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On singular values of Hankel operators of finite rank
W. B. Graggt and L. Reichel §

Abstract

Let H be a Hankel operator defined by its symbol p = x /x where x is a monic polynomial of degree
n and « is a polynomial of degree less than n. Then H has rank n. We derive a generalized Takagi
singular value problem defined by two n x n matrices, such that its n generalized Takagi singular
values are the positive singular values of H. If p is real, then the generalized Takagi singular value
problem reduces to a generalized symmetric eigenvalue problem. The computations can be carried
out so that the Lanczos method applied to the latter problem requires only O(n logn) arithmetic
operations for each iteration. If » and x are given in power form, then the elements of all n x n
matrices required can be determined in O(n?) arithmetic operations.
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1. Introduction

Let H = [1,4k]35—o be a be a Hankel operator defined by its rational symbol p = x /x, where

n—1 n
x(A) = Z A and x()) := ijz\", xn =1 (r.1)
rd e

We assume that ¥ and x have no common zeros. The elements 5; of H are then given by

p(A) = 'E% = At (1.2)

3=0

In order to simplify our presentation, we assume that the zeros {Ax}7_, of x are distinct. How our
formulas need to be modified in order to remove this assumption is discussed in Remark 1.1 below.
Hence p has a partial fraction decomposition

PN =5 ‘j"Ak. (1.3)

Expansion of the right hand side of (1.3) into a geometric series, and comparison with (1.2), yields

nj= Y ar)l. (1.4)
k=1

We now express (1.4) in matrix form. Let
A:=digglay,as,... a,] € C™*", (1.5)

A= diag[A, Ay, ... Ap] € C™F7, (1.6)

and introduce the Vandermonde matrix

Vo:= [Az+1];‘,;;o A e (1.7)
Define
V= [V)5%e € ©°X", (1.8)
where '
V; =VoAN", 72 1 (1.9)
Then (1.4) can be written as
H=VAVT, (1.10)

Let {2 denote the vector space € equipped with the Euclidean norm.
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Proposition 1.1, H :[2 — [? bounded ¢ [A\¢| < 1 for 1 <k < n.

Proof. The proposition holds independent of the multiplicity of the Ax. In the present proof we
assume that the A; are distinct. The proof for confluent Ax is commented on in Remark 1.1.

Let e; = [¢]72, € €= be the axis vector with g = 1. Then
h = [n;]320 := Hea €lP=>n; +0asj—oco=>
[Ak] < 1for1<k<n,
where the last implication follows from (1.4).

Conversely, assume that |Ax| < 1 for 1 < k < n. Then by (1.8) - (1.10) we obtain

[+ o]
H N2 < NAlRIVIE < Al2IVolZI D (A% A)™|3
7=0

= | All2IVollZI(T = (ATA)™) . -
We assume henceforth that |Ax| < 1for 1 <k < n. Introduce
U:.=vV Vgl (1.11)

Hy = Vo AV{. (1.12)

Then Hy has rank n. We note , by comparing (1.12) with (1.10), that Hp is the leading principal
n X n submatrix of H. From (1.10) - (1.12) it follows that

H=UHUT. (1.13)

The leading n X n submatrix of U is I, the n x n identity matrix. U therefore is of rank n and
can be factored
U=QR, QeC>™*", ReC™™",

where Q¥ Q = I,, and R is a nonsingular right triangular matrix. We obtain
0+(H) =0+ (QRHoRTQT) = o(RHoRT), (1.14)
where ¢ denotes the set of singular values and o4 denotes the subset of the positive ones.

The n x n matrix RHoR” is complex symmetric. Takagi [Tal], [Ta2] showed the existence of a
complex symmetric singular value decomposition

RHoRT =WEWT We €™*", T = diago,,02, ... 0], (1.15)

where WHW = I, and ¢; > 0 are the singular values of RHoRT. In Section 2 we present an
elementary proof of the existence of this decomposition. Let W = (w;,ws,... w,], w; € €. Then
(1.15) can be written as the Takagi singular value problem

RHoRTw; = wjo,, wlwp=26k, 1<j,k<n, (1.18)
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where the bar denotes complex conjugation and 6, is Kronecker’s § function. The problems (1.15)
- (1.16) could be solved by the algorithm described in [BGG], but this would require RHo RT to be
explicitly computed. In order to avoid these matrix multiplications we let v; := R w; and obtain
from (1.16) the generalized Takagi singular value problem

