PI-113 accordingly.

3.2.5 Elastostatic Kernels

The two-dimensional Kelvin's solution is obtained by setting f = 0 and h = log(lp)! 1

or Iog(1P1). 2. It is used as the kernel or Green's function for elastostatic BEM appli-

cations [42,40,18]. In indicial notations, the displacement and stress fields generated

by point forces in the 11 and t 2 directions are given below:

U11 = (1 (4v - 3)0 - X20,21 (3.54)

4(1 - v) (4 )~Z~2
1

U2= -1,)01 (3.55)

E
01111 =_[(y-301-X0113.6

4(1 - vi)(1 + v)[(( - )(i - ,2,)1,] (3.56)
C'112 = E - - (37)

4(1 - v.) (I + v) [ 2  (
E

C'122 = [Z I2#,12+(1-20,13.84(1 - L,)(1 + v) + (- 2,),] (3.58)

U21 = 4(, X20 '1 (3.59)

U2 = 4(1 - ,[(4vi - 3)0 + X2,2] (3.60)
E

0'211 = 4(1 - ,)(1 + ,,)2'011 - 2v ,2] (3.61)

E4(1 - v)(1 + v)~ 1  ( v~,](.2

C212 = E LI2 2-( v ,1(.2

E
a222 = 4(1 _ v)(1 + L)[2(v - 1)02 - Z20 11]. (3.63)

Again, the first digit in the subscript denotes the direction of the loading force, as in

the viscous incompressible flow kernels.

0
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3.3 Laplace Transform and Viscoelastic BEM

Elastostatic deformation is a static problem in which the solution does not change if

the inputs are held constant. Incompressible viscous creeping flow is a steady-state

problem that also exhibits similar behaviors. The main difference between them is the

primary variable (that may be used as an input condition) is displacement for elasticity

and rate of displacement (i.e. velocity) for flow. On the other hand, viscoelastic flow is

a transient problem. Whether constant displacement or constant velocity is specified

as a boundary condition, the stress field still changes with time.

At first glance, it seems that linear viscoelasticity may be not be solved in a reduced-

dimension manner because of its transient nature. However, according to the corre-

spondence principle on viscoelasticity, a viscoelastic problem may be modeled using

an equivalent elastostatic problem. In simple terms, it says that the time-dependent

stress-strain behavior in the bulk is related to the boundary conditions in a simple

manner.

3.3.1 Laplace Transform

In initial value problems (IVPs), the solutions are defined by the initial conditions

imposed on the systems. If the problems are given in terms of linear differentia

equations with constant coefficients, they are known as linear time-invariant (LTI)

systems. The Laplace transform method is a convenient and indispensable tool for

working with LTI systems. This technique converts a differential equation into a

polynomial function of a transform parameter. After the unknown coefficients are

calculated algebraically, the inverse transform produces the solution for the differential

equation. The importance of the Laplace transform is highlighted by its conversion of

time-domain convolution to transform space multiplication. This simplication assists

the analysis of complex interconnected subsystems.
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The definition of Laplace transform and its inverse are given in the following no-

tation:

F(s) = £(f(t)}

o- f(3.64)
f W Z-{F (s)}

1 F(s)e"ds
27ri 4-0

where i is the imaginary number. The lower limit on the Laplace transform is set to

0- so that impulse behaviors at t = 0 in f(t) are included in the integration.

Important characteristics relevant to our application are given below:

L{a + b}= {a}+ {b} Linear
f{da/dt} = sC{a} + £{a(0)} Time Differentiation
f,(t) * f 2 (t) = F1 (s) x F (s) Time Convolution
f(0+) = lim#-.o sF(s) Initial Value Theorem
f(oo) = lim,-.0 sF(s) Final Value Theorem

where the definition of convolution integral is

A(t) * f 2 (t) = L fi(r) f(t - r)dr.

Actual evaluations of transform integrals are seldom required since table lookup is

more convenimt. Given in Table 3.1 are a list of formulae useful for our applications.

3.3.2 Viscoelastic Kernels

As stated in Chapter 2, the constitutive equation relating stress and strain is usually

given in time-derivative form, as in Eq. 2.42. Using the Laplace transform technique,

it can be converted to a polynomial expression of the transform parameter s:

SP(s)o =- Q(s)E (3.65)
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Inverse Transform F(s) Function f(t)
1 6(t)
1/s U(t)
1/,2 ,U(t)t

11(s + a) eatu(t)

Table 3.1: Laplace Transform Table

where

i=O
n

= qi8f.
i=O

Note that we have made an implicit assumption that the system is initially at rest,
i.e. a~t = O) = IE(t = O) =&a(t) = i(t).- = O.

The strategy for finding the viscoelastic kernels is to employ expressions already

derived for linear elasticity. Since most of them are stated in terms of Young's modulus,

E, and Poisson's ratio, v, it is desirable to relate the Laplace polynomials to these two

parameters. The relevant constitutive equations given in Chapter 2 are reproduced

here for comparison; they are

aii = 2Gejj

am =3Ked

for elasticity and

Pls i = QIeq

P2aM = Q2CM

for viscoelasticity. From them, the following relationships are obtained:

2G = Q1 (S)
P (s)
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3K 2 (3)

Since G = E/2(1 + v) and K = E/3(1-2v), the expressions for E and , are therefore

obtained[36l:

E s) = Q1Cs)Q2(3) (3.66)

Q I(s) P2 (s) + 2P (3) Q2(S) (.6

Q- Q(as)P2 (s) + 2P (s) Q2 (3)(.7

With these modified definitions E(s) and ,(s), the solution for an elastic problem can

be converted to a viscoelastic form by applying the inverse Laplace transform.

This conversion procedure also applies to the elastic kernels Eqs. 3.54-3.63 to gen-

erate a set of viscoelastic kernels. Notice that we can premultiply all these expressions

with a scale factor W (s) before the inverse Laplace transform. This effectively modifies

the behavior of the loading force. Hence we can tailor V (s) to generate a solution with

* desirable characteristics for our modeling effort. Typically, we set either the displace-

ment or the force (but not both) at the load point to follow a step change or linear

change in time. The driving force of oxidation is the oxide growth at the oxide-silicon

interface. As a first order approximation, we assume that the growth rate is constant

within each time step, therefore the injection velocity is also constant. This suggests

that a constant-velocity formulation is best suited for our application. For some other

applications, a constant-force loading may be more appropriate.

To obtain a constant-velocity loading, we note that at the load point (V -+ 0), U1n

(or U222) is dominated by the term in log Ir, which has a coefficient of

4L(s) - 3
4(1 - v(s))

The premultiplier is set to

4(1-v,(s)) 1
"4v(s) - 3 (3.68)

to convert the coefficient to 1/s 2 , which is the transform of a constant velocity (au/at -

* c). Putting it in Eqs. 3.54-3.63 and taking the inverse Laplace transform results in
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the following expressions:

u, 1 = 7Ka(1 - 2v)X20,2 - (X20, 2 + O)t (3.69)

u1= -7K.(1 - 2v)X20,1 -+ z2 0,t (3.70)

01 = [-K,(2X2 ,.12 + 30,1) - KO(X 20.12 + 50,1)]E (3.71)

0112 = [K,(2X24.11 - 0,2) + KP(z20,11 - 40,2)]E (3.72)

O'22 = [K,(2z2r. 12 - 0,1) + KP(X2',12 + 30,1)JE (3.73)

U21 = -7K.(l - 2v)X2 ,1 + X20.1t (3.74)

U2 2 = -7K.(1 - 2v)z 20,2 + (z,. 2 - O)t (3.75)

a211 = [K.(2X20,n - 30,) + KP(z2 ,11 + 20,2)]E (3.76)

-212 [K.(2Z20,12 + 0,1) + Kp(z 2 ,12 - 30,1)]E (3.77)

o'222 = [Ka(2X20,ii + 0,2) + KP(z20,u + 40,2)]E (3.78)

where
6tK. =61 - exp(-t)]

K - exp(-t)]

3(3 - 4,,),
==

E

TO 2(1 + v)/
E

K and K# are analogous to the charging of the capacitor C in a simple R-C circuit.

Like the capacitor that discharges when the applied voltage is removed, K. and Kp

change to decaying exponential functions with time constants ra and re respectively

when the loading is stopped.

In general, the two relaxation time constants are different. The second one, rp, is

readily identified as shear relaxation. The origin of r. is less clear; probably it has to
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do with combined volume-shear relaxation as evident from the fact that it becomes

the same as the shear relaxation time when the material is incompressible (V = 0.5).

Stress fields associated with K. and Kd satisfy the force conservation equation Fq. 2.17

independently. This condition arises from the fact that K. and Kp decay differently.

We expect that, as the ratio t//G approaches oo or 0, the viscoelastic kernels reduce

to that of elastic deformation or viscous incompressible flow respectively.

For the first case, the limit q/G --+ oo is obtained by keeping G at a finite value

and letting 1 go to infinity. The exponential functions are approximated with Taylor

series and the following expressions are obtained

2(1 -eAt) ;t A
E

1- t
3(3 -- 4t')

-ti(1l-eB*) =  1Bt

£ E

-- +( "L- t.

for the appropriate terms in Eqs. 3.69-3.78. In this regime, the viscoelastic kernels are

the elastic kernels given in Eqs. 3.54-3.63 scaled by 4(1 - v)t/(4v - 3).

In the second case, the limit /G -+ 0 is reached by fixing 17 at a finite value and

letting G go to infinity. For any nonzero t, no matter how small, the exponentials

are zero. We find that the viscoelastic kernels simplify to the viscous incompressible

flow kernels (Eqs. 3.40- 3.49). Note that v does not appear in the final expressions.

The reason is that the elastic moduli are set to be infinitely large in this simplication

(CG --+ co), thus the material is incompressible irrespective of v.

The viscoelastic kernels are different from those of elasticity and viscou flow in that

they have an additional parameter t. This parameter is set to the time-step size At in

numerical simulations.

As we can see, the constant-velocity (linear-displacement) loading viscoelastic ker-
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nels approach is a flexible formulation. Because the stress relaxation time can be

pushed to the extremes, this viscoelastic formulation is also suitable for modeling

elastostatic deformation and viscous incompressible flow.

