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A NOTE ON AN INVERSE EIGENPROBLEM
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Abstract’

We present an efficient rotation pattern that can be used in the construction of a
band matrix from spectral data. The procedure allows for the stable O(n?)
construction of a real symmetric band matrix having specified eigenvalues and
first p components of its normalized eigenvectors. The procedure can also be used
in the second phase of the construction of a band matrix from the interlacing
eigenvalues , as described in [l]) Previously presented algorithms for these
reductions using elementary orthogonal similarity transformations require O(#3)
arithmetic operations. .
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1. Introduction.

Let A be a real symmetric (2p +1)-band matrix of order n, and let A; denote
the trailing principal submatrix of A = A, of order k. It is well known that the
eigenvalues of A, interlace those of A; ., for each ¥ < n, and moreover, given
real numbers )\J(") (1<j5 <k, n—p <k <n) satisfying

)\§k+1) < )‘J(k) < XJ(’.‘,.TI) , (1)

there is a (2p+1)band matrix A = A, such that the eigenvalues of A, are
{)\J(k )}Jl‘_l for each k. In general, this band matrix is not uniquely determined.

The problem of constructing a band matrix from the interlacing eigenvalues
(1) is considered in [2] and [1]. A survey of this problem and some related inverse
eigenvalue problems is given in [3]. In [2] the interlacing eigenvalues are used to
determine the first p components of normalized eigenvectors for A, and the
remaining components of the eigenvectors (and hence A ) are constructed using a
block Lanczos process. In [1] a matrix of bordered structure (where the trailing
principal submatrix of order p is diagonal) is constructed that satisfies the
required spectral conditions. Householder transformations that preserve the
eigenvalues of the trailing submatrices are then applied to reduce this bordered
matrix to band form. This reduction procedure uses O(n3) arithmetic operations.

In this note we present an efficient rotation pattern that provides a stable
O(n?) procedure which can be used in the second step (the reduction step) of
either of the above methods. This algorithm provides a solution to the open
problem posed in (3, p.615], and can be considered as the generalization to band
matrices of Rutishauser’s procedure for the construction of Jacobi matrices from
spectral data presented in [4].

2. The Algorithm

The reduction step in [2] can be described as follows. Given {};}".; and an

nXp matrix @, with orthogonal columns, construct a (2p+1)-band matrix




having eigenvalues X; and such that QIT forms the first p rows of the
(orthogonal) eigenvector matrix for A. This reduction can be performed using a
sequence of orthogonal similarity transformations whose composition results in an
orthogonal transformation @ such that

L, o llx @fl|, of |x I, 0 0
o o7[les Affo o=, @)
0 ,

is a (2p +1)-band matrix of order n+p. The trailing principal submatrix 4 =4,
then satisfies the required spectral conditions. (The matrix X is arbitrary and
remains unchanged).

In the algorithm given in [1], 2 matrix of the bordered form

B, Bf
B=1p, p| (3)
where D is a diagonal matrix of order n —p, is constructed such that the trailing
principal submatrices of orders n—p through n of B have prescribed eigenvalues.
Householder transformations that do not involve the first p coordinate axes are
then used to transform B to a (2p+1)band matrix A while preserving the
eigenvalues of the trailing principal submatrices. In particular, the composition of
these Householder transformations yields an orthogonal matrix U of order n—p
such that

B, B{
B, D

I, o
o UT

I, 0

A= 0 U

is a (2p+1)-band matrix of order n. Thus, the reduction of the matrices in (2)
and (4) is essentially the same problem. We now describe our efficient rotation
pattern in terms of the reduction of a matrix in the bordered form (3).

The efficient reduction to band form is obtained by performing rotations to
introduce appropriate zeros in B row-by-row beginning at row p+2, in such a
way that the intermediate matrices remain sparse. In contrast, a Householder
transformation to introduce zeros in the first column of the matrix will result in a




full matrix, and the subsequent Householder transformations must be performed
on full matrices.

Let R(A,j,k,l)=G A GT, where G is the elementary Givens rotation in the
(7,k)}-plane that annihilates ay. Thus. G is the identity matrix if a, =0. If
ay #¥0 then G is the identity matrix apart from the 2X2 submatrix formed from
rows and columns 7 and k, which is given by

o[z i- [ <]
7y, k17 L—=s ¢cb

where ¢ :=a;/\/ af+a;7 and s :=qy/\/ af+ . Our algorithm for reducing

the bordered matrix to band form is then given as follows.

Algorithm.
fork=p+42,...,n
for j =p+1,....,k—1
| 4 =R(4,5k,=p)

To see how the sparsity is preserved, consider the example in Figure 1. There
n =8, p =2, and the necessary zeros have already been introduced in rows 4
through 7. Nonzero entries are represented by X, a Givens rotation is performed
in the indicated planes to annihilate the circled entry, and the symbol + indicates
the “fill in” (i.e., the additional nonzero entries) introduced by the rotation. The
first rotation, in the (3,8) plane, annihilates ag, and creates p+1 = 3 additional
nonzero entries. (We count a;; and a;; as one element.) The successive rotations
introduce at most one additional nonzero element each, so there are at most
2p+1 = 5 nonzero entries on the 8th row at any time. We can therefore perform
each elementary similarity transformations on A in O(p) arithmetic work. Thus
the amount of computation required by the reduction is O(pn?).