Hov; = (R¥R) 'v;o;, v (R¥R) ‘v =6, 1<5,k<n. (1.17)
The solution of (1.17) requires (R¥ R)~! to be known. In Section 3 we show that
(RER)™'=1- ByBY, (1.18)

where By ¢ €™*" is a triangular Toeplitz matrix. The elements of By and Hy can be determined
from the coefficients of 7 and x in O(n log n) arithmetic operations by the fast Fourier transform
(FFT) method. This is demonstrated in Section 4. Section 5 shows that

RER=T\M,TH, T, M e €™ ", (1.19)

where T; and M, are Toeplitz matrices, and describes a numerical scheme for the computation
of this factorization from (1.16) in O(n?) arithmetic operations. We also present a Hermitian
factorization of R¥ R into n x n triangular matrices.

The factorization (1.19) may be of interest for the numerical solution of (1.17). Assume that
the coefficients of 7 and x are real valued. Then Hy, (R¥R)™! ¢ R"*", and (1.17) reduces to
a generalized symmetric eigenvalue problem. The Lanczos method ([Pa, Section 15.11], [ER])
would appear suitable for solving this eigenproblem for the following reason. Let C € €"*" be a
Hankel or Toeplitz matrix and let v ¢ €™ be arbitrary. It is well known that Cv can be computed
in O(n log n) arithmetic operations using FFTs. Hence Hov, (R R)"'v and (R¥ R)v can be
computed in O(n log n) arithmetic operations, where we use (1.18) - (1.19). Each iteration of the
Lanczos algorithm given in [Pa, p.324] therefore requires only O(n log n) arithmetic operations.

The computation of singular values of H is important in Hankel norm approximation problems of
systems theory, such as the model reduction problem [Gl]. The approximation of functions by the
Carathéodory - Fejér method yields another application [Gu], [T¥].

Other methods for reducing the singular value problem for H to a finite dimensional one have been
described by Kung and Gutknecht {Gu] and Young [Yo]. These methods, however, do not preserve
symmetry. Moreover, Young’s approach requires generally O(n3) arithmetic operations to compute
the matrices required.

Remark 1.1. Formulas (1.3) - (1.8) and the proof of Proposition 1.1 require distinct Ax. This

restriction can be removed. Assume first that Ay = A, = ... = A,. Then (1.3) - (1.4) have to be
replaced by
Qg
p(A) =: —_, (1.3
kz=:1 (A=)
= Qe ad /\] 1k [
n; = ZT\I[Z(T)]] . (1.4)
k=1 j=o

In (1.5) A has to be substituted by the upper triangular Hankel matrix

_ n-1 nxn, —_
A= [aj+k+1]j,k=0 eC v ap:=0, p>n.
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The matrix A in (1.6) has to be replaced by the Jordan matrix with all diagonal elements equal to
A1 and all superdiagonal elements equal to one. The matrix Vp in (1.7) need be replaced by the
-onfluent Vandermonde matrix. For instance, we obtain forn = 3

A 1 1
A= Al 1 N Vo: /\1 1 .
A\ A2 2x 1

With A, A and Vp modified as described, we define V; and V by (1.8) - (1.9), U by (1.11) and
Hy by (1.12). Then (1.10) and (1.13) hold and Hj is the leading principal n x n submatrix of H.
Also (1.14) - (1.19) remain valid. Proposition 1.1 can be shown by replacing (1.4) by (1.4'), and
by bounding the sum

[e o}
11D (A% A2
J=0

where A now is a Jordan matrix. This sum is bounded if |A; | < 1, and the proposition remains
valid.

In general, when the Az are of arbitrary multiplicity, A in (1.5) has to be replaced by a block
diagonal matrix, where each block is an upper triangular Hankel matrix. The blocks are of the
same sizes as the multiplicities of the Ak, and the number of blocks equals the number of distinct Ax.
A in (1.6) is replaced by a Jordan matrix with Jordan boxes of the same sizes as the multiplicities
of the Ay, and the number of boxes equal to the number of distinct Ax. Vj in (1.7) is replaced by
an appropriate confluent Vandermonde matrix. With these changes (1.10) - (1.19) are valid, and

so is Proposition 1.1. We omit the details since the numerical computations are independent of the
multiplicity of the Ax. a




2. The Symmetric Singular Value Decomposition
In this section we present an elementary proof of Takagi’s theorem, i.e. we show the existence of

a symmetric singular value decomposition of a complex symmetric matrix. Let C = CT ¢ €"*",
and define A, B ¢ R"*" by C := A+4B, { :=+/—1. Then A= ATand B = BT, so the matrix

- _[a B
C"[B —A]

is real and symmetric. Let {0;}7_, be the positive eigenvalues of C and form

L := diag[o1,02,...,0,].

