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U Theoretical and Fperimental Studies of Cooperative Fracture
in

Overconsolidated Clays

1 Abstract

3 by
Alan J. LesserI

The geotechnical engineering profession is quite familiar with stiff

fissured and jointed clays, where discontinuities are found on a macroscopic

3 scale. Until recently, however, there has not been a systematic investigation of

the crack propagation phenomena involved in the failure of such clays. This

3 thesis presents a fundamental investigation in an effort to understand, describe

and quantify the mechanisms involved in the process; the ultimate goal being to

develop a constitutive model which depicts the fracture process in these clays.I
The study concentrates on a Mode II type of fracture that the author

3 has been able to induce in a specimen with the configuration of a notched, thin,

long, hollow cylinder subjected to a hydrostatic stress and pure torsion. Within

the stress concentration field, a damage zone (process zone) is identified. The

3 kaolinite clay is quantifiably characterized in both its undamaged and damaged

states. Micromechanisms responsible for macroscopic irreversible deformation

I are identified. A comprehensive stress and energy analysis is performed in the

!v
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3 vicinity of the damage zone. And finally, a methodology for evaluating a

constitutive law is introduced and applied to the case of overconsolidated clays.

U The methodology describes the fracture process through the laws of

3 thermodynamics of irreversible processes in an elastic continuum with damage.
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* Chapter 1

I Introduction

I
1.1 Progressive Failure in Overconsolidated Clays

A characteristic common to many stiff clays is that they are

I overconsolidated. The rebound that takes place during a stress release often

results in small fissures or cracks. As a consequence, many days exist in a

fissured state (1,2,19,21). The initiation of cracks in clay can be chemically

induced as in the case of syneresis cracks (16). In general, any depositional

process followed by a diagenetic or tectonic process can give rise to

I macrostructural features like fissures (13,14).

U Once a crack is initiated, the stress concentration in the vicinity of the

crack tip may cause a substantial reduction in available strength of the intact

clay. This has been understood by the geotechnical profession for years. In

I 1936, Terzaghi (22) gave the some of the first quantitative data on the influence

of joints and fissures on the strength of clays. He illustrated that such features

are characteristic of overconsolidated clays and that the overall strength of the

"stiff fissured clays" could be as low as one fifth to one tenth the strength of the

intact clay. Similar findings were published by Skempton, Schuster, and Petley

I !1
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I when they studied the joints and fissures in London Clay (21).

I Studies describing the behavior of fissured clays and, in general,

overconsolidated clays with any type dislocations are warranted when reviewing

the case histories of progressive slope failures. In Bjerrum's publication on the

"Progressive Failure in Slopes of Overconsolidated Plastic Clay and Clay

Shales" (2) he categorized failures in 60 individual case histories with respect to

the type of the clay in which the failure occurred. In his paper, the term

weathering was used to describe all changes in the upper layer of clay, including

physical changes that do not originate from climatic conditions. Two phases of

weathering were identified; the first, called disintegration, involves the

breakdown of the diagenitic bonds. The second phase involves chemical changes

and decomposition of the minerals. Bjerrum concentrated his attention on the

first of these two phases. From his reported observations of the weathered clay

he noted : This zone in general uill have a system of open cracks.I
Bjerrum's findings showed that the greatest number of slides (about

I 55%) had occurred in a zone of weathering in overconsolidated clays with strong

diagenitic bonds. The next largest group (about 35%) proved to be in

overconsolidated clays with weak bonds. In the second largest group Bjerrum

found it difficult to differentiate whether the slides occurred in unweathered or

weathered material. The remaining 10% of the study sample were slides that

I occurred in unweathered material of overconsolidated clay which has high

diagenitic bonds.

I
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In general, slope failure can be categorized into basic types of mass

movement. Eleven basic types including multiple and complex landslides are

shown in Fig. 1.1 (1). Researchers have also found that different types of clays

tended to fail in different types of mass movements. A table which includes the

I type of movement, the type of clay and location, and reporting author(s) was

summarized in (1) and is reproduced here in Table 1.1. According to Attewell

and Farmer (1), Skempton and Hutchinson found "that the rotational form of

multiple retrogressive slides occur most frequently on actively eroding, high

relief slopes in which a thick stratum of overconsolidated fissured clay or clay

shale is overlain by a thick bed of more competent rock.

Ultimately, geotechnical engineers realized the importance of

incorporating cracks and other types of dislocations into the conventional

constitutive models. Conventional failure criteria such as Tresca, Mises, or

Coulomb may be appropriate for yield dominant failures, however they are not

appropriate for describing the brittle mechanisms of failure.

In order to understand the mechanisms involved in progressive failure of

overconsolidated clays, various types of research evolved. Much of the

published work appears in the form of observational data; some appears in the

form proposed models. In the next few pages some of these approaches will be

I introduced and commented on.

I
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U In 1969, Skempton and his coworkers (21) defined a classification system

for discontinuity types. In this study, five types of discontinuities were

distinguished. These five classifications are briefly listed and described as:

I

I 1) Bedding - a discontinuity with a gently undulating surface
having a somewhat rough or bumpy texture.

n 2) Joints - Predominantly vertical and usually between I and 4
ft. high, and up to 18 ft. long with a pronounced
trend to orthogonal directions.

3) Sheeting - Similar to Bedding except they dip (usually
between 50 and 150). They are also

*classified as low angle joints.

4) Fissures - Planar or conchoidal fractures, rarely more
than 6 in. in size with a matt surface or
texture. They also show scarcely any
preferred orientations apart from the clear
tendency to concentrate in sub-horizontal
planes more or less parallel to bedding. The
number of fissures per unit volume increases
and their size correspondingly decreases asthe upper surface of the clay is approached.

5) Faults - Large discontinuities with slightly polished surfaces.
Usually, 5-10 mm of gouge clay evident on the
shear planes.

I
It should be noted that this classification system is predominantly designed for

site investigation information and, accordingly, all features described here are

macroscopical anomalies.

In Laboratory observations, Skempton (20) also identified five stages in

I
I
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I5
i the shearing deformation of stiff clay (see Fig 1.2). The first is defined as

continuous nonhomogeneous strain. The second is the creation of inclined

surfaces ranging between 100 and 300. The third acknowledged the creation of

Reidel shears. With further movement, the Reidel shear is no longer

kinematically admissible and the new parallel or subparallel surface is created.

I And finally, the slip surface undergoes appreciable flattening as a result of still

greater movements.

In 1970, Lo (10) proposed a technique to accommodate for size effect in

fissured clay and presented complementary test results. Also in his paper, Lo

I described a computational procedure to determine the operational strength of

fissured clay. This computational procedure generally relates to the.probability

of encountering a critically oriented crack.I
Lo contributed another appioach in 1973 (11) with a finite element

analysis solution to progressive slope failure. For his soil model, Lo used a

strain-softening behavior similar to that expected from a shear box test. A

typical slope was analyzed repetitively while certain parameters were selectively

varied and general comments were made on the results.

Other researchers focused their attention on the micromechanisms

responsible for failure. In 1967, Morgenstern and Tchalenko (14) provided an

excellent report on the microscopic structures observed in kaolin subjected to

direct shear. They identified two distinct regions in the clay. The first is

I
I
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I referred to as the original soil fabric and describes the microstructure of the

material subjected to environmental conditions and its sedimentary history.

The second region is referred to as the shear-induced fabric. This region

describes the microstructure of the material after post depositional shear strains

have been induced. Morgenstern and Tchalenko included micrographs from

I laboratory experiments describing characteristics of the original fabric and the

shear induced fabric resulting from shear box tests.

More recent investigations include the application of classical fracture

mechanics as applied to a linear elastic material. Of interest in such studies is

I information about the crack propagation rate, direction, and critical crack

length for various modes of fracture. A fracture mode designates geometrically

the separation between crack surfaces. In general, a crack propagating in any

given direction can be described as a combination of three fundamental modes

of fracture. These fundamental modes are shown in Fig. 1.3.I
Eased on the qualitative descriptions of the failure mechanisms

responsible for progressive failure, Palmer and Rice (15) suggested that sliding

occurs on concentrated slip surfaces. Using concepts from fracture mechanics

(i.e. the J-integral), attempts were made to assess the time dependence

Igoverning the propagation rate of a particular shear band. The assumed model

used for the shear band was very similar to the cohesive force models (i.e.

similar the models proposed by Barenblatt and Dugdale).

I
I
I



I

I7
I Their model asserts that there is a fixed linear relationship between the

shear stress in the material and the displacement required to produce it(e.g. the

stress-displacement relationships obtained from shear box tests). Since

displacement is the integral of the strains over a given region, an immediate

consequence is that size effects will occur (i.e. the assumption of a relation

I between shear stress and shear displacement introduces a characteristic length

into the material description). Specifically, the size effect appears in the

resistive part of the crack driving force equation. In addition, Palmer and Rice

give advice for experimentally obtaining the energy release rate in an

approximate manner by computing the energy under the unloading portion of

I the stress-strain curve in a particular shear box test. Other assumptions made

in the shear band analysis include the application of the asymptotic stress

distribution in the vicinity of the slip surface (this assumption implies a

negligibly small zone of deformed material in the vicinity of the slip surface

tip).I
In 1986, Saada, Chudnovsky, and Kennedy (17) published results for the

determination of the critical stress intensity factors (fracture toughness) Kic

and KIIc. The samples used in the for the Mode I investigation were hollow

disks and the specimens used for the Mode II investigation were long hollow

cylinders. The Mode I specimens were tested under fatigue loading conditions

and the Mode II specimens were tested monotonically.

From these tests information regarding critical crack lengths was

I
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U obtained and their results were applied to the example of a critical crack length

for an infinite slope at various angles of orientation. Also included was a brief

outline for a thermodynamic description of the fracture process.I
Other recent contributions include the investigations performed by

Vallejo (23,24). His examinations concentrated on defining the direction of

3 crack propagation under various modes (including mixed modes) of fracture.

He determined that the crack propagation generally followed the direction of

the maximum shear stress irrespective of the notch orientation.

I
1.2 Previous Work

The initial stage of this research began in 1983 with experimental

evaluation of the critical stress intensity factors for both Modes I and II (Kic

U and KIIc) The research work was performed by Mark Kennedy under the

direction of Drs. Saada and Chudnovsky. Results following this research were

published in (17).I
In Kennedy's examination of Mode I behavior, either static or dynamic

I air pressure was applied by way of a membrane inserted along the inner surface

of a hollow clay disk (see Fig. 1.4). A crack, initiated from a notch on the inner

surface, was allowed to propagate in a stable manner until a critical crack

3 length was reached. Records of the critical crack lengths were documented.

U
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I This information was then used with a Green's function to compute the critical

stresses and stress intensity factor. However, the Green's function used was

initially intended for a strip (not a hollow disk)

having the same stress distribution of a hollow disk.

I In the Mode H study, Kennedy used a sample configuration in the form

of a notched long hollow cylinder. A monotonic torsional couple was applied to

selected samples and test results were documented. The test findings were

processed via the solution proposed by Erdogan and Ratwani (8) for KHc.

I In August of 1985, Majd Sharaf (18) completed additional research

focused on the description of the kinematics of fatigue crack propagation of stiff

days. He augmented, his study by also considering the effects of variable

overconsolidation ratios. His experimental studies were performed on specimens

similar to Kennedy's for both Modes I and II.I

1.3 The Concept of Cooperative Fracture and its PropagationI
The significant role played by microdefects (damage) in the process of

i crack formation and growth is commonly recognized. In general, two extreme

cases regarding the influence of defects in the fracture process are distinguished.

Modeling of these two cases requires essentially different formalisms.

1
i
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Case 1 - A crack propagates through a pre-existing field of defects
i.e., a pre-existing strength field) causing negligible changes in the field.

The fluctuation of the microdefect field is directly reflected in the
stochastic features of the fracture surfaces and also leads to the scatter of
experimentally observed fracture parameters (critical crack length,
critical load, etc.). The fracture is characterized by a single path
phenomenon and a probabilistic approach seems most adequate under
these circumstances.

Case 2 - The intensity of damage formed as a response to the stress
concentration at the tip of a propagating crack is much greater than the
intensity of the pre-existing damage. The crack propagation is then
inseparable from the evolution of damage accompanying the crack. The
damage accompanying the crack is often referred to as the active zone,
the process zone, or the damage zone. This strongly cooperative
phenomenon is modeled with a theory based on thermodynamics of
irreversible processes.

m A common mistake is to refer to non-cooperative fracture as brittle and

similarly, to refer to cooperative fracture as ductile. However, the words brittle

and ductile are commonly used in strength of materials to describe the

I micromechanisms of failure in a given material. That is, a brittle material fails

in tension and a ductile material fails in shear. For example, if a crack

propagates symmetrically in a single path while being tested in Mode II, then

the failure mechanism is predominantly ductile while the fracture process is

non-cooperative. Similarly, many materials like polystyrene exhibit highly

I cooperative fracture, while the failure mechanism is predominantly brittle

(3,6,12).

Cooperative fracture is identified by a crack preceded by intensive

Ia
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I damage. The term damage is used here in a generic sense and it should be

expected that the nature of damage varies between materials. When the

damage ahead of the crack tip reaches a critical level, local instability takes

place and the crack jumps within the damage zone to a new stable

configuration. This crack advance, in turn, leads to the changes in the stress

i field. The latter causes further damage accumulation until a new local

instability is reached. Thus we visualize the crack and surrounding damage

propagation as a sequence of local instabilities and slow damage accumulation

processes. Consequently, a repetition of the above described events on a

microscopic scale results in a continuous stable crack propagation process on a

I macroscopic scale. The concept of self similar events constituting the fracture

process allows one to develop the mathematical model of the phenomena.

Chudnovsky has shown that a description of the fracture process within

a thermodynamic framework ultimately leads to an elegant model which

I realistically depicts stable crack propagation as well as provide a criteria for

crack stability. He outlined these concepts in the context of different materials

ranging from polymers to high alloy steels (3,4,5,6,7). The model generated

from this framework is commonly referred to as the Crack Layer (CL)

approach.I
The crack together with its surrounding damage are referred to as a

Crack Layer. Within the CL, microdefects can be observed. Depending on the

material in which the CL is formed, these defects may be observed in the form

I
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I of shear bands, crazes, microcracks, voids or material densifications. For

example, Fig. 1.5 exhibits a layer of extensive crazing accompanying fatigue

crack propagation in polystyrene (12). Similar features of fracture propagation

have been observed recently in stiff clays tested in Mode II. Fig. 1.6 shows the

damage surrounding a propagating crack in a notched hollow cylinder subjected

to cyclic torsional stresses. More will be said about Fig. 1.6 which is presented

at this stage only to demonstrate the applicability of the concept to O.C. day.

There are two complementary approaches to characterize crack layer

propagation. One which can be called the micromechanics of crack layer, deals

with modeling the stress-strain fields due to the interaction of the main crack

with the surrounding damage. This approach requires detailed description of

the surrounding damage as well as the geometry of the crack and stress-strain

fields. Also, knowledge of the conditions for local instability and a detailed

description of the crack jump from one stable configuration to another, are

I required. This approach is extremely tedious both from a theoretical and

experimental point of view.

The second is a thermodynamic approach which describes the system in

global terms based on the first principles, and pays no attention to the details of

I the fracture process. This phenomenological way is based on the general

framework of the thermodynamics of irreversible processes.

For the model proposed and the material under consideration, damage is

I
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I represented by densified regions (these densified regions will be described in

detail later), which can be visualized as three dimensional defects. Specifically

we use the total volume of damaged material within a unit volume as the

damage density p with the dimension mm 3 /mm 3 . As will be shown later, the

damage density in the vicinity of the main crack can be directly evaluated from

optical observations using an image analyzer. Fig. 1.7 shows schematically the

damage zone surrounding and preceding a generic crack trajectory. The front

zone of the CL within which damage accumulation is non zero is defined as the

active zone. In this zone p > 0 and k > 0.

I During unloading conditions the rate of damage change is negligible and

as a result a wake zone appears as a trace of the active zone propagation. In

this zone p > 0 but = 0. The active zone is confined by the leading edge r1l

and the trailing edge r t as shown in Fig. 1.7. If the increments of CL advance

are small compared to the CL size, affine transformation of the active zone can

I reasonably approximate the actual evolution of damage. Accordingly, for an

active zone of length , the rate of translation I can be considered as a

thermodynamic flux. The law of CL propagation can be established by relating

the fluxes to the reciprocal forces (the causes) within the framework of

irreversible thermodynamics.I
Chudnovsky has shown (3,4,6,7) that the cooperative fracture process

can be modeled thermodynamically and is based on the following governing

equation.

I
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( 1.1] Ti = z '_Xc + "_.wXrOt + a.'X ef = 0

where Si is the global entropy production, 1, , and a are thermodynamic

fluxes, and the Xs are their reciprocal forces. The fluxes, describe the

elementary movements of the Crack Layer shown in Fig. 1.7 and are defined as:

i - Rate of Translation

w - Rate of Rotation

- Rate of deformation

The conjugate forces X decompose into two parts:

[1.2] X = A -R

A is referred to as the active part and R is called the resistive part of a

I particular thermodynamic force. The active part of a thermodynamic force is

evaluated by assessing the potential energy release associated with it's

particular elementary movement. The resistive part, 1, describes the amount

of energy consumed during the movement, and -' is referred to as the specific

energy for damage formation.

The thermodynami- forces (Equation 1.2) resemble the criterion for

crack instability in a Griffiths crack (9). The Griffiths crack instability

U
I
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I condition can be expressed as:

I
[1.3] ,y = j> 0 unstablel

* .< 0 stable J

fin Equation 1.3 is the elastic energy release rate and 27 is the surface energy

of the new crack surface. It should be noted that Equation 1.3 represents only

the necessary condition for instability (i.e., a sufficient condition must also be

met). When comparing Equation 1.2 with 1.3, one can appreciate the duality

that exists between the Crack Layer theory and other theories describing crack

instability. That is, 7R - A (27t - P represents the energy barrier which must

be overcome for movement of the damage zone (propagation of an ideal crack).U

m 1.4 Thesis Outline

I
Consequently, the ultimate goal of this research is to:I
Develop a constitutive model which describes the Mode II fracture
process in overconsolidated clays. This is completed by describing the
thermodynamic forces thereby enabling predictions of the fluxes
(elementary movements).I
In order to achieve this goal, we identify five main tasks which must be

completed.

I
I
I



I

I 16
I

1) Identify the nature of defects. That is, we must identify damage
in overconsolidated days. This requires characterization of both
the damaged and undamaged states of the material.

2) Characterize the distribution of defects. The distribution
characterization is required before estimates of the active and
resistive partz of the thermodynamic forces can be evaluated.
The active part requires knowledge of the damage configuration,
and the resistive part requirn information about the rate of
damage accumulation.

3) Stress and Energy Analysis on Crack-Damage Interaction. A
semi-empirical stress analysis should be performed to estimate
the amount of energy release associated with particular
movements observed in the experiment.

4) Integral Characterization of the zone of damage. This is
performed experimentally with techniques in quantitative
stereology and is used to compute the resistive parts of the forces.

5) Integral Evolution of Damage with respect to time. Once steps 3
and 4 are accomplished at various time intervals, the
thermodynamic forces can be evaluated whereby computing 7, the
specific enthalpy of damage. - is considered a material property
in the Crack Layer theory. Next, the constitutive law can be
expressed in terms of the fluxes and forces.

The principal objective of this thesis is to investigate the necessary aspects of

the above outlined research as applied to overconsolidated clay subjected to

Mode-II cyclic loading.
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Chapter 2

Experimental Procedures

I
2.1 Introduction

The information contained herein describes the laboratory procedures

used in the sample preparation and testing as well as some of the data

processing performed on this project. It should be noted that only descriptions

pertaining to the successful completion of a laboratory test are included and not

information about particular procedures involved in the data processing. For

I example, information regarding a description of the image analyzer, its

capabilities and its general use are described in this chapter, but information

regarding the measurement of particular features using this tool are dealt with

individually.

A numbering system used throughout this report was adopted for

specimen identification. Each cylinder identification number contains two

different numbers separated by a slash (-). The first number identifies the

batch from which the cylinder was cut and the second number identifies the

cylinder within that batch. For example, Cylinder 2-3 was the third specimen

I 27
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I tested from batch # 2. Typically, four cylinders can be fashioned from one

I batch. However, there are instances where a particular cylinder was lost in the

manufacturing, consolidating, or impregnation process. Mention of these

mishaps will be made when appropriate.

I
2.2 Material Properties

The kaolinite used in these experiments has the following properties:

Liquid Limit = 56.3 %

I Plastic Limit = 37.5%

3 Other pertinent information regarding a spectral analysis for the chemical

composition of this material are listed in Table 2.1.I

I 2.3 Initial Consolidation

I The first step is to produce a large block of day (referred to herein as a

batch) strong enough to withstand a machining process. Specifically, a

machining process is used to manufacture the notched hollow cylinders.

I Typically, each batch is large enough to provide four cylinders.

I Seventeen pounds of the kaolinite clay powder (described in Section 2.2)

are mixed with an equal weight of de-aired distilled water to form a slurry.

I
I



I

* 29

I This corresponds to a water content of approximately 100% (about twice the

liquid limit). The kaolin powder is placed in a 20 cm. diameter by 43 cm. high

(8.0 in. diameter by 17.0 in. high) consolidometer. Next, the water is slowly

and steadily drawn into the consolidometer by using a vacuum. After the

proper amount of clay powder and water mixture is attained, mixing is

I performed manually until a consistent slurry is achieved.

Once the mixing is complete, the consolidation pressure is increased at a

constant rate of 4.7 kPa/hour ( 0.68 psi/hour) while allowing drainage on both

the top and bottom of the sample (see Fig. 2.1). After a five day waiting

I period, a final vertical pressure of 630 kPa (90 psi) is reached. This maximum

pressure is then allowed to remain on the batch for an additional 48 hours.

Afterward, another 24 hours is allowed for rebound.

I

n 2.4 Cylinder Preparation

U Four 7.2 cm (2.83 inch) diameter solid cylinders are cut from the batch.

Each cylinder is then wrapped in cellophane and placed in a humidity chamber

for storage.I
When a test is scheduled, a solid cylinder is removed from the humidity

chamber for further sample preparation. A 5.1 cm (2.0 inch) diameter core is

removed using a wire cutter and a special mold. Next, the ends are trimmed to

I
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I give an 11.4 cm (4.5 inch) high hollow cylinder. The cylinder is then placed in

a special lathe and the outer wall is carved to the configuration shown in Fig.

2.2.I
The next step involves cutting a 3.8 cm (1.5 inch) circular notch at the

I mid-height position (see Fig. 2.2). Once the notch is cut, two thin teflon sheets

cut to the same geometry are inserted into the notch. This is done to prevent

the notch from dosing and healing during the next consolidation stage.I
At this stage, a grid consisting of orthogonal lines is stamped on the

I cylinder. This grid is located in front of one of the notch tips. It is important

here to use an alcohol based ink since the ink grid must dry on the clay sample

while the sample remains moist. During the fatigue test the lagrangian grid is

photographed and the configuration of subsequent microcracka can be

determined.I
2.5 Final Consolidation

After a particular specimen has been prepared (i.e. cut to the specified

geometry, notched, etc.), it is placed between two rubber membranes and

I inserted into a special testing cell shown schematically in Fig. 2.4. The cell is

filled with silicon oil and positioned in the test frame of a pneumatic analog

computer which consolidates the soil under K conditions (2). This means that

consolidation takes place with no changes in cross section. Basically, the

I
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I computer measures the volume of water expelled from the specimen through the

porous stones and drainage lines and moves the crosshead of the loading frame

down to compensate for the volume loss. Independently, the cell pressure is

steadily increased at a constant rate of 50 kPa (7.25 psi) per hour starting at

207 kPa (30 psi) and ending at 620 kPa (90 psi). For this clay, the ratio of the

I cell to vertical pressure is 0.47. This ratio is called the coefficient of earth

pressure at rest, K0 . Since the maximum cell pressure attained is 620 kPa (90

psi), the maximum vertical pressure applied on all samples should be

approximately 1320 kPa (192 psi). Once the maximum pressure is achieved, it

is maintained constant for an additional 24 hours, and afterward, the

I consolidation load is removed and the cell pressure is reduced to the test

* pressure 24 hours prior to the test. The hydrostatic rebound pressure selected

was either 276 or 207 kPa (40 or 30 psi) depending on the overconsolidation

ratio selected for the particular test. The 276 and 207 kPa (40 and 30 psi)

rebound pressures correspond to vertical overconsolidation ratios of 4.78 and

I 6.38 respectively.

It should be noted that the specimens are tapered to a larger cross

sectional area at the edges (see Fig. 2.2). This is done to prevent failure near

the grips. As a result, their cross sectional areas varied between 13.78 cm2 and

I 20.29 cm2 (2.13 in2 and 3.15 in 2). Consequently an average cross sectional area

of 15.41 cm2 (2.39 in 2) was used when calibrating the analog computer

displacement setting.

I
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2.6 The Fatigue Test

After the consolidation and rebound process, the specimens are ready to

be tested for fracture studies. The test cell is placed in frame which provides

I the researcher with the capability of applying a sophisticated load pattern (1).

For all tests reported herein, however, this system was used to apply a cyclic

torsional couple exclusively. The loading frequency used was typically selected

at 1.0 cycle/minute and applied in a sinusoidal fashion. Nevertheless, some

tests were performed at 0.5 cycles/minute to investigate the effects of the

I stress/strain rate on the damage characterization (discussed in later).

Similarly, the amplitude of the applied couple was typically chosen such that a

maximum of 6.0 Newton-Meters (approximately 50 in-lbs) was reached, but

some tests were performed at different amplitudes. The amplitude of the

applied couple chosen was based on a percentage of the required torque to

I monotonically fail a similar cylinder prepared under identical conditions.

Details about the loading frequency and magnitude will be provided later in this

thesis prior to discussing the results obtained for each particular test.

I

I 2.7 Impregnation

I The sample impregnation is performed for two reasons; The first is that

it enables the researcher the capability of cutting and polishing relatively small

I
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I sections without greatly disturbing the particle orientation. The second reason

is that the impregnated sections show the features of interest more readily.

That is, since the kaolin powder is white and the bees wax is dark brown a

natural contrast barrier is defined when identifying which features are clay and

which are wax. Also, it is believed that the wax only replaces the larger voids

I (air pockets) in the dried sample and simply surrounds the more densified

regions of clay. Thus what results from a properly impregnated and polished

section is essentially a contrast map of densified features in the material.I
After the cylinder is tested under the cyclic torsional couple, it is

I removed from the test cell and allowed to air dry at room temperature for a

minimum period of four days. Once the specimen is sufficiently dry, the

impregnation sequence can commence.I
Initially, the bee's wax is raised to a temperature of approximately 1100

I C in a melting pot. Once the temperature is stabilized the level of the molten

wax is adjusted such that the specimen height and the depth of the wax are

approximately the same. Next the specimen is carefully immersed in the wax

and the entire setup is placed in a vacuum chamber. After the vacuum bell is

secured, an applied vacuum of 104 kPa (15.0 psi) is applied for a period of

I approximately 2 to 21/2 hours. This is shown schematically in Fig. 2.4 and in

the photograph sequence of Fig. 2.5. Next, the specimens are removed and

allowed to cool for a period of approximately 24 hours before sectioning.

I
I
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I
2.8 Cylinder Sectioning

Sectioning is performed in order to reveal characteristic features in the

interior of the specimen. Once identified, the morphology of these features can

I be studied with various techniques available in microscopy. In this report the

majority of studies were performed with a stereoscope.

Prior to sectioning, the specimens were usually photographed and the

section locations were marked with a soft extra-fine marker. Next, three

I separate coats of epoxy were applied individually to the inner surface of the

hollow cylinder. The epoxy was applied to reinforce the clay shell so it would

better withstand the stress levels imposed on it during sectioning.I
The rough cutting is achieved with the use of a band saw. The band saw

I is only used to reduce the cylinder into pieces small enough to mount in .Ae

Buehler Isomet Saw grips. Note, that the lowest speed was used to cut with the

band saw and a light steady pressure was applied during cutting.I
Refined sections were all made with a Buehler Isomet Saw and a high

I concentration diamond tipped wafering blade. Cutting was performed at a

blade speed setting of 4.5 and ethyl-glycol was used for the saw blade

lubricating fluid (see Fig. 2.6). These sections are called "analysis sections" in

this report. The analysis sections were generally cut in either a radial of

I
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I circumferential fashion shown in Fig. 2.7. Typically, the axial and

circumferential sections were all made in the vicinity of the notch tip.

However, some sections were made in regions away from the notch tip either to

define a reference level characterization of the clay or for other related studies

(see Chapters 3 and 4).

Ideally, one half of a cylinder would be sectioned circumferentiallyand

the other half would be sectioned in a radial fashion at 5 mm (0.197 in)

spacings. However, in the event th.at shrinkage cracks or sectioning decimation

eliminate the possibility to obtain both types of sections, a higher priority is

I devoted to the radial sections. The radial sections are deemed more important

since they are the type used to reconstruct a quantitative damage evolution for

a given cylinder test (elaborated on in Chapter 5).

I

I 2.9 Section Polishing

U Once the selected sections are made with the Buehler saw, the sections

are adhered to either a glass or aluminum slide with an epoxy cement. After

the epoxy was given enough time to dry, the polishing can begin.I
* Polishing is performed on Buehler polishing wheels. The polishing

sequence is performed in two separate stages. The first stage of polishing

consists of a coarse stage and is done to remove some of the cutting scratches as

I
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I well as provide a uniform surface for the microscopic inspection. The second

stage is a fine polishing stage and simply improves the quality of the first stage.

During the first stage, a 800 grit water-resistant polishing paper is used and

during the second stage polishing a billiard cloth polishing cloth is used. In

both cases, cool tap water was used as lubricating fluid during the polishing.I
Other helpful hints include the following:

1) Polish the section by applying light pressure and maintain a
steady hand without rotating the wrist.

2) Keep the polishing duration brief (i.e. only allow the section and
the wheel to be in contact for no more than a one second interval)
and maintain cool water on the wheel. If the wax becomes to
warm from the frictional heat distortion of the features can result
from creep of the wax.I

I
2.10 General Use of the Image AnalyzerI

This section is devoted to providing the reader with a general description

of the Image Analyzer used on this research project. The system was originally

developed for use in the medical research laboratory. The system purchased for

our use consists of the following major components:I

13 Nikon Stereoscope with trinocular head
35 mm auto/fixed exposure camera and shell

I
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3 Video Camera
4 Panasonic VHF/CRT Hi-resolution black and white monitor.
5 Nikon Exposure box
6 Houston Instruments Digitizing Tablet
7 HP Vectra (IBM PCAT Compatible).
8 Interfacing card
9 HP 7470A plotter
10 Epson FX286 Dot Matrix Printer.
11) Bioquant Image Analyzer software.

A schematic drawing of the system configuration is shown in Figure 2.8.

This system essentially enables the researcher to accurately measure

irregular features (to 100 microns) as well as to statistically quantify

I stereological information. The Bioquant software provides a selection of various

types of measurements and computations which can be made readily while

tracing the shapes of the particles under the microscope. In Addition, the

information is stored in selected arrays for later reprocessing. The reprocessing

portion of this software includes a statistical package which allows the

I researcher the ability to extract various test statistics and observe measurement

distributions. Typical information processed during this study include area, and

aspect ratio measurements.I
To start the image analyzer, first make sure the hardware (equipment) is

I interfaced correctly as shown in Fig. 2.8. The Vectra should be shut off and the

switch located on the back side of the Vectra should be switched to the upward

position. This switch adjusts the video monitor frequency so as to be

compatible with the Panasonic Monitor. Next, the HP monitor should be

I
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I disconnected and the Panasonic monitor should be installed. The third step

involves simply turning on all equipment. At this time the Vectra should boot

up on the Panasonic monitor. After successfully reaching this stage, the user

should simply type "im" for image and press the enter key. This will

automatically start up the Bioquant software. A suggestion is to try the

i tutorial package included with the software until a certain level of confidence is

reached.

i
Referencesi

i 1) Saada A. S. (1968). " A Pneumatic Computer for Testing Cross
Anisotropic Materials," Mater. Res. and Stanps., American Society for
Testing and Materials, Vol. 8, No. 1, pp 17 - 23.

