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Theoretical and Experimental Studies of Cooperative Fracture
in
Overconsolidated Clays

Abstract
by

Alan J. Lesser

The geotechnical engineering profession is quite familiar with stiff
fissured and jointed clays, where discontinuities are found on a macroscopic
scale. Until recently, however, there has not been a systematic investigation of
the crack propagation phenomena involved in the failure of such clays. This
thesis presents a fundamental investigation in an effort to understand, describe
and quantify the mechanisms involved in the process; the ultimate goal being to

develop a constitutive model which depicts the fracture process in these clays.

The study concentrates on a Mode II type of fracture that the author
has been able to induce in a specimen with the configuration of a notched, thin,
long, hollow cylinder subjected to a hydrostatic stress and pure torsion. Within
the stress concentration field, a damage zone (process zone) is identified. The
kaolinite clay is quantifiably characterized in both its undamaged and damaged
states. Micromechanisms responsible for macroscopic irreversible deformation

are identified. A comprehensive stress and energy analysis is performed in the




vicinity of the damage zone. And finally, a methodology for evaluating a
constitutive law is introduced and applied to the case of overconsolidated clays.

The methodology describes the fracture process through the laws of

thermodynamics of irreversible processes in an elastic continuum with damage.
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Chapter 1

Introduction

1.1 Progressive Failure in Overconsolidated Clays

A characteristic common to many stiff clays is that they are

overconsolidated. The rebound that takes place during a stress release often

results in small fissures or cracks. As a consequence, many clays exist in a
fissured state (1,2,19,21). The initiation of cracks in clay can be chemically
induced as in the case of syneresis cracks {16). In general, any depositional
process followed by a diagenetic or tectonic process can give rise to

macrostructural features like fissures (13,14).

Once a crack is initiated, the stress concentration in the vicinity of the
crack tip may cause a substantial reduction in available strength of the intact
clay. This has been understood by the geontechnical profession for years. In
1936, Terzaghi (22) gave the some of the first quantitative data on the influence
of joints and fissures on the strength of clays. He illustrated that such features
are characteristic of overconsolidated clays and that the overall strength of the
"stiff fissured clays" could be as low as one fifth to one tenth the strength of the
intact clay. Similar findings were published by Skempton, Schuster, and Petley




when they studied the joints and fissures in London Clay (21).

Studies describing the behavior of fissured clays and, in general,
overconsolidated clays with any type dislocations are warranted when reviewing
the case histories of progressive slope failures. In Bjerrum’s publication on the
"Progressive Failure in Slopes of Overconsolidated Plastic Clay and Clay
Shales" (2) he categorized failures in 60 individual case histories with respect to
the type of the clay in which the failure occurréd. In his paper, the term
weathering was used to describe all changes in the upper layer of clay, including
physical changes that do not originate from climatic conditions. Two phases of
weathering were identified; the first, called disintegration, involves the
breakdown of the diagenitic bonds. The second phase involves chemical changes
and decomposition of the minerals. Bjerrum concentrated his attention on the
first of these two phases. From his reported observations of the weathered clay

he noted : This zone in general will have a system of open cracks.

Bjerrum’s findings showed that the greatest number of slides (about
55%) had occurred in a zone of weathering in overconsolidated clays with strong
diagenitic bonds. The next largest group (about 35%) proved to be in
overconsolidated clays with weak bonds. In the second largest group Bjerrum
found it difficult to differentiate whether the slides occurred in unweathered or
weathered material. The remaining 10% of the study sample were slides that
occurred in unweathered material of overconsolidated clay which has high

diagenitic bonds.




In general, slope failure can be categorized into basic types of mass
movement. Eleven basic types including multiple and complex landslides are
shown in Fig. 1.1 (1). Researchers have also found that different types of clays
tended to fail in different types of mass movements. A table which includes the
type of movement, the type of clay and location, and reporting author(s) was
summarized in (1) and is reproduced here in Table 1.1. According to Attewell
and Farmer (1), Skempton and Hutchinson found "that the rotational form of
multiple retrogressive slides occur most frequently on actively eroding, high
relief slopes in which a thick stratum of overconsolidated fissured clay or clay

shale is overlain by a thick bed of more competent rock.

Ultimately, geotechnical engineers realized the importance of
incorporating cracks and other types of dislocations into the conventional
constitutive models. Conventional failure criteria such as Tresca, Mises, or
Coulomb may be appropriate for yield dominant failures, however they are not

appropriate for describing the brittle mechanisms of failure.

In order to understand the mechanisms involved in progressive failure of
overconsolidated clays, various types of research evolved. Much of the
published work appears in the form of observational data; some appears in the
form proposed models. In the next few pages some of these approaches will be

introduced and commented on.




In 1969, Skempton and his coworkers (21) defined a classification system

for discontinuity types. In this study, five types of discontinuities were

distinguished. These five classifications are briefly listed and described as:

1)

2)

3)

4)

Bedding —  a discontinuity with a gently undulating surface
having a somewhat rough or bumpy texture.

Joints — Predominantly vertical and usually between 1 and 4
ft. high, and up to 18 ft. long with a pronounced
trend to orthogonal directions.

Sheeting — Similar to Bedding except they dip (usually
between 5° and 150 ). They are also
classified as low angle joints.

Fissures — Planar or conchoidal fractures, rarely more
than 6 in. in size with a matt surface or
texture. They also show scarcely any
preferred orientations apart from the clear
tendency to concentrate in sub—horizontal
planes more or less parallel to bedding. The
number of fissures per unit volume increases
and their size correspondingly decreases as
the upper surface of the clay is approached.

Faults - Large discontinuities with‘sligﬁtiy polished surfaces.
Usually, 5~10 mm of gouge clay evident on the
shear planes.

It should be noted that this classification system is predominantly designed for

site investigation information and, accordingly, all features described here are

macroscopical anomalies.

In Laboratory observations, Skempton (20) also identified five stages in




the shearing deformation of stiff clay (see Fig 1.2). The first is defined as
continuous nonhomogeneous strain. The second is the creation of inclined
surfaces ranging between 10° and 300. The third acknowledged the creation of
Reidel shears. With further movement, the Reidel shear is no longer
kinematically admissible and the new parallel or subparallel surface is created.
And finally, the slip surface undergoes appreciable flattening as a result of still

greater movements.

In 1970, Lo (10) proposed a technique to accommodate for size effect in
fissured clay and presented complementary test results. Also in his paper, Lo
described a computational procedure to determine the operational strength of
fissured clay. This computational procedure generally relates to the probability

of encountering a critically oriented crack.

Lo contributed another approach in 1973 (11) with a finite element
analysis solution to progressive slope failure. For his soil model, Lo used a
strain—softening behavior similar to that expected from a shear box test. A
typical slope was analyzed repetitively while certain parameters were selectively

varied and general comments were made on the results.

Other researchers focused their attention on the micromechanisms
responsible for failure. In 1967, Morgenstern and Tchalenko (14) provided an
excellent report on the microscopic structures observed in kaolin subjected to

direct shear. They identified two distinct regions in the clay. The first is




referred to as the original soil fabric and describes the microstructure of the
material subjected to environmental conditions and its sedimentary history.
The second region is referred to as the shear—induced fabric. This region
describes the microstructure of the material after post depositional shear strains
have been induced. Morgenstern and Tchalenko included micrographs from
laboratory experiments describing characteristics of the original fabric and the

shear induced fabric resulting from shear box tests.

More recent investigations include the application of classical fracture
mechanics as applied to a linear elastic material. Of interest in such studies is
information about the crack propagation rate, direction, and critical crack
length for various modes of fracture. A fracture mode designates geometrically
the separation between crack surfaces. In general, a crack propagating in any
given direction can be described as a combination of three fundamental modes

of fracture. These fundamental modes are shown in Fig. 1.3.

Based on the qualitative descriptions of the failure mechanisms
responsible for progressive failure, Palmer and Rice (15) suggested that sliding
occurs on concentrated slip surfaces. Using concepts from fracture mechanics
(i.e. the J—integral), attempts were made to assess the time dependence
governing the propagation rate of a particular shear band. The assumed model
used for the shear band was very similar to the cohesive force models (i.e.

similar the models proposed by Barenblatt and Dugdale).




Their model asserts that there is a fixed linear relationship between the
shear stress in the material and the displacement required to produce it(e.g. the
stress—displacement relationships obtained from shear box tests). Since
displacement is the integral of the strains over a given region, an immediate
consequence is that size effects will occur (i.e. the assumption of a relation
between shear stress and shear displacement introduces a characteristic length
into the material description). Specifically, the size effect appears in the
resistive part of the crack driving force equation. In addition, Palmer and Rice
give advice for experimentally obtaining the energy release rate in an
approximate manner by computing the energy under the unloading portion of
the stress—strain curve in a particular shear box test. Other assumptions made
in the shear band analysis include the application of the asymptotic stress
distribution in the vicinity of the slip surface (this assumption implies a
negligibly small zone of deformed material in the vicinity of the slip surface
tip).

In 1985, Saada, Chudnovsky, and Kennedy (17) published results for the
determination of the critical stress intensity factors (fracture toughness) Kie
and Kpy c The samples used in the for the Mode I investigation were hollow
disks and the specimens used for the Mode II investigation were long hollow
cylinders. The Mode I specimens were tested under fatigue loading conditions

and the Mode II specimens were tested monotonically.

From these tests information regarding critical crack lengths was




obtained and their results were applied to the example of a critical crack length
for an infinite slope at various angles of orientation. Also included was a brief

outline for a thermodynamic description of the fracture process.

Other recent contributions include the investigations performed by
Vallejo (23,24). His examinations concentrated on defining the direction of
crack propagation under various modes (including mixed modes) of fracture.
He determined that the crack propagation generally followed the direction of

the maximum shear stress irrespective of the notch orientation.

1.2 Previous Work

The initial stage of this research began in 1983 with experimental
evaluation of the critical stress intensity factors for both Modes I and I (KIc
and Ky c)‘ The research work was performed by Mark Kennedy under the
direction of Drs. Saada and Chudnovsky. Results following this research were

published in (17).

In Kennedy’s examination of Mode I behavior, either static or dynamic
air pressure was applied by way of a membrane inserted along the inner surface
of a hollow clay disk (see Fig. 1.4). A crack, initiated from a notch on the inner
surface, was allowed to propagate in a stable manner until a critical crack

length was reached. Records of the critical crack lengths were documented.




This information was then used with a Green’s function to compute the critical
stresses and stress intensity factor. However, the Green’s function used was
initially intended for a strip (not a hollow disk)

having the same stress distribution of a hollow disk.

In the Mode II study, Kennedy used a sample configuration in the form
of a notched long hollow cylinder. A monotonic torsional couple was applied to
selected samples and test results were documented. The test findings were

processed via the solution proposed by Erdogan and Ratwani (8) for Ky o

In August of 1985, Majd Sharaf (18) completed additional research
focused on the description of the kinematics of fatigue crack propagation of stiff
clays. He augmented, his study by also considering the effects of variable
overconsolidation ratios. His experimental studies were performed on specimens

similar to Kennedy’s for both Modes I and II.

1.3 The Concept of Cooperative Fracture and its Propagation

The significant role played by microdefects (damage) in the process of
crack formation and growth is commonly recognized. In general, two extreme
cases regarding the influence of defects in the fracture process are distinguished.

Modeling of these two cases requires essentially different formalisms.
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Case 1 — A crack propagates through a pre—existing field of defects

i.e., a pre—existing strength field) causing negligible changes in the field.

he fluctuation of the microdefect field is directly reflected in the
stochastic features of the fracture surfaces and also leads to the scatter of
experimentally observed fracture parameters (critical crack length,
critical load, etc.). The fracture is characterized by a single path
phenomenon and a probabilistic approach seems most adequate under
these circumstances.

Case 2 — The intensity of damage formed as a response to the stress
concentration at the tip of a propagating crack is much greater than the
intensity of the pre—existing damage. The crack propagation is then
inseparable from the evolution of damage accompanying the crack. The
damage accompanying the crack is often referred to as the active zone,
the process zone, or the damage zone. This strongly cooperative
phenomenon is modeled with a theory based on thermodynamics of
irreversible processes. :

A common mistake is to refer to non—cooperative fracture as brittle and

similarly, to refer to cooperative fracture as ductile. However, the words brittle
and ductile are commonly used in strength of materials to describe the
micromechanisms of failure in a given material. That is, a brittle material fails
in tension and a ductile material fails in shear. For example, if a crack
propagates symmetrically in a single path while being tested in Mode II, then
the failure mechanism is predominantly ductile while the fracture process is
non—cooperative. Similarly, many materials like polystyrene exhibit highly
cooperative fracture, while the failure mechanism is predominantly brittle

(3,6,12).

Cooperative fracture is identified by a crack preceded by intensive
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damage. The term damage is used here in a generic sense and it should be
expected that the nature of damage varies between materials. When the
damage ahead of the crack tip reaches a critical level, local instability takes
place and the crack jumps within the damage zone to a new stable
configuration. This crack advance, in turn, leads to the changes in the stress
field. The latter causes further damage accumulation until a new local
instability is reached. Thus we visualize the crack and surrounding damage
propagation as a sequence of local instabilities and slow damage accumulation
processes. Consequently, a repetition of the above described events on a
microscopic scale results in a continuous stable crack propagation process on a
macroscopic scale. The concept of self similar events constituting the fracture

process allows one to develop the mathematical model of the phenomena.

Chudnovsky has shown that a description of the fracture process within
a thermodynamic framework ultimately leads to an elegant model which
realistically depicts stable crack propagation as well as provide a criteria for
crack stability. He outlined these concepts in the context of different materials
ranging from polymers to high alloy steels (3,4,5,6,7). The model generated
from this framework is commonly referred to as the Crack Layer (CL)

approach.

The crack together with its surrounding damage are referred to as a
Crack Layer. Within the CL, microdefects can be observed. Depending on the

material in which the CL is formed, these defects may be observed in the form
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of shear bands, crazes, microcracks, voids or material densifications. For
example, Fig. 1.5 exhibits a layer of extensive crazing accompanying fatigue
crack propagation in polystyrene (12). Similar features of fracture propagation
have been observed recently in stiff clays tested in Mode II. Fig. 1.6 shows the
damage surrounding a propagating crack in a notched hollow cylinder subjected
to cyclic torsional stresses. More will be said about Fig. 1.6 which is presented

at this stage only to demonstrate the applicability of the concept to O.C. clay.

There are two complementary approaches to characterize crack layer
propagation. One which can be called the micromechanics of crack layer, deals
with modeling the stress—strain fields due to the interaction of the main crack
with the surrounding damage. This approach requires detailed description of
the surrounding damage as well as the geometry of the crack and stress—strain
fields. Also, knowledge of the conditions for local instability and a detailed
description of the crack jump from one stable configuration to another, are
required. This approach is extremely tedious both from a theoretical and

experimental point of view.

The second is a thermodynamic approach which describes the system in
global terms based on the first principles, and pays no attention to the details of
the fracture process. This phenomenological way is based on the general

framework of the thermodynamics of irreversible processes.

For the model proposed and the material under consideration, damage is
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represented by densified regions (these densified regions will be described in
detail later), which can be visualized as three dimensional defects. Specifically
we use the total volume of damaged material within a unit volume as the
damage density p with the dimension mm3/mm3. As will be shown later, the
damage density in the vicinity of the main crack can be directly evaluated from
optical observations using an image analyzer. Fig. 1.7 shows schematically the
damage zone surrounding and preceding a generic crack trajectory. The front
zone of the CL within which damage accumulation is non zero is defined as the

active zone. In this zone p > 0 and p > 0.

During unloading conditions the rate of damage change is negligible and
as a result a wake zone appears as a trace of the active zone propagation. In
this zone p > 0 but p = 0. The active zone is confined by the leading edge T ¢
and the trailing edge I’ £ 8 shown in Fig. 1.7. If the increments of CL advance
are small compared to the CL size, affine transformation of the active zone can
reasonably approximate the actual evolution of damage. Accordingly, for an
active zone of length £, the rate of translation Z can be considered as a
thermodynamic flux. The law of CL propagation can be established by relating
the fluxes to the reciprocal forces (the causes) within the framework of

irreversible thermodynamics.

Chudnovsky has shown (3,4,6,7) that the cooperative fracture process
can be modeled thermodynamically and is based on the following governing

equation.




[L1] Si= 1 X0+ b X 4 x0T

where 5; is the global entropy production, ¢, w, and d are thermodynamic
fluxes, and the X’s are their reciprocal forces. The fluxes, describe the

elementary movements of the Crack Layer shown in Fig. 1.7 and are defined as:

z —  Rate of Translation
W - Rate of Rotation
d - Rate of deformation

The conjugate forces X decompose into two parts:

[1.2] X=A-1R

A is referred to as the active part and R is called the resistive part of a
particular thermodynamic force. The active part of a thermodynamic force is
evaluated by assessing the potential energy release associated with it’s
particular elementary movement. The resistive part, R, describes the amount
of energy consumed during the movement, and v is referred to as the specific

energy for damage formation.

The thermodynami forces (Equation 1.2) resemble the criterion for

crack instability in a Griffiths crack (9). The Griffiths crack instability
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condition can be expressed as:
[13] g—27= > 0 unstable
< 0 stable

#in Equation 1.3 is the elastic energy release rate and 2 is the surface energy
of the new crack surface. It should be noted that Equation 1.3 represents only
the necessary condition for instability (i.e., a sufficient condition must also be
met). When comparing Equation 1.2 with 1.3, one can appreciate the duality
that exis‘s between the Crack Layer theory and other theories describing crack
instability. That is, YR — A (27— ) represents the energy barrier which must

be overcome for movement of the damage zone (propagation of an ideal crack).

1.4 Thesis Outline

Consequently, the ultimate goal of this research is to:

Develop a constitutive model which describes the Mode II fracture
process in overconsolidated clays. This is completed by describing the
thermodynamic forces thereby enabling predictions of the fluxes
(elementary movements).

In order to achieve this goal, we identify five main tasks which must be

completed.




1)

2)

3)

4)

5)
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Identify the nature of defects. That is, we must identify damage
in overconsolidated clays. This requires characterization of both
the damaged and undamaged states of the material.

Characterize the distribution of defects. The distribution
characterization is required before estimates of the active and
resistive parts of the thermodynamic forces can be evaluated.
The active part requires knowledge of the damage configuration,
and the resistive part requircs information about the rate of
damage accumulation.

Stress and Energy Analysis on Crack—Damage Interaction. A
semi—empirical stress analysis should be performed to estimate
the amount of energy release associated with particular
movements observed in the experiment.

Integral Characterization of the zone of damage. This is
performed experimentally with techniques in quantitative
stereology and is used to compute the resistive parts of the forces.

Integral Evolution of Damage with respect to time. Once steps 3
and 4 are accomplished at various time intervals, the

thermodynamic forces can be evaluated whereby computing =, the
specific enthalpy of damage. < is considered a material property
in the Crack Layer theory. Next, the constitutive law can be
expressed in terms of the fluxes and forces.

The principal objective of this thesis is to investigate the necessary aspects of

the above outlined research as applied to overconsolidated clay subjected to

Mode—II cyclic loading.
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Figure 1.5: Damage preceding a main crack in polystyrene under Mode
I fatigue loading.
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Figure 1.7: Crack Layer damage zone identification.
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Chapter 2

Experimental Procedures

2.1 Introduction

The information contained herein describes the laboratory procedures
used in the sample preparation and testing as well as some of the data
processing performed on this project. It should be noted that only descriptions
pertaining to the successful completion of a laboratory test are included and not
information about particular procedures involved in the data processing. For
example, information regarding a description of the image analyzer, its
capabilities and its general use are described in this chapter, but information
regarding the measurement of particular features using this tool are dealt with

individually.

A numbering system used throughout this report was adopted for
specimen identification. Each cylinder identification number contains two
different numbers separated by a slash (=). The first number identifies the
batch from which the cylinder was cut and the second number identifies the

cylinder within that batch. For example, Cylinder 2—3 was the third specimen
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tested from batch # 2. Typically, four cylinders can be fashioned from one
batch. However, there are instances where a particular cylinder was lost in the
manufacturing, consolidating, or impregnation process. Mention of these

mishaps will be made when appropriate.

2.2 Material Properties

The kaolinite used in these experiments has the following properties:
Liquid Limit = 56.3 %
Plastic Limit = 37.5%
Other pertinent information regarding a spectral analysis for the chemical

composition of this material are listed in Table 2.1.

2.3 Initial Consolidation

The first step is to produce a large block of clay (referred to herein as a
batch) strong enough to withstand a machining process. Specifically, a
machining process is used to manufacture the notched hollow cylinders.

Typically, each batch is large enough to provide four cylinders.

Seventeen pounds of the kaolinite clay powder (described in Section 2.2)

are mixed with an equal weight of de—aired distilled water to form a slurry.
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This corresponds to a water content of approximately 100% (about twice the
liquid limit). The kaolin powder is placed in a 20 cm. diameter by 43 cm. high
(8.0 in. diameter by 17.0 in. high) consolidometer. Next, the water is slowly
and steadily drawn into the consolidometer by using a vacuum. After the
proper amount of clay powder and water mixture is attained, mixing is
performed manually until 2 consistent slurry is achieved.

Once the mixing is complete, the consolidation pressure is increased at a
constant rate of 4.7 kPa/hour ( 0.68 psi/hour) while allowing drainage on both
the top and bottom of the sample (see Fig. 2.1). After a five day waiting -
period, a final vertical pressure of 630 kPa (90 psi) is reached. This maximum

pressure is then allowed to remain on the batch for an additional 48 hours. -

Afterward, another 24 hours is allowed for rebound.

2.4 Cylinder Preparation

Four 7.2 cm (2.83 inch) diameter solid cylinders are cut from the batch.
Each cylinder is then wrapped in cellophane and placed in a humidity chamber

for storage.

When a test is scheduled, a solid cylinder is removed from the humidity
chamber for further sample preparation. A 5.1 cm (2.0 inck) diameter core is

removed using a wire cutter and a special mold. Next, the ends are trimmed to
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give an 11.4 cm (4.5 inch) high hollow cylinder. The cylinder is then placed in
a special lathe and the outer wall is carved to the configuration shown in Fig.

2.2.

The next step involves cutting a 3.8 cm (1.5 inch) circular notch at the
mid-height position (see Fig. 2.2). Once the notch is cut, two thin teflon sheets
cut to the same geometry are inserted into the notch. This is done to prevent

the notch from closing and healing during the next consolidation stage.

At this stage, a grid consisting of orthogonal lines is stamped on the
cylinder. This grid is located in front of one of the notch tips. It is important
here to use an alcohol based ink since the ink grid must dry on the clay sample
while the sample remains moist. During the fatigue test the lagrangian grid is
photographed and the configuration of subsequent microcracks can be

determined.

2.5 Final Consolidation

After a particular specimen has been prepared (i.e. cut to the specified
geometry, notched, etc.), it is placed between two rubber membranes and
inserted into a special testing cell shown schematically in Fig. 2.4. The cell is
filled with silicon oil and positioned in the test frame of a pneumatic analog
computer which consolidates the soil under K | conditions (2). This means that

consolidation takes place with no changes in cross section. Basically, the

R
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computer measures the volume of water expelled from the specimen through the
porous stones and drainage lines and moves the crosshead of the loading frame
down to compensate for the volume loss. Independently, the cell pressure is
steadily increased at a constant rate of 50 kPa (7.25 psi) per hour starting at
207 kPa (30 psi) and ending at 620 kPa (90 psi). For this clay, the ratio of the
cell to vertical pressure is 0.47. This ratio is called the coefficient of earth
pressure at rest, K o Since the maximum cell pressure attained is 620 kPa (90
psi), the maximum vertical pressure applied on all samples should be
approximately 1320 kPa (192 psi). Once the maximum pressure is achieved, it
is maintained constant for an additional 24 hours, and afterward, the
consolidation load is removed and the cell pressure is reduced to the test
pressure 24 hours prior to the test. The hydrostatic rebound pressure selected
was either 276 or 207 kPa (40 or 30 psi) depending on the overconsolidation
ratio selected for the particular test. The 276 and 207 kPa (40 and 30 psi)
rebound pressures correspond to vertical overconsolidation ratios of 4.78 and

6.38 respeciively.

It should be noted that the specimens are tapered to a larger cross
sectional area at the edges (see Fig. 2.2). This is done to prevent failure near

?‘a.nd

the grips. As a result, their cross sectional areas varied between 13.78 cm
20.29 cm? (2.13 in® and 3.15 in2). Consequently an average cross sectional area
of 15.41 cm? (2.39 in2) was used when calibrating the analog computer

displacement setting.
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2.6 The Fatigue Test

After the consolidation and rebound process, the specimens are ready to
be tested for fracture studies. The test cell is placed in frame which provides
the researcher with the capability of applying a sophisticated load pattern (1).
For all tests reported herein, however, this system was used to apply a cyclic
torsional couple exclusively. The loading frequency used was typically selected
at 1.0 cycle/minute and applied in a sinusoidal fashion. Nevertheless, some
tests were performed at 0.5 cycles/minute to investigate the effects of the
stress/strain rate on the damage characterization (discussed in later).
Similarly, the amplitude of the applied couple was typically chosen such that a
maximum of 6.0 Newton—Meters (approximately 50 in—1bs) was reached, but
some tests were performed at different amplitudes. The amplitude of the
applied couple chosen was based on a percentage of the required torque to
monotonically fail a similar cylinder prepared under identical conditions.
Details about the loading frequency and magnitude will be provided later in this

thesis prior to discussing the results obtained for each particular test.

2.7 Impregnation

The sample impregnation is performed for two reasons; The first is that

it enables the researcher the capability of cutting and polishing relatively small
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sections without greatly disturbing the particle orientation. The second reason
is that the impregnated sections show the features of interest more readily.
That is, since the kaolin powder is white and the bees wax is dark brown a
natural contrast barrier is defined when identifying which features are clay and
which are wax. Also, it is believed that the wax only replaces the larger voids
(air pockets) in the dried sample and simply surrounds the more densified
regions of clay. Thus what results from a properly impregnated and polished

section is essentially a contrast map of densified features in the material.

After the cylinder is tested under the cyclic torsional couple, it is
removed from the test cell and allowed to air dry at room temperature for a
minimum period of four days. Once the specimen is sufficiently dry, the

impregnation sequence can commence.

Initially, the bee’s wax is raised to a temperature of approximately 1100
Cin a melting pot. Once the temperature is stabilized the level of the molten
wax is adjusted such that the specimen height and the depth of the wax are
approximately the same. Next the specimen is carefully immersed in the wax
and the entire setup is placed in a vacuum chamber. After the vacuum bell is
secured, an applied vacuum of 104 kPa (15.0 psi) is applied for a period of
approximately 2 to 2!/, hours. This is shown schematically in Fig. 2.4 and in
the photograph sequence of Fig. 2.5. Next, the specimens are removed and

allowed to cool for a period of approximately 24 hours before sectioning.
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2.8 Cylinder Sectioning

Sectioning is performed in order to reveal characteristic features in the
interior of the specimen. Once iden-ified, the morphology of these features can
be studied with various techniques available in microscopy. In this report the

majority of studies were performed with a stereoscope.

Prior to sectioning, the specimens were usually photographed and the
section locations were marked with a soft extra—fine marker. Next, three
separate coats of epoxy were applied individually to the inner surface of the
hollow cylinder. The epoxy was applied to rrinforce the clay shell so it would

better withstand the stress levels imposed on it during sectioning.

The rough cutting is achieved with the use of a band saw. The band saw
is only used to reduce the cylinder into pieces small enough to mount in iae
Buehler Isomet Saw grips. Note, that the lowest speed was used to cut with the

band saw and a light steady pressure was applied during cutting.

Refined sections were all made with a Buehler Isomet Saw and a high
concentration diamond tipped wafering blade. Cutting was performed at a
blade speed setting of 4.5 and ethyl—glycol was used for the saw blade
lubricating fluid (see Fig. 2.6). These sections are called "analysis sections" in

this report. The analysis sections were generally cut in either a radial of
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circumferential fashion shown in Fig. 2.7. Typically, the axial and
circumferential sections were all made in the vicinity of the notch tip.
However, some sections were made in regions away from the notch tip either to
define a reference level characterization of the clay or for other related studies

(see Chapters 3 and 4).

Ideally, one half of a cylinder would be s_ectioned circumferentiallyand
the other half would be sectioned in a radial fashion at 5 mm (0.197 in)
spacings. However, in the event that shrinkage cracks or sectioning decimation
eliminate the possibility to obtain both types of sections, a higher priority is
devoted to the radial sections. The radial sections are deemed more important
since they are the type used to reconstruct a quantitative damage evolution for

a given cylinder test (elaborated on in Chapter 5).

2.9 Section Polishing

Once the selected sections are made with the Buehler saw, the sections
are adhered to either a glass or aluminum slide with an epoxy cement. After

the epoxy was given enough time to dry, the polishing can begin.

Polishing is performed on Buehler polishing wheels. The polishing
sequence is performed in two separate stages. The first stage of polishing

consists of a coarse stage and is done to remove some of the cutting scratches as
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well as provide a uniform surface for the microscopic inspection. The second
stage is a fine polishing stage and simply improves the quality of the first stage.
During the first stage, a 800 grit water—resistant polishing paper is used and
during the second stage polishing a billiard cloth polishing cloth is used. In

both cases, cool tap water was used as lubricating fluid during the polishing.

Other helpful hints include the following:

1) Polish the section by applying light pressure and maintain a
steady hand without rotating the wrist.

2) Keep the polishing duration brief (i.e. only allow the section and
the wheel to be in contact for no more than a one second interval)
and maintain cool water on the wheel. If the wax becomes to

warm from the frictional heat distortion of the features can result
from creep of the wax.

2.10 General Use of the Image Analyzer

This section is devoted to providing the reader with a general description
of the Image Analyzer used on this research project. The system was originally
developed for use in the medical research laboratory. The system purchased for

our use consists of the following major components:

1 Nikon Stereoscope with trinocular head
35 mm auto/fixed exposure camera and shell
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Video Camera

Panasonic VHF/CRT Hi-resolution black and white monitor.
Nikon Exposure box

Houston Instruments Digitizing Tablet

HP Vectra (IBM PCAT Compatible).

Interfacing card

HP 7470A plotter

Epson FX286 Dot Matrix Printer.

Bioquant Image Analyzer software.

b 1 €O 00 ~F O OV b €D
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A schematic drawing of the system configuration is shown in Figure 2.8.

This system essentially enables the researcher to accurately measure
irregular features (to 100 microns) as well as to statistically quantify
stereological information. The Bioquant software provides a selection of various
types of measurements and computations which can be made readily while
tracing the shapes of the particles under the microscope. In Addition, the
information is stored in selected arrays for later reprocessing. The reprocessing
portion of this software includes a statistical package which allows the
researcher the ability to extract various test statistics and observe measurement
distributions. Typical information processed during this study include area, and

aspect ratio measurements.

To start the image analyzer, first make sure the hardware (equipment) is
interfaced correctly as shown in Fig. 2.8. The Vectra should be shut off and the
switch located on the back side of the Vectra should be switched to the upward
position. This switch adjusts the video monitor frequency so as to be

compatible with the Panasonic Monitor. Next, the HP monitor should be
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disconnected and the Panasonic monitor should be installed. The third step
involves simply turning on all equipment. At this time the Vectra should boot
up on the Panasonic monitor. After successfully reaching this stage, the user
should simply type "im" for image and press the enter key. This will
automatically start up the Bicquant software. A suggestion is to iry the
tutorial package included with the software until a certain level of confidence is

reached.

References
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Initial Consolidation of Kaoiinite Block
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IMPREGNATION PROCEDURE
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Figure 2.4: Schematic for Specimen Impregnation.
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Figure 2.6:

Buehler Isomet saw used for sectioning the impregaated
clay samples.
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Chapter 3

Micromechanisms of Deformation
in Fracture of
Overconsolidated Clays

3.1 Imntroduction

This chapter is devoted to presenting and describing experimental
observations. These include photographs, optical micrographs and other related
information which illustrate and describe the micromechanisms involved in the

fractare process of overconsolidated clays.

3.2 External Observations

Under the cyclic torsional couple, a zone of damage steadily propagated
around the cylinder. The zone generally consisted of observable discontinuity
lines emanating from the horizontal notch plane ( the direction of the in plane
shearing force) as shown in Figure 1.6. The lines constituting this zone

generally deviated at an average orientation of 200 from the notch plane. Note
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that these lines represent slip surfaces through the cylinder thickness
propagating circumferentially. The envelope of damage could be generally
described as a band symmetrically located on both sides of the notch plane.

Nearly all the rotational deformation and slip occurs in this band.

It should be noted that, in general, no single slip surface dominated
enough to be considered a main crack. Rather, a each surface contributed in a
fashion such that the damage zone appeared to be made up of a complex

arrangement of drdnching cracks.

In order to measure the amount of deformation localized within the
damage zone, an experimental technique was developed. This technique
involves stamping a grid of orthogonal lines on to the specimen prior to testing.
An alcohol based ink is used so that the grid dries while the clay specimen
remains moist (refer to Section 2.4). During the cyclic test photographs (taken
through the plexiglas wall, silicon oil, and the rubber membrane) are taken

during selected stages of the fatigue test.

Photographs illustrating the damage zone evolution through the
lagrangian grid system is shown typically in Figures 3.1 and 3.2. All
photographs in Fig.s 3.1 and 3.2 are taken while the maximum torque is
applied. Notice that the majority of the deformation occurs within the damage
zone. Figure 3.3 illustrates similar localized deformation lines in an un—notched

specimen. That is, the results from Figure 3.3 show that the localized
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deformation can occur in specimens which are fatigued without a prefabricated

notch as a focal point for stress concentration.

3.3 Internal Observations

Except for a few cases, most of the internal observations were performed
after specimens were impregnated. Some of these exceptions include some
preliminary studies performed on a scanning electron microscope (SEM), and a
polarizing optical microscope. However, the majority of microscopic studies
were optical. These observations were generally performed after the clay
specimens were impregnated with bee’s wax (Section 2.7), sectioned with a

Buehler Isomet Saw (Section 2.8), and polished (Section 2.9).

3.3.1 Undamaged Phase

Before damage can be identified and characterized in the kaolinite, the
material must be characterized in its natural state. Actual characterization
studies will be presented in Chapter 4, but it is worthwhile to present

observations at this point.

Kaolinite particles are platelet shaped with typical thicknesses ranging
between 50 and 2000 nm and typical diameters ranging between 300 and 4000
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nm (5). Of the four most common clay minerals; montmorillonite, illite,

chlorite, and kaolinite, kaolinite is the largest.

Clay minerals are formed by one or more of the following processes (4):

Crystallization from solutions.

Weathering of silicate minerals and rocks.
Diagenesis, reconstitution, and ion exchange.
Hydrothermal alterations of minerals and rocks.
Laboratory synthesis.

QU CO DN =

The clay soil fabric has been observed and studied by others (1,2,4,5)
and a scale hierarchy in the mircostructure has been acknowledged. This
hierarchy describes the fashion in which the material fabric is assembled from

microscopic particles. Scale hierarchy has been recognized in other materials as

well.

Initially, the clay particles (10-6 m) are usually aggregated or flocculated
together in submicroscopic fabric units called domains (10-5 m). The domains,
in turn, form together what are called clusters (10-5 to 10-¢ m). And similarly,
the clusters group together to form peds or large clusters (10-4 m). The large

clusters are large enough to be seen without a microscope.

A polished section from an untested hollow cylinder after impregnation is

presented in Figure 3.4. In this micrograph, the kaolinite appears white and the




52

impregnation material (bee’s wax) appears dark brown). Figure 3.4 shows
kaolinite clusters homgenously distributed within a more loosly densified matrix
(water intermixed with loose particles of clay) which is now presumed to be
replaced by wax. Notice that the observed clusters have a characteristic size on
the order of 10-4 meters which compares well with that reported by
others(1,4,5).

3.3.2 Damaged Phase

Figure 3.5 compares two radial sections (described in Section 2.8) cut
from a fatigued cylinder after impregnation; one was sectioned in an undamaged
region, and the other in front of the notch tip. The undamaged section in Fig.
3.5a shows the previously reported clusters homogeneously distributed in the

wax matrix.

The damaged section in Fig. 3.5b indicates substantial morphological
changes due to the applied loading condition. In this region one notices a
change in the size distribution of clusters. A few coalesce to produce larger and
others split into smaller units. Also, one can see the creation of horizontal
strips along which the clusters of clay have aglomerated. Note that these strips
constitute surfaces within the cylinder having the orientations shown in Figures
1.6, 3.1, 3.2. The name adopted by the author for the process producing these
surfaces is Localized Strip Densification or LSD for short.
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Additional tests have indicated that when the loading rate is reduced, a
higher concentration of damage is attained. This has been experimentally
observed in other materials and is in agreement with theoretical considerations
(5). For the case considered here, Figure 3.6 shows a series of photographs
taken of an axially sectioned specimen which was fatigued at a proportionally
lower cyclic load. Three morphologically distinct areas can be identified within
the damage zone. The area closest to the notch tip (denoted as Section A in
Figure 3.6) shows a network of interwoven densified surfaces. Note that no
observable clusters are contained in this region. The second region shows
intermixed clusters and densified lines (LSD’s) as witnessed earlier in Figure

3.5b. Finally, the third region exhibits vertically oriented densified regions.

All of the above changes in the soil fabric are commonly referred to as
damage. Strictly speaking, they are stress induced, morphological

transformations of material at the cluster level.

The broken grid lines in Figures 3.1 and 3.2 provide experimental
evidence that localized irreversible deformation occurs along what appear to be
slip surfaces emanating from the notch tip. Figures 3.5 and 3.6 present material
transformations that occur within the soil fabric inside of the LSD zone. In
order to provide experimental evidence linking the observed damage on the
outside of the cylinder to that occurring within the interior the cylinder, a

photograph was taken of the corner showing the exterior and interior fabric.
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This photograph is included in Figure 3.7 of this thesis. Note that the interior
fabric consists of clusters and loose matrix away from the shp lines and consists

of LSD’s intermixed with clusters within the slip line field.

3.4 Other Observations

While preparing the damage zone in Cylinder 3-3 for sectioning, two
surfaces at approximately 60° from the horizontal notch plane broke free during
handling. The surfaces revealed from this incident indicate what the surface
profile along the LSD’s may be like. Photographs of these surfaces are included
in Figure 3.8 of this report.

Other experimental investigations included fracture studies under a non
cyclic fast loading rate. Observations of the stamped grid deformation at
various time intervals (every 0.5 msec) were aquired with a Spin Physics
SP2000 high speed video camera. The rate of loading (applied torque) was
applied in a approximately linear fashion. The maximum torque applied to the
cylinder was about 18 Nm and the period over which the load was applied was
about 0.25 sec. Results from this study showed a more non cooperative (defined
in Chapter 1) fracture behavior than that observed under cyclic fatigue

conditions. Photographs of selected cycles from this test are given in Figure

3.9.
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Investigations were also performed with the use of an optical polarizing
microscope. Various types of slides were prepared for microscopic studies in
either transmission or reflection. The optical properties of kaolin have been
shown to be bifringent (3). This was reaffirmed with studies performed herein.
That is, depending on the relative orientations of the polarizer and analyzer, the

kaolin fabric would polarize or become extinct.

Studies were performed on impregnated and un—impregnated samples, as
well as fracture surface observations. In general, no difference was noted
between the clusters and LSD’s. However, both showed a preferred anisotropic

orientation.

3.5 Elements of Deformation and Fracture

In summary, the observations to date have shown that undamaged
saturated Kaolinite can be considered as made of two phases. The first phase is
the continuous water medium (which has been replaced by the wax). The
second phase is made of randomly distributed clusters with sizes on the order of
0.1 mm. While it is well known that the particle size is about 0.001 mm, it
appears that the stress induced morphological changes can be studied at the
level of the cluster; even though it is aknowledged that changes may occur
within the clusters. This has implications when one chooses the smallest unit

on which experiments can be conducted to study the mechanical behavior of
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clay (see Section 4.2).