Let
5 A=l e
with
UVeR"™"
and

UTU +VTy =1I,.

Write (2.1) as
{ AU + BV = UZ
BU - AV = VX

and note that (2.2) also can be written as

(2.2)

{AV + B(-U) = V(-X)

BV - A(-U) = (-U)(-3),

5 2=
with

VIV + (-U)T(-U) = I.

Hence C has at least r negative eigenvalues. We could also have let o, be the negative eigenvalues of

€ and then (2.3) would have given us positive ones. We therefore may assume that £o,,to5,..., 20,
are all the nonzero eigenvalues of C.

Since eigenvectors associated with distinct eigenvalues of a real symmetric matrix are orthogonal,
we have

0= [VT,—UT][g] =vTUu -UTv.

The spectral resolution of C is thus

5 A=l o]

6

vt vT
vT _UT




which yields
{ A=UxUT —vzvT
B=VvzUT +UZVT,

Therefore
C=A+iB=UZUT —-vIvT 4+ {(vEUT + UZVT)
=(U+V)SWUT +iVvT) =wEwT = Zakww{,
k=1
where
U4V =W = [w;,w,, ..., w], wee C".
Moreover

WHW = (UT —=iVT)(U +iV) = (UTU +VTV) +i(UTV - VTU) = I,.

If r < n then one may replace ¥ by
Lo := diagloy,0,,...,0,,0,...,0] e R**"

and W by
—— x
Wo = [wy,wa, ..., wy, Wr 41, .. w,] € C™¥",

where w41, ..., w,€ C™ are chosen so that WW, =1I,,. =




3. A Siaple Expression for (R¥ R)™!

In this section we derive (1.18). Introduce the Frobenius matrix
F:=les,ea,....6q,—fl e C" X",

where

¢ = [61.7"62]')"-;6&;']" € Rn, 2 < J <n, (31)
I L= [XO)XIr“')Xn—llTG c".

Then F is the companion matrix of x and
FTVy = VoA. (3.2)

Throughout this section Vi and A are defined by (1.6) - (1.7) if the Ax are distinct. For confluent
Ax we modify V; and A according to Remark 1.1. The following lemma shows that

G:=RHR (3.3)

satisfies a Stein equation. This will enable us to obtain a simple expression for G~! by an application
of the Sherman-Morrison-Woodbury formula.

Lemma 3.1. G is the unique solution of the Stein equation
X—-F'XFrH =1, XeCm ", (3.4)

Proof. By (1.8), (1.9) and (1.11) we obtain

RER=UHU = Va (A ) HVHVoA™ Vg, (3.5)
k=0
and (3.2) yields now
G=)Y Frr(Fre)H. (3.6)
k=0

The series in (3.5) - (3.6) converge because |Ax| < 1 for all k. Substitution of (3.6) into (3.4)
shows that G solves (3.4). The unicity follows from |Ac| < 1 for all k. The latter can be seen by a
similarity transform of F™ to Schur triangular form. ¢

Introduce the cyclic downshift operator in €2"

E = ez, e3.....,en,€,] € €3X2"

where
e, := [615,62;,.,62n,]7 € R*". (3.7)

t:= lxo’XI)"')xn)O)OJ"')O]Tc C2nv
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and define the Toeplitz matrix T of parallelogram form
T = [t, Et,E*,..,E""1t] e €?" >, (3.8)

Let Ty be the leading n x n submatrix of T, and let T be the trailing n x n submatrix of T. Then
Ty is a left triangular Toeplitz matrix, and T; is a unit right triangular Toeplitz matrix.

Example 3.1. Let n = 3. Then

[ Xc T
Xo
;2 o X0 X0 X3 Xz X1
T= Xs x2 x|’ To=|x1 Xxo , Ty = X3 X2 |,
X3 X2 X2 X1 Xo X3
- X3 4

where we note that x3 =1. a

Lemma 3.2. Let Ty and T; be defined as above. Then
TETo+TET = T,TH + T TH. (3.9)

Proof. Let N := THT = THT, + THT;. We first show that N is a Toeplitz matrix. Let ¢, be
defined by (3.1). Then by (3.8) we have for 1 < 5,k < n,

€] New=e;THT e, = tH(EH) 1 E* 1t = M E* 7y,
where we have used that Eff = E~1. We next define the reversal matrix
J = [en,n-1,...,1] € B**".