2) Saada, A. S. (1970). "One Dimensional Consolidation in a Triaxial Cell,"
Journal of Soil Mech. and Founds. Division, ASCE, Vol. 96, No SM3, pp
1085 - 1087.

I
i
i
i
I
U
I



I 39

IL

IWK

Iiue21 nta osldto fKoiij lc



I 40

SPECIMEN GEOMETRY
ALL DIMENSIONS IN Cm

NOC
II

1.4
NO C I I 0.

1 3.8

I1

-5.1 -I 6.6
7. 2

Figure 2.2: Specimen Geometry



I

I 41
I
I
I

NARDINED S. 

MASS
I THOMSON L BEARING

I NEEDLE UARING

Io ANODIZED AL.

0 RING

AOI0iZED AL.
-- DRAINAGE

2.0 PLXIGLASS

2." BRONZE TOOTHED
POROUS STONE

I
I
I Figure 2.3: Description of the soil test cell

I
I
I



I

I 42

I
I
I
* IMPREGNATION PROCEDURE

I

I VACUUM

I CLAY CYLINDER

III

I TCH-. ,,. . BEES WAX

I DAMAGE ZONE It

i II
I
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* Chapter 3

Micromechanisms of Deformation
in Fracture of

i Overconsolidated Clays

i
3.1 Introduction

This chapter is devoted to presenting and describing experimental

observations. These include photographs, optical micrographs and other related

information which illustrate and describe the micromechanisms involved in the

fracture process of overconsolidated clays.

i
3.2 External Observations

Under the cyclic torsional couple, a zone of damage steadily propagated

around the cylinder. The zone generally consisted of observable discontinuity

lines emanating from the horizontal notch plane ( the direction of the in plane

shearing force) as shown in Figure 1.6. The lines constituting this zone

generally deviated at an average orientation of 200 from the notch plane. Note

i 48
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i that these lines represent slip surfaces through the cylinder thickness

propagating circumferentially. The envelope of damage could be generally

described as a band symmetrically located on both sides of the notch plane.

Nearly all the rotational deformation and slip occurs in this band.

I It should be noted that, in general, no single slip surface dominated

enough to be considered a main crack. Rather, a each surface contributed in a

fashion such that the damage zone appeared to be made up of a complex

arrangement of branching cracks.

I In order to measure the amount of deformation localized within the

damage zone, an experimental technique was developed. This technique

involves stamping a grid of orthogonal lines on to the specimen prior to testing.

An alcohol based ink is used so that the grid dries while the clay specimen

remains moist (refer to Section 2.4). During the cyclic test photographs (taken

through the plexiglas wall, silicon oil, and the rubber membrane) are taken

during selected stages of the fatigue test.

Photographs illustrating the damage zone evolution through the

lagrangian grid system is shown typically in Figures 3.1 and 3.2. All

photographs in Fig.s 3.1 and 3.2 are taken while the maximum torque is

applied. Notice that the majority of the deformation occurs within the damage

zone. Figure 3.3 illustrates similar localized deformation lines in an un-notched

specimen. That is, the results from Figure 3.3 show that the localized

I
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I deformation can occur in specimens which are fatigued without a prefabricated

notch as a focal point for stress concentration.

I
3.3 Internal Observations

Except for a few cases, most of the internal observations were performed

after specimens were impregnated. Some of these exceptions include some

preliminary studies performed on a scanning electron microscope (SEM), and a

polarizing optical microscope. However, the majority of microscopic studies

were optical These observations were generally performed after the clay

specimens were impregnated with bee's wax (Section 2.7), sectioned with a

Buehler Isomet Saw (Section 2.8), and polished (Section 2.9).

U

I 3.3.1 Undamaged Phase

Before damage can be identified and characterized in the kaolinite, the

material must be characterized in its natural state. Actual characterization

studies will be presented in Chapter 4, but it is worthwhile to present

I observations at this point.

Kaolinite particles are platelet shaped with typical thicknesses ranging

between 50 and 2000 nm and typical diameters ranging between 300 and 4000

I
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I urn (5). Of the four most common clay minerals; montmorillonite, illite,

chlorite, and kaolinite, kaolinite is the largest.

Clay minerals are formed by one or more of the following processes (4):

I
2 Weathering of silicate minerals and rocks.

Diagenesis, reconstitution, and ion exchange.
4 Hydrothermal alterations of minerals and rocks.5 Laboratory synthesis.

I The clay soil fabric has been observed and studied by others (1,2,4,5)

and a scale hierarchy in the mircostructure has been acknowledged. This

hierarchy describes the fashion in which the material fabric is assembled from

microscopic particles. Scale hierarchy has been recognized in other materials as

well.I
Initially, the clay particles (10-6 m) are usually aggregated or flocculated

together in submicroscopic fabric units called domains (10-5 m). The domains,

in turn, form together what are called cldusters (10-5 to 10-4 m). And similarly,

the clusters group together to form peds or large clusters (10-4 m). The large

I dusters are large enough to be seen without a microscope.

A polished section from an untested hollow cylinder after impregnation is

presented in Figure 3.4. In this micrograph, the kaolinite appears white and the

I
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I impregnation material (bee's wax) appears dark brown). Figure 3.4 shows

kaolinite clusters homgenously distributed within a more loosly densified matrix

(water intermixed with loose particles of clay) which is now presumed to be

replaced by wax. Notice that the observed clusters have a characteristic size on

the order of 10- 4 meters which compares well with that reported by

I others(1,4,5).

U
3.3.2 Damaged Phase

I Figure 3.5 compares two radial sections (described in Section 2.8) cut

from a fatigued cylinder after impregnation; one was sectioned in an undamaged

region, and the other in front of the notch tip. The undamaged section in Fig.

3.5a shows the previously reported clusters homogeneously distributed in the

wax matrix.

The damaged section in Fig. 3.5b indicates substantial morphological

changes due to the applied loading condition. In this region one notices a

change in the size distribution of clusters. A few coalesce to produce larger and

others split into smaller units. Also, one can see the creation of horizontal

I strips along which the clusters of clay have aglornerated. Note that these strips

constitute surfaces within the cylinder having the orientations shown in Figures

1.6, 3.1, 3.2. The name adopted by the author for the process producing these

surfaces is Localized Strip Densification or LSD for short.

I
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I
I Additional tests have indicated that when the loading rate is reduced, a

higher concentration of damage is attained. This has been experimentally

observed in other materials and is in agreement with theoretical considerations

(5). For the case considered here, Figure 3.6 shows a series of photographs

I taken of an axially sectioned specimen which was fatigued at a proportionally

lower cyclic load. Three morphologically distinct areas can be identified within

the damage zone. The area closest to the notch tip (denoted as Section A in

Figure 3.6) shows a network of interwoven densified surfaces. Note that no

observable clusters are contained in this region. The second region shows

I intermixed clusters and densified lines (LSD's) as witnessed earlier in Figure

3.5b. Finally, the third region exhibits vertically oriented densified regions.

All of the above changes in the soil fabric are commonly referred to as

damage. Strictly speaking, they are stress induced, morphological

I transformations of material at the cluster level.

H The broken grid lines in Figures 3.1 and 3.2 provide experimental

3 evidence that localized irreversible deformation occurs along what appear to be

slip surfaces emanating from the notch tip. Figures 3.5 and 3.6 present material

I transformations that occur within the soil fabric inside of the LSD zone. In

order to provide experimental evidence linking the observed damage on the

outside of the cylinder to that occurring within the interior the cylinder, a

photograph was taken of the corner showing the exterior and interior fabric.

I
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I This photograph is included in Figure 3.7 of this thesis. Note that the interior

I fabric consists of dusters and loose matrix away from the slhp lines and consists

of LSD's intermixed with clusters within the slip line field.I

U 3.4 Other Observations

U
While preparing the damage zone in Cylinder 3-3 for sectioning, two

surfaces at approximately 600 from the horizontal notch plane broke free during

handling. The surfaces revealed from this incident indicate what the surface

U profile along the LSD's may be like. Photographs of these surfaces are included

in Figure 3.8 of this report.

Other experimental investigations included fracture studies under a non

cyclic fast loading rate. Observations of the stamped grid deformation at

I various time intervals (every 0.5 msec) were aquired with a Spin Physics

SP2000 high speed video camera. The rate of loading (applied torque) was

applied in a approximately linear fashion. The maximum torque applied to the

3 cylinder was about 18 Nm and the period over which the load was applied was

about 0.25 sec. Results from this study showed a more non cooperative (defined

I in Chapter 1) fracture behavior than that observed under cyclic fatigue

conditions. Photographs of selected cycles from this test are given in Figure

3.9.

I
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I Investigations were also performed with the use of an optical polarizing

microscope. Various types of slides were prepared for microscopic studies in

either transmission or reflection. The optical properties of kaolin have been

shown to be bifringent (3). This was reaffirmed with studies performed herein.

That is, depending on the relative orientations of the polarizer and analyzer, the

I kaolin fabric would polarize or become extinct.I
Studies were performed on impregnated and un-impregnated samples, as

well as fracture surface observations. In general, no difference was noted

between the dusters and LSD's. However, both showed a preferred anisotropic

I orientation.

I
3.5 Elements of Deformation and Fracture

I In summary, the observations to date have shown that undamaged

saturated Kaolinite can be considered as made of two phases. The first phase is

the continuous water medium (which has been replaced by the wax). The

second phase is made of randomly distributed dusters with sizes on the order of

0.1 mm. While it is well known that the particle size is about 0.001 mm, it

I appears that the stress induced morphological changes can be studied at the

level of the cluster; even though it is aknowledged that changes may occur

within the clusters. This has implications when one chooses the smallest unit

on which experiments can be conducted to study the mechanical behavior of

I
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I clay (see Section 4.2).

In the vicinity of cracks and under fatigue loading, morphological

changes occur that result in the joining of dusters to form strips (Figs. 3.1

through 3.7). Based on these observations, four micromechanisms responsible

I for macroscopic deformation can be recognized:

I
a) Elastic deformation of both the continuous phase and the clusters.

b) Stress induced morphological transformations resulting in the
growth or decay of clusters in size and in number within the
damage zone.

c) Stress induced morphological transformations resulting in the
creation of LSD's and networks.

d) Slippage along the LSDs.I
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Chapter 4

Kaolinite Cluster Characterization

I
4.1 IntroductionI

Before the damage illustrated in Chapter 3 can be characterized, a

complete characterization of the material in its nataral state is required. This

characterization, in turn, can be used as a reference when observing and

analyzing a section of material where damage is expected.[

4.2 The Representative Volume

I
Many continuum theories are based of the assumption that an idealized

i material. cai, be modeled as a homogeneous continuous medium. In the context

of continuum mechanics, the material is typically defined as follows:

We disregard the molecular structure of mcrer and picture it as b-ing
without gaps or empty spaces. We further sup'ose that all mathematical
functions entering the theory are continuous functions, except possibly at
a finite number of interior surfaces separatng regions of continuity. This
statement impii:s that the derivatives of the .unctions entering the theory
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are assumed continuous. This hypothetical continuous material we call a
continuous medium or continuum (13).

UFrom a material scientists point of view, all real materials exist as an

ensemble of individual components at one scale or another. A typical

description is given as follows:I

Two or more atoms, either of the same kind or of different kinds, are, ii,
the case of most elements, capable of uniting with one another to form a
higher order of distinct particles called molecules. If the molecules or
atoms of which any given material is composed of are alike, the material
is a pure substanc- If they are not alike, the material is a mixture (1).

I
3 In addition to the separate views by which material is defined, further

developments in materials analysis and testing have shown two basic types of

l material properties to exist. These can be described as structurally insensitive

and structurally sensitive material properties.

m Structurally insensitive properties are those properties that can be

accepted as true material properties. This type of property is identified by its

l average response to a particular flux. Examples of such properties are;

permeability, conductivity, density, elastic modulus, etc.

Structurally sensitive properties can be identified as those properties

which depend on an extreme response to a particular flux. And since extreme

responses are structurally dependant, these properties become sensitive to the

I
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I structure. Examples of this type of property are; material strength,etc.(5,6).

I The objective of this section is to bridge the two definitions of material

by defining the minimum volume (representative volume) of real material that

can be considered when continuum mechanics is applied for structurally

insensitive material properties. We propose a formal definition of a

representative volume (RV) of mato-rial and a working definition for the case of

overconsolidated clays.

I

4.2.1 Concept of a Representative Volume

I In a continuous medium, material properties such as mass density,

permeability, elastic compliance, etc., are ascribed to each point within a body.

Similarly, mechanical quantities like stress, strain and energy density can also

be ascribed to single point. If, however, the material is heterogeneous, these

prcierties become average values ascribed to a corresponding volume of

material. Different philosophies have been proposed to determine effective

properties of heterogeneous materials (2,3,10,11,12,14). Some of the more

common techniques are known as homogenization and smoothing.I
Eachi of these techniques appreciate the associaticn between material

properties and a corresponding minimum volume. Hill (11), provides a -igorous

formalism describing a general free volume. Klimontovich (12) defines a

I
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correlation volume and radius by introducing a function which is smoothed out

over a volume.

In general, a representative volume (RV) for a particular material and

with respect to a particular material property can be described as the minimum

volume for which the average value of this property does not charge when

comparison is made with another volume of the same size in the vicinity of the

I original volume. The size of a RV is determined from the statistical

homogeneity of the material. That is, the RV should be large in comparison to

any distinct aggregates within the material.I
With regard to mechanical properties, it is an accepted rule of thumb

U that the diameter of a RV of material is approximately one order of magnitude

larger than the characteristic inlhomogeneity (e.g.. the characteristic aggregate

size). In many cases, a rigorous assessment of an RV lacks immediate

motivation because the test specimens are many orders of magnitude larger that

the aggregates of the material they are made of.I
The author believe that the representative volume for a real material is,

in effect, that which defines the materials existence in terms of continuum

mechanics (7). Thus it is expected that all parameters that are extracted as

material invariants (i.e. density, elastic compliance, Poisson's ratio etc.) will

U have similar distributions and will give rise to the same RV size. This

expectation is based on the following concept: the entity whi, i defines the

I
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I heterogeneous behavior is dictated by the material of each of the individual

components and their respective configuration. Since at the size of the RV, the

configuration is essentially indistinguishable and the individual components

remain unchanged, all global behaviors will be identically invariant. Therefore,

if an RV size for density is defined in clay, it is expected that this same RV size

I would be representative for elastic compliance or Poisson's ratio, etc.

I Rationale for computing an operational definition of an RV involves the

relationship between the RV and the size of the test specimen. If the specimen

size is not a prescribed amount larger than the RV, statistical convergence of

I various measured data may not transpire. In the following subsections, we

propose an approach for determining the size of an RV and report its

application to overconsolidated clay.

I

I 4.2.2 General Evaluation of a Representative Volume

I Let A be a parameter that characterizes a certain property A of the

material. For a given volume size V, measurement for A should be obtained for

different elements each of size V. Note that the size of V should be on the order

I of the characteristic inhomogeneity (i.e. average duster size). Next, derivation

of the corresponding distribution fv(A) can be ascertained. After the initial

distribution f,(A) is computed for a particular V, the size of V should be

increased and its corresponding distribution computed.

I
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I
It is natural to expect that for a small V the scatter in the values of A

will be high. That is, the distribution f.,(A) will be wide. However, as the size

of Vincreases, f,(A) might be getting narrower with the mean value defined as:

I [4.11 <A>, =f A fv(A))dA
I * *

tending toward a limit A (< > - A , as V increases).

I._
If this is the case then A can be referred to as a material proper7ty whileI

taking A for the value of A. It should also be noted that when A is accepted as

a material parameter (i.e. invariant), the corresponding minimum volume of

material, V , with respect to the specimen shape and size is considered as a

Representative Volume.

I*
To define the representative volume size V, it remains to choose

tolerances AA and o such that:
* *

a) if I <A>v -A I <- AA then, for practical purposes, <A,>v is

indistinguishable from AI
b) if the a, ( o where a, is defined as:

S(4.2] .-, = {f(A-<A>.,)2 f,(A) dA}

I
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If the conditions listed above are met then, for practical purposes, f,(A) is

indistinguishable from a delta-function distribution. Now V is defined as the

smallest V, for which the conditions in listed in a and b are met.

U
4.2.3 Representative Volume for Stiff Clays

We now apply the formalism of Subsection 4.2.2 to finding the

representative volume for stiff days. It is found that the average cluster size

3 has a characteristic dimension on the order of 10- 4 m and that a scale hierarchy

exists in the material microstructure (refer to Subsection 3.3.1,9) and that all ofI
the stress induced morphological transformations occur at the cluster level

I (Section 3.5). Since this hierarchy exists, it is evident that the RV size should

be based on the average duster size and not the size of individual clay particles

(see Figure 4.1). As we intend to stay at a level above the cluster level (i.e. the

level where individual dusters aze not distinguishable), we begin constructing

the f,(A) distributions starting from V = (0.6 mm)3. At this size of Vit is

expected that a, will be wide.

Next, we select a parameter for A, with respect to which a RV is sought.

For this particular case we choose concentration c of densified clay in the form

of dusters (this is observed in the plane of polish and therefore is not the

volumetric concentration). The concentration c is computed as the area of

I
I
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I clusters within a region divided by the area of that region: c = c(L) = (percent

of cluster area in a square of dimension LxL). The reader should note that what

will be computed herein is the representative volume directly associated with

cluster concentration. From now on the volume elements are understood to be

LxLxL cubes and the letter L will be used in place of V since V = L3.I
It is the belief of the author that the observed cluster concentration is

directly related to the density of the kaolinite material. That is, the wax

penetrates only the loose regions during the impregnation process and simply

surrounds the more densely packed regions. Thus, a measurement of

I concentration is essentially a measure of some arbitrary density.

I In a macroscopically homogenous region on a plane of polish, a 12.4 mm

x 12.4 mm area was subdivided into an LjxLj square mesh with L = 0.62 mm

(i.e. subdivided into 20 squares by 20 squares). Next, six successive sizes for L

I were defined as Lk = MT_ (k = 1,...,6). For each of the six sizes, nine

non-overlapping LkxLk squares were chosen (each consisting of k2 elementary

LjxLj squares of the mesh).

U
Cluster concentration was measured and recorded for each of 400 squares

in a mesh pattern using the image analyzer (see Section 2.10). A

computer program was written to perform the following computations: For

each /=1,...,6, the value of c was computed for nine neighboring squares and

their distribution fk(c) = fLk(c) was constructed. A Fortran listing of the

I
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I program written to process this information for the six successive sizes (Lk) is

provided in Appendix A and is named REPVOL. Gaussian approximations for

the six cases are shown in Fig. 4.2. Figure 4.3 shows illustrates how the

standard deviation in concentration decreases as the size of the volume analyzed

is increased. Also the interpolation determined in Fig. 4.3 was used to sketch

I the 3-D plot in Fig. 4.4 Table 4.1 gives more numerical details from the six

successive analyses. The duster concentration data base (obtained with the

image analyzer) used in this analysis is listed in Appendix B.I
Since the measurements obtained from the image analyzer themselves

I contain a certain amount of fluctuation, a true delta function is unachievable.

In order to assess the magnitude of the error associated with these particular

measurements, a typical duster was singled out and 25 successive area

measurements were performed on it. The successive measurements resulted in a

6% variation about the mean (i.e. the ratio of the standard deviation to the

I mean measurement was approximately equal to 0.06) Therefore, a cluster

concentration distribution with a standard deviation less than 3% could never

be expected regardless of the size of the volume analyzed (assuming a mean

concentration value equal to 0.5).

U In order to assess the size of the representative volume, the tolerances for

AA and o, must be chosen. The results from Table 4.1 indicate that if a

tolerance in the mean concentration is selected as A c < 3% and the variation of

c is on the order of the measurement error, then the characteristic dimension of

I
I
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I the representative volume for this material is somewhere in the neighborhood of

3 to 4 mm (i.e. V is somewhere between 27 mm 3 and 64 mm3). Alternatively,

if a volume smaller than V is chosen, the information in Table 4.1 and Figure

4.3 can be used to estimate the associated error which corresponds to the

smaller volume.I

4.3 Reconstruction of the Cluster Spatial DistributionsI
In this section we will investigate techniques for reconstructing the

I spatial Jistributions of dusters. Studies of this type motivate attention for the

following reasons:

* Comparison of spatial distributions of clusters between an area
away from clusters in an undamaged region to that of a damaged
I egion may show changes resulting from stress concentrations.

Comparisons of s ,tial distributions of clusters on orthogonal
planes may indicate whether the material behaves isotropically or
whether some anisotropy exists at the duster level. Even if the
individual clusters depict some anisotropic behavior, the material
may behave isotropic if the clusters are randomly oriented. Such
a study may define if the material is statistically isotropic at the
cluster level.

I Spatial reconstruction involves using specified information from a plane

of polish together with certain assumptions (usually regarding the particle shape

and orientation) to make predictions about the volumetric distributions. For

I our particular case, the objective is to reconstruct the spatial distribution of a

I
I
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I pclydispersed system of dusters homogeneously distributed in an opaque

medium (bee's wax) given information from a planar section randomly passing

through the medium. Before any relationships can be formulated linking the

spatial distribution of a particular volume to the observed distribution of spots

obtained from a planar section, the duster shapes must be approximated with

I some regular shape.

The first and simplest type of polydispersed system consists of a system

of spherical particles. Cahn and Fuilman (4) derived a method for obtaining

distribution of sphere diameters and plate thicknesses from the size distribution

I functions obtained along randomly oriented lines. Saltykov (15) derived and

tabulated a set of coefficients which linearly relates the size distribution of

cirdes in a planar section to that of spherical particles homogeneously

distributed in the material.

I Saltykov assumed the spatial distribution to consist of a prescribed

number of classes in a given volume. Each class represents a specific particle

size in the 3-D distribution. With each class, he associates an unknoum

volumetric density from this class (#/m3). In the paper (15), the particle sizes

are divided into any number of classes up to 15. Next, Saltykov relates the

I above (up to 15) to the diametrical distribution of circular spots obtained by

cutting the volume of material with a plane in a random fashion.

Dehoff (8) provides a shape factor correction which can be applied to the

I
I
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I coefficients Saltykov furnished. Dehoff arrives at a shape factor correction by

considering the spatial distribution to consist of a mixture of either prolate or

oblate spheroids instead of spheres. Prolate and oblate spheroids are both

classes of ellipsoids generated by revolving ellipses about either the major (for

prolate) or minor (for oblate) axis. Use of Dehoff's solution requires that the

researcher know the particle type (either prolate or oblate), and 1he aspect ratio

(the ratio of the minor divided major axis) a priori.

I
4.3.1 The Reconstruction ModelI

Outlined here, is the formalism for computing the relation between a

polydispersed system of prolate and oblate spheroids homogeneously distributed

and randomly oriented, and a two dimensional distribution of elliptical spots

resulting from a plane of polish randomly passed through the medium. This

formalism follows closely to that of DehofPs except that it's generalized to

include the mixture of both prolate and oblate ellipsoids and some notation

I changes were made to accommodate for the mixture.

In Saltykov's method, the researcher is required to sort data obtained

Sfrom the planar section and compute the frequency of intersecting a spherical

particle and obtaining a circular spot between radii r and r+Ar. Similarly,

IDehoff requires that the data be sorted according to the frequency of

intersecting a prolate (oblate) particle and obtaining an elliptical spot with a

I
I
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minor axis between b and b+Ab (a and a+Aa).

I
For the case considered here, we require that the data be sorted

according to their equivalent radii obtained from elliptical spots between a range

r and r+Ar. In general, lower case letters will be used to describe 2-D features

I in the plane of polish and upper case will be used for 3-D features in the spatial

distribution.

I
4.3.1.1 3--D NotationI
This sub"section defines the variables which describe the spatial distribution of

particles. A more detailed description revealing how these variables relate will

be given in a later derivation.

I
i* - Number of discrete classes of ellipsoids of the "" type.I-.O oblate

e -* prolate

I A - Semi-major axis of an ellipsoidal particle.

* B - Semi--minor axis of the ellipsoidal particle.

I 0 Q - Aspect ratio of ellipsoidal particle (Q = B/A).

0 R . (j-=-,...,K ) Equivalent radius of an ellipsoid of the "' typeI and the "Y class (size).

For e=0 (oblate) type ellipsoid
4/3 TR 3 = 4/3 TrA2B

I
I
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I A= R/Q

2
B= QSR

For e=1 (prolate) type ellipsoid
4/3 7R 3 = 4/3 7rAB2

A= RIQT
1

B= QR

IPj4(R) - Number of centers of "e" type ellipsoidal particles with

an equivalent radius Rj in a unit volume.

I

I 4.3.1.2 2--D Notation

I Here we define the variables which describe the information which can be

extracted from a plane of polish (test plane).

I
* a - Semi-Major axis of an elliptical spotI * b - Semi-Minor axis of an elliptical spot

Sq - Aspect ratio (a = b/a)

* k - Total number of classes upon which a histogram of
equivalent radii is constructed. This is a user selected parameter
which generally reflects the accuracy of the reconstruction. In
general, $ > Z e (c=0,1). If $ = S t, then a linear system of
equations will be solved in the solution process. Otherwise a least
squares error approach will be used to solve the overdefinedsystem of equations.Sri (i=0f...,kt) Equivalent radius of the elliptical spot of the "lih"

size.

I
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i ni(r) (i=0,...,kt) - Number of centers of elliptical spots with
equivalent radii greater than ri-1 and less than or equal to r, in a
unit area.

I
4.3.1.3 Size Distribution Relationsi

Consider an aggregate mixture of prolate and oblate particles dispersed

in an opaque matrix. Let the index j refer to the size of the aggregates for a

particular type (e) of ellipsoid. Similarly, let the index i refer to the size of

ellipse resulting from the intersection of a test plane and a particle. This is

i shown for the case of a prolate particle in Figure 4.5.

i Next, let the particles be divided into Ke (E=0,1) classes for the oblates

and prolates respectively. Also let the increment between each size of oblate

and prolate particle be given by Ae with A0 not necessarily equal to A1 . If

I Raa depicts the maximum sizes for the distributions then:

[4.3] E=Rax (,=0,1)

It is assumed that all sections are represented in a test plane (i.e. we will

analyze a test plane no smaller thian a representative volume size). Thus it is

assumed that Rueax can be computed from the dimensions of the largest ellipses

in the test plane. After 4a. are established, the number of classes of prolates

U and oblates can be assigned and Equation 4.3 can be evaluated.

I
I
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I
The centers of ellipsoids which produce the subclass of sections lie in a

volume which has a cross sectional area equal to the area of the test plane and a

thickness equal to Pi-i - pi on both sides of the test plane. For a unit area of

test plane, this volume is given by:

[4.41 V,(ij, 0) = 2 (pi-I -pi)(i Unit) 2

Where p denotes the distance from the center of the ellipsoid to the intersecting

test plane. The relationship between p and r (the equivalent radius of the

I ellipse resulting from the intersection of the ellipsoid and test plane) can be

determined from pure analytic geometry. That is, for an e type ellipsoid of size

Rf, and a shape Q, there exists one value for the distance pi from the center of

the ellipsoid to the test plane.

I Let the X'-Y'-Z' coordinate system be oriented in such a way that the

Y' axis coincides with the axis of revolution and the origin is located at the

center of the ellipsoid. Next let the X-Y-Z coordinate system be located such

that it's origin is also located at the ellipsoid center but oriented so that the

X-Z plane is parallel to the test plane. Denote the angle between the Y and Y'

I axes by 4'. This is shown in Figure 4.5 for the prolate case. The equation for a

prolate ellipsiod is given by:

I [4.41 + =I

n~~~~m~ A,,ml, i t~ l i B •j
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I

The coordinate transformation equations are given by:

z/ = z co,0 - y sino

[4-51 y- = z sinb - y cosI ,ZI

I

And the equation defining the test plane is

1 (4.61 !I Pi

Next combining equations 4.5 and 4.6 with 4.4 and describing Ai and Bi in

terms of Ri and Q, along with describing ai and bi in terms of ri and q yeilds:

1[4.71 P ,ril-( )Tel

I where:

I 1I= Cos 2 0 + Q si22

m sjn2o + Q Cos20

n = (1-Q )23in2o cos2t

3 and:

U
I _
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The planar density n(e,,j,) is related to the spatial density P4 by using

substituting the results from Equation 4.7 into Equation 4.3 to obtain:

I [4.8) n(, ,j,i) = NV(i,j, )=2(pi- 1- pj)

I
Next, we average over all possible orientations to obtain:

I 1 K

i [4.91 ni "5" 45..

C=0 j=l

I where C~j is defined as:

[41]I r22p- - pi) sinuP doli [4.10] (4= o

The coefficients j can be determined for a specified ellipsoid type (E)

and class (.jh) using by integrating Equation 4.10 and computing the necessary

I values of p from Equation 4.7.

I
I
I
I
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I 4.3.2 Particle Distributions

UNote that Equation 4.9 relates the densities of a volumetric distribution

(24's) to that of a planar distribution (ni's). In theory, if a large enough area of

spots 'clusters) is used to construct the 2-D distribution (i.e. a representative

sample of data), and if the coefficients Cj in Equation 4.10 can be inverted, the

unknown volumetric densities can be written in terms of the known planar

densities. Futher, if the planar densities are refined into a larger number of

classes than the corresponding spatial distribution (i.e. kt > k6), an overdefined

system of equations results and a least squares approach can be used to solve for

the unknown spatial densities.

I A fortran program named MORPHOL was written to perform such

analyses. A listing is included in Appendix A of this report. Required input

data for this routine includes; a distribution of planar spots with specified

U equivalent radii (ni's), a number of classes for each ellipsoid type (K6), the
IIi aspect ratio of each ellipsoid type (Q6), and the size range of each ellipsoid type!

(R-E.). The output from MORPHOL includes spatial densities for each class of

the particle distribution (Nj1), distribution plots, and total volumetric cluster

concentration.I
I
I
I
I
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I 4.3.2.1 Error Analysis

Before a spatial reconstruction scheme can be used with confidence, an

understanding of the reconstruction accuracy must be investigated. The

purpose of this subsection is not to perform an elaborate error analysis study.

I Instead, the objective here is to outline how such an analysis could be performed

and to present some preliminary results.

In this type of reconstruction scheme, different types of errors can be

introduced. Some of these include;

0 Error in approximating a cluster with a regular shape (ellipsoid,
i or sphere).

I Error in prescribed variables (R=Ca,/K, Q").

a Error in assigning a descrete spatial distribution for a distribution
which may be more appropriately modeled as continuous.

* Measurement error in ni(r).

