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MONTE CARLO APPROXIMATIONS IN BAYESIAN DECISION THEORY

PART III:

LIMITING BEHAVIOR OF MONTE CARLO APPROXIMATIONS

Jun Shao *

Purdue University

ABSTRACT

L Monte Carlo approximation is a useful method in obtaining a numerical approximation to

a Bayesian action (an action which minimizes the posterior expected loss). We study the

behavior of the Monte Carlo approximation when the Monte Carlo sample size is large. Con-

vergence and convergence rate of the Monte Carlo approximation are established under some

weak conditions on the loss function. 112) c -_
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1. Introduction

Monte Carlo integration (Hammersley and Handscomb, 1964) is a very useful method for

numerical calculation in Bayesian analysis when the Bayesian solution (action) of the problem

can not be obtained analytically. Unlike other numerical methods, the use of Monte Carlo

method does not require restrictive conditions such as the dimension of the parameter space is

low (say one or two) and the total number of sample observations is large. Applications of this

method in Bayesian analysis can be found in Stewart and Johnson (1972), Kloek and van Dijk

(1978), Stewart (1979), van Dijk and Kloek (1980), Zellner and Rossi (1984), Bauwens and

Richard (1985), Geweke (1988), and Berger and Deely (1988).

Let 0 be a parameter of interest, O e c Rk, 1. (0) be the likelihood function based on the

observed data x (an n-vector), and 11(9) be a prior distribution. The posterior distribution is

then

P, (0) = I.l, (O)dI-(0)/MX,S(e)

where S(0)= (--, 0(1)]x(--, 0(2)]x ... W 0U) is the jth component of 0 and

MX= fi(x)d-(). Let a denote the collection of all possible actions we may take for a prob-

lem under consideration (e.g., a = E in the problem of estimating 0). a is assumed to be a

subset of RP . Let L (0, a );> be the loss incurred when the action a is taken and 0 is the true

parameter. A Bayesian solution of the problem is an action a* which minimizes the posterior

expected loss

r(a) = JL(O, a)dP.(0).

Since M. is fixed for given x, a* is a solution of

p(a*) = minae a p(a),

where

p(a) = fL (0, a)/,(6)dI(9).

The solution a* is referred to as Bayesian action in the literature. Note that a* may not be

unique. Only in special cases a* can be obtained analytically.

The numerical approximation to a* using Monte Carlo method is obtained as follows.

Select a distribution H (0) such that the Radon-Nikodym derivative -- n(0) exists and it is easy
dH

to generate a random 0 from H. Let [ 0(, i=l ... ,m } be m independent and identically
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distributed (i.i.d.) random k-vectors generated from H (0). Approximate p(a) by

p,, (a) =-'tL(i, a)w(Oi), (1.1)

where

w(0) = x Ll

The Monte Carlo approximation to a* is an action am satisfying

p.o(am) = min aea p.o(a). (1.2)

This approach is motivated by the fact that for any fixed a,

lim..m (a) = fL (O, a)w (e)dH (0) = p(a)

for almost all 01, 02,... (with respect to the probability distribution H), according to the strong

law of large numbers (SLLN).

A theoretical justification of the use of this Monte Carlo method is the convergence of the

approximation am to a Bayesian action a* in some sense. In some simple cases, such as

L (0, a) is the squared error loss (in an estimation problem) or the action space a is a compact

subset of RP , the convergence of am is a direct consequence of the SLLN or uniform SLLN.

Shao (1988) proved the almost sure convergence of am in the situation where a is non-

compact but the loss function is convex in a. There are some important examples of convex

loss functions. Also, convex loss usually ensures the uniqueness of the Bayesian action. How-

ever, reasonable loss functions derived through utility analyses are often not convex but

bounded and concave for large errors (see Berger, 1985, Chapter 2). For a convex loss, large

errors are penalized much too severely. In addition, a bounded loss function usually provides a

robust Bayesian solution to the problem (see Section 2).

In this note we study the limiting behavior of the Monte Carlo approximation am for gen-

eral unbounded a and non-convex loss functions. The convergence of am is studied in Sec-

tion 3 for two large classes of loss functions introduced in Section 2. The rate of convergence

and the asymptotic distribution of a. (which provides an accuracy measure for the Monte

Carlo approximation) are obtained in Section 4.
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Throughout the paper we assume that x is a fixed data vector, O<Mx <oo, a is a closed

subset of RP, p(a) is finite for any a e a and a Bayesian action a* exists, and H is a selected

distribution for generating random Oi. Discussions for the selection of the distribution H can

be found in Berger (1985, Section 4.9) and Geweke (1988).

