
AVF Control Number: AVF-VSR-176-0888
88-04-05-SIL

I
Ada COMPILER

VALIDATION SUMMARY R..PORT:
Certificate Number: 880613W1.09069
Silicon Graphics Computer Systems

Ada, Version 1.0
IRIS-4D Series Workstation, UNIX System V.3, Release 3.5

Completion of On-Site Testing:
14 June 1988

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081 D T IC

SLECTED

89 2 13 106

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE T FORM

I. REPORT NUMBER (2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 14 June 1988 to 14 June 1989

Silicon Graphics Computer Systems, Ada,
Version 1.0, IRIS-4D Series Workstation (Host 6. PERFORMING ORG. REPORT NUMBER
and Target). ('C'CCi3Lwj. C9Oqq)
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 14June 1988
United States Department of Defense 13. NUMBER O PAGES
Washington, DC 2 301-3081 36 p.

14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) 15. SECURITY CLASS (ofthisreport)
UNCLASSIFIED

Wright-Patterson Air Force Base, 15a. R aFICATION/OWNGRADING
Dayton, Ohio, U.S.A. N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. AB S TRACT (Continue on reverse side if necessary and identify by block number)

Ada, Version 1.0, Silison Graphics Computer Systems, Wright-Patterson Air Force Base, IRIS -4D Series
Workstation under UNIX System V.3, Release 3.5 (Host and Target), ACVC 1 . 9.

DO Pum" 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada Compiler Validation Summary Report:

Compiler Name: Ada, Version 1.0

Certificate Number: 880613W1.09069

Host: Target:

IRIS-4D Series Workstation, IRIS-4D Series Workstation,
under UNIX System V.3, under UNIX System V.3,

Release 3.5 Release 3.5

Testing Completed 14 June 1988 Using ACVC 1.9

This report has been reviewed and is approved.

AcCeSiOn,"to

__ _ _NTIS GRA&I

Ada Validation Facility DTIC TAB

Steven P. Wilson Uiiannolced

Technical Director Just i n. 'atio

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

DiStributiol/_
Availability CodeOs

------Avail£ and/or' Ist special

Ada Validation Organization "Sp a
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joj t Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

2

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-4
1.5 ACVC TEST CLASSES 1-5

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS -
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . • 3-3
3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method 3-4
3.7.3 Test Site 3-5

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report '(VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.',

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

• To attempt to identify any language constructs 3upported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

• To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 14 June 1988 at Mountain View, CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical

1-3

INTRODUCTION

support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the

language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

1-4

INTRODUCTION

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D cests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

T .o brary -- its, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

1-5

INTRODUCTION

place features that may not be supported by all implementations in separate

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Ada, Version 1.0

ACVC Version: 1.9

Certificate Number: 880613W1.09069

Host Computer:

Machine: IRIS-4D Series Workstation

Operating System: UNIX System V.3
Release 3.5

Memory Size: 8 megabytes

Target Computer:

Machine: IRIS-4D Series Workstation,

Operating System: UNIX System V.3
Release 3.5

Memory Size: 8 megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
iri-Lementation. The tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55AO3A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This
implementation processes 64 bit integer calculations. (See tests
D4AOO2A, D4A0O2B, D4AO04A, and D4AO04B.)

" Predefined types.

This implementation supports the additional predefined types
LONGFLOAT, SHORTINTEGER and TINY INTEGER in the package
STANDARD. (See tests B86001C and B86001D.)

" Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC ERROR during execution. (See test
E2410IA.)

" Expression evaluation.

Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

Sometimes CONSTRAINT ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range of
the base type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round to
even. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round to even. (See test C4AO14A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX INT components raises no exception. (See test
C36003A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAX INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERICERROR when the length of a dimension is
calculated and exceeds INTEGER'LAST. (See test C52104Y.)

2-3

CONFIGURATION INFORMATION

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression does
not appear to be evaluated in its entirety before CONSTRAINTERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

2-4

CONFIGURATION INFORMATION

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C355021..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specific-tions for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures and functions. (See
tests LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT 10 can be instantiated with unconstrained array
types and record types with discriminants without defaults. (See
tests AE2101H, EE2401D, and EE2401G.)