Error in assuming random particle orientation (not applicable to
spheres).I

Some of these error types can be investigated by first defining some

artificial spatial distribution of particles of some regular shape (spheres or

ellipsoids). A two dimensional distribution of elliptical spots can then be

generated directly from the relation presented in Equation 4.10 (using the

I coefficients Ci's directly). The 2-D distribution, in turn, can be used to

I
I
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I reconstruct a 3-D distribution while introducing error in some prescribed

variables. Afterward, the new 3-D distribution can be compared to the original

one and a resulting error in the 3-D distribution can be computed.I
This technique i. illustrated for the case of approximating particle

Ishapes. An initial particle distribution consisting of 4 classes of spheres was

3selected and is shown in Figure 4.6. Next, a corresponding 2-D distribution of

spots of equivalent radii was generated. Afterward, the 2-D distribution was

used along with either prolate or oblate spheroids with varying aspect ratios to

reconstruct a new 3-D distribution. Resulting errors in the mean and standard

I deviation of the 3-D distributions were tabulated. These analyses were

performed on for three systems of equations; a linear system (4 equations - 4

unknowns), 50% overdefined system (6 equations -4 unknowns) and 100%

overdefined (8 equations - 4 unknowns). These results are plotted in Figure 4.7

I
14.3.2.2 Cluster Volumetric Concentration (Saltykov's Approximation)

A 4.0 mm x 4.0 mm cross section of material (i.e., a representative

sample) of material was axially sectioned and polished from a cylinder which

Iwas not fatigued (undamaged specimen). This region is very similar to that

photographed in Figure 3.4. Clusters within the 4.0 mrm x 4.0 mm section were

traced with the image analyzer and planar densities of cluster size and aspect

3ratio were recorded. This information is given in Figure 4.8. Next, the clusterI'
I
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I planar information was input into the MORPHOL routine and spatial

distributions were constructed. These distributions were generated for 5, 10,

and 15 classes and results are presented in Figures 4.9, 4.10, and 4.11,

respectively.

I IIt should be noted that the results presented in Figures 4.9 through 4.11

* essentially show that a planar cluster concentration of about 50% translates to a

volumetric duster concentration of about 35%.I
I
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Figure 4.2 A plot of the distributions f(c), for (a1,...,6) ndLk=k*0.62 mam.
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Figure 4.4 Three dimensional plot of the concentration distributions
as the characteristic dimension is increased.
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I'
REPRESENTATIVE VOLUME ANALYSIS

Anal Dimension Mean Std. Dev.
I No. I (M*E-4) I M% I M%
----- I ------------ --------------- --------------- I

1 6.20 5 50.47 14.54
-- ------------------I----------------------------

2 I 12.40 I48.71 9.29
-------------- --------------- ---------------

3 18.60 51.23 4I 5.54
I--------------- --------------- ---------------

4I 24.80 52.24 I 3.58
---- --------------- I----------------------------

5 31.00 51.20 3.02
-- ------------------I----------------------------

6 37.20 51.79 2.49I -- ------------------I----------------------------

I
Table 4.1 Representative volume study results.
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Chapter 5

Kaolinite Damage Characterization

I
5.1 Introduction

In Chapter 3 of this thesis, evidence of stress induced morphological

transformations (damage) of material at the cluster level is presented. Included

is evidence of localized densification processes referred to as Localized Strip

Densifications (LSD's) and Network Densificationw.

In general, characterization of damage involves both identification of

characteristic features and some quantitative description of these features.

Chapter 4 presents techniques which can be used to characterize the soil fabric

in its natural state (i.e., cluster and water matrix) which essentially defines a

Ireference level upon which the damage can be identified.I
This chapter is devoted to illustrating techniques for characterization of

the most common of the material transformations; the LSD's. The LSD

characterization procedure presented in this chapter is based on experimental

Itechniques. In other words, experimental techniques are employed to

I101
I
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I reconstruct the volumetric distribution of LSD's.

I

The LSD's (Localized Strip Densifications) are shown in a comparison

photograph between two radial sections in Figure 3.5 and in Section b of Figure

3.6 (axial section). The sectioning procedure for both radial and axial sections

is described in Section 2.8 and illustrated in Figure 2.7. The LSD's can be

thought of as densified surfaces emanating from the notch tip.

The first step in the characterization process involves making a series of

radial sections through a fatigued and impregnated cylinder. These sections are

usually equally spaced at approximately 5 mm intervals and start near the

notch tip and continue through the entirety of the damage zone. Next, each of

I the sections is mounted on slides and polished (refer to Section 2.9).

I Afterward, each slide is segmented into 3mm thick bands below a known

reference plane as shown in Figure 5.1. Each slide is then individually placed

under the stereoscope and the image analyzer (Section 2.10) is used to compute

I the total LSD area in each band. These areas are then used to construct a

histogram for each slide as illustrated in Figure 5.1

It has been observed that the LSD area distributions are generally bell

U
I
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I shaped, thus a Gaussian carve is used to approximate the distributions in the

axial directions for further analyses. These histograms and their approximating

distributions are illustrated in Figure 5.2 for Cylinder 2-1 and is shown for for

others (Cylinders 2-3, 3-1, and 5-6) in Appendix C. In Figure 5.3, the density

distributions are sketched at their respective locations along the circumferential

U direction for the case of Cylinder 2-1.

The next step in the LSD characterization involves constructing a

contour map of the damage zone. To accomplish this, the LSD density was

approximated with the Gaussian distributions in the axial direction and a spline

I interpolation scheme was used in the circumferential direction. A fortran

routine was developed to perform this task and generate a contour map of LSD

area densities. The program is named CONTOUR and a listing is provided in

Appendix A. Contour maps of LSD densities are illustrated for Cylinders 2-1,

2-3, and 3-1 in Figure 5.4. Al of the contour maps in Figure 5.4 were

U constructed with contour lines starting at 0.1 mm levels and incrementing by

0.1 mm. levels.

Notice that the volume represented by the contour maps represent the

total volume of LSD transformed during each of the respective tests. Thus, the

I information contained in these contour maps allows one to compute the total

volume of material transformed from clusters to LSD's during the cyclic fatigue

test.

I
I
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I Also notice that the amount of transformed material increases as one

moves away from the notch tip. This is evidenced in Figures 5.2 through 5.4.

In Figure 5.2, Slide 2-1-A is nearest the notch tip and Slide 2-1-O is furthest.

In Figure 5.4, the contour maps show that the highest LSD densities occur

between 4.and 6 centimeters in front of the notch tip.

I
5.3 LSD EvolutionI

Observations of the radial sections did not identify a main crack within

I the densified regions. Moreover, external observations during the cyclic test

revealed a propagating zone of damage but no one surface could be identified as

a main crack. This is evidenced in Figure 1.6, and in the damage evolution

photographs in Figures 3.1 and 3.2.

i Photographs of the damage evolution similar to that shown in Figure 3.1

were taken for specified cycles during the fatigue of Cylinders 3-1 and 5-6.

Note that these photographs were taken during the actual test (i.e., the

cylinders were photographed through the plexiglas shell, silicon oil, and rubber

membrane). Since the nature of the damage on the outside and the inside of the

I specimens have been experimentally correlated (i.e., in Figure 3.7 evidence

showing the correlation between the external slip lines and the internal LSD's is

illustrated), templates reflecting the evolution of damage for specified cycles

was constructed from photographs. The basis for constructing the templates

I
I
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I involved using a photograph of the last cycle as a final state and proportioning

the evolutionary development of earlier cycles to it. It is assumed that a direct

correlation exists between the amount of damage produced on the outside of the

specimen to that of its interior. Each photograph corresponding to a specified

cycle was divided into regions. Next, percentages reflecting the amount each

I region has evolved during that cycle were assigned to each region thereby

creating a grid of numbers reflecting the overall evolution of the damage zone

called a template.I
A computer program was written to multiply the template for a

I particular cycle onto the the contour map at the final stage. The program

written to perform this task is called PZONE and a listing is included in

Appendix A. Results from this program include a 3-D simulation of the LSD

zone for various cycles. Processed results for Cylinders 3-1 and 5-6 are shown

in Figures 5.5 and Appendix D, respectively. The processed results for Cylinder

I 3-1 include a 3-D plot of of the damage density for specified cycles of the test

(Figure 5.5). The results for Cylinder 5-6 include both 3-D plots and

corresponding contour plots for specified cycles (Appendix D).

I

I 5.4 Integral Description of LSD Zone Evolution

Due to the nature of the damage zone evolution reconstruction

technique, it is not expected that minute details of a particular damage zone

I
I
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I description at some specified cycle (see Figure 5.5 and Appendix D) are

necessarily accurate. Moreover, a constitutive law which describes this motion

should not be sensitive to these same perturbations (recall the representative

volume considerations in Section 4.2). Thus, the objective in this section is to

present integral characteristics of the LSD zone evolution.

It is natural to decompose the LSD zone evolution into a combination of

elementary movements. This is in agreement with the theoretical

considerations outlined in Section 1.5 and described in detail in Chapter 6.

Examples of such movements for the case under consideration may be:

i - Rate of Translation of LSD zone with respect to the

centroid.

w - Rate of rotation.

a - Rate of deformation.

Symmetry of the specimen geometry and the loading conditions eliminates

from these studies.I
In addition to the 3-D simulation of the LSD evolution, PZONE

I computes the centroid distance from the notch tip and the total voiume of LSD

for each specified cycle. Results from these analyses are presented in Figures

5.7 through 5.9 for Cylinders 3-1 and 5-6.

I
I
I
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I
5.4.1 Resistive Moment Evaluation

Other integral descriptions of the damage zone relate to the amount of

damage accumulated during each of the above described elementary

I movements. In the thermodynamic model proposed in Chapter 6, reference is

made to resistive moments when describing thermodynamic forces. These

resistive moments are related to the amount of damage accumulated during

damage zone movements.

I The resistive moment due to translation of the damage zone can be

expressed as -'R1 where R, is functionally related to the the damage zone size

and shape and is computed from:

R [ if dV

where Vsd is the volume containing the Localized Strip Densification zone and

p is the damage density and t is the cylinder thickness. This expression will be

derived in Chapter 6 and is presented here only to describe the computational

details.

Before equation 5.1 can be evaluated, a formal definition of the damage

density density p must be presented. For the case of overconsolidated clays, it

is found that microdefects (damage) are 3 dimensional (see Chapter 3).

I
I
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I Consequently, p can be defined as:

I [5-21 p E I im rA-vi
A AV- 0 LV

I A Vt - amount of material transformed within an
incremental volume.

A V- incremental volume of material.

I
The incremental volume Vis defined by the area of the damage zone where the

Strip Densifications are detected, multiplied by the wall thickness.

Experimentally, R, is evaluated between any two cycles by the

approximation given in Equation 5.3.

[53 R i f pdV

t A sdz

where Arc is the change in centroidal distances and A Vsd. is the change in

volume of the damage zone associated with translating the existing damage zone

to the new centroid location. This calculation is shown schematically in Figure

5.10. Figure 5.11 presents the results for Cylinder 5-6. It can be seen in Figure

5.10 that Equation 5.3 expresses the amount of new damage accumulated from

I pure translation of the damage zone per unit thickness of material.

I
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I
U
I
U
I LOCALIZED STRIP DENSIPICATION DENSITY PLOT

I
I
U
I
I
I
I
I
I Figure 5.3: Three dimensional plot of LSD densities as related to their

measurement locations along the axial and circumferential
directions.
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I Figure 5.5: 'Three dimensional sequence of LSD zone evolutionl as a

function of cycles.I
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I LSD CQntroid Distance Plot

40.0

EI ~E
30.0

*| 0

-11

0
L

0.0 20.0 CYCLE40.0 60.0

I
I

Figure 5.6: Plot of LSD zone centroid distance vs. cycles for Cylinder
3-1.I
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I CYLINDER 5-6

LSO Cantroid Dist. vs. CyclQs
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I
Figure 5.7: Plot of LSD zone centroid distance vs. cycles for Cylinder

5-6.
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I

U Cylinder 3-1

LSO Volume vs. Cycles Plot
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IFigure 5.8: LSD zone volume vs. cycles for Cylinder 3-1.

I
I
I



iI1

I 117

I
CYLINDER 5-6

LSD Volume vs. Cycles
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U Schematic for R1 Calculation Procedure

I _ _ _ _ _ _ _ _ _

A ~p dV

FIgure 5.10: Schematic of calculation procedure for R1.
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i CYLINDER 5-8

R1 vs. Cycles
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Figure 5.11: Plot of R, vs. cycles for Cylinder 5-6.i
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Chapter 6

Theoretical Considerations

I
6.1 Introduction

In Section 1.5 we introduce the governing equation (Equation 1.1) which

describes the crack-damage evolution for a cooperative fracture process. This

equation results from treating the crack and surrounding damage as a single

thermodynamic entity and applying the laws of thermodynamics of irreversible

processes. II
Usually fracture is an irreversible process which is often coupled with

other physicochemical processes like phase and chemical transformations, heat

and mass transfer, etc. Thermodynamics of irreversible processes offers a

general framework to study these phenomena, in particular, by introducing the

thermodynamic forces. It is demonstrated herein that thermodynamic forces

are distinct from conventional energetic forces like the J-integral. In this

chapter thermodynamics and energetic forces for thermoelasticity are derived

following the thermodynamic approach (3,4).

I 120
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I
6.2 Thermodynamics of Fracture in an Elastic Medium

It is demonstrated in Chapters 3 and 5 that the fracture process is

strongly cooperative. In this chapter, damage (LSD) is considered as a system

I of material inhomogeneities, and damage nucleation and growth as a material

transformation. Damage can be characterized by its density (Chapter 5) and

average orientation. It is assumed that the orientation of inhomogeneities does

not vary in the fracture process. Therefore, the scalar damage density is

incorporated as the only thermodynamic state parameter characterizing

I damage.

I The stress tensor U-ij and the absolute temperature T conventionally

constitute a set of state parameters for thermoelasticity. This set is extended

by the damage ckusity p in an elastic medium:

[6.1] { ij, T, p}

In what Sollows, we derive the thermodynamic forces associated with

damage. The local energy balance is taken as

Iq
I[6.21 0j i ~~~

Here i stands for the rate of internal energy density, i ij is the strain rate

I
I
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i tensor, the product oij i represents the work rate density, .i stands for the

heat flux, and the usual summation convention over the repeated indicies is

employed.

i
It is convenient to express the internal energy density u in terms of

i Gibb's potential density and the entropy density s

[6.3] u = g + Ts +'ijciji
Here, cij is the total strain component. The entropy production ,j introduced

I in thermodynamics of irreversible processes is defined as a portion of the total

* entropy production rate j.

i Sj = 8 - e

[6.41 with:

lq

where ,e is the entropy density rate due to heat exchange (for a closed system

where no mass is transposed).

I Employing the energy balance in Equation 6.2, decomposition of the

internal energy density in Equation 6.3 and the definition of the entropy

production in Equation 6.4 we arrive at:I
I
I
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1(6.5] T[- +s+ j i TkjI
In conventional thermoelasticity, the Gibb's potential density g is often

designated as the thermoelastic potential energy density 7r, and is expressed as a

Taylor's decomposition with respect to the state parameters o-ij and T. The

coefficients of decomposition represent material properties such as elastic

compliance, thermal expansion coefficient, etc., and the first term of the

decomposition represents the reference level of g.I
For the damaged thermoelastic medium, the rate of Gibb's potential

density is affected by the damage growth k in two ways, through changes in

(i) the reference level of g (Gibb's Potential), and (ii) the material property

coefficients included in 7r. Hence,I
(6.61 a(,, T,p) = oj, 71h + r( 1 ,T,p)

I Here, 7 is the difference between Gibb's potential densities in the damaged and

undamaged states per unit damage density; and r is taken in the same form as

in conventional thermoelasticity, but with the material property coefficients

being functions of the damage parameter p.

The assumption of local equilibrium yields thermoelastic constitutive

equations:I
I
I
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I [6.7 1l -
IT

I[6.8] or = -EiI
Accounting for Equations 6.6 and 6.8 the local entropy production in Equation

6.5 takes the form:

I [,Y +1 Fat I .qI
[6.9] - P -j

In the outline of thermodynamics of irreversible processes, the entropy

production is conventionally presented as a bilinear form of generalized fluxes

and forces, such as k and -Ok T/ T2 for heat transfer. Similarly, if the rate of

damage density is taken as a flux, the reciprocal force is -(1/ T)[,y + (ai/ap)].

i 6.3 Damage Zone Propagation!
It has been observed that the damage zone (LSD zone) in

I overconsolidated clays propagates and ultimately leads specimen failure (see

Section 5.3). In the approach we introduce herein, the damage zone movements

will be decomposed into a combination of elementary movements; translation,

deformation). In this thesis, we apply the thermodynamic model to the

translation of the LSD zone.I
I
I
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I The global entropy production is the integral of Equation 6.9 over the

entire volume of the solid:

I[6.10] s= f idV= -f p dV-f a"P dV-f I OT 'qdV

V V V V

The first two integrals on the right hand side of Equation 6.10 are reduced to

I the those over the damage zone Vsd. since h in nonzero only within this zone

and they represent the global entropy production due to Localized Strip

Densification. The first integral is associated with the energy consumed by

material transformation from an undamaged state into a damaged state (i.e.

from clusters to LSD's). It reflects the materials resistance to the strip

I densification zone propagation. The second integral evidently represents the

the entropy production associated with the potential energy release rate, and is

defined as the impellent of the LSD zone. The last integral in Equation 6.10

reflects the entropy rate due to heat transfer. For the case considered here, an

isothermal condition will be assumed (V T = 0). Thus the last integral in

I Equation 6.10 reduces to zero.

I It is assumed that the damage zone moves maintaining a self-similar

distribution of damage such that the rate of damage density h at a given point

zi in an Euler system of coordinates, can be expressed asI
I 6.11] x1 = -Vk(6i)

I

I
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where Ci is a position vector in the movable system of Cartesian coordinates

with the origin at the crack tip and the k=1 axis is chosen along the tangent to

the notch and Vk(Q0 is the $h component of the velocity vector. Reducing the

general motion of the Strip Densification Zone to simple translation of the

centroid (ic):I
[6.12] Vk() = ZC61

provided i,k = 1,2 and 5ik is Kronecker's delta symbol. The damage density

in Equation 6.11 with 6.12 becomes:I
[6.131 kXzi)=-

Upon substitution of Equation 6.13 into Equation 6.10 we can write:

I I

Above, 1c is considered to be a generalized flux and stands for the rate of

translation of the damage zone as measured from its centroid (see Section 5.3)

and consequently, L1 is the reciprocal thermodynamic force. The

I thermodynamic force X1 can be written as a sum of an active and resistive part.

I That is:

[6.15] - , = A, -A,

I
I
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I
where:

I [6.16] Ai - #-'r
Vsdz

and

[6.171 R 1 = f j~dV
Vsdz

i Equations 6.16 and 6.17 represent the active and resistive components of the

thermodynamic forces, respectively. For the case considered here, RI (excluding

the y/ T term) is evaluated in Subsection 5.3.1. In the next section we will

concentrate our efforts to re-expressing Equation 6.17 into a recognizable form.

[
6.4 Impellent Forces

For a homogeneous medium the density of elastic potential energy Tr is a

function of the state parameters and does not depend on coordinates explicitly:

[6.18] = Ir [U-j(), P(0)

3 Consequently,

[
[
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[6.19] 
-

where for a two--dimensional case, ij, and k = 1,2.

I Using constitutive Equations 6.7, 6.8, and 6.19 can be written as

I [6.20] OIX a aira
i

The elastic potential energy density is defined asI
[6.21] "= f- Oij Eij

where frepresents the strain energy density which is conventionally expressed in

linear elasticity as follows:i
I [6.22] f Oijcij

Upon substitution of Equation of Equation 6.20, 6.21, and 6.22 into 6.16 and

accounting for local equilibrium equations[
[6.23] . 0

AI can be written as:

I
I
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I
[6.24] A, = f -ij dV

Vsdz

I Finally, applying Gauss's Theorem we arrive at:

I
aVsdz Vs dz

I In Equation 6.25, nj is the jh component of the unit outward normal to an

integration path OVdz. In the case of an isothermal condition (VT = 0) the

second integral in Equation 6.25 vanishes. Therefore the expression for A1

reduces to:

U 6.26] A= ( -nj aui )

I
Notice that Equation 6.26 resembles the well known J-integral

introduced by James Rice (2,10).

I

6.5 Energetic Force

i In the previous section the thermodynamic crack driving forces in an

elastic medium are presented. In this section, the conventional energetic forces

I
I
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i as derived by Eshelby (1,5,6,7,9) and Rice (2,10) will be introduced for

comparison. Rice presents the J-4ntegral as:

6.27] f, (f* n1 -ojp T_

rI
Note that Equations 6.26 and 6.27 only differ by the absolute temperature term

I (2) for the isothermal condition. Although these two integrals are similar,

identifying which is the true force driving a crack is at this time speculative

(3,4).I
The energy release rate can also be expressed in terms of Eshelby's

U Energy Momentum Tensor (1,5,6,7,9) as:

I[6.28] A f (PiflnO dl'

where:

[6.29] Pij = fJij -ikCk,j

I and
f- strain energy density

Oaik - stress tensor components

uk - displacement vector

I
I
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I6ij - Kroneker's delta

I
6.6 Discussion

I In this chapter we presented an expression illustrating that the global

entropy production involved in the fracture process of an elastic medium with

damage under isothermal conditions (Equation 6.14) can be expressed as a

bilinear form of generalized flux and a thermodynamic force. This equation

considers only the translation of the damage zone. In order to convert the

I expression in 6.14 into a constitutive model, we must first evaluate the

thermodynamic force (Equations 6.15, 6.16 and 6.17) which contains an

unknown value for 7 (the specific energy for densification), and determine

evaluate the relationship between the force and flux (e.g. the phemonological

relationship).I
Methods for evaluating the thermodynamic flux (,- rate of translation

of the centroid of the damage zone) and the resistive part of the thermodynamic

force (Equation 6.17) have been developed and are illustrated in Chapter 5.

I Chapter 7 introduces methods for evaluating the active part of the

thermodynamic force through a semi-empirical stress and energy analysis.

Chapter 8 will tie the results together and present a constitutive model for

overconsolidated clays.

I
I
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Chapter 7

3 Stress and Energy Analysis
of the

Crack - Damage Interaction

I
I 7.1 Introduction

In Chapter 6, a constitutive law based on thermodynamics of irreversible

processes is outlined. In order to apply this formalism, knowledge of the

I dominant thermodynamic fluxes, and forces is required. For the case of

overconsolidated days, the fluxes and the resistive part of the thermodynamic

forces for a translational model are evaluated and presented in Chapter 5.I
This chapter describes an approach for evaluation of the active part of

I the thermodynamic forces. That is, the potential energy release rates associated

with each of the fluxes (elementary movements).

3 During the cyclic fatigue tests, measurements of applied torque vs.

rotation are recorded for specified cycles. From these measurements, values for

U the potential energy (obtained by using the unloading portion of the

I 133
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I torque-rotation curve) and irreversible work can be computed. These energy

values can then be used to assess the total potential energy release rate between

successive cycles Recall, however, that potential energy is released during any

of the four elementary movements (translation, rotation, expansion, distorsion)

of the damage zone. The information presented in this chapter isolates the

I potential energy- release rate for pure translation of the damage zone.

7.2 Solution via. Superposition

I A rigorous stress and energy analysis of this problem would require the

i reconstruction of the stress and displacement fields for the case of a hollow

cylinder with a circumferential crack interacting with the microcrack array

while being loaded under torsion. The nature of this study, however, is

fundamental and thus a highly accurate analysis is not a goal.I
In order z-,he simplify the problem, we will restrict our analysis to the

case of an infinite plate (i.e., plane stress or plane strain) made of a linear

elastic material. For this case, the general problem can be decomposed by the

law of superposition into three separate problems. These will be identified

I herein as:

I
Case 1 - A uniform plate free of all cracks and microdefects

subjected to a uniform shear and compressive stress.

I
I
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Case 2 - A plate with the main crack only (i.e. the notch) and a
traction equal to the shear stress in Case 1 applied to the
crack surfaces.

Case 3 - A plate with both the main crack and the array of
microcracks with the measured displacements applied
along the microcrack array

I These cases are ilustrated in Figure 7.1. By the laws of superposition, the

combined stress, strain, and displacement fields, along with the stress intensity

factor can be expressed as a sum of their respective parts:

I
jytot =U+Z21

[7.1] ztOt = a, + a2 + 03

KOt = I+ iII I

Case 2 is the classical case and the solution is in every elementary book

I on fracture mechanics (14,18). If stresses o and r. are the tensile and shear

stresses applied at the remote locations on an infinite plate which contains a

crack of length 2c, the stress intensity factor for Case 2 is given by:

I
[7.21 KI= ,

I In the net sections of this chapter we will concentrate our efforts on

developing a method to solve the problem in Case 3.

I
I



I

i 136

U
i 7.3 The Crack-Microcrack Interaction Problem

In recent years, the problem of multiple crack interaction ias been

addressed by various authors. This problem can formally be expressed as a

I system of singular integral equatio-is. The equations represent boundary

conditions on the crack and micro-crack surfaces (the usual boundary

conditions require traction free surfaces). Rigorous solutions to this problem

have been formulated for only a select set of micro-crack configurations

I Rice and Tompson (26) analyzed the interaction between a gliding

dislocation and a crack using an energy method (i.e., using a Maxwell relation

for the strain energy). Similarly, Shiue and Lee (32) studied the effect of a

climb dislocation. They included solutions for both a single dislocation and a

dislocation dipole This problem was also addressed by Lo (21) and Ballarini

1 (2,3) using complex potentials and by Erdogan (14) for a point force and

3 moment.

The problem of collinear micro-cracks interacting with a semi-infinite

crack was analyzed by Rubinstein (30). Similarly, Rose (27) studied the case of

U a semi-infinite crack interacting with a collinear mico-crack. The list

continues with various techniques on other select problems in (1 through 32),

just to name a few.

I
I
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I
7.4 Sem i-Empirical Approach via Second Green's Tensor

Due to the nature of the crack--damage interaction problem (i.e., solving

a system of singular integral equations), solutions to many realistic problems

becomes impractical, even with the advent of supercomputers. Alternatively,

certain authors aave proposed semi-empirical techniques to compute the SIF

(Stress Intensity Factor) induced on main crack from an array of microdefects.I
Chudnovsky et al. (5,11,12) propose a technique based on a self

I consistent method utilizing a double layer potential formulation. In this

analysis, the microcracks are considered as a continuous distribution of

dislocations and the problem of feedback is solved by approximating the

traction on the microcracks as a polynomial distribution (using Willis's (34)

polynomial conservation theorem). The interaction between the main crack as

I well as between the microcracks is considered. More recently, Kachanov (17,18)

proposed as alternative approach by considering the average tracmions on the

individual microcracks.I
In general, for a random configuration of a large number ci microcracks

I the solution implies an extremely tedious and time consuming numerical

procedure (8,9,10). In 1987, Chudnovsky and Ouezdou (12), employed a

technique of using experimentally observed COD's (Crack Opening

Displacements) as the solution to the microcrack problem. The problem is

I
I
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I formulated by using the second Green's tensor (5,11,12) (,) which is defined

as the displacement response at a point z due to a unit discontinuity at a point

. For the case of plane stress, the second Green's tensor is given by:I
* 7.31 -(+V j[(1-2v)(nCR-Rn, + nCI + 2n

where n is the unit normal vector to the surface across which the discontinuity
takes place, v is poissons ratio, I is the unit second rank tensor and R is the

position vector Ci.e., R = -Z).

The second Greens tensor in Equation 7.3 is then used to to describe the

displacement response on the main crack by integrating over the observed

displacements in the microcrack array. Afterward the displacement response is

I converted to stress by applying an appropriate stress operator T. which

transforms the displacement field uk into stress aij. Once the stress field is

known, an effecive stress intensity factor can evaluated.

I
Even though this approach was applied to the 2-D problem for the case

I of Ouezdou (12), and Chabat(5), it can be easily extended to the 3-D case.

In the next sections of this chapter, a semi-empirical stress and energy

analysis will be outlined and illustrated for the case of overconsolidated clays.

This analysis will be based on a method of complex potentials but will follow

I the same general philosophy described above.

I
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I
I

7.5 Semi-Empirical Approach via Complex PotentialsI
Many problems in the theory of elasticity can be solved with great

I mathematical simplicity by using complex variables (13,23,33). A complex

variable z is formed by two real variables x and y such that:

[7.4] z = Z + iY

I where i represents vT and is called the imaginary unit. Muskhelishvili (23) has

shown that, for plane problems, many solutions can be expressed in terms of a

pair of complex potentials. Once the potentials are defined for a particular

problem, the stresses and displacements can be expressed as functions of the

potentials (i.e., analogous to an Airy's Stress Function). If the complex

I potentials are denoted by 0 and 0, then the displacements can be defined as:

S[T.51 2G(u + iv) = no-i' -

Here u and v are the Cartesian components of displacement, G is -,he shear

I modulus, and x is related to poissons ratio as defined in Equation 7.6.

I { 3-4v plane strain

[7.6] TT= . plane stressf

+

U



I

I 140

I Also, the overbaz "" denotes the conjugate of the variable or function and the

prime 1"' denotes differentiaton of the function with respect to the complex

variable z.

Similarly-, the components of stress can be expressed as:

I [7.7] q + ayy = 2(01 + VI)

ayy -ix + 2irxy = 2( €" + PI')

In the following subsections (i.e., Subsections 7.5.1, 7.5.2, and 7.5.3)

I solutions to the three problems outlined in Section 7.2 will be presented in

complex potential form. In these sections, the following notation will be used.

I [7.8] 4(Z) 01( Z)

'I(Z) = (Z)I
7.5.1 Remote and Nominal PotentialsI

This Subsection presents the potentials for the stress/displacement fields

I caused by the renote (Case 1 in Section 7.2) and the nominal (Case 2 in Section

7.2) loading conditions.

From the methods in (23), the potentials for the remote loading

I
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I condition are given in Equation 7.9.

I_

417(Z] -. 4u + iT.

SSimilarly, the stresses and displacements produced from the main crack

as expressed in Case 2 is given in (24,3) by:

lpL( K A,+ iKq1)
[7.10] 2iz "

I 'I'(Z) = "b(-Z) - 4'n(z) - Zt'(Z)

l Substituting the results of Equation 7.2 for KI and A,, into Equations 7.10

gives:

I 4n(z) = V -f-(9. + iT.)
2I

I [7.11]
1 1 I 1

*I'(Z) =i [0,.(i2 -'~) - iroo(i + 1 Z-5)]2va 22

I
7.5.2 Complex Potentials for a Crack and a Dislocation Dipole

In the complex potential formulation, discontinuities (damage) are

I
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I modeled as a distribution of dislocations. In 1978, K. K Lo (20) presented a

solution (in the form of a pair of complex potentials) for a finite length crack

and a single edge dislocation embedded in infinite plate. The edge dislocation

essentially models a sudden change in the displacement field (either a sudden

jump, a sudden shift, or a combination of the two).

In Lo's solution, the crack is located on the real/imaginary plane

horizontally with its tip at the origin. The crack has a length of 2c and the

edge dislocation is located at coordinates z, as shown in Figure 7.2. With this

solution, the researcher can compute the stress field at a point z due to an edge

I dislocation at a point zo interacting with a crack.

The pair of potentials which make up Lo's solution, 4 and I, can be

written as:

[7.12]e
~e= Ti +Q2

I where:

[7.13] =(z~,1 Z-'dz)= (-zo + 2

1 and

I
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I

* (7.14] 2(Z) = - ,z,.) + OFz-) + 5(AY-iZ)G(4) - aX(z)]

S112(Z) = ( Z- ,() - Z:, 2' (z)

with

[I = 4

FtIIZo , t,,

(Z-Zo)
I1

[7.16] X(z) = , z+-2cI
The dislocation data is included in the complex constant a which is defined by

I the relation in Equation 7.17.

[7.17] a= b(+I
In Equation 7.17, 1z is the shear modulus, r. is related to Poisson's ratio

I (Equation 7.6), and b is a Burgers vector which denotes the jump in the

displacement at zo (Equation 7.18).

I
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I [7.181 b = eie{1.l-i] + 4ueI}
I

The quantities [sr] and [qaj denote the jumps in the tangential and normal

displacements across the dislocation line. It should be understood that this

solution (Equatons 7.12 to 7.18) models a finite length crack (2c) in an infinite

plate interacting with a semi-infinite jump and/or shift in the displacement

field occurring z. (defined by Equations 7.16 and 7.17).