3.4 Modeling Nonlinear Bulk Behaviors

The integral equation in the BEM is nothing more than a continuous summation of

contributions from boundary sources. For this superposition technique to be valid, the

domain has to be homogeneous, i.e. bulk parameters such as diffusivity and viscosity

have to be uniform throughout the bulk, as originally assumed in the derivations of

those Green's functions. It has been mentioned earlier in Chapter 2 that stress alters

those parameters, rendering the domain nonhomogeneous. This section describes a

formalism for handling the nonlinear effects with the BEM.

The concept comes from the observation that both the diffusion flux and stress-

strain equations are of the form
A =cB. (3.7g)

where

Diffusion Elasticity
A F _

B VC E
c D E

For notational simplicity, the strain and stress parameters are assumed to be scalars.

The similarity suggests that both processes can be treated in a unified manner. For

generality, we will discuss the issues in terms of the representative 'parameters A, B,

and c.

Nonhomogeneity or nonlinearity implies the parameter c is not uniform within the I
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domain. c can be rewritten as

C = cok(xA,...)(3.80)

As shown, the scale factor k may be a function of many parameters, including A, B

and position x. To conform with the linear system format, Eq 3.79 is rewritten as

A = coB + A0 , (3.81)

where A0 is co(k - 1)B. In a normal setting, A0 is interpreted as a initial condition

of A that does not have a associated B° value. If B is expressed in terms of A, this

alternate statement is obtained:

B - A (3.82)C

= A+B 0  
(3.83)

CO

where B° is the initial condition of B.

One can find familiar situations in mechanics where there is A without the accom-

pany B, and vice versa. For instance, consider a freely-supported material undergone

thermal expansion: it sees a nonzero thermal strain JT. But it has zero thermal stress

a because it is freely supported. On the other hand, if the material is clamped on

all sides, then its eT is zero because it is not free to expand. Consequently, its a" is

non-zero. It is said to have initial stress. For the diffusion problem, similar analogies

are hardy to come up with. We note that in insulating materials, the increase in

dielectric constant (beyond c0) is due to electronic polarization. If we can freeze the

polarization when we remove the applied field, we will see a residual built-in field. Be-

cause dielectric constant in potential is analogous to diffusion coefficient in diffusion,

we coin the term "built-in field" as the initial condition for Laplace problems.

3.4.1 Viscoplastic BEM

This unified framework for nonlinear diffusion and viscoelastic flow evolves from consid-

* erations on elastoplastic BEM method. Elastoplasticity is the permanent deformation
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a

Q

0 R e

Figure 3.3: Elastoplasticity. Beyond the point P, the system is nonlinear. The effective
E' is different from E of the linear regime.

in an elastic material due to large stress or strain. Typically, such an effect is observed

only when stress exceeds the yield limit of the material. Fig. 2.5 from Chapter 2 is

reproduced here as Fig. 3.3 to show a representative plastic stress-strain curve

An unmodified BEM can only model the initial linear regime, as defined by OP

in the figure. Beyond the point P, the stress-strain relationship is nonlinear. At Q,

the effective E' is given by oQ/EQ. Because stress (or strain) is not likely to uniform

throughout the domain, different regions will have different effective E'. Thus the

domain is not homogeneous.

The three common techniques for nonlinear elasticity are the modified body-force,

initial stress, and initial strain formulations. Only the concepts of initial strain and

initial stress will be described here as they relevant to our work. For details on all

these methods, readers are referred to the book authored by Banerjee and Butterfield
31n this discussion, we are not concerned with how the system returns to the unstressed state.



CHAPTER 3. BOUNDARY ELEMENT FORMULATIONS 75

[40]. The treatment by Brebbia et al [42] is not as in-depth as the former.

In the "initial stress" formulation, the nonlinear stress components is expressed as

[40]:
aj = (i3. - 8 (.84)

where a' is the initial stress, a, is the elastic stress, and a'P is the elastoplastic stress

that we seek. The equilibrium equation then becomes
a$1;; = 0
axi

or =a' G". (3.85)

azi 8 Z,
As far as the elastic component is concerned, there is a pseudo body force due to initial

stress A° . The displacement formula is modified to include this contribution:

U)=f". (p - qc + o t ,,(p - q)dfl. (3.86)( J r 3 " fn axk
* The statement for elastoplastic stress is accordingly given by

o,,C(p) = j o:, c( - q)d +/ "" - q)- o,.. (3.87)

Note that the stress expression has a term in ,O that has no counterpart in the displace-

ment formula. The domain integrals in both expressions are usually converted, using

the divergence theorem, to a different form that utilizes ao as the domain source,

instead of 9o-7x/z. With this transformation, we avoid taking derivatives of

which may have to be done numerically. However there is no need to do so in our

particular formulation; hence we stay with the original expressions.

In the initial strain formulation, we modify strain instead of stress:

S= - ,, (3.88)

where e9. is the initial strain, eqi is the total strain, and e,"i is the elastic strain. Stress

is given in terms of the elastic strain:

160E
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Q

a

Initial Linear
Stress

(a)

Q I

Linear Elasticity

S

- Initial Strain

(b)

Figure 3.4: Modeling nonlinear elasticity with (a) the initial stress approach and (b)
the initial strain approach.

I
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The initial strain 9. is then used in domain integrals similar to those for c°.

Fig. 3.4 illustrates how nonlinear elasticity is modelled with the initial stress and

initial strain formulations. To reach the point Q defined in Fig. 3.3, the initial stress

approach uses a vertical translation (stress without strain - initial stress) in conjunc-

tion with a linear deformation. Mathematically this is given by Eq. 3.81. Likewise,

the initial strain formulation employs a horizontal translation (strain without stress -

initial strain) and a linear deformation, as represented by Eq. 3.83.

3.5 Nonlinear Diffusion BEM

The nonlinear diffusion follows the initial stress method closely. The oxidant flux

F = -DVC

= -DokdVC

= FL + F0  (3.89)

is split into a linear (or homogeneous) part

FL = -DoVC

and a built-in field

F0 = Do(l - kd)VC

where kd is the diffusivity scale factor.

The flux conservation is on F:

V.F = V.FL + V.F0

Hence the linear part sees a pseudo domain source due to the built-in field:

p = -V.FL (3.90)

= V.F ° . (3.91)

* (3.92)
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The integral equation for C now becomes

C(p) f p(q),'(q - p)dr + f(V, • F°(q))'(q - p)dli (3.93)

where the subscript in V. indicates the operation is done with respect to the dummy

parameter q, rather than with p. The integral equation for flux is :ordingly given

by

F = DoVC +F 0

= Dojrp(q)V0*(q-p)dr+.DoJ(V9 .F 0 (q)) Vo*(q -p) dfl +F 0

= D0kd[f p(q)V0(q - p)dr + J(Vq F 0 (q))Vo (q - p)dfl] (3.94)

3.6 Nonlinear Viscoelastic BEM

Our nonlinear viscoelastic BEM formulation is different from the elastoplastic or vis-

coplastic formulations because of its use of the Laplace transform technique. In the

conventional approach, the deviatoric components in stress (or strain) is singled out

for plastic deformation treatment, leaving the spherical components unchanged. In our

problem, we are only concerned with the effect of stress on the viscosity. The viscosity

parameter appears in the exponential functions KA and KB of the viscoelastic kernels

Eqs. 3.69- 3.78. Given that

17 = o(3.95)

where

ky, = exp (-mVIl) sinV,21T) (3.96)

as described in Chapter 2, we can expressively show the influence of k, by writing the

kernels of displacement and stress. For simplicity, we introduce two sets of variables

to represent the effective scaling of k,, on the displacement and stress:

Ui(P) = fr pi(q) ,u*(q- p, At, k,,)dr

= ka(p)us(p)
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S(P) = jPt(q)aijk(q -p, At, k,)dro,(p) at

where the superscript L denotes the solution to the linear system in which k7 M 0.

The nonlinear stress must satisfies the force equilibrium condition:
Li._a= = a L° ,

I a-.L.q +k

This results in a pseudo body force of

1 L ak,,=~ "O'x' (3.97)

O for the linear part.

The presentation so far has been analytical and general. How well this formulation

performs depends critically on the numerical approximation technique.

3.7 Incompressible Materials

In certain numerical tests on ring structures, the loading force is arranged in a radial

direction, as shown in Fig. 3.5. An anomalous behavior was found when Poisson's

ratio is set to 0.5, i.e. when the material is incompressible. Outside the ring, no

displacement and stress is seen (except for residual numerical errors). Inside the

ring, only a high pressure is observed, the displacement remains zero. The inability

to generate a radial symmetric solution reveals that Kelvin's solution that we have

been using is deficient - it cannot model a certain legitimate behavior or geometric

configuration.
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Figure 3.5: Radial loading forces. Neither stress nor displacement is observed outside
the ring.

This is problematic for modeling any annulus structure because it has an outer

circular boundary and an inner circular boundary. The inability of the inner boundary

sources to influence the domain behavior means the matrix solution is singular or nearly

so, producing very poor results. Granted, one would use a more realistic Poisson's ratio

of 0.125, for instance. However, as we noted in a previous section, the material will

automatically becomes incompressible as the viscosity decreases.

Note that the inner boundary needs not be circular for singular behavior to show

up - abnormal results are also obtained when the inner boundary is rectangular.

The physical cause of the singular behavior can be understood by examining

Fig. 3.6. Shown in part (a) is an incompressible annulus structure that is to be

modeled. The inner hole and the exterior, which are not shaded, are of a different

material that is totally compressible - free space. The way the indirect BEM han-
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(a) (b)

Figure 3.6: Source of incompressible singularity. (a) Actual problem. (b) In BEM
*implementation, the hole in the center is filled with the same incompressible material.

die this problem is illustrated in part (b). The whole space is filled with the same

incompressible material, as required by Kelvin's solution. The BEM applies loading

force on the two circular lines that map to the actual boudaries in (a) so that the

"boundary conditions" on these lines match the real ones. The problem now is that

the hole is filled with an incompressible material. The Kelvin's solution only produce

distortion, it does not introduce any new materia', ,r otherwise change the volume.

Hence it cannot change the area of the hole, and this behavior is not compatible with

the real situation. Thus a special solution is needed in order to be able to alter the

size of the hole.

The special solution is an elastic potential function:

*°= log(x 2 + y:).

.. .. ....
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The displacement field is given by

U0 (3.98)
X- + (3.99)7+- i 2 + Y2:

and hence the stress is

2 Y ) (3.100)
(X2 + Y2)2

a12, = 0 (3.101)

22 = 2G ( 2  ) "
2  (3.102)

As we can see, there is no spherical deformation or stress associated with this function,

except at the origin: •

Ell + C22 = V.u(p) (3.103)

= 22r(p). (3.104)

where there is a source of material. The corresponding viscoelastic functions are

obtained by scaling the displacement field with t and replacing 2G in the stress ex-

pressions with 2t7[1 - exp(-Gt/17)].