Modes IN FILE and OUT FILE are supported for SEQUENTIAL10. (See
tests CE2102D and CE2102E.)

Modes IN FILE, OUT FILE, and INOUT FILE are supported for
DIRECT_10. (See tests CE2102F, CE2102Y, and CE2102J.)

2-5

CONFIGURATION INFORMATION

RESET and DELETE are supported for SEQUENTIAL_10 and DIRECT_10.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL_10 and DIRECT I. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in INFILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See tests
CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct I/O for both reading and writing. (See tests
CE2107F..I (5 tests), CE2110B, and CE2111H.)

An internal sequential access file and an internal direct access
file can be associated with a single external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file can
be deleted for SEQUENTIAL_O, DIRECTIO, and TEXT10. (See test
CE2110B.)

Both temporary sequential files and temporary direct files are
given names. Temporary files given names are deleted when they
are closed. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was

tested, 27 tests had been withdrawn because of test errors. The AVF

determined that 226 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201

executable tests that use floating-point precision exceeding that surported

by the implementation. Modifications to the code, processing, or grading

for 25 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 109 1049 1630 17 18 46 2869

Inapplicable 1 2 223 0 0 0 226

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 __ 9 10 11 12 13 14

Passed 190 499 540 245 166 98 142 326 137 36 234 3 253 2869

Inapplicable 14 73 134 3 0 0 1 1 0 0 0 0 0 226

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A C35502P A35902C

C35904A C35904B C35A03E C35AO3R C37213H
C37213J C37215C C37215E C37215G C37215H

C38102C C41402A C45332A C45614C A74106C
C85018B C87BO4B CC1311B BC3105A AD1AO1A
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 226 tests were inapplicable for the
reasons indicated:

" C35702A uses SHORT FLOAT which is not supported by this

implementation.

" A39005G uses a record representation clause which is not supported
by this compiler.

3-2

TEST INFORMATION

The following tests use LONGINTEGER, which is not supported by
this compiler:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55BO7A B55B09C

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

" C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

" The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 25 Class B tests.

3-3

TEST INFORMATION

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B24009A B24204A B24204B B24204C B2AO03A
B2AO03B B2AO03C B33301A B37201A B38003A
B38003B B38009A B38009B B41202A B44001A
B64001A B67001A B67001B B67001C B67001D
B91003B B95001A B97102A BC1303F BC3005B

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the Ada, Version 1.0 was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Ada, Version 1.0 using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a IRIS-4D Series Workstation host/target operating under UNIX System V.3,
Release 3.5.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the IRIS-4D Series Workstation, and all
executable tests were run. on the IRIS-4D Series Workstation. Results
were printed from the target computer.

The compiler was tested using command scripts provided by Silicon Graphics
Computer Systems and reviewed by the validation team. The compiler was
tested using all default settings.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-4

3.7.3 Test Site

TS NOMTO

Testing was conducted at Mountain View, CA and was completed on 1~4 June

1988.

3-5

APPENDIX A

D~rCLARATION OF CONFORMANCE

Silicon Graphics Computer Systems has submitted the

follow~ing Declaration of Conformance concerning the

Ada, Version 1.0.

A-1

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Lmplementor: Silicon Graphics Computer Systems
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: Ada Version: 1.0
Host Architecture ISA: IRIS-4D Series Workstation OS&VER #: UNIX System V.3,

Release 3.5
Target Architecture ISA: IRIS-4D Series Workstation OS&VER #: UNIX System V.3,

Release 3.5

Implementor s Declaration

I, the undersigned, representing Silicon Graphics Computer Systems, have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler(s) listed in this declaration. I declare that
Silicon Graphics Computer Systems is the owner of record of the Ada language
compiler(s) listed above and, as such, is responsible for maintaining said
compiler(s) in conformance to ANSI/MIL-STD-1815A. All certificates and
registrations for Ada language compiler(s) listed in this declaration shall be
made only in the owner's corporate name.