In order to model the observed slip lines and, in general, finite sized

cracks and micro-cracks, a solution for a finite jump and/or shift in

I displacement interacting with a crack is required.I
In 1988, Ballarini and Denda (2) derived an analytical solution for a

dislocation dipo e interacting with a semi-infinite crack. In their derivation,

they used Lo's solution (20) and superimposed the effects of a pair of edge

I dislocations, withi Burgers vectors equal in magnitude but opposite in direction

separated by am infinitesimal distance.

This solution (2), is limiting in our studies because the the crack length

(notch length) is in many cases smaller than the preceding damage (see Chapter

i 4). Thus, a solution for the finite sized dislocation dipole will be introduced

using the philowphy introduced by Ballarini and Denda (2) along with the

potentials presented by Lo (20). For the finite sized dislocation dipole, the

principle of superposition will be invoked and a pair of edge dislocations will be

I
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l used. In this approach the spacing dzO is not required to be infinitesimally

small. This is ilustrated in Figure 7.3. Consequently, the complete solution for

the dislocation dipole interacting with a crack is given by:I
[7.19] '§d(ZA) = e(zzocf) +4'e(ZA+do,-a)

TdA)= 'Te(zzo,a) + k8(;zo+dzo,,-a)I
where 4 e and 1r are given by Equation 7.12. A similar expression can be

I written for an array of dipoles. This problem is the one of most practical

interest since slip lines (see Chapter 3), cracks, microcracks and other

discontinuities within a continuum can be modeled with an array of dislocations

and/or dislocation dipoles. Since the law of superposition is valid for potentials,

the complex potentials for an array of dipoles can be written as:

n
* Aot(z) '5 > d(Zi

i--1
| [7.20]

n
tJfAOt(z) 5 11 'd(Zo

7.6 Stress Field Evaluation

The information presented in Sections 7.2 through 7.5 provide the

I
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I necessary tools 4o compute the stress field in the vicinity of the crack and

I damage. In principle, the slip surfaces shown in Figures 3.1 and 3.2 can be

modeled with a distribution of dislocation dipoles. Thus, measured slippage

along the discontinuity lines whose orientation and magnitude can be extracted

from photographs can be modeled with an array of dipoles (see Equation 7.20).

A fortran routine was written to generate contour plots of selected

components of stress using the information Sections 7.2 through 7.5. The

program was named STRESS and a listing is included in Appendix A. The

program STRESS, utilizes the complex operations available in the Mircosoft

I Version 3.2 Fortran Compiler to compute the stress field from the potentials.

Input for this routine includes the slip line configuration and the Crack Sliding

Displacement (CSD) along each slip line. Other input information includes the

remote loading stress (or, r.), crack length, elastic modulus, condition of plane

stress or plane strain.I
The output of program STRESS is a contour map of equal stress

component magnitude for the component selected. Six components of stress are

available. They include the Cartesian components of stress, o-x, o y, and rxy,

as well as the principle stresses (maximum and minimum) api, and pP2, and the

I maximum shear stress, rnax. These components are defined in the Mohr's

diagrams in Figure 7.4.

It should be noticed that the maximum principle stress o u is defined

I
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I herein as the principle stress component which is largest in magnitude. Thus,

as the Mohr's cixcle translates through a zone of pure shear, the apl, component

will change sign (see Figure 7.4). When the ap, contour plot is inspected, zones

of pure shear are readily identified since the sign change in ap, produces a sharp

transition from dashed (compressive) to solid (tensile) lines or vise versa. This

I phenomena will be illustrated in some following examples.I
For all c the of the stress and energy analyses performed in this chapter,

the following parameters were used:

E- 11200 psi

v 0.48

plane strain

r. = 20.0 psi

a i= -30.0 psi or 0.0 psi

I The first case analyzed was to plot contours of equal stress for the case of

a single crack loaded under pure shear (mode KII). Five components of stress

are illustrated in Figure 7.5; the three Cartesian stress components (0rXX, 'yy,

rxy), the maximum principle stress -p1, and the maximum shear stress rmax.

Notice that the maximum shear stress need not be zero on the crack face since

U only two of the three stress components (ayy, Txy) are specified to zero by the

crack face boundary conditions.

Next, stress field contour plots were generated illustrating the

I
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I interaction between the main crack (notch), and a single dislocation dipole

symmetrically located in front of the crack. A unit of sliding in the same

direction as observed in Figures 3.1 and 3.2 is was assigned to the dipole. For

this case, no remote loading was considered (i.e., o. r. = 0) since the

objective here is to isolate the effects due to the localized displacement. A

I schematic illustrating this problem is included in Figure 7.6. The contour plots

for q., oyy, r,,, opl, and rax axe included in Figures 7.7 through 7.11,

respectively. In these plots, the asymptotic stress field around the crack tip is

magnified placed in the lower left corner of the plots. The asymptotic plots in

the lo*Cr left corners for Figures 7.7 through 7.11 are plotted at the same scale

I as those in Figure 7.5. This was done so the effects of the dislocation dipole on

the crack can be readily compared to those produce by remote loading.

The next case analyzed was the case of a single dislocation dipole

interacting with the main crack (similar to the above case), but the dipole was

I oriented so as to produce a 200 angle with the z-axis (see Figure 7.12). The 200

angle was selected since it represented the typical orientation of ;he slip surfaces

(see Figures 1.6, 3.1, 3.2). Again, five contour plots illustrating the

crack--dipole interaction are included in Figures 7.13 through 7.17.

I Next we will illustrate how this crack-mircocrack interac:ion can be

investigated. The microcracks are to be modeled with an array of dislocation

dipoles.

I
I
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U During the damage-zone initiation a dog-bone cracking configuration

was observed and is shown in Figure 7.18. The dog-bone cracks are modeled

with a distribution of d'poles such that they produce an elliptical crack sliding

distribution (this corresponds to a constant traction assigned to each dog-bone

crack). The configuration for this case is illustrated in Figure 7.19, and stress

contour plots for rxy, 0pl, and rax are included in Figures 7.20, 7.21, and 7.22,

respectively.

I
7.7 Stress Intensity Factor Analysis

The stress intensity factors can be defined in complex form (2,3,25) as:

[7.21] KI + K 1  = --ir i (ayy+irxy)

In order to compute the SIFs (Stress Intensity Factors) caused by the

dislocation dipole, we start by determining the SIF for a single edge dislocation.

Here, we substitute substitute Equations 7.7, and 7.8 into 7.12 to yield:

[7.221 K1+iK11 = li u rn D~~o+ezo+R ~z)T(Z)I I#io

Substituting Equations 7.12 through 7.18 into 7.22 and taking the limit results

in Equation 7.23

I
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[7.23] 16 - _~e =2F [aIR]1+ ic%(

In Equation 7.23, 2() denotes the real part of a complex value and %() denotes

the imaginary part.I
Since the law of superposition is valid for stress intensity factors, the

SIFs obtained for a single edge dislocation can be summed in a similar manner

to that for the potentials (see Equations 7.19 and 7.20). Consequently, the SIFs

for a single dislocation dipole and an array of dipoles can be expressed in

Equations 7.24 and 7.25.

ST.241 = Kj(zo,a) + Kj(zo+d;,- )

l /II = I(Zo,a) + !AiI(zO-+.,,-a)

I

i=1I[ [7.251
n

Kdtot ~ )d
I J'.d KiI

i=1

i Three different fortran programs were written to perform various

analyses related to the stress intensity factor study. These routines, and their

I
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I respective results will be discussed in the following paragraphs.

The first of the three routines is called KIJ (listing included in Appendix

A) which plots a non-dimensionalized SIF vs. angular variation ,3 (for Zo= x.+

iyo; fi = tan'I(yo/zo) ) denoting the coordinates of the dislocation dipole. The

I SIF's are non-dimensicnalized by the relation expressed in Equation 7.26.
3

(7.26] KI aII = T!I (I 2 - ( aiK )

I where

I Ib = b+b"

Io r = + iyo

[7.27] ,o+dzo = (o+dx) + iyo+dyo)

dp = )~(,)

The effective SIF's for two different cases were plotted; one due to an

opening dislocation dipole (Case for by) oriented with E = 00 (E is defined in

I Equation 7.18), and another shear dislocation dipole (Case for b.) with E = 00.

Plots for these two cases are presented in Figure 7.23. These results agree with

those presented by Ballarini (2,3) for the case of an infinitely long main crack.

Figure 7.23 shows the effect (i.e., amplification or shielding) the dislocation

dipole has on the main crack. These are summarized as:

I
I



i 152

Mode-I < 690 Amplification

For the Case of by M 1> 690 -S h i eldin .

Mode-[ 1 < 360, 15> 110o-, Amplification [[
1< 1360< f<1100 S. Shieding )

* and

l JMode-I < 360, > 110 - Amplificationi
For the Caseofb 360< # < 110 - S hiekiding J.

IMode---II fl < 300,830< 15< 1250-+ Amplification
.830< P <1250, 15> 1250-+ S h ielding f)I

Another fortran program called SIF (listing in Appendix A) was written

to produce contour plots of equal levels of Green's function for the stress

intensity factor denoted Gsif. In particular, Gsif(Xl,Z2) defines the stress

intensity factor at the crack tip caused by a dipole dislocation at coordinates

(zI,z2). The magnitude for the stress intensity factor is non-dirmnsionalized by

the following relation:

I[
[7.28] GsifI - iGsifI = KI - iKI = - - -(K - iKn )

I rVr- I blIdpI

Results from SIF are included in Figures 7.24 through 7.27. Figure 7.24

shows plots of equal stress intensity factor for both Modes I and E due to a

single dislocation dipole with an applied unit opening displacement. Similarly,

i'gure 7.25 shows these results for Modes I and H due to a single dislocation

I with an applied unit shear displacement. These results (Figures 7.24 and 7.25)

i
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I compare with those presented by others (2,3,12). Figures 7.26 and 7.27

reproduce the same analyses performed in 7.24 and 7.25 except the dislocation

dipole is oriented at 200. The orientation e = 200 is analyzed since this is the

typical orientation of the LSD lines. The information contained in these plots

show where the zones of amplification and shielding occur and haw these zones

I are affected when the discontinuities are inclined at 200.

U A third analysis on was performed on a particular configuration of crack

and damage. Detailed photographs of the last cycle from the Cylinder 5--6

fatigue test were used to create the composite photograph of the crack and

U damage. The zone of damage (consisting of slip surfaces) was approximated

with 27 descrete slip lines. A photograph of the zone and the approximating

slip lines is illustrated in Figure 7.28. Measurements of CSD (Crack Sliding

Displacement) were recorded for each of the 27 slip lines. Ten dislocation

dipoles per slip line for a total of 270 dipoles were distributed to model the zone

I of damage. A Program call KMIN (listing in Appendix A) computed the

Mode-II stress intensity factors caused by the damage array (Eqcations 7.24

and 7.25) and the remotely applied load (Equations 7.2) along with a

cumulative result denoted Kdamage, Kcrack, and Ktotal, respectiveay. KMIN

computed these values for various crack tip locations starting at :he notch tip

I and extending through the damage zone. The SIF magnitudes are normalized

by the KIj c values obtained for this material by Kennedy (31). Plots of Kcrack,

Kdamage, and Ktotal vs. imaginary crack tip location are illustrated in Figure

7.29. The reader should note that the total SIF (Ktotal) is approximately equal

I
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I to zero at the same location where the centroid of damage was determined for

this cycle. This finding suggests that the Mode-il fracture in ovrrconsoidated

clays resembles that of a Dugdale-Barenblatt model (15,19) if an imaginary

crack tip is located at the centroid of damage.

I Although not explicitly reported, KMIN also computed the same SIF

results for Mode-I. In general, Mode-I effects can be induced the

unsymmetrical development of the damage zone (Figure 7.28). However,

Aidamage never exceeded more that 4% of KiIdamage and the hydrostatic effects

(a. = -30 psi) cancel any Mode-I propagation (i.e., Kitotal = 0).

l 7.7.1 Stress Intensity Factor Analysis for Continuously Distributed

Dislocations

I It is recognized that the above results are only valid for the particular

configuration shown in Figures 7.28 and 7.29 and that a more general approach

would may rendure more worthy results. In this subsection we will outline a

3 method for computing the SIPs caused from the distributed dalmage illustrated

in Chapter 5.I
Consider a square element of material extending through the cylinder

thickness within the LSD damage zone as illustrated in Figure 7-30. It is

expected that some of the LSD lines (surfaces) do not all extend to the outer

I
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I wall of the cylinder and thus the actual discontinuity density may be more

realistically depicted by utilizing the LSD density measurements-

In general, the total SIF can be written as a combination of that due to

the remotely applied load (Ko) along with that of the LSD array- (AKsd,). This

I can be expressed as:I
[7.291 Ktot = 14o + AKsdzI
where:

1 [7.30] Ko =

and:

[7.31) AKdz = PIrC f Gsj,(p,O) i(xy) dV

Vs dz

In Equation 7.31, Gsif(,e) denotes the Green's Function for the stress

intensity factor for a unit discontinuity located at p and oriented by e. The

I expression for the Green's Function is written in Equation 7.28 and is plotted

for in Figures 7.24 through 7.27. I[xy) in Equation 7.31 denotes the

concentration of LSD's within the damage zone and has a dimension of and can

be written for a particular LSD orientation as:

I
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(7.321

where t is the cylinder thickness.

I Thus, the total SIF as expressed in Equation 7.31 can be -written in the

following form:

I[7.33] Kt t =KO1 + -{f G(z;y) tjz ) dxd]

Vs dz

In order to employ Equation 7.33, we need only to define the LSD

concentration txy). A method will be proposed herein as an illustrative

example for constructing the LSD concentration from the distributions

constructed in Chapter 5.I
If we assume that the number of elemental discontinuity lines are of

average orientation (i,e, E = * 200 depending if above or below the z-axis), and

that the discontinuous displacement within a given element is equal to the sum

dipole displacements within that element, the concentration for this element

U can be written determined.

I In the example proposed in this subsection, a constant dipole

displacement was assumed, which implies that the total discontinuous

I
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I displacement within across the damage zone is proportional to the volume of

damage created. Further, the total number of dipoles within an element are

assumed to be proportional to the damage density.I
For simplicity, an LSD zone is assumed to have the simpified form of

that shown in Figure 7.31. A series of programs called KMSM ard PLDS

(listing in Appendix A) performed the analysis. Figure 7.32 illustrates the

results for the SIF due to damage only (AKsdz in Equation 7.31) as well as a

dislocation density scattergram in a comparable analysis to that performed for a

particular configuration in Figure 7.29.

Notice that this generalized analysis also illustrates that a location where

all of the stress field singularities cansel appears within the damage zone. This

is similar to that shown in Figure 7.29 and illustrates in a more general sense

that a phenonima of a modified Dugdale-Barenblatt model with a tip located

I within the Ktot = 0 vicinity may actually occur in our material.

I
7.8 Energy Release Rate Analysis

I In this section we will introduce methods for computing the energy

* release rates for both the near (at the notch tip) and far (around the entire

damage zone) fields. From LEFM (Linear Elastic Fracture Mechanics) the

energy release rate of the notch tip is related to the SIF by Equation 7.34.

I
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I[7.34] inear =(K tOT) + (Kqot)'El

where
- plane stress1

[7.35] E= 1 - plane strain

U The energy release of the entire damage zone will be referred to herein as

the far field ERR (Energy Release Rate) and denoted by Jfr. Budiansky and

Rice (4) provide expressions for the ERR in complex form as:

r

Thus, Jfar can be evaluated by performing a numerical contour

integration around the microdefect array by using the potentials in Equations

7.9, 7.10, and 7.19.

Again, a fortran routine named RENG was written to perform such an

analysis. This routine reads in the microdefect file and evaluates the near and

far field ERR's. RENG utilizes a rhomberg integration technique to perform

the contour integration and a listing is included in Appendix A.

The configuration shown in Figure 7.25 (Cylinder 5--6) was analyzed and

the following results were obtained:

IM
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I
Jnear = 1528 J/M2

Jfar = 149 J/M2

I

1 7.9 Summary

U The information contained in this chapter formulates the stress and

energy analysis of the crack-damage interaction problem. The solutions are

expressed in terms complex potentials and the results obtained from these

I analyses provide insight in:

I!
i The asymptotic stress fields in the vicinity of the main crack, the

stress fields for the crack-dipole and the stress fields for the
dogbone crack configuration as applied to Mode-II conditions.

0 Zones of shielding and amplification are identified through
Green's Function for the SIF plots. These plots were produced
for both Modes I and II for the case of the horizontal and inclined
dipoles.

0 An effective crack propagation within the damage zone is
suggested through an elaborate crack-damage SIF study on a
particular configuration as well as a generic zone constructed of
continuously distributed dipoles.

* Far field energy release rates which relate to the translation of
both crack and entire LSD is computed for a particular
configuration and the results from this analysis can be used to
properly proportion the measured ERR. For the case considered
in Section 7.8, it appears that the energy release for rigid
translation of the damage zone is approximately 10% of the total
measured ERR. This factor will be used in Chapter 8 to adjust
the measured ERR accordingly in the constitutive model.

I
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I Solution via Superposition
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Figure 7.1: Three Cases which when superimposed produce a
combined stress/displacement field observed in the

l experiment.
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Figure 7.2: Plot of K. K. Lo's solution for a crack with an edge
dislocation in the complex plane.
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Figure 7.3: Plot of a crack with a dislocation dipole in tbe complex
plane.
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I Chapter 8

I A Constitutive Model
I

I 8.1 Introduction

I In Chapter 6, the fracture process is treated as a thermodynamic

irreversible process. Therein, the global entropy production is described as a

bilinear form of generalized fluxes and thermodynamic forces (Equation 6.14).

I This type of relationship has also proven to be true for other types of

I irreversible processes such as diffusion and chemical reactions (1,2,3,4).

In order to develop a constitutive model describing the Mode II fracture

process in overconsolidated clays using the relationship in Equation 6.14, two

I tasks must be accomplished:

I s The phenomenological relationship between the generalized flux

(c) and the thermodynamic force (I) must be evaluated.

Evaluation of the specific energy for the Localized Strip
Densification Process (i.e., compute 7). 7 is considered to be a
material property in the theory and is contained in the
thermodynamic force (see Equations 6.15, 6.16, and 6.17).

I
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I
In this chapter the above two tasks will be addressed using

I experimentally obtained results from Cylinder 5-6.

I

I 8.2 Experimental Results and Observations

I Cylinder 5-6 was tested in a manner described in Chapter 2. During the

cyclic test, specified torque-rotation cycles were recorded and corresponding

photographs of the LSD zone evolution were taken (see Figures 3.1, 3.2, 7.28).

From the torque-rotation curves, the total potential energy and irreversible

work values vs cycles were plotted. These plots are shown in Figure 8.1.

Other processed results for this test included the damage zone evolution

(LSD evolution) performed in Sections 5.3, and 5.4. Results from the Cylinder

5-6 damage evolution reconstruction include a plot of the centroid distance (z,)

vs. cycle number (Figure 5.7) and a plot of the translational resistive moment

I (RI) vs cycle number (Figure 5.11).I
The data in the plot of centroid distance vs. cycle number in Figure 5.7

was fit by a least squares approach with a third order polynomial.

Differentiating the curve fit equation produced a second equation describing the

rate of centroid movement (i.e., an equation for i: for any cycle number).

I
I
I
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3 The stress and energy analysis in Chapter 7 showed that the energy

release for pure translation of the damage zone amounted to approximately 10%

of the total measured energy release rate (see Section 7.8). Thus, the 10%

factor was used to reduce the total measured energy release rate in Figure 8.1 to

compute the active part of the thermodynamic force (A1). Application of the

l above described approach was done in by plotting the potential energy vs.

centroid distance and fitting the data with an approximating curve (see Figure

8.2). Again, differentiating the curve fit equation produced another equation

representing the total ERR (energy release rate). These results were reduced to

10% of their total value in accordance with the findings in Section 7.8 to reflect

the ERR due to translation of the damage zone.

U Note that by processing the information as described above allows us to

obtain the generalized flux (hc), the active part of the thermodynamic force

(A1), and the resistive part of the force (Ri) for any particular cycle if a value

for 7 is specified. Thus, we are now ready to investigate an appropriate

phenomenological relation between the force and flux and to estimate a value

I for y, the specific energy for Localized Strip Densification.

I
8.3 Phenomenological Relationship and Specific Energy Evaluation

I In this section we evaluate the phenomenological relation between the

3 generalized flux ic and the thermodynamic force X1. For convenience we

I
I
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I remind that:

i [8.1] X, = A, - 7yR

I rate of translation of the LSD zone centroid.

l At thermodynamic equilibrium all processes stop and we have

simultaneously for all irreversible processes:

[8.2] C= 0 X, = 0 at equilibrium.

It is quite natural to assume, at least in the neighborhood of an

equilibrium condition (i.e., stable crack and damage propagation), the relation

between the force and flux can be approximated by a linear relationship. This

type of relation is assumed in many other processes studied in nature. Fourier's

Law for heat conduction and Fick's law for diffusion are examples of such

processes (1,2,3,4). This type of phenomenological relation is known as the

Onsager Principle (2,3).

Initially, the effect of 7 on the force/flux relationship was investigated

by plotting on a log-log scale the data of forces vs. fluxes for various values of

l 7=constant. In other words, a range of plots illustrating the force-flux data for

differing values of - were produced. These plots for 7 ranging between 1.0

I ckJ/MS and 1O.OkJ/M3 is included in Figure 8.3.

I
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I
In Figure 8.3, it is noticed that their is an apparent insensitivity for a

chosen 7 in the early portion of the data and that the significant influence only

occurs near the end of the record (i.e., the value of 7 only significantly affects

the last four data points). The last points correspond to cycles greater than or

I equal to 245. When investigating the LSD zone evolution for cycles earlier than

245 cycles (Appendix D) it can be noticed that the relative rate of LSD

nucleation is significant when compared later portions of the record. Since the

thermodynamic model presented within this study did not account for this

effect, the application of the translational model to the LSD zone to the earlier

I portion of the record is not applicable.

I An Onsager type relation (linear relation) is proposed for the data with

cycles greater than or equal to 245 from the Cylinder 5-6 data set. In order to

assess the proper value for 7 and the phenomological coefficients a regression

analysis on the force/flux data for ranging values of 7- The combination which

produced the best correlation (e.g., according to Pearson's Correlation

Coefficient) were chosen as appropriate parameters to describe the fracture

process in this material. The resulting fit is shown in Figure 8.4 and the

corresponding equation describing the fracture process is given by:

I [ 8.3 ]c A 7Ra

I
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i where, for the case of overconsolidated kaolinite clay:

I =1.0 (k JIAP)
[8.4] # 45x103 (J cyc/M)

a= 2 (J/M2)

I
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Figure 8.1: Plot of the total measured potential energ and
irreversible work vs cycle number for Cylinder 5-6.
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Figure 8.2: Plot of the total measured potential energy and

irreversible work vs. centroid distance for Cylinder 5-6.
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II Chapter 9
I

Final DiscussionI

9.1 SummaryI
The work contained in this dissertation represents a fundamental

I investigation of the Mode II fracture process in overconsolidated clays. A

methodology is presented for characterizing cooperative fracture with an

ultimate goal to develop a constitutive model based on the framework of

thermodynamics of irreversible processes.

i While performing this study, new developments in theorectical aspects,

and experimental techniques arose. Some of these developments will be

summarized herein.I
Chapter 2 presents experimental techniques. Some of the new

i experimental contributions include using an image analysis system for the

quantitative characterization of observed damage in this material Also, a

technique for measuring localized irreversible deformation (slippage) during the

testing sequence was developed. It involves photographing and a.alyzing a grid

205

I



I

n 206

I system stamped on the cylinder prior to testing.

U Chapter 3 presents experimental evidence of stress induced

morphological transformations that occur in the soil fabric during fracture. It

should be noted that this is the first time damage has been observed in the

I microstructure of this material and the processes responsible are named

Localized Strip Densifications and Network Densifications. In addition, four

micromechanisms responsible for macroscopic deformation are identifyed.I
Chapter 4 introduces techniques for characterizing the kaolinite cluster

I distributions (i.e., the soil fabric in it's natural state). Included, is an

introduction to the concept of a representative volume of material which bridges

the gap between material science and applied mechanics. A formal definition is

given for the representative volume and a working definition of a representative

volume for the case of overconsolidated clays is given.I
Chapter 4 also provides new theorectical and numerical techniques in the

field of quantitative stereology by presenting a new scheme for reconstructing

the spatial distribution of a polydispersed system of particles from information

obtained from a planar section. The new reconstruction scheme is a hybrid of

Dehoff's and Saltykov's methods except that it is generalized to accomodate a

mixture of both prolate and oblate ellipsoids. In addition, the presented scheme

allows for an overdeffued system of equations improve accuracy over the

conventional linear system. Finally, an error analysis technique is presented

I
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I and some preliminary results for the spatial distribution of dusters is presented.

I Chapter 5 presents an experimentally based scheme for quantitatively

characterizing most common of the material transformations (i.e., the Localized

Strip Densifications). The technique involves a combination of elaborate

I specimen sectioning along with an intensive numerical processing scheme to

reconstruct contour maps of the damage zone. Further, a technique for

reconstructing the evolution of damage is presented and gross (elementary)

movements of the entire zone are identified.

I Chapter 6 introduces the concept of treating fracture as an irreversible

process within the framework of thermodynamics. Within, the conventional set

of state parameters is extended to include a damage parameter p and an

equation of state is written in terms of entropy production. Both the local and

global entropy production is expressed as a bilinear form of themodynamic

forces and generalized fluxes. Also, a generalized flux is identified as the

centroidal movement of the zone of damage and the active part of the

thermodynamic force is compared to the conventional energetic force (J -

integral) in fracture for an isothermal condition.

Chapter 7 provides a comprehensive stress and energy analysis for the

crack and damage zone configuration. The combined problem of crack, damage

and applied load is decomposed into three separate problems. A semi-empirical

stress analysis based on a complex potential formulation is introduced.

I
I



I

208

I Contours of effective stress fields are shown for specified cases. Also, the

effective stress intensity from each of the separate cases is investigated. Zones

of amplification and shielding are identified for a microcrack (dislocation dipole)

oriented so as to be parallel to the main crack and for the case of an inclined

(200) microcrack for both Modes I and II. These zones are identified through

contour plots of the Green's Fvnction for the stress intensity factor. Also, the

combined stress intensity factor caused from both remote loading and a

particular (observed) configuration of damage is analyzed and a plot of the total

SIF vs imaginary crack tip suggests that the fracture in this material resembles

that of a sophisticated Dugdale/Barenblatt model. Further, a generic approach

I for analyzing the damage zone as distributed damage is introduced and

illustrated for a particular case. Finally, an energy release rate analysis of the

entire damage zone is performed.

I
Chapter 8 brings together all of the information from the previous

chapters and proposes a constitutive model for describing the fracture in this

material. The model is based on a bilinear form of a generalized flux

(centroidal movement of the damage zone) and a thermodynamic force. The

model presented consists of a phenomological relation between flux and force

and the evaluation of a material property 7 (the specific energy for duster

densification).
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I 9.2 Conclusions

I Many conclusions can be extracted from the work reported in this thesis.

Most of these have been commented on in respective sections of their chapters.

These will not be reiterated in this section and only those that are considered

most significant will be discussed.

U The first conclusion that can be extracted from this work is the

micromechanisms responsible for macroscopic deformation which are evidenced

in Chapter 3 and explicitly listed therein.I
Second is that the overall methodology presented, provides a constitutive

law which derives its basis from the thermodynamic studies of transport

I phenomena (heat conduction, diffusion, etc.). Thus, a bilinear form describing

the fracture process contains sound scientific reasoning and is not simply an

empirical formula.