To include this special feature in the numerical solution, an additional condition on

the system is needed. After experimenting with several options, it is decided that the

best constraint is to specify the net hydrostatic pressure generated by the boundary

sources be zero at the origin. With this enhancement, it is found that the solutions

are very well behave.



S

Chapter 4

Numerical Solutions

Solving a boundary value problem with the BEM entails the following steps. First,

the boundary is suitably divided into segments or elements. The sources are assumed

to take a certain shape distributions on these elements. A matrix is set up to define. the sources in terms of the known boundary conditions. After the source values are

obtained from the matrix solution, the unknown boundary and interior parameters

can then be calculated.

In modeling thermal oxidation, the solution of oxidant diffusion is first computed

to determine the oxide growth rate along the silicon interface. The injection of newly-

created oxide into the bulk is calculated from the growth rate and desired time-step

size. This information is then fed into the flow matrix equation that may represent

oxide motion as elastic deformation, incompressible viscous flow, or viscoelastic flow.

From the flow solution, the oxide displacement at the free surface is deduced. At this

point the motion pattern of all boundary points are known, hence their locations can

be updated. A new step can then begin. This loop continues until the desired oxide

thickness or oxidation time is reached.

When the mechanical interaction of oxide with the nitride layer and effects of stress

are considered, the numerical procedures become more complex and intertwined - ma-

8
83 .
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trix solutions are more complicated, domain calculations are required, and iterations

are embedded in other iterations. The flow chart described in the previous paragraph

serves to give a clear outline of the underlying activities. The presentation of this

chapter does not necessarily follow the order of program execution. Rather, the de-

scription is organized around logical groupings of functionalities. The segmentation of

boundary and domain will first be discussed. After issues of line integration, matrix

synthesis and solution will be dealt with. Methods for solving nonlinear equations will

also be presented.

4.1 Boundary and Domain Segmentation

The first step in BEM numerical approximation is to discretize the curved boundaries

by subdividing them into small segments or elements. This subdivision serves two

purposes. The piece-wise straight-line approximation makes integral calculations more

tractable. It also provides a suitable mechanism to prescribe a shape function for the

source distribution on each segment.

Three basic boundary segmentation techniques are shown in Fig. 4.1; they are

(a) constant, (b) linear, and (c) quadratic. In the constant element representation,

the collocation point at which the boundary condition is specified is located in the

middle of an segment. For the indirect method, the "constant" term refers to the

fact that the source density along a segment is uniform. Its values takes a step jump

from one segment to another, as depicted in Fig. 4.2a. For the direct method, the
"constant" term refers to the weighting function on the boundary condition. In the

linear element configuration, the collocation points are the endpoints of the segments.

Source density is assumed to vary linearly from one collocation point to the adjacent

one, as shown in Fig. 4.2b. Both "constant" and "linear" segments are straight lines.

In the quadratic case. a boundary element is a curve defined by 3 nodes points. Since

there are 3 collocation points, it is therefore possible to make a quadratic fit for the
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Figure 4.1: Boundary segmentation techniques: (a) constant element, (b) linear ele-
ment, and (c) quadratic element. The "nodes" are the collocation points.

source distribution.

In principle, the smoother the distribution approximation is, the better the results

will be. However, only the constant element is practical for the indirect method;

the other two are actually only relevant to the direct method. The reason is that

these segmentation schemes, with the exception of the quadratic approach, are just a

polygonization of a geometry. Where two boundary segments are joined together, the

surface curvature is infinite. In other words, we have a Liapunov surface that is not

smooth [381. Whenever the surface orientation of a boundary point is discontinuous,

the indirect-method solutions are singular. No meaningful boundary condition can

be imposed or extracted if a collocation point is placed there. Therefore collocation

points are set at the center of each segments, as in the constant element scheme.

A linear-element approximation had been tried. To avoid surface normal discon-. tinuity, the edge joining two boundary segment was replaced by an arc. The arc
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Figure 4.2: Source distributions: (a) constant element, and (b) linear element.

curvature, which is the reciprocal radius of a circle, is of a predefined value. An at-

tempt to improve the "mid-point" collocation method had also been experimented.

The source distribution was made to vary linearly from one collocation point to the

next. Both approaches were abandoned because the minor improvement in accuracy

could not justify the increased complexity in the solution technique. This point is

particularly applicable to our oxidation modeling effort because we are trying to ex-

plore the usability of the boundary element technique, rather than to tune it to get

improved computation performance.

4.1.1 Classes of geometries

As mentioned in Chapter 3, it is desirable to mirror a simulation structure in such a

way that the upper boundary (i.e. the free surface and the silicon nitride mask) never

touches the lower boundary (i.e. the silicon substrate). This is to avoid artificial

boundary closure that can introduce local numerical errors in regions next to the
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artificial wall. Two types of mirroring formats are supported. First, the mirroring of

a structure at the left- and right-hand edges results in periodic symmetry. This form

requires periodic kernels. The other mirrors one horizontal edge and one vertical edge

to obtain a 2-fold symmetry; it uses the normal non-periodic kernels. A variation on

the 2-fold symmetry is the 4-fold one that has an additional folding at a 450 line. All

these configurations are depicted in Fig. 4.3.

Reduction in number of unknowns is achieved by exploiting symmetry features of

the structures. The solution is only calculated for half a period, a quadrant, or half a

quadrant respectively. Typically, a total of 40 to 60 segments are used for periodic and

2-fold symmetric structures, and 20 to 30 for the 4-fold symmetric case. The lower

limit is due to accuracy consideration of the discrete approximation to continuous

quantities while the upper limit is constrained by the computational speed.

Depending on the nature of the kernel functions, the source distributions are either

* symmetric or antisymmetric with respect to a symmetry line. The kernels for the

oxide-flow problem work in pairs to generate a loading force. The ones specifying

loading forces in the z direction produce a source distribution that is antisymmetric

with respect to a vertical fold line (a(z) = -a(-x)) but symmetric with respect to a

horizontal fold line (a(y) = o(-y)). The converse is true for the y-loading kernels.

Moreover, in the 4-fold symmetry case, the source distribution of a "x" kernel is

mirrored to that of a "y" kernel along the 450 line. For the oxidant problem, the

kernel is scalar, therefore the source distribution is always symmetric with respect to

the fold lines.

The periodic symmetric geometry is used for analyzing LOCOS and SWAMI struc-

tures. The trench structure has a long vertical perimeter, solving it as a periodic

structure will require many boundary segments and slow down the computation speed

significantly. Therefore we take advantage of the vertical wall and cut it in the middle

into an upper-half and lower-half, and solve each of them as a 2-fold symmetric object.

The 4-fold symmetry is primarily used for modeling Kao's experiments on cylindrical
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structures.

4.1.2 Interior-Cell Generation

It is possible to subdivide a nonhomogeneous domain into piece-wise homogeneous

partitions and solve them as a group of interconnected systems. This subregion tech-

nique is effective when the bulk parameters are different in a few large regions. It. is

used for modeling the mechanical interaction between oxide and nitride bodies. How-

ever, it is not suitable for modeling stress effects because many partitions may be

needed to model the variations in bulk parameters accurately; this complicates the

matrix solution techniques. Thus perturbation techniques based on interior cells are

explored.

Because of the ever-changing domain, cell partitions are not specified in the input

data but are determined by the program on the fly at every time step. To write a

fully automated generator is a difficult task; only a rudimentary scheme has been used.

This method takes advantage of the fact that upper and lower boundary segments are

aligned and specified in pairs. Where interior cells are needed, it creates a column

joining the segment pairs, as illustrated in Fig. 4.4a. Then it looks at the dimension

of the column to determine the number of cells that should be created, using this rule:

effective height
- effective width'

where the effective height is the average length of the two sides of the column, and the

effective width is the average length of the top and bottom. The resulting cells are

mostly quadrilaterals, as shown in Fig. 4.4b. Some fill-in triangular cells arn. .reated

when the number of cells changes from one column to another.
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(a) (b)

Figure 4.4: Domain Partition. (a) First step - column division; (b) second step - cell
division.

4.2 Evaluation of Integrals

The boundary element method depends on the evaluation of integral equations to

model a system. Many types of integrands are involved, and practically all of them

exhibit singular behaviors, creating difficulties for numerical implementations. As the

heart of the BEM, integration techniques warrant a detailed examination.

The division of the boundary into segments facilitates the estimation of source

distribution and the prescription of boundary conditions. Similarly, the representation

of segments by straight lines simplifies the evaluation of line integrals. Even so, these

expressions are still difficult to derive, as the line path defining the integration limit

are arbitrarily placed in a two-dimensional space. The predicament becomes worse for

area integrals on quadrilaterals or triangular elements1 .

Fortunately, the pseudo-sources that are used for modeling nonlinear bulk parameters can be corn-
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In two-dimensional Laplace problems that employ 0" (z) = log(x) as the kernel func-

tions, line integral involving 0" and its first derivatives are routinely done in analytical

form. This approach is usually abandoned in biharmonic systems because the functions

are more complicated. For periodic problems that use k"(x) = log[2(cosh(y) - cos(x))]

kernel, such an analytical evaluation actually becomes infeasible. The Lobachevski

functions family L(z) = f log[sin(x)]dx, to which the periodic kernel yields after in-

tegration, only exists in integral form and cannot be reduced further - just like the

error function erf(x). But unlike the error function, no library routines are available

to provide numerical results for Lobachevski functions. Thus numerical integration is

used whenever possible and convenient.

Consider the integral equations stated previously in Eqs. 3.7 and 3.11:

( P) = f p(q) 0'Cp -q)d
rq)(dr0(P) = f p (q) 0*'(p - q) d

an jr -n.After boundary segmentation, they become
N

-0(P) Pif fr 0 (p - q)dq (4.1)
i=1 -i

at,(p) N [ o(p - q) d 42
an Pri a

where N is the number of segments and o' is the source distribt .on on ri, the jth

boundary segment. The ou's are factored out from the integral ex.pressions because

they are constants. Methods of evaluating straight-line segment integrals are discussed

in the following sections.