2z Date:_______
X,.1icon Graphics Computer Systems
James B. Terhorst, Manager, Applications Software Tools

Owner's Declaration

I, the undersigned, representing Silicon Graphics Computer Systems, take full
responsibility for implementation and maintenance of the Ada compiler(s) listed
above, and agree to the public disclosure of the final Validation Summary Report.
I further agree to continue to comply with the Ada trademark policy, as defined by
the Ada Joint Program Office. I declare that all of the Ada language compilers
listed, and their host/target performance, are in compliance with the Ada Language
Standard ANSI/MIL-STD- 1815A.

_______ ____ Date: _ __________

Licon Graphics Computer Systems
James B. Terhorst, Manager, Applications Software Tools

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the IRIS-4D Series Workstation, UNIX System V.3 Release 3.5, are described
in the following sections, which discuss topics in Appendix F of the Ada
Standard. Implementation-specific portions of the package STANDARD are
also included in this appendix.

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;

type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LONGFLOAT is digits 15

range -8.988465674312E+307 .. 8.988465674312E+307;

type DURATION is delta 1.OOOOOE-03
range -2147483.648 .. 2147483.647;

end STANDARD;

B-i

APPENDLX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INUNE.ONLY Pragma

The INTLINE_.ON'LY pragma, when used in the same way as pragma INLflTE, indicates to the
compiler that the subprogram must always be inlined. This pragia also suppresses the genera-
tion of a callable version of the routine which saves code space.

1.2. BUILT.N Pragmna

The BL1LTLN pragma is used in the implementation of some predefined Ada packages. but
provides no user access. It is used only to implement code bodies for which no actual Ada
body can be provided, for example the M.ACH _NECODE package.

1.3. SHARE-CODE Pragma

The SHARECODE pragma takes the name of a generic instantiation or a generic unit as the
first argument and one of the identifiers TRUE or FALSE as the second argument. This
pragna is only allowed immediately at the piace of a declarative iterm in a declarative part or
package specification, or after a library unit in a compilation, but before any subsequent com-
pilation unit.

When the first argument is a generic unit the pragma applies to all instantiations of that gen-
eric. When the first argument is the name of a generic instantiation the pragma applies only to
the specified instantiation, or overloaded instantiations.

If the second argument is TRUE the compiler will try to share code generated for a generic
instantiation with code generated for other instantiations of the same generic. When the
second argument is FALSE each instantiation will get a unique copy of the generated code.
The extent to which code is shared between instantiations depends on this pragma and the
kind of generic formal parameters declared for the generic unit.

The name pragma SHARE...BODY is also recognized by the implementation and has the same
effect as SHARE-CODE. It is included for compatability with earlier versions of M.ADS.

1.4. NOJLMAGE Pragma

The pragma suppresses the generation of the image array used for the IAAGE attribute of
enumeration types. This eliminates the overhead required to store the array in ";'- executable
image.

1.5. EXTERNAL..NAME Pragma

The EXTERNAL.NAME pragma takes the name of a subprogram or variable defined in Ada
and allows the user to specify a different external name that may be used to reference the
entity from other languages. The pragma is allowed at the place of a declarative item in a
package specification and must apply to an object declared earlier in the same package
specification.

1.6. INTERFACE.OBJECT Pragma

The 1lD'TERFACEOBJECT pragma takes the same of a a variable defined in another
language and allows it to be referenced dire 'ly in Ada. The pragma will replace all

B-2

occurrences of the variable name with an external reference to the second, link-argument.

The pragma is allowed at the place of a declarative item in a package specification and must

apply to an object declared earlier in the same package specification. The object must be
declared as a scalar or an access type. The object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

1.7. IMPLICITCODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed
within a machine code procedure. It specifies that implicit code generated by the compiler be
allowed or disallowed. A warning is issued if OFF is used and any implicit code needs to be
generated. The default is ON.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

2.3. IN4LINE

This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The Ada subprograms can be
either functions or procedures. The types of parameters and the result type for functions must
be scalar, access or the predefined type ADDRESS in SYSTEM. An optional third argument
overrides the default link name. All parameters must have mode IN. Record and array
objects can be passed by reference using the ADDRESS attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORYSIZE

This pragma is recognized by the implementation. The implementation does not allow SYS-
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. OPTIMIZE

This pragma is recognized by the implementation but has no effect.