I Finally, it is my belief that further studies of this nature would greatly

benefit if a specimen of larger diameter is used. The basis for this finding can

be found explicitly in three different chapters. First of all, the minimum

representative volume size determined in Chapter 4 indicates that statistical

convergence of specimen response may not occur unless the specimen size is at

least an order of magnitude larger that the RV size. Secondly, close inspection

of Figure 3.5 b shows a higher frequency of LSD's emanating to the outer

I
I



I

210

I surface and relatively few along the inner surface. This observation indicates

that the curvature affects the nucleation and growth of damage. Thirdly,

Figure 8.3 shows a relative insensitivity to the value for y except at the latter

data points. This indicates that the early portion (less than 245 cycles)

majority of the test sequence can be considered an initiation stage and the

i applicability of this model (constitutive model) only becomes reasonable after

245 cycles. A larger diameter specimen would provide more data within this

i realm.
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U Program Listings
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Paqe
06-24-86
12: 21: 45

D Lin*#l 3 7 IBM Personal Computer FORTRAN Couwpilz V2 .00
I. PRCIGAK PROBLY
2 C***
3 c*: TM= PROGRA IS DESIGME TO COMPUTE THE CW(ULA!?IVZ '~*I 4 c*.. PR&SZL1T USINAG A GZAUSSIAN DENSITY DZSTRIMUTO FOR ~*~
6 C* ***~-------*******************e*e**
7 C
8 C Znp= Required Variables9 'C

10 WRI(,*' - PT PARAMLEER -- 1
11 0005 wRL--(*,*)' Mr&K, SDEv, SUM'
12 READ (*, *, ERR0005) BARX, SDEV, SJ
13 0010 WR= (*, *)' GIVE LOWER AND UPE LIMIT'
14 READ(*,*,ERR00l0)EL,U"L

29 SVIYs1+(EETWIrHU9 339 B-L)/LAT(I
20Uc6

1AR 2EA 2X05 (X-AR)/DV *

CO1 2:A 38=CaF*RK

33CIit fial rEsLlts
- 4 cNEE4 4

35E REAL E (*600 AXSDV LUS

37~ 1EA 42W ' 1, ,' SI7-,,04

BAL REAL 18

BLT REA.L 16

CF REAL 34

EIRA,5
IX n-Ni

FLAIi
(UTRFL5
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06-24-86

Line# 1 7 IBM Personal Computer FORTRAg compiler V2.00

ane Type Size Class

PROLY PROGRAM

Pass One No Errors Detected
41 Source Lin-e
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06-27-!:

O 1na 2.EET Mi)crosoft FORTRAH77 73.20 02/84

2 7.ROGRAM CtCIMP

4 C'**** = PURPOSE OF THIS PR~OGRAM( IS TO RZCVX INPUT FROM MHE fHP
3C*:' LVLOTTER DITUIWATION AND STORE Tim InaO IN AN ARRAY FOM PLOT-*

6 C--__- =NG AIM OTM RZPP.OCE$SPG.
7 C*****~**t*t**~************a**.*.t*,

8 DflccNSI0N X(1000) ,!(i000)
9 C3XACTR*10 0ATVIL

10 C:ERACTR40 TITLE

::3 000'= =FL NumE -

1s XW3kD(*,02,R-OOATI
16 020 --RVAT (A10)

17 OPEN (1.0, FILE-OATFIL, STATUS-'YW')
18 0030 WKITE(,Z ' - G=V DATA TITLE -

19 ~ E(* )I20 -AXLD(*,0040,ROO30)TlTX
21 0040 FOrCMAT (A4 0)
22 0035 dI~TE **) ' GIVE NUMBER OF POInTS'
23 RD (* ., XRn.035) NPrS
24 0025 WRITZ(,) 17 AUTO INCRPMNTING X OR Y DATA

25 '42=*,*) GIV XINC AND YINC RESPECTIVELY'

26 R=cc- ER-02).0,DM

30 zc-o.0aI 31 C -

32 C .IAL InPUT LOOP
33 00 0100 22.-2.,PTS

2. 34 0105 dRT(*,0.10)I,UMC,OUMY
1 35 0110 YCORMAT (///I 2 36 1. - DEFALT VALUES .
1. 37 2 - PT. MO'.5' X -'.F12.S,' Y-',722.5,//
2. 38 3 - GIVE XOR T 17 NOT SATISFACTORY0,//
1. 39 4 *--999. TO CHANGE INCRU VALtIRS',/
2. 40 5 -- '1
2. 41 LAXO.0

1. 43 -I=D(;, *,MtR0105) DQ4DRY
2. 44 C
2. 45 F(D1CX.EQ.-999.)TMf
2. 46 0115 WRITE (*, *) ' GI7E NW XINC AND YfINC'
1 47- READ (*, *, =-R-0 11) XINC, YINC

1 48 GO TO 0105
49 zi
so c

1. 52 ~ (om.nE.0. ) oM-DIV
1 52 -m

56 -f=DONYflfyNC

L. 57 00---W4-UE

59 C
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a unt I icrooft ORTRN77V3.20 02/84
60 0120 WRITE(-,*)' CONTI-41M --- 0 LIST INPUT -1

6 1 Z=0M-0

I64 0133 WRITE(*,*)* I- PT NO -- f---X (value) - 1-Y (valu)-I'
65 00 0125 11,~4r

1 66 0125 WRITE(*, 0130) IlX(I1),Y(Il)
67 0130 FOMNT(' j ',15,' 1 ,F12.5,1 1 1,F12.5,' I')
68 0127 WRITE(*,*) I cnxGz flIIT GmV POINT NO'Ir6 IDGM-0
70 RE&D (*, *, ERR127) IDUl
71 IF(IDUM.GT.0)T~
72 0129 WRIE(*,*)' G=V x (value), Y (Value)'
73 -REM l*, MERR0129) X(IDIUM) , Y(IDUM)
74 GO TO 0133I ~ ~ ~ 7 ENI' TE~~T

02 010WMT(*,*)' GE0IDNEAEOHRAL ->1

83 =(DUE.GT.o)THmI
a4 NPx1_WPTS-1
8s WRITE(*,*)'I NPM-va.MPM1
86 00 0150 I1=1,MPIf3.

i 87 X(NPTS+11)-X(NPTS)-X(I141)
1 a8 Y (NPrS+I1) -- I. *Y (11+1)
13. 9 0150 CONTfIUE

90 NPTS-tfPTS*2-1
91 WRTTE(*,*)' ~FTps-O,NpTs
92 ENDIF

93 -wvAITE (*, *)'I WRITING FILE5'
94 =a0200 I1-1,NpTS

1 95 0200 ~T(0*XI),(1
96 5P99
97 -4m=-(10, *) STP, sTP
98 ;ZITE(10, 0040) TITLE

199 =_zSE (10)

Name Type Offset P Class

DATTIL OLAR-10 8024
DI~C REAL 8490
DO4Y REAL 8494
DUVC REAL 8090
DUMY REAL. 8094
11 --VrvGZR-4 8098I:DUM flIGER-4 8498
NPMX flET!GRA 8556
NPTS Th'r!GZR'4 8086
STP REAL 8568
?ITLZ CRA.A*40 8040

x REAL 3.6

Xfl4C REAL 8016
y RE.AL 4016

YINC REAL 8020
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a Line# 1 7 Microsoft FORTRAM77 73.20 02/84

Name Typ Size Class

CTCIMP PROGRAM

Pass One No -vrmrs Detected
100 Source Lines

I
I
I
I
I
I
I
I
I
I
I
I
I
I
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0 Line# 1 7 Microsoft FORTRAN77 "73.20 02/84
1 $DEBUG
2 = R OGRAM CONTOUR

4 C**** "Tis program is designed to create a series of files for *
5 c**** plotting a an active zone contour map. It assumes th a *
6 C**-** phenomina can be represented with a normal distributiam. *
7

9 C=MMON PT(100,2) YBAX(100) ,YDEV(100) ,YCUT(100,2) ,YXXX(.0o),
10 1 XCRD(100)
11 C ARACTER* 10 FILZM, FINP
12 C
13 C Set origin (crack tip) values
14 C

16 0200 3TE(*,*)' INPUT FILE. -> TZMIL ->0'
17 EZAn(*,*,X2R0200)ZX

19 0205 WRITZ(*,*)' GIVE ZNIVP FILE NAME'
20 3EAD (*, 0055, ER-0205)FINT
21 OPEN (7, FILE-FIlIP, STATUS-'OLD')
22 READ (7,*) NPRF

23 DO 0230 I-1,4PRF
1 24 3READ(7, )YBAR(I), YDEV(I) , Y)fX(I)
1 25 READ(7,*) YCUT(, 1), YCUT(1, 2), XCfD (1)
1 26 0230 CONTINUE27 =oOSE (7)

28 20 TO 0046
29 zyDIr

30 1-M (1) -0. 0
31 1=E7(11-1.0
32 -=T(1,i)-1.0
33 7CT'r(l,2)-2.0

35 0005 -I-T(*,*)I GIVE CRACK LOCATION
36 R-AD(-*, -Ub--0005) BAR(l)37 0010 IRR.IZ C*,*)'I ALIGN MEA VALUES ? YES ->I NO ->01
38 - M-A R*,* :-00 10) ZMOVE

39C40 C Rolad in remaining input

41 C
42 0015 R (,*)

" 
GIVE TOTAL # OF PROFILES TO IZNPT'

43 EA(*,*,RR-01S)NPpRp
44 3CRF-NPRP+1

45 0017 -RITE(*, *)I GIVE SEARCH LIMITS (lower, upper)'
46 2_A(*, *,ERR-Q017) SL,SU
47 C
46 C Start input loop here
49 C
50 DO 0022 .- 2,.XPRF

1 51 =1-1-1
1 52 0025 VRITE(*,0030)l1
1 53 0030 -ORMAT(//' GIVE MMAK, SDEV, MAX, FOR ',13,'1th P ILE)
1 34 -.-AD(, -,R-0025) YAR (1), YDEV(I) , YQX(I)
1 55 0035 *RITE(*,*)' GIVE CUTOFF LIMITS (lower, upper)'
1 56 =M-0•0

1 57 =:zrU2-0. 0
1 58 .- AD (*, 1," =R-0035) I, am2
1 59 C

I
I!
I
I
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1 60 =(QM1. m 0 . 0 002/81 61 YCUT(1,2)-ooUa.
1 62 ILSE
1 63 YCUT(1,2)-SL
1 64 DiF
1 63 C
1 66 =(DUM2. NE. 0. 0) THE

1 67 !U(~)S

1 7

1 72 =?(fl40VE.-EQ. 1) TEEN

1 73CT(,1 YU ( 1 YA 1

1 75 TAR()-0.o

1 77 C
1 78SCI1 79 0033 '42TE(,) GIVE X-COORDINATE FOR PROFILE1 80 2

ZXD (*, *, ZRR-00 33) XCRD(1)
1 81 0022 =NTINUE

82 =-
83 022.0 WgZT--(*,*) 'STORE nlrPv' DATA IN FILE YES ->l go ->a,
84 021 2AD(*,*,EPRl2l0)IH

G 25WRIE(*,f)' GIVE FILE DrApfE'
87 3ZAD(*,0055,E1R..02l5)FImP
88 OPEN,(7,FIESTTUTS- I NW')
89 VRIT(7,*)NrPRP
90 D0 0220 I-1,.YPRF

1 91 *WITE (7,)YBAR (1) , YfEV (1) ,'fl.X (1)
1 92 WRITE (7,)YCUT (1, 1) ,YCUT (1,2) , XCRD(1)
1 93 0220 ZONTINUE

94 =flSE(7)

97 5tar cnturUEu loop hr

101 0040 ?TMM(/ CONTInUE ->0 STOP ->I')
102 S--TP-0
103 -2EAD (*,6, ERR-0045) ISTP
104 :(ISTP.GT.0)GO TO 0999
i0 C mad in cont~our xaczu=tude and tile output name

108 050 IVE AGNIUDEOF DESIRED CONTOUR'
109 ,vR05 0k
110
Ill 0060 Rt(')' GIVE Xt7PUT, FILE NAMEZ'
1-2 RE= (*0 05 3, -- R- 0 06 0) F 7 LEN
113 0055 2'R2-PUT (Al0)
114 C
115 C Zeck to see whichx prof ile exceeds the contour magnit-c~
116 C
117 :C 0065 J-1,9PRP

1. 118 0065 (()G~~GG TO 0070
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D Line# 1 7 Microsoft FORTRAK77 V3 .20 02/84

119~ WRXT4.M VALUE OFCONTOUR rCCEEDS DENSITY PEWK
126 0020 CO~~
127 C PN~I1249
128 DO 0075 Z-IPRSI,MPRF

1 133 0075 C0l47TEM
134 0076 CONTflK-t!
135 lF(IPM.GT. 0) TE
136 NkS-: (IPRiID-IPRST+1) +3
137 ENDIF
138 IP (ZP.EQ. 0)TEN
139 IPRN-PL-V
140 NPS--(IPRNW-IPRST+ 1)+ 1

141 Nr
142 NRFT(.)'~?S -', ,PTS
143 Wt(.*'IPPST, IPRN0-',IPRST,IPMN

145 C computa the coordinates for the points

149 CAL1-7 Z=NINIT (IM, OM3G , VALX, VALY)

157 ?1lR-I:9-(0
1581AL ?Tl:-YXTZR QGv~1VL
159 P (N7Z,)-VALXI153 P W., 2) -VLvi ~

14 ELSE

156 P (M , 1) -X IPRN

I1,5 175121N

15IM =P(P~lGVL1VL2
15IT(,2,7L'

I6 Top-S )-AY
1I ND?
1I RT OPTDFRT2PS
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0 Line# 1 7 Microsoft FORTRAN77 V3.20 02/84
1 178 IF (YMAX EQ. MULG) TRW
1 179 PT (Il,2)-YBAR( IPR]

18IO PT(12,Z)=YBAR(IPR)

1:1 ELSE
182 WRITE(*,-)' CALLING FNDPT"

1 183 WRITE( -)IPR,C4AG,VALY1,VALY21 184 CALL E =rPT ( m, amG,7ALyI, VALy2 )
1 185 WRITE(*,-)' REURIG FROM FIXDPT',VALYI,VALY2

I1 186 PT (If, 2 )-IALYI
1 187 PT(12,2)=VALY2

1 188 END17
1 189 0080 CONTINUE

190 CALL LM= 3T(IZPR, a4AG, VALX, VA.L¥P (11 ! )

192 PT(L1+1,2]-VALY
193 C194 C Write c==ur to file

196 OPEN (10, FLZ-FILENN, STATUS- NEW')
197 DO 0090 :1,NmPS

1 198 WR009 (10, -) PT (I, 1), PT(I, 2)
1 199 0090 CONTINU

200 STP-999.
201 WPZT2(l0,*)STP,STP
202 WRITE (10,3100)O(AG
203 0100 FORMAT(' -ILE FOR CONTOUR MAG'",GI0.3)
204 CLOSE(!0)

20S C
206 C Check for additional curve at the corresponding magnitude
207 C
208 FL-O0209 IF ( ! RND. =T.XPIR2 ) TMXN

210 ICIPR0ICD+i 211 I PRST-O
212 DO 0110 -='IC,NMR

1 213 IF (.MAX M11 GE.MM' G) THEN
1 214 IPRST-I
! 215 GO TO 01-1

216 ENDIF

217 0110 CONTEND!
218 0111 CONTINUE
219 IF (IPRST.GE. IC.AND. ZPRST. LE.NPRF) TE
220 WRTE(,*I' NEW STARTING PROFILE AT',IPRST
221 WRITE(e,*)' ANOTZER POSSIBLE CONTOUR AT',CMAG
222 0130 MITE(*.*) GIVE NEW FILE NAME'
223 READ( , :55,ER-0130) FLENK
224 FZG- I
225 LN'DXF
226 ENDIF
227 17(c-G.rQ.:)GO TO 0120
228 GO TO 0046
229 0999 CONTMIAU
230 END

NaIm Type Offset P Class

O(AG REAL :66
Du I REAL 118
DUM PEAL 22

I
I
I
I
I. .. . -- m I I I I I
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D Lin~e#1 7 Microsoft FORTRAN77 V3.20 02/84
?ZLENK CHAR*10 174
PIMP CEAhR10 20
FLG PREL 336
1 IIMER*4 34

11 fINTEGER*4 58

12T 12n)GER* 4 12
1C fllE*4 340
~IMOV fl4TGER*4 30
INT INTZGER*4 26

ISTOP flflGER*4 282
IPT RNE 4 0248 IAO

STP nfELR* 100

NALX RVEAL 4 260

VALYP RNER* 272

VAL' REAL 276

VALYZ REAL 280

XCRX3 REAL 2800 /COleAQQ]

2312C

233 SUBROUTfIE LnNlT(I, OOG, VAL, VALY)
234 C0OMO ?T(100,2) YBfAR(100) ,YDEV(100) ,YCUT(100,2) YMnAX(100) ,
235 1 XMRD(100)
236 -(Y-AR(-1)-YAR(l) )**2
237 ~ DNDXC!D(1-1)-XCRD(l) ) *2
238 DSQRT(D)
239 DP.R-(D* (CUtG-Y1X(I-2.) )) / ('flX(I) -'flX(I-1))
240 VALX-(EWR(XCRD()-XCRf(I-1) ))/D
241. VALY-(flPR*(Y&R()-Y3AR(I-1) ))/D
242 VI.ICVALX+XCRD (I-1)
243 VALY-V1LY+'fBhR(I-1)
244 RTR
245 END

Name Tylpe Offset P Class

C3(G REAL 4 *

o REALL 348
OPR REAL 35 2

INTZEGR'4 0 *

PT REAL 0 /COmOAQOJI S=R INTRINSIC
VALZC REAL 8

VALiT REAL 1
XCRD. REAL 2800 /COM?1QQJ
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D Line$ 1 7 2.9:2:12

YSA REALL aco /CoaiqMOMcoof o'7 V3.20 02/84
YCUT REAL 1.600 /COWAQOJ

~246 C

247 c

253. C

2534I255 LL1
257 Y2-Y=~(zLL)

259 YG,-Y~CO:(, L)
260 CALL -X(i,YG, mr.)

262 Yvm- C-,(, LL) o i

263 C er--a= bisectinxg ccnverg~nq* otn
268 000C klf~
267

270 CXMLL (- 7Zt.G , fnG)
271. CON((' cg) -100. 0) /c%I 272 7?(AES(C3N).LZ.-.O)GO TO0 0020
273 ZFCLTAGZQ.)T
274 IFCG -G. -CMG) THr
273 Y1-Y!G
276 ZS&
277 T-?

282 ELSE
283 IY
284 ENDI!
285 ENIDI?-
286 GO To 0010
287 0020 CONT-flWz
289

I ~290 LS
294

296 A2
298

297

I9
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0 Line# 1 7 microsoft FORTRAN77 V3.20 02/84

299 Y1=YCUT(:rL)
3 00 GO TO 0100
301 DIF
302 RETURN

Nas303 TYOED o t ls

3CON REAL 384
FLAG REAL 3 56
1 ITGER*4 0 *

Li. INTEGER*4 360
PT REAL 0 /cozo(QQ/
VA.LYl REAL 8 *
VAY2 REAL 2 *C1I

XIAV REAL 2800 /COM)AQQ/IYCOT REAL 1600 /COMOAQQJ
YDV REAL. 1600 /COMAQQ/

YG REL372
YMG REL376
YWAX REL2400 /cOZO!QQJ

MfALRAL 380

304
305 CI 306 C
307 C
308 SUBROUTI YX (Z, YG, TMAG)
309 COO(O PT (100, 2) , YBAR (100) , YDEV (100) , !CW2T(100, 2) , -iAX (100),
310 1 XCD(10O)
311 1X (YG-Y3AR (1) ) /YDE7 (1)

U3142 ETR

Name 35Type ED Offset P Class

EX REAL 388
EXP 13(TR!NSXC
I INZGER*4 0 *

PT RAI /OMQ
ICD RX 30 C.=
IBR RA 00 /OMQ
ICT RA 60 /OHQ
ID7 RA 20 /OMQ
IG RA
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Name Type Size Class

COHMQQ 3200 CORONW
cowrOU . PROGRAM
FIN'DPT SUBROUT]NE
x SUBROUTINE
LZINT suBRoUmfl

Pass One No Errors Detected
315 Source Lines

I
I
I
I
I
I
I
I
I
I
I
I

I
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D Line# 1 7 Microsoft FORTRA977 V3.20 02/84
L SDEBUG
2 PROGRAM REPVOL
3
4 C***** This program is designed to help the user determine the *oe
6 C***** representative volume for a specified sample by :6 C***** 1) Computing the spread of diversity in a *
7 C***** by creating histograms for a certian
8 C***** dimension. coo
9 C***** 2) Increasing the size of the dimension **

10 C***** recomputing the effective spread in the *
1I C*

* * * *  
sample. *

13 DIMENSION GR(20,20} ,CREP(3,3) ,BAME(20),SDRZP(20)

14 CHARACTRe*10 FILE.
15 WRIT (* ,*)' GIVE INPUT FILE NAME'
16 REA (*,0005)FILE117 0005 FORMAT (AI0)
is OPEN ( 10, FII=F=I, STATUS ' OLD" )
19 READ (10, *) GRDM
20 DO 0010 11-1, 20

1 21 DO 0010 12-1, 20
2 22 0010 READ(10,*)GR(I1, 2)

23 0015 WR=T(*,*)' GMV NO. OF EVALUATIONS TO PERFORM'
24 READ (*, *, ERR-0015) NAM
25 IF (NAN.LE.0)NAN-1
26 C
27 C Input is complete, Thus stait Analysis
28 C
29 DO 0020 1I-I, NAN

1 30 WR2T(*,*)' WORKING ON ',I1,'1th DIl3SION'
1 31 AREPI(FLWAT(I24 GRD) *(FLOAT(I1) *GRDM)
1 32 D 0030 12-i1, 3
2 33 DO 0030 13-1, 3I3 34C

3 35 CSTRI(1NA2-1) *11) + i3 36 TSTPI"IZSTRI I- 1
3 37 ISTR2"((I3-) *I!) +1
3 38 ISTP2-rSTR2+1I- 1

i3 39 CREP(12, I3) =0.0
3 40 DO 0040 Z4-ISTRI,ISTPI
4 41 DO 0040 I5-ISTR2,ZSTP2
5 42 0040 CREP(I2,f3)-EP(12,I3)+GR (I4,T5)

3 43 CRZP (I2,13)-(CREP(I2,I3)*100.0)/AREP
3 44 0030 CONTINUE
1 45 C
2 46 C COMPUTE TNE XEAN D VARIATION FOR PARTICULAR DIMENSION
1 47 C
". 48 BAR.E.(11.) =0. 0. 49 SDREP(II) -0.0

50 DO 0050 12-1,3
2 51 00 0050 13-1,3
3 52 RFI-CRE?(12,1Z3)

53 SDREP(II)-SDRZP(II.) ((RFI*PRF)/9.0)
3 54 BAREP (Il) =BAEP (If) + (RFI/9.0)
3 55 0050 CONTTNUE
1 56 SDREP (I1)-SQRT (SOREP (-I1 - (BAREP (I1) *BAREP (Il)))

i 57 0020 CONTINUE
58 C
59 C WRITE OUT "1E FINAL RESULTS

I
I
I!
I

......... . ..I , m m ~ ll I I S i
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0 Line2. 7 Microsoft FORTRAN77 V3.20 02/84
60 C
61 0060 WRITE(*,)' TERMINAL ->0 PRITER ->1'
62 READ(*, *, MtR-0060) IW
63 IF (IW. Nz. 0) TKXN
64 0PI (7,.."'PRN')
65 IW-7
66 ENDIF
67 "WA-0
68 0100 WRI'T(IWa110)
69 0110 FORAT('1,//,70 1 0 0 /

71 2 ' REPRESENTATIVE VOLUME ANALYSIS"/
72 3 ' "-
73 4 ' Anal Dimension Mean Std. Dev. '/74 5 ", No. (M-E-4) M% I% /75 676 DO 0 120 1I=I,NAK

I1 77 DIrM-GR0K*FTL0AT (II)
1 7: C)130 WRITE (IA, 0130) I, DIM, BAREP (I1) ,SDREP(II)1 7 FORAT(
1 80 2" ',,I ",81o.2,, ,F10.2,' 'I1o.2,' I',/
1 :1S 2 .... . . . .... . I . . . . .--'--
1 2 0120 CONTINUE

83 WRITE(IA,0125)
84 0125 FORMAT('!',//,20X,'--- CLUSTER AM DATA BASE
85 DO 0135 1-1,201 86 0135 WRITE(i-M,0140) (GR(IIZ) ,IZ-l,20)

i 7 0140 FORKAT(/, 20(1IM.O0) )

as IF (IV.ZQ.7.AND. IWA. EQ. 0) THEN
89 IWA-7
90 GO TO 0200
91 ENDIF
92 END

Name T"y/pe 0ffsot P Class

AREP RL 1848
BAREP REAL 1732
CREV REAL 1696
DIM REAL 2360FILEI CHAR*I0 1812
FLOAT INTRINSIC
GR REAL isGRDK REAL 1828Ii INTEGER*4 1832
12 -INTEGEI* 4 1836
r3 INTXGER*4 1852
74 lNTEGER*4 1872
I5 INTEGER*4 1880
ISTPI ZNrEGER*4 1360
ESTP2 LI%-GER*4 1868
ISTRi nTrEGER*4 1856
iSTR2 ITEGZR*4 1864
1W IITEGER*4 1892

MA XTEGER*4 i896
IVA IXTEGER* 4 1840

Rhr REAL 1888
SDRIP REAL .616
SQRT INTRINSIC

I
I
I
I
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Ia". Type Size Class

REPVOL PROGRAM

Pa" One No .Errors Detected
92 Source Lines

I,

I
I
I
I
I
U
I
I
I
I
I

I
I
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D Line#83 7 Xicrosoft FORTRAN77 V3.20 02/84
1 $debug
2 Program Morphol
3
4 C***-- This program is designed to compute the number of clusters **

C*:*** in a given class per unit volume of material. This is to **
C**** be performed using an algorithm similar to that used in De-*

7 C***** Roffs ellipsiod analysis. This algorithm, however, has -t

a C***** been generalized to compute the number of both oblate and **
9 C * prolate spheroids vithin a given class as well as a poss- **
10 C***** ibls aspect ratio for each class.

12 real*8 rj, ra,raml,phi,qs,rho,rhoa,rhoml,dphi,c(40,40)
13 real*4 ri(1000) ,s(1000) ,na(40) ,nj (40)
14 dinension drj(2) ,q(2) ,k(2)
15 character*10 fil
16 charactear3 label (2)
17 character*40 title

18 data label/'Pro', 'Obl'/
19 c
20 c Input the necessary Information
21 c
22 0005 write(*,*)' Give filename

23 read(*, 0010,err-0005) fil
24 0010 format(alO)
25 open (5, file-fil, status-' old')
26 read(5,*)kt,delr27 do 0013 i l,kt

1 28 0013 read(5,*) na(i)
29 close(5)30 0015 write(*,*) Give no. of prolate and oblate classes'

31 read(*, *, err-0015) k (1) , k(2)

32 ir(k(1).gqt0)then
33 0020 write(*,*)' Give prmax and aspect ratio'
34 read(*,*,err-0020 )prmax,q(1)
35 drj (1) -prmax/float (k(1))
36 endif
37 if(k(2).gt.0)then
38 0025 write(*,*)' Give ormax and aspect ratio'
39 read(*, *,err-0025) ormnax,q(2)
40 drj (2)-ormax/float (k(2))
41 endif
42 kut-k(l)+k(Z)
43 write(*,*)' Give title,
44 read(*,0030)title
45 0030 for-at(a40)
46 C
47 c Integrate the probability coefficients
48 c
49 do 0100 ia-1,kt

1 50 ra-del-float(ia)
1 51 raml-delr*float (ia-l)I 52 do 0110 Z-1,kut
2 53 c(ia,j)-0.0
2 54 i (j. le..C(1)) thenr
2 55 rj-dhle(d - () *float (j))
2 56 qs-dble(q(1))

2 37 .-.e
2 8 ---rJ-dble (dr! (2) * float: (j-k (1))

2 39 qs-dble (I. 0/q(2]))I
I

I
I

IIII[ [
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0 Lire 1 7 Microsoft FORTRAN77 V3.20 02/84
2 60 endif
2 61 dphi-1. 570796327/180.0
2 62 do 0120 i-l-,180
3 63 phi-l.5707963*dble(il)/180.0
3 64 call comrho(rJral, pbi, qs, rho)
3 65 rhoml-rho
3 66 call courho(rJ,ra,phi,qs,rho)

3 67 rhoarrho
3 68 c(ia,j).c(ia,j)4((rhoml-rhoa)*dsin(phi)*dphi)
3 69 0120 continue
2 70 c(ia,J)-2.0*c(ia,j)
2 71 if(c(ia,j) .it.0.00001)c(ia,J)-0.0

2 72 wrt(,)
2 73 write(*, 0109) ia,j, c(ia, j)
2 74 0109 format(///' C(', i3, ',',i3, ')9',q15.9)
2 75 0110 continue
1 76 0100 continue

77 c
7: c solve for the NJ's
7 c

80 iwrong-0
81c
82 call prreg(c,na,kut,kt,iwrong)
483 if(idronq.eq.l)qo to 0999

85 call solve (kut, C, nj, na)
86 c87 c Wri out the output for the cases

8 a c 0200 write(*, *) I Terminal ->0 Printer -I File ->2'

90 read (*, *, err0200) iflg
91 if (iflg. q. 1) open (7, file-'prn')
92 if (iflg. eq. 2) open (7, file- ' table. dat', status-' new')
93 iv-0
94 0210 continue
95 vrita(iw,0220) title
96 0220 FOT('I,///,97 . 1 '-/ -- -

98 2 Kunin-Lesser ELLIPSOID ANALYSIS '/
99 3 for VOLMETRIC CLUSTER DISTRIBUTION '/

100 4 "/
101 5 ',A40,' ac'o
102 6' - - - - -

103 7 Equiv. Part€le No. of
104 8 Partcl Partcle a sp Vol. Particle Class '/
105 9 Type Rad. (am3) per Volume '/
106 A (m-) (=3) (m) ,/
107 B - - -']-

108 tvol-0.0
109 do 0250 4-1,kt

1 110 if(i.le.k(1))then

1 112 j-i
1 113 else114 it-2

1 115 -- k1

1 116 endif
- 117 rad;rL (it) loat (J)
I 118 pV01-4.188790204* (rad**3)I

I
I
I
I
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1. 119 cvol-nj(i)*Pvol
1 120 tvol-tvol+cvol
1 121 writa(iv, 0230)Ilabel (it) ,rad,q(it) ,pvol,nj(i) ,cvol
1 122 0230 format(
1 123 1 ,I '.a3,' I',f9.5,'!f8.4,'I',f9.S.'I'.fl.6,'t',

1 1274 3

1 128 0250 continue
129 writ* (iv, 0270) tvol
130 0270 format(
131 1.'Toa Volume =',f12.6,' Iv
132 2 ---- -- ------- - -I'

133I134 if (iflg.aq. 2.and. iw.eq.7) close (7)
135 if(iflg.ns.0.and. iw.eq.0)then
136 iW-7
137 go to 0210
138 enditI9140 c Write output for file information
141 c
142 if(c(1) .qt.0) then
143 sum-0. 0
144 do 0300 i-1,kc(1)

1 2 146 0300 contine~

19 sdp-0.0
149 do 0310 i=1,k(1)

1 150 rad-float(i)*drj(1)
1 151 raprzp+ (rad*nj (i) /sum)
1 152 sdp-sdp+ (rad*rad*nj ( i) /sum)
1 2.53 0310 continue

154 open(7,.Iile-'lptl')
155 write(7,0320)2k(1) ,zdp
156 0320 format(' *** ESTIXATED OISTN '/
157 1 ' No. Prolate Classes -',i5,/
158 2 ' AM-,G1O.4,' SOEV-',GlO.4)I 159 close (7)
160 endif
161 if(Jc(2) .gt.0)then
162 sz0
163 3ctot-k(l)+k(2)
164 do 0:30 i-k(1),ktot

166 0330 coiuemn3

18 sda-0.0I 169 do 0340 " k(2.),Jtot
1 170 j'.k() -i-

171 rad-float(j) *drj (2)
i 172 r-Mo-rmo+ (rad *-j (i) /sum)

1 173 sdo=sdo+(rad~rad*nj (i)/ sum)
1 174 0340 continue

176 .,r4te(7.,3350) k(2) , rmo, sdo
177 0350 format(' ** ESTIMATED OtSTN ~~
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178 1' No. Oblate Classes-',i5 .1
179ne 2 7 S;6P Kicrosoft.4, SORTRN77 ,002/8

18 ndif
182 0999 continue
183 end

Name Type Offset P Class

C REAL*8 8362
CVOL REAL. 22250
DBLE f(rf(sic
OELR REAL 21182
DPH PY.L*S 21354
OPJ REALL 8340
DSIX INTRZNSIC
711 CHAR*10 212.62
FLOAT fITPZNSIC
I I3TE-GER*4 211:6
11 INTEGR*4 21362

TA fTEG*4 21306
1FL4 22TEGR*4 21438
IT INTEGER*4 22238
1w fljfEQM*4 21442
ZWRONG InfTEGER*4 21434

SII4TEGER*4 21330
x ITXE*4 8348

'T I.NTGE*4 21178
21'OT fl1T1G 4 22890
M.T INMER*4 212.02
L;AEEL CHAR*3 8356
NA REAL 8020
NJ REAL 8180

=M~AX REAL 21198
P!i REAL~8 21366
PEM&X REAL 21.194
P70L REAL 22246
Q REAL 8012
Q1S REALL*S 213461
RA REAL*8 21314IRAD REAL 22242
R.AM1 REAXL*8 21322
RE1O REAL*8 21174
RECA REAL*8 21390
RHOM. REAL 8 21382
R1 REAL 4012
.7 REA.L*8 21338
R1M REAL 22898
RMP REL22714
S REAL 12.
500 REA 22902ISOP REALL 22718
sOm REAL 22706
TITLE CEAR*40 21206
TVOL REAL 22230
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1:87 Subroutine comrho(Rj ,ri,phi,qs,rlo)

1 C*** This routine is desiqnod to co~mpute the value of rho in *

1 1s C***** Rj, ri, Q, and angle phi. (phi. in- inadans)
190 C***** Dehoff' s PolTio o rlteehro ienavleo

193 C**** QS-l.0/Qj (OBZATE)I195 real*8 1,.n.Rj,ri~phi,qs,rho,dc,de
96 dc-dcos (pbi)

19:7 ds-dsin(pbhi)
198 1- (dc*dc) + (qs*qs*ds*ds)
199 am(ds*ds) +(qs*qs*dc*dc)I200 n- (ds*ds*dc*dc) *(I. 0-qs*qs)
201 c
202 c Compute Rho
203 c
204 rho-(ri*ri) /dsqrt (1)
205 rho-rho ( ( ((qs)* 1. 666666666) *Rj *Rj)/1)
206 rho=(-ho*l *1) / n ~)
207 it(rho.1t.a.0)the
208 rho-0.o
209 else
210 rho-dsqrt (rho)
211 endif

N ame Type Offset P Class

DCO M1wc
DS REAL*8 23090
OSII? LYTRDNSIC
DSQRT fITRINSICI RPAL*8 23098

MH RZAL*8 216

0S REALL*S 12 *

I~I RA* RA'A4 *0,SQ4,o

2149

222SBO--MPEE AB ,M IWRONG

120 EIF TM HE

225 00 0010 -1I,M
1 226 DO 0020 :-2.,,
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2 227 ASQ(I,J)-0.O
2 228 DO 0030 Km1,KM
3 229 ASQ(Z,J)-ASQ(I,J)+(A(K,I)*A(X,J))
3 230 0030 CONTINUE
2 231 0020 CONTINUE
1 232 0010 CONTINUE