Toeplitz matrices are counter symmetric, i.e. N = JN7 J. Using that N is counter symmetric and
Hermitian yields

TET +TETI = N=JUNTJ =UNJ = J(ITTo + TTTY)J
=JTT T JToJ + JTT T - JTJ = ToTH + TWTH, o
The next lemma presents a Gaussian factorization of F" in terms of Ty and Ty. This will be used

together with Lemma 3.1 to express G~! in terms of Ty and T;.

Lemma 3.3.
F" = -ToTy . (3.10)

Proof. We first show that
Vo
73, T =0. (3.11)
VoA™
Let ¢; be defined by (3.7) and assume for the moment that the A, are distinct. Then
Vo

e T3, T7) ex = x (M)A (3.12)
VoA™

9




and the right hand side vanishes for 1 < j,k < n. If the A, are confluent, then the right hand side
expression of (3.12) contains derivatives of x(A) evaluated at Ax. The right hand side of (3.12),
however, still vanishes and (3.11) holds.

We now write (3.11) as
TS Vo + TTVoA™ =0

and apply (3.2). This shows (3.10). @
We are now in a position to show (1.18). By (3.4) G satisfies
G=I1+F"GF"¥
and an application of the Sherman-Morrison-Woodbury formula yields
G l=({I+FGF)y1=]_F G 4 FrH Fr)-1pnH, (3.13)

We now determine an expression for
Y:=I-G™ L. (3.14)

Substitute ¥ and (3.10) into (3.13) to obtain
Y =To(Té To + TH#F Ty - TEYT,) ' TH. (3.15)
In order to determine a simple expression for Y from (3.15) we need the following observation,
which is also central to Section 4. To and T # are both left triangular n x n Toeplitz matrices.
Multiplication of Ty with Ty ¥ can be identified with polynomial multiplication, see [Hel, Section
1.3] and Section 4. Since multiplication of polynomials commutes, we obtain
ToTy ¥ =178 7T, (3.16)
From the correspondence between polynomials and left triangular Toeplitz matrices it also follows
that ToTy ¥ is a left triangular Toeplitz matrix.
Lemma 3.4. Equation (3.15) has the unique solution
Y =T ToTHT Y = T, H T AT (3.17)
Proof. Unicity follows from (3.14) and that (3.4) has a unique solution. From (3.16) we obtain
TTHTOTH T = ToT7 H1 ' TE (3.18)

Now substitute
Y =T8T TE T !

into (3.15). We obtain
Ty T T T = To(TETo + THT, - ToTH) TS . (3.19)

10



An application of (3.9) reduces (3.19) to (3.18). The latter has already been shown to be valid.
Therefore (3.17) solves (3.15). =

Let _ _
By :=ToT;y T =17 T To. (3.20)

Then By is a left triangular n x n Toeplitz matrix. By (3.14) and (3.17)
G '=1-B¢Bl =1- BTB,.

From (3.3) it now follows that
(RFR)™ =1- BoBY. (3.21)
0
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4. Computation of Hy, and By

We summarize some results in {He 1, Section 1.3] and [He 2, Section 13.9] in order to show that the
elements of Hy and By can be computed in O(n log n) arithmetic operations from the coefficients
x; of x and ; of x, see (1.1). To a polynomial or power series

§) = Y & N+ 00

we associate the left triangular n x n Toeplitz matrix
Z= [S’J'—k]_-',",;i-o, ¢ =0for 57 <0,

and we write ¢ — Z. If £()) is a polynomial and X a left triangular n x n Toeplitz matrix such
that € — X, then it is easily seen that ¢¢ — ZX. In particular, ZX ic a left triangular n x n
Toeplitz matrix. From &¢ = ¢€ and é¢ — X Z 1s follows that ZX = X Z.

Assume that ¢o # 0 and let 1/¢ — Z’. Then 1/¢-¢ — I, 2'Z and ZZ'. We obtain Z’' = Z~! and
therefore Z~1! is a left triangular Toeplitz matrix.

Example 4.1. We have x — T,. Let
£() = A" X(/N) = 3 Kac (41)
=0

Then ¥ — T{ and the Blaschke product

X, 7T ¥ = Bo. (4.2)
X s

Now let £(A) and ¢()) be arbitrary polynomials such that ¢(0) # 0. Henrici [He2, Theorem 13.9¢ ]
shows that the first n coefficients in the MacLaurin expansion of £())/¢()) can be computed in
O(n log n) multiplications. The proof uses FFT. It is easily seen that the number of additicns also
is O(n log n).