4.2.1 Numerical Quadratures

Numerical integration, or quadrature as it is often called, seeks to approximate the

integration f f(x)dx by evaluating the expression f(z) at discrete points z, weighing

puted by integrating around the perimeter of a cell, as shown later. No area integra!s are needed.
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them with wi and summing up the results:

NSf (xCd -3 Ef Z)i
i=O

The two most common schemes to determined the spacings of zi and values for wi are

the Gaussian quadrature and the Newton-Cotes formulae. In the following discussions,

it is assumed that the integration goes from -1 to 1.

Newton-Cotes Formulae

In the Newton-Cotes formulae, the nodes zjis are equally spaced. If the endpoints of

the line path are also quadrature points, the formula is said to be closed, otherwise

it is open. The accuracy or the "order" of the formula depends on the number of

quadrature points. Of the low-order closed approximations, the 2"' order is more

commonly known as the trapezoidal rule, and the 3rd order Simpson's rule. The

closed Newton-Cotes formulae that have been used in this investigation are given in

Table 4.1. Observe that the 7" order approximation has an undesirable property in

that wi fluctuates wildly. In fact the 9 1h (not shown) and higher order approximations

have undesirable negative weighing factors.

Gaussian Quadrature

The Newton-Cotes approximation was later replaced with Gaussian quadrature. The

Gaussian sheme uses irregularly spaced nodes. The coefficients for Gaussian quadra-

ture are given in Table 4.2.

The reason for the need of high order approximations is that fields have fast varying

fields near a singularity. This situation arises when the top and bottom boundaries

lie very close together, as oxide is thin at the beginning of oxidation. The selection

of quadrature order is determined by the closeness the collocation point is to the I
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n I _____

3 0 4/3
1 1/3

5 0 12/45
1/2 32/45
1 7/45

7 0 272/420
1/3 27/420
2/3 216/420
1 41/420

Table 4.1: Newton-Cotes Coefficients

n Ixi wi
3 0.0000000000 0.8888888888

0.7745966692 0.5555555555
5 0.0000000000 0.5688888888

0.5384693101 0.4786286704
0.9061798459 0.2369268850

7 0.0000000000 0.4179591836
0.4058451513 0.3818300505
0.7415311855 0.2797053914
0.9491079123 0.1294849661

9 0.0000000000 0.3302393550
0.3242534234 0.3123470770
0.6133714327 0.2606106964
0.8360311073 0.1806481606
0.9681602395 0.0812743883

Table 4.2: Gaussian Quadrature Coefficients
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boundary segment2 .

4.2.2 Analytical Integrations

Source contributions from all segments are summed up to determine the boundary

condition of a particular segment. When the source coincides with tile collocation

point, the integrand becomes indefinite. Under such a condition, analytical integration

must be used as numerical quadrature performs rather poorly. If a quadrature node

coincides with the collocation point, the numerical solutions will blow up as we attempt

to evaluate log(O) or divide somethin6 by 0. On the other hand, if the singular point

is omitted, the approximation will be in great error because the contribution of many

constant come from the singular point, as we will see later. Only analytical integration

can deal with singularity adequately.

Periodic kernels, as noted that in Chapter 3, can be reduced to non-periodic coun-

terparts around the singularities by using Taylor series expansions of the trigonomet-

ric and hyperbolic functions. All analytical integrations over singularities are done

in terms of those non-periodic versions. Because of the limitations of Taylor series

approximation, the integral must be done close to the singular point, and the path

cannot be too long. Typically the segment length is limited to be shorter than 0.2

radian. For a longer boundary segment, It is possible to use quadrature on the edges

and analytical integration at the center.

Coordinate Transformation

In numerical quadrature, it does not matter in what order the contributions from

the quadrature points are summed, the results are the same. Such is not the case
2 Note that only odd number of nodes are employed in either Newton-Cotes or Gaussian quadrature.

This has to do with the programming feature that checks the central node before deciding which order
of quadrature should be used.
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for analytical integration - the solution depends on the direction of integration path.

Incorporating all these information will make the resulting expressions unnecessar-

ily complicated. Thus a modular approach is chosen to breakdown the integration

procedure into two parts. First, the integral expressions are solved in a local z' - y'

coordinate system. This local frame is chosen such that the integration path always

runs in a predefined direction of either z' or y. The solutions are then transformed

back to the global reference frame using the following rules:

z = cos ex' - sin By' (4.3)

y = sin 8z' + cos gy' (4.4)

2= cos 2 OX' - cos 0 sin Ox'y' + sin2 8/2 (4.5)

zy = cos 2 B2y' + cos B sin B(x 2 - -2)- sin2 0' (4.6)

/ = cos 2 By'2 + cos 0 sin 8x'y' + sin2 Oz'2  (4.7)

X3 = cos 3 BZ's - 3 cos 2 B sin Bz'2yI + cos B sin2 BX'y 2 - sin3 By's  (4.8)

X2y = cos 3 8X12Y ' + cos 2 8sin 0(x'3 - 2x'y 2 ) + cos 0 sin2 8(y 3 - 2z'2y')

+ sin3 02Y12  (4.9)

zY2 = cos 3 Bz' 2 + cos 2 0 sin (2z y' - y) +  cos 0 sin 2(z1 - 2z'y 2 )
-sin3 Bz'2 y' (4.10)

Y = cos 3 O '3 + 3 cos2 B sin Bz' /3 + 3 cos 0 sin 9z'y' + sin3 OZ'3  (4.11)

where 0 is the rotation angle from the z axis to the x' axis, measured counterclock-

wise. Note that these rules also applies to differentiation operators by substituting

parameters with differentiation operators. For instance:

2 8a2 82 2 s

492 = cos 29- - cos 0 sin -a + sin2 .

Working in a local frame where the integration path runs either in the ' or y' direction

greatly simplifies the analytical expressions.
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4.2.3 Line Integrals Over Collocation Points

It turns out that the integrals over the collocation point usually yield simple results

due to the midpoint collocation method and the step function approximation of the

sources. Great care must be taken, however, when dealing with singularities. The

integral path must be chosen carefully to be consistent with the source-free assumption

in the boundary integral equations.

Three types of integrands are encountered. First, for non-singular or weak singular

functions such as logarithm log(r), we have a well-defined and well-behaved solution.

For strong singularity, we get two other types of behaviors. The second one comes

from expressions of the form

im[" 4 d' = f -.dz-- - 2 -y2 f -

- [Log()]_,-

-0.

Although the overall result is zero, it is due to cancellation of two logarithm terms

that become singular as a -- 0. This integration must be interpreted in the Cauchy

principle value sense. As we can see from this expression, the result shows logarithmic

singular behavior if one of the endpoints is 0 instead of ±a. This is the cause of singular

behaviors when the surface orientation is discontinuous. The third integration type is

of the form
Y dx y- 0,

which yields 0, 7r, or -7r, depending y = 0, 0+ , or 0-. We must choose y to be 0+ or 0-

such that the source at the singularity just lies 'outside' the simulation region B. We

don't want any source inside the region3 . For this expression, the jump in values is
3 Actually, y is chosen to be exactly zero in many boundary element references [38,42,401; the integral

is 0. But now the half of the source point is lying inside the domain, therefore the r term is picked up
by the divergence operator on the source. We see that these two approaches are consistent with one
another.
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due to the term tan- (z/y), which is problematic in many applications, as it suddenly

changes values.

The integral expressions for the basis functions defined in Chapter 3 are given in

the Appendix.

4.2.4 General Analytical Line Integrals

Over the course of investigating different methods of modeling nonlinearity, it was

found that high accuracy in the integral technique is desirable, not to avoid numerical

errors, but to ensure that integration errors do not play a role in the ill behavior of

the solutions. A set of analytical integration formulae is also given in the Appendix.

However they are only applicable to the non-periodic basis functions.

. 4.3 Matrix solutions

In Eqs. 4.1-4.2, a's are the unknowns. Values for a's must be calculated before the

domain solution or the unknown boundary parameters can be determined. The pro-

cedure is to compute a's in terms of the "known" boundary conditions. Suppose we

are dealing with a Dirichlet problem in which i at the boundary is specified. §j, the

potential at the collocation point pi of segment i, is given as

N

4 p = J~ r - qjdr
= aijai

where a~i := fr, 0'(pi - q1dr. Combining this expression from all boundary elements,

the following matrix representation is arrived:

Ag = b. (4.12)
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A is a N x N matrix whose entry aej is defined above, and z and b are vectors whose

elements are {a, .. " a'} and 1 ... §N respectively. The solution of z is given by

i= A-1 . (4.13)

With a's solved, we can proceed to calculate L1 at the boundary.

Suppose the problem is Neumann, Eq. 4.2 is used to assemble a similar matrix

equation to solve for a's:
Ci = d. (4.14)

where c~i = fr, a6'(p, - q)/'9ndq, and d = a'i/an, ... , -, N/a. For simplicity, we

have ignored the required normalization equation.

4.3.1 Matrix System for Diffusion

The oxidant diffusion problem is a mixed boundary-value problem consisting of Dirich-

let, Neumann and Robin boundary condition, as mentioned in Chapter 2. A new

hybrid matrix equation is assembled from Eqs. 4.12 and 4.14, given symbolically as

[AIC1 = 9d. (4.15)

Depending on the boundary condition of a particular segment i, the 1" row of A or C,

and 0th element of b or d, or a linear combination of both, is used to form the entries

of this matrix: [Gil ..- aUIJ 1
I • . :

"n c ---- (4.16)ell ... IN d,

where, for illustration, boundary elements 1 and I are shown to have a Dirichlet con-

dition and a Neumann condition respectively.

Note that all those matrices A, C and the hybrid, are fully populated. This is due

to the global influence of the kernels. The source a on any one segment has a direct
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.effect on the boundary condition of on all segments. In contrast, the finite difference

and finite element methods always produce sparsely populated matrix because of the

short-ranged interaction between elements. Their nodes or elements only interact with

nearest neighbors.

The solution for the unknown z is obtained using Gaussian or Gauss-Jordan elimi-

nation with partial pivoting. Note that an explicit inversion of the matrices is seldom

required.

4.3.2 Oxide Flow

The boundary conditions for oxide flow are specified in vector form. For a two-

dimensional problem, each boundary segment requires two entries in the matrix. Thus,

the resulting matrix size is 2N x 2N. Otherwise, the matrix synthesis process is similar

to that of diffusion.