2. Preliminaries

We first consider the modes of convergence of am as m -4-. Let (o denote a particular

sequence (01, 02,... ) and am (co) denote the corresponding am for fixed o. Since am is random,

we may consider the almost sure convergence: for almost all o (with respect to H),

am(o) -- a*. (2.1)

However, unless there is a unique Bayesian action, (2.1) usually does not hold. For practical

uses, am (m3) might be considered as a good approximation as long as am ((0) is close to a Baye-

sian action a*. That is, if

a*= ( a*: a* is a Bayesian action ]

and

a,= (a: a is a limit point of ( am (co), m=1,2...),

then for almost all o,

a. c a*. (2.2)

Another way is to consider the posterior expected losses r (am ) and r (a *) since the pos-

terior expected loss is used to judge the performance of an action. Note that r (a*) is uniquely

defined although a* may not. Denote r(a*) and p(a*) by r* and p*, respectively. It is

desired to show that for almost all (o,

r(am (o)) -+ r

which is equivalent to (since p(a) = x r (a))

p(am (o)) -4 p*. (2.3)

Usually p(a) is continuous in a. Then (2.3) is weaker than (2.1).

3



The following result relates (2.2) to (2.3) and the boundedness of am (0)):

Ilam(o) < C, for all m, (2.4)

where C >O is a constant for each o), Ila II = (ala)'/" and a' is the transpose of a.

Lemma 1. Let c be fixed. Suppose that p(a) is continuous and that

liminf #a ,r-.P(a) > P* (2.5)

Then (2.3) is equivalent to (2.2) and (2.4).

Proof. Suppose that (2.3) holds. If (2.4) does not hold, then there is a subsequence

(am,(c), j=1,2.... ) such that

limj__ 11 amj (wo) 11= *

From condition (2.5), this implies
limj..,,.p(a,,C(o)) > p*,

which contradicts (2.3). Hence (2.4) holds. Let c ea,. Then there is a subsequence

am,(c), 1=1,2,... ) such that li= ,,() = c. From the continuity of p,

limt ,.p(ar (co)) = p(c).

From (2.3), p(c) = p*. Hence cea* and therefore (2.2) holds.

Suppose now (2.2) and (2.4) hold. Let 1l be any limit point of [ p(am ((0)), m=1,2,....

Then there is a subsequence ( mj ) such that

lirmnj.p(am,(co)) = T1.

From (2.2) and (2.4), there is a subsequence ( m, ) c[ mj ) such that
limt..a, (o)) = a* e a*.

From the continuity of p, 11 = p*. This proves (2.3). 03

Berger (1985) pointed out that reasonable loss functions are usually bounded. Consider

loss functions satisfying the following condition:
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Condition (L).

(1) L(O, a) is continuous in a and supaL (0, a) < *

(2) For any constant C >0, limla I...,L (0, a) = A uniformly for all 0 satisfying

I0 11 ! C, where A is a fixed constant.

A simple example of a loss function satisfying (LI) is

L (0, a) = min( 119-a 112, A),

where A is a constant. Note that A usually is an upper bound of the loss function. Hence for a

reasonable loss function satisfying (LI), it is usually true that A > r*.

The following result shows condition (LI) implies the conditions in Lemma 1.

Lemma 2. Assume (LI). Then p(a) is continuous and (2.5) holds if A >r*.

Proof. It is obvious that the continuity and boundedness of L imply the continuity of p. For

(2.5), it suffices to show that

liml a Ir (a) = A. (2.6)

For any e>0, since M, = fi/, (0)dfl(0) is finite, there exists a constant C >0 such that

JI e ii>C Ix (O)dl-(e) < e.

For this C >0, under condition (LI), there exists a K >0 such that when II a II > K,

i IL(e, a) -A II,(e)dn(e) <

'Hence for 11 a I1 > K,
fIlL (e, a) -A I i.(eOdn(o) < (A +B+I)e,

where B = sup eaL (0, a). This proves (2.6) since e is arbitrary. 0

It can be shown that when the loss function satisfies (LI) and the Bayesian action a* is

unique, the Bayesian action is robust in the sense that for any sequence of posteriors [ G,, )

converging weakly to Px, we have a. -+ a*, where a, is a Bayesian action corresponding to

G.. We will not discuss this issue here.
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An unbounded loss function usually satisfies lim a ,1-L (0, a) = -c for fixed 0. We con-

sider the loss functions satisfying the following condition.

Condition (L2).