2.8. PACK

This pragma will cause the compiler to choose a non-aligned representation for composite
types. It will not causes objects to be packed at the bit level.

2.9. PAGE

This pragma is implemented as described in Appendix B of the Ada RM.

B-3

2.10. PRIORITY

This pragma is implemented as described in Appendix B of the Ada KM.

2.11. SHARED

This pragma is recognized by the implementation but has no effect.

2.12. STORAGEUN1T

This pragma is recognized by the implementation. The implementation does not allow SYS-
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

2.13. SUPPRESS

This pragma is implemented as described, except that RANGE_.CI-ECK and
DWISIO'_CHECK cannot be supressed.

2.14. SYSTEM.NAME

This pragma is recognized by the implementation. The implementation does not allow SYS-
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation- Dependent Attributes

3.1. P'REF

For a prefix that denotes an object, a program unit, a label, or an entry:

This attribute denotes the effective address of the first of the storage units allocated to P. For
a subprogram, package, task unit, or label, it refers to the address of the machine code associ-
ated with the corresponding body or statement. For an entry for which an address clause has
been given, it refers to the corresponding hardware interrupt. The attribute is of the type
OPERA.ND defined in the package MACINTECODE. The attribute is only allowed within
a machine code procedure.

See section F.4.8 for more information on the use of this attribute.

(For a package, task unit, the 'REF attribute is not supported.)

B-4

4. Spec 'ication Of Package SYSTEM
package SY51W.
in

type NAME is (S0140 3

SY3tgu'~. ~constant MA14E S0141);

STOWE-LNI? : constant :- 8,
M~vRYS Z :constant 16..777..Z16;

-System-Dependent Named Numnbers

NON.INPT : constant -2..147.A83_.648;
MAY.1NT .constant .-147.483_.647;
NiXPIOITS constant 1S;
N4%Xj.ANIS SA constant -- 31;

FINE-DELTA constant .*-3)
710C. constant -0.01;

-Other Systoo-dopendent Declarations

subtype PRICRITY is INTO range 0 .. 99;

MAXYtR...SIZE : integer :-641024;

type ACES is private;

N0AR:constant ACCRSS;

function PMI~CAL_.ADESS(I: fNTCE) return AWMS
funct ion AID...PTCA. B: ACES) return B.LAJ;
function AM-TA B: ADDRSS) return BCOLEAS;
function ACG(A. B: ACORES) retnrn 9CCLEANd;
function AlCPJE(A. B: ACCRSS) retnrn BCOLZAN;
function AMPDIPF(A, B: ACORS) return IN13E;
function INRAM(A: ADOMS; INM: tN~TW) return ACRESS;
function D (ACA: ACCISS; DC: INTWE) return ACOMS;

function *>(A. 13: ADDES) return BCMEAN retnms* AMR-o;
function 'c*(A. U: ACCESS) return B02W~ rename AR.7;
function '>-*(A. B: ACCSS) return BC2..EA renames AMR-G;
function "c.CA. B: ADDISS) return BCCLAN renames ACCIR-E;
function '-'(A, 8: AOES) return INEC rename AM..DIFF;
function *-(A: AMS; INCtR: INTEIE) return AMM renames INRACC;
function *-'(A: ACFS; OEM IlTC) return ACS renames DSRACR

pram jul ino(AC...t2T);-

pram iml ine(AR-G);
pram int ine(AUR-E);
pram ini ins(AMP-DlFF);

pram inlize(PHYSIChI..AES);

private

type AEMS is new integer;

N0AR:constant AMMS :- 0;

end SYS7Tht;

5. Restrictions On Representation Clauses

5.1. Pragma PACK
Ar-ray components less than STORAGE-JN1T bits are packed to the next highest power of 2
bits. Objects and larger components are packed to the nearest whole STORAGE-UNIT. In
the absence of pragma PACK record components are padded so as to provide for efficient
access by the target hardware, pragma PACK applied to a record eliminated the padding
where possible. Pragma PACK has no other effect on the storage allocate for record com-
ponents a record representation is required.