4.3.3 Multiple Domains

The discussion so far concerns with single-domain problems. This treatment is ade-

quate for oxidant diffusion but not for the oxide motion. The oxide bulk is in contact

with silicon nitride mask and silicon substrate (and also the ambient). For the diffusion

problem, the boundary conditions at these interfaces are F . f = 0 and k.C = DF -%,

due to the fact that silicon nitride is impermeable to oxidant and that chemical re-

action is a interfacial activity. The mechanical interaction between these bodies are

more involved. All materials are flexible. But to make the problem simpler, we as-

sume that the silicon substrate, which is very thick with respect to the oxide, is totally

rigid. However, the silicon nitride mask is of comparable thickness to oxide and de-

forms during oxidation, therefore its interaction with the oxide motion may not be

overlooked.

0
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At the interface between oxide and nitride, neither the displacement nor surface

traction can be preassigned. The actual values for these parameters depends on the de-

tail interactions of these bodies. A general approach for dealing with multiple domains

is to combine their matrix equations into one and match the boundary conditions at

the common interface. Let's assume that the matrix equations for two domains, A

and B, are given as

G,) = U { (4.17)

HAI 1A = j p1[ HP]A (4.18)

c1
H-".S 

(4.20)

where U's, P's, and a's are the surface displacement, traction, and sources respectively.

The domains are identified by the superscripts; the boundaries are denoted by the

subscripts.

The requirements at the common interface r1 are (i) displacements be continuous:

UZ" = UIB

and (ii) surface tractions be equal and opposite:

PI = -Pr.

The first ensures no overlapping of materials is possible, the second conserves forces.

Note that these vectors are defined with respect to the global reference frame for

consistency, instead of the local frames. For the combined systems, we thus have the

following matrix:

[GIHIA0 " [Upj[a]}I -[G 0.

[H]A [H] [ o - 0 (4.21)
S GIH {[Ulp}0 JGJH1
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This matrix is larger but contains many zero entries. It has been found that the matrix

solution can be sped up significantly by taking advantage of the blocked nature of the

matrix.

4.3.4 General Domain contributions

In the interior-cell formulation for nonlinear diffusion and oxide motion, there is no

difference between the contributions from the domain sources and those from the

boundary sources, as far as the matrix setup is concerned. For an equivalent system,

the interior-cell approach produces a denser and less efficient matrix than the subregion

technique, however it is more readily extended.

4.4 Computation for Nonhomogeneous Domain

O By inducing variations in the diffusivity and viscosity, stress causes pseudo domain-

sources to appear in the integral equations for both oxidant diffusion and oxide motion

processes. Simplifications and techniques for evaluating the domain contribution are

outlined below.

We have mentioned in Chapter 3 that we use co°/azi and V • F instead of the

nonderivative forms in our domain calculations. The reason has to do with the domain

integral approximation. In our scheme, the domain is partitioned into triangular or

quadrilateral cells, as described earlier in this chapter. Within each cell, it is assumed

that the scale factors are constant; they take finite jumps from one cell to another.

Consequently the values for those pseudo sources are zero inside a cell but become an

impulse at the cell boundaries. This features reduces domain area integrals into line

integrals along the perimeter of the cells.

The values for the scale factors are computed using stress values at the center of

the cell. For the source strength of the cells, two different estimation techniques have
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(a) b)

Figure 4.5: Dipole sources. Unlike a simple source, a dipole source can have spatial
orientation.

been considered.

4.4.1 Dipole and Couplet Approximations

As a vehicle to realize nonlinearities in the bulk parameters, the pseudo domain-sources

are supposed to perturb the solution, but not to introduce real body-force or oxidant

source in the bulk. Hence the net values of the domain sources should be zero.

One way to automatically satisfy the zero average-value constraint is to employ

dipole and couplets. As the kernel function for the double-layer method mentioned in

Chapter 3, a dipole is obtained from 0" by taking derivative in an appropriate direction.

Shown in Fig. fg:dipoles are the two basic dipoles, aligned in the z and y directions,

respectively. Because positive and negative charges (source and sink) always appear

in pair, the flux contribution to an enclosing boundary is zero. The couplets are a
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(a) (b) (c)

Figure 4.6: Couplet sources

O pair of force acting in opposite directions. The three basic couplet configurations are

shown in Fig. 4.6.

When one dipole or couplet source is distributed uniformly over a domain fl, the

positive and negative charges overlaps and cancels in the bulk, leaving unbalanced ones

on the perimeter. This situation is shown graphically in Fig. 4.7 for a dipole source.

It can be shown mathematically that, with integration by parts, an area integral is

reduced to a line integral around the perimeter.

In the first approach for determining pseudo domain-source, the flux and stress

are estimated at the cell center and assumed to be uniform across the cell, just like

the scale factors kd and k,. Each cell is considered individually without regards to

neighbor cells. The resulting source distributions resemble the dipoles and couplets,

thus the name for for this correct method.

When used on simple test structures where diffusion flux variation is smooth ( for
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Domain Source Boundary Surface Source

0 Dipole Source

Figure 4.7: Conversion of Dipole Area Integral into Contour Integral. The transfor-
mation is possible due to the fact the dipoles in the interior cancel one another.

the homogeneous case), the performance of this method is adequate, i.e. it can block

the diffusion to a good extent if the scale factors kj's for the test cells are reduced

significantly. Some residual flux is present unavoidably as this is a perturbation tech-

nique. Unfortunately for real oxidation structures such as LOCOS, the performance is

rather dismal. What happens is that the oxidant flux near the edge of the nitride mask

is highly nonuniform. Because of the thinness of the relief oxide, interior cells there

are only single-layer. Sources determined at the cell center cannot provided adequate

correction to the flux distribution at the cell boundaries - it is not sufficient to coun-

teract the oxidant flux reaching the silicon side, and on the other hand, oversupply

oxidant to the nitride side, which is reflected back. Consequently, it losses its ability

to block the diffusion. In fact, it produces terrible results - where the cell partition

ends, the supply of oxidant may increase. The performance of the doublets on the

oxide flow problem is equally lackluster - it :an never reduce the stress level by more

than half regardless how small the scale factor k. is.
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4.4.2 Interfacial Source Formulation

One major weakness with the dipole/couplet scheme is that the collocation point for

the domain sources is located at the cell center - flux and stress are assumed to

be uniform across the cell. This problem is circumvented in the interfacial source

formulation. Major activities such as oxidation take places on the sides of a cell. By

having the source computed individually at each side of a cell, wider variations of

source strength can be achieved to cope with the highly nonuniform flux.

To decide how the interfacial source is computed, we consider the domain integral

of Eq. 3.93:

I (V . F 0 (q))" 0(q - p)dfl.

At the interface between two cells, the value of kd changes abruptly from k, to k2,

resulting in non-conservation of flux. Given the fact the only the normal component

of flux matters and that the interface is a straight line, at locations very close to the

interface, the behavior is one dimensionl.

Hence we examine an equivalent one-dimensional model, using physical arguments

instead of mathematics. As shown in Fig. 4.8, this model has two regions - 1 and 2 -

having different diffusivity ki and k 2. (For simplicity, we drop Do as it never appears

in the final solution.) The flux in each region is given by

F1 = k1C

and

F2 = k2C

respectively. Thus, at the interface, there is a build-up of oxidant of

(k1 - k2)C.

which has to be dissipated. Green's function for one-dimensional diffusion is -[4J,

which has a gradient of ±1, depending on whether z is smaller or larger than zero.
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K2

Secondary Fluxes

Interfacial Source

Figure 4.8: One-Dimensional Nonhomogeneous Diffusion. The secondary fluxes are
created due to the mismatch in diffusivity between the two regions.

Hence the fluxes generated by the interface are

= -kD

F ' = k 2 D

where D is the source strength yet to be determined and the minus sign in F: indicates

that the flux goes in the negative direction, as illustrated at the bottom of Fig. 4.8.

Therefore net outgoing flux is given by (F' - F:), and it must equal to net incoming

flux, which is (F - F 2). Thus we have the following expression for the interfacial

source:

D -ki- k2 C. (4.22)
k1 + k2

Simply speaking, when a flux impedes on a barrier (that has lower diffusivity), it goes

through partially. Due to build-up of materials at the boundary, two additional fluxes

are created: one is reflected back (Fl), the other continues forwards (F2). These fluxes

seem to be created by a pseudo domain-source. Note that even if k2 is zero, i.e. when
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region 2 is impermeable, the oxidant concentration in it is nonzero and show a finite

gradient. This is due to the steady-state diffusion assumption. This technique has

been verified to work in one dimension analytically, and two dimensions, numerically.

The extension to viscoelastic flow is straight forward. The effective stress scale

factor is kj, and k, 2 for Region I and 2 respectively. The unscaled stress distribution

is continuous across the interface. Each region contributes towards the surface traction

on the interface. If ks1 = k,2 , the contributions will cancel each other. On the other

hand, if kj, # k, 2 , a net force will be exerted on the interface. It is nullified by a

pseudo body-force which generates its own stress and displacement fields. The value

of the body-force vector is given by

ki +k.2 (4.23)

As we can see, the nonlinear viscoelasticity formulation parallels that of nonlinear

diffusion.

A last note, the calculation for a particular pseudo source must not include the

flux or stress generated by the source itself. This is can be done easily in the program

codes.

Cells in Contact with Boundary Segments

With the formulae given by Eqs. 4.22 and 4.23, we can calculate the interfacial source

between two cells and between a cell and a homogeneous region. One remaining ques-

tion is on the proper treatment for a cell connected to a boundary segment. Recall

the boundary source is located on the outside of a boundary collocation. The inter-

facial source is by definition on the inside. Shown schematically in Fig. 4.9a. are the

positions of the sources with respect to the collocation point. The distances , 61 and

&, are infinitesimally small. Consider the diffusion problem. The sandwich area con-

taining the collocation point is outside a cell, and therefore assumed to belong to the

homogeneous confine. Its diffusivity is the nominal value D = Do, but this really does
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RCell Sourcq e.. Bn' Source Cell dary Source

Collocation Point Collocation Point

Figure 4.9: Boundary Sources.

(a) Original; (b) merged.

not matter because the layer is so thin that the transport process is dominated by the

cell. Given the close proximity of the two sources (61 + 62 --1 0), one would expect

that the value of one source would track the other in some specific way. Thus it is

useful and beneficial to recode the mathematics so that one source (i.e. the interfacial

one) can be eliminated. Through derivations that are not presented here, indeed, the

interfacial source can be eliminated and in place, and assign the boundary segment

the effective diffusivity D = Do. The new configuration is shown in Fig. 4.9b. The

same approach works for the nonlinear viscoelasticity problem.