Our algorithm for the reduction of a bordered matrix to band form is
explicitly given below. This description involves only the lower-triangular part of
the symmetric matrix A.
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Algorithm.

Input: a symmetric matrix A =[a; ;] =, whose trailing principal submatrix
of order n —p is diagonal.

Output: a symmetric (2p +1)-band matrix A whose trailing principal
submatrices of orders n —p through n are orthogonally similar with those of
the input matrix.

for k=p+2,...,n

for j=p+1, ..., k-1

if a; j_,#0 then

pr=Nali_,+al;_,;

¢ = aj'j_p/p; § 1= j_, /p;
@ j-p =5 O j- ,,'=0'
for 1=p—1,p—2,

a;5-i |, _ ] a5 j~i
ak’j_,- ‘-8 C ak,j__,'
-

for i=j+1,742, . . ., min{j+p,k—1}

(o) L= )]

U= V=0 p W=

a; ; i=c?u +s%v +2csw; a & i=c2y 452 —2cs5w;
g ji=cs(v—u)+(c?—sw
|

3. Numerical results.

Numerical experiments verify that our efficient rotation pattern produces
accurate results in lower order work than the Householder reduction technique.
These experiments were performed on the VAX 11/750 at Northern Illinois
University.




The following experiment was performed. The method of [1] was used to
create a bordered matrix whose trailing principal matrices of order n —p through
n have specified eigenvalues. This matrix was then reduced to (2p +1)-band
form using

I.  the Householder reduction procedure of [1];

II. our efficient rotation pattern.

We calculated the average and maximum absolute error among the assigned
eigenvalues of the trailing principal submatrices of orders n—p through n. The
results displayed in Table 1 were obtained by assigning the eigenvalues of A,.
n—p<k<n, to be the integers 25 +(n —k —1), 1 <j <k. Experiments were
carried out on a variety of other problems with similar results.

Table 1. Errors in eigenvalues.

average error maximum error
n p I 11 1 I
10 | 2 | 0.1236e-05 0.5762e-06 | 0.9537e-05 0.1907e-05
20 | 2 | 0.3699e-05 0.2226e-05 | 0.2289e¢-04  0.9537e-05
50 | 2 | 0.9784e-05 0.1210e-04 | 0.5341e-04  0.4578e-04
10 | 4 | 0.1283e-05  0.5470e-06 | 0.5722e-05 0.1907e-05
20 | 4 | 0.2068e-05 0.2948e-05 | 0.1335e-04  0.1144e-04
50 0.1106e-04  0.1199e-04 | 0.4578e-04  0.6866e-04
10 | 6 | 0.7600e-06 0.4705e-06 | 0.2861e-05 0.1907¢-05
20 | 6 | 0.2815e-05 0.3268e-05 | 0.7629e-05 0.1144¢-04
50 | 6 | 0.1189e-04  0.2058¢-04 | 0.6866e-04 0.6104e-04




~

Tables 2a and 2b show average average CPU times used by each reduction
scheme for various values of n and p. Table 2¢ shows the corresponding ratios of
the time used by the Householder reduction to that of our rotation pattern.
These ratios represent the speedup factors of Algorithm II relative to Algorithm I.
Note that for fixed n, the amount of computation required by Algorithm I
decreases as p increases, while that of Algorithm II is often increasing as a
function of p when p is small. These results show that our rotation pattern is
consistently more efficient than the Householder reduction technique. The relative
efficiency of the rotation pattern generally increases as n increases and decreases
as p increases.

Table 2a. Average timings for Algorithm I (CPU seconds).
n__ 10 20 30 40 50 100 200
10029 0.182 0550 1231 2342 17.858 140.070
2 || 0023 0.163 0534 1.199 2.286 17.632 139.693
5| 0013 0.131 0456 1.081 2119 17.127 137.837
10 0072 0327 0.868 1.796 15.852 133.120
20 0.117 0476 1.178 13.503 _ 123.227

Table 2b. Average timings for Algorithm II (CPU seconds).
10 20 30 40 50 _100 200
P
1 0.022 0.087 0.207 0.381 0.596 2.493 10.273
2 0.018 0.099 0.244 0.453 0.734 3.112 13.037
5 0.009 0.103 0.302 0.618 1.044 4.807 20.757
10 0.063 0.287 0.692 1.275 6.937 32.130
20 0.104 0.451 1.110 9.250 50.007




Table 2¢. Ratios of CPU times.
[ n__ 10 20 30 40 50 100 200
p
1 1.346 2.096 2.661 3.232 3.931 7.162 13.634
211333 1639 2188 2645 3.114 5666 10.715
5 1.364 1.266 1.511 1.748 2030 3.563 6.641
10 1.147 1.136 1.253 1.408 2.285 4.143
20 1.128 1.055 1.062 1.460 2.464
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