5.2. Record Representation Clauses
For scalar types a represenation clause will pack to the number of bits required to represent
the range of the subtype. A record representation applied to a composite type will not cause
the object to be packed to fit in the space required. An explicit representation clause must be

B- 5

given for the component type. An error will be issued if there is unsufficient space allocated.

5.3. Address Clauses

Address clauses are supported for variables and constants.

5.4. Interrupts

Interrupt entries are supported. The value given in the address clause represents a run time
system signal number.

5.5. Representation Attributes

The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels
Entries

6. Conventions for Implementation- generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address clauses are supported for constants and variables.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of I/O Packages

Instantiations of DIRECT-1O use the value MAX..RECSIZE as the record size (expressed in
STORAGELNITS) when the size of ELEMENTTYPE exceeds that value. For example for
unconstrained arrays such as string where ELEMENT-TYPE'SIZE is very large,
MAXY.ECSIZE is used instead. MAX..RECORDSIZB is defined in SYSTEM and can be
changed by a program before instantiating DIRECTJO to provide an upper limit on the
record size. In any case the maximum size supported is 1024 x 1024 x STORAGEUJN1T bits.
DIRECT.O wiU raise USE.ERROR if MAX..RECSIZB exceeds this absolute limit.

Instantiations of SEQUENTIAJ,_JO use the value MAXRECSIZE as the record size
(expressed in STORAGE-UNITS) when the size of ELEMENTTYPE exceeds that value.
For example for unconstrained arrays such as string where ELEMENTTYPE'SIZE is very
large, MAX..RECSIZE is used instead. MAXY.ECORDSIZE is defined in SYSTEM and
can be changed by a program before instantiating INTEGERJO to provide an upper limit on
the record size. SEQUENTIAL.IO imposes no limit on MA.X..RECSIZE.

11. Implementation Limits

The following limits are actually enforced by the implementation. It is not intended to imply
that resources up to or even near these limits are available to every program.

B-6

11.1. Line Length

The implementation supports a maximum line length of 500 characters including the end of

line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x STORAGEJNTI"S. The
maximum size of a statically sized record type is 4,000,000 x STORAGE-UNITS. A record
type or array type declaration that exceeds these limits will generate a warning message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGESEZE length specification every task except the main
program is allocated a fixed size stack of 10,240 STORAGEUNTS. This is the value
returned by T'STORAGESIZE for a task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGESIZE length attribute the default collection size for
an access type is 100,000 STORAGEUNT S. This is the value returned by
T'STORAGESIZE for an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE-UNITS for objects declared statically
within a compilation unit. If this value is exceeded the compiler will terminate the compilation
of the unit with a FATAL error message.

B-7

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names

before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG IDI 0_.498 =>'All 499 =>Ill)

Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (l..498 =>'A', 499 >'2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (l..249 I 251..499 =>'A', 250 =>'3')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (l..249 I 251..499 >'A', 250 =>'4')
IdentifLier the size of the
maximum input line length with
varying middle character.

$BIGINT LIT (l..496 :>0', 497..499 =>"298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT (1..493 =>,of, 4 9 4 .. 4 9 9 ->"69.0E1")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRINGI (1-•250 =>'A')
A string literal which when
cat enated with BIG STRING2
yields the image of BIG IDI.

$BIGSTRING2 (1..248 =>'A', 249 =>'i')
A string literal which when
catenated to the end of
BIG STRING1 yields the image of
BIGIDI.

$BLANKS (l..479 =>' ')
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 2147483647
A univ-rsal integer
literal whose value is
TEXT I0.COUNT 'LAST.