(1) L (0, a) is continuous in a and for any C >0, there is a function BC (0) such that

sup 11 ,IcL(0, a) < Bc(0) and JBc(0)l,(O)d-l(O) < *

(2) There is a constant Co such that Jil 0 ic dP (0) > 0 and lim ja 11 -L (0, a

holds uniformly for 0 satisfying 11011 : C0 .

From the dominated convergence theorem, the first condition in (L2) implies the con-

tinuity of p(a). The second condition in (L2) implies (2.5), as the following lemma shows.

Lemma 3. Assume the second condition in (L2). Then

limlla U_.r (a) 0 0c

and therefore (2.5) holds.

Proof.For anyK > 0, there is aKI> 0such that for any a with Ila 11 > K 1,

inf i :cL(0, a) > K.

Then

r(a) J, J1 11 L(0, a)dPx( ) 2 Kfil ,0cOdPx (0).

The result follows since K is arbitrary and I 0u.,,dPX(() > 0. 11

We also need the following technical lemma for the proof of the main results.

Lemma 4. Let g (0, a) be a function on Rk xRP and F be a distribution function on Rk. Sup-

pose that for fixed a, g is measurable and for fixed 0, g is continuous. Suppose also that for

any C > 0, there is a function Bc(O) such that sup la115c I g(0, a)I <Bc(0) and

IBc (0)dF (0) < *. Let 01,...,Om be i.i.d. samples from F. Then for almost all 01,02,...,
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5up~ Ha ., t± 'Ig(0, a) - fg(0, a)dF(0)1 -4 0 for all positive rational C. (2.7)

Proof. For any fixed C, from Theorem 2 of Jennrich (1969),

SUP Ila)) I - -. =ig (0i, a) - fg (0, a)dF (0) 1 --4 0

holds for almost all 01,02,... Then (2.7) follows from the fact that the set of all rational

numbers is countable.

3. Convergence of Monte Carlo approximations

For loss functions satisfying either condition (Li) or (L2), the convergence of am (in the

sense of (2.2) and (2.3)) is established in the following theorems.

Theorem 1. Assume that L(O, a) satisfies condition (LI) with A > r*. Then (2.2) and (2.3)

hold for almost all o (with respect to H).

Proof. From Lemma 2, the conditions of Lemma 1 are satisfied. Using Lemma 1, we only

need to show (2.2) and (2.4).

Consider (2.4) first. Note that fw(0)dH (0) = fl.(O)dn(O) = M, < -. From the SLLN,

for almost all co,
1 i
-Im lw(Oi) 1o, I 1"  , wcw(O)df(O) for all positive rational C, (3.1)

where Is is the indicator function of the set S. Let a* be a Bayesian action. From (1.1) and

the SLLN, for almost all Co,

pm(a ° ) -+ P. (3.2)

Let Co be fixed such that (3.1) and (3.2) hold. Suppose that (2.4) does not hold. Then there is a

subsequence of am(o) diverging to infinity. Without loss of generality, assume that

Il am (co) II - o. For any e>0, there is a rational C >0 such that

fleow>cw(O)dH(0) < e.

From condition (LI), for this C >0, there is an N(0>0 such that for all ii O11 I C and m > NCO$

I L (0, am (co)) - A I <e.

7



Then
I M

s (A +B )
1 L('9* a'w"o) -A I w(O') jI!w(j) + ( BM M W(OiIlI~ II>C ),

where B SUP e,aL(0, a). From (3.1),

limsup M. 1 IL(0j, a,(co)) - A Iw(0j) < (A+B+M,)e

and therefore

Pm (am (Co)) - MxA. (3.3)

But from (1.2),

p. (a. (m)) < pm(a*)

for all m . Hence from (3.2),
limsup,, ,..pm (am (o)) p*.

This contradicts (3.3) since MXA > p*. Hence (2.4) holds for almost all (o.

From Lemma 4, for almost all (o,

sup I c Ip (a) - p(a)I -+ 0 for all positive rational C. (3.4)

Let Co be fixed such that (2.4) and (3.4) hold and (3.2) holds for an a* e a0. Then

I Pm (am (o)) - p(am (o)) I -- 0. (3.5)

Let alea... Then Ila1 II < C, and there is a subsequence ( mj ) such that

limj_ .aj (w) = a 1 .

From the continuity of p and (3.5), we have

limj.pmj(amj(co)) = p(a 1 ).