233 C
234 DO 0040 11,M

1 235 BSQ(I)-0.0
1 236 DO 0050 K-1,MM
2 237 ADQN-SNGL(A(K,I))
2 238 BSQ (Z)-BSQ (I) + (ADUM*B (K))
2 239 0050 CONTINUE
1 240 0040 CONTINUE

241 C
242 DO 0060 I-1,M

1 243 DO 0070 Jml,M
2 244 A(I,J)-ASQ(I,J)
2 245 0070 CONTINUE
1 246 B(I)-BSQ(I)
1 247 0060 CONTINUE

248 0999 RETURN
249 END

Name Type Offset P Class

A REAL*8 0 *
A REAL 36114

iASO RY.AL*8 23282

B REAL 4 *
BSQ REAL 23122

SINTEGER*4 36082
1WRONG INTEGER*4 16 *

SINTEGER*4 36090
INTEGER*4 36098

M INlTEGER*4 8 *
MK INTEGER*4 12 *
SXGL INRISIC

I 250

25 1 C
252 SUBROUINE SOLVE (N,A,XI, BI)253 This meod does not require **

254 C***** This routine solves a linear system of equations (Ax-b) ***
255 C***** by usinq Gauss reduction. This method does not require
256 C***** that the matrix A, be symmetric.257 C**************************************e*eeeee*es***********

253 real-$ A(40,40) ,X(40) B(40)
259 dimension XI(40),BI(40)
260 do 0010 i-1,40

1 261 3(I)-OBLZ(B1(I))
1 262 00O0 CONTINUE

263 C
264 C Trianqularize the A matrix
265 C
266 N-N-i
267 DO 0100 K-1,,M

1 268 .UKI
I
I
I
I
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1 269 DO 0100 I-K,N
2 270 C-A(I,X)/A(K,K)
2 271 B(I)-B(I)-B(X)*C
2 272 DO 0100 JK,x
3 273 0100 A(I,J)=&(I,J)-A(K,J)*C

274 C275 C Solve for x vector (solution vector)
i276 C

277 X (N) 1B(N)/A(N,N)
278 DO 0300 K-1,N

1 279 I-N-K
1 280 III+l
1 281 C-0.0
1 282 DO 0400 J-I,N
2 283 0400 C-C+A(I,J)*X(J)1 284 X(I)-(B(I)-C)/A(I, I)
1 285 0300 CONTINUE

286 DO 0030 1-1,40
1 287 0030 X1(I)-SNGL(X(I))

288 RETURN
289 END

Name Type Offset P Class

A, REAL*8 4*

S R.EAL*8 36446
31 REAL 12 *
C REAL 36790
DBLE l'TRNS7C
I INTEGZR*4 36766
II INTZGER*4 36806
3 INTZGER*4 36794
K INTEGER*4 36774
Exx ITEGER*4 36782
i INTEGER*4 0 *
NN IITMGZR*4 36770
SNGL nTR.icX REAL*$ 36126
X1 REAL *

Name Type Size Class

CONMR0 SUEROUTZNE
MORPHO PROGRAMPREREG SUBROUTINE
S 0 LXE SUBROUTMNE

?ass One No Errors Detect ad
289 Source Lines

I
I
I
U
I
I
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1 Sdabuq
2 Program Morphol

4 C***** This program is designed to compute the number of clusters
5 C****- in a given class p tr unit volume of material. This is to **
6 C* * * * * be performed usinq an algoritb similar to that used in De-Ce
7 C***** Hoffs ellipsiod analysis. This algoritbm, however, has *

8 C***** been generalized to compute the number of both oblate and **

9 C*t ** prolate spheroids within a given class as well as a poss- **
10 C***** ible aspect ratio for each class.

12 real*8 rj,ra, ral, phi, qs, rho, rhoa, rhoul,dphi,c(40,40)
13 real*4 ri(l000),s(l000),na(40) ,nj (40)
14 dimension drj (2) ,q(2) ,k(2)
15 character*10 afil,sfil
16 charactr*3 label (2)
17 character*40 title
18 data label/'Pro', 'Obl'/
19 C
20 c input the necessary Information
21 c
22 0005 write(*,*)' Give the filename for the AREA ARML'
23 read(*, 0010, err-0005) afil
24 0010 format(al0)
25 open (5, file-afil, status-' old')I26 rmsx-0. a
27 do 0015 i-1,1000 -

1 28 read(5,*)dum
1 29 if(dum.eq.-999.)go to 0020
! 30 ri(i)-(sgrt(dum/3.14159))/10.0I 31 1if (ri(i). gt. rmax) rmax-ri (i)
1 32 0015 continue

33 0020 continue
34 npts-i-1
35 close(5)
36 c
37 0025 write(*,*)' Give the filename for the SHAPE FACT ARRAY'
38 read (*, 0010, err--0025) s fl
39 open (5, file-sf il, status-' old'

40 amin-1.0
41 amax-0.0
42 aave-0.0
43 do 0026 i-1,1000

1 44 read(5,*)dum
1 45 if(dum.eq.-999.)go to 0030
1 46 s(i)-dum
1 47 if (s(i) .It. amin) amin-s (i)
- 48 if(s(i) .qt. amax) amax-s (i)

49 aave-aave+s(i)
50 0026 continue
51 0030 continue
52 close(s)
5 3 aave-aave/floa ( i- 1)
54 write(*,*)' Mo. of Points ',np t sI 55 vrite(*,*), '56 0035 d rite (*,t) , (-ire desir-ed no of classes 1<->20"

57 write(*,-)' for the prolate and ablate respectively
58 read(*, *,arr0035) k(l) ,X(2)
59

I
I
I
I
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60 if(2c(1) .9t.20)kC1)-l0
61 if(c(2) .gt. 20) k2)-l0
62 write(*,*), LSflC~r RA1ZO IMROPWTZ0NI
63 write(*,*)' MaX-',aaaz,' ZMin-',auin,' Ave-',aaveI 4 if(k(1).qt.0)then

65 vrite(*, *)' Prolate give aspect ratio, -axlau radius,
66 read(*,*)q(l),prxax
67 C prmax-rmax/(q(l)**0.3333)
68 c. pruax-ruax

69 drj (1) -prmax/float (k (1))

70 wvrite(*,*) IPolate Equiv. Rd inc- -,drj ()IU 79 ndif
73 werite(*,*) Ivlae ive asporat o maimmadus
74 read (*,0*)t(2tleax
82 004 orma-ax4( ()**.167
84 ra xr=045tae

89 drj-orax/float (k(2

9 wrie(*,*)' dGive Ttles. foneta ot
91 re(*,0040)title
92 d00 orma006 ),c

1 93 0045wrie(*,*)'t iveszf1NLSS)RA (2
94 r~~efead ,ar0)tarea

1 5 C c-
1 6 d ompt 0055 -,maxmm tss~a ad

1 9 dora /float(t)aa

1 99 ita(*,00)' ati,'-'naoI~9 do 1000 r ite5,l,0.0

1 103 blarit(5,h~u 1

1 112 radelr*float(±a)

1. 114 do 010 4-1,kts

2 115 c(i~la t~nct/ta.

2 116 wit(S,le~1)jhe
2 101 ridbe(dr) *flt(i ) )

1 103 qsite(q())0

1I0 00cniu
10I .test-99,99
10Iloe5
10I
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2 119 else
2 120 rj-dble(dJ(2)*float(J-k(1)M)
2 121 qs-dbla(1.0/q(2))
2 .22 eandif
2 123 dphi-1. 570796327/180. 0
2 124 do 0120 il-1,180

3 125 phi-1.5707963*dble (il) /180. 0
3 126 call conrho(rJ,raal,phi,qs,rho)
3 127 rhoal-rho
3 128 call corho(j,ra,phi, qs, rho)
3 129 rhoa-rho
3 130 c(ia,j)-c(ia,j)+((rtoul-rhoa)*dsin(pbhi)*dphi)
3 131 0120 continue
2 132 c(ia,j)-2.0*c(ia,J)
2 133 if (c(ia,J).1t.0.000011c(ia,j)-0.0
2 134 write(*,*)'
2 135 write(*, 0109) ia,j,c(ia,j)
2 136 write(6,0109)ia,j,c(ia,j)
2 137 0109 format(///' C(",i3,", ',13, ')-",g15.9)
2 138 0110 continue
1 139 0100 continue

140 close(6)
141 c
142 c solve for the MJ's
143 c
144 call solve(k2t,c,nj,na)
145 c do 0150 i-1,c;t
146 c if (nJ (i) .It.0.0)nj (i)-0.0
147 c 0150 continue
148 c
149 c Write out the output for the cases
150 C151 0200 write(*,*) I Terminal ->0 Printer ->I File ->2"

152 read(*, *, ar--0200) iflq
153 it ( iflg. sq. 1) open (7, file- 'prn" )
154 if (iflq. eq. 2) open(7, file-' table. dat', satus-nev')
155 iw-0
156 0210 continue
157 vritse(iw,3220)title
158 0220 FORMAT(' l,///,
159 1 " - I/IS0 2 ' Kunin-Lesser ELLIPSOID ANALYSIS
159 1 ' -fo-----'/

161 3 for VOLME"TRIC CLUSTER DISTRIBUTION
162 4 '"

164 6 v . .'
765 ' quiv. Partcle No. of '/

166 8 Part cl Part.cle Aspct,. Val. Particle class '
167 9 'IType {Rad. Ratio (ZM3) per Volume'

168 A (mm) (m3) (m3) ,/169 3 . .--I'

170 tVOlo I0
!71 do 0250 i-l,kt

1 172 if (i.la.k(l))then
1L73 it-I
1 174 J-i

175 else
1 176 it-2

I1 177 j,-i-k(1 )

I
I
I: ... ._
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1 179 rad-drj (it) *float(j)
1 2.80 pVOI..4.188790204* (rad**3)
I 2.81 cvot-nj(i)*pvol
2. 182 tva1-tvo1~cvo1

1I9 rt~w 03)lbl(t , a, ~t 020fpTa;S ,I 9 5 1 f 4 ?, 9 ,n(, 0 6 ,

1 188 0240 format(

1 .9 5 0 3.nt a3,1

191 writa(iw,0240)to

192 0270 format(

193 2. 'Total Volume * ,1., Iv

17 if (if lg.ne. 0. and. iv. eq. o) tben
198 iw-7I199 go to 0210

20 endif

202 c writ* output for f ile Information
202 c
204 stp-999.

208 tve2.=0.0

210 raddr (1) *float (i)
1 211 rdld 08i-(1) oa(J_

1 213 cvo-nj (4) *pvolU L 214 tvol-toz.vo

1 215 ~ wrte (8,*).ad, 0. 0
1 216 write(9,fl)rd-I tvol.

1 220 write (9,*)rad, tvol
1 221 0280 continue

222 write (aI)stp Istp
223 write (9, stp, stp
224 close(s)

220 tvol-of

221 do 0290 1-1,k(2)
1 232 ra4-drj(2) *fl-t (i)
1. 223 rdm1-dr (2) *float (i-11I 2324 OV01-4.188790204* (rad**3)2. 225 cvo2lnjW*pVtO1

2. 26 tval-tvo1~cvo1
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1 237 write (8, )rdal
, 0 " 0

1 238 vrit(8, 0) rdmZl,cv
l

1 239 vrite (8, v) rad, cvol
1 240 write (8, r)ad, 0.0
1 241 write (9, *)rml, vO1 242 write•(9, rzadtol
1 243 0290 continu

244 vrite(8,*)stP,stP2 45 wri t (9 , * ) s tp , s tP

246 close(s)
247 close(9)
248 endif
249 end

Name Typo Offset P Class

AAVE REAL 21212
APIL CHAR*10 21162
AN REAL 21208
AM E 21204
BL RA 21286
C REAL*8 8362
C70L REAL 22242
DBLE INTRINSIC
DELR REAL 21278
DPEM REAL*S 21350
DRJ REAL 8340
DSIN IXTRZNSIC
DVK REAL 21186
FLOAT VT.INSICII If(GTR*4 21182
1l INTZEGER*4 21358
IA IZTTGER*4 21306
IPTA INTGEI*4 21430
IT IN2TZER*4 22230
1W I -TZGER*4 21434
J nn-EGER*4 21298
K niTEGER*4 &348
XT INTEGER*4 21274
LABEL CHAR*3 8356
NA REAL 8020
NCT NTZEGER*4 21294

NJ REAL 8180
NPTS INTEGER*4 21190
ORMAX REAL 21220
PHI REJAL*8 21362
PRMAX REAL 21216

PVOL REAL 22238

Q REAL 8012
QS R. A L*8 21342
RA REAL*s 213L4
RAO REAL 22234

RAM1 REAL*8 21322
RDm1 REAL 22706
RHO REAL k 8 21370
REOA RFAL*8 21386

ROKI REAL*8 21378
.a REAL 4012
P7 REAL*8 21334

I
I
I
I
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RMAX REAL 21178
S REAL 12
SFIL CZA*10 21194
SQRT INTRINSIC
STP REAL 22698
TAREA REAL 21270
TITLE CAR*40 21224

T7OL REA6L 22222UL REAL 21290

250c

251 C
252c253 Subroutine coarho (Rj, ri, phi, qs, rho)

254 Ct***********t***r*te***a***********et***********.t** ***.***'*
255 C***** This routine is designed to compute the value of rho in ***
256 C***** Deboff's solution for a prolate spheriod given a value of ***
257 C**** Rj, ri, Q, and anqle phi. (phi is in radians)
258 C***** QSQj (PROLATE)
259 C***** QS-1.0/Qj (O )LAE)

261 real*8 ,x,n,Rj,ri,phi,qs,rho,dc,ds
262 dc-dcos(phi)
263 ds-dsin(phi)
264 1- (dc*dc) (qs*qs*s*ds)
263 m- (ds*ds) (qs*qs*dc*dc)
266 n- (ds*ds*dc*dc) *(1.0qs*qs)
267 a
268 c Cozpute Rho
269 c
270 rho,- (ri*ri)/dsqrt (1)271 rlo-rho- ( (( (qs) **0. 6666 66666) *Rj *Rj)/1)
272 rh~o- (rto-1*1) / (n- (=*I))
273 if (rho.lt.0.0)t hen

274 rho-0.0
275 else
27s rho-dsqVt(-ho)
277 endif
278 return279 end

Name Type Offset P Class

DC REAL*8 22714
DCOS lT~fl(SIC
DS REAL*8 22722
OST.N INTRINSIC
DSQRT INTRrNSIC

L RE.AL*S 22730
Q REAL*9 22738
N REAL*8 22746P91 REAL* 8 a *
0S REAL*8 12RHO RF.AL*8 16

R .X REAL*8 0

280 C
'"t CI

I
I

I
1 m , rm m a ,a i
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282 C
283 SUE O 'FlE SOLVE (N, A, X1, B1)
284
285 C***** This routine solves a linear system of equations ( Ax-b) **
286 C***** by usinq Gauss reduction. This method does not require ***
287 C***** that the matrix A be symmetric.

288 C**********************************.
289 real*8 A(40,40),X(40),3(40)
290 dimension fl(40),Bl(40)
291 do 0010 i-1,40

1 292 B(1)-DBLZ(31(I))
1 2:3 C0010 CONTINUE

24295 C Trianqularize the A matrix
296 C*
297 NN-N-l
298 DO 0100 X-I,,m

1 299 KK-K+I
1 3 00 DO 0100 I-KK,X

2 301 C-A(Z,K)/A(rX)

2 302 B(I)-B(I)-B(f)*C
2 303 DO 0100 J-K,-*
3 304 0100 A(I,J)-&(I,)-A(K,J)*C

305 C
306 C Solve for x vector (solution vector)
307 C
308 X(N)-B(N)/X(NN)
309 Do 0300 X-,.Nl

I 0 I--K
. 311 11-1+1
1 312 C-0.0
1 313 DO 0400 J-tII,
2 314 0400 C-C+A(I,J)*X(J)
1 315 X (1) -(3(1) -C)/A (1, ')
1 316 0300 CONTINUE

317 DO 0030 I1,40
2 318 0030 X1(I)-SNGL(X(1))

319 RETURNm 320 D

Name Type Offset P Class

A REAL* a 4 *
11 REAL*8 23074
31 REAL 12 *
C REAL 23413
DBLZ INTRINSIC

LTEwGZR*4 23394
I L ZR'' *4 23434
4 'ZNTEwG-* 4 23422
X IT"wEGZR*4 23402

ITEGER*4 23410
4 ZNTwGZR* 40 *

WW I IfTZGER*4 23398
SNGL LTRINSICI REAL*8 22754

X1 PEAL 8I
I
I
I
I
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mam Tye Size Class

HORPHO PROGRAMSOLVE suaROUTnzN

Pass On* No Errors Detected
320 Source Lie

I
I
I
I
I
I
I
I
I
I
I
I
I
I
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1SSTORAGE: 2

2 $DEBUG
3 PROGRAK PZONE

5C This routine is designed to process information regarding
C the damage zone. The. intomation to be processed is read in

7 C the form of a series of normal distribution curves. These
8 C curves ere used to produc(e a 3-0 mesh and the corresponding
9 C results are then used to compute the centraid of damage as

10 C well as the volume of accumulated damage for each interval.

i2 C
13 C Start by reading in the input information
14 C
15 Real*8 VOL(30) ,XVOL(30) ,VOL(30) ,Rl(30)
16 COMMO/WORR/Z(40,40) ,XP(40)Y(450),ZP(450),FZ(15,5),
17 1 ZPIJ (600) ,VREX(16) ,ZLRV(40) ,YEAR(30) ,YDHV(30) ,YCOT(30,2)
is COMMOl/WOPK2/YMAX (30) ,XCRD(30), KZXT (450) MASK(6000) ,LDIG(40),
19 1 LWGT(40)
20 CHARACM*10 7.ZLEN, PfP
21 CARACTER*10 XILAEL, LABEL
22 CMACTER* 1 XAB(30),YLSES(30)

23 SQUIVALENCE (XLB(),YAEL),(YLAB (1),YLABEL)
24 DATA .MABEKL/" CIRCUMFERMiTIL DIR (=-l) I/
25 DATA YL&BEL/' AXIAL DIR (a-l) '/
26 N2X-40
27 NNY-40
28 MX-40
29 ,lYY-40
30 .TN93
31. THICK-75.0
32 0006 writ e(*,*) I *** Welcome to P-Zone e
33 write(*,*} '
34 write(*,*)' Give Location for plotting output'
35 writo(*,*)' 0 -> Honocrone Monitor'
36 write(*,*)• 1 -> Color .fonitar
37 write(*,*)' 2 -> Printer "
38 write(*,*)' 3 -> HP Plotter'
39 read(*, *,erl-0006) iout
40 if(iout.eq.0)then
41 ioport-93
42 model-93
43 elseif (iout. eq. 1) then
44 ioport=95
45 model.99
46 elseif ( iout. eq. 2) then
47 ioort-0
48 =odial-64

49 else
so loport-9602
51 model-20
52 endif
53 C
54 C Set origin (crack tip) values
55 C
56 :N-0
57 0050 TRr7E(* *)' LNPUT FILE ->1 7ERMniAL ->0'
58 R EAD (- -,, ZRRI0050) I

I
I
II

I'
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60 0056 WRITE(*,*)' GIVE INPUT FILE NAME'
61 READ (*, 0055, EPR,056) FINP

62 OPEN (7, FILE-FIN'P, STATUS-'OLD')
63 READ(7,*)MpRF
64 DO 0057 I-1,NPRF

1 65 READ (7, )YAR (1), YDEV (I) ,,noX (1)
1 66 READ(7, )YCUT(1, 1) ,YCUT(1, 2) ,XCRD(1)
1 67 0057 CONTINUE

63 CLOSE(7)
69 GO TO 0046
70 ENDIF
71 YKAx (1) -0. 0
72 YDEV(1) =1. 073 YCUT(1,I)=I.0
74 YCUT(1,2)-2.0
75 XCRD(l)-0.0
76 0005 WRITE(*,*)' GIVE CRACK LOCATION
77 READ ( *,-, ERRs0005) 'BAR (1)
78 0010 WRITE(*,*)' ALIGN MEAN VALUES ? YES ->1 NO ->0'
79 READ(*, *, ERRO010) INOVE
80 C
81 C Read in remaining input
82 C
83 0015 WRITE(*,*), GIVE TOTAL # OF PROFILES TO INPUT'
84 READ(*,*, ERR-0015) NPRF
8 5 NTPRF-T'RI+ i
86 0017 WRITE(*,*)' GIVE SEARCH LIMiTS (lower, upper)'
87 READ (*,R-0017) SL, SU
as C
89 C Start input loon here
90 C
91 DO 0022 I=2,XPRF

L 92 I1-I-I
1 93 0025 WRITE(*, 0030) :1
1 94 00O ?ORMAT(//' GIVE MEAN, SDEV, MAX, FOR ',13,'th PROFILE')
1 95 READ(*, *, MRO025) YVBAR (1) , TDEV(1) , MAX(1)
- 96 0035 WRIT-(*,*)' GIVE CUTOFF LfIXTS (lower, upper)'1 97 DUMI-0.0
1 98 DUM2-O.01 99 -READ (,*,EMR-003 5) DUI1, DUM2

1 100 CI 101 IF (DMUI. NE. 0. 0) THEZN

1 102 YCUT(I,2)-DUMI
103 ELSE! 104 YCUT (1,2)-SL

1 105 ENDIF
! 106 C
! 107 :F (DUM2 .xE. 0.0)T
1 108 YCUT (1, i)-0M
1 109 E-LSE

i i0o I v, C z, -W,

I III ND£F1 12 C
1 1.13 IF (M0~Vv.ZQ. 1) TEN
1 114 YCT (1, 1)-YCUT (I, 1) -YBAR()11I5 YCUT (1, 2) -YCUT (1, 2) -YBAR (1)

115 YBAR(:)=O.O

I.7
I a

I
I
U
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1 120 0033 WRITE(*,*)' GIVE X-COORDINATE FOR PROFILE '
1 121 RZAD (-,*, EP tO033 )XCRD (I)

I1 122 0022 CONTINUF
123 I!M-0
124 0058 WRITE(*,*) ' STORE INU DATA IN FILE YES ->I NO ->00
125 READ(*, *, ERR-O058) IN

3126 TIPCI*NE. 0) TN
127 0059 WRITE(*,*)' GIVE FILE NAMe'
128 REAf(*,0055,ZRR0O59)FINP
129 0055 FORAT(A1.0)
130 OPEN (7, FILE-FIP, STATUS- 'EW")
131 WRIT(7,*)K(PRF
132 DO 0060 I=1,NIRF

1 133 WRITE(7,*YB &R(I), YDEV(1). YMAX(1)
1 134 wRITE(7,*) CuT(I, I) ,YCaT(1,2), XCRD(I)
1 135 0060 CONTINUE

136 CLOSE(7)
137 ENDIF
138 0046 CONTINUE
139 0070 WRIT2(*,*)' Give the 0 of grid increments'
14 LLI140 READ (- - , ERts0070) ITEMV
141 MO L-I. 0I 143 c

144 C Start the big loop for all computations
145 C ******************************
146 OPEN (12, FILZ-'TABLE. DAT', STATUS-'IEW')147 DO 0080 1I-1ITMP

1 148 IF(I1.EQ.l)TEEN
1 149 IPROJ-0
I ISO ELSE
1 151 IPROJ-I

1 152 ENDIF153

1 154 C Read in the information for the overlay gridI 155 C
1 156 WRITE(*,*)' - Overlay Grid Information --- '
1 157 WIE(,*

1 158 0083 WRITE(*,*) ' Terminal ->0 File ->i'I 159 RFAD(*, *,M-=O083) I7T
1 160 IF(IT.GT. 0)TM
1 161 WRIT(*,*)" Give File Name'
1 162 READ(*, 0055) TP
1 163 OPEN (7,F ILE=FTP, STATUS-'OLD • ]
1 164 READ (7, *) NTX,MTY, XHIAX
1 165 DO 0081 J-1,NTY
2 166 DO 0082 1I1,TX
3 167 0082 READ (7, *) F(ZJ
2 168 0081 CON"MWE
. 169 CLOSE(7)

i 170 ELSE
1 171 0090 WRITS(*,*)' Give the refine r.es Xno., Yno. and the Xlizit'
. 172 READ(*, *,-R-0090)NTX,NTY, Q1Ax
1 173 DO 0100 J-1,NTY
2 174 DO 0110 .-I,.I'rX

3 175 0105 wRTZ(*,*i', Xno-',.,, Yno,,j,, Give block height fact (0->i)'
3 176 RZAD (*, *, "Ro 0S }FZ (r,,;)

i3 177 0110 CONTiW E

I
I
I
I

I m|
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D Line$ 1 7 Miceosoft FORTRAN77 V3.20 02/842 178 0100 CONTINUE1 179 0091 WRIT8(*, Store Templa e Give ->1'

1 180 RED(*, *,ERJs0091) IN

1 181 IF (IN. NE. 0) TSEN
1 182 WRITE(*,*)' GIVE FILE NAME'
1 183 READ (*, 0055) F7NP
1 184 OPEN (7, F ILL"Furp I STATUS- NEW"

1 185 WRITE (7, *) NTX, NTY, XX

1816 DO 0092 J"1,NTY
2 187 DO 0093 1-1,=rX
3 188 0093 WRITE(7,,)fZ(I,J)
2 189 0092 CONTINUE
1 190 CL sE(7)
1 191 ENDIF
1 192 ENDI71 193 C1 194 C I .... Cmpue t~he XP, YP, and the ZP arrays

1 196 YDMAX-O.0
1 197 DO 0125 I-1,MI
2 198 I (YDEV(I. GT. YDUAX) THEN2 199 YDMhX-DEV(I)

2 200 YBMAX-AR(I)
2 201 YL-YBAR(1) - (3.0*YDEV ())
2 202 YU-,RAR() + (3.0*YDEV (1))
2 203 ENDTF
2 204 0125 CONTINUE1 205 DELr-(U-YL)/20.0
1 206 XL-XCRD( 1

1 207 XU-XCRD (NRF)
I 206 0126 WRITw(*,*) x IxL,,yr, ,yL, , .,,XU,,yU,, ,U
1 209 WRITE(*,*)I TO CHANGE DEFAULTS GIVE ->1"
1 210 READ(*,*, --%RR0126) IC
1 211 F (IC.N. 0) TmmN
1 212 WRITE(,*) ' GIVE XL, YL,XUr, YU'L 213 R=-D( ,* ERR-0 12 6) XL, YL, XU, YU
! 214 END3I•

!. 215 TDX-, (XM AX-XL) /FLOAT (NTX)
1 216 TOY- (vU-YL) /7LOAT (NTY)
1 217 NI 0

1 218 C

1 219 0O 0120 1,.Z,,nw
2 220 XVAL-XCR (1)

221 IF (XVLL. LT. X1QX) TNEN
222 DO 0130 J-1,20

3 223 NWP+ 1
3 224 Y VAL-YL+ (DELY* (FLOAT (J-)) )

225 "X" ( VvAL-YBAR (I) )/YDEV(1)
2 226 ZX,-0.5*(CX*Ex)
3 227 . (MC. LT.-
3 228 -9-0.03 229 ELSE
3 230 HI-EXP (EX) *YMAX (I)
3 231 ZNDIz
3 232 C
3 233 C C-mpute the proper temulata Value
3 234 C
3 235 DO 0160 JI-1,4TY

i4 236 TI"W"-n (TDY* (FLOAT (13.-) 1)

!

I
I
I
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4 237 YTVPL (TDY- (FLOAT (JI)f
4 238 Do 0170 111-1,N=x
5 239 XTVM-XL4 (TDX- (P4AT (111- 1))

5 240 XTP-I* (DX* (YLAT (IZ1)) )
5 241. 21(XVAL. GZ.n (.)&HD.X73.L. LZ.XTVP) ICEE-11I5 242 0170 COXT1lUZ

4 243 IF(YVU..GZ. 7LVE.AD. YVL. LE .XTVP) JCH-JI
4 244 0160 CONTINUE
3 245 PrFZ (ICIJCEM)
3 246 ZP(NP)-E*FCTI3 247 XP(NP)2CV7AL
3 248 Y(P(NP)-iVAL
3 249 0130 CONTINUE
2 250 ELSE
2 251 DO 0140 X-1,20I3 253 YA*-L(DE* FOM(J-1))
3 254 ZP(NP)=0.0
3 255 X(P-M
3 256 Yp(-Ip)-MWL

3 257 0140 CONTINUE
2 258 ENDI7

2 259 0120 CONTINUE
1 260 Do 0200 I-1,SKX2
2 261 DO 0200 T-1,.WY

3 262 Z(I,J3-0.0
3 263 0200 CONTInU

1. 264 XS'r-o.0
1 265 YST-0.0

1 266 C YsT-Talux-(3.*DMQX)
1 267 C NYST-fIT((YST/50.0) 4--5)

1. 268 C YST-FL0aT(xYST*50)
2. 269 DELI2-100.0
2. 270 C
1 271 XLENG-XRD (NPP) /100 -0I12 272 YLENG5.0O*YDNAX/ 100 - 0
2. 273 FACI!-6.0/ZE=G
1 274 C MSM-2
2. 275 CA!-5.
1. 276 NI-
1. 277 l101X3
1.2 278 ==DG10
1 279 1RM-
2. 280 ZLW1.0105
2. 281 ICUT2.
1 282 :TRZMlI
1 2. 23 NRKG10
1 284 XUPR - XLN 4 W
1 285 YR - 4LN + YILft
1 286 DX-(XU-2X)/7YLOAT(NXX-2.)
1. 287 DY- (YU-TEL) /TWAT (!yy-2)
2. 288 WI(**) I Generating the Grid'

1 299 CALL, ZGRD(Z,OX,NY,2OC,-Y,XL,L.XUYUXPYPZPNPCAYNRNGI

1 290 1 ZPIJ,.<IXT)
1 291 C 'WRITE (*I )'I Snmoothing the Grid'
2. 292 C CALL ZSHM(Z,I.arY-I2C.YY,NSM)

1 294 C Ccmpute thle Volume, arid the Centriod Of the P-Zone

1I9
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1 29 WRTE(**)' COuputinq the Volume and Centroid,

1 299 YV0L(I1)-0.0

2. 300 R1(11.)-0.0

1 304 0D 0220 T-1,,WY
2 30:5 VL-L (y4(0!* (yFLAT(J-1))

2 306 DO 0230 1-1,kI3X
3 307 IF (Z (1,J) .LT.0.0) Z (1,J) 0. 0
3 308 IF (Z (1,J) .GT.3. 0) Z (1,J)-0. 0
3 309 1? (Z (1(J+1))LT.0. 0) Z (1, (3+1)0. 0

3 311. IF (Z (I+1) ,J) .IT0 .0) Z ((I+) , J) .0
3 310 IF (Z (1,+1)J) .GT.3S. 0) Z(I(+1)J)-0. 0

3 313 1? (Z ((+1) 1(J41)).IT. 0.0) z( (1+1) ,(J+1) -0. a
3 314 IP(Z((I+l) ,(,T+1)).GT.35.0)Z((I+1), (J+1))-0.O

3 315 XVAL-XU*(DX*(FLOAT (1-1))
3 316 Z1-Z(I,J)
3 317 Z2-Z((I+.),J)
3 318 Z3-3(I,(J+1))
3 319 Z4-Z((I+11,(,J+1))
3 320 C
3 321 C Compute the Volume, and CentroidI3 322 C

3 327 YVOL(Il)-YVL(fl).s(YVAL+(DY/2.0) )*( ~ fG
3 328 0230 C0WHflMZ
2 329 0220 CONTI2WZ
2. 330 XVOL(fl) -XVOL(13.) I(VOL(Z1) -10.)