In the vicinity of cracks and under fatigue loading, morphological

changes occur that result in the joining of clusters to form strips (Figs. 3.1

through 3.7). Based on these observations, four micromechanisms responsible

for macroscopic deformation can be recognized:

1)
2)

3)

5)

a) Elastic deformation of both the continuous phase and the clusters.
b) Stress induced morphological transformations resulting in the

growth or decay of clusters in size and in number within the
damage zone.

c) Stress induced morphological transformations resulting in the
creation of LSD’s and networks.

d) Slippage along the LSD’s.
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Figure 3.1:

Damage zone (3D zone) evolution on hollow clay cylinder
ﬂlustratlng the ‘ccalized discontinuities for various cycles.
Initially the gric lines were unbroken and orthogonally
oriented at 1/4" spacings. However, during the fatigue
test they provics a means of megsuring the deformation in
the damage
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Figure 3.3: Qbserved discontizuity lines in an un—notched fatigue
specimen.




Figure 3.4:
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Photograph illustzziing the internal microstructure of the
undamaged clay af~er impregnation. The Kaolinite is
white and the bee’s ‘wax is dark brown. Notice the
undamaged materizi is made up of two phases; the dense
regions of clay callzd clusters, and water matrix which has
been replaced by wzx.
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Figure 3.3:

REGION REGION

- TYPICAL CLUSTERS

LOCALIZED STRIP - _
DENSIFICATIONS

Comparison photcgraph of radial sections in undamaged
(left) and damage< (night) regions of a cylinder. Notice
that the damaged zegion shows stress induced
morphological trazsformations of material from a
previcusly undamsaged state (clusters), to a damaged state
(Localized Strip Tensifications).
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Figure 3.7:
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Photograph of a :orner of an impregnated specimen
illustrating slip Lizes on the outside of the cylinder (left)
and LSD’s interixed with clusters in the interior of the
cylinder (right).
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Chapter 4

Kaolinite Cluster Characterization

4.1 Introduction

Before the damage illustrated in Chapter 3 can be characterized, a
complete characterization of the material in its natural state is required. This
characterization, in turn, can be used as a reference when observing and

analyzing a section of material where damage is expected.

4.2 The Representative Volume

Many continuum theories are based of the zssumption that an idealized
material carn be modeled as a hcmogeneous coutinzous medium. In the context

of continuum mechanics, the material is typically Zefined as follows:

We disregard the molecular structure of meier and picture it as b.ing
without gaps or empty spaces. We further sup~ose that all mathematical
functions entering the theory are continuous functions, ezcept possibly at
a finite number of interior surfaces separating regions of continuity. This
staterment implics that the derivatives of the functions entering the theory

66
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are assumed continuous. This hypothetical continuous material we cell a
continuous medium or continuum (13).

From a material scicntists point of view, all real materials cxist a5 an
ensemble of individual components at one scale or another. A typical

description is given as follows:

Two or more atoms, either of the same kind or of different kinds, are, ti
the case of most elements, capable of uniting with one another to form a
higher order of distinct particles called molecules. If the molecules or
atoms of which any given material is composed of are alike, the material
is a pure substance. If they are not alike, the material is a mizture (1).

In addition to the separate views by which material is defined, further
developments in materials analysis and testing have shown two basic types of
material properties to exist. These can be described as structurally insensitive

and structurally sensitive material properties.

Structurally insensitive properties are those properties that can be
accepted as true material properties. This type of property is identified by its
average response to a particular flux. Examples of such properties are;

permeability, conductivity, density, elastic modulus, etc.

Structurally sensitive properties can be identified as those properties
which depend on an extreme response to a particular flux. And since extreme

responses are structurally dependant, these properties become sensitive to the
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structure. Examples of this type of property are; material st-ength,etc.(5,6).

The objective of this section is to bridge the two definitions of material
by defining the minimum volume (representative volume) of real material that
can be considered when continuum mechanics is applied for structurally
insensitive material properties. We propose a formal definition of a
representative volume (RV) of material and a working definition for the case of

overconsolidated clays.

4.2.1 Concept of a Representative Volume

In a continuous medium, material properties such as mass density,
permeability, elastic compliance, etc., are ascribed to each point within a body.
Similarly, mechanical quantities like stress, strain and energy density can also
be ascribed to single point. If, however, the material is heterogeneous, these
prcoerties become average values ascribed to a corresponding volume of
material. Different philosophies have been proposed to determine effective
properties of heterogeneous materials (2,3,10,11,12,14). Some of the more

common techniques are known as homogenization and smoothing.

Each of these techniques appreciate the associaticn between material
properties and a corresponding minimum volume. Hill (11), provides a -igorous

formalism describing a general free volume. Klimontovich (12) defines a
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correlation volume and radius by introducing a function which is smoothed out

over a volume.

In gereral, a representative volume (RV) for a particular material and
with respect to a particular material property can be described as the minimum
volume for which the average value of this property does not change when
comparison is made with another volume of the same size in the vicinity of the
original volume. The size of 2 RV is determined from the statistical
homogeneity of the material. That is, the RV should be large in comparison to

any distinct aggregates within the material.

With regard to mechanical properties, it is an accepted rule of thumb
that the diameter of a RV of material is approximately one order of magnitude
larger than the characteristic inhomogeneity (e.g.. the characteristic aggregate
size). In many cases, a rigorous assessment of an RV lacks immediate
motivation because the test specimens are many orders of magnitude larger that

the aggregates of the material they are made of.

The author believe that the representative volume for a real material is,
in effect, that which defines the materials existence in terms of continuum
mechanics (7). Thus it is expected that all parameters that are extracted as
material invariants (i.e. density, elastic compliance, Poisson’s ratio etc.) will
have similar distributions and will give rise to the same RV size. This

expectation is based on the following concept: the entity which defines the
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heterogeneous behavior is dictated by the material of each of the individual
components and their respective configuration. Since at the size of the RV, the
configuration is essentially indistinguishable and the individual components
remain unchanged, all global behaviors will be identically invariant. Therefore,
if an RV size for density is defined in clay, it is expected that this same RV size

would be representative for elastic compliance or Poisson’s ratio, etc.

Rationale for computing an operational definition of an RV involves the
relationship between the RV and the size of the test specimen. If the specimen
size is not a prescribed amount larger than the RV, statistical convergence of
various measured data may not transpire. In the following subsections, we
propose an approach for determining the size of an RV and report its

application to overconsolidated clay.

4.2.2 General Evaluation of a Representative Volume

Let A be a parameter that characterizes a certain property A of the
material. For a given volume size V, measurement for A should be obtained for
different elements each of size V. Note that the size of V should be on the order
of the characteristic inhomogeneity (i.e. average cluster size). Next, derivation
of the corresponding distribution f,(A) can be ascertained. After the initial
distribution f()) is computed for a particular V, the size of V should be

increased and its corresponding distribution computed.
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It is natural to expect that for a small V the scatter in the values of A
will be high. That is, the distribution £(\) will be wide. However, as the size

of Vincreases, f,(A) might be getting narrower with the mean value defined as:
[4.1] <A>y= A () dr

* * ’
tending toward a limit A (<A> -+ A , as Vincreases).
If this is the case then A can be referred to as a material property while
*
taking A for the value of A. It should also be noted that when A is accepted as
a material parameter (i.e. invariant), the corresponding minimum volume of
*
material, V , with respect to the specimen shape and size is considered as a

Representative Volume.

*
To define the representative volume size V , it remains to choose

x
tolerances A\ and ar* such that:

* *
a) if |<A>y—A | < AX then, for practical purposes, <A>y is

*
indistinguishable from A .

*
b) if the oy ¢ ¢ whexe oy is defined as:

[4.2] ao={ fO—<> ) 403) At




If the conditions listed above are met then, for practical purposes, fi(}) is
*
indistinguishable from a delta—function distribution. Now V' is defined as the

smallest V, for which the conditions in listed in a and b are met.

4.2.3 Representative Volume for Stiff Clays

We now apply the formalism of Subsection 4.2.2 to finding the
representative volume for stiff clays. It is found that the average cluster size
has a characteristic dimension on the order of 10-4 m and that a scale hierarchy
exists in the material microstructure (refer to Subsection 3.3.1,9) and that all of
the stress induced morphological transformations occur at the cluster level
(Section 3.5). Since this hierarchy exists, it is evident that the RV size should
be based on the average cluster size and not the size of individual clay particles
(see Figure 4.1). As we intend to stay at a level above the cluster level (i.e. the
level where individual clusters are not distinguishable), we begin constructing
the f,()) distributions starting from V = (0.6 mm)3 . At this size of Vit is
expected that o, will be wide.

Next, we select a parameter for A, with respect to which a RV is sought.
For this particular case we choose concentration ¢ of densified clay in the form
of clusters (this is observed in the plane of polish and therefore is not the

volumetric concentration). The concentration c is computed as the area of
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clusters within a region divided by the area of that region: ¢ = ¢(L) = (percent
of cluster area in a square of dimension LxL). The reader should note that what
will be computed herein is the representative volume directly associated with
cluster concentration. From now on the volume elements are understood to be

LxLxL cubes and the letter L will be used in place of V'since V' = L3.

It is the belief of the author that the observed cluster concentration is
directly related to the density of the kaolinite rﬁateria.l. That is, the wax
penetrates only the loose regions during the impregnation process and simply
surrounds the more densely packed regions. Thus, a measurement of

concentration is essentially a measure of some arbitrary density.

In a macroscopically homogenous region on a plane of polish, a 12.4 mm
x 12.4 mm area was subdivided into an L;xL, square mesh with L = 0.62 mm
(i-e. subdivided into 20 squares by 20 squares). Next, six successive sizes for L
were defined as Ly = ¥*L (k= 1,...,6). For each of the six sizes, nine
non—overlapping LyxLy squares were chosen (each consisting of k? elementary

LyxL, squares of the mesh).

Cluster concentration was measured and recorded for each of 400 squares
in a mesh pattern using the image analyzer (see Section 2.10). A
computer program was written to perform the following computations: For
each k=1,...,6, the value of ¢ was computed for nine neighboring squares and

their distribution f(c) = ka( c) was constructed. A Fortran listing of the
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program written to process this information for the six successive sizes (Ly) is
provided in Appendix A and is named REPVOL. Gaussian approximations for
the six cases are shown in Fig. 4.2. Figure 4.3 shows illustrates how the
standard deviation in concentration decreases as the size of the volume analyzed
is increased. Also the interpolation determined in Fig. 4.3 was used to sketch
the 3—D plot in Fig. 4.4 Table 4.1 gives more numerical details from the six
successive analyses. The cluster concentration data base (obtained with the

image analyzer) used in this analysis is listed in Appendix B.

Since the measurements obtained from the image analyzer themselves
contain a certain amount of fluctuation, a true delta function is unachievable.
In order to assess the magnitude of the error associated with these particular
measurements, a typical cluster was singled out and 25 successive area
measurements were performed on it. The successive measurements resulted in a
6% variation about the mean (i.e. the ratio of the standard deviation to the
mean measurement was approximately equal to 0.06) Therefore, a cluster
concentration distribution with a standard deviation less than 3% could never
be expected regardless of the size of the volume analyzed (assuming a mean

concentration value equal to 0.5).

In order to assess the size of the representative volume, the tolerances for
* *
A)X and ¢ must be chosen. The results from Table 4.1 indicate that if a
*
tolerance in the mean concentration is selected as Ac¢ < 3% and the variation of

cis on the order of the measurement error, then the characteristic dimension of
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the representative volume for this material is somewhere in the neighborhood of
3to4 mm (ie. V' is somewhere between 27 mm? and 64 mm3). Alternatively,
if a volume smaller than V* is chosen, the information in Table 4.1 and Figure
4.3 can be used to estimate the associated error which corresponds to the

smaller volume.

4.3 Reconstruction of the Cluster Spatial Distributions

In this section we will investigate techniques for reconstructing the
spatial distributions of clusters. Studies of this type motivate attention for the

following reasons:

) Comparison of spatial distributions of clusters between an area
away from clusters in an undamaged region to that of a damaged
region may show changes resulting from stress concentrations.

. Comparisons of s, atial distributions of clusters on orthogonal
planes may indicate whether the material behaves isotropically or
whether some anisotropy exists at the cluster level. Even if the
individual clusters depict some anisotropic behavior, the material
may behave isotropic if the clusters are randomly oriented. Such
a study may define if the material is statistically isotropic at the
cluster level.

Spatial reconstruction involves using specified information from a plane
of polish together with certain assumptions (usually regarding the particle shape
and orientation) to make predictions about the volumetric distributions. For

our particular case, the objective is to reconstruct the spatial distribution of a
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pclydispersed system of clusters homogeneously distributed in an opague
medium (bee’s wax) given information from a planar section randomly passing
through the medium. Before any relationships can be formulated linking the
spatial distribution of a particular volume to the observed distribution of spots
obtained from a planar section, the cluster shapes must be approximated with

some regular shape.

The first and simplest type of polydispersed system consists of a system
of spherical particles. Cahn and Fullman (4) derived a method for obtaining
distribution of sphere diameters and plate thicknesses from the size distribution
functions obtained along randomly oriented lines. Saltykov (15) derived and
tabulated a set of coefficients which linearly relates the size distribution of
circles in a planar section to that of spherical particles homogeneously

distributed in the material.

Saltykov assumed the spatial distribution to consist of a prescribed
number of classes in a given volume. Each class represents a specific particle
size in the 3-D distribution. With each class, he associates an unknown
volumetric density from this class (#/m3). In the paper (15), the particle sizes
are divided into any number of classes up to 15. Next, Saltykov relates the
above (up to 15) to the diametrical distribution of circular spets obtained by

cutting the volume of material with a plane in a random fashion.

Dehoff (8) provides a shape factor correction which can be applied to the
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coefficients Saltykov furnished. Dehoff arrives at a shape factor correction by
considering the spatial distribution to consist of a mixture of either prolate or
oblate spheroids instead of spheres. Prolate and oblate spheroids are both

classes of ellipsoids generated by revolving ellipses about either the major (for
prolate) or minor (for oblate) axis. Use of Dehoff’s solution requires that the
researcher know the particle type (either prolate or oblate), and the aspect ratio

(the ratio of the minor divided major axis) a priori.

4.3.1 The Reconstruction Model

Outlined here, is the formalism for computing the relation between a
polydispersed system of prolate and oblate spheroids homogeneously distributed
and randomly oriented, and a two dimensional distribution of elliptical spots
resulting from a plane of polish randomly passed through the medium. This
formalism follows closely to that of Dehoff’s except that it’s generalized to
include the mixture of both prolate and oblate ellipsoids and some notaticn

changes were made to accommodate for the mixture.

In Saltykov’s method, the researcher is required to sort data obtained
from the planar section and compute the frequency of intersecting a spherical
particle and obtaining a circular spot between radii 7 and r+Ar. Similarly,
Dehoff requires that the data be sorted accerding to the frequency of

intersecting a prolate (oblate) particle and obtaining an elliptical spot with a
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minor axis between b and +Ab (e and a+Aa).

For the case considered here, we require that the data be sorted
according to their equivalent radzt obtained from elliptical spots between a range
rand r+Ar. In general, lower case letters will be used to describe 2—D features

in the plane of polish and upper case will be used for 3—D features in the spatial

distribution.

4.3.1.1 3--D Notation

This suhsection defines the variables which describe the spatial distribution of

particles. A more detailed description revealing how these vari=bles relate will

be given in a later derivation.

. K® — Number of discrete classes of ellipsoids of the "" type.
¢=0 - oblaze
¢=1 » prolate

. A — Semi—major axis of an ellipsoidal particle.

o B — Semi—minor axis of the ellipsoidal particle.

. Q@ — Aspect ratio of ellipsoidal particle (@ = B/A4).

. R§ (5=1,..,K%) —Equivalent radius of an ellipsoid of the "¢" type
and the " j' class (size).

For e=0 (oblate) type ellipsoid
4/3 TR3 = 4/3 TA2B

N




79

1

a= /gt
2

B= @R

For ¢=1 (prolate) type ellipsoid
4/3 TR3 = 4/3 7AB2

A=R/Q}
B= QiR

. Nf(R) — Number of centers of "¢" type ellipsoidal particles with
an equivalent radius R in a unit volume.

4.3.1.2 2--D Notation

Here we define the variables which describe the information which can be

extracted from a plane of polish (test plane).

) a — Semi—Major axis of an elliptical spot
. b — Semi—Minor axis of an elliptical spot
. g — Aspect ratio (a = b/a)

) k¢ — Total number of classes upon which a histogram of
equivalent radii is constructed. This is a user selected parameter
which generally reflects the accuracy of the reconstruction. In

general, k > B K (e=0,1). If & = £ K°, then a linear system of
equations will be solved in the solution process. Otnerwise a least
squares error approach will be used to solve the overdefined
system of equations.

. ri (i=0,...,&) — Equivalent radius of the elliptical spot of the "ith"
size.
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. ni(r) (i=0,...,kt) — Number of centers of elliptical spots with
equivalent radii greater than rj.; and less than or equal to rjin a
unit area.

4.3.1.3 Size Distribution Relations

Consider an aggregate mixture of prolate and oblate particles dispersed
in an opaque matrix. Let the index jrefer to the size of the aggregates for a
particular type (¢) of ellipsoid. Similarly, let the index i refer to the size of
ellipse resulting from the intersection of a test plane and a particle. This is

shown for the case of a prolate particle in Figure 4.5.

Next, let the particles be divided into K (e=0,1) classes for the oblates
and prolates respectively. Also let the increment between each size of oblate
aud prolate particle be given by A€ with A? not necessarily equal to AL. If

Rﬁu depicts the maximum sizes for the distributions then:
RE
[4.3] Af = ZmEX (=0,1)
K¢

It is assumed that all sections are represented in a test plane (i.e. we will
analyze a test plane no smaller than a representative volume size). Thus it is
assumed that RS,x can be computed from the dimensions of the largest ellipses
in the test plane. After REax are established, the number of classes of prolates

and oblates can be assigned and Equation 4.3 can be evaluated.
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The centers of ellipsoids which produce the subclass of sections lie in a
volume which has a cross sectional area equal to the area of the test plane and a
thickness equal to p;.; — p; on both sides of the test plane. For a unit area of

test plane, this volume is given by:
[44] V(’)J)¢) = 2(pi-l —pi)(l umit)2

Where p denotes the distance from the center of the ellipsoid to the intersecting
test plane. The relationship between p and r (the equivalent radius of the
ellipse resulting from the intersection of the ellipsoid and test plane) can be
determined from pure analytic geometry. That is, for an € type ellipsoid of size
Rf, and a shape @, there exists one value for the distance p; from the center of

the ellipsoid to the test plane.

Let the X’ —Y’~2Z’ coordinate system be oriented in such a way that the
Y’ axis coincides with the axis of revolution and the origin is located at the
center of the ellipsoid. Next let the X—Y—Z coordinate system be located such
that it’s origin is also located at the ellipsoid center but oriented so that the
X—2Z plane is parallel to the test plane. Denote the angle between the Yand Y’
axes by ¢. This is shown in Figure 4.5 for the prolate case. The equation for a

prolate ellipsiod is given by:

[4.4] %%+«‘/—'1;+%_—_1
i A7 Bj
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The coordinate transformation equations are given by:
z’ = z cosp — y sing

(4.5] Yy’ = z sing — y cos¢
Z =z

And the equation defining the test plane is

4.6] y=—pi

Next combining equations 4.5 and 4.6 with 4.4 and describing 4; and B; in

terms of R; and Q, along with describing a; and b; in terms of rj and ¢ yeilds:

[4.7] Pi=Jr2i _ (9 YR

n-m

where:
[= cos?¢ + Q*sin2¢
m = sini¢p + Q*cos2¢
n= (1-—Q*)3sin7¢ cosip
and:
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* ) + =1
Q= {IQ/Q + §=0}

The planar density n(¢,4,51) is related to the spatial density Nf by using
substituting the results from Equation 4.7 into Equation 4.3 to obtain:

[4.8] n(e,6,5,3) = Ni V(i,5,8)=2(ps-1 — p3)

Next, we average over all possible orientations to obtain:

1 K*
W WY
[4.9] ™= AZJ 2.4 Cfo
e=0 j=1
where Cf is defined as:
/2
[4.10] C'Jf = fo 2(pi-1 — p;) sing d¢

The coefficients C can be determined for a specified ellipsoid type (¢)
and class (#h) using by integrating Equation 4.10 and computing the necessary
values of p from Equation 4.7.
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4.3.2 Particle Distributions

Note that Equation 4.9 relates the densities of a volumetric distribution
(Nf’s) to that of a planar distribution (n;’s). In theory, if a large enough area of
spote [clusters) is used to construct the 2—D distribution (i.e. a representative
sample of data), and if the coefficients C§ in Equation 4.10 can be inverted, the
unknown volumetric densities can be written in terms of the known planar
densities. Futher, if the planar densities are refined into a larger number of
classes than the corresponding spatial distribution (i.e. & > K%), an overdefined
system of equations results and a least squares approach can be used to solve for

the unknown spatial densities.

A fortran program named MORPHOL was written to perform such
analyses. A listing is included in Appendix A of this report. Required input
data for this routine includes; a distribution of planar spots with specified
equivalent radii (ny’s), a number of classes for each ellipsoid type (K%), the
aspect ratio of each ellipsoid type (QE), and the size range of each ellipsoid type
(Riax). The output from MORPHOL includes spatial densities for each class of
the particle distribution ( Nf), distribution plots, and total volumetric cluster

concentration.
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4.3.2.1 Error Analysis

Before a spatial reconstruction scheme can be used with confidence, an
understanding of the reconstruction accuracy must be investigated. The
purpose of this subsection is not to perform an elaborate error analysis study.
Instead, the objective here is to outline how such an analysis could be performed

and to present some preliminary results.

In this type of reconstruction scheme, different types of errors can be

introduced. Some of these include;

» Error in approximating a cluster with a regular shape (ellipsoid,
or sphere).

. Error in prescribed variables (Rgaxr, K°, Q).

) Error in assigning a descrete spatial distribution for a distribution
which may be more appropriately modeled as continuous.

) Measurement error in n;(r).

. Error in assuming random particle orientation (not applicable to
spheres).

Some of these error types can be investigated by first defining some
artificial spatial distribution of particles of some regular shape (spheres or
ellipsoids). A two dimensional distribution of elliptical spots can then be
generated directly from the relation presented in Equation 4.10 {using the
coefficients C’f’s directly). The 2-D distribution, in turn, can be used to




86

reconstruct a 3—D distribution while introducing error in some prescribed
variables. Afterward, the new 3—D distribution can be compared to the original

one and a resulting error in the 3~D distribution can be computed.

This technique is illustrated for the case of approximating particle
shapes. An initial particle distribution consisting of 4 classes of spheres was
selected and is shown in Figure 4.6. Next, a corresponding 2—D distribution of
spots of equivalent radii was generated. Afterward, the 2—-D distribution was
used along with either prolate or oblate spheroids with varying aspect ratios to
reconstruct a new 3—D distribution. Resulting errors in the mean and standard
deviation of the 3—D distributions were tabulated. These analyses were
performed on for three systems of equations; a linear system (4 equations — 4
unknowns), 50% overdefined system (6 equations — 4 unknowns) and 100%
overdefined (8 equations —4 unknowns). These results are plotted in Figure 4.7

4.3.2.2 Cluster Volumetric Concentration (Saltykov’s Approximation)

A 4.0 mm x 4.0 mm cross section of material (i.e., a representative
sample) of material was axially sectioned and polished from a cylinder which
was not fatigued (undamaged specimen). This region is very similar to that
photographed in Figure 3.4. Clusters within the 4.0 mm x 4.0 mm section were
traced with the image analyzer and planar densities of cluster size and aspect

ratio were recorded. This information is given in Figure 4.8. Next, the cluster
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planar information was input into the MORPHOL routine and spatial

distributions were constructed. These distributions were generated for 5, 10,

and 15 classes and results are presented in Figures 4.9, 4.10, and 4.11,

respectively.

It should be noted that the results presented in Figures 4.9 through 4.11

essentially show that a planar cluster concentration of about 50% translates to a

volumetric cluster concentration of about 35%.

1)

2)

3)

4)

5)
6)

7)
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Figure 4.1:

Scale hierarchy in overconsolidated clay.
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Figure 4.2 A plot of the distributions f(c), for (k=1,...,6) and
Ly=k*0.62 mm.
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CLUSTER CONCENTRATION DISTRIBUTIONS
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Figure 4.4 Three dimensional plot of the concentration distributions
as the characteristic dimension is increased.




Figure 4.5

A prolate ellipsoid of revolution, showing the range of
distances from the center to a sectioning plane which
produce intersections in the class 1.
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Chapter 5

Kaolinite Damage Characterization

5.1 Introduction

In Chapter 3 of this thesis, evidence of stress induced morphological
transformations (damage) of material at the cluster level is presented. Included
is evidence of localized densification processes referred to as Localized Strip

Densifications (LSD’s) and Network Densifications.

In general, characterization of damage involves both identification of
characteristic features and some quantitative description of these features.
Chapter 4 presents techniques which can be used to characterize the soil fabric
in its natural state (i.e., cluster and water matrix) which essentially defines a

reference level upon which the damage can be identified.

This chapter is devoted to illustrating techniques for characterization of
the most common of the material transformations; the LSD’s. The LSD
characterization procedure presented in this chapter is based on experimental

techniques. In other words, experimental techniques are employed to
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reconstruct the volumetric distribution of LSD's.

5.2 LSD Characterization

The LSD's (Localized Strip Densifications) are shown in a comparison
photograph between two radial sections in Figure 3.5 and in Section b of Figure
3.6 (axial section). The sectioning procedure for both radial and axial sections
is described in Section 2.8 and illustrated in Figure 2.7. The LSD’s can be

thought of as densified surfaces emanating from the notch tip.

The first step in the characterization process involves making a series of
radial sections through a fatigued and impregnated cylinder. These sections are
usually equally spaced at approximately 5 mm intervals and start near the
notch tip and continue through the entirety of the damage zone. Next, each of

the sections is mounted on slides and polished (refer to Section 2.9).

Afterward, each slide is segmented into 3mm thick bands below a known
reference plane as shown in Figure 5.1. Each slide is then individually placed
under the stereoscope and the image analyzer (Section 2.10) is used to compute
the total LSD area in each band. These areas are then used to construct a

histogram for each slide as illustrated in Figure 5.1

It has been observed that the LSD area distributions are generally bell




103

shaped, thus a Gaussian curve is used to approximate the distributions in the
axial directions for further analyses. These histograms and their approximating
distributions are illustrated in Figure 5.2 for Cylinder 2—1 and is shown for for
others (Cylinders 2—3, 3-1, and 5-6) in Appendix C. In Figure 5.3, the density
disiributions are sketched at their respective locations along the circumferential

direction for the case of Cylinder 2—1.

The next step in the LSD characterization involves constructing a
contour map of the damage zone. To accomplish this, the LSD density was
approximated with the Gaussian distributions in the axial direction and a spline
interpolation scheme was used in the circumferential direction. A fortran
routine was developed to perform this task and generate a contour map of LSD
area densities. The program is named CONTOUR and 2 listing is provided in
Appendix A. Contour maps of LSD densities are illustrated for Cylinders 2—1,
2-3, and 3—1 in Figure 5.4. All of the contour maps in Figure 5.4 were
constructed with contour lines starting at 0.1 mm levels and incrementing by

0.1 mm. levels.

Notice that the volume represented by the contour maps represent the
total volume of LSD transformed during each of the respective tests. Thus, the
information contained in these contour maps allows one to compute the total
volume of material transformed from clusters to LSD’s during the cyclic fatigue

test.
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Also notice that the amount of transformed material increases as one
moves away from the notch tip. This is evidenced in Figures 5.2 through 5.4.
In Figure 5.2, Slide 2—1—A is nearest the notch tip and Slide 2—1-O is furthest.
In Figure 5.4, the contour maps show that the highest LSD densities occur

between 4.and 6 centimeters in front of the notch tip.

5.3 LSD Evolution

Observations of the radial sections did not identify a main crack within
the densified regions. Moreover, external observations during the cyclic test
revealed a propagating zone of damage but no one surface could be identified as
a main crack. This is evidenced in Figure 1.6, and in the damage evolution

photographs in Figures 3.1 and 3.2.

Photographs of the damage evolution similar to that shown in Figure 3.1
were taken for specified cycles during the fatigue of Cylinders 3—1 and 5-6.
Note that these photographs were taken during the actual test (i.e., the
cylinders were photographed through the plexiglas shell, silicon oil, and rubber
membrane). Since the nature of the damage on the outside and the inside of the
specimens have been experimentally correlated (i.e., in Figure 3.7 evidence
showing the correlation between the external slip lines and the internal LSD’s is
illustrated), templates reflecting the evolution of damage for specified cycles

was constructed from photographs. The basis for constructing the templates
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involved using a photograph of the last cycle as a final state and proportioning
the evolutionary development of earlier cycles to it. It is assumed that a direct
correlation exists between the amount of damage produced on the outside of the
specimen to that of its interior. Each photograph corresponding to a specified
cycle was divided into regions. Next, percentages reflecting the amount each
region has evolved during that cycle were assigned to each region thereby
creating a grid of numbers reflecting the overall evolution of the damage zone

called a template.

A computer program was written to multiply the template for a
particular cycle onto the the contour map at the final stage. The program
written to perform this task is called PZONE and a listing is included in
Appendix A. Results from this program include a 3—D simulation of the LSD
zone for various cycles. Processed results for Cylinders 3—1 and 5—6 are shown
in Figures 5.5 and Appendix D, respectively. The processed results for Cylinder
3—-1 include a 3—D plot of of the damage density for specified cycles of the test
(Figure 5.5). The results for Cylinder 5-6 include both 3—D plots and
corresponding contour plots for specified cycles (Appendix D).

5.4 Integral Description of LSD Zone Evolution

Due to the nature of the damage zone evolution reconstruction

technique, it is not expected that minute details of a particular damage zone
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description at some specified cycle (see Figure 5.5 and Appendix D) are
necessarily accurate. Moreover, a constitutive law which describes this motion
should not be sensitive to these same perturbations (recall the representative
volume considerations in Section 4.2). Thus, the objective in this section is to

present integral characteristics of the LSD zone evolution.

It is natural to decompose the LSD zone evolution into a combination of
elementary movements. This is in agreement with the theoretical
considerations outlined in Section 1.5 and described in detail in Chapter 6.

Examples of such movements for the case under consideration may be:

e - Rate of Translation of LSD zone with respect to the
centroid.
Rate of rotation.

o |E'
|

g — Rate of deformation.

Symmetry of the specimen geometry and the loading conditions eliminates w
from these studies.

In addition to the 3—D simulation of the LSD evolution, PZONE
computes the centroid distance from the notch tip and the total voiume of LSD
for each specified cycle. Results from these analyses are presented in Figures
5.7 through 5.9 for Cylinders 3—1 and 5-6.
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5.4.1 Resistive Moment Evaluation

Other integral descriptions of the damage zone relate to the amount of
damage accumulated during each of the above described elementary
movements. In the thermodynamic model proposed in Chapter 6, reference is
made to reststive moments when describing thermodynamic forces. These
resistive moments are related to the amount of damage accumulated during

damage zone movements.

The resistive moment due to translation of the damage zone can be
expressed as vR; where R, is functionally related to the the damage zone size

and shape and is computed from:

[5.1] R=1 f (%‘;-1) \%

Vsdz

where Vsqz is the volume containing the Localized Strip Densification zone and
p is the damage density and ¢ is the cylinder thickness. This expression will be
derived in Chapter 6 and is presented here only to describe the computational

details.

Before equation 5.1 can be evaluated, a formal definition of the damage
density density p must be presented. For the case of overconsolidated clays, it

is found that microdefects (damage) are 3 dimensional (see Chapter 3).
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Consequently, p can be defined as:
[5.2] p= lim [AV]
AV=0
AV — amount of material transformed within an

incremental volume.

AV-— incremental volume of material.

The incremental volume Vis defined by the area of the damage zone where the

Strip Densifications are detected, multiplied by the wall thickness.

Experimentally, R, is evaluated between any two cycles by the

approximation given in Equation 5.3.

1 1
[5.3] Rzl f p dV
TN

where Az is the change in centroidal distances and A V45 is the change in
volume of the damage zone associated with translating the existing damage zone
to the new centroid location. This calculation is shown schematically in Figure
5.10. Figure 5.11 presents the results for Cylinder 5—6. It can be seen in Figure
5.10 that Equation 5.3 expresses the amount of new damage accumulated from

pure translation of the damage zone per unit thickness of material.
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Figure 5.1: Schematic illustrating the LSD measurement procedure.




‘feme
189y 41N} 81 O—1—¢ 9PIS pue yojou 9y} 18o1edU 81 Y—1—¢

apIIS 12Y} 9JON T—g 19PUNAD 10§ 83[nse1 wesdolsty ST :g'g a8ty
(r-3+w) ‘1810 (v-3eW) °isid (r-3°W) 1810 tr~3e¥) ‘1810 .
2 ‘oot 0 ‘ost 90 g ‘oot aq-oct e'c 0 'o08 0 ‘0%t 0o 0 ‘oot 0 -ost o0
. o0 oo . LE I 00
8 8 2 8
> » >
2 3 §
0-082 i 0 ‘082 > 0 ‘os2 ~ D ‘082 n
S 3 ¥ 3 H
i [ [ & "
ey m m 1 \
a ® 2 2
0 '00s = o ‘oot ¥ 0 -o0% 0 '00%
0-1-2 30178 H-1-2 30178 9-1-2 30118 3-t-2 30178
(r-3eW) ‘iS}0 (v-3sW) °1SI0 (r-3eW) °1S10 wr-3«W) iSt0
0 "ote 0 "ost o0 0 ‘noe 0 ‘ost [ .O ‘oot 0 °0st 00 Q "ooe 0 "ost 090
b py o'a - I o0 - a0 r [ o9 r
" n n n
[} o o o
> > > >
. ] b, b ] b
m m m m
> > > >
0 ‘082 - 0°'062 N 0 0s2 ~ [i 1 4 -
A % A ]
[) [) (] L
b ! ! 8
9 "00s 0 ‘oo 0 ‘008 0 ‘008
g-t-2 30178 J-t-2 30178 8-t-2 301718 v-1-2 30178




111

LOCALIZED STRIP DENSIFICATION DENSITY PLOT
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Three dimensional plot of LSD densities as related to their
measurement locations along the axial and circumferential
directions.
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Cylinder 3-1
LSO Centroid Distance Plot
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Figure 5.6: Plot of LSD zone centroid distance vs. cycles for Cylinder
3-1.
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CYLINOER 5-6

LSO Centroid Dist. vs. Cyclas
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Cylindaer 3-1
LSO Volume vs. Cycles Plot
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Figure 5.8: LSD zone volume vs. cycles for Cylinder 3—1.
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CYLINDER 5-6

LSD Volumae vs. Cyclas
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Figure 5.9: LSD zone volume vs. cycles for Cylinder 5—5.
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Schematic for R1 Calculation Procedure
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CYLINDER 5-6

R1 vs.Cyclas
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Chapter 6

Theoretical Considerations

6.1 Introduction

In Section 1.5 we introduce the governing equation (Equation 1.1) which
describes the crack—damage evolution for a cooperative fracture process. This
equation results from treating the crack and surrounding damage as a single

thermodynamic entity and applying the laws of thermodynamics of irreversible

processes.

Usually fracture is an irreversible process which is often coupled with
other physicochemical processes like phase and chemical transformations, heat
and mass transfer, etc. Thermodynamics of irreversible processes offers a
general framework to study these phenomena, in particular, by introducing the
thermodynamic forces. It is demonstrated herein that thermodynamic forces
are distinct from conventional energetic forces like the J~integral. In this
chapter thermodynamics and energetic forces for thermoelasticity are derived

following the thermodynamic approach (3,4).

120
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6.2 Thermodynamics of Fracture in an Elastic Medium

It is demanstrated in Chapters 3 and 5 that the fracture process is
strongly cooperazive. In this chapter, damage (LSD) is considered as a system
of material inhornogeneities, and damage nucleation and growth as a material
transformation. Damage can be characterized by its density (Chapter 5) and
average orientation. It is assumed that the orientation of inhomogeneities does
not vary in the fracture process. Therefore, the scalar damage density is
incorporated as the only thermodynamic state parameter characterizing

damage.
The stress tensor o; and the absolute temperature T conventionally

constitute a set of state parameters for thermoelasticity. This set is extended

by the damage dicusity p in an elastic medium:
[61] {aij: T) P}

In what follows, we derive the thermodynamic forces associated with

damage. The local energy balance is taken as

q
[6.2] U= gij 'Eij - gﬁ-

Here u stands for the rate of internal energy density, ¢;; is the strain rate
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tensor, the product oijeij represents the work rate density, ]ﬁ stands for the
heat flux, and the usual summation convention over the repeated indicies is

employed.

It is convenient to express the internal energy density » in terms of

Gibb’s potential density and the entropy density s:
[6.3] u = g+ Ts +aije;
Here, e;; is the total strain component. The entropy production s; introduced

in thermodynamics of irreversible processes is defined as a portion of the total

entropy production rate s.

[6.4] with:

where 3¢ is the entropy density rate due to heat exchange (for a closed system

where no mass is transposed).

Employing the energy balance in Equation 6.2, decomposition of the
internal energy density in Equation 6.3 and the definition of the entropy

production in Equation 6.4 we arrive at:
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N . 3 raT

(6.5] i T[ — g+ 3T+ 55045 + lliv [m]]

In conventional thermoelasticity, the Gibb’s potential density gis often
designated as the thermoelastic potential energy density =, and is expressed as a
Taylor’s decomposition with respect to the state parameters oj; and T. The
coefficients of decomposition represent material properties such as elastic
compliance, thermal expansion coefficient, etc., and the first term of the

decomposition represents the reference level of g.

For the damaged thermoelastic medium, the rate of Gibb’s potential
density g is affected by the damage growth p in two ways, through changes in
(i) the reference level of g (Gibb’s Potential), and (ii) the material property

coefficients included in v. Hence,

(6.6] (o35, T.p) = A o35, T)p + {035, T,p)

Here, 7is the difference between Gibb’s potential densities in the damaged and
undamaged states per unit damage density; and ris taken in the same form as
in conventional thermoelasticity, but with the material property coefficients

being functions of the damage parameter p.

The assumption of local equilibrium yields thermoelastic constitutive

equations:
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= -3

[6.7] o -

f6.8) Bog| g =

Accounting for Equations 6.6 and 6.8 the local entropy production in Equation

6.5 takes the form:

o e 3o B Bl

In the outline of thermodynamics of irreversible processes, the entropy
production is conventionally presented as a bilinear form of generalized fluxes
and forces, such as ]ﬁ and —&y T/ T? for heat transfer. Similarly, if the rate of
damage density p is taken as a flux, the reciprocal force is —(1/ T)[7 + (8x/ 8p)].

6.3 Damage Zone Propagation

It has been observed that the damage zone (LSD zore) in
overconsolidated clays propagates and ultimately leads specimen failure (see
Section 5.3). In the approach we introduce herein, the damage zone movements
will be decomposed into a combination of elementary movements; translation,
deformation). In this thesis, we apply the thermodynamic model to the

translation of the LSD zone.
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The global entropy production is the integral of Equation 6.9 over the

entire volume of the solid:

[6.10] .§i=f .'sidV=—f ,}.bdv—f ‘g;—rg,dv—f L4
v % v v

The first two integrals on the right hand side of Equation 6.10 are reduced to
the those over the damage zone Vg, since p in nonzero only within this zone
and they represent the global entropy production due to Localized Strip
Densification. The first integral is associated with the energy consumed by
material transformation from an undamaged state into a damaged state (i.e.
from clusters to LS7’s). It reflects the materials resistance to the strip
densification zone propagation. The second integral evidently represents the
the entropy production associated with the potential energy release rate, and is
defined as the impellent of the LSD zone. The last integral in Equation 6.10
reflects the entropy rate due to heat transfer. For the case considered here, an
isothermal condition will be assumed (VT = 0). Thus the last integral in

Equation 6.10 reduces to zero.