But

Pmj(am,,(co)) < p,,(a*),

which converges to p* by (3.2). Hence p(a 1) = p* and alea*. This proves (2.2). 03

Theorem 2. Assume that L (6, a) satisfies condition (L2). Then (2.2) and (2.3) hold for almost

all w.
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Proof. From Lemma 3, the conditions of Lemma 1 are satisfied and therefore we only need to

show (2.2) and (2.4). Note that for almost all oo,

lm .-- 1
1 w (Oi)t( jei, I) w=fw(6)J-(6). (3.6)

For a fixed co such that (3.2) and (3.6) hold, we have
l ,,,_ m.,ep,, (am (to)) > liminf ,,.l~"t (6i, am, (w0))w (6i )I( ,ie, <~Co )

l,,inf .[inf iecoL(O, am(O)) ,mw(oi)I( lie1 ,<co )]
2:liminf ,[n11 1CL(,a(o)-ym

> liminf m+*.inf 11 .cL (0, am (o))flI 0e1Sc w (O)dH (6)

and

limsup,..pm(am(w)) 5 lim __,.pm (a) = p*.

From condition (L2), lm1 11 -a__ -nf UejcdL (0, a) = -. Hence {am (o)) can not have any

subsequence diverging to infinity. Therefore (2.4) holds for almost all co.

From Lemma 4, (3.4) holds under condition (L2). Then the proof of (2.2) is the same as

that in the proof of Theorem 1. This completes the proof of Theorem 2. 03

From (2.2), if the Bayesian action is unique, then am converges to a* in the ordinary

sense.

Corollary 1. Assume the conditions of Theorem 1 or Theorem 2. If the Bayesian action is

unique, then (2.1) holds for almost all co.

In estimation problems, it is desired to indicate the accuracy of the Bayes estimate a*.

The posterior expected loss of a*, of course, can be used as an accuracy measure. Let

rm = mn-t2 1 L (0i, am)w (0i). rm can be used to approximate the posterior expected loss r

The following result is a direct consequence of (3.5) and Theorem 1 (or Theorem 2).

Corollary 2. Assume the conditions of Theorem 1 or Theorem 2. Then for almost all oo,
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4. Convergence rate and limiting distribution

We study the convergence rates of a (co) and r (am (Co)) for differentiable loss functions.

Let VL(0, a) = aL(O, a)/da, V2L(0, a) = a2L(O, a)la()a and g., (O, a) be the (u,v)th ele-

ment of V2L(0, a), 1.5u, v.p.

Condition (L3).

(1) For almost all 0 (with respect to H), V2L (0, a) exists for any a and is continuous

ina.

(2) f II VL (e, a*) 11 2 w2(0)dH (0) < co for any a* e a.

(3) For any C > 0, there is a function Bc (0) such that JBc (e)I(O)d4 l(O) < c and

SUP Ila 9!5C I g, (0, a) 1<: Bc (O) for all IQ, v.5p.

(4) For any a ea*, 1V2L (0, a *) (O)d- l(9) is positive definite.

Under condition (L3), p(a) is second order continuously differentiable and Vp(a*) = 0

for any a * Ea*,where Vp is the gradient of p.

If the Bayesian action is unique, am(co) converges to a* for almost all co (Corollary 1)

and the convergence rates of am. ((o) and r(am(o)) can be obtained by using standard tech-

niques. Shao (1988) obtained the convergence rates when the loss is convex. The result is

extended to general non-convex loss situations (see Theorem 4 below). When the loss function

is not convex, the Bayesian action may not be unique. If there are more than one Bayesian

actions, am (co) may not converge in the ordinary sense and it is also much more difficult to

obtain the convergence rate of r (am. (co)) (although r (am. (o)) converges according to Theorems

1 and 2). In Theorem 3, without assuming the uniqueness of the Bayesian action, we establish

a convergence rate for r (am (co)) in some situations.

Theorem 3. Assume (L3) and either (LI) or (L2). Assume also that for almost all co,

TimiVL(ei , a*)w(Oi) = O(m'/2(loglogm) th ) for all a*eaa*, (4.1)

where aa * is the boundary of a. Then for almost all co,
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r(am(w)) - r* = o (m-'1/(oglogm)'/').

Remark. Note that for any a * e aa*, Em1 VL (0j, a *)w (0) is a sum of i.i.d. random variables

and Vp(a ) = JVL (0, a )w (9)dH (0) = 0. Hence from condition (L3) and the law of iterated

logarithm, for almost all co,

YQ 1 VL(9j, a*)w(Oi) = 0 (m 'I(oglogm)1/').