1 2 2331 'fVOL(l) -YVOL(I)/(VOL(Z1) *10.)

2. 336 DZLXC-10.O*(XVL(11-l2) -XVOL(Il))
1 337 ZXC'-(DELXC/ (Xtr-2a.) ) *N=C+..3
2. 338 WRITE (*, *)'I Shifted by ',XC,' Boxes'
1. 339 D0 0236 J-1,YrZ
2 340 DO 0237 I-IXC,,2=

3 341. 20-1IflC+

3 43 Z04-Z((Z0.1),J)

3 346 ZN1-Z(I,j)

3 341 2ZN3-Z*(Z ,7+1 Z2J3ZM)

I 352 D EIi kB RO DMfl:EW)

I 5
3I5 27 0Tf-
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2 355 0236 COWflU
L. 356 R1 (11) -(R1 (11) *AREA) /DZLXC
1. 357 ELSE
1 358 PR1(Il)-0.0I1 359 ENDI?
1 360 Rl(Il)-Rt(I1)/100.0
1 361 C
1 362 WRT(,)
1 363 WRII'Z(*,*) LSD Volume - ',VOL(I1),'zz3'

1 2 6365 WR.ITE(*,*)' Xcan - ',XVOL(Il),'um 'icon - ,YV0L(Il),'uu'
1 36 WPIT!(*,*)f

2. 367 WRItm(,) RI ='.R1(Il),'3ta
1 368 WRTI1 369 WRMT(12,*)'
1 370 WRITZ(12,*)' LSD Volume - ',VOL(I1),'=3'
1. 371 WRITE (12, *) '
1 372 WRITE(12,*)' Xcen - ',XVOL(I1),'umm 'icen * ,VOL(Il) 'um'
1 373 WRITE (12, *) '

1 374 WRITZ(12,*)'
1 376C

1 377 0280 WITE(,)
1 378 WIRMT(*,*)' 3-0 PLOT'
1 379 WIE*I*)I No Plot >01

2. 380 WRITLP(*,*)' For 3-0 Plot ->1'

1 31 WRIT(*,*)' Gv
1 385 ED(,* R-20 P

1 393 ~ AL I F ACT.EQOR(FAT 0

1 39 5 ~RD(,, EUR-20 HIV, BZTAIllRJIP2Z L

1 390 CALL CESBS(Z, MX)4,NCWiPI IITIO,'LL

I1 3895C1 ATO(A?
1 390 CALL CVTEE(0.,. ,0. ,WY4, MX, ff,DDI, gTXL

1 397
1 398 C 1-Proielbin
1 399 c AXf(PP

4009 CALL CrT(0, 0. , 0, XR, YR, X, YL, X, D)

1. 401 X22CR
1 402 'i2-YRi
1, 403 V NGATA((!-'2)/:Cl*-X2))*(laO/'3.14159)
2. 404 WRT(*,*)' VR ASG-',VAG,' degrees'

1 405 I?(VANG.LT.O)THEW
1 406 XX-X=Xf(NPR7)-25.0

1 407 YA-'iU+50.
2. 408 

N-01 409 NSR1
1. 410 EZZZI 2 411 A2.
1 412 yAYL-50.
1 413 MC-200.
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1 414 TYX.YBAR (I)
1 415 ENDI7

416 CALL CTm,YN,OoXR, x,XL,yvD y)1 417 CALM SYML(XR, YR, . 125, 'NOTCh', VANG, 5)

1 418 CALL. CVT(XA,, 0. ,XR,a., L, DX,DY)
1 419 CALL SYMBOL(XR, YR, .125, 1CIRCUN7ERENTZAL DIR',VANG, 19)
. 420 CALL PLOT(0.0,0.0,999)
1 421 0270 WRITE(*,*)' I
1. 422 WRIZ(*,' CONTOUR M"AP
1 423 WRITZ(*,*)' No PlOt -> 0'

1 424 WRITE(*, Contour Plot -> 1'1 425 WRITE(*,W I)"
1 426 READ (*, *, ERRs0270 ) IIPL

1 427 if(IPL.eq.0)go to 0080
1 428 0260 COIITDIUI
1 429 C
1 430 C Drar th cont our map n~ext.

1 41 432 WRITE (" *}

1 433 0290 WRITE(*,*)' The max height is ',ZHAX
. 434 WRITE (*, *) I'
1 435 WRITE(e,*).! Enter Min and Max for Contour range'
1 436 RZ&D(*,-,ERR0290)ZM,ZMX
1 437 WRITE(*,*)' Enter No. Cntrs, No. per Label, Istar"
1 438 READ(*, *, ERRn0290) NLEV, STAB, IC
1 439 ZINC- ( Mf-)/17AT (NLE7)
1 440 DO 0300 I-1,1=V
2 441 ZLZV (1) =(N+ZIXC*FLOAT (I-1)
2 442 IF (:CX. EQ.LA3B) THEN
2 443 LGT(t)-2
2 444 LDIG(1) -1
2 445 ICK-1
2 446 ELSE
2 447 LWGT(I) -
2 448 LDIG(1) -- 2
2 449 ICIK+1
2 450 END17
2 451 0300 CONTINUE

1 452 N'Dr7-4

453 NARC-4
1 454 ZMAIX-AMAXI (XLENG, YLENG )
1 455 HGT - ZMAXI.4/80.
1 456 CALL PLOTS (0,OPORT,2o:DEZ)

58457 CALL FACTOR(FACT)

1 459 C Scale the X and Y axis of the plot
1 460 C
I 461 C
I. 462 C CALL SCAL (XP,XLE'G,NP, 1)
1 463 C CALL SCAL(YP,YLZG,,N, 1)
1 464 C
1 465 C
1 466 CALL ZCSEG(Z, NNX, KNY, ,YC,,N Y, 2CLOL, YLOL, XPR, YUPR, ZLEV, LDIG,
1 467 rLGT,N1.V,HGT, DIV,ARC
1. 468 CA"L NEWPN(()
1 469 CALL STAXIS(. 15, .15, .15, .15.-1)

1 470 CALL AXIS (ZL,.YLOLXLASEB, -30, -XLENG,0.0,

1 471 1 XST,DELIA)
1 472 CALL AXIS (XLOL,YTL, YLABB, 30,-TLENc, 90.0,

I
I
I
I
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1 47/3 1 YST, =,9A)1 474 C
1 475 C PCA Tic ON OPPOSTE AX=I1 476 C
1 477 CAML Arrs (XLOL, YPR,' I',0,-XLENG,00.0,
1 478 1 XST, DELTA)
1 479 CALL AXIS (%MP, YLOL,' I",-1,-yLEKG, 90.0,
1 480 1 ¥ST, DELTA)
1 481 C
1 482 C Begin ographics output.
1 483 C
1 484 CALL PLOT(0.0,0.0,T9 )
1 485 0080 CONTE
i486 CLOS(12

407 C
4e8 C Writ cut te cnt"oid data to fie4 8 9 C O E ( , I Z ,
490 O.B.OUTSTATU..*N

i 491 WRIZ(8,0410)492 0410 FOMTDAMAGE ZONE DEVELOPMENT TABLE',//
493 1 File volume Xcen ¥cenl,/

4C 4 2 (=3 1.2 (l) (mm) ,
495 DO 0400 1-lni1 49 IF (I.zQ.TKE

1 497 Il

D 4E 8 ELS 1
1 4C9 J I+l

500 E I 151 501 WRTE(S, 0420)J,VOL(J) ,XVOL(.7), YVOLfJ)

502 0420 PO1MiT (15, 3G5.3)1 503 0400 CONTNUE
504 CLOSE(S)
505 999 =OTIUE
506 END

Name Typo Offset P Class

AMS INTRINFSIC
AMAXI I NTPXS I C

AREA REAL 1424ATAX rSTPINSI C
CAY REAL 1382
DELK REAL 1520
DEIXA REAL 13166IDELXC REAL 1460
DELY REAL L260
DUM1 REAL 1152

0X REAL 1412
IDY R.EAL 1416

EX REAL 1298
-V"" ITRINSiC

TACT RE.AL 1378
.C" REAL 1342

I7 ILE20 CHAR*i1o **,
FM CSAR* !0 1058
FLOAT IW.T-WINC
nZ RZAL 11800 /WORX1/
HG T RE.AL .456I

I
U
I
I
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HG1 REAL 1.610
HZ REXL 1302
MWEW REAL 1516
HOLD REL1512
1 INTX'GZR*2 1070
12. INTEGZR*2 1094
IC IMlTGZR*2 1272
IH INTEGZR*2 2.338
I~x II=TGZR*2 1592

0 1IR fITZGKR'2 1.388
ICDG% INTEGZR*2 1.390

IU INTE'GMR'2 15392
IRAMZ ThXGER*2 132
11? rZarEGZR*2 19

III ITEGER*2 1478

ZOPORT I=7GM2 2.052
:OUT IITEGER*2 1050
IPL 12?rEGZR*2 1.524
IPROJ flGM*2 1188
ITEMP flNTG*2 1172IITRIMl DMGER*2 1400
ITT I2ITEGER*2 1044
IXC nMfln*2 1464
IT 121?GER*2 1200
i I'I'=GZR*2 1.306
JCRK INTEGER*2 2.340
KMCI InlTGER'2 240 /WCRX2
t.DIG I24TEGER*2 23140 /WORZZ
LRAGT 1W'ER*2 13220 /WORK2/

,'W SK IMTGZR*2 2.140 /WORK2/

M ODEL fl4TER*2 2.054
NA2RC ZNTEGER'2 1604
NDIV fl4TER*2 1.386
NLAB IMETGER*2 1590
k4LZV ZWiEGER*2 1588
NNX INTEGER*2 1.036
NNY( ZME*2 1.038
N4p 12TEGER*2 222

NPRF I2ITEGER*2 1068
MW~G I=E2*2 1402
NTX fl1TGZR*2 1.192
NTC INTEGER*2 1094
Nn' LqTEGER*2 2140

?911 RzAL i28
St. R.A6Lx 8 090
TSL REAL 1274

SuIC REAL 104
TDX4 REAL 12754

*nMTEX REAL 1.4500 /WaR..
VOL REXL* a 16
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xi REAL 1544
X(2 REAL 1556
XA REAL LS52
XCRD REAL 120 /WOREI
XL REAL 1264

IUBE REAL*0 6
XN REAL X572

XP REAL 6400 /WORI1
XR REIAL 1536
XSTr REAL, 1358

Xm7 REAL 1334

rr9R REAL 13404

Xl MEAL 1548
Y2 PEAL 1560
YA REAL 1568

YER REAL 14724 /WORK3.
YBiQ. REAL 1248
YCO'1 REAL 14964 /WORZ1

YDEV REAL 14844 /WORX3.
YDMAX REAL 1.238
YL REAL 1252
YLARS Cx"R*2 736
YLASEL CHAR*30 736
YLWNG REAL 1374
YLOZ. REAL 1178

YNAX REALL 0 /WORI2
YN REAL 12576U X REAL 8200 /WORE1
YR REAL 1540
YST REALL 1362
YTVM REAL 1314
YTVP REAL 1318IYU REAL 1256
YOP REAL 1408
'tVXL REALL 1294
YVOL REAL*8 496
Z REAL 0 /WOREIIZi REAL 1440
Z2 REAL 1444
23 REL1448

24 REAL 1452
-'I REAL 1594

zLEV -REAL 14564 /WORX3.

* ZcX REL39

z=4 REAL 154

Zvi2 REAL 1500
Z142 PAL 15001I0
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ZN4 REAL 1508
Z01 REAL 1480
Z02 REA 1484
Z03 REAL 1488
Z04 REAL 1492Zp REAL 10000 /WORKI /
ZpLT REAL 12100 /WORK1 /

507 C
508 C
509 SUBROUTINE CVT(X,Y,Z, XR, YR,XL,YLDX,DY)
510 C... TRANSLATE WORLD COORDINATES TO GRID UNITS.
511 XP - 1.0 + (X - XL) /DX
512 YP- 1.0 + (Y - YL) /DY
513 C... CONERT WORLD COORDINATES TO PLOTTER COORDINATES.
514 CALL P302D(XP,YP,Z," XR, YR)

515 RETURN
516 END

Name Type Offset P Class

Dx REAL 28*
DY REAL 32*
x REAL 0*
IL REAL 20*
XP REAL 1812

XR REAL 12*
y REAL 4*
YL REAL 24 *
YP REAL 1816
SREAL 16 *Z REAL *

i 517 C

Name Type Size Class

mas SUBROUTINE
COLOR su oTINE
COMPLX SUBROUTINE
FACTOR SUBROUTINE

MESES SUBROUTIn
NEWPEN SUBROUTINEI302D SUBROUTINE
?LOT SUBROUTINE
?LOTS SUBROUTINE

?ZCNV-PROGRAM
STAZIS SUBROUTINE
SYMBOL SUBROUT"NE
WORK1 15204 COMMON

WORK2 13300 COMMOK
ZCSZG SUBROUTINE
ZGRID SUBROUTINE

U
I
I
I
U

II
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0 Lin# 3. 7 MicroSoft FORTRAN77 V3.20 02/84
Pass One No Errors Detected

517 Source LinesI
I
I
I
I
I

I.
I
I
I

I
I
I
I
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D Line# 1 7 Microsoft FORTRAN77 V3.20 02/84
1 $Storage: 2
2 $Debug

i3 Progra Energy

5 c***** This program is designed to compute the near and far field *
6 C**** energy release rates using a complex potential formulation. *
7 c***** The near field is evaluated via the stress intensity factors *
8 ce**** and the far field is computed through a numerical integration*

10 c
1i Complex*$ z, zst, znd, zinc, zc, z01 (200), z02 (200) ,
12 1 a(200) ,dul,du,42,zs,ze,dz,an,Ktot,ri2,Jc,Jcl,ft313 Real*4 k,siq(30,30,3) ,emod,nu, zp(30,30) ,zlev(50) ,vertex(16),

I 14 1 Jnear,Zfar, Lc
" nteqer'2 ldiq(50) ,lwqt(SO) ,mask(3000)

iJ Character*10 mfil
17 Common /mat/ esod,qgnod,nu,k
18 Common /dam/zOl,z02, a, iz
19 Common /crack/ c
20 Common/remote/siqyy, sigxy
21 Data nrnx,ny,xlow,ylow /30,30,1.0,1.0/
22 c
23 pi-3.141592654
24 write(*,*), Give material properties'
25 0005 write(*,*)' emod,nu, 0-> pl. stress 1-> pl. strain'
26 read(*, *,err-0005) emod,nu,ipl27 if (ipl. eq.o) then
28 k- (3.0-=) / (I. 0+nu)I 29 else

30 k-73.0-4.0*nu
31 endif3 2 gmod-emod/ (2. 0* ( 1.0O+nu ))
33 0010 Write (*, *),I GiVe main crack length'134 read(*, *, er-010) c

35 0007 write(*,*)' Give Centroid Distance
36 read (*, *, err0007) xcen
37 C,-C+Xcen
38 write (*, *)1
39 write(*,*)' Give File Name for Kicroc-ack Data'

40 read (*, 0011) mfil

41 0011 format(al0)
42 c
43 open (5, file-afil, status-' old')i 44 wrCite(*, *) I

45 write(**, - Reading the Microcrack Data "
46 c
47 C nmic- of miaracracks ndis-# of dislocations/micro
48 c
49 read (5, *) nmic,ndis
50 i f (ndis. le. 0. or.ndis.g g. 10) ndis- 1
51 ic-0
52 dum,,cmplxf0, i)

1 55 c Next read coords of the microcrack (xs,ys) to (xe,ye)

1 56 c
1 57 wrTite*,, Currently reading the ',, 1't data"
I 58 read (5, *) Xs,vs, xe, ye

1
I
I
I

I
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1 60 xe-xe-xcen
3. 61 xs-xs-xcen
1. 62 c **~*********t*****t******e**
3. 63 dr-ex
3. 64 if (den. It. 0.000001) then

1 65thta.px/2.0

1 68 andif
3. 69 xd-cas(theta)
3. 70 yd-sin(theta)
1 71 duml-cmplx(xd,yd)
1. 72 c
3. 73 c Give the CSD, and the COD'
3. 746C
3. 75 read(S,*)bl~b2
1 76 bl.b1/float(ndis)
1 77 bZ-bZ/float(ndis)
1 78 xdis- (xe-xs) /(2. 0*float (ndis+ 1))I1 7 9 ydis- (ye-ys) /(2. 0*float (ndis.-))
1. 806c
I 81 do 0013 j-1,ndis
2 82 ic-ic+1
2 83 xsc-lcs.,(xdis*float(j))

2 84 ysc-ys4.(ydis-float(j))

2 86 yeC..ye(ydis*float(j))
2 7 ~Z03I(ic) -cmplx (xsc, ysc)
2 :a ~z02 (ic) -czplx(xec, yec)

2 89 a(i C)-cp~x(b1,b2)
2 90 a (ic) -(gmod/ (pi* (k+1l) *dumlea (ic)

2 91 a(ic)-a(ic)/dum
2 92 0012 continue
3. 93 0012 continue

94 close(s)
95 c

9i1 c tr opuaino the Nea~r nield Energy Release Rates

1 104 dum-1. O*an- (real (dum) -1. 0)

IV0 dumi. (ccnjq (an) *aimaq (ze)*c) /dum2

3.09 duxl-duim-d'.m2

. 3.12 ze-z02(.)
1-13 du-qrt((zes~c)/zm)
3. .14 dum--1. O'an* (real (dun) -1.0)I Il15 dum2-csqrt-(conj q(ze) )I 3118 duMI2mol(&On) aqz)*/d=

Il
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1 1.19 duxl-duml*dum2

1 120 K12=K22-(2.0*sqrt( (2*pi)/c) *(dum+duml))
2. 121 Ktot-Ktot-K12

1 122 0030 continueI1.23 a
124 c Convert Stress Intensity Factors to Energy Release Ratas
125 C
126 0038 write(,) Give Remcte Loading Stress,
127 wri te(,) Sig-yy, sig-xy
128 read(*, *,err-0038) sigyy,sigxy
129 rIK-real(Xtot)
120 -.KIZ-1.0*aizmaq(Xtot)
131 rKI-rXI+(sigyy-sqrt(pi*0.5*c))
132 i1(rK.lt.0.0)rKI=O.0
133 rKII-rKII.I(siqy*sqrt(pi*0.S*c))
134 vie**' The stress Intensity factors are :'

135 write(*,*)' X7E ',rEI1

137 Jnear(r-K*rl) +(r'-llrKII)
128 if(iPl.gt.0)than
129 jnear-Jnear/Zmod
140 else
141 Jnear- ( (1.0-ni1*nu) /Eod) *Jnear
142 endifI 143 writet,' The near field is
144 write(*,*)' Jnear-',Jnear
1.45 c
2.46 c Compute the Far Field Energy Release Rates via Budiansky
: 7 C and Rice FormulationU148 C

1.49 0035 v.rite(*,*) Give Contour Size'
1350 Ir4te(,) LonqthWidthL'
1.51 r-ead(* err003 5) r4c,Wc
1.52
152 cU154 c :irteqrate over a rectilinear path
1.55 c
156 Jc-cmplX(0.0,0.0)
1.57 Do 0040 i-1.,5

1 158 il(i.eq.1)then.U i.159 al=-0.2*c
2. 1.60 b--0.5*Wc

1. 261 :!st'-cmplx(al,O.O)
. 1.62 znd-c~olx(al,b)

1. 1.63 wrjte(;*, 

1.164 vri.te (*, *)', Currently :nteqrating oveL 1st part'

I. 1.69 ~ ite(,) Currently integrating over 2nd part'
1. 1.70 C1.eit(i.eq.3)then
2. 272. ZStc=plx(Lc,bj

2 273 :nd-cmp1.x(Lc~b)

i .7(5*) Currenrtly :ntegrating over Zrd part': 76 e!s;1!(i.eq.4)then
2 .77
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1 178 znd-cmplx(al,b)
2. 179 write(h,*)'
1 180 writa(*,*)' Currently Integrating over 4th part'
1 181 else
1 182 zst-czplx(al,b)
1 183 zndcuplx(al,0.0)
1 184 write(*,*) '
1 185 write(*,*)' Currently Integrating over 5th part'
1 186 endif
1 187c
1 188a
1 189 call Qromb(ic,zst,znd,Jcl)
1 190 Jc-Jc+JC1
1 191 0040 continue

192 c
193 c Adding on extra terms caused by the open ended integration
194 c path should be done at this point.
195 C
196 Jfar-aimag(Jc)
197 if(ipl.eq.o)then
198 Tfar- (2.0/Emod) *Jfar

199 else
200 Jfar-2.0*((l.0-nu*nu)/Emod) *Jfar
201 endif
202 open(5, file-'j.out', status-'new')
203 write(5,*)' Crack Input File:'
204 writ(5,0050)ufl
205 0050 format(15x,alO)
206 writa(5,*)' Crack Length -',c
207 write(5,*)' ,
208 write(5, *)' Contour Dimensions:'
209 write(5,*)' LC-',Lc,' WC-',WC
210 write (5, *)
211 write (5, *) I Material Properties:'
212 write(5,*)' Emod-",Emod," nu-',nu
213 if(ipl.eq.0)then
214 write(5,*)' Plane Stress'
215 else
216 write(5,*)' Plane Strain'
217 ndif
218 write(5,*)'
219 write(5,*)' Stress Intensity Factors:'
220 Write(5,*) • KI-', rKI,' KI I- ,rKl
221 writ*e(5,*)' t
222 write(5,*)' Energy Release Rates:'
223 write(5,*)' Tnear- •,Jnear
224 write(5,.)' Z"f.r -'1,Jfar
225 close(5)
226 wr4:te(*,*)' Jfar-',ifar
227 end

Name Type Offset P Class

A COPLEX 3200 /DAM /
Al RtAL 21468
AIAG ZRINTRINSIC
AN COMP.EX 11112
ATAK 114TRINSIC

T REALT 21472

I
I
I
I
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33 REAL 21034
B2 REAL 21038

C REAL 0 /CRACK /i QLX INTRINSIC

COHJG INTRINSIC
COS INTRINSIC
CSQRT IITi iNSICDEN REALL 21010
DOM COMPLEX 20978
DUMI COMP LEX 21026

DUM2 COMPLEX 21168
03 COMPLEX .t *

E1400 REAL 0 /MAT /
FLOAT INTRINSIC
FT3 COMPLEX*
GIO0 REAL 4 /MAT /
I IITEGER*2 20986
IC INTEGZR*2 20976
IPL INTEGER*2 20896
1z INTEGER*2 4800 /DAM /I INTEGER* 2 21050JC COMPLEX 21460
JC 1 COMPLEX 21492

JFAR REAL 21500IJNEAR REAL 21448

.K REAL 12 /1 T /
X12 COMPLEX 21272KTOT COMPLEX 21098

LC REAL 21452
LDIG INTEGER*2 14680
LWGT ]INTEGER*2 14780
MASK INTEGER*2 14880
MFIL CSAR*10 20902
NDIS INTEGER*2 20974
4NMC I1NTEGER*2 20972
NNX INTEGER*2 20880
NNY INTTGER*2 20882

ITUI REAL a /MAT
?I REAL 20892
REAL IN'TRINSIC
PEE REAL 21440
RKII REAL 21444
sic REAL 3816
SIGXY REAL 4 /REMOTE/iSIGYY REAL 0 /REMOTE/
SIN INTRINSIC
SQRT INTRI.NSIC
THETA REAL 21014VERTEXL REAL 14616
WC REAL 21456XC REAL 20898

X0 REAL 21018XDIS REAL 21042
XE REA 21002
XEC RE.AL 21066
)=,W REAL 20884

xS REAL 20994
xSC .REAL 21058
YO .FA 21022I

I

II
I
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YDIS REAL 21046
YE REAL 21006
IYEC REAL 21070
YLOW REAL 20888
YS REAL 20998
YSC REAL 21062

Z01 COMPLEX 0 /DAZ02 COM PLE.X 1600 /DAM /
ZC COMPLEX 212.2
Z E COMPLEX 21120
ZINC COMPLEXIZt,"V RE.AL 3616
ZKD COMPLEX 21484
ZP REAL 16ZS COMPLEX **
ZST COMPLEX 21476

228 c

229 c Romberg Integration Routines
230 C
231 Subroutine Qromb(ic,zst,znd,IIz)
232 Parameter (eps-5. e-5, jmax-20, jmaxp-jmax+l, k-5, kiM-4)
233 CoUplex*8 Izl(jmaxp) ,dlz, IIz
234 Real*4 h(jmaxp)
235 h(1)-1.0
236 do 0010 j-lojax

. 237 call T-azd(ifunc,ic,zst,znd,Izl(j),J)
1 238 if(j.qe.k)t en
! 239 1-j-km
1 240 call Polint(h(1) ,Izl (1),k,0.0,Iz,dlz)
1 241 if (cabs (dIz). it. (eps*cabs (I1z))) retu
1 242 endif
1 243 Zzl(j+-z2.(j)

1 244 !a(j+l)-0.25*b(J)
1 245 0010 continue

246 write(*,*)' Too many steps for reqd accuracy'I247 end

Name 2 Type Offset P Class

CABS ITFRINSIC
DIZ COMPLEX 21772
EPS PARAMETER
H REAL 21682

1,FUNC INTE-GER*2 2176a
::1. CO"'- L

--X  
12

7-Z1 COMPLEX 21514
j INTEGER*2 21766
JMAX PARAMETER

x PARAMETERIKH PARAMETER

L t T.W G ER-2 21770

iND REAL 8 *
ZST REAL 4 *

248 cI
I
I
I

I
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250 SUBROUTINTE POLINT(XAt AINo XI, Dy)
251 PARAMETE (MAX-10)252 complax*8 YA(N) ,C(NMALX) ,D(NMAX) ,Y,DY,W,WDEN
253 DIMENSION~ XA(N)
254 NS-I
255 DIP-ABS (Z-(A (1))
256 DO 11 1-1,x

L 257 DIFZ wBs(X-XA ())
1 258 IF (DIFT.LT.DIF) TEMN
1 259 NS-I
1 260 DIP-DIIT
1 261 ENDIF
1 262 C(I)-YA(I)
1 263 D(I),,A(I)
1 264 11 CONTINUE

265 Y-'A(NS)
266 NS-NS-1
267 DO 13 M-1,N-1

1 268 DO 12 I-1,N-K
2 269 HO-u(I) -X
2 270 EP-XA(I+M)-X
2 271 W-C(I+1) -D()
2 272 DEN-HO-[P
2 273 WDEN-W/DEY
2 274 D (I) -KP*WDEN
2 275 C (I) =HO*WDEN
2 276 12 CONTINUE1 277 IF (2*-WS.LT.N-M) TEEM

1 278 DY-C(HS+1)
1 279 ELSE
1 280 D130(NS)
1 281 NS-NS-1
1 282 ENDIF

1 283 Y-Y+DY
1 284 13 CONTINUE

285 RETURN
286 END

Nam* Type Offset P Class

ABS INTRINSIC
C COMPLEX 21804
D COMPLEX 21884
DEN REAL 22012
DIT REAL 21966
DIFT REAL 21978
DY COMPLEX 20HO REAL 21996
HP REAL 22000

INTEGER*2 21970

1 INTEGER-2 21382
'I INTEGER*2 8 *
,44AX PARAETER
iS nlmEGER*2 21964
W COMPLEX Z2004IDEN COM!PLEX 22016
x REAL 1z
XA REAL 0*I

I
I
I
I
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T COMPLEX 16

YA COMPLEX 4*

287 c
28
289 Subroutine Trapzd (ic, zst, 7nd, 1z, n)
290 Complex*8 zst,znd,I=z,del~z,1z.,1z2
291 if(n.eq.1)then
292 Call Fnct(ic~zsd.1z2)
292 Call ?nct(ic,znt,Izl)
294 IIz-O. 5* (znd-zat) * (Xzl+1z2)

297 trum-float (it)

298 del- (znd-zst) /tri
299 Zzst4-0.5*dekl
300 lz2-czplx(0.0,O.O)
301 Do 0010 J-1,itI1 302 Call Frct(ie,z,Izl)

1 303 EZ2Ilz2+lzl
1 304 z-z+del
1 305 0010 continue

306 IIz-O.5*(IIz+(znd-zst) *Iz2/tnm)
307 it-2*itI308 endif
309 return
310 end

N4ame Type Offset P Class

CNPFLX INTRINSIC
DEL COMPLEX 22086
flOAT INTRINSIC
IC fl4TEGZR*2 0 *

lZ COMPLEX 12 *

IT INTZGER*2 22180

N INTZGER*2 16
NN REAL 22082

z COMPLEX 22102
ZND COMPLEX 8a
ZST COMPLEX 4

311 C
312 c
313 Subroutine ?nct~ic,z,IIz)I314 Complex*$ z,fzl,fz2,ttl~ft2,Ilz,zOl(200),202(200),a(20),
315 1 pkiin,ksin,dum
316 Common /dam/z01,z02,a,iz
317 Comon/reat/sigyy, siqxy
318 ftl-cplx(0.0,0.0)
319 ftZ-cmix(0.,0.0)

321 Sum ver all Dislocations

I2
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323 do 0010 iz-I.,ic

1 324 call PH(z,fzl)
I 32S call KS(z,fz2)
1. 326 ftl-ftl-fzl

1 327 ft2-ft2-fz2
1 328 0010 continue

329 c
330 C Add effects of remote loading in the Potentials
331 cU333 iy00
335 iysiqyytOOhn

3 3, endif
37 fzl-czaplx(siqy3.,sigxcy)

338 phin-(sqrt(C)/4.0)*(fzl/csqrt(z))
339 fzl-cmplx((0.25*sigyv_) ,0.0)
340 ph.Ln-phin~fzl
341 fz 1-(1. O/csqrt (conj q(Zf)-(0. 5/csqrt (Z)
342 fz2-(l.0/csqrt(conjg(z)))4-(0.5/csqrt(z))
343 dum-cuplx(0.0,1.O)
344 1sin(sqrt(c)/4.0)*((sigy1*fzl)-(sigxydum*fz2))
345 dum-cuplx( (0.5*sigyy) ,Sigxy)
346 ksin-ksin+dum
3471348 ftl-ftl+phin

352 return

353 end

Namne Type Offset P Class

;L COMPLEX 3200 /D3AM /
C REL22200
CIPLX IvinRISZC
CONJG I21TRflNSIC
CSQRT INTR334SIC
DON COMPLEX 22308I I COMPLEX 22150

M. COMLEA X 22158

Z COMPLEX 2218

Izz COMPLEX a *OMI "s0n cOMPLEX 2216 /1.'