From x» = 1 and (4.1) we obtain x(0) # 0. Hence, the first n terms in the MacLaurin expansion
of x/X can be computed in O(n log n) arithmetic operations. By (4.2) therefore ToT; ¥ = Bj can

be computed in O(n log n) arithmetic operations.

Because A"x(1/)) # 0 for A = 0, we can compute the first n terms in the MacLaurin expansion of

Atx(1/X)

xx(1/) Z N O0)

in O(n log n) arithmetic operations. This shows that Hy can be computed in O(n log n) arithmetic
operations.

12



5. A Factorization of RF R

It follows from (3.3) and (3.20) - (3.21) that

G = (RHR) =1—- By B{)! =TI- T;HTOT()HT;I, (4'1)
and therefore

TEG Ty =THT, - ToTH =: M 2. (4.2)

The expression defining M ! is a Gohberg-Semencul formula for the inverse of an n x n Toeplitz
matrix, see, e.g., [Io, Theorem 18.2, p. 152]. We denote this Toeplitz matrix by Mp. From the left
hand expression of (4.2) and the nonsingularity of T; and R it follows that My is Hermitian and
positive definite. The desired factorization of R¥ R is

RER=T, M, TH.

We will now show how M, can be computed. The computation involves running the Levinson
algorithm backwards.

Consider the related Gohberg-Semencul fermula, see, e.g., [Io, Theorem 18.1, p. 148] or [AG],

- -~ H - -
Xrn Xn-1 ... Xo Xn Xn-1 ... Xo
M =
Xn-1 Xn-1
L Xn J L Xn J
(4.3)
r 0 1 [0 14
Xo Xo
X1 ' X1 ..
—_— . . . hY
L Xn-1 --- X1 Xo Ol [ Xn-1 ..~ X1 Xo OJ

where the four triangular Toeplitz matrices define the inverse of an (n + 1) x (n + 1) Hermitian
Toeplitz matrix. Denote this Toeplitz matrix by M;. Then M, is the leading principal n x n
submatrix of Mj, see [lo, Theorems 18.1 - 18.2].

Let Ry = [pja]Tx—g ¢ €{"*1)*(n+1) be the unit right triangular matrix, and let
D, := diag[6o, 81, ...,6n] be the diagonal matrix such that

R My R, = D;. (4.4)

13




Given M; = [I‘j-k];",k=0x the matrices Ry and D; can be computed by the Levinson algorithm, and
by comparing R; with (4.3) one finds that

Pin = X3» OSanandan:Xna

see, e.g., [AG]. We now apply the recursion formula in Levinson’s algorithm backwards in order
to determine R; and D; from the last column of R; and §,. Then the recursion formula is used
forwards to determine Mp. We will also obtain a Hermitian factorization of R¥ R into triangular
matrices.

Backward Levinson algorithm

input: [pjn];‘:o,&n j output: Ry, Dy, Schur paran-ciers {7,}7-, of Mo;
fork:=nn-1n-2..,1do

Tk 1= Pok; Pk-1k-1 = 1;

for j := 1,2, ...,integt part(£) do

solve for p;_1,x—1 and px_1_;k—1 the linear system of equations

[ 1 'Tk] [ Pi-1k-1 ] _ [ Pik ]
M 1) | Pr-1-jk-1 Pr—jk ]’

bx—1:= (8 /(1 = )/ (1 + [ml);

L

Levinson recursion for computing Mo = [u;_4]7;21,
input: Ry, Dy, {v,}}.,; output: {n; ;'l;ol;

po = bo; p1 = —bo7y;

for k:=1,2,..,n—-1do

- k -
l—#k+1 = —5k'1k+1 - Zj:l BiPj—1,k5

Hence My, R;, and D, are computed in O(n?) arithmetic operations from the coefficients of x. Let
Ry and Dy denote the n x n leading principal submatrices of R; and D, respectively. Similarly to
(4.4) we have

R MoRy = Dy. (4.5)

Because M is positive definite, so is Dg. Dé/z can therefore easily be computed. We obtain from

14




(4.1) - (4.2) and (4.5), with R := D}/?R51,
R¥ R = (RTH)T (RTH). (4.6)

The right hand side of (4.6) is a Hermitian factorization into triangular matrices. It cau be computed
in O( n?) arithmetic operations from the coefficients of x.
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