4.5 Nonlinear Solutions

The effects of stress on thermal oxidation may be divided into two categories, depend-

ing on whether they act on the boundary conditions or on the bulk parameters. Either
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case, they are nonlinear functions that have to be solved iteratively. The two boundary

parameters influenced by stress are the surface reaction rate k, and the equilibrium

concentration C" of the diffusion system. Because boundary conditions do not directly

involve the domain flux conservation law, the system remains Laplacian and is still

subject to reduced dimensionality treatment. Bulk parameters affected by stress in-

clude the diffusion coefficient of oxidants and the viscosity of oxide. For them, domain

corrections outlined in the previous section are used.

The stress functions used in this investigation are of this form:

PV

where P is a specific component of the stress tensor , V is an activation volume, k

is Boltzmann's constant, and T is the temperature. In descriptions that follow, it is

assumed that the system is stable (i.e. it does not have positive feedback) and that

there is only one solution.

4.5.1 Scalar Iterative Methods

All the stress effects requires the solution to a nonlinear function, conceptually of the

following form:

f(z) = z (4.24)

where, for a simple case, z and f are scalars. A few iterative techniques are available

for obtained the solution for z. One basic approach is to use this updating scheme:

zXk+ 1 = f (Z").

where the superscripts indicate the iteration numbers. z is a starting guess value.

This technique shows poor convergence, nonetheless it is simple and does not require

additional information of the system.
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Newton's Method

For faster and more stable convergence, Newton's method is often employed. To

illustrate this technique, we recast Eq. 4.24 in a different form:

g(X) = f(X) -.

where g(z) is the residue. g(z) is 0 if z is the root to Eq. 4.24. Suppose zo is the

solution (which we don't know yet), and z is close to z 0 , taking the Taylor series

expansion of g(zo) to the 1s order at z yields

g(zo) g(z)+g'(z)(xo-z) (4.25)

0.

where the prime (') denotes the first derivative with respect to z. Accordingly, zo

z - g(z)/g'(z). We have thus derived the Newton iteration scheme:

zk+1zk~ g(?k)
= gI(zk) (4.26)

This scheme shows a quadratic convergence, i.e. error is reduced by half in every

iteration. However, it still may fail to converge under some conditions. For instance,

the solution may oscillate between two regions for certain f(z)'s and initial conditions.

Also the solution can blow up if g'(z) happens to be zero.

It is difficult to come up with a general iterative method that is always robust

and converges quickly for any type of f(z). Although not always possible, one should

analyze the problem nature and determine the best possible solution approach. Indeed

the main reason that the Newton scheme has a fast convergence is that it considers

the direction the system is heading, namely f'(z). In case f'(z) cannot be obtained

directly, one may approximate it by

fi) f (Xk) f f(Xk- )

fk(zk) - zk1 (4.27)

The iteration scheme thus become:

Xk+1= k-gk g(z) " k - g i (4.28)g(Xk )- g(Zl- I
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which is known as the secant or false position technique [44].

Modified Iterations

Sometimes it is necessary to "damp" the iterations in order to stabilize the solution.

This is achieved by adding a relaxation parameter (0 < A < 1) to scale down the

change in x at each iteration. The modification is

zk+1 (1- A)z k + Af(zh) (4.29)

for the simple updating scheme and
Xk __ k-i

X k+1 = zk - Ag(zk Z Z 4.0
g(Zk. g _ ) (4.30)

for Newton's method.

. 4.5.2 Multi-Variable Solutions

The scalar iteration methods can be extended to deal with multiple variables, but

there are complications. For one thing, the variables in general are not decoupled. In

other words, changing the condition on one variable affects the rest. It is difficult to

predict in what direction the the system is moving. Consequently schemes such as the

simple updating may easily become unstable if they update the solution in the wrong

direction. The solution may need to be damped, resulting in slow convergence.

Updating Scheme

With the damping factor A incorporated, the multi-variable updating scheme is

-+1 - (1- A), + XkCl*). (4.31)

which is a straightforward extension of the scalar case.



CHAPTER 4. NUMERICAL SOLUTIONS 112

Newton's Method

For Newton's method, the vector Taylor series expansion becomes

9W ?V) + J () Ao- g) (4.32)

0.

where ?(2) = 7(9) - Z, and J is the Jacobian of '.

Assuming that the vector size of g and i is N, the definition for J is

ag, 4ag,

(4.33)
agN agN

where the element number is given by the subscript. The Jacobian is a measure of

how " will respond to a small change in Z.

Newton's method thus becomes

,+i = _-* (z )d(£) (4.34)

The determination of the Jacobian is not trivial - the array is large (N x N) and

its components are not readily obtained from W in analytical form. Using the false

position technique is almost out of the question because enormous computation is

required; only rough approximation is used here. Even when an accurate Jacobian

is available, the method often fails converge. One often-cited reason is that it tends

to overshoot in correction [45]. The Taylor series expansion is good only when i is

very close to the actual solution. If it is not close, the Jacobian produces a poor

correction term. In our applications, an error can result in larger deviations due to

the exponential terms embedded in g.

Newton's scheme is modified, as suggested in [451:

k+, = X- + tk[J(x) + 8kI-j]- 1 g() (4.35)
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to include two parameters - sk and t, - to increase damping. The function of tk is

the same as A' in the scalar case - to reduce the changes. 3k makes the Jacobian more

diagonally dominant, effectively reducing the interaction between parameters.

In both iteration techniques, there is no algorithm for calculating the optimum

values for the relaxation parameters. They are determined on a trial and error basis.

A two-level iteration scheme is adopted. The purpose of having the sub-iteration is to

find large relaxation parameters that does not cause the system to go unstable.

4.5.3 Determination of Relaxation Parameters

There is no formula to determine optimum values for the relaxation parameters A,, s-,

and t' a priori. They are obtained on a trial-and-error basis at each and iteration. If

these parameters are too small, then the speed of convergence will suffer. Conversely,

* if they are too large, the solutions will become unstable.

These parameters are adjusted according to the convergence rate of the solutions.

Two types of error definition are employed in our iteration for control purposes; they

are the maximum norm (JI IIo) and the normalized Euclidean norm (II 112) defined

below:

I1= -= maxgI (4.36)

1 N_v1 1* •(4.37)

Note that our definition for the Euclidean norm has been normalized by 1/vWN so

that it yields the same result as the maximum norm if all elements of Y are the same

magnitude.

The maximum norm is applied to a residual error vector to to determine whether

an iteration loop should be terminated because the solution has converged, i.e. the. maximum error has dropped below a certain threshold.

. 'm~mm m mmi mm m mm m m mn m m mw.
i
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The Euclidean norm is used for determining the relaxation parameters. Since

it weights all elements in , the Euclidean norm is less sensitive to fluctuations of

individual elements than the maximum norm. This feature is higher desirable because

in the iteration process, some errors may arise locally and momentarily.

The value for a relaxation parameter is adjusted by comparing [iI*-1112 and liIHz2

where * denotes the current trial step for iteration k. If the current trial error is smaller,

gF is made x and the relaxation parameter is increased slightly for the next iteration.

On the other hand, if the current trial error is larger, the relaxation parameter is

reduced to increase damping, and z* and everything else is recomputed. This sub-

iteration is repeated until the current trial error becomes smaller. The sub-iteration

is also terminated after a few trials if it seems impossible to make the error smaller at

the current iteration.

4.5.4 Iteration on Reaction Rate

The stress effect on reaction rate, k., is a self-regulating, negative feedback system that

tends to make oxide growth rate more uniform along the silicon interface. Nonlinear k,

is a surprisingly difficult problem to solve numerically. With simple iterative schemes,

a small local error can easily transform into a global instability.

Let's suppose the value of k, of a particular boundary segment is higher than

its equilibrium. Being more reactive, the segment therefore generates more oxide

than its two neighbors; it also deplete to a certain degree the supply of oxidants to

them. (We ignore segments further away.) Because it injects more oxide into the

bulk, the segment therefore experiences a compressive surface traction that reduces

its k,. Meanwhile the slower-moving oxide of the two neighboring segments is being

pulled, procducing a tensile surface traction on the segment. In the next iteration

step of a simple updating scheme, the k. of the segment in question will be lowered,

while those of the two neighbors will be raised: a reversal process is in progress. As
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iteration proceeds, a ripple of alternating stress and k, will spread through all the

segments. If damping is insufficient, the errors become a self-reinforcing wave that

grows in magnitude, resulting in global oscillation. For large damping factors, the

errors will still propagate to adjacent segments, but with decaying magnitude; the

solution eventually converges after many iterations.

The reason for the poor performance is that the technique does not consider the

behavior of the system. In particular it does not anticipate that a change in k, of

a segment will affect others as well. Better stability is only ensured when the sys-

tem response is factored into the updating scheme. This brings us back to Newton's

method.

Accordingly, 7 for normalized k, is of the form:

exp(P1 -"k' ,)

exp( PM fMVk.
ET

where pi -i is the normal surface traction at boundary segment i. As shown, 7 has

entries for M silicon interface segments. The surface traction list § - {Pl,P2," ,PM}

may be explicitly defined as a function of the normalized k, list: f = P(7) As

a combined product of the oxidant diffusion and oxide flow systems, the feedback

mechanism on k. is indirect. Its analytical expressions are practically not obtainable.

Due to the Robin boundary condition type, the growth rate k, is embedded in

the matrix equation that determines the source distribution for diffusion, as shown

schematically below:

A (k.) b

It requires an implicit or explicit inversion of the matrix A to obtain 6. Given the

largeness of A, it is thus impossible to maintain analyticity of k in the solution and

perform differentiation on it later to get the Jacobian. For now, assume somehow the

Jacobian can be obtained, the change in oxide injected into bulk due to a small change

i , n nn u |A
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in k, is given by

A6 = kJDA*ka. (4.38)

where k is an appropriate scale factor.

The situation with oxide flow is simpler. The relationship between the injection !

and P is linear and is given by

P= A0 + Po (4.39)

where fo is contributions from nitride or free surface segments. Hence its Jacobian is

given by Jp = A. The change in P due to k. is therefore given by

I Af = JjJD Ak:. (4.40)

Approximation on Diffusion Jacobian

As mentioned earlier, the diffusion Jacobian JD cannot be obtained by analytical

means. A numerical check on a typical oxidation problem has show that it can be

approximated with a diagonal matrix. The oxide growth rate of a one-dimensional

problem is given by Eq. 2.6:

G ddD
dt
1 kC"

N + K+-!