$FIELD LAST 2147483647
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILENAME WITHBADCHARS "/illegal/filename/2{]$%2102C.DAT"
An external file name that
either contains invalid
characters or is too long.

$FILENAMEWITHWILD CARD CHAR "/illegal/filename/CE2102C*.DAT"
An external file name that
either contains a wild card
character or is too long.

$GREATERTHANDURATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

TEST PARAMETERS

Name and Meaning Value

$GREATER_THANDURATIONBASE-_LAST 10_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGALEXTERNAL FILE NAMEI "/no/such/directory/ILLEGALEXTERNALFILENAMEl
An external file name which
contains invalid characters.

$ILLEGALEXTERNAL FILENAME2 "/no/such/directory/ILLEGALEXTERNALFILENAME2
An external file name which
is too long.

$INTEGER FIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER LAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLAST PLUS 1 2_1147_483648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHANDURATION -100_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value

in the range of DURATION.

$LESS THAN DURATION BASE FIRST -10 000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAXDIGITS 15
Maximum digits supported for

floating-point types.

$MAXIN LEN 499
Maximum input line length
permitted by the implementation.

$MAX_INT 2114714836147
A universal integer literal

whose value is SYSTEM.MAXINT.

$MAX INTPLUS_1 2147483648

A universal integer literal
whose value is SYSTEM.MAX INT+1.

C-3

TEST PARAMETERS

Name and Meaning Value

$MAXLENINT BASED LITERAL (1.2 > "2:", 3-.496 => 'o,
49T..499 => "11:")

A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAXLENREALBASEDLITERAL (1..3 => "16:", 4..495 => '0',
496..499 => "F.E:")

A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX STRING LITERAL (1 => #"It 2..498 => 'A', 499 => 'f"t)

A string literal of size
MAX IN LEN, including the quote
characters.

$MIN NT -2_ 147483_-648
A universal integer literal

whose value is SYSTEM.MININT.

$NAME TINYINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORTINTEGER,
LONG-FLOAT, or LONGINTEGER.

$NEG BASED INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

" E28005C: This test requires that "PRAGMA LIST (ON);" not
appear in a listing that has been suspended by a previous
"PRAGMA LIST (OFF);"; the Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

* C34004A: The expression in line 168 yields a value outside
the range of the target type T, but there is no handler for
CONSTRAINT-ERROR.

" C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

" A35902C: The assignment in line 17 of the nominal upper
bound of a fixed-point type to an object raises
CONSTRAINT ERROR, for that value lies outside of the actual
range of the type.

" C35904A: The elaboration of the fixed-point subtype on line
28 wrongly raises CONSTRAINTERROR, because its upper bound
exceeds that of the type.

" C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its compatibility is checked against
that of various types passed as actual generic parameters,
may, in fact, raise NUMERICERROR or CONSTRAINTERROR for
reasons not anticipated by the test.

D-i

WITHDRAWN TESTS

• C35AO3E and C35AO3R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point tyne with a
null range, but the Ada Standard does not support this
assumption.

. C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

• C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINTERROR.

. C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

. C38102C: The fixed-point conversion on line 23 wrongly
raises CONSTRAINTERROR.

. C41402A: The attribute 'STORAGESIZE is incorrectly applied
to an object of an access type.

•C45332A: The test expects that either an expression in line

52 will raise an exception or else MACHINEOVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINE OVERFLOWS may still be
TRUE.

• C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

. A741o6C, C85018B, C87BO4B, and CC1311B: A bound specified in
a fixed-point subtype declaration lies outside of that
calculated for the base type, raising CONSTRAINT ERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

* BC3105A: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

• AD1AO1A: The declaration of subtype SINT3 raises
CONSTRAINT ERROR for implementations which select INT'SIZE to
be 16 or greater.

" CE2401H: The record aggregates in lines 105 and 117 contain
the wrong values.

" CE3208A: This test expects that an attempt to open the
default output file (after it was closed) with mode IN FILE
raises NAME ERROR or USEERROR; by Commentary AI-06048,
MODEERROR should be raised.

D-2