It is assumed that the damage zone moves maintaining a self-similar
distribution of damage such that the rate of damage density p at a given point

z; in an Euler system of coordinates, can be expressed as

[6.11] o) = il n) 25
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where £; is a position vector in the movable system of Cartesian coordinates
with the origin at the crack tip and the k=1 axis is chosen along the tangent to
the notch and Vi(¢;) is the Atk component of the velocity vector. Reducing the
general motion of the Strip Densification Zone to simple translation of the

centroid (z¢):
[6.12] Vk(fi) = 566611;

provided 4,k = 1,2 and §;x is Kronecker’s delta symbol. The damage density p

in Equation 6.11 with 6.12 becomes:

(6.13] o) = — a5l

Upon substitution of Equation 6.13 into Equation 6.10 we can write:

[6.14] Si = v}(gc X))

Above, z¢ is considered to be a generalized flux and stands for the rate of
translation of the damage zone as measured from its centroid (see Section 5.3)
and consequently, X, is the reciprocal thermodynamic force. The

thermodynamic force X, can be written as a sum of an active and resistive part.

That is:

[6.15] Xi=4—- R




127

where:

[6.16] 4=-) 4 g-;f 2 av

Vsdz

"and

6.17] R = f 3L av

Vs dz

Equations 6.16 and 6.17 represent the active and resistive components of the
the 7/ T term) is evaluated in Subsection 5.3.1. In the next section we will

concentrate our efforts to re—expressing Equation 6.17 into a recognizable form.

6.4 Impellent Forces

For a homogeneous medium the density of elastic potential energy ris a

function of the state parameters and does not depend on coordinates explicitly:

[6.18] T = 7 [o35(¢1), p(&1)]

Consequently,

l thermodynamic forces, respectively. For the case considered here, R, (excluding
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ordp _ Or r doij
16.19] -5'53% = Bz ~ Ooy o

where for a two—dimensional case , 4,7, and k = 1,2.

Using constitutive Equations 6.7, 6.8, and 6.19 can be written as

16.20] = ey gl

The elastic potential energy density is defined as

[6.21] T = f— gij€55

where frepresents the strain energy density which is conventionally expressed in

linear elasticity as follows:
_1
[6.22] f=5 ai€

Upon substitution of Equation of Equation 6.20, 6.21, and 6.22 into 6.16 and

accounting for local equilibrinm equations

60‘{ -
[6.23) =0

[

Aj can be written as:




i
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[6.24] A= f -}. [gé—g}}(aijg%)] av

Vsdz

Finally, applying Gauss’s Theorem we arrive at:

[6.25] A, = f—%-. (f-m — o3jn5u1,1) dI‘-f %12 [ﬁ-g%—l—aijui,l[-g%” av
0Vsdz Vsdz

In Equation 6.25, n; is the b component of the unit outward normal to an
integration path dVs4;. In the case of an isothermal condition (VT = 0) the
second integral in Equation 6.25 vanishes. Therefore the expression for A4,

reduces to :

[6.26] A= 7_11"{ (fony— aijnj%—i) ar
Vsdz :

Notice that Equation 6.26 resembles the well known J—integral
introduced by James Rice (2,10).

6.5 Energetic Force

In the previous section the thermodynamic crack driving forces in an

elastic medium are presented. In this section, the conventional energetic forces




130

as derived by Eshelby (1,5,6,7,9) and Rice (2,10) will be introduced for

comparison. Rice presents the J—integral as:

[6.27) -71=f (f'ﬂl-dijnjg%) dr
r

Note that Equations 6.26 and 6.27 only differ by the absolute temperature term
(T) for the isothermal condition. Although these two integrals are similar,
identifying which is the ¢rue force driving a crack is at this time speculative
(3,4).

The energy release rate can also be expressed in terms of Eshelby’s

Energy Momentum Tensor (1,5,6,7,9) as:

[6.28] Jl = f (Pi]'ni) dar
d sdz

where:

(6.29] Pi; = fby - Oik Uk,

and

f— strain energy density
ok — stress tensor components

uy — displacement vector
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6;j — Kroneker’s delta

6.6 Discussion

In this chapter we presented an expression illustrating that the global
entropy production involved in the fracture process of an elastic medium with
damage under isothermal conditions (Equation 6.14) can be expressed as a
bilinear form of generalized flux and a thermodynamic force. This equation
considers only the translation of the damage zone. In order to convert the
expression in 6.14 into a constitutive model, we must first evaluate the
thermodynamic force (Equations 6.15, 6.16 and 6.17) which contains an
unknown value for 7 (the specific energy for densification), and determine
evaluate the relationship between the force and flux (e.g. the phemonological
relationship).

Methods for evaluating the thermodynamic flux (z— rate of translation
of the centroid of the damage zone) and the resistive part of the thermodynamic

force (Equation 6.17) have been developed and are illustrated in Chapter 5.

Chapter 7 introduces methods for evaluating the active part of the
thermodynamic force through a semi—empirical stress and energy analysis.
Chapter 8 will tie the results together and present a constitutive model for

overconsolidated clays.
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Chapter 7

Stress and Energy Analysis
of the
Crack — Damage Interaction

7.1 Introduction

In Chapter 6, a constitutive law based on thermodynamics of irreversible
processes is outlined. In order to apply this formalism, knowledge of the
dominant thermodynamic fluxes, and forces is required. For the case of
overconsolidated clays, the fluxes and the resistive part of the thermodynamic

forces for a translational model are evaluated and presented in Chapter 5.

This chapter describes an approach for evaluation of the active part of
the thermodynamic forces. That is, the potential energy release rates associated

with each of the fluxes (elementary movements).

During the cyclic fatigue tests, measurements of applied tarque vs.
rotation are recorded for specified cycles. From these measurements, values for

the potential energy (obtained by using the unloading portion of the
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torque—rotation curve) and irreversible work can be computed. These energy
values can then be used to assess the total potential energy release rate between
successive cycles. Recall, however, that potential energy is released during any
of the four elementary movements (translation, rotation, expansion, distorsion)
of the damage zone. The information presented in this chapter isolates the

potential energy release rate for pure translation of the damage zone.

7.2 Solution via Superposition

A rigorous stress and energy analysis of this problem would require the
reconstruction of the stress and displacement fields for the case of a hollow
cylinder with a circumferential crack interacting with the microcrack array
while being loaded under torsion. The nature of this study, however, is

fundamental and thus a highly accuraie analysis is not a goal.

In order the simplify the problem, we will restrict our analysis to the
case of an infinite plate (i.e., plane stress or plane strain) made of a linear
elastic material. For this case, the general problem can be decomposed by the
law of superposition into three separate problems. These will be identified

herein as:

Case 1 — A uniform plate free of all cracks and microdefects
subjected to a uniform shear and compressive stress.
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Case 2 — A plate with the main crack only (i.e. the notch) and a
traction equal to the shear stress in Case 1 applied to the
crack surfaces.

Case 3 — A plate with both the main crack and the array of

microcracks with the measured displacements applied
along the microcrack array

These cases are Hlustrated in Figure 7.1. By the laws of superposition, the
combined stress, strain, and displacement fields, along with the stress intensity

factor can be expressed as a sum of their respective parts:

Yot = U1 + Y2 + U3

[7.1] Jtot = g1+ g2+ g3
ot
K= K+ K
t —
Kif' = Kip+ Kjy

Case 2 is the classical case and the solution is in every elementary book
on fracture mechanics (14,18). If stresses o and 7 are the tensile and shear
stresses applied at the remote locations on an infinite plate which contains a

crack of length 2¢, the stress intensity factor for Case 2 is given by:

[7.2] Ky = aqmc
Ky = T JTc

In the next sections of this chapter we will concentrate our efforts on

developing a method to solve the problem in Case 3.
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7.3 The Crack—Microcrack Interaction Problem

In recent years, the problem of multiple crack interaction has been
addressed by various authors. This problem can formally be expressed as a
system of singular integral equations. The equations represent bcundary
conditions on the crack and micro—crack surfaces (the usual boundary
conditions require traction free surfaces). Rigorous solutions to this problem

have beer formulated for only a select set of micro—crack configurations

Rice and Tompson (26) analyzed the interaction between a gliding
dislocation and a crack using an energy method (i.e., using a Maxwell relation
for the strain energy). Similarly, Shiue and Lee (32) studied the effect of a
climb dislocation. They included solutions for both a single dislocation and a
dislocation dipole. This problem was also addressed by Lo (21) and Ballarini
(2,3) using complex potentials and by Erdogan (14) for a point force and

moment.

The problem of collinear micro—cracks interacting with a semi~infinite
crack was analyzed by Rubinstein (30). Similarly, Rose (27) studied the case of
a semi—infinite crack interacting with a collinear mico—crack. The list
continues with various techniques on other select problems in (1 through 32),

just to name a few.
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74 Sani—Empix:iml Approach via Second Green’s Tensor

Due to the nature of the crack—damage interaction problem (i.e., solving
a system of singular integral equations), solutions to many realistic problems
becomes impractical, even with the advent of supercomputers. Alternatively,
certain authors have proposed semi—empirical techniques to compute the SIF

(Stress Intensity Factor) induced on main crack from an array of microdefects.

Chudnovsky et al. (5,11,12) propose a technique based on a self
consistent method utilizing a double layer potential formulation. In this
analysis, the microcracks are considered as a continuous distribution of
dislocations and the problem of feedback is solved by approximating the
traction on the microcracks as a polynomial distribution (using Willis’s (34)
polynomial conservation theorem). The interaction between the main crack as
well as between the microcracks is considered. More recently, Kachanov (17,18)
proposed as alternative approach by considering the average traczions on the

individual microcracks.

In general, for a random configuration of a large number ci microcracks
the solution implies an extremely tedious and time consuming numerical
procedure (8,9,10). In 1987, Chudnovsky and Ouezdou (12), employed a
technique of using experimentally observed COD’s (Crack Opening

Displacements) as the solution to the microcrack problem. The problem is
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formulated by using the second Green’s tensor (5,11,12) &(§,z) which is defined
as the displacement response at a point z due to a unit discontinuity at a point

. For the case of plane stress, the second Green’s tensor is given by :

s 868 = -G 0-2a BB+ neBD + 2 23RE)

where T is the wnit normal vector to the surface across which the discontinuity
takes place, v is poissons ratio, [ is the unit second rank tensor and R is the

position vector (i.e., B = {-z).

The second Greens tensor in Equation 7.3 is then used to to describe the
displacement response on the main crack by integrating over the observed
displacements in the microcrack array. Afterward the displacement response is
converted to stress by applying an appropriate stress operator Ty which
transforms the displacement field uy into stress o3;. Once the stress field is

known, an effective stress intensity factor can evaluated.

Even though this approach was applied to the 2—D problem for the case
of Ouezdou (12}, and Chabat(5), it can be easily extended to the 3—D case.

In the next sections of this chapter, a semi—empirical stress and energy
analysis will be outlined and illustrated for the case of overconsolidated clays.
This analysis will be based on a method of complex potentials but will follow
the same general philosophy described above.
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7.5 Semi—Empirical Approach via Complex Potentials

Many problems in the theory of elasticity can be solved with great
mathematical simplicity by using complez variables (13,23,33). A complex

variable zis formed by two real variables zand y such that:
[7.4] zZ=z+ iy

where 1 represents y—1 and is called the imaginary unit. Muskhelishvili (23) has
shown that, for plane problems, many solutions can be expressed in terms of a
pair of complex potentials. Once the potentials are defined for a particular
problem, the stresses and displacements can be expressed as functions of the
potentials (i.e., analogous to an Airy’s Stress Function). If the camplex
potentials are denoted by ¢ and 7, then the displacements can be defined as:

(7.5] 26(x + i) = kg —2 9 — P

Here u and v are the Cartesian components of displacement, G is ihe shear

modulus, and « is related to poissons ratio as defined in Equation 7.6.

[7.6) ={3—v

14v

3—4v » plane strain
k= - plane stress
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Also, the overbar " " denotes the conjugate of the variable or function and the
prime "’/" denotes differentiaton of the function with respect to the complex

variable z
Similarly, the components of stress can be expressed as:

[7.7] oxx + oyy = 2¢’' + ')
Oyy — Oxx + 21Txy = 2(E¢/ 4 1/)’)

In the following subsections (i.e., Subsections 7.5.1, 7.5.2, and 7.5.3)

solutions to the three problems outlined in Section 7.2 will be presented in

complex potential form. In these sections, the following notation will be used.

[7.8] o(z) = ¢'(2)
¥(2) = 9'(2)

7.5.1 Remote amd Nominal Potentials

This Subsection presents the potentials for the stress/displacement fields
caused by the remote (Case 1 in Section 7.2) and the nominal (Case 2 in Section

7.2) loading conditions.

From the methods in (23), the potentials for the remote loading
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condition are given in Equation 7.9.

[7.9) ¢ (2) = i%

V(9 = lo, + ir,

Similarly, the stresses and displacements produced from the main crack

as expressed in Case 2 is given in (24,3) by:

L =1 K? + iKY
10 (2) y— (K} + K7y

¥n(2) = @n(z) — 2n(2) — 227(2)

Substituting the results of Equation 7.2 for K7 and K7; into Equations 7.10

gives:
$q(2) = 5% (0, + ir,)
(7.11]

1 1 1

Ua(2) = % [ Uw(z'% _ % z.i) - irm(2.5 + % z-i)]

7.5.2 Complex Potentials for a Crack and a Dislocation Dipole

In the camplex potential formulation, discontinuities (damage) are
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modeled as a distribution of dislocations. In 1978, K. K Lo (20) presented a
solution (in the form of a pair of complex potentials) for a finite length crack
and a single edge dislocation embedded in infinite plate. The edge dislocation
essentially models a sudden change in the displacement field (either a sudden
jump, a sudden shift, or a combination of the two).

In Lo’s solution, the crack is located on the real /imaginary plane
horizontally with its tip at the origin. The crack has a length of 2¢ and the
edge dislocation is located at coordinates z, as shown in Figure 7.2. With this
solution, the researcher can compute the stress field at a point z due to an edge

dislocation at a point 2z, interacting with a crack.

The pair of potentials which make up Lo’s solution, & and ¥, can be

written as:
[7.19) Qe = 21+
V=¥, 4+ ¥,
where:
&y(2) = 1=
[7.13] (z=)
__a az
U = ey ¥ G
and
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#5(2) = - | aFl5z) + aF(5%) + Bz2o) GlaiZs) — aX(2)]

[7.14]
Va(2) = 22(2) — &x(2) — 282’ (2)
with
% 1 - X(z
Hzz) = z_f;%ﬂ
(715] Claz) = G| Floa)]
A
(2 - %)
1
[7.16] X(2) = Jz yiFTe

The dislocation data is included in the complex constant a which is defined by
the relation in Equation 7.17. .

b
[717} a = #{FD-

In Equation 7.17, u is the shear mbdulus, x is related to Poisson’s ratio
(Equation 7.6), and b is a Burgers vector which denotes the jump in the
displacement at z, (Equation 7.18).
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[7.18] b= eoffu] + g

The quantities [ur] and [uy] denote the jumps in the tangential and normal
displacements across the dislocation line. It should be understood that this
solution (Equations 7.12 to 7.18) models a finite length crack (2¢) in an infinite
plate interacting with a semi—infinite jump and/or shift in the displacement

field occurring =, (defined by Equations 7.16 and 7.17).

In order to model the observed slip lines and, in general, finite sized
cracks and micro—cracks, a solution for a finite jump and/or shift in

displacement inzeracting with a crack is required.

In 1988, Ballarini and Denda (2) derived an analytical solution for a
dislocation dipade interacting with a semi—infinite crack. In their derivation,
they used Lo’s solution (20) and superimposed the effects of a pair of edge
dislocations, with Burgers vectors equal in magnitude but opposite in direction

separated by an infinitesimal distance.

This solztion (2), is imiting in our studies because the the crack length
(notch length) is in many cases smaller than the preceding damage (see Chapter
4). Thus, a solution for the finite sized dislocation dipole will be introduced
using the philosophy introduced by Ballarini and Denda (2) along with the
potentials presented by Lo (20). For the finite sized dislocation dipole, the

principle of superposition will be invoked and a pair of edge dislocations will be
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used. In this approach the spacing dz, is not required to be infinitesimally
small. This is iflustrated in Figure 7.3. Consequently, the complete solution for

the dislocation dipole interacting with a crack is given by:

®4(22) = Pe(2,20,2) +Pe(220+d20,~0)
[7.19]

‘I’d(zyzo) = ‘I’e(Z,zo)a) + ‘I’e(zazo'*'dzo,_a)

where ®¢ and ¥, are given by Equation 7.12. A similar expression can be
written for an array of dipoles. This problem is the one of most practical
interest since slip lines (see Chapter 3), cracks, microcracks and other
discontinuities within a continuum can be modeled with an array of dislocations
and/or dislocation dipoles. Since the law of superposition is valid for potentials,

the complex potentials for an array of dipoles can be written as:

n
2572 = ) Ba(n%)
t=1
[7.20]

n
"'1

V) = S Walnam)
1=1

7.6 Stress Field Evaluation

The information presented in Sections 7.2 through 7.5 provide the
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necessary tools to compute the stress field in the vicinity of the crack and
damage. In principle, the slip surfaces shown in Figures 3.1 and 3.2 can be
modeled with a distribution of dislocation dipoles. Thus, measured slippage
along the discontinuity lines whose orientation and magnitude can be extracted

from photographs can be modeled with an array of dipoles (see Equation 7.20).

A fortran routine was written to generate contour plots of selected
components of stress using the information Sections 7.2 through 7.5. The
program was named STRESS and a listing is included in Appendix A. The
program STRESS, utilizes the complex operations available in the Mircosoft
Version 3.2 Fortran Compiler to compute the stress field from the potentials.
Input for this routine includes the slip line configuration and the Crack Sliding
Displacement (CSD) along each slip line. Other input informaticn includes the
remote loading stress (o, 7_), crack length, elastic modulus, condition of plane

stress or plane strain.

The output of program STRESS is a contour map of equal stress
component magnitude for the component selected. Six components of stress are
available. They include the Cartesian components of stress, oxx, oyy, and 7yy,
as well as the principle stresses (maximum and minimum) op,, and op;, and the
maximum shear stress, Tpax. These components are defined in the Mohr’s

diagrams in Figure 7.4.

It should be noticed that the maximum principle stress oy, is defined
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herein as the principle stress component which is largest in magnitude. Thus,
as the Mohr’s dircle translates through a zone of pure shear, the oy, component
will change sign (see Figure 7.4). When the oy, contour plot is inspected, zones
of pure shear are readily identified since the sign change in op; produces a sharp
transition from dashed (compressive) to solid (tensile) lines or vise versa. This

phenomena will be illustrated in some following examples.

For all of the of the stress and energy analyses performed in this chapter,
the following parameters were used:
E = 11200 psi
v=048
plane strain
T, = 20.0 psi
g, = —30.0 psi or 0.0 psi

The first case analyzed was to plot contours of equal stress for the case of
a single crack loaded under pure shear (mode K7;). Five components of stress
are illustrated in Figure 7.5; the three Cartesian stress components (oxx, dyy,
Txy), the maximum principle stress op;, and the maximum shear stress Tgax.
Notice that the maximum shear stress need not be zero on the crack face since
only two of the three stress components (oyy, 7xy) are specified to zero by the

crack face boundary conditions.

Next, stzess field contour plots were generated illustrating the
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interaction between the main crack (notch), and a single dislocation dipole
symmetrically located in front of the crack. A unit of sliding in the same
direction as observed in Figures 3.1 and 3.2 is was assigned to the dipole. For
this case, no remote loading was considered (i.e., 0, = 7 = 0) since the
objective here is to isolate the effects due to the localized displacement. A
schematic illustrating this problem is included in Figure 7.6. The contour plots
for oxx, Oyy, Txy, Op1, and Tmax are included in Figures 7.7 through 7.11,
respectively. In these plots, the asymptotic stress field around the crack tip is
magnified placed in the lower left corner of the plots. The asymptotic plots in
the lowcr left corners for Figures 7.7 through 7.11 are plotted at the same scale
as those in Figure 7.5. This was done so the effects of the dislocation dipole on

the crack can be readily compared to those produce by remote loading.

The next case analyzed was the case of a single dislocation dipole
interacting with the main crack (similar to the above case), but the dipole was
oriented so as to produce a 20° angle with the z—axis (see Figure 7.12). The 20°
angle was selected since it represented the typical orientation of the slip surfaces
(see Figures 1.6, 3.1, 3.2). Again, five contour plots illustrating <he
crack—dipole interaction are included in Figures 7.13 through 7.17.

Next we will illustrate how this crack—mircocrack interaczion can be
investigated. The microcracks are to be modeled with an array of dislocation

dipoles.
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During the damage—zone initiation a dog—bone cracking configuration
was observed and is shown in Figure 7.18. The dog—bone cracks are modeled
with a distribution of d'poles such that they produce an elliptical crack sliding

distribution (this corresponds to a constant traction assigned to each dog—bone
crack). The configuration for this case is illustrated in Figure 7.19, and stress
contour plots for Tyy, 0p1, and Twax are included in Figures 7.20, 7.21, and 7.22,

respectively.

7.7 Stress Intensity Factor Analysis
The stress intensity factors can be defined in complex form (2,3,25) as:
[7.21] K + Ky = lim 27z (oyy + i1xy)
I II Jar0 x
In order to compute the SIFs (Stress Intensity Factors) caused by the

dislocation dipole, we start by determining the SIF for a single edge dislocation.

Here, we substitute substitute Equations 7.7, and 7.8 into 7.12 to yield:

[7.22) KI+iKH=\/_zl:ig’vﬂ—ﬁ[‘be(zﬂo)‘*'q’e(zv%)'*'z@le(zxzo)‘*'q’e‘(zyzo)]

Substituting Equations 7.12 through 7.18 into 7.22 and taking the limit results
in Equation 7.23
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[7.23] Ki‘-*”‘ﬁ=2r%_ {‘“[‘[@ ]'1] +; f%fﬁf/%m}
z Zotac

In Equation 7.23, ¥() denotes the real part of a complex value and () denotes
the imaginary part.

Since the law of superposition is valid for stress intensity factors, the
SIFs obtained for a single edge dislocation can be summed in a similar manner
to that for the potentials (see Equations 7.19 and 7.20). Consequently, the SIFs
for a single dislocation dipole and an array of dipoles can be expressed in

Equations 7.24 and 7.25.

K{ = K}(20,0) + K}(20+dz,—0)

(7.24]
K, = K5y(20,0) + Kfy(20+dz0,—2)
-
Kdtot — 42 ) K‘]i:z
1=1
[7.25]

Three different fortran programs were written to perform various

analyses related to the stress intensity factor study. These routines, and their
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respective results will be discussed in the following paragraphs.

The first of the three routines is called KIJ (listing included in Appendix
A) which plots a non—dimensionalized SIF vs. angular variation 3 (for zo= Zo+
iYo; B = tan(yo/z,) ) denoting the coordinates of the dislocation dipole. The
SIF’s are non—dimensicnalized by the relation expressed in Equation 7.26.

3
* * _ [x(stl fg’. .

where
6] = b2+b2
% = I + Wo
[7.27) Zot+dzo = (Zo+dzo) + HYot+dYo)

p=v a3 +4

dp = (dz)?+ (dyo)?

The effective SIF’s for two different cases were plotted; one due to an
opening dislocation dipole (Case for y) oriented with © = 0o (8 is defined in
Equation 7.18), and another shear dislocation dipole (Case for by) with © = 0o.
Plots for these two cases are presented in Figure 7.23. These results agree with
those presented by Ballarini (2,3) for the case of an infinitely long main crack.
Figure 7.23 shows the effect (i.e., amplification or shielding) the dislocation

dipole has on the main crack. These are summarized as:
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B < 690 + Amplification
For the Case of b, JM0d€~T { g 5 690 + Shielding

B < 360, f > 1100+ Amplification
Mode-Il { 36074 £ 1100 =+ Shielding

and

Mode—I B <36, §>1100 -+ Amplification
For the Case of by 360< 4 < 1100 -+ Shielding
830o< f <1250, f > 125% S h ielding

Another fortran program called SIF (listing in Appendix A) was written
to produce contour plots of equal levels of Green’s function for the stress
intensity factor denoted Gsis. In particular, Gsie(2,z2) defines the stress
intensity factor at the crack tip caused by a dipole dislocation at coordinates
(z:,22). The magnitude for the stress intensity factor is non—dimensionalized by
the following relation:

[7.28] Gty — Gty = K — iKyp = K; ik

1
Ve Ibldp( ol

Results from SIF are included in Figures 7.24 through 7.27. Figure 7.24
shows plots of equal stress intensity factor for both Modes I and II due to a
single dislocation dipole with an applied unit opening displacement. Similarly,
rigure 7.25 shows these results for Modes I and II due to a single dislocation

with an applied unit shear displacement. These results (Figures 7.24 and 7.25)
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compare with those presented by others (2,3,12). Figures 7.26 and 7.27

reproduce the same analyses performed in 7.24 and 7.25 except the dislocation
dipole is oriented at 200. The orientation 8 = 200 is analyzed since this is the
typical orientation of the LSD lines. The information contained in these plots
show where the zones of amplification and shielding occur and how these zones

are affected when the discontinuities are inclined at 20o°.

A third analysis on was performed on a particular configuration of crack
and damage. Detailed photographs of the last cycle from the Cyiinder 56
fatigue test were used to create the composite photograph of the zrack and
damage. The zone of damage (consisting of slip surfaces) was approximated
with 27 descrete slip lines. A photograph of the zone and the approximating
slip lines is illustrated in Figure 7.28. Measurements of CSD (Crack Sliding
Displacement) were recorded for each of the 27 slip lines. Ten dislocation
dipoles per slip line for a total of 270 dipoles were distributed to model the zone
of damage. A Program call KMIN (listing in Appendix A) compnted the
Mode-II stress intensity factors caused by the damage array (Equations 7.24
and 7.25) and the remotely applied load (Equations 7.2) along with a
cumulative result denoted Kqamage, Kcrack, and Kiotal, respectively. KMIN
computed these values for various crack tip locations starting at <he notch tip
and extending through the damage zone. The SIF magnitudes are normalized
by the KII c values obtained for this material by Kennedy (31). Plots of Kcrack,
Kianage, and Kiota) V. imaginary crack tip location are illustrated in Figure

7.29. The reader should note that the total SIF (Kiqta1) is appraximately equal
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to zero at the same location where the centroid of damage was determined for
this cycle. This finding suggests that the Mode—II fracture in overconsolidated
clays resembles that of a Dugdale—Barenblatt model (15,19) if an imaginary

crack tip is located at the centroid of damage.

Although not explicitly reported, KMIN also computed the same SIF
results for Mode—I. In general, Mode—1I effects can be induced the
unsymmetrical development of the damage zone (Figure 7.28). However,
K{danage never exceeded more that 4% of K{1damage and the hydrostatic effects

(o, = —30 psi) cancel any Mode—I propagation (i.e., Kjtotal = 0).

7.7.1 Stress Intensity Factor Analysis for Continuously Distributed

Dislocations

It is recognized that the above results are only valid for the particular
configuration shown in Figures 7.28 and 7.29 and that a more general approach
would may rendure more worthy results. In this subsection we will outline a
method for computing the SIF’s caused from the distributed damage illustrated

in Chapter 5.

Consider a square element of material extending through the cylinder
thickness within the LSD damage zone as illustrated in Figure 7.30. It is

expected that some of the LSD lines (surfaces) do not all extend to the outer
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wall of the cylinder and thus the actual discontinuity density may be more
realistically depicted by utilizing the LSD density measurements.

In general, the total SIF can be written as a combination of that due to
the remotely applied load (K,) along with that of the LSD array (AKgg,). This

can be expressed as:

[7.29] Kiot = Ko + AKsgy

where:

[7.30] K, = 147

and:

(731 Ms = w7z [ Garln©) (a) 4V
Vsda

In Equation 7.31, Gi;if(p,0) denotes the Green’s Function for the stress
intensity factor for a unit discontinuity located at p and oriented by ©. The
expression for the Green’s Function is written in Equation 7.28 and is plotted
for in Figures 7.24 through 7.27. ¥ z,y) in Equation 7.31 denotes the
concentration of LSI’s within the damage zone and has a dimension of and can

be written for a particular LSD orientation as:
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(7.32 o) = 2

where tis the cylinder thickness.

Thus, the total SIF as expressed in Equation 7.31 can be written in the

following form:

[7.33] Kiot = Ko[ 1+ %ﬂ Glz,y) 4zy) do dy]
Vsdz

In order to employ Equation 7.33, we need only to define the LSD
concentration ¢z,y). A method will be proposed herein as an iflustrative
example for constructing the LSD concentration from the distribbutions

constructed in Chapter 5.

If we assume that the number of elemental discontinuity lines are of
average orientation (i,e, ® = + 200 depending if above or below the z—axis), and
that the discontinuous displacement within a given element is equal to the sum
dipole displacements within that element, the concentration for this element

can be written determined.

In the example proposed in this subsection, a constant dipole

displacement was assumed, which implies that the total discontinuous




157

displacement within across the damage zone is proportional to the volume of
damage created. Further, the total number of dipoles within an element are

assumed to be proportional to the damage density.

For simplicity, an LSD zone is assumed to have the simpLified form of
that shown in Figure 7.31. A series of programs called KMSM and PLDS
(histing in Appendix A) performed the analysis. Figure 7.32 illustrates the
tesults for the SIF due to damage only (A Kg4, in Equation 7.31) as well as a
dislocation density scattergram in a comparable analysis to that performed for a

particular configuration in Figure 7.29.

Notice that this generalized analysis also illustrates that a location where
all of the stress field singularities cansel appears within the damage zone. This
is similar to that shown in Figure 7.29 and illustrates in a more general sense
that a phenonima of a modified Dugdale—Barenblatt model with a tip located

within the Kio; = 0 vidnity may actually occur in our material.

7.8 Energy Release Rate Analysis

In this section we will introduce methods for computing the energy
release rates for both the near (at the notch tip) and far (around the entire
damage zone) fields. From LEFM (Linear Elastic Fracture Mechanics) the
energy release rate of the notch tip is related to the SIF by Equation 7.34.
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(e + (g

[7.34] Jnear = poH
where

E =+ plane stress
[7.35] E = -1-_%;5 - plane strain

The energy release of the entire damage zone will be referred to herein as
the far field ERR (Energy Release Rate) and denoted by Jrar. Budiansky and

Rice (4) provide expressions for the ERR in complex form as:
[7.36) Jrar = % f [(@f )2 + 2<1>'~1:'] dr
r

Thus, Jrar can be evaluated by performing a numerical contour
integration around the microdefect array by using the potentials in Equations

7.9, 7.10, and 7.19.

Again, a fortran routine named RENG was written to perform such an
analysis. This routine reads in the microdefect file and evaluates the near and
far field ERR’s. RENG utilizes a rhomberg integration technique to perform

the contour integration and a listing is included in Appendix A.

The configuration shown in Figure 7.25 (Cylinder 5-6) was analyzed and

the following results were obtained:
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Jnear = 1528 J/M?
Jrar = 149 J/M2

7.9 Summary

The information contained in this chapter formulates the stress and
energy analysis of the crack—damage interaction problem. The solutions are
expressed in terms complex potentials and the results obtained from these

analyses provide insight in:

. The asymptotic stress fields in the vicinity of the main crack, the
stress fields for the crack—dipole and the stress fields for the
dogbone crack configuration as applied to Mode—II conditions.

. Zones of shielding and amplification are identified through
Green’s Function for the SIF plots. These plots were produced
for both Modes I and II for the case of the horizontal and inclined
dipoles. R

. An effective crack propagation within the damage zone is
suggested through an elaborate crack—damage SIF study on a
particular configuration as well as a generic zone constructed of
continuously distributed dipoles.

) Far field energy release rates which relate to the translation of
both crack and entire LSD is computed for a particular
configuration and the results from this analysis can be used to
properly proportion the measured ERR. For the case considered
in Section 7.8, it appears that the energy release for rigid
translation of the damage zone is approximately 10% of the total
measured ERR. This factor will be used in Chapter 8 to adjust
the measured ERR accordingly in the constitutive model.
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Solution via Superposition

Combined
Case Case 1 Case 2 Case 3

b b
= Lo
Z= | = = — =z

——— = = + | —— + | — =
. - —

bttt YT T

Figure 7.1: Three Cases which when superimposed produce a

combined stress/displacement field observed in the
experiment.
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164

EDGE DISLOCATION

Crack

Re

Plot of K. K. Lo’s solution for a crack with an edge
dislocation in the complex plane.
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DIPOLE DISLOCATION
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Figure 7.3: Plot of a crack with a dislocation dipole ir the complex

plane.
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Figure 7.4:

Mohr’s circle diagrams defining the components of stress.
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Plots of stress components in the vicinity of the crack tip
resulting from a remotely applied shear stress.
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Photograph of dogbone cracks developed in a cylinder
during testing.
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Figure 7.20:

T T T
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Contour plot of Tyy stress component for the dogbone
crack case (Figures 7.18 and 7.19).
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Figures 7.18 and 7.

Contour plot of o
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Figure 7.21:
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Contour plot of Tyax Stress component for the dogbone
crack case (Figures 7.18 and 7.19).
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Damaged Element

Figure 7.30: An element of damaged material illustrating the internal
and external damage.
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Chapter 8

A Constitutive Model

8.1 Introduction

In Chapter 6, the fracture process is treated as a thermodynamic
irreversible process. Therein, the global entropy production is described as a
bilinear form of generalized fluxes and thermodynamic forces (Equation 6.14).
This type of relationship has also proven to be true for other types of

irreversible processes such as diffusion and chemical reactions (1,2,3,4).

In order to develop a constitutive model describing the Mode II fracture
process in overconsolidated clays using the relationship in Equation 6.14, two

tasks must be accomplished:

. The phenomenological relationship between the generalized flux
(zc) and the thermodynamic force (X;) must be evaluated.

. Evaluation of the specific energy for the Localized Strip
Densification Process (i.e., compute 7). 7is considered to be a
material property in the theory and is contained in the
thermodynaric force (see Equations 6.15, 6.16, and 6.17).
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In this chapter the above two tasks will be addressed using
experimentally obtained results from Cylinder 5—6.

8.2 Experimental Results and Observations

Cylinder 56 was tested in a manner described in Chapter 2. During the
cyclic test, specified torque—rotation cycles were recorded and corresponding
photographs of the LSD zone evolution were taken (see Figures 3.1, 3.2, 7.28).
From the torque—rotation curves, the total potential energy and irreversible

work values vs cycles were plotted. These plots are shown in Figure 8.1.

Other processed results for this test included the damage zone evolution
(LSD evolution) performed in Sections 5.3, and 5.4. Results from the Cylinder
5—6 damage evolution reconstruction include a plot of the centroid distance (z.)
vs. cycle number (Figure 5.7) and a plot of the translational resistive moment

(Ry) vs cycle number (Figure 5.11).

The data in the plot of centroid distance vs. cycle number in Figure 5.7
was fit by a least squares approach with a third order polynomial.
Differentiating the curve fit equation produced a second equation describing the

rate of centroid movement (i.e., an equation for z for any cycle number).




»
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The stress and energy analysis in Chapter 7 showed that the energy
release for pure translation of the damage zone amounted to approximately 10%
of the total measured energy release rate (see Section 7.8). Thus, the 10%
factor was used to reduce the total measured energy release rate in Figure 8.1 to
compute the active part of the thermodynamic force (A;). Application of the
above described approach was done in by plotting the potential energy vs.
centroid distance and fitting the data with an approximating curve (see Figure
8.2). Again, differentiating the curve fit equation produced another equation
representing the total ERR (energy release rate). These results were reduced to
10% of their total value in accordance with the findings in Section 7.8 to reflect

the ERR due to translation of the damage zone.

Note that by processing the information as described above allows us to
obtain the generalized flux (Z.), the active part of the thermodynamic force
(Aj), and the resistive part of the force (R;) for any particular cycle if a value
for 7 is specified. Thus, we are now ready to investigate an appropriate
phenomenological relation between the force and flux and to estimate a value

for v, the specific energy for Localized Strip Densification.

8.3 Phenomenological Relationship and Specific Energy Evaluation

In this section we evaluate the phenomenological relation between the

generalized flux z; and the thermodynamic force X;. For convenience we
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remind that:

[8.1] Xi1= 4,—- 7R,

z¢ = rate of translation of the LSD zone centroid.

At thermodynamic equilibrium all processes stop and we have

simultaneously for all irreversible processes:

(8.2] z2.=0 X;=0 at equilibrium.

It is quite natural to assume, at least in the neighborhood of an
equilibrium condition (i.e., stable crack and damage propagation), the relation
between the force and flux can be approximated by a linear relationship. This
type of relation is assumed in many other processes studied in nature. Fourier’s
Law for heat conduction and Fick’s law for diffusion are examples of such
processes (1,2,3,4). This type of phenomenological relation is known as the
Onsager Principle (2,3).

Initially, the effect of v on the force/flux relationship was investigated
by plotting on a log—log scale the data of forces vs. fluxes for various values of
7=constant. In other words, a range of plots illustrating the force—flux data for
differing values of y were produced. These plots for 7 ranging between 1.0

kJ/M3 and 10.0kJ /M3 is included in Figure 8.3.
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In Figure 8.3, it is noticed that their is an apparent insensitivity for a
chosen 7 in the early portion of the data and that the significant influence only
occurs near the end of the record (i.e., the value of v only significantly affects
the last four data points). The last points correspond to cycles greater than or
equal to 245. When investigating the LSD zone evolution for cycles earlier than
245 cycles (Appendix D) it can be noticed that the relative rate of LSD
nucleation is significant when compared later portions of the record. Since the
thermodynamic model presented within this study did not account for this
effect, the application of the translational model to the LSD zone to the earlier

portion of the record is not applicable.

An Onsager type relation (linear relation) is proposed for the data with
cycles greater than or equal to 245 from the Cylinder 5—6 data set. In order to
assess the proper value for ¥ and the phenomological coefficients a regression
analysis on the force/flux data for ranging values of 7. The combination which
produced the best correlation (e.g., according to Pearson’s Correlation
Coefficient) were chosen as appropriate parameters to describe the fracture
process in this material. The resulting fit is shown in Figure 8.4 and the

corresponding equation describing the fracture process is given by:

[8.3] o =3[ 1= 7R: = of
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where, for the case of overconsolidated kaolinite clay:

[8.4]

1)
2)
3)

1)

v=1.0 (kJ/M3)
p = 45x103 ( J cyc/M)
a=32 (J/M?)

Aris, R. (1962) "Vectors, Tensors, and the Basic Equations of Fluid
Mechanics," Prentice—Hall, Englewood Cliffs, N.J.

Fahien, R. W. (1983). "Fundamentals of Transport Phenomena,"
McGraw Hill, N.Y.