N k,C"k€°do

Its sensitivity to k. is defined as

dG C" D 2

dk= N (k.d + D)2  (4.41)

When the oxide is thin, the growth rate is reaction-rate limited. In that case, A.

is almost C'/N, the maximum possible. As the oxide gets thicker, the growth rate
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is diffusion limited and the sensitivity becomes weak: (CiN). (D 2/kd). Such a

prediction does not generalize to a two-dimensional system. An increase in k, of

a particular boundary location does not necessitate an increased supply of oxidant

from the free surface to enhance its growth rate. Rather, it can absorb oxidants

that originally bound for neighboring points. Thus the sensitivity of growth rate

on k, is higher than the one-dimensional case for thick oxide. Through numerical

investigations, it has been found to be close to C*/N in most cases. More surprisingly

and perplexing, the growth rate of neighboring points are not affected much. Thus a

good approximation for the Jacobian of the diffusion problem is just a diagonal matrix.

Approximation on Jacobian for Oxide Flow

A change of ka in one segment can in principle affect the rest. However, due to ge-

ometric and feedback considerations, strong influence is limited to a few neighboring

* segments; the rest experience very little changes. The implication on the Jacobian is

that terms far away from the diagonal are approximately 0 (provided the ko's are prop-

erly ordered). In our tridiagonal approximation, entries that are not on the diagonal

or the two off-diagonals are set to zero.

The oxide flow problem is not subject to the isolation treatment as the diffusion.

Numerical calculations of stress due to the increased growth rate of a segment yield a

-/+/- pattern distributed over a few segments. Compressive stress is experienced by

the modifying segment, and tensile stress by its two adjacent segments. The next two

further out also see tensile stress, but with much less magnitude. In consideration of the

approximation employed previously in the diffusion system, there is no strong reason

to model stress change beyond the two neighboring segments. Thus the approximated

Jacobian is a tridiagonal matrix.

The remaining problem is to calculate the entries of the matrix, that is the esti-

mation of stress due to a unit change in the injection rate of each silicon segment.

S
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Suppose among the N boundary segments, M of them are for the silicon interface.

In the original solution scheme, we solve for the source S in terms of the boundary

condition 9:

A§~b

The method is extended to find simultaneously the solutions for the "impulse" re-

sponses associated with the M silicon segments. The single-column vectors, S and b,

are expanded to (M + 1) columns. After the normal displacement components from

the silicon segments are removed, the modifed b is put in the zeroth column of the

new multi-column b. Unit vectors corresponding to the missing normal displacement

component are placed in each of the remaining columns. After solving for S, we can

reconstruct the desired source distribution

N
= S[O] + u"[ib [i].

§[11 to §[N] are unit-impulse solutions from which we can obtain the stress contri-

bution due to each silicon segments, that is, the entries for the Jacobian. Although

it requires significant computation time to obtain S, considerable savings are later

achieved for each subsequent iteration because the matrix equation is not solved again.

Given that the Jacobians for diffusion and oxide flow are a diagonal matrix and

a tridiagonal matrix respectively, the combined Jacobian is still a tridiagonal matrix.

Because the Jacobians are crudely approximated, the parameter sh is utilized to make

the system more diagonally prominent. Typically sk is chosen to be less than the

largest entry in JPJD.

Nonlinear Diffusivity and Viscosity

The feedback mechanism for the bulk parameters diffusivity and viscosity is more

indirect than the reaction-rate. Consider the diffusion problem. Suppose the diffusivity

of a region is perturbed and made smaller than its equilibrium value. This reduces
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the oxidant flux to a certain section of the silicon interface. The oxide growth rate at

that section is altered, and that consequently generates a new stress field that reaches

the perturbed region and changes its diffusivity. The details depend on how far the

perturbed region is from the silicon interface. The situation with nonlinear viscosity

is also complicated. Without any knowledge of their Jacobians, these two parameters

are solved using the simple iterative method.



Chapter 5

Simulations

Simulation results for various geometries and conditions are presented in this chapter.

5.1 Viscoelastic Stress Relaxation

We will consider simple cases of local oxidation to demonstrate how stress is relieved

through viscoelastic flow. A wide range of stress relaxations times are tested to see

how different relaxation speed changes the stress behaviors and distributions. No stress

effects are included in this study.

Fig.- 5.1 shows the simulation results for a semi-recessed LOCOS structure for

different stress relaxation times. In (a), the outline of the structure is plotted at every

time step. In this simulation window of width 1.6gm, the silicon nitride mask extends

from z = 0 to z = 0.9 6 Mm and is assumed to be totally flexible. The pad oxide

thickness is 200 A. Oxidation is carried out at 900°C in a wet ambient for 4.6 hours to

obtain a final field oxide thickness of 5000 A. Young's modulus and Poisson's ratio are

taken to be 8 x 101 dynes.cm - 2 and 0.194. Shown in b, c and d is stress distribution

corresponding to relaxation times, ,7/G, of 1 minute, 1 hour, and 10 hours respectively.

The normal component of the surface traction at the oxide-silicon interface is plotted

120
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Figure 5.1: The nitride mask is assumed to be totally flexible. (a) Boundary_ outline.
Stress behavior for stress relaxation time of (b) 1 mini; (c) 1 hour; and (d) 10 hours.
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at every time step, like the outline of the oxide. In all three stress plots, there are

two peaks in the compressive stress region (the negative value range). The early peak

occurs at the edge of the nitride mask. This peak is due to the highly nonuniform

oxidation rate in that region. As time progresses, the peak shifts to the left, further

under the nitride mask, and gives rise to a late peak. As one would expect, stress

reduces as viscosity decreases. Maximum stress attained for the 3 relaxation times is

8.1 x 108, 1.5 x 1010, and 2 x 1010 dynes.cm -2 respectively. The oxide shape is not

affected much by the relaxation times, therefore only one is shown.

We now repeat the same simulations with the silicon nitride mask modeled as an

elastic material. The thickness of the nitride layer is 0.1/Am. The final shapes of the

oxide and nitride layer are shown in Figs. 5.2a, b, and c. As the oxide becomes less

viscous and flows more readily, the nitride layer bends less. The corresponding values

for peak stress are 3.8 x 1010, 1.2 x 1011, and 1.6 x 1011 dynes.cm - 2 respectively. The

last two values are unrealistically high as they are of the same order of magnitude as

Young's modulus of oxide or nitride. We have found that in general we need these

high stress values in order to deflect the nitride mask to a degree comparable to what

is found in experiments. To keep stress down to a realistic level, the nitride mask

must deform plastically or viscoelastically. Unfortunately we don't have any models

for those behaviors nor any data to determine a model. In all likelihood, the stress

value is inaccurate if it is a few percent of Young's modulus.

Viscoelasticity is a relative concept. If the time period involved is much shorter

than the time constant of stress relaxation, a viscoelastic material deforms elastically.

If the converse is true, the material flows viscously. The viscoelastic behavior is most

profound when the oxidation time and relaxation time are comparable. Shown in

Fig. 3a is a plot of maximum stress versus the relaxation time. The simulation condi-

tions are the ones used earlier, without modeling the elastic bending of nitride mask.

For long relaxation times (r > 10 hours), the stress curve is constant as the mate-

rial is essentially elastic. For short relaxation times (T < 1), the curve bends down
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Figure 5.2: The nitride is assumed to be elastic. Final oxide profale is shown for oxide
relaxation time of: (a) I mmi; (b) I hour; and (c) 10 hours.
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with a constant slope. The drop is a result of stress being inversely proportional to

the relaxation time. For all the data points, maximum stress is observed at around

35 minutes into oxidation; that value roughly corresponds to the transition region in

Fig. 5.3a. An alternate way of assessing the significance of viscoelastic flow is to check

the sensitivity of stress to a change in viscosity. If the oxide is elastic, stress will not

be affected. On the other hand, if it is viscous, one would see the same change in

stress. Shown in Fig. 5.3b is the stress change due to a 10% increase in viscosity.

There is little change in stress value for large relaxation times and an almost full 10%

change for short relaxation times. This essentially corresponds to the gradient of the

curve in Fig. 3a. As we can see, the stress value levels off after the viscosity reaches

a certain threshold. If a viscous flow model was used instead, stress would be strictly

proportional to the viscosity.

5.2 Nonhomogenous Bulk Parameters

Here we demonstrate the capability of the initial stress/built-in field formulation for

modeling stress effects on viscosity and diffusivity. Concave and convex silicon corners

are oxidized at 950Cin a wet oxidation; approximately 1100 Aof oxide is grown.

Fig. 5.4 shows the oxidation of a convex silicon corner and the domain partition

used for computing pseudo domain sources. When the stress effect on viscosity is not

modeled, the peak stress goes as high as 2.7 x 1011 dynes/cm-1. With a stress model

included, the peak stress drops down to 2.2 x 109 dynes/cm- 2.

The retardation effect of stress on diffusivity is illustrated in Fig. 5.5. Oxidation is

done on an concave silicon corner. A large compressive hydrostatic pressure is present

at the corner. In (a), no stress effect on diffusivity is considered - no growth retardation

at the corner is observed. In (b), stress effect is modeled. The oxide thinning observed

at the corner is due to reduced diffusivity of oxidant.
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Figure 5.4: Modeling Stress Effect on Viscosity. (a) shows the outlines of oxide on a
convex silicon corner. (b) shows the domain partition for modeling nonlinear viscosity.
Cells are placed at the comer where high stress is expected.
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Figure 5.5: Effect of Stress on Diffusivity. (a) No stress effect is considered. (b) The
effect of hydrostatic pressure on diffusivity is modeled. The oxide thinning in the
corner is due to a large compressive stress in that region.
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5.3 Modeling Kao's Experiments

In this section, we demonstrate a simplified viscoelastic flow model for fitting Kao's

experimental data. This model ignores the crystallographic dependency of the re-

action rate k,, it solves radial symmetric problems whose solutions are pseudo one-

dimensional in nature. The oxide is assumed to be viscoelastic. An effective diffusivity

and viscosity is assumed for the domain. Shown below are the stress models:

k.= k~oexp (P~J)

D = D ep (0')~

.17 Do xp avn c yV,72 /kT
= Do(~('k?1 sinih(crV,72 /kT)

where ay = V '. (Cy is the maximum distortion energy.) No maximum limit is

placed on any parameters. With the following fitting values,

Temp(0C) n1 o (poise) V.I (A) V,2 (P) V_. (P) VD (A')

800 2 x 101 5 120 180
900 1 x 101 145 220
1000 1 1  170 340 45
1100 2.5 x 10', 400 800
1200 5 x 1011 200 800

reasonable simulation results have been obtained. They are compared with Sutardja's

in Fig. 5.6. As it can be seen, they all agree very well. However, the fittings values are

not close. For instance, our Vk, and VD are 45 A3 and 50 A3 respectively, as compared

to 12.5 A3 and 75 A3 in Sutardja's model. Besides the differences in formulation and

numerical approximations, the disagreement may also be attributed to the scaling

problem of activation volumes, which is explained in the next section.
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5.3.1 Arbitrary Scaling of Activation Volumes

We have more unknown parameters than data points can fit for thermal oxidation

processes. Part of the problem is that we are unable to measure local stress in situ

or other activities. Experimental measurements are usually given in terms of oxide

thickness - a collective parameter due to many stress effects. It is difficult to come up

with a unique set of activation volumes for the stress effects.