Thus, condition (4.1) is clearly satisfied if a* is a countable set. An important example of

countable Wa* is that a c R and a* = UieA[cz,13iI, where ai[i are constants and A is a

countable index set. Another example is that a* is a countable set (& *c a* since a* is

closed).

Proof. Let Q(a) = .V2L(9, a)w(0)dH-(0). Note that under either (Li) or (L2), (2.2) and (2.4)

hold (Theorems 1 and 2). Also, from condition (3) and Lemma 4,

sup a a 11s I -".im__IV2L (01, a)w (0j) - Q (a) I -+ 0 for all positive rational C. (4.2)

Let (o be fixed such that (2.2), (2.4) and (4.1)-(4.2) hold, and

m'1'[p(am (o)) - p*
zm((O) = (oglogm)'I2

It suffices to show that for any subsequence ( m ), there is a subsequence ( mj ) c m, }

such that

limj..zmj(O)= 0.

Let ( m ) be a given subsequence. From (2.4), there is a subsequence ( my ) c( m} such

that

limj.amj(co) = a* e a. (4.3)

Case 1. a*ea*--aa*. Since a* is an interior point of a*, there is a constant 8>0 such that

p(a) = p* or all a satisfying Ila-a * 11< Then from (4.3),

zm/(J) = 0 for sufficiently large j.

Case 2. a*eoa*. Note that "JlVL(0i, amj(co))w(Oi) = mjVpm,(amj(o))) =0. Then from the

mean value theorem,
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w, "VL(e, a *)w(e ) = [Zj1 V2L (0j, j(co))w(ei)][a*-a,,,(co)] (4.4)

and

p(amj(co)) - p* = [Vp( j(co))]f[am,(o)-a*], (4.5)

where tj (o) and Cj (co) are on the line segment between a* and am,(co). From (2.4) and (4.2),

im± mj v2L(e,, 4j(CO))W(6)) = Q(a*),limj-.,.(4.6)

which is positive definite under (3). Since a*ra*, (4.1) holds and

limj1 .,.Vp( j(o)) = Vp(a*) = 0.

Hence limj__mJ(co)= 0 follows from (4.1) and (4.3)-(4.6). This completes the proof since

r(a) = p(a)/Mx. 03

Theorem 4. Assume the same conditions as in Theorem 3 and there is a unique Bayesian action

a*. Then for almost all Co,

am(0) - a = O(m-'(loglogm)'/"), (4.7)

and

r (am (co)) - r= O (m-lloglog m). (4.8)

Proof. By the same argument as in the proof of Theorem 3, we can show that for almost all co,

I.MV 2L(O, bm)w(0i) -+ fV2L(e, a')w(0)dH (0) > 0, (4.9)

where (bm) is any sequence satisfying Ulbm-a* I1:1am(o)--a * II. From the mean value

theorem and the fact that Vp(a*) = 0 and 1 IVL(ei, am(co))w(Oe) = 0, we have

F,,__,VL(O i , a*)w(Oi ) = [T 1IV2L(O i , ,(co))[a*-a,(o)1 (4.10)

and

p(a,, (co)) - p* = [am (o)--a * 1V2p( m (co))[am (o)-a * (4.11)

where , (co) and Cm (co) are on the line segment between a* and am (co). Then (4.7) follows

from (4.9)-(4.10) and the law of iterated logarithm and (4.8) follows from (4.7), (4.9) and

12



(4.11). r0

From (4.7)-(4.8), r (am (co)) converges much faster than am (). In the following we

obtain a limiting distribution of am, which provides an accuracy measure for am.

Theorem 5. Assume the same conditions as in Theorem 4. Then

ml/1(am - a* ) - N (0, D ) in distribution,

where N(O, D) is the p dimensional normal distribution with

D = U-'VU- ' ,

V = f[VL (0, a* )][VL (0, a* )]'w 2(e)dH (0),

U = JV2L(0, a*)w(0)dH (0).

Proof. The result follows from (4.9)-(4.10) and the central limit theorem. 03

A Monte Carlo approximation to D is

Dm (CO) = U,;(CO)Vm(o)U,;1 (co)

with

Vm((O) = lj mi[VL (Oi, am (Co))][VL (0k, a (o))i1w 2(0j)

and

Um (O) = iIV2L (0j, am (co))w (0j).

Using the same argument as in the above proofs, we can show the following result.

Theorem 6. Assume the same conditions as in Theorem 4. If for any C > 0, there is a func-

tion Bc(O) such that JBc(O)w2(O)dH()< .c and sup Ila ,c II VL(0, a) 112 < Bc (0), then for

almost all co,

liram _ m (W) =D.
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