Fung, Y. C. (19 ). "Foundations of Solid Mechanics", Prentice—Hall,
Englewood Cliffs, N.J,

Moon, P., Spencer, D. E. (1961). "Field Theory for Engineers,"” Van
Nostrand, Princeton, N.J.
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CYLINDER 5-6

Measurad Energias vs. Cyclas
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Plot of the total measured potential energy and
irreversible work vs cycle number for Cyhnder 5—6.
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CYLINDER 5-6

Measured Energias vs. Cantroid
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Figure 8.2: Plot of the total measured potential energy and

irreversible work vs. centroid distance for Cylinder 5-6.
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For y=1.0kJj/m3

S Force vs. Flux
8
N g ,
~ 24
<
o 7=1.0 (kJ/M3)
0S| B =45x103 (J cyc/M)
O R a=32 (J/M?)
O
L
8
2
E "3}
—
3
=
8
© T T T T T i
0.00 0.50 1.00 1.5 2.00 2.50 3.00
Cent. Rate (mm/cyc)
Figure 8.4: Plot of the thermodynamic force vs. flux with y=1.0

kJ/ M3 for Cylinder 56 together with regression fit line.




Chapter 9

Final Discussion

9.1 Summary

The work contained in this dissertation represents a fundzmental

investigation of the Mode II fracture process in overconsolidated clays. A

-methodology is presented for characterizing cooperative fracture with an

ultimate goal to develop a constitutive model based on the framework of

thermodynamics of irreversible processes.

While pérforming this study, new developments in theorectical aspects,
and experimental techniques arose. Some of these developments will be

summarized herein.

Chapter 2 presents experimental techniques. Some of the new
experimental contributions include using an image analysis system for the
quantitative characterization of observed damage in this material. Also, a
technique for measuring localized irreversible deformation (slippage) during the

testing sequence was developed. It involves photographing and znalyzing a grid
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system stamped on the cylinder prior to testing.

Chapter 3 presents experimental evidence of stress induced
morphological transformations that occur in the soil fabric during fracture. It
should be noted that this is the first time damage has been observed in the
microstructure of this material and the processes responsible are named
Localized Strip Densifications and Network Densifications. In addition, four

micromechanisms responsible for macroscopic deformation are identifyed.

Chapter 4 introduces techniques for characterizing the kaclinite cluster
distributions (i.e., the soil fabric in it’s natural state). Included, is an
introduction to the concept of a representative volume of material which bridges
the gap between material science and applied mechanics. A formal definition is
given for the representative volume and a working definition of a representative

volume for the case of overconsolidated clays is given.

Chapter 4 also provides new theorectical and numerical techniques in the
field of quantitative stereology by presenting a new scheme for reconstructing
the spatial distribution of a polydispersed system of particles from information
obtained from a planar section. The new reconstruction scheme is a hybrid of
Dehoff’s and Saltykov’s methods except that it is generalized to accomodate a
mixture of both prolate and oblate ellipsoids. In addition, the presented scheme
allows for an overdefined system of equations improve accuracy over the

conventional linear system. Finally, an error analysis technique is presented
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and some preliminary results for the spatial distribution of clusters is presented.

Chapter 5 presents an experimentally based scheme for quantitatively
characterizing most common of the material transformations (i.e., the Localized
Strip Densifications). The technique involves a combination of elaborate
specimen sectioning along with an intensive numerical processing scheme to
reconstruct contour maps of the damage zone. Further, a technique for
reconstructing the evolution of damage is presented and gross (elementary)

movements of the entire zone are identified.

Chapter 6 introduces the concept of treating fracture as an irreversible
process within the framework of thermodynamics. Within, the conventional set
of state parameters is extended to include a damage parameter p and an
equation of state is written in terms of entropy production. Both the local and
global entropy production is expressed as a bilinear form of thermodynamic
forces and generalized fluxes. Also, a generalized flux is identified as the
centroidal movement of the zone of damage and the active part of the
thermodynamic force is compared to the conventional energetic force (J —

integral) in fracture for an isothermal condition.

Chapter 7 provides a comprehensive stress and energy analysis for the
crack and damage zone configuration. The combined problem of crack, damage
and applied load is decomposed into three separate problems. A semi—empirical

stress analysis based on a complex potential formulation is introduced.
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Contours of effective stress fields are shown for specified cases. Also, the
effective stress intensity from each of the separate cases is investigated. Zomes
of amplification and shielding are identified for a microcrack (dislocation dipole)
oriented so as to be parallel to the main crack and for the case of an inclined
(20°) microcrack for both Modes I and II. These zones are identified through
contour plots of the Green’s Function for the stress intensity factor. Also, the
combined stress intensity factor caused from both remote loading and a
particular (observed) configuration of damage is analyzed and a plot of the total
SIF vs imaginary crack tip suggests that the fracture in this material resembles
that of a sophisticated Dugdale/Barenblatt model. Further, a generic approach
for analyzing the damage zone as distributed damage is introduced and
illustrated for a particular case. Finally, an energy release rate analysis of the

entire damage zone is performed.

Chapter 8 brings together all of the information from the previous
chapters and proposes a constitutive model for describing the fracture in this
material. The model is based on a bilinear form of a generalized flux
(centroidal movement of the damage zone) and a thermodynamic force. The
model presented consists of a phenomological relation between flux and force
and the evaluation of a material property « (the specific energy for cluster

densification).




209

9.2 Conclusions

Many conclusions can be extracted from the work reported in this thesis.
Most of these have been commented on in respective sections of their chapters.
These will not be reiterated in this section and only those that are considered

most significant will be discussed.

The first conclusion that can be extracted from this work is the
micromechanisms responsible for macroscopic deformation which are evidenced

in Chapter 3 and explicitly listed therein.

Second is that the overall methodology presented, provides a constitutive
law which derives its basis from the thermodynamic studies of transport
phenomena (heat conduction, diffusion, etc.). Thus, a bilinear form describing
the fracture process contains sound scientific reasoning and is not simply an

empirical formula.

Finally, it is my belief that further studies of this nature would greatly
benefit if a specimen of larger diameter is used. The basis for this finding can
be found explicitly in three different chapters. First of all, the minimum
representative volume size determined in Chapter 4 indicates that statistical
convergence of specimen response may not occur unless the specimen size is at
least an order of magnitude larger that the RV size. Secondly, close inspection

of Figure 3.5 b shows a higher frequency of LSD’s emanating to the outer

————
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surface and relatively few along the inner surface. This observation indicates
that the curvature affects the nucleation and growth of damage. Thirdly,
Figure 8.3 shows a relative insensitivity to the value for 7y except at the latter
data points. This indicates that the early portion (less than 245 cycles)
majority of the test sequence can be considered an initiation stage and the
applicability of this model (constitutive model) only becomes reasonable after
245 cycles. A larger diameter specimen would provide more data within this
realm.
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Appendix A
Program Listings
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Page 1
06-24-86
12:21:45
D Line# 1 7 IEM Perszcnal Computer FORTRAN Campiler V2.00
1 PROGRAM PROBLY
z c*".Q...miitﬁ’tt"t.t’it’tti!t’t!'h’ti.iﬁiiii..."*i”ii*ii*mtii.
3 Cenwsn THTS PROGRAM IS DESIGNED TO COMPUTE THE CUMOLATIVE reweead
4 Ce*esd DPRCBABILITY USING A GAUSSIAN DENSITY OISTRIBUTION FOR sesweidy
S Cesxaw J SPRECIFPTED INTERVAL . Lol il
§ CURRAANRRETE AN RS IRRARNRANENARNERANARERANRRNA RN AREAEANRIP AR RN SO S Tea T IRty
7¢C
8 cC Inpot Required Variables
9 C
10 WRIZE(*, %)/ == INPUT PARAMETERS -~=/
11 0005 WRITE(>,6 +)’ MEAN, SDEV, SUM’
12 READ(*, *, ZRR=0005) BARX, SDEV, SUM
13 0010 WRITE(#, *)’ GIVE L[OWER AND UPPER LIMIT’
14 READ(*, *», ERR=0010) BL, UL
15 ¢
16 C Sat Integration variable
17 C
18 NINT=1000
19 WDTe (BL~LL) /FLOAT (NINT)
20 XC=3L,
21 COEFF=SUM/ (SDEV#2.5066)
22 SUM=0.0
22 C
24 DO 7100 I=1,NINT
1 25
1 26 ZX=—0.5* (((XC-BARX) /SDEV) ##2)
1 27 HGET=EXP (EX)
1 28 IGET=COEFF*HGHT
1 29 SUM_=SUML+ (HGHT*WDTH)
b3 30 XC=XC+WDTH
b 31 0100 CTNTINUE
32 ¢C
33 ¢C WArite final results
34 C
35 WRITE(*,0020)BARX,SDEV, BL, UL, SUM1
36 0020 FOCMAT(//,’ —-——— SUMMARY OF INPUT AND RESULTS ———',/,
37 ) N MEAN=’ ,G10.4,’ SDEV=’,Gl0.4,/,
38 2 7’ IOWER LIM=’,G10.4,’ UPPER LIM=/,Gl0.4,/,
39 S CUMOGLATIVE PROBILITY =’/,Gl0.4)
40 =D
Name Type Offsat ? Class
BARX REAL 2
BL REAL 14
COEFFP REAL 38
= REAL 54
XP INTRINSIC
FLOAT INTRINSIC
HGHT REAL 58
z INTEGER®4 46
LL INTEGER*4 30
NINT INTEGER™4 22
SOEV REAL ]
SUM REAL 10
SUM1 REAL 42
oL REAL 18
WOTR REAL 26
Xc REAL 34




D Linet 1
41

Name Type
PROBLY

Pass One

Size
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Page 2
- 06-24-86
12:21:4S
IEM Pexrsonal Computer FORTRAN Compiler v2.00
Class
PROGRAM

No Errors Detectad

41 Source Lines
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Page 1

Q6-27~88

19:11:14

0 Line# 1 7 Microsoft FORTRAN77 V3.20 02/84
$DEBUG

1
2 PROGRAM CYCTMP

B 2 L L L T L e L L L R T I e PP P
4 Cetesse THE PURPOSE OF THIS PROGRAM IS TO RECIEVE INPUT FROM THE HP *
S Ceeess DTOTTER INFORMATION AND STORE THE INFO IN AN ARRAY FOR PLOT-+
6 Ce#wa® TTING AND OTHER REPROCESSING. *
FA A2 2L S e 2 TR T T T 2T T s 2 I T TR 2 2 2% 2 1 T T RS T RPN
8 DIMENSION X(1000),Y(1000)

9 CEARACTER*10 DATFIL

10 CEARACTER®*40 TITLE
11 XTNC=Q.0
12 YIRC=0.0
13 0010 WRITE(w, )’ === GIVE PILE NAME -~- '/
14 WRITE(»,*) ¢ XOOOOQOOOIX’
15 R®AD(*,0020,ERR=0010) DATFIL
16 0020 CRMAT(AL0)
17 CPEN(10,7ILE=DATFIL, STATUS='NEW’)
18 0030 WRITE(*,*)’ ==— GIVE DATA TITLE -~-’
19 [ 383 AR IR IR ¢ 0000000000000 000000006000006000000000 044
20 READ(*,0040,ZRR=0030) TITLE
21 0040 FQRMAT(A40)
22 0035 WRITE(*,*)’ GIVE NUMBER OF POINTS’
23 READ(*,*,ZRR=0035) NPTS
24 0025 WHITE(®,*)’ IF AUTO INCREMENTING X OR Y DATA /
25 WEITE(*, %)’ GIVE XINC AND YINC RESPECTIVELYI’
26 READ(*, », ERR=0025) DUMX, DUMY |
27 = (DUMX.NE.0.0) XINC=DUMX
28 IF (DUMY.NE.0.0) YINC=DUMY
29 CUMX=0.0
30 SUMY=9.0
11 G
32 ¢ TERMINAL INPUT LOOP
a3 20 0100 Il=1,NPTS
1 34 0105 WEITE(+,0110)I1,DUMX,DUMY
1 35 0110 TCRMAT(///
1 36 i1 DEFAOLT VALUES N/
1 37 2" PT. NOw=’/,15,’ X =’ ,Fl2.5,’ Y=’ 212.5,//
1 38 3" GIVE X OR ¢ TIF NOT SATISFACIORY’,//
1 39 4~ —=>=999. TO CHANGE INCREMENT VALIES’,/
1l 40 5 /)
1 41 L& X=0.0
1 42 MY=0.0
1 43 XEAD(*, + ERR=0105) DMX, DMY
1 44 C
1 4S5 F(DMX.EQ.-999.) THEN
1 46 0118 WRITE(*,*)’ GIVE NEW XINC AND YINC’
1 47- READ(*, *, ZRR=0115) XINC, IINC
i 48 GO 70 0105
- 49 Z¥DIT
M 50 ¢
1 51 T (DMX.NE.1.3) DUMX=DMX
1 52 X (DMY.NE.0.0) OUMY=DMY
1 53 X7I1) =0oMxX
1 54 T 'Z1) =0UMY
l 5s SEMX=0UMX+OINC
1 56 CMY=0UMY+TINC
L $7 0100 CONTINUE
58 C
S9 C
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06-27-38
19:11:14
D Lines 1 - Microsoft FORTRAN7T V3.20 02/84
60 0120 WRITE(*,*)’ CONTINUE --> 0 LIST INPUT -~-1’
§1 DUM=0
62 IEAD(*,*, ERR=0120) IDUM
53 ZF(IDUM.GT.0) THEN
64 0133 WRITE(*,#)’ |—— PT NO -~|--=X (value) ——|-—Y (value)-—|’
65 DO 0125 Il=1l , NPTS
1 66 0125 WRITE(*,0130)I1,X(T1),Y¥(I1)
§7 0130 FORMAT(’ | ’,IS,” | ¢,Pr2.8,* | ‘,F12.5,° |*)
68 0127 WRITE(*,*)’ CHANGE INPUT GIVE POINT NO’
§9 IDUM=0
70 READ(*,*, ERR=0127) IDUM
71 IF(IDUM.GT.0) THEN
72 0129 WRITE(*,*)’ GIVE X (value), Y (value)’
73 READ(*,*,ERR=0129) X(IDUM) , Y (IDUOM)
74 GO TO 01133
75 ENDIF
76 INDIP
77 €
78 C
79 C SENERATE INPUT
80 0140 RITE(»,*)’ GENERATE OTHER HALF -->1’
81 DOUM=0
82 FZAD(*, *, ZRR=0140) IDUM
83 = (IDUM.GT.0) THEN
34 NPM1=NPTS~1
85 WRITE(*, *)’ NPMl=‘ NPM1
86 DO 0150 Il=l,NPM1
1 87 X(NPTS+I1)=X(NPTS)~-X(I1+1)
1 38 Y (NPTS+I1)=~1.0*Y(I1+1)
1 89 0150 CONTINUE
90 NPTSaNPTS*2~1
91 WRITE(*,*)’ NPTS=‘/,NPTS
92 INDIF
93 TRITE(*, *)’ WRITING FILE’
94 30 0200 Il=1,NPTS
1 95 0200 ®RITE(10,*)X(Il),ZT(I1)
96 STP==399.
97 *RITE(10, *)STP,STP
98 +«RITE(10,004Q) TITLE
99 CZOSE(10)
100 XD
Name TYpe Offset ? Class
DATFIL CHAR*10 3024
oM REAL 3490
oMY REAL 8494
poMxX REAL 8090
oMY REAL 8094
Il NTEGER*4 8098
DO INTEGER™4 8498
NPM1l INTEGZR™"4 8556
NPTS INTEGER*4 8086
sTP REAL 8563
TITLZ CHAR*4C 3040
X REAL 18
XINC REAL 8016
k4 REAL 4016
YINC REAL 3020




216
Page 3
06-27-88
19:11:14
D Line} 1 7 Microsoft FORTRAN77 73.20 02/84
Name Type Size Class
CYCIMP PROGRAM

Pass One No Zxrors Detected
100 Source Lines
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b
*hw
Ry
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D Line# 1 7T Microsoft FORTRAN77 V3.20 02/84
1 $DEBUG
2 PROGRAM CONTOUR
3 c*’*ft""*’iﬂttﬂtti*tit*i'iiﬁ“.""t’ﬁtf‘i‘tt"t'ti."ttm’t.”ﬂ‘t
4 C**2=»» This program is designed to create a series of files Zor
§ Cwas=» nlotting a an active zone contour map. It assumes the
§ C*»=»» phenomina can be representad with a normal distributiem.
7 cta*tt""itiiﬁitit***"*ii!iitiitititQt"ﬁi'ittii'tiit*.tﬁmtfitatit
8
9 COMMON PT(100,2) ,YBAR(100),YDEV(100),YCUT(100,2) , YMAX(ZDO0),
10 1 XCRD(100)
11 CIARACTER*10 FILENM, FINP
12 C
13 ¢ Set origin (crack tip) values
14 C
1S N=0
16 0200 WRITE(*,*)’ INPOT FILE ->1 TERMINAL ->0’
17 XTAD(*, *,ERRw0200) IN
18 ZF(IN.NE.O)THEN
19 0205 WRITE(*,*)’ GIVE INPUT FILE NAME’
20 READ(*,0055,ERR=0205) PINP
21 OPEN(7, FILE=FINP, STATUS=/0OLD’)
22 READ(7, *)NPRP
23 D0 0230 I=1,NPRF
1 24 READ(7,*)YBAR(I) , YDEV(I) , YMAX(I)
1 25 REBAD(7, *)YCUT(I,1),YCUT(I,2),XCRD(I)
1 26 0230 CONTINUE R
27 CLASE(7)
28 30 TO 0046
29 ENDIT
30 T™MAX(1)=0.0
31 TDEV(1)=1.0
32 TCIT(1,1)=1.0
33 TCOT(1,2)=2.0
34 TCRD(1)=0.0
35 0005 FRITE(*, %)/ GIVE CRACX IOCATION '/
3s FEAD(*, *, ZRR=0005) YBAR (1) .
37 0010 WRITE(*,*)’ ALIGN MEAN VALUES ? YES ->1 NO =->07
38 =ZEAD(*, *,ZRR=0010) IMOCVE
39 C
40 C ==ad in remaining input
41 C
42 0015 ARITE(*,*)’ GIVE TOTAL # OF PROFILES TC INPUT/
43 ZEAD(*, *,ERR=0015) NPRF
44 NPRP=NPRF+1
4S8 0017 WRITE(*,*)’ GIVE SEARCH LIMITS (lower, upper) ’
46 =PAD(*,*, ERR=0017) SL,SU
47 C
48 C Start input lood here
49 C
so D0 0022 I=2,NPRF
1 S1i Ti=I~1
1 $2 0025 WRITE(*,0030)I1
1 53 0030 TORMAT(//’ GIVE MEAN, SDEV, MAX, FOR ’,I3,’th PRGITILE’)
b3 54 ZFAD(+, ¥, SRR=002S5) 73AR(I) ,IDEV(I) , YMAX(I)
1 55 0035 WRITE(*,*)’ GIVE CUTOFF LIMITS (lover, upper)’
s 56 JCM1=0.9
1 57 JTM2=0.0
X s8 EEAD(*,~,ZRR-0035)DUH1,DUM2
1 s9 <
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06~27-88
19:12:12
D Line# 1 b Microsoft FORTRAN7T V3.-0 02/84
1 §0 3 (DUM1.NE.0.0) THEN
1 61 YCUT(I,2)=DUML
1 82 ILSE
1 83 YCUT(T,2)=SL ,
1 64 INDIF
1 §5 C
1 66 —F(DUM2.NE.O0.0) THEN
1 67 ICUT(I,1)=0UM2
1 63 I=SE
1 69 TCUT(I,1)=SU
1 70 INDIFP
1 71 C
1 72 T (IMOVE.EQ. 1) THEN
1 73 TCUT(I,1)=YCUT(I, 1) -YBAR(I)
1 74 TCUT(I,2)=YCUT(I,2)~YBAR(I)
1 78 TBAR(I)=0.0
1 76 INDIF
1 77 C
1 78 C
1 79 0033 WRITE(+,*)’ GIVE X-COORDINATE FOR PROFILE “
1l 80 IZAD(*, *, ERR=0033) XCRD(I)
1 81 0022 CONTINUE
82 pu 1))
83 0219 WRITE(+,*) ’ STORE INPUT DATA IN FILE YES ->1 NO ->07
34 XEAD(*, +,ERR=0210) IN
85 I (IN.NE.O)THEN .
86 Q215 WRITE(+,*)’ GIVE FILE NAME’
87 2EAD(*,0055, ZRR=0215) FINP
a8 OPEN(7,FILE=PINP, STATUS=/NEW’)
89 WRITE(7,*)NPRFP
90 30 0220 I=1,NPRF
91 WRITE(7,*)YBAR(I),YDEV(I), YMAX(I)
92 WRITE(7,*)¥YCUT (I, 1), YCUT(I,2),XCRD(I)
93 0220 CONTINUE
94 TIO0SE(7)
95 IMDIF
96 C
97 ¢ Start contour input loop here
98 C

99 0046 CONTINUE
100 0045 WRITE(w,0040)
101 0040 FORMAT(//‘ CONTINUE ->0 STOP ->1’)

102 Z3TP=0

103 FEAD(*, »,ERR=0045) ISTP

104 ZF(ISTP.GT.0)GO TO 0999

195 C

106 C mad in contour magnitude and file output name
107 ¢

108 0050 WRITE(»,*)’ GIVE MAGNITUDE OF DESIRED CONTOUR’
109 AZAD(¥, *,ERR=0050) OMAG

110 =)

111 0060 “RITE(»,#)’ GIVE JUTPUT FILE NAMB'

12 RZAD(*, 0055, ZRR=0060) FI LENM

113 0055 TTRMAT(A10)

ll¢ C

115 C Zseck %o see which Profile exceeds the contour nagnicsude
116 C

117 2O 0065 I=1,NPRF :

1l 118 006% IF (TMAX(I).GE.CMAG)GO TO 0070

G N N N BN N B A A A B D b B B B B B e
e




D Line# 1

e

e e e

119
120

121 0070

122
123

c
[

124 C

128
126
127
128
129
130
131
132
113
134
138
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

175
17s
177

(e X Xt

0120

007S
0076
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WRITE(*,*)’ VALUE OF CONTQUR EXCEEDS DENSITY PEAK’
GO TO 2046
CONTINTZ

Coumputs the number of points required for contour

IPRST=Z

CONTINTZ

IPRND=G

DQ 007t I=IPRST, NPRF

IF (MAX(TI) .LT.CMAG) THEN
IPRND=I-1

GO TO 3076

ENDIP

CONTINTZ

CONTINTCZ
IF(TIPRND.GT.0) THEN
NPTS=;# (IPRND~IPRST+1)+3
ENDIP

IP(IPRXD.EQ.0) THEN
IPRND=¥PRF
NPTS=2«(IPRND-IPRST+1)+1

ENDIF

WRITE(*,*)’ NPTS =’ NPTS

WRITE(*,*)’ IPRST, IPRND=’,IPRST,IPRND

Computa the coordinates for ‘the points

IF(I7PR8D.NE.NPRF) THEN
IFR=IZIND+1
CALL NINT(IPR, CMAG,VALX,VALY)
PT{1,.)=VALX
PT(1,2)=VALY
PT(NPZS, 1) =VALX
PT(NP?S,2)=VALY
ELSE
PT(1,2}=XCRD(IPRND)
PT(NPZS, 1) =XCRD(IPRND)
IPR=IZSND
CALL TZ¥DPT(IPR, CMAG,VALY1,VALY2)
PT(1,2}=VALY2

PT(NPS, 2) =VALY2

ENDIT

WRITZ(+,*)’ COMPUTED FIRST 2 PTS’
Il=1

I2=NPTS

17 (I2Rs3.NE.NPRF) THEN
NSTOP= 2RND-IPRST+1
IPR=ITEND+1

ELSE
NSTOP= PRND-IPRST
IPR=IZIND

ENDI?

DO 0083 I=1,NSTOP

Ii=Iies

IZ=IZ-2
IPRmIdB-1

PT(I1,1.=XCRD(IFR)
PT(I2,..=XCRD(IFR)
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IF (YMAX(ZPR) .EQ.CMAG) THEN
PT(I1,2)=fBAR(IPR)
PT(I2,2)=YBAR(IPR)
ELSE

WRITE(*,*)’ CALLING FINDPT’
WRITE(*,*)IPR,CMAG, VALY1, VALY2
CALL PINDPT(IPR,CMAG,VALY1,VALY2)
WRITE(*,#)’ RETURNING FROM FINDPT’,VALY1,VALY2
PT(I1,2)=VALY1

PT(I2,2)=VALY2

ENDIP
CONTINUE
CALL LINT¥T(IPR, CMAG, VALX,VALY)
PT(I1+1,1)=VALX

PT(I1+1,2)=VALY

Write copmzsur to file

OPEN (10, FZLE=FILENM, STATUS=’NEW’)

DO 0090 Isl,NPTS
WRITE(lo,+)PT(I,1),PT(T,2)

CONTINUE

STPw-999.

WRITE(10,*)STP,STP

WRITZ(10,3100)CMAG

FORMAT(’ ?ILE FOR CONTOUR MAG=’,G10.3)
CLOSE(10)

Check for additional curve at the corresponding magnitude

FLG=0
IF(IPRND..T.NPRF) THEN
IC=IPRND-L
IPRST=0
DO 0110 I=IC,NPRF
IF (YMAX(Z} .GE.CMAG) THEN
IPRST=I
GO TO 012
ENDIF
CONTINUE
CONTINUE
IF(IPRST.GE.IC.AND.IPRST.LE.NFRF) THEN
WRITE(*,*)’ NEW STARTING PROFILE AT’,IPRST
WRITE(*,*)’ ANOTHER POSSIBLE CONTOUR AT/ ,CMAG
WRITE(*,*)’ GIVE NEW FILE NAME'
READ(*,2055,ERR=0130) FILENM
FlG=1
INDIZ
ENDI?
IF(TI5.2Q.1)GO TO 0120
GO TO 2046
CONTINUZ
END

OfZset P Class
.66

22
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FILENM CHAR»10 174
FINP  CHAR*1Q 20
FLG REAL 336
I INTEGER*4 34
I1 INTEGER*4 58
I2 INTEGER*4 284
I1c INTEGER*4 340
IMOVE INTEGERw"4 42
N INTEGER*4 16
IPR INTEGER*4 264
IPRND INTEGER*4 252
IPRST INTEGER*4 248
ISTP  INTEGER*4 162
N1 INTEGER*4 170
NPRF  INTEGER*4 30
NPTS INTEGER*4 260
NSTOP INTEGER®*4 288
PT REAL o /COMMQQ/
SL REAL 46
STP REAL 300
SU REAL 50
VALX  REAL 268
VALY REAL 272
VALYl REAL 276
VaLY2 REAL 280
XCRD  REAL 2800 /COMMQQ/ N
YBAR REAL 800 /COMMQQ/
YCUT REAL 1600 /COMMQQ/
YDEV  REAL 1200 /COMMQQ/
YMAX  REAL 2400 /COMMQQ/
221 ¢
232 C .
233 SUBROUTINE LININT(I,CMAG,VALX,VALY)
234 COMMON 2T(100,2),YBAR(100) ,YDEV(100),¥CUT(100,2) ,YMAX (100},
23S 1 XCRD(100)
238 D (YBAR(I=1)-YBAR(I)) **2
237 DwD+(XCRD(I=1) =XCRD(X)) *»2
238 D=SQRT (D)
239 DPR=(D* (CAG-TMAX (I~1) ) ) / (YMAX(I) -TMAX(I~1)})
240 VALX=(DPR* (XCRD(I)-XCRD(I-1)})/D
241 VALY=(DPR*(YBAR(I)-YBAR(I-1)))/D
242 VALX=VALX+XCRD(I-1)
243 VALY=VALY+YBAR(I-1)
244 RETURN
245 END

Name Type

Offset P Class

CMAG  REAL 4

D REAL 348

DPR REAL 352

: INTEGER*4 0 *

PT RBAL 0 /CoOMMQQ/
SQRT INTRINSIC
VALX REAL lg :

VALZ  REAL

XCRD REAL 2800 /COMMQQ/
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YRAR REAL 300 /CAMMQQ/
YcuT REAL 1800 /COMMQQ/
YDEV RFAL 1200 /coMMQQ/
YMAX REAL 2400 /coMMQQ/
248 ¢
I 247 ¢
248 STZRCUTINE Z‘INDP!‘(I,C.‘{AG,VALXI,VALYZ)
243 CCMNMON PT(100,2) « YBAR(100) +»YDEV(100) LYCUT(100,2) ,YMAX (100},
25Q 1 XCRD(100) .
251 ¢
l 252 ¢ Check fixst to see if CMAX falls within the cutofs
253 ¢
254 FLAG=0
255 Limi
256 Y1=Y3AR(I})
257 Y2=YCIT(I,LL)
258 0100 CONTINUE
259 YG=YCIT(X,LL)
26Q CALL 7X(I,7G, MAG)
261 IT(QAG.IZ.YMAG) THEN
262 {VAL=YCST(I,1LL)
263 ELsSZ
264 C
265 ¢ Perzara hisecting convergenge routine
268 C -
267
268 0010 CONTINUZ
269 YG=(¥1+¥2)/2.0
270 CAIL FX(I,1IG,IMAG)
271 CON=( (NMAG-CYAG) #100.0) /CMAG
272 IT(ABS(CON) .LE.1.0)GO TO 0029
273 IF(TLAG.2Q.0) THEN
274 IZ (MAG.GT.CQQG) TSN
278 11=¥G
278 ELsZ
277 T2=7G
278 ENDI?
279 ELsSZ
280 IZ(DAG.GT.CMAG) THEN
281 I2=yG
282 ELSZ
283 Y1=YG
284 ENDI?
285 ENDIT
286 GJ T2 0013
287 0020 CONTINUZ
288 TTAL=YG
289 =NDIZ
299 IFT(3TAG.2Q.0) THEY
291 Y 1=YTAL
292 EL3E
293 TALIZ=»{TAL
294 ENDIT
295 IF(FLAG.2Q.0) TEEY
296 TLAG=]L
l 297 T2=mAAI(D)
298 Lim2
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299 ¥1=YCUT(I,LL)
300 GO TO 0100
301 ENDIF
302 RETURN
303 END
Name TYpe Offset P Class
ABS INTRINSIC
CMAG REAL 4 *
CON REAL 384
FLAG  REAL 356
I INTEGER*4 o *
L INTEGER*4 360
PT REAL 0 /COMMQQ/
VALYl REAL 8 *
VALY2 REAL 12 »
XCRD  REAL 2800 /COMMQQ/
1 REAL 364
Y2 REAL 68
YBAR REAL 800 /CoMMQQ/
YCUT  REAL 1600 /COMMQQ/
YDEV  REAL 1200 /COMMQQ/
b4 REAL 372
YMAG REAL 376
YMAX  REAL 2400  /COMMQQ/
YVAL REAL 380 :
304
305 ¢
306 ¢
307 ¢
308 SUBROCTINE 7X(I,YG,¥YMAG)
309 COMMON PT(100,2),¥YBAR(100),¥YDEV(100)},YCIT(100,2) ,YMAX (100),
310 1 XCRD(200)
311 EX=(YG-YBAR(ZI))/YDEV(I)
312 EX=-0.5*%(ZX*EX)
313 YMAG=EXP (ZX) *TMAX(I)
314 RETURN
315 END
Nane TYpe Offset P Class
EX REAL 388
=Xz INTRINSIC
I INTEGER*4 0 *
PT REAL Q / COMMQQ/
XCRD  REAL 2800 /CCMMQQ/
YBAR REAL 300 /COMMQQ/
YCIT REAL 1600 /COMMQQ/
YDEV  REAL 1200 /COMMQQ/
b4 REAL 4 0*
YMAG REAL 8 *
YMAX REAL 2400 / coMMQQ/
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Name TYpe Size Class
COMMQQ 3200 COMMON
CONTOU . PROGRAM
FINDPT SUBROUTINE
7% SUBROUTINE
LININT SUBROUTINE

Pass One No Errors Detected
315 Source Lines
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1 $DEBUG
2 PROGRAM REPVOL
3 c*'itii*‘iit'ittf'ﬁiiiit"ﬁ"ti*'.iﬁiiﬁti!itﬁ'iitt'ﬁiit’*’t*'iiiﬁfﬁ“t
4 Ces»ax This program is designed to help the user determine the Lk
S Cr**+* representative volume for a specified sample by : o
6 Cw*»»wx 1) Computing the spread of diversity in a arw
7 Chedan by creating histograms for a certian Lata
8 Corinn dimension. *hw
9 Craax> 2) Increasing the size of the dimension *er
10 Crarws recomputing the effective spread in the Lk
11 Chhenn sample. hw
12 CRRRR AR R LR AR N RN AR RN RN RN AR RN R RN AA N R R RN ARR N AR DA DDA RN A AR RR AR EE N
13 DIMENSICN GR(20,20) ,CREP(3,3),BAREP(20),SDREFP(20)
14 CHARACTER®10 FILEY
15 WRITE(*, %)’ GIVE INPUT FILE NAME’
18 READ(*,0005) PILEY1
17 0005 FORMAT(Al0)
18 OPEN(10,PILE=PILEl, STATUS=‘OLD’)
19 READ(10,*)GRDM
20 DO 0010 Il=1l, 20
1 21 DO 0010 I2=»1, 20

2 22 00lo READ(10,*)GR(I1,X2)
23 0015 WRITE(*,*)’ GIVE NO. OF EVALUATIONS TO PERFORM’

24 READ(*, ¥, ERR=(0G15) NAN
25 IF(NAN.LE.Q) NAN=]
26 C
27 ¢ Input is complete, Thus start Analysis
28 C
29 DO 0020 Il=l, NAN
1 30 WRITZ(*,*)’ WORKING ON /,Il,’th DIMENSION’
1 31 AREP=(FLOAT(I1) -GRDM) * (FLOAT (I1) *GRDM)
1 32 DO 0030 I2=1, 3
2 33 DQ 0030 I3=)1, 3
3 34 C
3 35 ISTR1={(I2~-1)*I1l)+1
3 36 ISTP1=ISTR1+Il-1
3 37 ISTR2=((I3~-1)*#I1)+1
3 38 ISTP2=ISTR2+I1~1
3 39 CREP(I2,I3)=0.0
3 40 DO 0040 I4=ISTR1,ISTP1
4 41 DO 0040 IS=ISTR2,ISTP2
S 42 0040 CREP(I2,I3)=CREP(X2,I3)+GR(I4,IS)
3 43 CREP(I2,I3)=(CREP(I2, IJ)*IOO 0) /AREP
3 44 0030 CONTINUE
1 45 C
1 46 C COMPUTE THE MEAN AND VARIATION FOR PARTICULAR DIMENSION
1 47 C
A 48 BARE?(I1)=0.0
1 49 SDREP(I1)=0.9
1l 30 0O 00SC I2=1,)
2 s1 DO 0050 I3=1,3
3 52 RFI=CREP?(I2,I3)
3 s3 SDREP(I1)=SDREP(I1)+( (RFI*RFI)/9.0)
3 5S4 BAREP(I1)=BAREP(I1)+ (RFI/9.0)
3 55 0050 CONTINUZE
1 b1 SOREZ(I1)=SQRT(SOREP(XI1)-(BAREP(I1)*BARERP(I1)))

[

$7 0020 CONTINUE
S8 ¢

$9 ¢C WRITE OUT THE FINAL RESULTS
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81
62
63
54
6S
66
&7
68
89
70
71
72
73
74
75
76
77
78
79
80
31
82
83
84
85
1 86
87
88
39
90
91
92
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0060 WRITE(*,*)’ TERMINAL ->0 PRINTER ~>1’
READ(*, *, ZRR=0060) IW
IP(IW.N2.0) THEN
OPEN(7,PILE=*PRN’)
IN=T
ENDIP
IWA=0
0100 WRITE(IWA,0110)
0110 FORMAT(’1’,//,

REPRESENTATIVE VOLUME ANALYSIS ‘/

Anal Dimension Mean std. Dev. ¥4
¥No. (M*E-4) ®) x) '/

NS LN

LR
~
~

DO 0120 Il=1,NAN
DIM=GROM*FLOAT (T1)
WRITE(IWA,0130)I1,DIM, BAREP(I1) ,SDREP(I1)
0130 FORMAT(
1 ’,18,’ '1 ’,F10.2,’ ’,F10.2,’ |! ’,F10.2,"’ l'i
2 ’
0120 CONTINUE
WRITE(IWA,012S)
0125 FORMAT(’1’,//,20X,’=== CLUSTER AREA DATA BASE ~—')
DO 0135 I1=1,20
0135 WRITE(IAA,0140) (GR(I1,I2),IZ=1,20)
0140 FORMAT(/,20(1XF3.0))
IF(IW.2Q.7.AND.IWA.EQ.0) THEN
IWA=7
GO TO 0100
ENDIF
END

Nane TYpe Offsat P Class

AREP REAL 1348
BAREP REAL 1732
CREP REAL 1696
DIM REAL 2360
FILZE1l CHAR*10 1812

FLOAT

INTRINSIC

GR REAL 16
GRDM REAL 1828
Il INTEGER*4 1832
I2 INTEGER™4 1336
I3 INTEGER*4 1852
4 INTEGER*4 1872
Is INTEGER*4 1380
ISTP1 INTEGER?4 1860
ISTP2 INTEGER*4 1368
ISTR1 INTEGER*4 1856
ISTR2 INTEGER*4 1364
™ INTEGER*4 1892
IWA INTEGER*4 1896
NAN INTEGER?*4 1840