A problem inherit in incompressible viscous flow methods is that the activation

volumes for stress parameters are scalable - their values can be changed without

altering the magnitudes of retardation effects. The root of the problem is that stress

is proportional to the viscosity and that all the stress equations are of the form

which is restructured to show the dependency on j7:

* '(kT)
we realize that one important consideration In this expression is the product consisting

of viscosity and activation volume, t1V. As long as this product is kept constant,

the value of f will be the same, and hence the stress effects will be the same too.

Hence, doubling all activation volumes and halving the viscosity will produce the same

reduction in oxide thickness, although the stress values are reduced by half. We are

free to choose any viscosity/activation volumes combination to get any stress values

we want. Kao eliminates this degree of freedom by fixing Vk., the activation volume for

k., to be 25A, which is the net volume increase of an oxidized Si atom. In Sutardja's

model, Vk, is 12.5k. Probably it has to do with the silicon monoxide phrase that an

Si atom has to go through in the oxidation event. In any case, unless we have better

measurement of oxide viscosity or stress, the values for activation volumes will still be

debatable.

We have also attempted to model Kao's experiments in true two dimensions, taking

in account the orientation dependency of the reaction rate. Unfortunately, the resultsO '
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Figure 5.6: Simulations of Oxide Growth on Cylindrical Structures. (a) Simplified
viscoelastic flow model. (b) Incompressible viscous flow model.
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do not matched very well with the experimental data. Possibly, part of the problem has

to do with the fact that stress history is not propagated from one timestep to another

when operating under nonlinear viscosity condition, due to programing constraints.



Chapter 6

Conclusions

Thermal oxidation of silicon involves two parallel processes, namely the motion of

oxide caused by volume expansion and the diffusion of oxidants such as H20 or 02.

An "indirect" boundary element approach for modeling oxidation has been introduced.

The diffusion problem is modeled as a standard Laplace problem using the scalar

potential formulation; the motion of oxide is solved with a vector potential formulation.

Three different motion models, namely, viscous flow, elastic deformation, and vis-

coelastic flow, are considered. The BEM formulation for these models are essentially

identical, with the only difference in the kernel functions (or Green's functions). A

Laplace transform technique is used to transform Kelvin's solution, which is a funda-

mental solution for elasticity, into a viscoelastic kernel function. A constant-velocity

loading function is chosen to ensure a wide range of operation conditions. Essentially,

it can model elastic deformation as well as incompressible viscous flow problems.

Stress generated during oxidation steps affects many variables - some boundary

parameters, some bulk parameters. Diffusivity of oxidants and viscosity of oxide are

the bulk parameters rendered nonhomogeneous and nonlinear by stress. For them,

domain calculations are needed. A unified method for dealing with nonhomogeneity

in both diffusion and viscoelastic flow has been developed. This initial stress/built-

132
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in field scheme utilizes pseudo domain sources to generate correction terms to the

solutions.

6.1 Future BEM in Thermal Oxidation

For what it is designed for, namely, linear systems, the BEM performs very well.

In fact, it has been found to be superior to the finite element method in fracture

mechanics. In applications where stress is highly concentrated in a small region, the

BEM is able to generate good results without much refinement on the boundary seg-

ments. In contrast, the finite element method requires fine-tuning of the mesh to get

accurate results. The superior performance of the BEM comes from Green's function

that is singular - it is difficult to deal with, but it can model large change in stress

field accurately.

The situation with nonlinear problems is less clearly defined. In dealing with non-

homogeneous materials, the BEM requires domain calculations with either interior cells

or subregions. In places where strong variations in the bulk parameters are observed,

large number of interior cells or subregions may be required. Granted, no cells or

subregions are needed in regions where stress is insignificant. However, for high stress

areas, the cell generation requirements may be similar to those of the FEM.

Given the fact that the matrix setup operation is 0(n) and the solution is 0 (n ),

where n is total number of boundary elements and interior cells (or interfacial sources),

a severe computational penalty is imposed on the BEM when there is a sizable popu-

lation of cells.

To determine the viability of BEM in thermal oxidation modeling, more inves-

tigative works are needed on iterative methods for nonlinear solutions. Currently, the

domain pseudo sources and boundary sources are solved simultaneously. In other BEM
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applications, the domain perturbation is not incorporated in the system matrix but

calculated externally in an iterative manner. Such schemes help to reduce the matrix

solution time significantly.

6.2 Proposed Experimental Studies

In order to function effectively, process simulators need accurate models and parameter

values. To determine the effects of stress on various parameters in an oxidation model,

stress must be introduced to the test samples in a controlled manner so that the results

can be quantified. So far, Kao's experimental technique of using cylindrical structures

represents one of the best approaches.

More experimental studies and measurements can be done with cylindrical struc-

tures. Consider the crystal orientation on the reaction rate. Only the thinning effects

on the [1101 surfaces have been presented. The [1001 surfaces should be able to provide

another set of data for simulation verifications. Before that is done, we need to know

how the reaction rate changes as the crystal orientation varies from [1101 to [1001. This

is important because stress distribution is sensitive to the orientation dependency of

the reaction rate. Different oxide thicknesses should also be tried to extract more

information. Consider the stress behavior. Pressure is primarily a function of the

free surface curvature; however, the surface traction on the silicon interface depends

strongly on the thickness of the oxide. Thus, growing different oxide thicknesses may

help to differentiate the contributions of these two mechanisms to the growth retar-

dation phenomenon. The activation volumes in stress functions are scalable for an

oxidation model based on incompressible viscous flow of oxide. Unless stress or vis-

cosity is measured independently, there will be uncertainty in the range of values for

activation volumes.



Appendix A

Miscellaneous Formulations

The formulae for principal stresses, stress transformation, and analytical line integra-

tions are given in this appendix.

*A.1 Principal Stresses

The values for the principal stresses are given by the roots of this determinant:

0"ii - 0" 0"12 0"13

0'21 622 - 0'23 =0. (A.1)
0'31 0'32 a33 - 0

In plane strain, C"13 = a23 - 32 = "31 = 0. Thus, the determinant is reduced to the

following equation:

(0' - 033) [(Gil - 0)(022 - a) - 012021] = 0.

The roots are given by:

0 = - a33,

a = [ril + 0' ± V o -ll 22)2 + 4o12]

*They are ordered so that a, ! aj 2: ar z.

13,5
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A.2 Stress and Strain Transformation

It is often needed to transform stress and strain field from the global coordinate frame

to a local frame. The expression for two-dimensional stress transformation is

f~ cos2, 9 sin2 a sin 20 O1i
oC2  = sin2 9 cos2 0 - sin 29 "2  . (A.2)
a12 -sin26 1 sin28 cos 20 a12

12 2 1

where 9 is the angle measured counterclockwise from the z axis of the old frame to

the x' axis of the new frame. For strain, the transformation rule is slightly different:

t' C4S [ c s2 sin2 9 1s1 2 00 6142 sin2 0 cos 2  -1 sin2o 622 . (A.3)
C1 [ - sin 28 sin 28 cos 20 612

For comparion, the rotation expression for a vector is show here:

{i}c[os CO si{ng (A.4)
f l = sinO0 cos 0 f2

With reference to Eq. A.2, one notes that, for the uniaxial stress problem, a maximum

C42 occurs when 0 = 450, as mentioned in Chapter 2.

A.3 Special Analytical Line Integrals

In determining the influence of a source distribution on the collocation point of the

same segment, analytical technique must be employed as we are integrated over a

singularity. The results are simple because the collocation point is located at the

center and the source distribution is assumed to be constant. The integration path is

chosen such that the source does not lie on the boundary but just outside the domain
(0+). Shown below are the results for the seven basis functions

l/2
/ Odl = 1(log( - 1)) (A.5)

2
l ,, = -7rsin9 (A.6)
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J 1/2
_'/2 0,2di = i cos 0 (A.7)

I/2 x20,1& = Isin cos 8 (A.8)

1/2 X20,2dl = lsin 2 e (A.g)

/2 X20,udi = 27r sin 2 0 cos 8 (A.10)
J /2

/ 2 ,.12d = rsinO(sin2 a _COs2  ) (A.11)
f-1/2

where 1 is the length of the segment, and 0 the tilt angle of the segment with respect

to the 11 axis, measured counter-clockwise.

A.4 General Analytical Line Integrals

In this section, we consider the integral results for the case when the location of the

collocation point is arbitrary with respect to the source segment. For simplicity, the

solutions are given in terms of a local reference frame in which the source segment

(i.e. the integration path) appears to orientate vertically (in the 9 direction), going

from (ao,bo) to (ao,b1 ).

/ = bl( 1 log(a4 + b) - 1) - bo( 1 Iog(a g + bo) - 1) (A.12)

-ao(log a-"+'b) (A.13)

0,1i = -ao(tan-' ( .L) _-t=_1 (s")) (A.14)
f (aoa

f 0,2 = -log (4 (A.5)

X2 0. 1 = a o 2 2 (A.16)
f ( a + bI

z20.2 = aO tan-' (L tan- 1 (Lo2) + 1(b - bl) (A.1)
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2 40i 2 = tan-1  t-tan (1b-) +20(b22 b 2) (A.18)
f a+2o a; + bo +ib1

J2022 = log(ag+ b),+ 24~(,2.i 1(
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