RFT REAL la88
SDREP REAL 1618

SQRT

INTRINSIC
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REPVOL PROGRAM

Pass One No .Errors Detected
92 Source Lines
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1 $debug
2 Morphol
3 C'tit"ttt’i'i’."'ﬁtittﬁititti.*'**ﬁﬁ’tt"..'.’tt'i'i‘titt'f’t!ii”t
4 Ceaa»2»* This program is designed to compute the number of clusters #*
S Casaxw in a given class per unit volume of material. This is to
6 Cw»a** he performed using an algorithm similar to that used in De-**
7 Cenxxd Hoffs allipsiod analysis. This algorithm, however, has e
8§ Cwxaw* bean generalized to compute the number of both oblate and o+
9 Cwwa#** prolats spheroids within a givan class as well as a poss~ ¢
10 Ce»»2* jbla aspect ratio for each class. Led
11 c*ifi*'iiii'."i"’tt‘.ttﬁi*.'ii"*ti‘iit’ﬁ""t.inﬁﬁﬁﬁﬁﬁ'ﬁ"ii'htt"t
12 real+*s rj,ra,raml,phi,qs,rho,rhoa,rhoml,dphi,c(40,40)
13 real*4 ri(1000),$(1000),na(40),nj(40)
14 dizension drj(2),q(2),k(2)
15 character*1l0 fil
16 character*l label(2)
17 character+*40 title
18 data label/’Pro’,’Obl’/
19 ¢
20 ¢ Input the necessary Information
21 ¢
22 0005 write(s,s)’ Give filename ’
23 read(+,0010,arr=0005) £1i1
24 0010 format(alld)
25 open(5,file=fil , gstatus=‘old’)
26 read(5,*)kt,delr
27 do 0013 i=1,kt
1 28 0013 read(5,*)na(i)
29 close(5)
30 0015 write(*,*)’ Give no. of prolate and oblate classes’
31 read(s, *,arr=001S)k(1),k(2)
32 i£(X(1).gt-0)then
33 0020 write(r,*)’ Give prmax and aspect ratio”
34 read(*,*,arr=0020) prmax,q(1)
3s drj (1) =orzax/float(k(1l))
36 endif
37 if(k(2).gt.0)then
38 002S write(*,*)’ Give crmax and aspect ratio’
39 read(+,*,err=0025) ormax, q(2) ‘
40 drj (2)=ormax/float(k(2))
41 endif
42 kut=k(1)+k(2}
43 write(s, *)’ Give title’
44 read(*,0030)title
45 0030 format(a40)
46 C
47 ¢ Integrate the probability coefficients
48 ¢
49 do 0100 ia=l,kt
A 50 ra=delr*floatc{ia)
1 51 raml=delr*float(ia-l)
1 52 do 0110 j=1,kxut
2 53 c(ia,j)=0.0
2 54 i2(j.le.c(1)) then
2 ss rj=dble(drs (1) *float(3))
2 56 gs=dble(q(1))
2 57 else
;B ==dble(drj(2) *float (j-k(1)))

gs=dble(1l.3/q(2))
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2 80 endif
2 61 dphi=1.570796327/180.0
2 62 do 0120 ii=1,180
3 63 phi=1.5707963*dble(11)/180.0
3 64 call comrho(rj,raml,phi,qgs,rho)
3 65 rhoml=rho
3 66 call comrho(rj,ra,phi,qgs,rho)
3 57 rhoa=rho
3 68 c(ia,j)=c(ia,j)r((rhoml-rhoa) *dsin(phi) *dphi)
3 69 0120 continue
2 70 c(ia,j)=2.0*c(ia,j)
2 71 if(c(ia,j).1t.0.00001)c(ia,j)=0.0
2 72 write(s,*)’
2 73 write(*,0109)ia,j,c(ia,])
2 74 0109 format(///' c(’,13,7,7,i3,%)=’,g15.9)
2 75 0110 continue
3 76 0100 continue
77 ¢
78 ¢ solve for the Nj'’s
79 ¢
80 iwrong=Q
81 ¢
82 call prereg(c,na,Xxut,kt, iwrong)
83 if(ivrong.eq.1)go to 0999
84 ¢
85 call solve(kut,c,nj,na)
86 c 4
87 ¢ Write out the output for the cases
88 ¢
89 0200 write(*,*)’ Terminal ->0 Printer ->: File =->2/
90 read(*, v, exrr=0200) iflg
91 if(iflg.aq.l)}open(7,file=’prn’)
92 if(iflg.eq.2)open(7,file=’table.dat’, status=’'nevw’)
93 iw=0
94 0210 continue
95 write(iw,0220)title
96 0220 FORMAT('1",///,
97 17 '/
98 2’ RKunin-Lessar ELLIPSOID ANALYSIS '/
99 3 for VOLUMETRIC CLUSTER DISTRIBUTION '/
100 4 7 . ‘/
101 s/ v ,A40Q,7 [ r/
102 5/ ’
103 7’ Equiv. Partcle | No. of 4
104 8 ’ |Parucl| Partcle Aspct. Vol. Particle Class ’/
105 9’ TYpe Rad. Ratio (mm3) per Volume |//
106 A (mm) (mm3) (mm3) |4/
107 B/ ) ! "
108 tvol=0.Q
109 do 0250 i=l, Xkt
1 110 if(i.le.x(1))then
1 111 icel
1 112 =i
1 113 else
1 114 it=2
1 115 Jmi-%(1)
i 116 endi?
bR 117 rads=dri (it) *2lcat(]j)
1 118 pvol=4.138790204* (rad+»3)
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1 119 cvol=nj (i) *pvol
1 120 tvolstvol+cvol
1 121 write(iw,0230)label (it),rad,q(it),pvel,nj(i),cvol
1 122 0230 format(
1 123 1| ’,a3,” |’,29.5,"|’t8.4,"|’,9.5,’|’,£10.6,]",
1 124 2 £9.6,'|")
1 125 write(iw,0240)
1 126 0240 format(
1127 1’ I ! [ B
1 128 0250 continue
129 write(iw,0270)tvol
130 0270 format(
131 1 Total Volume = ’,£12.6,’ 177
132 2’ B
133
134 if(iflg.eq.2.and.iv.eq.7)close(7)
135 if(iflg.ne.0.and.ivw.eq.0) then
136 iwm?
137 go to 0210
138 endif
139 ¢
140 ¢ Write output for file information
141 ¢
142 i£(X(1).gt.0)then
143 sun=0.0
144 do 0300 i=1,k(1)
1 145 sum=sum+nj (i)
1 146 0300 continue
147 ™mp=0.0
148 sdp=0.0
149 do 0310 i=1,k(1)
1 1S0 rad=float(i)*drj (1)
1 1is1 rap=rap+(rad#*nj (i) /sum)
1 1s2 sdp=sdp+ (rad*rad#*nj (i) /sum)
1 153 0310 continue
154 open{7,file=’1ptl’)
155 write(7,0320)k(1),rmp,sdp
156 0320 forzat(’ #a® ESTIMATED DISTN ##2/ /
157 1L No. Prolate Classes =/,i5,/
158 27 MEAN=’,G10.4,’ SDEV=’,G10.4)
1S9 close(7)
160 endif
161 if(X(2).gt.0)then
1682 sum=0.0
163 ktot=k(1)+k(2)
164 do 0230 i=mk(l),ktot
1 1865 sum=sum+nj (1)
p4 166 0330 continue
167 rao=0. 4
168 sdo=0.9
169 do 0340 imk(l),ktot
1 170 j=k(1) =i
T 171 rad=tloac(j) *»dxrd (2)
1 172 rmo=rao+(rad*nj (i) /sun)
1 173 sdo=sdo+ (rad*radnij (i) /sum)
1 174 0340 continue
175 open(7,2ile=’1lpcl’)
175 write(7,3350)k(2),zmo,sdo

177 0350 format(’ #**% ESTIMATED DISTN ***',/
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178 1’ No. Oblate Classes=‘, is,/
179 2’ OBLATE MEAN=/,G10.4,' SDEV=',G10.4)
180 close(7)
181 endif
182 09992 continue
183 end
Nane TYpe Offset P Class
[ REAL*8 8362
C7oL REAL 22250
DBLE INTRINSIC
DELR REAL 21182
DPHI REAL*8 21354
DRI REAL 8340
DSIN INTRINSIC
?IL CHAR*10 21162
TLOAT INTRINSIC
I INTEGER*4 21186
Il INTEGER*4 21362
IA INTEGER*4 21306
IFIG  INTEGER*4 21438
IT INTEGER*4 22238
a INTEGER®4 21442
IWRONG INTEGER*4 21434
J INTEGER?Y4 21330
X INTEGERY4 8348 ’
T INTEGER®4 21178
XTOoT INTEGER*4 22890
upy INTEGER*4 21202
LABEL CHARY] 8356
NA REAL 8020
NI REAL 8180
ORMAX REAL 21198
PHT REAL#S 21366
PRMAX REAL 21194
PV0OL REAL 22246
Q REAL 8012
Qs REAL*8 21346
RA REAL#*S 21314
RAD REAL 22242
RAM1 REAL*8 21322
REO REAL#*S 21174
REOA  REAL*S 213990
RHOM1 REAL*8 21382
RI REAL 4012
R REAL*3 21338
WO REAL 22898
WP REAL 22714
s REAL 12
SDo REAL 22902
SoP REAL 22718
SUM REAL 22706
TITLE CHAR*40 21206
TVOL REAL 22230
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186 ¢
187 Subroutine comrho(Rj,ri,phi,qgs,rho)

188 Crr s e et et S R R AN R RSN AN IA R R AN R AR NN N ANV I SN R A AN ONRR AR AN A DN R RN SN N

189 C*#»#a» This routine is designed to compute the value of rho in s**
190 Cw#»a+ Dahoff’s solution for a prolate spheriod given a value of a#»

131 Ca»ea* Rj, ri, Q, and angle phi. (phi is in radians) "
192 Chanas QS=Qj {PROLATE) e
193 Cranns QS=1.0/Q} (OBLATE) bbb
194 c.tiﬁtititiittttiﬁ’ttt*itiiiﬁitiiif"t.i.’i'tQtttﬁﬁﬁtttﬁtiiitttittitt
195 real*s 1l,m,n,Rj,ri,phi,qs,xho,dc,ds
196 dc=dcos (phi)
197 ds=~dsin(phi)
198 l=(dc*dc)+ (qsrqs*dsrds)
199 mw(ds*ds)+ (gsrqgs*dcrdc)
200 n=(dst*ds*dc*dc) *(1l.0-gqs*qs)
201 ¢
202 ¢ Computa Rho
203 ¢
204 cho=(risri) /dsqrt(l)
208 rho=rho~((((gs)**).666666666) *R*Rj) /1)
206 rho=(rho*l#l)/(n—/2*l))
207 if(rho.lt.0.0)the"
208 tho=0.0
209 else
210 rho=dsgrt(rho)
211 endif
212 return
213 end
Name Type Offset P Class
Bc REAL=*8 23082
DCos INTRINSIC
REAL*S 23090
INTRINSIC
INTRINSIC
L REAL*8 23098
M REAL*S 23106
N REAL*8 23114
PHI REAL#*8 8 *
Qs REAL#*8 12 »
RHO REAL#*3 16 *
RI REAL#*8 4 *
h:h s REAL#*8 [
214 C
21s ¢
216 C
217 SUBROUTINE PREREG(A,B,M,MM, IWRONG)
218 REAL*3 A(40,40),ASQ(40,40)
219 DIMENSION 3(40),3SQ(40)
220 TP (M.GT.MM) THEN
221 WRITZ(*, *)/ SYSTEM OF SQS CANT BE SOLVED’
222 ITWRONG=1
223 GO TO 0999
224 ENDIF
225 DO 3010 I=1,M
1 228 DO 0020 J=1 M

BN N WS N E N G I B I B BE D BN B B N an e
aea
E
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2 227 ASQ(I,J}=¢.0
2 228 DO 0030 Kwl,MM
3 229 ASQ(T,J)=ASQ(I,J)+(A(K,I)*A(K,J))
3 230 0030 CONTINUE
2 231 0020 CONTINUE
2 232 0010 CONTINUE

233 ¢

234 DO 0040 I=l M
1 235 BSQ(I})=0.0
1 236 DO 0050 Kwl MM
2 237 ADUM=SNGL (A (XK, I))
2 238 BSQ(I)=BSQ(I)+(ADUM*B(K))
2 239 0050 CONTINUE
1 240 0040 CONTINUE

241 C

242 DO 0060 I=1,M
1 243 DO 0070 J=1 M
2 244 A(I,3)=ASQ(I,JT)
2 245 0070 CONTINUE
1 246 B(I)~BSQ(I)
1 247 0060 CONTINUE

248 0999 RETURN

249 END

Offset P Class
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L2 24

A REAL#*8 Q * ‘
ADUM  REAL 36114
AsSQ REAL=*8 23282
B REAL 4 *
BSQ REAL 23122
I INTEGER*4 36082
IWRONG INTEGER*4 16 *
J INTEGER#*4 36090
X INTEGER*4 36098
M INTEGER*4 8 *
hoi.d INTEGER*4 12 +
SNGL INTRINSIC
250
251 C
252 SUBROUTINE SOLVE(N,A,X1,Bl)
253 CEERERNRNR AN RAR R ERARE RN ARNRANRRAFNARRAARRRARARRANAARRAN RN AR AR IR AN RD
254 Cw»#%» This routine solves a linear system of equations ( Axw=b) w**
255 Ce#*#** by using Gauss reduction. This method does not require  *e+
256 Cxw»##** that the matrix A be symmetric.
257 CHREARNRARER AR EA RN ERRRRER R IR ANAN DRI ARSI IVRLTD AR R RN SRR AR Sa bbb hddd
258 real*g A(40,40),X(40),B(40)
259 dimension X1(40),B1(40)
250 do 0010 i=1,40
1 261 3(I)=DBLZ(B1(I))
1 262 0010 CONTINUE
263 C
264 C Trianqularize the A datrix
265 C
266 NNaN-1
267 00 0100 X=1,NN
1 268 XX=K+1




D

1

2 270
2 271

2 272

3 273 0100
274 C
275 C
276 C
277

278

279

280

281

282

283 0400
284

285 0300
286

287 0030
288

289

Nane Type

A REAL+8
B REAL#*8
31 REAL

N e

-

DBLE
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DO 0100 I=KK,N
C=A(I,K)/A(K,K)
B(I)=B(I)-B(K)*C

DO 0100 J=K,N
A(I,J)=A(I,J)~A(K,J)*C

Solve for x vector (solution vector)

X (N)=B(N) /A(N,N)

DO 0300 Ke=l,NN
I=N-K

II=I+1

€=0.0

DO 0400 J=II,N
C=C+A(I,J) *X(JT)
X(I)=(B(I)-C)/A(T,I)
CONTINUE

DO 0030 I=l,40
X1(I)=SNGL(X(I))
RETURN

END
Offset P Class

4 *
36446
12 *
36790
INTRINSIC

I INTEGER*4 36766
II INTEGER*4 36806
J INTEGER*4 36794
K INTEGER™*4 36774
KX INTEGER*4 36782
N INTEGER*4 0
NN INTEGZR*4 36770

X REAL#*3

Name Type

COMRHEO
MORPHQ
PREREG
SOLVE

INTRINSIC
36126
g *

Size Class

Pass One No Errors Datectzad
289 Sourca Lines
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VRNAWMe LN

$debug

Morphol

c’t.*0&'tﬁittttittttt"*’tﬁt’t'!0"’ﬂ”””"t*’tﬁQ.ti’iﬁi"ﬁii.iiii’
[ 32T T
Ceedanx in a given class per unit volume of material. This is to s+

Cadeae he performed using an algorithm similar to that used in De-t+
Chanaw

ChRhRR
Crahdn
10 Chanas

This program is designed to compute the number of clusters =+

Hoffs ellipsiod analysis. This algorithm, hovever, has *e
been generalized to compute the number of both oblate and e+
prolate spheroids within a given class as well as a poss- =+
ible aspect ratio for each class. .

1l CRRRR AR RRERFANIER RN ERBIRAS LSRN R ARSI AR RANRARN AR LIS I ADRANANEN AN NSNS A NSNS

13
14
15
16
17
18
19 ¢
20 ¢
21 ¢
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 ¢
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59

0005
0010

0015
0020

0025

0026
0030

0035

real+*s rj,ra,raml,phi,bqs,rbo,rhoa,rhoml,dphi,c(40,40)
real#*4 ri(1000),8(1000),na{40),nj(40)

dimension drj(2),q9(2),%k(2)

character*10 afil,sfil

character*3 label(2)

character*40 title

data label/’Pro’,’Obl’/

Input the necessary Information

write(s, *)’ Give the ti;enane for the AREA ARRAY’
read(*,0010,err«0005)afil :

format(alo)
open(5,file=afil,status=’old’)
rmax=0.0

do 0015 i=1,1000 g
read(5,*)dum

if(dum.eq.-999.)go to 0020
ri(i)=(sqrt(dum/3.14159))/10.0
if({ri(i).gt.rmax) rmax=ri(i)
continue

continue

npts=i-1

close(S)

write(x, *)’ Give the filename for the SHAPE FACT ARRAY’
read(*,0010Q,err=0025)stil
open(sS,fila=sfil,status=‘o0ld’)

amin=1.0

amax=0.0

aaves0.9

do 0026 i=1,1000

read (S, *)dum

if(dum.eq.~999.)go to 0030

8 (1) =dum

if(s(i).lt.amin)aminws (i)

if(s(i).gt.amax) amaxw=s(i)

aavewaavers(i)

continue

continue

close(5)

aave=aave/float(i-1)

write(®, »)’ No. of Points =’,npts

wTite(+, )’

write(®, =)’ Rive desired no of cClasses 1<->20"
write(*,*}’ for the prolate and oblate respectively’

read(*,», err=003S5)x(1),%x(2)
write(*,*)’




D Line}

O e N e

[SESE NI S RN o]

60
(33
62
63
64
65
66
67
68
69
70
n
7
73
74
75
76
77
78
79
80
81

[ ¢]

ano

82 0040
33 0045

84
85
86
87
88
89
90
91
92
1
94
95
96
97
98
99
100
lo1
102
103
104
108
108
107
108
109
110
113
112
113
114
115
ils
117

11
-

<
c
[~4

aona

0055

0060
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if(X(1).gt.20)k(1)=10
1f(k(2).gt.20)k(2)=10
write(+,v)’ ASPECT RATIO INFORMATION’
write(r,*)’ Maxm’ ,amax,’ Minw’,amin,’ Ave=’,aave
i£(X(1) .gt.0) then
write(*,*)’ Prolate give aspect ratio, maximm radius’
read(*,*)q(1l) ,prmax
pruax=rmax/(q(l) **0.3333)
pruax=raax
drj (1)=prmax/float(k(1))
write(r,*)’ Prolata Equiv. Rad incw= =/, drj(1)
endif
if{X(2).gt.0)then
write(*,*)’ Oblate give aspect ratio, maximum radius’
read(*,*)q(2) ,ormax
ormax=rmaxw(q(2) **0.1667)
ormax=ruax
drj (2)=ormax/float(k(2))
v:it‘(*,*)' Oblata Equiv. Rad. inc =/,drj(2)
endit

write(¥, *)’ Give Title for data set’
read(*,0040)title

format (a40)

write(*,*)’ Give size of ANALYSIS AREA {mm2) ’

read(*, *,err=0045) tarea
Compute the maximum radius, ‘ra, and na

kt=k(1)+k(2)

delrw=rmax/float (xt)
open(s,filem=’td.dat’,status=‘new’)
write(*,0040)title

do 0060 is=1,kt

bl=delr+*float(i-1)
ul=delrs*float(i)

nct=0

do 0055 j=1,npts
if({ri(j).gt.bl.and.ri(3j).le.ul)nct=nct+l
na(i)=float({nct)/tarea

write(*,*)’ na(’,i,’)=',na(i)
write(S,*)bl,0.0
write(s,¢)bl,na(i}
write(5,+)ul,na(i)
write(5,#*)ul,0.0

continue

writa(S,*)-999.,-999.

closa(5)

Intagrate the probability coefficients

open(6,file=’car.dat’,status='new’)

do 0100 ia=),xt

ra=delr+float{ia)
raml=delx*float(ia-1)

do 0110 3=1,kt

c(ia,j)=0.9

if(j.le.x(1))then
ri=dble(drj (1) *float(]))
gs=dble(q(1))
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119 alse
120 rj=dble(dri(2) *float(j-k(1)})
121 qs=dble(1.0/q(2))
122 endir
123 dphi=1.570796327/180.0
124 do 0120 i1=1,180
128 phi=1.5707963#*dble(il)/180.0
126 call comrho(rj,raml,phi,qs,rho)
127 rhoml=rho
128 call comrho(rj,ra,phi,qgs,rho)
129 rhoa=rho
130 c(ia,j)=c(ia,3)+((rhoml-rhoa) *dsin(phi) *dphi)
131 0120 contince
132 c(ia,j)=2.0*c(ia,])
133 if(c(ia,3).18.0.00001)c(ia,3)=0.0
134 writa(s,*)’
135S write(*,0109)ia,j,c(ia,j)
136 write(6,0109)ia,3,c(ia,])
137 0109 format(///’ c(’,i3,’,’,13,")=’,915.9)
138 0110 continue
139 0100 continue
140 close(§6)
141 ¢
142 ¢ solve for the Nj'’s
143 ¢
144 call solve(kxt,c,nj,na)
145 ¢ do 0150 i=1,xt
146 ¢ 1f(nj(i).1t.0.0)nj(i)=0.0
147 ¢ 0150 continue
148 ¢
149 ¢ Write out the output for the cases
150 ¢
151 0200 write(*,*)’ Terminal ->0 Printer ->1 File ->2/
152 read(+,*,arr=0200)iflg
183 if(iflg.eq.1l)open(7,£ile=’prn’)
154 if(iflg.eq.2)open(7,file=’table.dat’,status=/nev’)
155 jw=Q
156 0210 continue
157 write(iw,2220)title
158 0220 FTORMAT(’Y’,///,
159 1 Y/
150 2! Kunin-Lesser ELLIPSOID ANALYSIS '/
161 3’ for VOLUMETRIC CLUSTER DISTRIBUTION '/
182 4 /
163 s’ ! ,A40,’ | t/
164 6 ! 4
165 7’ Zquiv. Partcle | No. of '/
166 3 ' |partcl| Partcle | Aspct. Vol. Particle Class |‘/
167 9 TYve Rad. Ratio (mm3) per Volume |‘/
168 A (mm) (mm3) (mmd) |’/
169 8’ "
179 tvol=0.0
171 do 0250 is=l,kt
172 if(i.le.x(1))then
173 it=)
174 =i
178 elsa
176 itm2
177 J=i-k(1)
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1 178 endif
1 179 rad=drj (it) »float(J)
1l 180 PVOl=e . 188790204 % (radan3)
1 181 cvols=nj (i) *pvol
1 182 tvolstvol+cvol
1 183 write(ivw,0230)label(it),rad,q(it),pvol,nj(i),cvol
1 184 0230 format(
1 18s 1} -,a3,’ }*,£9.5,’{728.4,7|’,29.5,7|",£10.6,"|",
1 186 2 £9.6,’{")
1 187 write(iw,0240)
1 188 0240 format(
1 188 1] | | | | | B!
1 190 0250 continue
191 write(iw,0270)tvol
192 0270 format(
193 1 Total Volume = /,£12.6,” 1°7
194 2 l’)
195
196 if(iflg.eq.2.and.iv.eq.7)close(7)
197 if{iflg.ne.0.and.iv.eq.0)then
198 Jum7
199 go to 0210
200 endif
201 ¢
202 ¢ Write output for file information
203 ¢
204 sStp==399,
208 if(k(1).gt.0)then
206 open(8,file=’cvolp.dat’, status='nev’)
207 open(9,file=’tvolp.dat’, status='new’)
208 tvol=0.0
209 do 0280 i=1,k(1)
2 210 rad=drj (1) *flocat (i)
1 211 rdml=drj (1) *float(i~.)
1 212 DVOl=4.188790204* (Tad2*3)
1 213 cvol=nj (i) *ovel
1 214 tvol=tvol«cvol
1 218 write(8,*) dml,0.0
1 216 write(8,*)xdml,cvol
1 217 write(8,*)rad,cvol
1 218 write(8,*)rad,0.0
b3 212 write(9,*)rdnl, tvol
1 220 write(9,*)rad,tvoel
1 221 0280 continue
222 write(8,*)stp,stp
223 writa(s,*)stp,stp
224 closa(8)
228 clase(3)
226 endif
227 i£(%k(2).gt.0)then
228 oben(3,fllem’cvolo.dat’, status='new’)
229 open(9,f{ile=’tvolo.dat’, status=‘new’)
230 tvQi=0.0
231 do 0290 i=1,k(2)
1 232 rad=drj(2) *floac(i)
1 233 rdmledr) (2) *float (i-1)
1 234 pvol-4.‘.88790204'(rad"*3)
1 238 crol=nj (i) *pval
1 238 tvol=tvol+cvol




D Line# 1 7
1 237 write(8,*)rdml,0.0
b3 238 write(8,?)rdml, cvol
1 239 write(8,*)rad,cvol
1 240 write(8,*)rad,0.0
1 241 write(9,*)rdml,tvol
1 242 write(9, *)rad,tvol
1 243 0290 continue
244 write(8,*)stp,stp
245 writs(9,*)stp,stp
246 close(8)
247 close(9)
248 endif
249 end
Nane TYPe Offset P Class
AAVE REAL 21212
AFIL CHAR*1O 21162
AMAX REAL 21208
AMIN REAL 21204
BL REAL 21286
c REAL#*8 3362
CcYoL REAL 22242
DBLE INTRINSIC
DEIR REAL 21278
DPHT REAL*8 21350
DRJ REAIL 8340
DSIN INTRINSIC
DOM REAL 21186
FLOAT . INTRINSIC
I INTEGER*4 21182
Il INTEGER*4 21358
Ia INTEGER*4 21306
IFlG INTEGER®*4 21430
IT - INTEGER*4 22230
Iw INTEGER*4 21434
J INTEGER*4 21298
K INTEGER*4 8348
KT INTEGER*4 21274
LABEL CHAR*3 3356
NA REAL 8020
NCT INTEGER*4 21294
NJ REAL 8180
NPTS INTEGER*4 21190
ORMAX REAL 21220
PHI REAL*8 21362
PRMAX REAL 1216
PVOL REAL 22238
Q REAL 3012
Qs REAL*8 21342
RA REAL*8 21314
RAD REAL 22234
RAM1 REAL*8 21322
ROM1 REAL 22706
RHO REAL#8 21370
RHCA REAL*S 21388
RHOM1 REAL~*8 21378
RI REAL 4012
T REAL*8 21334
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RMAX REAL 21178
s REAL 12
SFIL CHAR*10 21194
SQRT INTRINSIC
sTP REAL 226938
TAREA REAL 21270
TITLE CHAR#40 21224
TVOL REAL 22222
OL REAL 21290
250 ¢
251 ¢
252 ¢
253 Subroutine comrho(R3,ri,phi,qgs,rho)
254 CHRARNR B R RN RRRRAE RS RR BB UR R R R RAR R AR AR ANAR AT R R R RRA AN AA TR R ARN AN IR RO bR

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
279
271
272
273
274
275

75
277
278
279

Name

C*#axs This routine is designed to compute the value of rho in  #s+
Ca*a2* Dehoff’s solution for a prolate spheriod given a value of *¢»
Cessa* Ry, ri, Q, and angle phi. (phi is in radians) e
Chanes QS=qj (PROLATE) e
Chravne QS=1.0/Q3 (OBLATE) b
fod 222 20 22 2 21211 2222 R P21 BRI PETRLL LTI L L L 2L r et T I e ey 2ty Y ey ey

real*s 1,3,n,Rj,ri,phi,qs,rho,dc,ds

dcw=dcos(phi)

ds=dsin(phi)

l=(dc*dc) +(gs*gs*ds*ds)

m=(ds*ds)+(gs*gs*rdcrdc)

n=(ds*dssdcrdc) * (1. 0-gs*gs)

Compute Rho

rho=(rirri)/dsgrt(l)
Tho=Tho=((((gS) **0.666665666) *RI*Rj) /1)
rho=(rhosl+*l}/(n—-(m*1})
if(zho.1t.0.0) then
rho=0.0
else
rho=dsqrt(zho)
endif
return
end

aGo

Type Offset P Class

DC REAL#*S 22714

bcos

INTRINSIC

bS REAL*8 22722

DSIN
DSQRT
T,

INTRINSIC
INTRINSIC

L REAL#*3 22730
X REAL#*S 22738
N REAL*8 22746

PHI REAL#8 3
Qs REAL#3 12
RHO REAL*S 16
RI REAL*S 4

280
rq1

REAL#S 0

L2 2 A J

c
C
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L2 C
283 SUBROUTINE SOLVE(N,A,X1,B1)

284 CRALXBVEIANVXANEAERDAIRAR AR RRAR A ABARSARARASELENRBARSAARRLRRAAN LA SRR ARND

285 Cw#=»a* This routine soclves a linear system of equations ( Ax=b) #»»
286 C#*a** by using Gauss reduction. This method does not require ¢»»

287 Cw*w#+ that the 3atrix A be symmetric. e
288 C*tﬂtiﬂti‘"ttttt"ﬁt!ﬁt’**iit’t”Qtt’ttﬁt’.’tﬁit'f’iit*"’*itﬁt*.'iti
289 real*s A(40,40),X(40),B(40)
290 dimension X1(40),B1(40)
291 do 0010 i=1,40

1 292 B(I)=DBLE(31(I))

1 293 0010 CONTINUE
94 C
298 C Triangularize the A matrix
296 C*
297 NN=N=-1
298 DO 0100 X=1,NN

1 299 KRK=RK+1

1 300 DO 0100 I=KX,N

2 301 C=A(I,K)/A(X,K)

2 302 B(I)=B(I)-B(X)*C

2 303 DO 0100 J=X,N

31 304 0100 A(I,J)=A(I,3)-A(K,T)*C
305 C
306 C Solve for x vector (solution vector)
307 €
308 X (N)=B(N) /A(N,N) .
309 DO 0300 X=1,NN

1 310 I=N-X

1 311 II=I+1

1 312 C=0.0

1 313 DO 0400 J=II N

2 314 0400 C=C+A(I,J)*X(J)

1 318 X(I)=(3(I)-C)/A(I,I)

1l 316 0300 CONTINUE
317 DO 0030 I=1,40

1 318 0030 X1(I)=SNGL{X(I))
319 RETURN
320 END

Name Type Ofiset P Class

a REAL*8 4 *

B REAL*8 23074

31 REAL 12 *

c REAL 23413

DBLZ INTRINSIC

I INTEGER*4 23394

II INTEGERY4 23434

v INTEGER*4 23422

X INTEGER*4 23402

X INTEGER*4 23410

N INTEGERY4 0 *

NN INTEGERY4 23398

SNGL INTRINSIC

X REAL=*8 22754

X1 REAL 3 »




D Line# 1
Name Type
COMRHO

MORPHO
SOLVE

Pass One

7
Size Class
SUBROUTINE

PROGRAM
SUAROUTINE

No Errors Detected
320 Source Lines
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CRNANEWUNP

e
~o

i2
13
14
1s
16
17
18
19
20
21
22
23
24
2S
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
43
49
50
51
52
53
54
33
56

57
58
59
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$STORAGE: 2
$DEBUG
PROGRAM PZONE
CRARRARERFAIVEA BN RAAREARR R AR P ESARERIRAAARARERDN SRR A AR RAIANR ARSI IRT RN DD
c This routine is designed to process information regarding
c the damage zone. The infomation to be processed is read in
[+ the foram of a series of normal distribution curves. These
[ cCurves are used to produce a 3-D mesh and the corresponding
[ results are then used to computs the centroid of damage as
c well as the volume of accumulated damaga for each interval.
CRASRNRR R R AR RN N AR IR AN RN AR AR RN N RAR AL AN DA NARAAIRAN AR R AR DR R AR AN

c
c Start by reading in the input information
c
Real#*8 VOL{30),XVOL(30),YVOL(30),R1(30)
COMMON/WORK1/Z (40, 40) ,XP(450) ,YP(450) ,2P{450) ,FZ(15,5),
1 ZPLJ(600) ,VERTEX(16) ,ZLEV(40),YBAR(30),YDEV(30),YCUT(30,2)
COMMON/WORK2/YMAX (30) , XCRD(30) , KNXT (450) ,MASK(6000) , LDIG(40),
1 LWGT(40)
CHARACTER*10 FILENM, FINP?
CHARACTER*30 XLABEL, YLABEL
CHARACTER* 1 XLABEB(30),YLABEB(30)
EQUIVALENCE (XLABEB(1l),XLAREL), (YLABEB(1l), YLABEL)
DATA XLABEL/’ CIRCUMFERENTIAL DIR (mm~-1) //
DATA YLABEL/’ AXTAL DIR (mm-1) '/
NNX=40
NNY=40
NXK=40
NYVY=40
ITT=93
THICK=75.0
0006 write(+,»)’ +#w* Welcome tO P-Zone #*##/
write(r,*)’
“rite(*,*)’ Give Location for plotting output’
write(¥,*)’ 0 =-> Monocrome Monitor’
writa(*, %)’ 1 => Cglor Moniter ‘.
writa(r, *)’ 2 => Printer ’
write(*,*)’ 3 -> HP Plotter’
read(*,*, axrr=0006) iout
if(iocut.eq.0)then
ioport=93
nodel=93
elseif({iocut.eq.l)then
ioport=99
nodel=99
elseif({icut.eq.2)then
ioport=0
modal=64
elisa
ioport=9602
dodel=29Q
endiz

Set origin (crack tip) values

noo

IN=Q

0050 WRITE(+,*)’ INPUT FILE ->1 TERMINAL ->0’
READ(*, *,Z2RR=0050) IN
IT(IN.NE.Q)TEEN
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D Line#
60
61
62
(%]
64
6S

67
53
69
70
71
72
73
74
75
76

78
79
80
81
82
83
84
85
86
87
38
89
30
91
92
923
94
95
96
97
98
99
100
i0l
102
i03
104
105
106
107
108
109
119
111
112
113
114
15
115
117

lis

P I E N N O N e e e e e e e e e e e e o o

0056

0057

0005

0010

anon

0015

0017

noan

0025
0030

0035

[#]
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WRITE(*,*)’ GIVE INPUT FILE NAME'
READ(*, 0055, ERR=0056) FINP

OPEN (7, FILE=FINP, STATUS=‘OLD’)
READ(7, %) NPRF

DO 0057 I=1,NPRY

READ(7, +) YBAR(I) , YDEV (I}, YMAX(I)
READ(7, +) YCUT(I,1),YCUT(I,2) ,XCRD(I)
CORTINUE

CLOSE(7)

GO TO 0046

ENDIF

YMAX(1)=0.0

YDEV(1)=1.0

YCUT(1,1)=1.0

¥CUT(1,2)=2.0

XCRD(1)=0.0
WRITE(#,*)’ GIVE CRACK LOCATION '’
READ(*, *,ERR=0005) YBAR(1)
WRITE(*,*)’ ALIGN MEAN VALUES ? YES ~>1 NO ->0‘
READ(*, *, ZRRm0010) IMOVE

Rezd in remaining input

WRITE(*,*)’ GIVE TOTAL # OF PROFILES TO INPUT’
READ(*, *, ERR®0015) NPRF

NPRF=NTRP+1 )

WRITE(*,*)’ GIVE SEARCH LIMITS (lower, upper)’
READ(*, *, ZRR=0017) SL, SU

Start input loop here
DO 0022 I=2,NPRF

Il=I-1
WRITE(*,0020)I1

FORMAT(//’ GIVE MEAN, SDEV, MAX, FOR ’,I3,’th PROFILE’)

READ(*, *,ZRR=0025) YBAR(I) , YCEV(I) , IMAX(I)
WRITE(*,*)’ GIVE CUTOFF LIMITS (lower, upper)’
DUM1=0.0

DOM2=0.0

READ(*,*,ERR=~0035) DUM1, DUM2

IF(DUM1.NE.0.0)THEN
TCUT(I,2)=DUML
ELSE
YCUT(I,2)=SL
INDIT

IF (DUM2.NE.O.0) TEEN
YCUT(T, 1) =0UM2
IL3E
YCTT(I,1) =80
INDIF

IF(IMOVE.ZQ.l) THEN
¥CUT(I,1)=YCOT(I,1)~-YBAR(T)
¥CUT(I,2)=YCUT(I,2)-YBAR(I)

TBAR(Z)=0.0
INDIT
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175 0105 WRITE(*,*)’ Xno=‘,I,’ Yno=’,J.’ Give bl i
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177 o010 CONTINCE
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1
1 120 0033 WRITE(*,*)’ GIVE X~COORDINATE FOR PROFILE
1 121 READ(*, *, ERR=0033) XCRD(I)
1 122 0022 CONTINUE
123 IN=Q
124 0058 WRITE(*,*) ’/ STORE INPUT DATA IN PILE YES =>1 NO =>0¢
128 READ(#, *,ERR=0058) IN
126 IF(IN.NE.0)THEN
127 0059 WRITE(*,#)’ GIVE FILE NAME’
128 READ(*,0055,ERR=0059) FINP
129 0055 FORMAT(Al0)
130 OPEN(7,FILZ=FINP, STATUS= NEW’)
131 WRITE(7,*)NPRP
132 DO 0060 I=1, NPRF
1 133 WRITE(7,*)YBAR(I), YDEV(I)}, YMAX(I)
1 134 WRITE(7,*)YCUT(I,1),¥YCUT(X,2),XCRD(I)
1 135 0060 CONTINUE
138 CIQSZ(7)
137 ENDIP
138 0046 CONTINUE
139 0070 WRITE(*, )’ Give the # of grid increments’
140 READ(*, #, ERR»0070) ITEMP
141 XIOL~1.0
142 YIQ0I=1.0
143 c RARRRRRABRER DR RSN RRRRER AN AT RN AR R ENS T ARRE IR AN RR DA R AN A R d b
l 144 C Start the big loop for all computations
1‘5 c AR AR R RN RN ER AR AR AR R AR AR IR DA RA RN SRR BRI AR NIRRT AR RAR SRR
146 OPEN(12,FPILE='TABLE.DAT’,STATUS='NEW’)
147 0O 0080 Il=l,ITEMP
1 148 IF(I1.EQ.1)THEN
1 149 IPRQI=0
1 150 ELSE
1 151 IPROJ=1
1 152 ENDIF
1 1S3 C .
1 154 C Read in the information for the overlay grid
1l 155 C
1 156 WRITE(*,*)’ Overlay Grid Information ===’
1 157 WRITE(®,*)’ /
1 158 0083 WRITE(*,*)’ Terminal ->0 File ->17
L 159 READ(#*,*, ERR=0083) IFT
1 160 IF(IFT.GT.0)THEN
1 161 WRITE(*,*)’ Give File Name’
1l 162 READ(*, 00S5) FINP
1 163 OPEN(7,FILE=PINP,STATUS=/0OLD’)
1 164 READ(7, *) NTX,NTY , XMAX
1 165 DO 0081 J=1,NTY
2 166 DO 0082 I=1,NTX
3 167 0082 READ(7,*)FZ(ZI,3)
2 168 0081 CONTINUE
A 169 CIQSE(7)
1 170 ELSE
1 171 0090 WRITE(*,*)’ Give the refine res Xno., Yno. and the Xliait’
1 172 READ(*, *,ZRR=0090) NTX, NTY, DMAX
1 173 DQ 0100 J=1,NTY
l 2 174 DO 0110 I=1,NTX
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CONTINUE
WRITE(»,*)’ Store Templatae
READ(*, *, ERR=0091) IN
IP(IN.NE.O)THEN
WRITE(*,*)’ GIVE FILE NAME'’
READ(*,0055) FINP
OPEN(7,FILE=PINP, STATUS=’NEW’)
WRITE (7, *) NTX,NTY, XMAX
DO 0092 J=1,NTY
DO 0093 I=) NTX
WRITE(7,*)PZ(I,J)
CONTINUE

CLOSE(7)
ENDIF
ENDI?
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Give ->1’

l.... Compute the XP, YP, and the 2P arrays

YDMAX=0.0

DO 0125 I=1,NPRP

IP(YDEV(I).GT.YDMAX) THEN
YDMAX=YDEV(T)
YBMAX=YBAR (I}
YL=YBAR(I)~(3.0*YDEV(I))
YU=YBAR(I)+(3.0*YDEV(I))

ENDIP

CONTINUR
DELY=(YU-YL)/20.0
XT=XCRD(1)
XU=XCRD (NPRF)

WRITE(*,*)’ Xl=', XL,’YL=’,YL,'XU=', X0, YO=’ Y0
WRITE(*,*)’ TO CHANGE DEFAULTS GIVE ->1'

READ(*,* ,ZRR=0126) IC
IF(IC.NE.O)THEN

WRITE(*,*)’ GIVE XL,YL,XU,YU’
READ(*, *,ERR=0126) XL, YL, XU, YU
ENDI?

TDX=(XMAX~XL) /FLOAT (NTX)
TOY=(¥YU-~YL) /FLOAT (NTY)

NP=0

DO 0120 I=1,NPRF
XVAL=XCRD(I)
IF(XVAL.LT.XMAX) THEN
DG 0130 J=1,20
NP=NP+1
YVAL=YL+ (DELY* (FLOAT (J~1)) )
IX=(YVAL-YBAR(I) ) /YDEV(I)
ZX=-0,5*(TX*EX)
IT(EX.LT.-15.) THEN
qT=0.0
ZISE
JI=EXP (EX) *YMAX (I)
ENDIT

Compute the proper temnlate Value

DO 0160 J1=1,NTY
TTVM=YL+ (TDY* (FLOAT (J1-1)))
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YTVP=YL+ (TDY* (FLOAT(J1)) )

DO 0170 IT1l=1,NTX

XTVM=XI+ (TDX#* (FLOAT (IT1-1)))
XTVP=XL+(TDX* (FLOAT (II1)))

IF (XVAL.GE.XTVM.AND.XVAL.LE.XTVP) ICHK=I1
CONTINUE
IP(IVAL.GE.YTVM.AND. YVAL.LE .XTVP) JCHR=J1
CONTINGE

FCT=FZ (ICHEK, JCHK)

2P (NP) =HI*PCT

XP (NP) =XVAL

YP(NP) =YVAL

CONTINUZ

ELSE

DO 0140 J=1,20

NPwiNP+1

YVAL=YL+ (DELY* (FLOAT (J-1) ) )

ZP(NP)=0.0

XP (NP) =XMAX

YP (NP) =YVAL

DO 0200 I=1,NNX

DO 0200 J=1,NNY
Z(I,J3)=0.0

CONTINUE

XST=0.0

IST=0.0

YST=YBMAX~(3 . 0*YDMAX)
NYST=INT{ (YST/50.0)+.5)
YST=PLOAT(NYST*50)
DELTA=100.0

XLENG=XCRD (NPRF) /100.0
YLENG=S .0*YDMAX/100.0
PACT=6.0/XLENG
NSM=2
CAY=S.
NDIV=2
IDIR=3
IEDGE=0
IFRAME=)
ZLOW=1.0E3S
ICUT=1
ITRIM=1
NRNG=10
XUPR = XLENG + XTLOL
YUPR = YLING + YLOL
DX= (XU~XL) / TLOAT (NXX~1)
DY=(Y¥U-YL) /FLOAT (NYY-1)

ARITE(*,*)’ Generating the Grid’

CALL ZGRID(Z,NNX,NNY,NXX,NYY, XL, YL,XU, YU, XP, YP, 2P, NP, CAY, NRNG,
1 ZPIT,XNXT)

WARITE(*,*)’ Smoothing the Grid’

CALL ZSMTH(Z,NNX, NNY NXX,NYY, NSM)

Compute <he Volume, and the Centriod of the P-Zone
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WRITE(*,*)’ Computing the Volume and Centroid‘

VOL(Il)=0.0

XVOL(Il)=0.0

YVOL(I1)=0.0

R1(Il)=0.0

ZMAX=0Q.0

AREA=DX*DY

DO 0220 J=1,NYY

[VAL=YL+ (DY* (FLOAT (J~1))})

DO 0230 I=1,NXX

IF(Z(I,J).LT.0.0)Z(T,J)=0.0
IF(2(I,J).GT.35.0)Z(I,J)=0.0

IF(Z(I, (3+1)).LT.0.0)Z (T, (J+1))=0.0

IP(Z(I, (J+1)).GT-35.0)Z(I, (J+1))=0.0
IF(Z((I+1),J) .LT.0.0)Z{(I+1),T)=0.0
IF(Z((I+1),J) .GT.35.0)2((I+1),T)=0.0
IP(Z((I+1), (J+1)).LT.0.0)2((I+1), (J+1))=0.0
IP(2((I+1),(T+1)) -GT.35.0)2( (I+1), (J+1))=0.0
XVAL=XT+4(DX* (FLOAT (I-1) ) )

Z1=2(I,J)

Z2=2Z( (I+1),J)

23=Z(T, (J+1))

Z4=Z ((I+1), (T+1))

Compute the Volume, and Centroid
HGHTw=0.25%(Z1+22+23+24)

IF(HGHT.LE.0.01)GO TO 0230

VOL(Il)=VOL(Il)+ (AREA*HGHT)
XVOL(I1l)=XVOL(T1l)+(XVAL+(DX/2.0)) * (ARBA*HGHT)
YTVOL(I1)=YVOL(Il)+ (YVAL+(DY/2.0)) * (AREA*HGHT)
CONTINUE

CONTINUZ

XVOL(I1)=XVOL(I1l)/ (VOL(TI1)*10.)
YYOL(I1)=YVOL(Il)/ (VOL({I1)*10.)
VOL(I1)=YOL{Il)/1000.

write(*,¢)’ Ii=’,I1
IF(I1.GT.1)THEN
DELXC=10.0* (XVOL(I1-1) -XVOL(I1))
IXCw=(DELXC/ (XU~XL) ) *NXX+1
WRITZ(#*,*)’ Shifted by ‘,IXC,’ Boxes’
DO 0236 J=1,NYY
DO 0237 I=IXC,NXX
I0=I-IXC+L
%01=2(I0,J)
202=2( (I0+1),J)
203=2 (10, (5+1))
204=Z ( (IO+1), (G+1))
IN1=2(1,3)
IN2=2 ((I+1},3)
INI=Z (I, (T+1))
2N4=Z ((T+1), (T+1))
HOLD=(,25#{Z01+Z02+203+204)
HNEW=0, 25% (IN1+2N2+ZN3+2N4)
DELA=ABS (HOLD-HNEW)
R1(I1)=R1(I1)+0ELE
CONTINUE
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CONTINUE
R1(I1)=(R1(I1)*AREA)/DELXC
ELSE
R1(I1)=0.0
ENDIF?

R1(I1)=R1(I1)/100.0

WRITE(*,*)’
WRITE(*,*)’ 1SD Volume = /,VOL(Il),’mm3’
WRITE(*,*)’ ¢

WRITE(*,*)’ Xcen = /,XVOL(Il),’mm Ycen = ’/,YVOL(Il), ‘mm’
WRITE(*,*)’ ¢

WRITE(#*,*)’ Rl =/ R1(I1l), '=m2’

WRITE(*,*)’

WRITE(L2,%)’

WRITE(12,*)’ LSD Volume = /,VOL(Il),’mm3’

WRITE(12,%)’

WRITE(12,*)’ Xcen = / XVOL(Il),’mm fcen = ’,YVOL(I1l), ‘zm’
WRITE(12,%)’ ¢ .

WRITE(12,+#)’ Ri=’ R1(I1),’'mm2’

WRITE(12,#*)* /

WRITE(®, %)’

WRITE(®,*)’ 3-D PLOT/

WRITE(#*,*)’ No Plot -> 0’

WRITE(*, »)/ For 3~D Plot -> 1’

WRITE(*,#%)’ * .

READ(*, » ZRR=0280) IPL

IF(IPL.EQ.0)GO TQ 0080
WRITE(*,*)’ Give Horiz, and Vert Angles’
READ(*, *, ERR=0250) PHI, THETA
CALL PLOTS (0,IOPORT,MODEL)
CALL COIOR{0,IERR)
CALL COMPLX
CALL FACTOR(FACT) :
CALL MESHS(Z, NNX,NNY, NXX, NYY, PHI, THETA, XIOL, YLOL,
1 XUPR, YUPR, NDIV, IEDGE, IDIR, IPROJ, IFRAME, ZLOW,
2 ICUT, ITRIM, MASK, VERTEX)

Provide labeling

caLLn cvr(o.,0.,0.,XR,¥YR,XL, YL, DX, DY)
X1=XR

Y1=YR

XA=XCRD (NPRF)

CALL CVT(XA,0.,0.,XR,YR,XL, YL, DX, DY)
X2=XR

Y2=YR
VANG=ATAN( (Y1-¥2)/{X1-X2))*(180/3.14159)
WRITE(*,+)’ VERT ANG=‘,VANG,’ degrees’
IZ(VANG.LT.0)TREN

KA=XCRO(NPRF) -25.0

YA~YU+50.

WN=-60.

YN=YBAR(1)

ELSE

XA=25.0

LA®YL-50.

Ki=~200.
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YN=YBAR(1)
ENDIF

CALL CVT({XN,¥N,0.,XR,YR,XL,¥YL,DX,DY)

CALL SYMBOL(XR,YR, .125, 'NOTCH’,VANG,5)

CALL CVT(XA,YA,0.,XR, YR, XL, YL, DX, DY)

CALL SYMBOL(XR, YR, .12$, ’CIRCUMFERENTIAL DIR‘,VANG,19)
CALL PLOT(0.0,0.0,999)

WRITE(®,*)’ *

WRITE(®, *)’ CONTOUR MAP’
WRITE(®*, *)’ No Plot -> 0’
WRITE(»,*)’ Contour Plot -> 1/
WRITE(%,%)’ ’
READ(*,*,ERR=0270) IPL
if(IPL.eq.0)go to 0080

CONTINUE

Draw the contour map next.

WRITE(*,®)’ *

WRITE(#,*)’ The max height is ’,ZMAX
WRITE(*,*)’ ’
WRITE(%,*) ! Enter Min and Max for Contour range’
READ(*, *, ERR=0290) ZMN, ZMX
WRITE(*,*)’ Enter No. Cntrs, No. per Label, Istart’
READ(*,*, ERR=0290) NLEV,NLAB, ICK
ZINC=(ZMX-ZMN) /FLOAT (NLEV)

DO 0300 I=1,NLEV :
ZLEV(I)=ZMN+3INC*FLOAT (I-1)
IF(ICK.EQ.NLAB) THEN

LAGT(I)=2

LDIG(I)=-1

ICK=1

ZLSE

LWGT(I)=1

LDIG(I)=-2

ICX=ICX+1
ENDI?

CONTINUE
NDIV=4
NARC=4

ZMAXIN=AMAX] (XLENG, YLENG)

HGT = ZMAXIN/SO.

CALL PLOTS(0,IOPORT,MCDEL)

CALL FACTOR(FACT)

Scale the X and Y axis of the plot

CALL SCALE(XP,XLENG,NP, 1)
CALL SCALZE(¥P,YLENG,N?, 1)

LAGT, NLEV, HGT, NDIV, NARC)
CALL NEWPEN(OQ)
CALL STAXIS(.l5,.15,.15,.15,-1}

C.AI.L AXISs (XIoL, YIOL, XLABEB, -30, -XLENG,0.0,
XST, DELTA)
CAI.... AXIS (XIOL, YLOL, YLABES, 30, -YLENG, 90.0,

CALL ICSEG(Z,NNX,NNY,NXX,NYY, XIOL, YIOL, XUPR, YUPR, ZLEZV, LDIG,
1
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1 473 1 YST,DELTA)
1 474 ¢
1 475 ¢ PLACE TIC ON OPPOSITE AXES
1 476 C
1 477 CALL AXIS(XILOL,YUPR,’ /,0,-XLENG,00.0,
1 478 1 XST,DELTA)
1 479 CALL AXIS(XUPR, YIOL,’ ’,=1,~YLENG,90.0,
1 480 1 YST,DELTA)
1 481 C
1 482 ¢ Begin graphics output.
1 483 C
1 484 CALL PLOT(0.0,0.0,999)
1 485 0080 CONTINUE
486 CLOSE(12)
487 ¢
488 ¢ Write out the centroid data to file
489 C
490 OPEN(8, FILE=/TAB.OUT’, STATUS='NEW’)
491 WRITE(3,0410)
492 0410 TFORMAT(’ DAMAGE ZONE DEVELOPMENT TABLE’,//
493 1 / FPile Volume Xcen Ycen’,/
494 2 (mm3) (=m) (mm) *)
495 DO 0400 I=),ITEMP
1 496 IF(I.EQ.ITEMP)THEN
1 497 JI=l
2 498 ELSE
1 499 J=I+l
1 500 ENDIF
1 501 WRITE(8,0420)J,VOL(J) +XVOL(J) , YVOL(J)
1 502 0420 FORMAT(IS,3G1S.3)
1 503 0400 CONTINUE
504 CLOSE(8)
505 999 CONTINUE
506 END
Nane Type Offset ? Class
ABsS INTRINSIC
AMAXT INTRINSIC
AREA REAL 1424
ATAN INTRINSIC
CAY REAL 1382
DELH REAL 1520
DELTA REAL 1366
DEILXC REAL 1460
DELY REAL 1260
ooM1 REAL 1152
ouM2 REAL 1186
bX REAL 1412
DY REAL 1416 “
=X REAL 1298
ZXP INTRINSIC
FACT REAL 1378
FCT REAL 1342
FILENM CHAR*10 hhtae
FINP CHAR* 10 1058 .
FTIOAT INTRINSIC
F2 REAL 11300 /WORK1 /
HGAT REAL 1456
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HGT REAL

HI REAL
HNEW REAL

HOLD REAL

I INTEGER*2
Il INTEGER*2
Ic INTEGER*»2
ICHK INTEGER*2
ICX INTEGER®2
Icur INTEGER?*2
IDIR INTEGER®*2
IEDGE INTEGER®2
IERR INTEGER*2
IFRAME INTEGER#*2
IFT? INTEGER*2
I INTEGER*2
IMOVE INTEGER*2
Iy INTEGER*2
I0 INTEGER*2
IOPORT INTEGER®*2
IouT INTEGER*2
IrL INTEGER*2
IPROT INTEGER*2
ITEMP INTEGER*2
ITRIM INTEGER*2
ITT INTEGER*2
IXe INTEGER*2
J INTEGER*2
J1 INTEGER*2
JCHX INTEGER*2
RNXT INTEGER®2
wI6 INTEGER*2
LAGT INTEGER*2
MASK INTEGER*2
MODEL INTEGER*2
NARC INTEGER*2
NDIV INTEGER*2
NLAB INTEGER*2
NLZV INTEGER*2
NNX INTEGER*2
NNY INTEGER*2
NP INTEGER*2
NPRF INTEGER*2
NRNG INTEGER*2
NTX INTEGER*2
NTY INTEGER*2
NXY INTEGER*2
NYY INTEGER?*2
4T REAL

Rl REAL=8

SL REAL

sU REAL

DX REAL

DY REAL
THETA REAL
TRICX R=EAL

TANG REAL
‘TERTEX REAL

voL REAL*S

1610
1302
1516
1512
1070
1094
1272
1338
1592
1398
1388
1390
1534
1392
1190
1322
1078
1056
1478
1052
10%0
1524
1188
1172
1400
1044
1464
1200
1306
1340
240
13140
13220
1140
1054
1604
1386
1599
1588
1038
1038
1282
1068
1402
1192
1194
1040
1042
1526
796
1080
1084
1274
1278
1530
1046

1564
14500
16

/VWORK2 /

/WORK2
/WORK2

NN

/WORK1 /
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X1 REAL 1544

X2 REAL 1556

A REAL 1552

XCRD REAL 120 /WORK: /

XL REAL 1264

XLABEB CHAR*1 766

XLABEL CHAR*30 766

XLENG REAL 1370

XIOL  REAL 1174

XMAX  REAL 1196

o™ REAL 1572

XP REAL §400 /WORK1L /

ho:3 REAL 1536

XST REAL 1358

XTVM  REAL 1330

XTVP  REAL 1334

Xo REAL 1268

fUPR REAL 1404

XVAL, REAL 1290

XVOoL REAL*8 256

Y1 REAL 1548

Y2 REAL 1560

YA REAL 1568

YBAR REAL 14724 /WORK1 /

YBMAX REAL 1248

YCOT REAL 14964 /WORK1 /

YDEV  REAL 14844 /WORK1 / ’

YDMAX REAL 1238

YL REAL 1252

YLABEB CHAR*1 736

YLABEL CHAR*30 736

YLENG REAL 1374

YIOL REAL 1173

YMAX REAL 0 /WORR2 /

N REAL 1576

P REAL 8200 /WORK1 /

YR REAL 1540

¥YST REAL 1362

YTVM REAL 1314

YTVP REAL 1318

g REAL 1256

YUPR  REAL 1408

YVAL REAL 1294

YVOL  REAL*8 496

Z REAL 0 /WORK1 /

zZ1 REAL 1440

22 REAL 1444

z3 REAL 1448

24 REAL 1452

cINc REAL 1594

ZLEY REAL 14564 /WORK1L /

Z2IAW  REAL 1394

ZMAX  REAL 1420

ZMAXIN REAL 1606

M REAL 1580

IMX REAL 1584

N1 REAL 1496

ZN2 REAL 1500

N3 REAL 1504
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N4 REAL 1508
Z01 REAL 1480
202 REAL 1484
203 REAL 1488
204 REAL 1492
y44 REAL 10000 /WORK1 /
ZPLT REAL 12100 /WORK1 /
507 C
508 C
509 SUBROUTINE CVT(X,Y,Z, XR, YR,XL,YL,DX,DY)
510 C... TRANSLATE WORLD COORDINATES TO GRID UNITS.
511 XP = 1.0 + (X - XL) /DX
512 YP = 1.0 + (Y - YL) /DY
513 C... CONVERT WORLD COORDINATES TO PLOTTER COORDINATES.
514 CALL P3D2D(XP,YP,Z, R, YR)
51s RETURN
516 END
Name TYpe Offset P Class
224 REAL 28 +
DY REAL 32
X REAL 0 *
p-e REAL 20 *
Xr REAL 1812
pacd REAL 12 *
Y REAL 4 *
YL REAL 24 *
P REAL 1816
R REAL 16 »
2 REAL g *
517 C
Name TYype size Class
AXIS SUBROUTINE
COLOR SUBROOTINE
COMPLX SUBROUTINE
cvT SUBROUTINE
FACTOR SUBROUTINE
MESHS SUBROUTINE
NEWPEN SUBROUTINE
23020 SUBROUTINE
2L0T SUBRQUTINE
?LOTS SUBROUTINE
2ZCNE PROGRAM
STAXIS SUBROUTINE
SYMBOL SUBROUTINE
WORK1 15204 COMMON
WORK2 13300 COMMON
ZCSEG SUBROUTINE
ZGRID SUBROUTINE
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$Storage: 2
$Debug
Program En

(32 A A2 LR 2222 2222 st P Rl a2 sz Rl Ty 2n2ug 1mg T rarp g g ay g grayerererey

ca#***a This program is designed to compute the near and far field +*
c****> energy release rates using a complex potential formulation. *
ce**2+ The near field is evaluated via the stress intansity factors #
ce**»* and the far field is computed through a mumerical integration*

cii*t*iti*iitt'i'tt’*ii**Qﬁﬁ’i.iitt*i'ﬁiti’ti"'tt'it"t'iittii.tt’t"
c
Complex*8 z,zst,znd,zinc,zc,z01(200),202(200),
1 a(200),duml,dum,dum2,zs,ze,d2z,an,Ktot,K12,J¢,Jcl, £t3
Real*4 k,3ig(30,30,3),emod,nu,zp(30,30),21lev(50),vertex(16),
1 Jnear,Jfar,lc
Integer*2 1dig(50),lwgt({50),mask(3000)
Character+10 afil
Common /mat/ emod,gmod,nu,k
Common /dam/z01,202,a,iz
Common /crack/ ¢©
Common/renote/sigyy,sigxy
Data nnx,nny,xlow,ylow /30,30,1.0,1.0/

pi=3.141592654
write(s,+) - Give material properties’
0005 write(*,*)’ emod,nu, O0-> pl. stresg 1-> pl. strain’/
read(*, + c.n-ooosnnod nu, :Lpl
lt(xpl.cq.t:) then
k= (3.0~m)/ (1.0+nu)

else
k=3.0-4.0%nu
endif
gmod=emod/ (2.0*(1.0+nu))
0010 wxrite(r,*)” Give main crack length’
read(*,*, arr=0010)c

0007 write(*,*)’ Give Centroid Distance (mm)’
read(*,*,exr=0007) xcen
c=c+xcen
writa(*,*)’ ¢
write(*,+)’ Give File Name for Microcrack Data’
read(*,0011)mfil

0Cll format(ald)

c
open(S,tilesmfil,status=‘o0ld’)
writa(*,+)/ ’
write(*,*)’ -—— Reading the Microcrack Data --- ’
c
c nmicw=? of microcracks ndis=# of dislocations/micro
c
read (S, *)pmic,adis
if(ndis.le.0.or.ndis.gt.10)ndis=1l
ic=0
dum=caplx(0,1)
do 0012 i=sl,mmic
c
c Next read coords of the microcrack (xs,ys) to (xe,ye)
c
wrice(* s/ currently reading the ’ ,i,'th data’
read (S, *)xs,vs,xe, ye
c

'**'.‘."li"""'i"""f”ﬁ*"*’*Q".".’.*‘.f*""i*'ﬁ”ﬁ
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Xe=xe-xcen

Xs=xs-xcen

ARARBAREB AR AR RN AR RN R AN SR RN TR RA R RNS TR RN ANN IR RO D AN AR AN D

den=xe-xs

if(den.l1t.0.000001) then
theta=pi/2.0

else
theta=atan((ye-ys)/den)

endif

xd=cos (theta)

yd=sin(theta)

duml=czplx(xd,yd)

Give the ¢SD, and the COD’

read(S,*)bl,b2

bl=bl/float(ndis)
b2=b2/float(ndis)
xdis=(xe-xs)/(2.0*float(ndis+1))
ydis=(ye-ys)/(2.0*float(ndis+1))

do 0013 j=1,ndis
icmic+l
xsc=xg+(xdis*float(]))
ysc=ys+(ydis*tloat(3))
xecw=xe~{xdis*float(j))
yec=ye~-(ydis*float(j))
201 (ic)=cmplx(xsc,ysc)
202 (ic)=cmplx(xec, yec)
a(ic)=caplx(dl,5H2)
a(ic)=(gmod/ (pi*(k+1))) *dumi*a(ic)
a(ic)=a(ic)/dum
continue

continue

close(s)

Start computation of the Near Field Znergy Release Rates

write(#,*)’ Total % dipoles =’,ic
Ktot=caplx(0.0,0.0)

Do 0030 i=1,ic

an=a (i)

ze=z01 (i)

dun=csqrt( (ze+c) /za)
dune-1.9*an*(real (dum)~1.0)
dum2=csqre(conig(ze))

dum2=2 . *dum? *dum2 *dum2 *csqr= (conjg(ze) +c)
duml=(conig(an) *aimaqg(ze) *¢) /dum2
dum2=cmolx(0.9,2.0)

dunml=duml rcum2
R1Z==2.0*sqzt/(2*pi) /c) * (dum+duml)
an=-=1.0#*a(i)

ze=z02(4)

dun=csqret( (ze+c) /ze)
dum=-~1.0*an*(real (dum)-1.0)
dum2=csgrz(conig(ze))

dum2=2. 3*dum2 *dum2 *dum2 *cg j

2 qre(conjg(ze)+c)
duml=(conjg(an) *aima ze) »
dumzac:nplx(o.o,l.O) (28 *c)/dun2
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duml=duml*dum2

K12=K12-(2.0%sqrt((2*pi)/c) * (dum+duml))

Rtot=Ktot+K12

continue

Convert Stress Intensity Factors to Energy Release Ratas

write(s, *)’ Give Remote Loading Stress’

write(#, +)’ sig-yy, sig-xy '’
read(*,*,err=0018)sigyy,sigxy

rXI=real (Ktot)

rKII=~1.0%aimag(Ktot)
rKI=rKI+(sigyy*sqrt(pi*0.5#c))
12(rXX.1t.0.0)rXI=0.0
rXII=rKII+(sigxy*sqrt(pi®»0.52¢c))
write(s, *)’ The stress intensity factors are :’
write(*, =)’ I =',rKI
write(®, *)’ KII =’ ,rKII
Jnear={rKI+rKI)+(rXII+rXII)
if(ipl.gt.0)then

Jnear=JInear/Emod

else

Jnear=((1l.0-nu*nu)/Emod) *Jnear

endif
write(t,#)’ Tha near field is ’
write(s, %)/ Jnear=/,Jneaxr

Compute the Far Field Energy Release Rates via Budiansky
and Rice Pormulation

write(*, #)’ Give Contour Size’
write(r, %)’ Length,didth’
Tead(*, *, err=0015)Lc,WC
Wwrite(w, =)’

Integrate over a rectilinear path

Je=caplx(0.0,0.0)

Da 0040 i=1,5

if(i.eq.1l)then

al==Q, 2%c

h=-0.54Wc

rst=Caplx{al,0.0)

snd=caplx(al,b)

write(», %)’

write(*,*)’ Currently Integrating over lst part’
elseif({i.eq.2)then

2st=cmplx(al,d)

snd=capix{le,Dd)

writa(e,*)’ :
vTite(r, )/ Currently Integrating over 2nd part’
elseif(i.eq.3)then

zst=caplx(le,b)

DmQ.3*WC

snd=caplx(Llc,d)

vrite(r, =’ ’

yri:e(f,~)' Currently Intagrating over 3rd part’
elseil{i.eq.4)then
Zst=caplx(Le,Bd)
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1 178 Znd=cmplx(al,b)
A 179 write(*,*)’ /
1 180 writs(s,*)’ Currently Integrating over 4th part’
1 181 else
1 182 zst=cuplx(al,b)
1 183 Znd=cmplx(al,0.0)
1 184 write(*, *)’ /
1 188 write(*,*)’ Currently Integrating over Sth part’
1 186 endif
1 187 ¢
1 188 ¢
1 189 call Qromb{ic,z2st,znd,Jcl)
1 190 SJCcmJc+JCcl
1 191 0040 continue
192 ¢
193 ¢ Adding on extra terms caused by the open ended integration
194 c path should be done at this point.
195 ¢
196 Jfar=aimag(Jc)
197 if(ipl.eq.0)then
198 Jtar=(2,0/Enod) *Jfar
199 else
200 Jfar=2.0+%((1l.0-nu*nu)/Emod) *Jfar
201 endit
202 open(S,file=‘j.out’,status=’new’)
203 write(S,*)’ Crack Input File:’
204 write(5,0050)mfil .
205 0050 format{15x,alo)
206 write(s, )’ Crack Length =/,c
207 write(S,*)’
208 writa(5,*)’ Contour Dimensions:’
209 write(5,»)’ Le=m/ Ic,’ We=',We
210 write(S,*)’ !/
211 write(s,*)’ Material Properties:’
212 write(5,*)’ Emod=/,Emod,’ nu=‘,nu
213 if(ipl.eq.0)then
214 write(5,*)’ Plane Stress’
21S else
2154 write(S,»)’ Plane Strain’
217 endif
218 write(5,*)* ¢
219 Jrits(5, *)’ Stress Intensity Factors:’
220 write(5,+)’ =’,rXI,’ KII=/, rXII
221 write(5,*)’ ¢
222 write(S,*)’ Znergy Release Rates:’
223 writa(5,*)’ Jnear= ‘,JInear
224 write(5,*)’ JIar =/ ,Jfar
225 closa(3)
226 wrica(*, )’ Jiar=',Jfar
227 end
Name Type OfZsat P Class
A COMPLEX 3200 /DAM  /
Al REAL 21468
AIMAG INTRINSIC
AN COMPLEX 21l12
ATAN INTRINSIC
3 REAL 21472
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31 REAL

B2 REAL

[+ REAL
el

CONIG

cos

CSQRT

DEN REAL

DOM COMPLEX
DuUMl COMPLEX
DOM2 COMPLEX

Dz COMPLEX
EMOD REAL
FLOAT

bl COMPLEX
GMCD REAL

I INTEGER*2
IcC INTEGER*2
IPL INTEGER*2
iz INTEGER*2
J INTEGER*2
JC COMPLEX
JCcl COMPLEX
JFAR REAL
JNEAR REAYL

S REAL

EECESEREEERE BRERE BB

21034
21038

21010
20978
21026

21168
reaw

124121

20986
20976
20896
4800
21050
21460
21492
21500
21448
12
21272
21098
21452
14630
14780
14880
20902
20974
20972
20880
20882

8
20892

21440
21444
3816

21014
14616
21456
20898
21018
21042
21002
21066
20884

20994
21058
21022

/CRACK /

INTRINSIC
INTRINSIC
INTRINSIC
INTPINSIC

/MAT  /
INTRINSIC

/MAT  /
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/MAT  /

/MAT
INTRINSIC

/REMOTE/
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INTRINSIC
INTRINSIC
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YDIS REAL 21046
YE REAL 21006
YEC REAL 21070
YLOW REAL 20888
¥s REAL 20998
¥sC REAL 21062
z COMPLEX bl
Z01 COMPLEX 0 /DAM /
202 COMPLEX 1600 /DaM /
ZC COMPLEX bbb
ZE COMPLEX 21120
ZINC COMPLEX i bl
ZLEV  REAL 3616
ZND COMPLEX 21484
%P REAL 16
Zs COMPLEX thddt
2SsT COMPLEX 21476
228 ¢
229 ¢ Romberg Integration Routines -——~—eee—ae—
230 ¢
231 Subroutine Qromb(ic,zst,znd,Ilz)
232 Parameter(eps=5.e-5, jmax=20, jmaxp=jmax+l, kes, k=4 )
233 Complex+*s Izl(imaxp),dIz,IIz
234 Real#*4 h(jmaxp)
238 h(l)=1.0 -
236 do 0010 j=1,jmax
1 237 call Trapzd(ifunc,ic,zst,znd,Izl(y),3)
1 238 if(j.ge.x)then
1 239 l=j~km
1 240 call Polint(hk(l),Izl(1l),%k,0.0,IXIz,dTz)
1 241 if(cabs(dIz).lt. (eps*cabs(IIz)))return
1 242 endif
1 243 Iz1(j+1)=Iz22(3)
X 244 a(j+1)=0.25*h{])
1 245 0010 continue
246 write(s,*)’ Too many steps for reqd accuracy’
247 end

Name Type

Offset P Class

CABS INTRINSIC
DIZ COMPLZX 21772

EPS PARAMETER
H REAL 21682

Ic INTEGER*2 [P

IFUNC INTEGER*2 21763

o COMPLEX 12 *

21 COMPLEX 21514

J INTEGER*?2 21766

JMAX PARAMETER
TMAXP PARAMETER
- PARAMETER
™ PARAMETER
L INTEGER=2 21770

“ND REAL 8 *

ST REAL ¢ *

248 ¢
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249 ¢
250 SUBROUTINE POLINT(XA,YA,N,X,Y,DY)
251 PARAMETER (NMAX=10)
252 Complax*8 YA(N),C(NMAX),D(NMAX),Y,DY,W,WDEN
253 DIMENSTION XA(N)
254 NS=)
255 DIF=ABS (X~XA(1))
256 DO 11 I=1 XN
1 257 DIFT=ABS (X~-XA(I))
1 258 IF (DIFT.LT.DIF) THEN
1 259 NS=I
1 260 DIF=DIFT
1 261 ENDI?
1 262 C({I)=YA(I)
1 263 D(I)=YA(I)
1 264 11 CONTINUE
265 Y=YA(NS)
266 NS=sNS~1
267 DO 13 M=1,N-1
1 268 DO 12 I=1 N-¥
2 269 HO=XA(I)-X
2 270 HPwXA (T+M) -X
2 271 W=C(I+1)-D(I)
2 272 DEN=HO~HP
2 273 WDEN=#/DEN
2 274 D(I)=HP*WDEN
2 275 C{I)=HO*WDEN
2 276 12 CONTINUE
1 277 IF (2*NS.LT.N-M)THEN
1 278 DY=C(NS+1)
1 279 ELSE
1 280 DY=D(NS)
1 281 NS=NS~-1
1 282 INDIT
1 283 Y=Y+DY
1 284 13 CONTINUE
285 RETURN
286 END
Name Type Offset P Class
ABS INTRINSIC
[+ COMPLEX 21804
D COMPLEX 21884
DEN REAL 22012
DIF REAL 21968
DIFT REAL 21978
DY COMPLEX 20 *
HO REAL 21996
HP REAL 22000
b4 INTEGER*2 21970
k4 INTEGER*2 21382
N INTEGER*2 8 »
NMAX PARAMETER
NS INTEGER*2 21964
w COMPLEX 22004
WOEN COMPLEX 22015
X REAL 12 =
XA REAL o *
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b4 COMPLEX 16 *
YA COMPLEX 4 v
287 ¢
288 c
289 Subroutine Trapzd(ic,zst,znd,IIz,n)
290 Complex:*8 zst,znd,XIz,del,z,Izl,Iz2
291 if{n.eq.l)then
292 Call Pnct(ic,zst,Izl)
293 Call Pnct(ic,znd,Iz2)
294 IIz=0,.5#%(znd~zst) *(121+I22)
295 itwml
296 else
297 tnm=float (it)
298 del=(znd-zst)/tnm
299 Z=zst+0.5*del
300 Iz2=caplx(0.0,0.0)
301 Do 0010 3=1,it
1 302 Call Pnct(ic,z,Izl)
1 303 Iz2=Iz2+121
1 304 z=z+del
1 305 0010 continue
306 IIz=0.5*(IXz+(znd-28t) #*I22/tnm)
307 it=2+it
308 endif
309 returm -
310 end

Name Type

Offset P Class

OPLX INTRINSIC
DEL COMPLEX 22086
FLOAT . INTRINSIC
IC INTEGER*2 0 *
I12 COMPLEX 12 *
T INTEGER*2 22080
121 COMPLEX 22048
1z2 COMPLEX 22056
S INTEGER¥2 22118
N INTEGER*2 16 *
TNM REAL 22082
Z COMPLEX 22102
IND COMPLEX 8 *
ZST COMPLEX 4 *
1l ¢
312 ¢
313 Subroutine fnct(ic,z,IIz)
314 Complex*$ z,£zl,fz2,ftl,£%2,ITz,2z01(200),202(200),a(200),
318 1 phan,ksin,dum
316 Common /dam/201,202,a,iz
317 Common/remote/sigyy, sigxy
218 £%1=caplx(0.9,0.0)
319 f22=cuplxz(0.0,0.0)
320 ¢
21 ¢ Sum over all Dislocations
322 ¢
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323 do 0010 iz=l,ic
1 324 call PHI(z,fzl)
1 328 call KsSI(z,fz2)
1 326 ftimetl-£z1
1 327 rt2=rt2-£z2
1 328 0010 continue
329 ¢
330 ¢ Add effects of remote loading in the potentials
31 ¢
332 if(sigyy.1t.0.0)then
333 sigyl=0.0
334 else
335 sigyl=sigyy
338 endif
337 fzl=cmplx(sigyl,sigxy)
338 phin=(sqrt(c)/4.0) *(£z1/csqrt(2))
339 £zlacaplx((0.25*sigyy),0.0)
340 phin=phin+f£z1
341 £21=(1.0/csqrt(conig(z)))=(0.5/csqrt(z))
342 £z2=(1.0/csqrt{conig(z)))+(0.5/csqxt(z))
343 dum=cmplx(0.0,1.0)
344 ksin=(sqrt(c)/4.0) *((sigyl*€zl)~(sigxy*dum*£22))
345 dum=cmplx( (0.5*sigyy), sigxy)
346 ksin=ksin+dun
347 ¢
348 fti=f£l+phin
349 fE2=fL2+ksin .
350 ¢
351 ITz=(LRlrfL1)+(2.0*LE1I*1L2)
352 return
353 end
Name TYpe Offset P Class
A COMPLEX 3200 /pDAaM  /
[+ REAL 22200
CMPLX INTRINSIC
CONIG INTRINSIC
CSQRT INTRINSIC
DUM COMPLEX 22308
FT1 COMPLEX 22150
FT2 COMPLEX 22158
F21 COMPLEX 22172
FZ2 COMPLZEX 22180
IC INTEGER®*2 Q *
IIz COMPLEX 8 »
1z INTEGER*2 4800 /DAM /
ISIN COMPLEX 221318
oETN COMPLEX 22192
SIGXY REAL 4 /REMOTE/
SIGY1 REAL 22138
SIGYY REAL Q0 /REMOTE/
SQRT INTRINSIC
Z COMPLEX 4 *
z01 COMPLEX Q /OAM /
202 COMPLEX 1600 /DAM /
I5¢ ¢
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155
156
157 Subroutine PHI(z,fzt)

358 Complex*8 2z,201(200),202(200),fz,£zt,a(200),an
3159 Common /dam/z01,202,a,iz

360 an=a(iz)

361 call Phi2(an,z,z01(i2),£2)

362 fzt=(an/(2-201(iz)))+£2

363
364
365
36 an=—1.0%a(iz)

367 call Phi2(an,z,z02(iz),£2)
368 fze=f2t+2z+(an/ (2-202(12)))
369 raturn

370 end

0ar

aaon

Add Negative Burgess Vector

Nane TYPe Offset P Class

A COMPLEX 3200 /DAM /
AN COMPLEX 22380

FZ COMPLEX 22388

2T COMPLEX 4 *

Iz INTEGER*2 4300 /DAM
z COMPLEX o

201 COMPLEX 0 /DAM
z02 COMPLEX 1600 /DAM

NN

371
372
373
374 Subroutine Phi2(an,z,2o0,f2t)

378 Complex*8 am,ac,z,20,f2t,£21,£22,£23,X2

3786 ac=conjg(an)

377 zoc=conig(zo)

378 call £X(z,Xz)

379 call F(z,z0,£21)

380 call 7(z,z0c,£22)

381 call G(z,zo0c,£23)

182 ¢ £2t=-1.0%((an*fzl)+(an*£22)+(ac* (zo-2z0C) *£23) )

383 fzt==1.0*((an*fz1)+(an*f£z2)+(ac*(zo~zoc) *£z3) ~(an*Xz))
384 return

385 end

ana

Name TYpe Offset P Class

AC COMPLEX 22420

AN COMPLEX o

CONJG INTRINSIC
rz1 COMPLEX 22440

Fz2 COMPLEX 224438

23 COMPLEX 22456

T COMPLEX 12 *

Xz COMPLEX 22432

Z COMPLEX 4 *

20 COMPLEX 3 *
3 REAL 22428
386 ¢
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387 ¢
388 c
389 Subroutine F(z,z0,£z)
390 Complex*8 z,z0,f£z,Xz,Xz0
391 call f£X(z,Xz)
392 call £X(zo,Xzo)
393 £2=(1.0~(Xz/X20))/(2.0%(2~20))
394 return
l 398 end
Name Type OfZseat P Class
24 COMPLEX 8 *
Xz COMPLEX 22512
Xzo0 COMPLEX 22520
Z COMPLEX o *
20 COMPLEX 4 *
396 ¢
397 ¢
398 ¢
399 Subroutine G(z,zo0,£z)
400 Complex*s z,zo,fz,Xz,XzZo,XPzo
401 call £x(z,Xz)
402 call £X(za,Xzo)
403 call fXP(zo0,X?z0) :
404 £z=1.0-(Xz2/X20)+( ( (2-20) *XzZ*XPzo)/ (Xzo*Xzao))
405 £2=12/(2.0%(z-20) * (z~20))
406 return
407 end
Name Type Offset ? Class
F2 COMPLEX 8 *
XPZ2Q COMPLEX 22588
r4 COMPLEX 22552
Xzo COMPLEX 22560
4 COMPLEX o>
I z0 COMPLEX 4
408 ¢
409 ¢
410 ¢
411 Subroutine £X(z,Xz)
412 Complex*s ¥z,z,zpc
413 common /cTack/ ¢
414 Zpc=(z+e) *2
415 s=1.0/csqr=(zpc)
416 return
417 end
Nane TYpe Oflset ? Class
l [od REAL 0 /CRACX /
CSQRT INTRINSIC
Xz COMPLEX 4 *
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IpC COMPLEX 22640
418 ¢
419 ¢
420 ¢
421 ¢
422 Subroutine fXP(z,XPz)
423 Complex*8 XPz,Z,2pc,2a,zb
424 Common /crack/ ¢
425 Zpc=z+C
426 Za=csqrt(z)
427 Za=zarzarza*csqrt(zpc)
428 zb=csqrt(z) *esqrt (zpc*zpcrzpe)
429 XPzm-0.5#((1.0/za)+(1.0/2b))
430 return
431 end
Name Type Offset P Class
[« REAL 0 /CRACK /
CSQRT INTRINSIC
XP2 COMPLEX 4 *
Z COMPLEX 0 *
ZA COMPLEX 226380
ZB COMPLEX 22728
PC COMPLEX 22672
432 ¢
433 ¢
434 Subroutine XSI(z, £fzt)
435 Complex+*8 z,2¢,206,201(200),202(200),£21,222,£23, £f2£,a (200),
436 l an,ac
437 Common /dam/z01,202,a,iz
438 an=a(iz)
439 zc=conig(z)
440 call Phi2(an,zc,201(iz), £21)
441 f2l=conig(fzl)
442 call Phi2(anm,z,201(iz),£22)
443 call Phi2P(an,z,z01(iz),£z3)
444 f2t=rzl-fz2-(2*£23)
445 ac=conjg{an)
446 zoc=conjg(z01(iz))
447 fzt-tzt+(ac/(z-z°1(iz)))-'r((an*zoc)/((z-zol(iz))'(z-zo:l.(iz))))
448 ¢
449 ¢ Add Neqative of Second Burgess Vector
450 ¢
451 an=-1.0%a(iz)
452 call ?hi2(am,2c,202(iz), £21)
453 fzl=conjg(£z1)
454 calil ?hi2(an,z,202(iz),£22)
455 call ?hi2p(an,z,202(iz), 2z3)
456 2ze=f2t+8z1-222-(2*123)
457 ac=conjg(an)
458 zoc=conjq(z02(12))
459 Jze=fots{ac/ (2-202(iz + » - (2= i
80 sk / ( (2z)))+((an*zoc)/((2~202(iz))*(z 202(iz))))
461 and
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Name Type Offset P Class
A COMPLEX 3200 /DAM /
AC COMPLEX 22856
AN COMPLEX 22808
CONJG INTRINSIC
r21 COMPLEX 22824
vZ2 COMPLEX 22832
FZ3 COMPLEX 22840
F2T COMPLEX 4 *
Iz INTEGER*2 4800 /DAM
¥4 CaMPLEX 0o *
201 COMPLEX 0 /DAM /
z02 COMPLEX 1600 /DAM /
zc COMPLEX 22816
20C COMPLEX 22864
462 ¢
463 ¢
464 ¢
465 Subroutine Phi2P(an,z,zo0,f2t)
466 Complex*8 an,ac,z,zo,fzt,fz1,£z2,£23,XPz
467 ac=conjg(an)
468 zZoc=conjg(zo)
469 call £XP(z,%Pz)
470 call PP(z,z0,£21)
471 call FP(2,zoc, f22)
472 call GP(z,zoc,£z3)
473 £zt=~1.0%(an*fzl+an*fz2+ac* (z20-20C) *£23~-an*XPz)
474 ¢ fztw=1,0%(an*fzl+an*fz2+ac*(zo-z0c) *£23)
475 return
476 end
Name TYpe QfZset ? Class
Ac COMPLEX 22952
AN COMPLEX 0 *
CONJG INTRINSIC
7zl COMPLEX 22972
FZ2 COMPLEX 22980
FZ3 COMPLEX 22988
F2T COMPLEX 12 +
XP7 COMPLEX 22964
4 COMPLEX 4 *
Z0 COMPLEX 8 »
icc REAL 23960
477 < *
478 ¢
479 ¢
480 Subreoutine rP(z,zo,f2z)
481 Complex*8 z,zo0,2z,X2z,X20,XP2
482 call £X(z,X2)
433 call fX{:z0,Xz0)
484 call £X?(z,XPz)
485 22=1.0-(Xz/X20)+(((2~20) *YPz)/Xz0)
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486 fzwfz/(=2.0%(2~20) *(2~20))
487 return
488 end
Nane Type Offset P Class
rZ COMPLEX 8 »
XPz COMPLEX 23060
X2 COMPLEX 23044
Xzo COMPLEX 23052
Z COMPLEX 0=
0 COMPLEX 4 =
489 ¢
490 ¢
491 ¢
492 Subroutine GP(2,z0,£2)
493 Complex*8 2,20,£z,£21,£22,X2,Xz0,XPz,XPzZ0O
494 call £X(z,Xz)
495 call £X(zo,Xzo0)
496 call £XP(z,XPz)
497 call tXP(zo,XPzo)
438 £21=1,0~(Xz/Xz0)+( ( (2=20) *Xz*XPz0) / (X20*XZ0) )
499 £21=£21/((2~20) * (2-20) *{2~20))
500 £22=( (z=-20) *XPZ0*XPZ) / (Xz0*Xz0)
501 £22=£22+( (XPzZo*X2) / (X20*Xz0)) - (XPz/Xz0)
502 £22=£22/(2.0*(z2-20) *(z2~20))
503 L2=fz2-£21
504 raturn
505 end
Name Type Ofiset P Class
4 COMPLEX 3 *
F21 COMPLEX 23148
FZ2 COMPLEX 23220
xrz COMPLEX 23132
XPZ0 COMPLEX 23140
Xz COMPLEX 23118
%20 COMPLEX 23124
4 COMPLEX Q>
20 COMPLEX 4 *
506 ¢
507 ¢
508 Subroutine PHIP(z, 2zt)
209 Complex*s z,201(200),202(200),£z,%2t,a(200),an
510 Common /dam/z01,2z02,4a,iz
511 an=a (iz)
512 call ?hi2P(an,z,201(iz), f2)
513 fzt=fz-(an/((23~201(iz)) *(2~201(iz))))
514 an=-~1.0*a(iz)
515 cail phi2p(an,z,z02(iz),%z)
516 fze=fzt+fz-(an/ ((2-202(1iz)) #(2~-202(1i2)}))
517 Teturn
318 end
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Name Tyre Offsat ? Class
A COMPLEX 3200 /DaM  /
AN COMPLEX 23316
4 COMPLEX 23324
FIT COMPLEX 4
Iz INTEGER*2 4800 /DA /
zZ COMPLEX 0
201 COMPLEX o /pAaM  /
202 COMPLEX 1600 /DAM /
519 ¢
520 ¢
521
Name Type Size Class
CRACK 4 COMMON
DAM 4302  COMMON
INERGY PROGRAM
? SUBROUTINE
FNCT SUBROUTINE
?p STUBROUTINE
X SUBROUTINE
FXP SUBROUTINE
G SUBROUTINE
G? SUBROUTINE
XsI SUBROUTINE
Kdud 16 COMMON
PHI SUBROUTINE
2HI2 SUBROUTINE
PHI2P SUBROUTINE
PHIP SUBROUTINE
POLINT SUBROUTINE
QROMS SUBROUTINE
RENOTE 8 COMMON
TRAPZD SUBROUTINE
Pass One No Errors Detected

521 Source Lines
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1 §Storage: 2
2 $Debug
3 Program kmin
4 CRR R R AR R AR AR AR R RN T RN TR S AN R AR T AR R DR REN D ANLERRRARARR RN RN D RS EAD
S cewas» This program is designed to compute the stress intensity *
§ c*w»a»*x factor at variocus locations in front of the crack tip for a *
7 c*ww%* particular damage configuration. b
8 s 2222 2 222 2222222 2222 st 2R 2 22 2 R 2 2R 2Rt R i et il it T2s s aesyys ey
9 ¢c
10 Complex*8 z,zst,znd, zinc,z¢,201(200),202(200),
11 1 a(200),dunl,dusn,dum2, zs, ze,dz,an,Ktot, K12, ££3
12 Real*4 k,nu,xs(50),xe(50),ys(50),ye(50),bl{50),b2(50)
13 Character*10 afil
14 ¢
15 pi=3.141592654
16 write(s, #)’ Give material properties’
17 0005 write(*,¥)’ emod,nu, O-> pl. stress 1-> pl. strain’
18 read (¥, *,err=0005) emod, nu, ipl
19 if(ipl.eq.0)then
20 k=(3.0-nu)/(1.0+nu)
21 else
22 k=3.0-4.0%*nu
23 endif
24 gmod=emod/ (2.0%(1.0+nu))
25 0010 write(¥,*)’ Give main crack length’
26 read(*, *, err=0010)c .
27 0007 write(r,»)’ Damage zone length’
28 read(*,*, err=0007) xmax
29 0038 write(+, *)’ Give sig-xy ’/
30 Tead(*,*,err=0038) sigxy
31 rk2c=sigxy*sqrt{pi*0.5*c)
32 write(r, )’
33 write(*,*)’ Give File Name for Microcrack Data’
34 read(*,0011)mfil
3§ 001l format(alo)
3§ ¢
37 open(5,file=mfil,status=/old’)
28 ¢
39 ¢ mmic=4 of microcracks ndis=# of dislocations/micro
40 ¢
41 read (S, *)nmic,ndis
42 if({ndis.le.0.0r.ndis.gt.10)ndis=1
431 ¢
44 ¢ Next read coords of the microcrack (xs,ys) to (xe,ye)
45 ¢
46 do Q0l2 i=1,nmic
1 47 read(5,*)xs(i),ys(i),xe(i),ye(i)
1 43 read(S,*)bl(i),b2(i)
1 49 0012 :continue
50 close(s)
51 ¢
52 ¢ StarT the computation for the SIF
53 ¢
54 open(5,filew’Xcrak.out’, stacus='nev’)
11 open(6,file=’kdam.out’,6 status=‘new’)
56 open(7,2ile=’Xtat.out’, status='navw’)
57 do 0016 =1, 100
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60 XCen=({xmax+*float(j-1))/100.0
61 do 0017 im},nmic
62 xesw=xa(i)-xcen
63 Xss=xs (1) -xcen
64 yes=ye(i)
[1] ysswys (i)
66 den=xas-xss
67 if(den.1t.0.000001) then
68 theta=pi/2.0
69 else
70 theta=atan( (yes-yss) /den)
71 endit
72 xd=cos (theta)
73 yd=sin(theta)
74 duml=caplx(xd,yd)
75 bls=bl(i)/float(ndis)
76 b2s=b2(i)/float(ndis)
77 Xdis=(xes-xs8)/(2.0*float(ndis+1))
78 ydis=(yes-yss)/(2.0*float(ndis+1))
79 ¢
80 dumwcauplx(0,1)
8 do 0013 l=1,ndis
82 icmicel
83 xscwxsg+(xdisatloat(l))
a4 yscw=yss+({ydis*float(l))
85 xec=xes-(xdis*float(l))
86 yecwyes-(ydissfloat(l))
87 z01(ic)=caplx(xsc,ysc)
88 202 (ic)=caplx(xec, yec)
89 a(ic)=caplx(bls,b2s)
90 a(ic)=(gmod/ (pi*(X+1)))*duml*a(ic)
91 a(ic)=a(ic)/dum

92 0013 continue
93 0017 continue

NROM OQNPRPUNNRUMNONNUNNNNONHEPR PR RNOUWU WU WUUWUWBWWNNRMNNONNNDENONNRONNNNNNNNNNE SO

94 ¢

95 ¢ Start computation of the Stress Intensity Factor
96 ¢

97 Cl=c+xcen

98 Ktot=caplx(0.0,0.0)

99 Do 0030 i=},ic

100 an=xa (i)

101 Ze=z0Ll(1i)

102 dum=csqrt((ze+cl)/ze)

103 dume—1.0%an* (real (dum)-1.0)

104 dum2=csqrt (conjg(ze) )

108 dum2=2 . g*dum2 *dum2*dum2 *csqre (conjg(ze)+cl)
106 dunl=(conjg(an} raimag(ze) *cl)/dum2

107 dun2=caplx(0.0,1.0)

198 dumi=duml*dum2

109 X12=~2.0%sqrt((2+pi) /cl) » (dumtdunl)

lla an=-~1.90%a{i)

111 Zemz02(1)

112 dumscsqrt((ze+cl)/za)

113 dume-1.0%*an+*(real (dum)=-1.0)

114 dum2=csqrt(canjg(ze))

118 dum2=2, J*cum2 *dum2 *dun2 *csSqre (conjg (2e) +cl)
11§ duml=(comjg(an) *aimag(ze)*cl)/dum2

117 dum2=cmplx(0.0,1.0)

118 duml=dum) *dum2
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2 119 K12wK12-(2.0*sqrt{(2*pl)/cl) * (dumtduml))
2 120 Ktot=Ktot+K12
2 121 0030 continue
L 122 ¢
1 1223 ¢ Write out the Stress Intensity Factors
1 12¢ ¢
1 128 rKII=~1,.0%ainag(Ktot)
1 126 rXIIs=rXII/rk2¢
1 127 rkcrak=sigxyrsqrt (pi®*0.5+cl)
1 128 rkcrakstkcrak/rX2c
1 129 write(s, *)xcen,rkcrak
1 130 write(6,*)xcen,rXII
1 131 totsrkcrak+rKII
1 132 write(7,+)xcen,tot
1 133 write(r,*)’ ’
1 134 write(*,*)’ Stress Intensity Factors:
1 133 write(r,v)’ Kdames’, rXII, ’ Kerack=’, rkerak, / Ktot=’, tot
1 136 0016 continue
137 close(S)
138 close(6)
N 139 close(7)
140 end
' Nane TYDe offset P Class
A COMPLEX 3216
AIMAG INTRINSIC
AN COMPLEX 6280 *
ATAN INTRINSIC
31 REAL - 5616
315 REAL 6190
32 REAL 5816
82s REAL 6194
[ REAL 6038
[54 REAL 18262
CPLY INTRINSIC
CONGG INTRINSIC
cas INTRINSIC
CSQRT INTRINSIC
DEN REAL 6166
oo™ COMPLEX 6206
DUMI  COMPLEX 6182
puM2 COMPLEX 6336
Dz COMPLEX aRdw
EMOD REAL 6020
TLOAT INTRINSIC
T3 COMPLEX retan
GMQD REAL 6034
b4 INTEGER#*2 6128
zc INTEGER*2 6138
I?L INTEGER*2 6028
b INTEGER*2 6136
X REAL 6030
x12 COMPLEX 6440
XIOT COMPLEX 6266
L INTEGER*2 6214
MPTL CHARY10 6054
NDIS INTEGER*2 6126
l NMIC INTEGER*2 §124




274
Page 4
06~27-88
19:31:26
D Line# 1 7 Microsoft FORTRAN77 V3.20 02/84
Nu REAL 6024
PI REAL 6016
REAL INTRINSIC
RK2C REAL 6050
RXCRAK REAL 6612
RKII  REAL 6608
SIGXY REAL 6046
SIN INTRINSIC
SQRT INTRINSIC
TEETA REAL 6170
TOT REAL 6616
XCEN REAL 6140
XD REAL 6174
XDIS REAL 6198
XE REAL 5418
XEC REAL 6230
XES REAL 6150
XMAX  REAL 6042
is REAL 4816
%sC REAL §222
Xss REAL 6154
YD REAL 6178
YDIS REAL 6202
YE REAL 5216
YEC REAL 6234
YES REAL 6158 B
s REAL 5016
¥sc REAL 6226
Iss REAL 6162
4 COMPLEX ey bt
Z01 COMPLEX 18
202 COMPLEX 1616
zc CIMPLEX hbdbid
ZE COMPLEX 6288
ZINC  COMPLEX Rt
ZND COMPLEX raRAE
2 COMPLEX b g
ZsT COMPLEX RARRR

Name Size Class

i

RMIN PROGRAM

Pass One Yo Errors Detected
140 Sourca Lines -
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$Storage: 2
$Debug

CRRRRR AR R R AR R AR RSN R S IR BARR RN AR RS R R AN NN DR AN N A RSN RN AN NN RNAR RN RN A RSN S

c**++» This program is designed to generats a greens function contour
cveea+ plot using the complex potential results. .
CRRARRRARARAN R SRR R EAR RO AR RN RN AR PR N RN DAL RN PRI R R AR R EN R L AN AR NN AN SOOR
c

Complex*8 z,zc,zckl,zck2,201,202,£21,£22,£23,trans,

1 a,dunl,dun,dun2,dunl,dums, 2s, ze,dz,an, Ktot,K12

Real#*4 Xx,nu

Common/Workl/sif (50,50,2),2p(50,50),zlev(50) ,verteax(16)

Integer+2 ldig(50),lwgt(50) ,mask(3000)

Data nnx,any,xlow,ylow /%50,50,1.0,1.0/

Pim3.141592654
write(r, )/ Give material properties’
0005 write(+, *)’ emod,nu, O0-> pl. stress 1-> pl. strain’
read(*, », err=0005) emod, nu, ipl
if(ipl.eq.0)than
k=(3.0-nu)/(1.0+nu)
else
k=3,0-4.0*nu
endif
gmod=enod/ (2.0*{1.0+nu))
0010 write(*, »)’ Give main crack length’
read(*, », err=0010)cC
write(w,*)’ Give the microcrack orientation,csd,cod’
read (*,*)theta,bx, by
theta=(pistheta)/180.0

a0

Compute the Burgess Vector for the values above

ci=cos (theta)
si=sgin(theta)
trans=caplx(ci,si)
dun=caplx(0,1)
a=cuplx(bx,by)
a=transsa

a=(gmod/ (pi*(x+1))) *a
aw=a/dunm

ax=real(a)

ay=ainag(a)
write(+,*)’ a =’,ax,’ + i’,ay
bmagesqrt (bx*bx+by*by)

Start grid loop here

0025 write(+,*)’ Give starting and ending points xs,ys,xe,ye’
Tead(®, +,arT=0025)xs,s,xe, ve
c write(x, %)’ Give grid resolution nx,ny (max = 30)‘
c read(*, *, err=0025)nx,ny
nx=49
ny=49
dx=(xe~-x3)/float (nx-1)
dy=(ye-ys)/float(ny=-1)

Define the grid for the SIF computation
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60 $if1=0.0
§1 $if2=0.0
62 ¢
63 ¢
64 do 0035 iml,nx
1 65 xd=dx*tloat(i-1)
1 66 do 0045 j=1,ny
2 67 yd=dy+*float(j-1)
2 68 yvalsys+yd
2 69 xval=xs+xd
2 70 Z=mcmplx(xval,yval)
2 72 zcKlmz~c
2 72 ¢Z=0.0l*cos(thata)
2 73 $z=0.01*sin(theta)
2 T4 ZC=cumplx(cz,s2)
2 75 Zck2=z~2C
2 76 if(cabs(z).lt.1.0e~6)then
2 77 write(®, *y’ Sinqularity at x=’,xval,’y=’,yval
2 78 do 0043 m=1,2
3 79 sif(i,3,m)=1.0e3s
3 80 0043 continue
2 81 go to 0045
2 82 endif
2 83’ if({cabs(zeckl).1lt.1,.0e-6)thean
2 84 write(*,*)’ Ssingularity at x=’,xval,’y=~’,yval
l 2 3s do 0044 m=l,2 .
3 86 sif(i,j,a)=1.0e35
3 87 0044 continue
2 88 go to 0045
2 89 endiz
2 20 iZ(cabs(zck2).1lt.1.0e-6)then
2 91 write(r, *)” Singularity at =/, ,xval,’y=’,yval
2 92 do 0042 a=1,2
3 93 sif(i,j,n)=1.083S
3 94 0042 continue
2 9s go Lo 0045
2 96 endif
2 97 xd2=0.01*cos (theta)
2 98 yd2=0.01*sin(theta)
2 99 x2=xval+xd2
2 100 y2=yval+yd2
2 101 201mz
2 102 z02=caplx(x2,y2)
2 103 xave=0,5#*(xval+x2)
2 104 yave=0.5#(yval+v2)
2 108 rad=sqrt(xavarxave+yavaryave)
2 106 ¢
2 107 ¢ Compute Nondimensionalizing factor via Chudnovsky approach
2 108 ¢
2 109 fact=gmod*sqr= (pi*0.5+c) *bmag* (0.01)
l 2 110 ¢ Zact=(sqrt(pi/2.0) * (k+1.0) rsqrt (bmag) )/ (gmod*.01)
2 11l ¢
2 112 ¢ Computa the Stress Intensity Factor for the dipole
2 113 ¢
2 114 an=a
2 115 zemz01
2 118 dum=csqrs( (ze+c) /2Te)
2 117 dums~1.0%an+*{real (dum)=-1.0)
2 118 dum2=csqre{conjg(ze))
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7 .
dumQ=2. 0*dum2 *dum2 *dum *¢sqrt (conjg(ze) +c)
duml=(conjqg(an) *aimag(ze) *c) /dun2
dumg=cuplx(0.9,1.0)

duml=adum) *dum2
K12w—-2,0%sqrt({(2.0%*pi) /c) * (dumtduml)
an=~1.0%*a

2e=z02

dume=csqrt((ze+c)/ze)

dum=-1,0*an*(real (dum)-1,0)
dum2=csqrt{conig(ze))

dum=2 , g*dum2 *dum *dum2 *csqrt (conig (ze) +c)
duml=(conjg(an) *aimag(ze) *c) /dum2
dum2=cmplx(0.0,1.0)

dunl=duml+dum2
K12=K12~(2.0%*sqrt((2*pi)/c) * (dum+duml))

siflmreal (K12)/fact
sif2=(-1.0%aimag(K12))/fact
sif(i,j,2)=sizg2
sif(i,j,1)=sif1

write(*,*)’ ’

write(*, &)’ ¢

write(r, *)’ Location: X=’ ,xval,’ =’ ,yval

write(, )’ SIFs: KI=/,sifl,’
if(abs(sm2).lt.abs(sif2))smy==.{1,3,2)
if(abs(sml).lt.abs(8ifl))smx=g.£(i,73,1)
continue -

continue

Prepare to plot the results

write(x, »)’ Give Ioport,Model, Fact’
read(*, *,err=0050) ioport,model, fact
write(s, *}” X ->1, I -> 2/
read(*, », ar==00S5) ip

do 0090 i=l,nx

do 0095 j=1,ny

zp(1,3)=sif(4,3,1p)

coentinue

continue

if(ip.eq.l)then

write(*,*)’ The maximum value is =’ ,sifl
else

write(*,*)’ The maximum value is =/,sif2
endif

write(+,*)’ -- Give Contour Information --/

KII=’,sif2

Page 3
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write(r,*)’ 4$levs, min lev, max lev, } betw labels, # first ’

read(®,*, ex=0070) niev,vmin, vnax, nbl,nst
dlev=(vmax-vmin)/float(nlev)
il=nst
do 007$ i=1,nlev
zlev(i)=vmin+(dlevefloat(i))
if(il.eq.nbl)then

ldig(i)=1

lwgt(i)=3

ii=0

else

ldig(i)==~2
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1 178 lwgt(i)=1
1 179 endif
1 180 il=il+l
1 181 0075 continue
182 xhighws.0
183 yhigh=5.0
184 hgt=0.07
185 narc=l
186 ndive?
187 call plots(0,ioport,model)
188 call factor({fact)
189 call zcscq(zp,nnx,nny,nx,ny,xlov,ylov,xhiqb,yhigh,zlcv,ldiq,
190 1 lwgt,nlev,hgt,ndiv, narc)
191 do 0130 i=1l,nlev
1 192 zltv(i)-—l.oﬁzlev(i)
1 193 1wgt (i) ==1.0*lwgt(i)
1 194 0130 continue
195 ¢ call stline(-1,.1389,0.)
196 call zcsoq(zp.nnx,nny,nx,ny,xlow,ylov,xhigh,yhigh,zluv,ldig,
197 1 lwgt,nlev,hgt,ndiv, narc)
198 ¢ call stline(l,.1389,0.)
199 xln=xhigh-xlow
200 yln=yhigh-ylow
201 Xdel=(xe-xs)/ (xhigh-xlow)
202 ydel=(ye-ys)/(yhigh-ylow)
203 hgtl=.1 .
204 hgta=.1
208 call staxi.s(hqtl,hqtz,hqtl.hqtz,Z)
206 call axis(xlov,ylow,’ ’ ,=1,xin,0.0,xs,xdel)
207 call axis(xlew,ylow,’ ’ ,1,yln,90.0,ys,ydel)
208 call axis(xlow,yhigh,’ 4,1,x1n,0.0,xs,%del)
209 call axis(xhigh,ylow,’ ’ ,-1,yln,90.0,ys,ydel)
210 call plat(o.,o.,999)
211 0100 write(*,#)’ 1=-p Plot =-> 1/
212 read(*,*, erzr=0100) i3d
213 iz(i3d.qt.q) then
214 0110 write(+,*)’ Give horiz, vert, angles’
213 read(*,*,arx=0110) ahor,aver
216 call plots(0,ioport,aocdel)
217 call factor(Zfact)
218 iproj=0
219 itrim=0
220 idizr=3
221 2low=1.0e35
222 iframe=l
223 icut=l
224 call mesh(zp,nnx,nny,nx,ny,ahor, aver,xlow,ylow, xhigh,
225 1 vhign, iedge, idir, iproj, iframe,zlov,icut,
226 2 itrim,3ask,vertex)
227 call plot(0.,0.,999)
228 endif
229 0080 write(+,*)’ Try a different plet -=> 1’
230 read(*,*,ars=0080) inavw
231 if(inev.gt.0)go to 0050
232 end
Nane TVye Of2ser P Class
a COMPLEX 6288
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ABS

AHOR  REAL
AIMAG

AN COMPLEX
AVER REAL

AX REAL

AY REAL
BMAG REAL

BX REAL

3Y REAL

c REAL
CABS

cI REAL
cPLX

CONJG

cos

CSQRT

cz REAL
DLEV  REAL

DOM COMPLEX
DUM1  COMPLEX
DUM2  COMPLEX
DUM3  COMPLEX
DUM4  COMPLEX
D4 REAL

DY REAL

D2 COMPLEX
EMOD  REAL
FACT REAL
FTLOAT

721 COMPLEX
F22 COMPLEX
FZ3 COMPLEX
GMOD  REAL

HGT REAL
HGT:  REAL
EGT2 REAL

I INTEGER*2
I1 INTEGER*2
Iip INTEGER#*2
ICUT  INTEGER#*2
IDIR  INTEGER*2
IEDGE INTEGER*2
IFRAME INTEGER*2
INEW  INTEGERw®2
IOPORT INTEGER*2
IP INTEGER*2
IPL INTEGER»2
IPROJ INTEGER%2
ITF INTEGER*2
h INTEGER*2
X REAL

X12 COMPLEX
XTOT  COMPLEX
LDIG  INTEGER+*2
LAGT  INTEGER*2
M INTEGER*2
MASK  INTEGER+*2
MODEL INTEGER+2

6968

6524
6972
6318
6322
6326
6254
6258
6246

§262

6414
6908
6278
6652

6580
Ty

L2132l
6350
6354

ERahR
6228
6520

"ahaw
ks
IRy
6242
6928
6958
6962
6366
6312
6566
6988
6980
§990
6986
6992
6876
6880
6236
6976
69378
6378
6238
§692
rerae
12
112
6450
212
6878

INTRINSIC
INTRINSIC

INTRINSIC

INTRINSIC
INTRINSIC
INTRINSIC

"INTRINSIC

INTRINSIC
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NARC  INTEGER#2 6932
NBL INTEGER#*2 6904
NDIV  INTEGER*2 6934
NLEV  INTEGER®2 6894
NNX INTEGER*2 6212
NNY INTEGER*2 6214
NST INTEGER*2 6906
NU REAL §232
NX INTEGER*2 6346
NY INTEGER*2 6348
PT REAL 6224
RAD REAL 6516
REAL

24 REAL 6266
SIP REAL 0
SIF1 REAL 6158
SIF2 REAL 6362
SIN

su1 REAL 6868
M2 REAL 6860
SMX REAL 6872
SMY REAL 6864
SQRT

¥4 REAL 5418
TYETA REAL 6250
TRANS COMPLEX 6270
VERTEX REAL 30200
VMAX  REAL §900
YMIN REAL 6396
X2 REAL 6484
XAVE  REAL 6508
pes] REAL 6374
xD2 REAL 6476
XDEL  REAL 6950
pe: REAL 6338
XHIGH REAL 6920
XN REAL 6942
XIOW  REAL 6216
X5 REAL 6330
XVAL REAL 6394
Y2 REAL 6488
YAVE REAL 6512
¥D REAL 6386
o2 REAL 6480
YDEL  REAL 6954
= REAL 6342
YHIGA REAL 6924
YIN REAL 6946
7o REAL 6220
S REAL 6334
YVAL REAL 6390
z COMPLEX 6398
zo0l COMPLEX §492
302 COMPLEX §500
zc COMPLEX 6422
ICXT COMPLEX 5406
ICX2 COMPLEX §430
3 COMPLEX 6532
ZLEY  REAL 10000

INTRINSIC
/WORK1 /

INTRINSIC

INTRINSIC

/WORKL /

Page 6
06-27-88
19:32:98
Microsoft FORTRAN77 ¥3.20 02/84




D0 Linei# 1 7

F47e REAL 6982

P REAL 20000 /WORK1 /
zs COMPLEX hibd bd

Name TYpe Size Class

AXIS SUBROUTINE
FACTOR SUBROUTINE
MESH SUBROUTINE
PLOT SUBROUTINE
PLOTS SUBROUTINE
SIF PROGRAM
STAXIS SUBROUTINE
WORK1L 30264 COMMON
ZCSEG SUBROUTINE
Pass One No Exrors Detected

232 Sourcs Lines
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1 §Storage: 2
2 $Debug
3 Program Stress
4 cttt.it"t’.itifit"i'.ﬁf*.ﬁit"iii.’iti.iifiit"t.ti’.ﬁitﬁ.iit"iiit
S cw*a»*» This program is designed to compute the stress zield in the *
6 cawan* vicinity of a main crack givin a damage in the form of dis- +
7 ca*s** locations. This technique will use the complex potential
8 cw#+** formalation presanted by K.X. lo. »
9 cﬁititit'tt'ttttttitit'ii"tiiiii‘i0”".""."."""tﬁ.t'ifi.ittit
10 ¢ :
11 Complex*8 z,zc,zckl, zek2, zck3, z01(50),202(50),£21, 222,223,
12 1 a(50),duml,dun,2s,2e,d42
13 Real*4 k,s1g(30,30,3),emod, nu,zp(30,30),z1ev(50),vertex(1s),
14 1 XI,XII
1s Integer*2 1dig(50),lwgt(50),mask(3000)
16 Common /mat/ amod,gmod,nu,k
17 Common /dam/201,202,a,iz
18 Coamon /crack/ ¢ .
19 Data anx,nny,xlevw,ylow /30,30,1.0,1.0/
20 ¢
21 pi=3.141592654
22 write(s, *)’ Give material properties’
23 0005 write(w,®)’ emod,nu, O0-> pl. stress 1-> pl. strain’
24 read(*,*,ezr=0005)enmod, nu, ipl
25 if(ipl.eg.0)then
26 k=(3.0-nu)/(1.0+na)
27 else
28 k=3 .0=-4.0*nu
29 endif
10 gmod=emod/ (2.0%(1.0+nu))
31 0010 writa(+, »)’ Give main crack length‘
32 read(*, * err=0010)c
33 write(*,*)’ /
34 write(*, *}’ Give Microcrack Information ===~==e=-’
35 0011 write(*,*)’ Give 3 micros, # dislocations/micro
36 read(*,*, arr=0011) mmic,ndis
37 if(ndis.le.0.0r.ndis.qgt.10)ndis=1
38 ic=0
39 dumscaplx(0,1)
40 ¢
41 do 0012 i=1,mmic
1 42 0015 write(»,*)’ Give starting and ending peints /,i,’th micro’
1 43 write(r, *)’ xstart, ystart,xend, vend’
1 44 read(*,*, err=0015) xs,ys, Xe,ye
1 4S den=xe-xs
1 48 if(den.1t.0.000001) then
1 47 theta=pi/2.0
1 48 else
1 49 theta=atan( (ye—vs)/den)
1 50 andi?
1 51 xd=cos (thata)
1 352 vd=sin(theta)
1 53 duml=caplx(xd, yd)
L $4 0020 writa(v,*)’ Give the CSD, and tie COD’
1 3s read(+,~,exr=0020)bl,b2
1 s6 bl=bl/float(ndis)
1 37 b2=b2/float(ndis)
11 gg xdig=(xe-xs}/(2.0*float(ndis+1))

ydis=(ye-vs)/(2.0*float(ndis+1))
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do 6013 j=1,ndis
ic=ic+l
xscuxs+{xdis*floac(j))
ysc=ys+(ydis*float(}))
xXacwxe~(xdis*float(3))
Yecw=ye-(ydistfloat(]))
201 (ic)=cmplix(xsc, ysc)
202 (ic)=cmplx(xec,yec)
a(ic)=caplx(bl, b2}
a(ic)=(gmod/ (pi*(k+1))) *dumiea(ic)
a(ic)=a(ic)/dum
continue

continue

Select points of interest for stress computation

write(r,*)’ Superimpose remote lo2ding Yes ->1’
read(*,*, arr=0021) irl

if(irl.gt.0)then

write(+,*)’ Give v2lues for sigyy, sigxy’

read(*, *,err=0022) ryy, rxy

KI=ryy*sqrt(pi*c/2.0)

KII=rxy*sqrt(pi*c/2.0)

endif
write(s,*)’  Give starting and ending points xs,ys,xe,ye’
read(*,*, err=0025)xs,ys, Xe,ve

zs=cmplx(xs,ys)

ze=cmplx(xe,ye)
writa(+*,*)’ Give grid resolution nx,ny (max = 30)°‘
read(*, *, arr=0025) nx, hy

= (xe-xs) /float (nx-1)

dy=(ye-ys)/flcat(ny-1)

Detine the grid for the stress computation

z=zs
smx=0.0
smy=0.0

saxy=0.0
1=Q

Perform Double Loop over the Stress Grid

do 0035 i=l,nx
xdmdx*float (i~1)
do 0045 j=1,ny
yd=dy*flcat(j=-1)
l=1+1
yvals=ys+vd
xval=xg+xd
z=coplx(xval,yval)
rzxwraal(z)
rzy=aimag(z)
ze=mconijg(z)
sckl=z2~c

if(cabs(2).1t.1.0e-6)then

Jrita(e, )’ Singularity at x=‘,xval,’ym=’ a
do 0043 z=1,3 - VATt yval
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2 119 sig(i,j,a)=1.0e3%
3 120 0043 contipue
2 121 ga to 0045
2 122 endift
2 123 if(cabs(2ckl).1t.1.0e~6) then
2 124 writa(*,*)* Singularity at x=‘,6xval,’ys’,yval
2 125 do 0044 2=1,3
3 126 sig(i,j,m)=1.0e35
3 127 0044 continue
2 128 go to 0045
2 129 endif
2 130 write(v,*)’
2 131 write(r,*)’ ’
2 132 write(s,*)’ Working on Point’,i,’,’,3
2 133 write(»,#)’ Coords =/,xval,yval
2 134 ¢
2 138 ¢ Start Loop over defined dislocations
2 136 ¢
2 137 sig1=0.9
2 138 s$ig2=0.0
2 139 8ig3=0.0
2 140 if(mmic.le.0)go to 0024
2 141 do 0023 iz=i,ic
3 142 ¢
3 143 ¢
3 144 ¢ Check if chosen point is too close to sinqularity
3 145 ¢
3 146 2ckl=2z-201(iz)
3 147 zck2=2z~202(12)
3 148 if(cabs(zckl).lt.1.0e~6)then
3 149 write(r,*)’ Singularity at x=‘,xval,’y=’,yval
3 150 do 0041 o=1,3
4 151 sig(i,j,n)=1.0e35
4 182 0041 continte
3 183 go to 004S
3 154 endif
3 155 if (cabs(zck2).1t.1.0e~6)then :
3 156 write(t,#)’ Singularity at x=’,xval,’y=’, yval
3 157 do 0042 o=1,3
l ¢ 158 sig(i,j,a)=1.0e35
4 159 0042 continne
31 160 go to 004S
3 161 endif
3 162 ¢
3 163 ¢ Compute the stressaes at the prescribed point
3 164 ¢
3 163 call PHT(z,£21)
3 166 call XSI(z,222)
3 167 call 2912 (2,2:3)
3 168 dum=zcrf23+£22
2 169 sig2d=2.0*veal(£z1)rreal (dum)
3 170 sigld=4 0%veal(fzl) ~sig2d
3 171 sigld=ainag(cdum)
3 172 sigl=sigl-sigld
3 173 sig2=sig2-sig2d
3 174 sigl=sigl-sigid
3 175 0023 coantinue
2 176 0024 continue
l 2 177 ¢
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Compute stresses due to applied loading

if(irl.gt.0)then
if(abs(xval).gt.0.00001) then

if{xval.lt.0.0.and.yval.gt.0.0) thepi+th
if(xval.lt.0.0.and.yval.lt.0.0) theth-pi
<heth/2.0
else
thepi/4.0
th=sign(th,yval)
endif
thi=3,0*h
rad=cabs(z)
fetr=KI/sqrt(2.0pirrad)
sit=sin(th)
s3t=sin(th3)
cltscos(th)
c3t=cos(th3)
siglesigl+(fotrr(clt= (2. 0~slt*s3t)))
sig2=sig2+ (fotre(clt*(1.0+sltrs3t)))
sig3=sigi+(fotzr (s1trcltrclt))

fetr=KIT/sqre(2.0%pi*rad)
slql'sigl-(tctr*(slt*(z.O+qlt'c3t)))
sig2=sig2+(fctresltrcltrcit)
sigimsigi+ (fotre(cltv(1.0~51t*s3t)))

endift

8ig(i,j,2)=sig2

sig(i,j,1) =sigl

8ig(i,},3)=sig3

wr;te(',*)' Location X=’,xval,’ I=/,yval

write(s, +)’ Sxoem’ ,3ig1,’ Syy=’,siq2,’ Sxy=/,3ig3
if (abs(smy).lt.abs(sig2))smy=sig(i,3,2)
if(abs(smx).lt.abs(s8igl))smax=sig(i,j,1)
if(abs(smxy).lt.abs(sig3))smxy=sig(i,3,3)

continue

continue

Prepare to plot the results

write(r )/ Give Ioport,Model,ract’
read(*,*,arr=0050) ioport,model, fact

writa(r, =) Sxx ~>» 1, syy -> 2, Sxy -> 3¢
write(s, )’ or ZPrinciple Stresses’

writa(r, )’ Maximum =>4, Minimum ->5, Deviatoric ->6’
read(*, *, art=0053) ip

if(ip.ilt.4)then

do 0090 i=1,ax

do 0095 i«l,ny

zp(i,3)=sig(4,3,ip)

continue

continue

endil

Computa the Principle Strasses
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if(ip.ge.4)then
smax=0.0

do 0120 i=1, nx

do 0125 j=1,ny

sigl=sig(i,j,1)

siga=sig(i,},2)

sig3=sig(i,3,3)

call prince(sigl,sig2,sig3,sipl,sip2,sdev)
if(ip.eq.4)zp(i, ) ~sipl
1f(ip.eq.5)zp(4,])=sip2
if(ip.eq.6)zp(i,j)=sdev

if(abs(zp(i,j)) .ge.1.0al2)go to 0125
if(abs(zp(i,3)) .ge.smax)smax=ans (zp(i,]))

continue

continne

endirt

if(ip.eq.1l)then

write(+,»)’ The maximum vaiue is =/, sax
elseif(ip.eq.2)then

write(+,*)’ The maximum value is =/, sny
elseif(ip.eq.3)then

write(*,*)’ The mavimum value is =/, smxy
else

write(s,*)’ The naximum value is =/, smax
endif

write(s,*)’ -- Give Contour Information --/
write(s,+*)’ 4$levs, min lev, max lev, # betw labels, # first *
read(+,*,err=0070) nlev, vmin, vmax,nbl,nst
dlevs(vmax~vmin) /float(nlev)
il=nbl-nst
do 0075 i=l,nlev
Zlev(i)avmin+(dlev*float(i))
il=il+el
if(il.eg.nbl)then
ldig(i)=-1
lwge(i)=2
ilm0
else
ldig(i)=-2
lwge(i)=1
endif
continue
xhigh=5.0
yhigh=s.0
hgt=0.07
narcm=s3
ndive?
call plots(0,ioport,model)
call factor(fact)
call zcseg(zp,nnx,any,ax,ny,xlow,ylow,xhigh,yhigh, zlev, 1dig,

1 lugt,nlev,hgt,ndiv, narc)

do 0130 i=1,nlev
zlev(i)w=1.0%zlev(i)
lwgn(i)=-l.0*lwgc(i)
continue

call stline(~1,.1389,0.)

call zcseg(zp,anx,any,nx,ny,xlov,ylow,xhigh,yhigh,zlev,ldig,
1 lwgt,nlev, hgt,ndiv, narc)
call stline(l,.1389,90.)




287
Page 6
06-27-88
19:32:36
D Line$ 1 7 : Microsoft FORTRAN77 V3.20 02/84
296 xlnmxhigh-xlow
297 yln=yhigh-ylow
298 xdals(xe~xs)/ (xhigh-xlow)
299 ydal=(ye-ys)/(yhigh-ylow)
300 hgti=,)
301 hgtaw=.1
302 call staxis(hgtl, hgt2,hgtl, hgt2,2)
303 call axis(xlow,ylow,’ ’,-1,x1ln,0.0,xs, xdel)
304 call axis(xlow,ylow,’ ’,1,v1n,90.0,ys,ydel)
308 call axis{xlow,yhigh,’ ’,1,x1n,0.0,xs,xdel)
306 © call axis(xhigh,ylow,’ 7,-1,yln,90.0,ys,ydel)
307 call plot(0.,0.,999)
308 0100 write(+r,*)’ 3-D Plot =-> 1/
309 read(+,*, err=0100)1ila
310 if(i3d.gt.0)then
311 0110 write(r,#)’ Give horiz, vert, angles’
312 read(*,*,err=0110) ahor,aver
313 call plots(0,iocport,model)
314 call factor(fact)
315 iproj=o
31s itrim=0 -
317 idiyr=3
318 zlowsl O35
319 itrame=]
320 icut=3
321 call mesh(zp,nnx,nny,nx,ny,ahor,aver,xlow,ylow,xhigh,
322 1 yhigh,iedge, idir, iproj, ifrane, zlov, icut,
323 2 itrim,mask, vertex)
324 call plot(0.,0.,999)
325 endif
326 0080 write(+,*)’ Try a different plot =-> 17
327 read (¥, *, err=0080) inew
328 if(inewv.gt.0)go to 0050
329 end
Name TYype Offset P Class
a COMPLEX 800  /DAM /
ABS INTRINSIC
AHOR REAL 21432
AIMAG INTRINSIC
ATAN INTRINSIC
AVER REAL 21436
Bl REAL 20960
B2 REAL 20964
c REAL 0 /CRACK /
clr REAL 21300
a3t REAL 21304
CABS INTRINSIC
QPLX INTRINSIC
[0l 4 (e INTRINSIC
s INTRINSIC
peN REAL 20936
DLEV  RBAL 21372
oo COMPLEX 20904
Dol CIMPLEX 20952
0X REAL 1062
oY REAL 21066
D2 COMPLEX TR RD
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EMOD REAL o /MAT /

FACT REAL 21312

FCTR REAL 21288

FLOAT INTRINSIC

P21 COMPLEX 21220

¥Z2 COMPLEX 21228

F23 COMPLEX 21236

GMOD  REAL 4 /MAT /

gGT REAL 21392

HGT1  REAL 21422

HGT2 REAL 21426

I INTEGER*2 20912

Il INTEGER®*2 213176

I30 INTEGER*2 21430

Ic INTEGER*2 20902

ICUT INTEGER*2 21452

IDIR INTEGER®2 21444

IEDGE INTEGER*2 21454

IFRAME INTEGER*2 21450

INEW  INTEGER*2 21456

IOPORT INTEGER*2 21308

Ir INTEGER*2 21316

IrL INTEGER®2 20896

IPROJ INTEGER#*2 21440

IRL INTEGER*2 21024

ITRIM INTEGER*2 21442

Iz INTEGER*2 1200 /DAaM  / ’

J INTEGER*2 20976

X REAL 12 /MAT

) ud REAL 21034

XII REAL 21028

L INTEGER*2 21090

LDIG INTEGER*2 14680

LWGT  INTEGER*2 14780

.4 INTEGER*2 21148

MASK  INTEGER*2 14880

MODEL INTEGER*2 21310

NARC  INTEGER*2 21396

NBL INTEGER*2 21368

NDIS  INTEGER*2 20900

NDIV  INTEGER*2 21398

NLEV  INTEGER*2 21358

NMIC  INTEGER*2 20898

NNX INTEGER*2 20880

NNY INTEGER*2 20882

NST INTEGER?*2 21370

NU REAL 8 /MAT /

NX INTEGER*2 21088

Ny INTEGER*2 21060

°I REAL 20892

RAD REAL 21272

REAL INTRINSIC

RXY REAL 21030,

RYY REAL 21026

R2X REAL 21112

_ZY REAL 21116

s1T REAL 21292

S3T REAL 21296

SDE7  REAL 213854
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SI1G REAL 816

SIGl1 REAL 21162

SIG1D REAL 21256

s162 REAL 21266

SIG2D REAL 21252

SIG3 REAL 1170

SIG3D REAL 21260

SIGN INTRINSIC

SIN INTRINSIC

SIP1 REAL 21346

SIP2 REAL 21350

SMAX REAL 21330

s REAL 21078

SMXY  REAL 21086

SuY REAL 21082

SQRT INTRINSIC

TH REAL 21264

TH3 REAL 21268

THETA REAL 20940

VERTEX REAL 14616

VMAX  REAL 21364

VMIN REAL 21260

XD REAL 20944

XDEL  REAL 21414

iDIs REAL 20968

XE REAL 20928

XEC REAL 20992 :

XHIGH REAL 21384

XN REAL 21406

XIOW  REAL 20834

s REAL 20920

XxscC REAL 20984

XVAL  REAL 21108

D REAL 20948

YDEL REAL 21418

¥YDIS REAL 20972

YE REAL 20932

TEC REAL 20996

YHIGE REAL 21388

YIN REAL 21410

YIOW  REAL 20828

s REAL 20924

v¥sc REAL 20988

YVAL REAL 21104

z CUMPLEX 21070

Z0l COMPLEX o /oA /

202 COMPLEX 400 /DAaM /

2C COMPLEX 21120

3CX1 COMPLEX 21130

Zcx2 COMPLEX 21188

3 COMPLEX 21128

ZB COMPLEX 21050

ZLZV  REAL 3618

ZIO0W  REAL 21448

P REAL 18

s COMPLEX 21042

330 ¢
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Subroutine PHI(zZ,fZt)
Complex*8 z,z01(50),202(50),£z,f2t,a(50),an
Common /dam/201,202,a,iz
an=a(iz)
call Phi2(an,z,201(iz),£2)
fzt={an/(2-201(iz)))+£2

Add Negative Burgess Vector

an=-1.0%a(iz)

call Phi2(an,z,z02(iz),£2)
gztmfzt+ L2+ (an/ (2~202(1i2)))
return

end

Offset P Class

COMPLEX 800 /DAM /
COMPLEX 21458

COMPLEX 21466

COMPLEX 4
INTEGER*2 1200 /DAM
COMPLEX 0 *

COMPLEX 0 /DAM
COMPLEX 400 /DaM

346 ¢
347 ¢
348 c
349
150
351
3is2
as3
354
iss
388
157 ¢
358
359
360

NN

Subroutine Phi2(an, z,z0,fzt)

Complex*8 an,ac,z,zo,f2t,£21,£22,£23,Xz
ac=conjg{an)
2ocwconig(z9)
call £X(z,Xz)
call ?(z,z0,£21)
call 7(z,zo0¢,£22)
call G(z,zo0¢,£23)
fztm-1.0%((an*f2l)+(an+*£z2)+(ac*(zo-zoc) *£23))
fztw=1 0% ((an*fzl)+(an*£z2)+(ac*(zo-zoc) *£23) -(an*X2))
return
end

Offset P Class

COMPLEX 21498 :
COMPLEX Q*

INTRINSIC

COMPLEX 21513
COMPLEX 21536
COMPLEX 21534
COMPLZEX 12 »
COMPLEX 21510
COMPLEX 4 *
COMPLEX 8 *

361 ¢
362 ¢

21506




291

Page 10
06-27-88
19:32:36
D Lined 1 7 Microsoft FORTRAN77 V3.20 02/84
363 ¢
364 Subroutine F(z,2z0,£2)
385 Complex+*8 z,z0,£2,X2,Xz0
366 call £X(z,Xz)
167 call f£X(zo,Xzo)
368 fz=(1.0-(X2/XZ0))/(2.0%(2-20))
369 return
370 and

Name TYype Offset P Class

F2 COMPLEX 8 *
.4 COMPLEX 21590
X20 COMPLEX 21598
z COMPLEX 0 *
20 COMPLEX 4 *

371 ¢

372 ¢

373 ¢

374 Suproutine G(z,20,£2)

378 Complex*8 2z,2z0,£2,Xz,X20,XP2Z0
376 call £X(z,Xz)

377 call £X(zo,Xzo)

378 call fXP(zo,XPzo) .
379 fzm) . 0= (XZ/XZ0) + ( ( (2~20) *X2*XPZ0) / (X20*X20) )
380 fzmf2/(2.0%(2~20) *(2-20))

381 return

382 end

Name TYpe Offset P Class

FZ COMPLEX : g
¥P20 COMPLEX 21646
Xz COMPLEX 21630
Xz0 COMPLEX 21638
2 COMPLEX 0 *
20 COMPLEX 4 »

383 ¢

384 c

385 ¢

386 Subroutine £X(z,Xz)
387 Complex*8 X2,2,2pcC
lgs Common /crack/ ¢

389 Zpc=(z+rc) *z

390 Lz=1.0/csqzt{zp<)
391 Teturn

392 end

Nane TYpe Qffset 2 Class
c REAL 0 /CRACX /
CSQRT INTRINSIC

£z COMPLZIX 4
Z COMPLEX Q *
IPC COMPLEX 21718




292
Page 11
06-27-88
19:32:36
D Lined 1 7 Microsoft PORTRAN77 V3.20 02/84
393 ¢
394 ¢
395 ¢
396 Subroutine £XP(z,XPz)
397 Complex*8 XPz,z,ZpcC,2a,2b
398 Common /crack/ ¢
J9¢ Zpcmz+e
400 Za=csqre(z)
401 zamzarzaszasresqrt(zpe)
402 zb=csqrt(2pc)
403 zbmesqre(z) *2b*zb*zb
404 XPz=~-0,.5%((1.0/2a)+(1.0/2b))
405 return
406 end
Nane Type Offset P Class
c REAL 0 /CRACK /
CSQRYT INTRINSIC
Pz COMPLEX 4 *
4 COMPLEX o &
ZA COMPLEX 21758
2B COMPLEX 21306
Z7C COMPLEX 21750
407 ¢
408 c
409 ¢
410 Subroutine KSI(zZ,f2t)
411 Complex*s z,z2c¢,z0c,z01(50),202(50),£21,£22,£23,¢£2%,a(50),an,ac
412 Common /dam/201,202,a,iz
413 an=a(iz)
£14 ze=conig(z)
415 call Phi2(an,ze,201(iz),£21)
416 fzl=conig(fzl)
417 call Phi2(an,z,z01(iz),£z2)
418 call Phi2P(an,z,201(iz),£23)
419 fzt=fzl=-£22-(2*L£23)
420 ac=conjg({an)
421 zoc=conjg(z01(iz))
422 fzt=fzt+(ac/ (2-201(1z)))+((an*zoc)/ ((2-201(iz))*(2~201(i2))))
423 ¢
424 ¢ Add Negative of Second Burgess Vector
425 ¢
426 anw—1.0*a(iz)
427 call Phi2(an,zc,202(42),£21)
428 zl=conjg(£fzl)
429 call Phi2(an,z,202(iz),£22)
430 call ?hi2P(an,z,202(i2), £23)
431 fzemfztefzl~-222~(2*£23)
432 ac=conjg(an)
433 zocwconig(202(iz))
434 fze=rzt+(ac/ (2~202(1iz)) )+ ((an*zoc)/((2-202(iz)) *(2-202(1iz2))))
435 raturn
436 end
Name Type Offset P Class
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A COMPLEX 800 fOAM /

AC COMPLEX 21926

AN COMPLEX 21878

CONJG INTRINSIC

FIl COMPLEX 21894

72 CoOMPLEX 21902

FZ3 COMPLEX 21910

1z INTEGER¥2 1200 /DAM

202 COMPLEX 0 /DAM
202 COMPLEX 400 /DAM
4 COMPLEX 21886
zZoc COMPLEX 21934

NN

437 ¢

438 ¢

439 ¢

440 Subroutine Phi2P(an,z,zo,fzt)

441 Complex*8 an,ac,z,zo0,f2t,fz1,£22,£23,XPz
442 ac=conjg(an)

443 zocwconijg(zo)

444 call £X®(z,XPz)

445 call FP(z,20,£2Z1)

446 call FP(z,zoe,f22)

447 call GP(z,20¢,£23)

448 fzt=~1.0% (an*f2l+an*L£z2+ac* (20~20C) *£23-an*XPz)
449 ¢ £Zt==~1.0*(an*fzZl+an*L22+ac* (z20~20C) *£23)
450 | return

451 end

Name TYpe Offset P Class
ac COMPLEX 22022
0

CONJG INTRINSIC

F2l COMPLEX 22042

FZ2 COMPLEX 22050 .

FZ3 COMPLEX 22058

FIT COMPLEX 12 *

XP% COMPLEX 22034
4

0 COMPLEX 8 *
Z0C REAL 22030

452 ¢

433 ¢

454 ¢

455 Subroutine IP(z,z0,22)

458 Complex*8 z,20,22,X2,X20,XPz
487 call f£X(z,Xz)

458 call 2X(zo,Xz9)

459 call 2X?(z,XPz) .

460 f2ml.0=(Xz/XZ0)+( ((2-20) *XPz) /X20)
461 fz=f2/{=~2.0%(z=20) * (2~

<82 reans ( ) *(z~20))
463 and




464
465
466
467
468
469
470
471
472
473
474
473
476
477
478
479
480

Name

?Z1
F22

Xp20
Xz0
20

481
482
483
484
485
486
487
438
489
430
491
492
493
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Offset P Class

COMPLEX 3 *
COMPLEX 22130
COMPLEX 22114
COMPLEX 22122
COMPLEX o+
COMPLEX 4 *

c
[~
c

Type

Subroutine GP(z,z0,f2)
Complex*s z,zo0,fz,£21,£22,Xz,Xz0,XPz,XPz0
call £X(z,X2)
call fX(zo,%Xzo0)
call £XP(z,XPz)
call £XP(zo,XPzo)
£z1l=1.0-(Xz/Xz0)+( ( (Z2~20) *Xz*XPz0)/ {X20*X20) )
£z1lmf21/({Z-20) *(Z2~20) *(2~20))
£22=( (2-20) *XPZO*XPzZ) / (XZ0o*X20)
£22=122+( (XPZo*X2) / (XZ0*X20) ) - (XPZ/X20)
£22=£22/(2.0%(2~20) *(2~20))
fzmfz2~£21
reaturn
end

Offset P Class

COMPLEX 8 *
COMPLEX 22213
COMPLEX 22290
COMPLEX 22202
COMPLEX 22210
COMPLEX 22186
COMPLEX 22194
COMPLEX 0 *
COMPLEX 4 *

c
c

Subroutine PHIP(zZ, fzt)

Complex*8 z,201(50),202(50),£z,fzt,a(50),an
Common /dam/201,202,a,iz

an=a(iz)

call ?hi2P(an,z2,701(iz),£2)
tzeafz~{an/((z2-201(iz) ) *(z~2z01(1iz))}))
an=~1.0%*a(iz)

call ?hiz2P(an,z,202(iz),£2)
fzewtztitz-(an/ ((2-202(12) ) *(2~-202(iz))))
return

end

OfZsat ? Class

COMPLEX 300 /DAM /

Page 13
06-27~88
19:32:36
V3.20 02/84




D Line# 1 7

AN COMPLEX 22185

FZ COMPLEX 22394

F2T COMPLEX 4 *

1z INTEGER*2 1200 /DaM

z COMPLEX 0 *

201 COMPLEX ] /DAM /
202 COMPLEX 400 /DAM /

494 ¢
495 ¢
496
497
498
499
500
S01
502
503
504
505
506
507
508
509
510
s11
512

513 0999

514

Nanme

SDEV
SIG1
SIG2
SIG3
SIP1
SIP2
SQRT

EREBEEE g

Nane Type
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Subroutine Prince(siqgl,sig2,sig3,sipl,sip2,sdev)
if(sigl.ge.1.0el2.0r.3ig2.ge.1.0el2.0r.sig3.ge.1.0el2) then

sipl=l,0e3s
sipawl.0els
sdev=1,0e35
go to 0999
endif
sdeve=((3igl-s1g2) /2.0) *»*2+8igI**2
sdevesqrt (sdev)
s=~(sigl+sig2) /2.0
if(s.ge.0.0)then
sipl=s+sdev
sip2=s-sdev
else
sipl=s-sdev
sipl=s+sdev
endit
return
end
Offset P Class
22442
20 *
g »
4 *
g »
12 »
16 »
INTRINSIC
Size Class
SUBROUTINE
4 COMMON
1202 COMMON
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBRCUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
16 COMMON
SUBROUTINE
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PHI SUBROUTINE
PHI2 SUBROUTINE
PHI2P SUBROUTINE
PHIP SUBROUTINE
PLOT SUBROUTINE
PLOTS SUBROUTINE
PRINCE SUBROUTINE
STAXIS SUBROUTINE
STRESS PROGRAM
ICSEG SUBROUTINE

Pass One No Erxrors Detscted
514 Sourca Lines
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$Storage: 2
$Debug

Program XIJPlot
CRR AT AR AN R RN P AR AR R LSRR N RN ARARNRNNR RN S PR AN TP AR ARSI AN PR AN IR TR P a by
ces**» This program is designed to compute the near and far field +
Ce*ka® gnergy release rates using a complex potential formulation. +*
cwst2z* The near field is avaluated via the stress intensity factors »
ce#*4* and che far field is computed through a numerical integration*

CARE R RN AN R RN R RSO AR R AN R AR RN ERNA N AR RN IR AN R DR RN LR RN RAN D AR AN ANNARTSAN
c

Complex*s8 z,zc,201,z02,£21,£22,£z3,trans,

1 a,dunl,dum,dun2,dum3,dun4, zs,ze,dz,an,Ktot, K12

Real*4 Xx,sig(30,30,3),emod,nu,zp(30,30),z1av(50),vertex(16)

Common /mat/ emod,gmod,nu,k :

Common /dam/201,z02,a,iz

Common /crack/ ¢

Data nnx,nny,xlow,ylow /30,30,1.0,1.0/

pi=3.141592654 .
writs(e,*)’ Give material properties’
0005 writa(e,*)’ emod,nu, 0-> pl, stress 1-> pl. strain’
read{*, *, err=0005)enmod,nu, ipl
if(ipl.eq.0)then
k=(3.0-nu)/(1.0+nu)
else
k=3.0-4.0"mu
endif
gmod=enod/ (2.0%(1.0+4nu) )
0010 write(s,r)’ Give main crack length’
read(», *,err=0010)c
write(*,*)’ Give rad,theta,csd,cod’
read(*, *)rad, theta,bx,by
theta=(thetar*pi)/180.

Compute the Burgess Vector

aaa

ci=cos (theta)
si=msin(theta)
trans=caplx(ci,si)
dum=caplx{0,1)
a=caplx{bx,by)
a=trans#*a

a=(gmod/ (pi*(k+l))) *a
a=a/dum

Compute Nondimensionalizing factor inr Ballarini’s paper

aaa

Zactw(rad**) . S5) *(k+1.0)/ (gmod+, 01l*sqrt (bx*bx+by*by) )
fact=factrsqr=(pi/2.0)

open(s,file=’'KI.dat’,6 status='new’)
opan(§,file='XII.dat’,status=‘new’)

do 0050 il=1, 17

beta=float(il-1)*pi/180.0

dum=caplx(0, 1

xswradrcas(beta)

ys=rad*sin(beta)

ye=ys+(0.01l*sin(theta))
xeuxs+(0.01*cos(theta))
z0l=caplx(xs,ys)




D Lined
b3 60
1 61
1 62
1 63
1 64
1 [ 33
1 §6
1 87
1l &8
1 69
1 70
1 71
1 72
1 73
1 74
1 75
1 76
1 77
1 78
1l 79
1 80
1 81
1 82
1 83
1 84
1 3as
1 86
1 87
1 88
1 89
i 90
1 91
b3 92
3 93
1 94
1 95
1 96
97
98
99
Nane
A
AIMAG
AN
BETA
3X
3Y
c
cI
QPLX
CONJG
cos
CSQRT
UM
oUM1
ooM2
DOM3

oan

ana

0050

TYpe
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z02=caplx(xe,ye)

Start computation of the Near Field Energy Release Rates

Ktot=caplx(0.0,0.0)

an=a

ze=z01

dume=csqrt( (ze+c) /ze)
dum=-1.0%an*(real (dum)~1.0)

dum2=csqrt{conjg(ze))

dum2=2 . 0rdum2 *rdum2 *dum2 *csqrt (conjg(ze)+c)
duml=(conjg(an)*aimag(ze)*c) /dum2
dum2=caplx(0.0,1.0)

duml=dunl+dum2

K12=-2.0*sqrt{(2.0*pi) /) * {dum+duml)
an=-=1,0%3

ze=z02

dun=csqrt( (ze+c) /ze)

dump=-1,0%*an+* (real (dum)-1.0)

dum2=csqrt(conjg(ze))

dum2=2. 0*dun2 *dun2*dum2 *csqrt (conjg (ze)+c)
duml={conjg(an) *aimag(ze) *c) /dum2
dum2=capl®(0.0,1.0)

duml=aduml sdumd
K12=K12=-(2.0*sgrt({(2*pi)/c) ¥ (dum+duml})
Ktot=Ktot+K12

Nondimensicnalize by the factor in Ballarini’s Paper

rXI=facttreal (Xtot)
rXII=-1.0*factraimag(Ktot)
ril=float(il-1)

write(S,*) ril,zKI
write(6,*)ril,rXII
continue

closa(5)

close(§)

end

offset P Class

COMPLEX 16 /DAM /

INTRINSIC

COMPLEX 14792

REAL

REAL

14764
14702
14706

14710

COMPLEX 14728

COMPLEX %4920
COMPLEX 14848
COMPLEX bl
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DUM4 COMPLEX hbadodadd

p2 COMPLEX hane

EMOD REAL o /MAT /

FACT REAL 14758

FLAAT INTRINSIC

FZl COMPLEX ronhe

rz2 COMPLEX tuany

rZ3 COMPLEX LAl id]

GMOD  REAL 4 /MAT /

Il INTEGERw2 14762

IPL INTEGER*2 14692

12 INTEGER*2 24 /DAM /

K REAL 12 ,/mar /

K12 COMPLEX 14960 .

KTOT COMPLEX 14784

NNX INTEGER*2 14676

NNY INTEGER®2 14678

NQ REAL 8 /MAT /

PI REAL 14638

RAD REAL 14694

REAL INTRINSIC

RI1 REAL 15136

RKI REAL 15128

RKII  REAL 15132

s REAL 14714

sIG REAL 31876

SIN INTRINSIC

SQRT INTRINSIC

THETA REAL 14698

TRANS COMPLEX 14718

VERTEX REAL 3812

e REAL 147890

LIoW  REAL 14680

s REAL 14768

34 REAL 14776

YIOW  REAL 14684

¥s REAL 14772

z COMPLEX rhAEw

Z01 COMPLEX o _/oaM  /

202 COMPLEX 38 /DaM /

ic COMPLEX Laa il d

ZE COMPLEX 14800

2LEV  REAL 3612

2P REAL 12

28 COMPLEX Ry

Name TYpe Size Class

CRACK 4 COMMON

DAM . 26 COMMON

XIIPLO PROGRAM

HAT 16 COMMON

Pass One No Zrrors Detectad

99 Source Lines
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$Storage: 2
Sbebug

Program

CRAARN AR AR RRRERARARAREN RN RN ANR RN DA R AR DR RN R R RN RN RO R AN NNSA AN AR EAR AN IAR D

ceexs» This program is designed to compute the stress intensity

L 2

ce*aa* factor at various locations in front of the crack tip for a *
c**a** gmoothed damage distribution.
CRERVB LR ERARRRANENEN AR RN ANCBATANINANAIRNRRAAARSURNANL SRR VA S AS AR SRER

[~}

aqa

Complax*8 z,zst,znd,zinc,zc,z01(400),202(400),
1 a(200),duml,dun,dun2, zs, ze,dz, an,Ktot, X212, ££3

L]

Real#*4 X,nu,xs(400),xe(400),ys(400),ye(400),b1(400),b2(400),

1 vol(20,8)
pi=3.141592654
write(s,*)’ Give material properties’

0005 write(w,*)’ emod,nu, O-> pl. stress 1-> pl. strain’
read(*,*, exrr=0005) emod,nu, ipl
if(ipl.eqg.0)then

k=(3.0-nu)/(1.0+nu)
else

k=3.0-4.0%mu

endif

gmod=emod/ (2.0*(1.0+nQ))

0010 write(w, »)” Give main crack length’
read(+,*, arr=0010)c

0007 write(r,*)’ Damage zone length’
read(r, +, axr=0007) xanax

0038 write(*,*)’ Give sig-xy’
read(*,*,exrr=0038) sigxy
rinitesigxy*sqrt(pi*0.3*c)
write(*,*)’

0039 write(»,*)’ Give Approximate Dislocation #/
vead(*,*, err=0039) nfudge
phi=(20.0%pi)/180.0
open(s,file=‘vol . out’,status=’old’)
vtot=0.0
do 0006 i=1,8
do 0008 i=1,20
read(5,*)vol(i,3)
vtotmvtot+vol (s, j)

0008 continue

0006 continue
writa(#®,»)’ total volume =/, vtot
vtot=vtat/float(nfudge)
close(5)

symet>ize the volume distributions

do 0130 i=l,20
wol{i,1)=0.5#(vol(i,1)+vol(i,8))
vol(i,3)=vol(i,1)
vol(i,2)=0.5#(vol(L,2)+vol(i,7))
vol(i,7}=vol(Li,2)
vol(i,3)=0.3%(vol(i,3)+vol(1i,6))
vol{i,s)=voi(i,3)

vol(i,4)=0.5%(vol(i,4)+v
vol(i,5)=vol(,q) yrvel(s,s))
0130 continue
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60 ¢
6l ¢ Compute an equivalent § of dislocations
62 ¢
63 ic=0
64 xf=4.0/25.4
1] y2=5.0/25.4
(13 open(s,file=’dis.out’,status='nev’)
87 ¢
68 do 0100 j=1,8
1 §9 do 0110 i=1,20
2 70 xlcwxgefloat{i-1)
2 71 xuc=xg*float(i)
2 72 ylcw=0.78740+(yf*float(3-1))
2 73 yuc=-0.78740+(yf*float(3))
2 T4 ncdis=int(vol(i,})/veot)
2 75 if(ncdis.gt.0)then
2 76 ydel=(yuc-ylc)/(float{ncdis))
2 77 do 011S il=}, ncdis
3 78 icwic+l
3 79 xs (ic)=xlc
3 80 xe{ic)=xuc
3 81 ys{ic)=ylce(ydel*float(il-1))
3 82 if{yuc.lt.0.0.0r.ylc.1t.0.0)then
3 83 zphi=-1.0*phi
3 84 alse
3 8s zphi=phi
3 86 endif . :
3 87 ve({ic)=ys(ic)+((xuc=-xlc)*tan(zphi))
3 88 iZ(ans(ys(ic)).1t.0.005)ys(ic)=sign(0.005,ys(ic))
3 89 if(abs(ye(ic)).lt.0.005)ye(ic)=3ign(0.005,ye(ic))
3 90 write($,*)xs(ic),vs(ic),xe(ic),ye(ic)
3 91 ¢
3 92 ¢ Znter tde function for the Slippage function here
3 93 ¢
3 94 Bl (ic)=0.0005#(400.0/float(nfudge))
3 95 b2(ic)=0.00
3 96 0115 continue
2 97 endit
2 98 0110 continue
1 99 0100 continue

100 close(5)
101 writa(*,*)ic,’ dislocations generated’
102 open(S, file=’kcrak.out’, status='nev’)
103 open(§, file=’kdam.out’, status=’nevw’)
104 open(7,file=’ktot.out’,status=’/new’)
108 do 0016 j=1, 100

1 106 writa(*,*)’ working on ‘,4,’th »oint’

1 107 dun=czplx(9,1)

1 l08 do 0017 i=l,ic

2 109 xcen=(xmaxefloat{j-1))/100.0

2 iz xes=xe(i)-xcen

2 111 Xgs=xs (i) -xcen

2 112 yes=ye({)

2 113 yss=ys(i)

2 114 den=xas-xss

2 115 if{den.1%.0.000001)then

2 116 thetaspi/ /2.0

2 117 else

2 118 theta=atan((yes-yss)/den)
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endift

xd=cos (theta)

yd=sin(theta)

duml=cmplx(xd, yd)

201(1i)=caplx(:tss, yax)

202 (i) =cuplx(xes,yes)

a({i)=caplx(bi(i),b2(i))
a(i)=(gmod/(pi*(k+1)) ) rdumiva(i)
a(i)=a(i)/aum

continue

Start computation of the Stress Intensity Factor

clwmct+xcen

Ktotw=cmplx(0.0,0.0)

Do 0030 i=1,ic

anwa (i)

ze=z01(1)

dunscsqrt( (ze+cl) /ze)

dum=-1.0*an*(real (dum)-1.0)

dum2=csqrt (conjg(ze))

dum2=2.0*dun2 *dum2 *dum2 *csqre (conjg{ze) +cl)
duml=(conjg(an) *aimag(ze) *cl)/dum2
dum2=cmplx(0.0,1.0)

dunl=dunl*dum2
R12==2.0*sqrt((2#pi) /cl) * (dum+duml)
anw~1,0%a(i) ’

Zewz02(1)

dums=csqre( (ze+cl) /ze)

dume~1.0%an*(real (dum)~1.0)

dum=csqgrt (conjg(ze))

dum2=2 . 0*dum2 +*dum2 *dum2 *csqre (conjg(ze)+cl)
duml=(conjg(an) *aimag(ze) *cl) /dun2
dum2=cmplx(0.0,1.0)

dumlwdwzl *dum2

Kl2=K12-(2.0*%sqrt( (2#pi) /cl) * (dum+duml) ) d
Ktot=Ktec+K12

continue

Write out the Streas Intensity Factors

rXII=-1.0%ainag(Xtot)

XIT=rKXI/zinit

rkerak=sigxy*sqrt (pir0.5#+cl)
Tkerak=ctkerak/rinit

writa(5,*)xcen, skczak
writa(§,*)xcen, =XIT

tov=rkcrak+rXIZ

write(?, *)xcen, ot

write(*,*)”

Write(*,*)’ Stress Intensity Pactors: '
wTite(*,*)’ Rdaws', rXII,’ Kcrack=/, rkerak, ’ Ktot=’,tat
continue

closa(s)

closa(s)

close(7)

end
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Name Type ° Offset P Class
/
A COMPLEX 6416
ABS INTRINSIC
AIMAG INTRINSIC
AN COMPLEX 184852
ATAN INTRINSIC
Bl REATL 15056
B2 REAT, 16656
c REAL 18278
CL REATL, 18434
CMPLY INTRINSIC
CONC G INTRINSIC
cos INTRINSIC
CSQRT INTRINSIC
DEN REAL 18388
DUM COMPLEX 18352
DUM1  COMPLEX 18402
DuoM2 COMPLEX 18508
D2 coupm (211
EMOD REAL 18260
PLOAT INTRINSIC
FT3 COMPLEX Lt dtd
GMOD REAL 18274
I INTEGER*2 18306
I INTEGER*2 18340
Ic INTEGER*? 18308
INT INTRINSIC
IPL INTEGER»2 18268
J INTEGER*2 18304
K REAL 18270
K12 COMPLEX 18612
KTOT COMPLEX 18438
NCDIS INTEGER*2 18314
NFUDGE INTEGER*2 18294
XU REAL 18264
PHI REAL 18296
PI REAY, 18254
REAL INTRINSIC
RINIT REAL 18290
RXCRAK REAL . 18784
RKII REAL 187890
SIGN INTRINSIC
SIGXY REAL 18286
SIN INTRINSIC
SQRT INTRINSIC
TAN INTRINSIC
THETA REAL 13390
TOT REAL 13788
VoL REAL 14418
YTOT REAL 18300
XCEN REAL .8366
XD REAL 18394
pe 4 REAL 12816
X2s REAL 18370
xr REAL 18310
XIC REAL 18318
XMAX REAL 18282
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Xs REAL 8016
Xss REAL 18374
b (o] REAL 18322
b4 REAL 18398
YDEL REAL 18336
= REAL 11216
YES REAL 18378
r REAL 18314
YIC REAL 18326
& REAL 9616
1ss REAL 18382
YOC REAL 18330
z COMPLEX bd bt
Z01 COMPLEX 16
202 COMPLEX 3216
¢ COMPLEX exend
ZE COMPLEX 18460
ZINC COMPLEX bbb il
ZND COMPLEX b d Al
ZPHL REAL 18348
s COMPLEX ks
IS8T COMPLEX rERA®
Name Type Size Class
XSMIN PROGRAM

Pass One No Errors Detected
175 Source Lines
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D Line# 1 7 Microsoft FORTRAN77 ¥3.20 02/84
1 S$DEBUG
2 SSTORAGE: 2
l 3 Program Plotxy
4 CRARBRARAVARARRAEABARE R RN RRAARB AR ER R ARNNAANRANERNERANAS AR AR RASNANESSO
S cewa#x This routine is designed to draw up to 5 files on an x-y plot
[ CRRRRENDPBEAIIRAIR IV AN R AR A ARRNRRARNANR B EINIARRER N NS SNE NP RARNBEARRERNES
7 Common/werk/x1(500) ,y1(500) ,x2(500) ,y2(500)
8 character+*1g filenm
9 character*l itext,mtt(20),xtt(20),ytt(20)
10 character+20 atit,xtit,ytit,legd
11 equivalence (wtt(l),mtit), (xtt(1l),xtit), (yet(l),ytit)
12 data xmax/10.0/, ymax/8.0/, xax/7.0/, yax/S.0/, xmt/1.5/
13 ¢
l 14 ¢ Input General Information
15 ¢
16 istyle=0 .
17 0007 write(*, *)’ Give Xmin,Xmax,X1bl,Ymin, ¥max, ¥1bl‘
13 read(+, *, exr=0007) xmn, xmx, Xax, ymn, yux, yax
19 iforces=l
20 ymt=yax+0.1
21 £1=7.0/xax
22 £2=5.0/yax
l 23 if(fl.le.£2)then
24 foin=£l
25 else
26 fain=f2
27 endif :
28 0055 format(’/ XXOOOOOOCCOOCOOOKK’)
29 write(*, *)* Give X ~ Axis title’
30 read(*,0050)xtit
31 write(*,0055)
32 0050 format(a20)
33 write(s,*)’ Give ¥ - Axis title’
34 writa(+*,0085)
as read(*,0050)ytit
38 write(*,*)’ Give Main Title’
37 write(*,0055)
is read(#,0050)mtit
39 0008 write(*,*) ’ Select Output Device:’
40 write(s,*)’ Terminal -> 0/
41 write(, +)’ Printer -> 1’
42 read(*,*,arr=0008) iout
43 if(iout.eq.0)then
44 ioport=91
45 model=93
46 else
a7 ioport=0
43 model=g§4
49 endis
SO 0009 writa(+, »)’ Give Plot Size Factor’
sL read(*,r, axrz=0009) fact
52 fact=fact+*fain
S ¢
l 54 ¢ Start lLarge lLoop for File Input
55 ¢
56 isva=-13
57 lf=]
S8 npen=1
' 59 if(isym.eq.0)then




D Line$

N e el e al e a el

60
61
62
63
64
65
56
§7
68
69
70
71
72
73
74
75
76
77
78
79
80
38
82
33
84
85
86
87
a8
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
10
111
112
113
114
115

118
117
118

aaoaaoa

ana

aaa

noo

0030
0027
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7 Microsoft FORTRAN77 V3.20 02/84
1t=0
elseif(isym.gt.0.and.isym.le.15) then
1twl
elseif(isym.lt.0.and.isym.ge.-15)then
isymw-1rigym
lta—1
endif
open(S,tile=’‘dis.out’, status=’old’)
npl=o0
np2=0
do 0030 j=1,500
read(5,+,err=0027)d1x,dly,d2x,d2y
if(dly.qt.0.0)then
npl=npl+l
x1{npl)=dlx
Y1(npl)=dly+.02
x2 (npl)=dix
y2(npl)=-1.0%(d1ly+.02)
endif
if(d2y.qgt.0.0)then
npl=npl+l
%1 (npl)=d2x
y1l(npl)=d2y+.02
X2 (npl)=d2x
Y2 (npl)=-1.0%(d2y+.02)
andif
continue
continue
close(S)
np2=npl

Start plotting the distn data
Initialize input information

call plots(0,ioport,nodel)
call factor(fact)
call window(0.,0.,xmax, ymax)

Set plot origin at coords (1.25,1.25)
call plot(1.25,1.25,-3)
Deteraine scaling parameters

x1(npl+l)=oan
X1 (npl+2) = (xmx-xmn) /xax
y1(apl+l)=ymn
y1l(npl+2)=(ymx-ymn)/7ax
X2 (np2+1)=xmn
%2 (np2+2)=(xmx=-xan) /xax
Y2 (np2+1)=ymn
72(np2+2) = (ymx-ymn) /yax

Oraw 2ach of the curves
do 0031 i1=1,2

if(il.eqg.l)then
call stline(ltf,0.25,110.)
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16.
12.
1s6.
26.
20.
25.
14.
18,
31.
20.
17.
21.
19.
18.
18.
21.
35.
17.
20.

19.

18.
18.
18.
1z2.
13.
17.
15.
18.
19.
32.
19.
1s.
1s.
22.
18.
33.
29.
29.
18.

17.

31.
19.
28.
18.
35.
23.
27.
20.
15.
18.
36.
25.

14.

27.

3s.

20.
20,
19.
1s5.
18.
25.
13.
25.

23.

25.
33.
16.

24.

9.
19.
14.
18.
19.
27.
19.
17.

17.

24.
23.
1s.
14.
20.
31.
20.
19.
25.

18.

"REPRESENTATIVE VOLUME"

308

STUDY

~-- CLUSTER AREA DATA BASE =---

6.
17.
11.
18.
15.
20.
12,
32.
l6.
17.
21.
25.
17.
14.
20,
19.
18.

15.

21.
11.
20.
33.
12.
21.
31.
1s.
34.
19.
1s.
27.
31.
1s.
30.
1S.
17.
17.
19.
i0.

36.
15.
18.

6.
25.
18.
33.
17.
20.
36.
25.
20.
13.
18.
21,
23.
30.
19.
15.

27.
12.
18.
20.
al.
11.
18.
33.
15.
1s.
17.
21.
1s.
11.
16.
17.
16.
36.
17.

1.

25.

8.
27.
23.
14.
21.
21.
34.
27.
24.
23.
18.

23.

18.

‘16.

14.

15.

19.

1s.

21.
l6.

8.
21,
16.
18.
14.
1s.
25.
19.
25.
11.
18.
15.
20.
34.
17.
24.
36,

23.

4.
14.
20.
27.
20.
10.
18.
21.
17.
22.
27.
21.
30.
31.
20.
20.
25.
20.
15,

19.

18.
14.
20.
12.
30.
26,
20.
21.
30.
23.
20.
18.
25.
28.
26,
15.

18.

25.

33.

21.
l6.
30.
25,
22.
33.
36.
14.
1s.
11.
21.
l0.
19.

1s.

27.

17.

19.
35.

18.
21.
i8.

21.

15.
27.
14.
17.
18.
26.
15.
i8.
1s.
25,
15.
21.
18.

29.

15.
11.
186.
1s5.
19.
18,
20.
19.
17.
29.
11.
33.
21.
28.
i8.
20.
16.
33,
1s:

26.

18.

18.
27.
20.
16.
11.
13.
25.
25.

21,

15.
19.

21.

19.
35.
12.

25.

22.
1s.
20.
3s.
18.
19.
10.
27.
18.
33.
18.
18.
18.
14.

20.

22.
29.
18.

19,

18.
31.
20.
33.
21.
1s.
21.
3.
17.
1s.
10.
ls.
33.

11.

21.
23.
26.

l9.

ls.
28.
26.
22.
16.
16.
17.
1s6.
15.
1s.
18.
19.
1s6.

20.

33.
11.
25.
20.

25.
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Appendix D

LSD Evolution plot for Cylinder 56
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