PU" cOM' 29IIX EL4 /&ME
IIY YA 28
IIY ELa /XXT-
IQR
U OPE
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355 c Complex Function Routines
356 c
357 Subroutine PH (z,fzt)
358 Complex*$ z,z01(200) ,z02 (200}, fz, fzt,a(200) ,an
359 Common /dmz01, z02,a, iz
360 an,-a(iz)
361 call Phi2(an,z,z0l(.iz) ,fz)362 f zt (art/( Z-Z01 (iz) ) +f z
363 c
364 c Add Negative Burgess Vector
365 c
3O6 arx-1.0*a(iz)
367 call Phi2 (an, z, z02 (iZ), fz)
368 fzt-fzt+fz+ (an/(z-z02 (iz)))
369 return370 end

Name Type Offset P Class

A COMPLEX 3200 /DAM /
AN COMPLEX 22380
FZ COMPLEX 22388IT COMPLEX 4 *
2z INTEGER*2 4800 /DAM /
z COMPLEX 0 *
zol COMPLEX 0 /OAK /
Z02 COMPLEX 1600 /UAM /

371 c
372 c
373 c
374 Subroutine Phi2 (an, z, zo, fzt)
375 Complex*8 an,ac,z,zo,fzt,fzl,fz2,fz3,Xz

376 ac-conjg(ar-)
377 zac-conjg (zo)
378 call fX(z,Xz)
379 call F(z,zo,fzl)
380 call F(z,zoc,fz2)

381 call G(z,zoc,fz3)
382 c fzt--I.0*((an*zl)+(an*fz2)+(ac*(z-zoc) *fz3))
383 fzt--l.0*((an*fzl)s+(an*fz2)+(ac*(zo-zoc)*fz3)-(an*Xz))
384 return
385 end

Name Type Offset P Class

AC COMPLEX 22420
kH COMPLEX 0 *
C01JG =lTRI3(S.C

FZl COMPLEX 22440
FZ2 COMPLEX 22448

.23 COMPLEX 22456
z COMPLEX

OC REAL 22428
386 cI

I
I
I
I
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388389 Subroutine F(z,a o, fz)
390 Compl eW8 z,zo,fz,Xz,Xzo
391 call fX(zXz)
392 call fX(zo,Xzo)
393 fz- (I o- (XZ/XZo))(2. 0 (z-zo)
394 return395 end

mm Type Offset P Class

F COMPLEX 8 *
XZ COMPLEX 22512
XZO COMPLEX 22520z COMPLEX 0 *
ZO COMPLEX 4 *

9396 c
397 c

399 Subroutine G(Z,Zo,fz)

400 Complex*$ z,zofz,;,XzoXPzo
401 call fX(z,Xz)
402 call fX(zo,zo)U ~ ~~~403 call fxpzo,xpzo) *ZXZ)(Z*z)404 fz-l. 0-(Xz/xzo)+ (((Z-zo) *Xz*x!Dzo)/(Xzo*Xzo) )i 405 fZ-fz/(2.0* (z-zo) *(z-zo) )
406 return
407 end

lame Type Offset P Class

F? COMPLEX 8 *MOQ COMPLEX 22569
Xz COMPLEX 22552XZO COMPLEX 22560z COMPLEX

ZO COMPLEX 4 *

408 c
409 c
410 C
411 Subroutine fX(z,Xz)412 Comlpl ax*8 z, z, zIc
413 Cam-an / --ack/ c414 z.zc,,(z+€) *z
413 Xi-1.0/csqr= (zpc)
416 return
417 end

Xame Type Offset P Class

C REAL 0 /CRAc
CSQRT :.irRINS IC'(Z COMPLEX 4 *
Z COMPLEX 0

I
I
I.
I
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I ~ ~~~ZPC COPLEX 22640 ~irsf OrAr7 1:04

419 C
419 c
420 c
421 a
422 Subroutine fXP(z,XPz)
423 Complex*$ XPz,z,zpc,za,zb

424 Common /crack/ c42 Ucz.
426 za-sqrt(z)

42 Xz-0.5*((1.0/za)+(1.0/zb))
430 return
431 end

Nane T'ype Offset P Class

C REAL 0 /CRACK

32 CPE4*

I433 c
434 Subroutine XS1 (z, tzt)
435 COmplar*8 z~zc,zoc,Z01(200),z02(200),fz3.,fz2,f23,fzt,a(200),
436 31 an, ac
437 Common /dai/z01,z02,a,iz

438 an-a (iz)

440 call Pti (an,zG, z01 (iz) ,tzl)I4414z-ongfl
443 cl Pbq2(az~l~z) 1zfI445 cccj~n

449 c Add Negative of Second Burgess vector
450 c
451 an--'.0*a(iz)
452 call ?hiZ (an, :c, z02(iz) ,fz!)
453 fz2.-conlg(fzl)
454 call Pbhi2 (an, Z, z02()fZ2)
455 call Pbi2P(an~z.za2(iz),'z3)
456 fzt-fzt+Izl-fz2-(z~fz3)
457 ac-conjq(an)
458 ZoCCflj(z02(iz))
459 =--t-a/zz2;z)*(nzc/(-oiz)(-2(Z))

I6 etr
46In
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Nane Type Offset P Class

A COMPLEX 3200 /DAM /
AC COMPLEX 22856
AN CCM]PLEX 22808
COW G INRISICm MG COMPLEX 22824

FmZ2 COMPLEX 22:32
1 3 COM(PLEX 22 40
FZT COMPLEX 4 *
Iz INTEGER*2 4800 /DAM /
Z COMPLEX 0
zol COMPLEX 0 /DAM /
Z02 COMPLEX 1600 /DAM /
ZC COMPLEX 22816

zCc COMPLEX 22864

462 c
463 c
464 C
465 Subroutine Phi2P(an, z,z o, fzt)
466 Complex*8 an,ac,z,zo,fzt,fzl,fz2,fz3,XPz
467 ac-conjq(an)
468 Zoc-conj7(zo)
469 call fX (z, XPz)
470 call PP(Z,zo,fzl)
471 call FP(z,zoc,fz2)
472 call GP(z,zoc,fz3)
473 fzt-1. 0* (an*fzlan*fz2+ac* (zO-ZOc) * fz3-a *XPz)
474 c fzt1--. 0* (an*fzan*fz2+ac* (zo-zoc) *fz3)
475 retu=n

m476 and

Nam* Type Offset P Class

AC COMPLEX 22952
AN COMPLEX 0 *
CONJG INTRINSIC
U]. COMPLEX 22972
FZ2 COMPLEX 22980

FZ3 COMPLEX 22988
FZT COMPLEX 12 *
XPZ COMPLEX 22964
z COMPLEX 4 *
ZO COMPLEX a
zCc RF.L 22960

477 c
478 C
479 c
480 Subroutiie -P(z,zo,fz)
481 Complex-8 :,zo,fz,Xz,Xzo,XPZ
482 call fX(z,Xz)
483 call fXfo.XZ-o)

484 call fxp(zxpz)
485 z-1.0_(XZlXzo)+ ( (z-zo) *.Pz)/Xzo)

I
l
I
l



269
Page 1.4
06-27-88
19:30:43

D DLine9 1.1 7 Microsoft FORTR~AN77 73.20 02/84486 fz-tz/ (-2.-0* (Z-zo) * (Z-zo))
48$7 return
488 end

Names Type offset P Class

nl COMPLEX8
XPZ COMPLEX 23060
XZ COMPLEX 23044
XZO COMPLEX 23052
z COMPLEX 0 *IZO COMPLEX 4 *

489 CI491
492 Subroutine GP(z,zo,fZ)

496 call fX(z,XP)

497 call !xp(zo,XPZO)
498 fzl-3.0-(XZ/Izo) + (((z-zo) *Xz*XPZO) /(XZo*Xzo))
499 fzl-fzl/ C(z-zo) *(z-zo) *I~z-zo))I 500 tZ2-( (Z-20)*XPZO*XPZ)/ (Xzc*Xzo)
501 fZ2-fZ2+( (X:O*XZ) /(Xzo*XzoJ) -(XPZ/Xzo)
502 fz2=fz2/ (2. 0* (Zz:o) * (z-zo))
503 fz-tz2-fzl
504 return
505 end

Name Type Offset P Class

F? COMPLEX 8
FZl COMPLEX 23148
FZ2 COMPLEX 23220
Xl? COMPLEX 23132
XPZO COMPLEX 23140

XZ COMPLEX 23116I .XZO COMPLEX 23124
z COMPLEX0
ZO COMPLEX 4*

506 c
507 c

5141 an=-3.(iz)
12 call. ?biZPtan,z,z02(iz),fz)

U518 en
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.4ame Type Offset P Class

A COMPLEX 3200 /DA /
AN COMPLEX 23316
FZ COMPLEX 23324
PEZT COMPLEX 4 *
ZZ INTEGER*2 4800 /DAM /
Z COMPLEX 0 *
Z01. COMPLEX 0 /DAM /
Z02 COMPLEX 1600 /DAM /

519 c

520 c
521

Mame Type Size Class

CRACK 4 COMMON
DAM 4802 COMMON
ENERGY FROGMAN
F SUBROUTINE
W'CT SUBROUTINE
-?P SUBROUTINE
TX SUBROUTINE
PHP SUBROUTINE
G SUBROUTINE
Gp SUBROUTINEI SI SUBROUTINE

2 is1 COMMON
PHI SUBROUTINE
P H12 SUBR0UTrnE
PE112P SURUTINE
? HIP SUBROUTINE

QR0K- SUBROUTINE
.M!OE 8 COMMON
TRAPZD SUBROUTINE

Pass One No Er-rors Detected

521 Source Lines!0

I
I
I
I
I
I
I

I
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1 $Storage: 2
2 $Debug
3 Program kin
5 C*-*** This program is designed to compute the stress intensity*

6 c***** factor at various locations in front of the crack tip for *
7 c***** particular damaqe configuration.

9c
10 Complex-8 z, zst, znd, zinc, zc, z01(200),z02(200),
11 1 a(200),duml,duz,dum2,zs,ze,dz,anKtot,X12,ft3
12 Real*4 k,nu,xs(50) xe(50) ,ys(50) ,ye(50),bl(50) ,b2(50)
13 Character*f0 afil
14 c
15 pi-3.141592654
16 write(*,*)' Give material properties'17 0005 write (*, *) I emod,nu, 0-> pl. stress 1-> pl. strain'
is read (*, *, er--005) emod, nu, ipl

i 19 if (ipl. eq.0) then

20 k-(3.0-nu)/(1.0+nu)
21 else
22 k-3.0-4.0*nu

23 endif
24 gmod-emod/ (2.0* (1.0+nu))
25 0010 write(*,*)' Give main crack length'
26 read(*,*,err-010)c27 0007 write(*,*)' Damage zone length'
28 read (*, *, err-0007) xmax
213 0038 write(*,*)' Give sig-xy 3 ed(,* 08 ix

30 read (*, *, err-03 8) sigxy
31 rk2c=sigxy*sqrt (pi*0.5 *c)
32 write(*,*)' 1
33 write(*,*)' Give File Name for Microcrack Data'
34 read(*,0011)mfil
35 0011 format(alO)
36 c
37 open(5, file-mfil, status-'old')
38 c
39 c nmic-4 of Microcracks ndis-# of dislocations/micro
40 c
41 read(5,*) nmic,ndis
42 if(ndis.le.0.or.ndis.gt.i0)ndis-I
43 c
44 c Next read coords of the microcrack (xs,ys) to (xe,ye)
45 c
46 do 0012 i=1,aric1 47 read (5, *) xs (i,) , ys (i) , xe (i) , ye~i

. 48 read(5,*)bl(i),b2(i)
1 9 0012 zontinue
50 close(5)
51 c
52 c Star- the computation for the SIF
53 c
54 open (5, file'1kcrak, out', status-' new')
55 open( 6, file-' kdam. out I, status- ' new')
56 open (7, file-' t.out', stati.v%' new'
57 do 0016 4-1, o00
58 "rrite(*,*) .okn on ,j,'It point,I 5 9 ic-0

I
I
I
I

I - -, ,.,,,,,m m m n•nmm nmnm•ml
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2 62 xaa-x&(1)-xcziI2 65 yes-ye(1M
2 66 don-xas-xss

2 6: theta-pi/2.0

2 70 thetaatan ( (yes-yas) /don)
2 69 elsef

2 73 ydusin(thata)I2 74 duml-caplx(xd~yd)
2 75 bls-bl (i) /float (nis)
2 76 b2s-b2 (i)/ float (ndis)
2 77 xdis- (xes-iss) /(2. 0*float (ndis41))
2 78 ydis-(yes-yss) /(2. efoat (dis,1))I2 79 a
2 80 dumzplx (o, 1)
2 81 do 0013 1-1,ndis
3 82 ic-ic+1

3 83 xscwxs+(di*float(1))
8 4 Ysc-Ys:a4(ydisefloat (1))
8 5 xec-xa- (xdis~float (1))

3 86 yec-yes- (ydis*float (1))
3 87 zol (ic) -czpl~x(xsc, ysc)
3 88 z02 (ic) -c~plx (xec, yec)
3 89 a (ic) =cmplx (bls, b2s)
3 90 a ic) -(qfed/ (pi* (l) ) *dual*a (ic)

1 95a Satcoptto of the Stress Intenlsity Factor

99 Do 0030 li2,ic

2 100 an-a(±)

2 102 dumwcsqrt((ze+c1)/ze)

2 104 d=m2-csqrtcconjg(r*))
2 105 du2-2 . 0*dum2*dua2*4um2*csqrt (conj q (to) +cl)

2 107 dum2-czplx(o.o,l.o)

2 109 12-2. 0*sqrt ((2*pi) /c) *(dum+duaj.)
2 .10 ar.-1.O~a(i)
2 111 za-z02(i)

2 112 dum-csqrt ((ze+cl) /za)
2 113 dun--I. *ano (real (dum) -1. 0)
2 114 dUx2-csqzt(conjq(ze) )I2 115 dUa2-2.0*duim2*du.L2*Gum2csqrt(conj(e)-.cl)

2I1 ul cnqa)*ia~e c)dm
2I1 u -mj~~,,o
2I1 uldm~u2
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2 119 K12-K2- (2.0*sqrt((2*pi)/cl) *(dua+dual))
2 120 Kot-Ktot+K12
2 121 0030 continue
1 122 cI1 123 a Write out the Stress Intensity Factors
1 124 c
1 125 rXI-1.0*aizaqCKtot)
1 126 rKII-rKI/rk20
1 127 rkcrak-sigxysq-rt(pi*0.5*cl)
1 128 rkcrac-rkcrak/r 2c
1 129 wrrite (5, )xcen, rkcr-ak
L '130 wr~ite (6, )xce2n, r al

131 tOtlrkcrak+ rna
132 vrite(7,')xcen,to0t

1 133 vrite(*,*)' I
1 134 write(*,*)' Sr neltFaozl 3wle(,)' xdazp" ,rxKII, X crack-1,rkcrak, • Ktot-1, tot

1 136 01116 continue
i37 close(5)
138 close(6)
139 close(7)
140 end

IamTe Offset P Class

A COMPLEX 3216
AnIAG INTRfnlS.C
.A COMPLEX 6280

ATAN INTRINSIC
B1 REAL 5616
BIS REAL 6190
32 REAL 5816
32S REAL 6194
C REAL 6038
C- 1 6262

Cos INTRINSIC
CSORT INTRINSIC

DEN REAL 6166
Dam6 COMPLEX 62060061 COMPLEX 6182

DUM2 COMPLEX 6336
0% COMPLEX
ZKO0 REAL 6020
7LOAT INTRiNSIC3 P3 GZR*2 6028

iC INTEGE R" 2 6138
?L ZNTEGER* 2 6029

j INTv-GER*2 6136

K REAL 6030
K12 COM PLEX 6440

COMIGLEX 6266
L INTrEGER* 2 6214
i X-AL cHR*I0 6054

1.DIS INTEGER*2 6126
nacIC LTEGER* 2 6124

621

I
I!
I

I
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Ivu REAL 6024
Pi REAL 6016
REAL ~ INTRINSIC
.RC REAL 6050
RECRAX REAL 6612
RIia REAL 6608
SIGXY REAr 6046
SIN DTllsic
SQRT INTR1NSIC
TET REAL 6170
TOT REAL 6616
XCEN REAL 6140
XD REAL 6174
XDIS REAL 6198
XE RYAL 5416
IR3 REA 6150XEC REAL 6230

15$ REAL 6150
XKAX EAL5042
xS RZJLL4816

XSc REAL 6222
XSS RZAL 6154
YD REAL 6178
YDIS REAL 6202
YE REAL 5216
YEC REAL 6234
YES REL 6158
YS REAL 5016
YSC REAL 6226
YSS REAL 6162
Z COMPLEX
Z01 COMPLEX 16
Z02 COMPLEX 1616
ZC COMPLEX ---**
ZZ COMPLEX 6288
ZInC COMPLEX
ZND COMPLEX
ZS COMPLEX
ZST COMPLEX

i Name Type Size Class

KKIN PROGRAM

Pass One No Errors Detected
140 Source LimesI

I
I
I
I
I
I



I

275
Page L
06-27-8:
19:32:0

D Line# 1 7 Microsoft FORTRAM77 V3.20 02/841 $Storage: 2
2 $Debug
3 Program SI?

6 c***** This program is designed to generate a greens function contour
6 c*p**plot**iz th * *lx potential rm.].*esults.

9 Complex8 7, zc, zckl, zck2, Z01, z02, fzl,f z2, fz3, trans,
10 1 a,duml,dua,dum2,4u3,d4,zs,e,dz,an,Ktot,5a12
11 Real*4 k,nu
12 Coumon/Workl/sif(50,50,2), zp(50,50),zlev(3),vertex(16)13 Int.egor*2 Idig (50) , lw t (50) , mask (3000)i 14 Data nnx,nny,xlow,yloW /50,50,1.0,I.0/

I15 C

16 pi-3.•141592654

17 write(*,*)' Give material properties'18 0005 write(*,*)' amod,nu, 0-> pl. sess 1-> pl. strain,
19 read(*, *,er-0005)emod,nu,ipl20 if (ipl. eq. 0)thn
21 k-(3.0-nu)/(I.0+nu)
22 also
23 k-3.0-4.0*nu
24 andif
25 quod-enod/(2.0* (1.0+nu))
26 0010 write(*,*)' Give main crack length'27 reed(*,*,ere 010)c¢28 write(*,*)I Give the microcracX orientationcsd,cod'
29 read (, * - vhota, bx,y vr

30 theta- (pi*theta) / 180.0
31 C32 a Compute the Bur-gess Vector for the values above

34 ca-cos (thsta)
35 si-sin(theata)
36 trans-4cplx(ci,si)
37 dUm-CplX(0,1)
38 a-c=plx(bx,by)
39 a-trans*a
40 a-(guod/(pi*(k+l)))*a
41 a-a/dum
42 ax-real (a)
43 ay-aimaq(a)
44 write(*,*)' a -',ax,' i',ay
45 bmaq-sqrt (bx*bx+by*by)
46 c
47 c Start grid loop here
48c
9 0025 write Give starting and ending points xs,ys,xe,ye'I 50 so ead (*, *,ar e-0025}xs,yr, xe, ye

51 c writ*,*)'I Give grid resolution nx,ny (max - 30)'52 a read (*, *,r'.ioo25) nx,ay
53 nx 4 9

54 ny-49i S95 dx,- (Xxs,) /f loat (nx-1)
54 dyI ('e-ys) /float (ny-!)

57 c
58 c Define the qrid for the STP computation
59 cI

I
I
I
I
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60 sifl-0. 0
61 sif2-0.0
62 a
63 a
64 do 0035 i-l,nx

1 63 xddxfloat(i-1)

2 69 xval-xsizd
2 70 Z-cmplx(xval~yval.)

004 at ''.1*inthta

2 76 if (Cabe (z) . t. 1.oe-6) then

3 79 sit(i,j,A)-l.035
3 80 043 onitinue

2 1 go to 0045
2 82 endif

2 84 llrita (*, *)'I Singularity at x-',xval,'y-$,yval
85a do 0044 m-I,2

3 86 004 sif(i,j,)-.e35

2 as go to 0045
2 89 inndif
2 90 if (cabs (zci2) . t. 1. o-6) t~on
2 91 002write (*, *) ' Singularity at x-',xval,'y%-',yval

3 93 sif(i,j,z)-l-043S
3 94 002continue
2 93 go to 0045
2 96 endif

2 107 c Compte lId zninlzn atrvaCunviyapoc
2 10O olo

2 104 YavGt0od*s(pi*.Scjlua.(00l

2 107 c COmput& Nthe Stesain gt factor foa hediolec ppoc

2 116 fac- sqrt (pi/ 2./0) (~.0 sr ba)(md.a1
2 117 dzmuta the St*ressTnanid Fcto)fr hediol

2 118 dumZcsqrt(conjgc)Ze))U 1 u- .0*n,/ra dm .0
2IS dm.cq" c jq(za
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2 1.19 dum2..2 0*dum2*dirn2*dim2*csqrt (conig (ze) +c)
2 12 0 dual- (conjg (an) *aiag(ze) -cl/dum2
2 121 dum2-cmplx(0.0,i.O)
2 122 dum1-duml*dulI 2 123 X12-2.0*sqrt( (2.0*pi)/c) *(cluin+duinl)
2 124 are- 1.0*a
2 125 za-;02
2 126 duzr-csqrt((zeo-c)/ze)
2 127 dum-1. O'ank (real (dun) -1. 0)I2 128 dum2-csqrt(conjg(z*))
2 129 dum2-2. 0*dua2*dum2*dum2*csqr.t (conjq (ze) +c)
2 13 0 duml-(conjq(an) *aimaq(ze) *c)/duu2
2 131 dum2-cplx(.0, 1.0)
2 132 duxl-dUm1*dUm2
2 133 K32-K12-(2.0*sqrt( (2*pi) /C) *(dumi~duml))

2 135c sit 1-real (X22)/ fact

2 138 sit (i~j,1)-sifl
2 139 w rite(*,*)'
2 140 c write(*,*)'
2 141 c write(*,*)' Location: X-',xval, Y-',yral
2 142 c w.rite(*, *) 1 SI73: 1-',sifl,' 111-',sit2I2 143 if(abs(s2) .1t.ab(sif2) ) sy-m':i,J,2)
2 144 if(abs(sm).lt.abz(sif1)) sur-s.if(i,j,l)
2 145 0045 continue
1 146 0035 continue

147 cI148 c
149 c Prepare to Plot the results
150 c
131 0050 drits(*,*)' Give Iopox-t,Model,Pact'
152 read(*, *,err.0050) ioport,model, fact
153 C055 wite(*, *J 1 K -> 11 la1 -> 2'
154 read(*, *,err.0055) ip
155 do 0090 L-1,nx

1, 156 do 01095 J-1,ny
2 157 zP(i,J)-sif(i,j,iP)

*2 158 0095 continue
1 159 0090 continue

160 it(ip.eq.1)then
161 write(*,*)$ The maximum value is -8,Sifl
162 else
163 write(*,*), The maximum valu, is .. ',sif2U164 endif
165 0070 write(*,*) Give Contour Information -

166 write(*,*)' flevs, min 1ev, max 1ev, # betw labels, # first
167 read(*, ',e -- 0070) nieav,vminl,vmax,nbl,nst
168 dlev-(vmax-vin) /float (nlev)I169 il-met
170 do 0075 i=1,n.lev

1 171 zlev(i)-vmin..(dlevfloat(!))
1 172 if(il.q.ibl)then
1 173 igl-
1 174 lvrt (i) -3

1 175 ii-a
1 176 else
1 177 Idig(i,)--2
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1 178 lvqt (1) -
1 179 endif
I I80 ±i142.
21 181 0075 ContnUs

1082 xrhigh-5.0
IS 38 Yriigb"S.0
184 hqt-0.07
is85 narc-3
186 ndiv-2
107 call pl.ots (0, joport, model)

188 call factorlfact)

IS9 call zc~~pn.iyn~yxo~ychqhgtze~dl
197 1 lwqt,nav, hqt, ndiv , narc)

198 c. call stline(1,.1389,O.) ow l, hh yi, lv dg

1902 lhqtlehgtninac

205 call stlijs(hl,hqt29,hq.bq2

208 cll ais(XOVyYiIl-

211 0100 : vrt(%Lk) / 3%i-0 lo w .

212 ydead(*,*er-0lO/ (Yi-d~v
202 hitl-12dq.tb

216 call ta(0c,iaort.'m d-l)xn00xdI

217 call tact(o. 0.99)

211 010 rie**' - lo >1

2120 red(* *er- 103

222 if ad q.e)-he

224 call fatr~at
215 1 i qhprb.io, poj fan,-VCo

226 2 trila ,VrtX

228 endir-I ~ ~~~221 0080 -ri e35~ ifretpo >1

220 ire**,r08Oi1
221 ic(un~t.0gO 05

22 endi

Name "rve Cf fct ? Class

A COMPLEX 62a6
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ABS nrrRxISiC
ABOR REAL 6968
AIAG INTRINSIC
AN COMPLEX 6524
AVER REAL 6972
Al REAL 6318
AY REAL 6322
BMAG REAL 6326
x REAL 6254

By REAL 6258
C REAL 6246
CABS ZNTRfNSzC
Cl REAL 6262
C PLX INTRINSIC
CONJG INTRINSIC
Cos I ITRINSCCSQRT "INTRINSIC

Cz REAL 6414
DL'7 REAL 6904
WU COMPLEX 6278
DumI COMILEX 662UM(2 COMPLEX 6580

Ii IIEG"'"691

DUM4 COMPLEX **
Dx REAL 6350
DY Y.RAL 6354
DZ COMPLEX ***

EMOD fREAL 6228FACT REAL 6520

FLOAT INTRINSIC
.I COMPLEX 6880F%2 COMPLEX **
FZ3 COMPLEX ***
GMOD REAL 6242
HGT REAL 6928
WGTI REAL 6958
HGT2 R.EAL. 6962

1 IT'EGER*2 6366
INTEGER 2 6912

23D CnTmLXm 2 6966
ICT IWTZGZR*2 

698ZDIR INTGER*2 698IEDGE IIE *2 6990
*FRAKZ ZNTEGER*2 6986IINEli INTZGER* 2 6992

IOPORT .=NTGM* 2 6876
.P V4TZER*2 6880

1L NTEGER*2 6236
!PROJ =NTG=*t2 6976

I~TI L Z ."'. 1-- ' G R* 2 697:
,7 NTEGER*2 6378

?SAEL 6238
.n12 COMPLEX 64S92
K TOT COMPLEX **

ILrjIG nr=" R* 2 12
W4= T EGfERt 2 112
x --VlT-.GZR-2 6450
MKSTC L"EGER- 2 212
W 1 DEL :lVI'-Gz--* 2 6879U

I
I

Imlmmin u iI l



I 280

Paqe 6
06-27-88
19:3208
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MARC INTEGERA2 6932
,"L IIT]GzR*2 6904
YWIV INTIGE'2 6934
NLZ IlNT2GER*2 6894
NNX fITZER* 2 6212
IVlY INTEGER'2 6214
NST INTZGER*2 6906
NU REAL 6232
lIX INTZGER*2 6346

ITTV 1 GER*2 6348

P! REAL 6224
RAD REAL 6516
RmA IN4TRINSIC
SI REAL 6266SIT REAL 0 /WORXI
S'TFI REAL 6358
SI '2 REAL 6362

Si INTRINSIC
Sil1 REAL 6868
S92 REAL 6860
SNE REAL 6872
SMY REAL 6864
SORT INTRINSIC
SZ REAL 6418
TSETA REAL 6250
TSANS COMPLEX 6270
VERTX REAL 30200 /WORK1 /
VMAX REAL 6900
VNN REAL 6896
X2 REAL 6484
WEAV REAL 6508
XD REAL 6374
XD2 REAL 6476
l3EL REAL 6950
XE REAL 6338
lEC H REAL 6920
X.3 REAL 6942
XLOW REAL 6216
)m REAL 6330
IVAL REAL 6394
Y2 REAL 6488
YAVE REAL 6312

GD REAL 632
YL2 REAL 6480
YVEL. grxr-, 6954
YZ REALL 6342
V9GR RE..AL 6924.
.VT ' RE.AL 6946

7.0W REAL 6220
YS REAL 6334
YVAL RZL 6390

COMP0LEX 6398
zo COMPLEX 6492
Z02 COMPLEX 6500
zC COMPLEX 6422
Il COMPLEX 6406

zC2 COMPLEX 6430
E COMPLEX 6532

ZLr. REAL 30000 /WORXI /

I
U
I
I

U l IImi
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ZLOW REAL 6982
ZP REAL 20000 /WORK1 /
2S COMPLEX

Name Type Size Class

AXIS SUBROUTINE
FACTOR SUBROUTINE

PWT SUBTU1

STAXIS SUBROUTnM
WOR,.1 30264 COMqMON
ZCSEG SUBOTINE

Pass one go Errors Detected
23)2 Sour'ce Lines

I
I
I
I
II
I
I
I
I
I
I
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0 Line01 7 Microsoft FORTRAN77 V3.20 02/84
1 SStoraqe: 2
2 $Debug
3 program Stress
5 c***** This p*ra* is designed to compute the stres* *i*e* in the*
6 ***** vicinity of a mai C--ack qivin a damage in the form of dis- *

7 C***** locations. This technique will use the complex potential *
8 c***** formulation presented by K.. Lo. 

10 C
11 Complex*8 r:zc,zc.l,zck2,zc3,ZO(50),z02(50),fzl,fz2,fz3,
12 1 a(50),dul,dum,zs,:e,dz
13 Real*4 k,sig(30,30,3) ,eMod,nu,zp(30,30) ,zlev(50) ,vertex(16),
14 1 XI,XKI
15 Integer*2 ldiq(50) ,lwqt(50) ,mask(30o)
16 Comon /mat/ aodgaod,nu,k
17 Common /dam/lz02,a,izI: Common /crack/c

I Data nnx, ny,xlov,ylov /30,30,1.0,1.0/
2021 pi-3.14159265422 wrie(*,* ) , 6 Give material properties'

23 0005 4rite(*,t) I encd,nu, 0-> pl. stress 1-> pl. strain'
I24 read (*, *, err-0005) enod, nu,. ipi

25 if(ipl.eq.0)then

26 k- (3.0-n) / (I. 0+nu)
27 else
28 k3.0-4.0*na
29 endif
30 qmod-emod/(2.0 * (I. 0+nu))
31 0010 write(*,*)' Give main crack length'
32 read (*, *, err-0010) c
33 writ*(*, *) ' 1
34 write(*,*)' Give Kicrocrack Information .....- '

35 0011 Jritef*,*)' Give 4 micros, # dislocations/micro
36 read(*,*,err-00ll)n3mic,ndis
37 if(ndis.l.0.or.ndis. gt.10)ndis-i
38 ic-0
39 dum-cmplx (0, 1)
40 c
41 do 0012 i-i,nmic

. 42 0015 write(*,*)' Give starting and ending points ,i,' th micro'
1 43 write(,.)' xstart, ystar, xend, end'
1 44 read (*, *, err-0OI5) xs, ys, xe, ye
1 45 den-xe-xs
. 46 if (den. t. 0.000001) then
1 47 thaea-pi/2.0
!. 48 else
3 49 etaa tan ( (ye-ys) /den)
I 50 andi!
1 51 xd-cos(th ta)U 1 52 yd-s in (thota) edteCO1 53 duml-zp lx (xd, yd)
1 54 0020 write(*, -)I Give th& CSD, an'd th.o COD'

35 read er*, 0 2, S O00) bl, b2

1 56 bl-bl/float(ndis)
1 57 b2-3Z/float(ndis)
1 58 xdis- (Xe-xs) / (2.0*flo at(ndis+1)J
1. 59 ydis= (ye-ys) / (2.0 *float (ndis+1))

I
I
!
I



283

Page 2
06-27-8

D Line~ #1 7 microsoft FORTRAN477V.20/8

2. 60 c
1 62. do 0013 j-l,ndis
2 62 ic-ic+1
2 63 xsC..1s4(xdis-float (j))I2 64 ysc-ys+(ydis'float(j) )
2 65 2cc-xe-(d'flot(j))
2 66 yec-y-(ydis*flot(J) )
2 67 z 0 1(ic)-cnpix (xsc, ysc)
2 68 z 0 2(ic)-coplx (zec, yec)
2 69 a(ic)-cplx(bl,b2)
2 70 a(ic)-(gfod(pi*c+.) ) ) *diml'a(ic)

2 71 a(ic)-a(ic)/dum
2 72 0013 continue
1 73 001.2 continueI 75 c Select points of interest for stress computation

76 c
77 0022. write(*,*)' Superimpose remote loeding Yes ->I,
78 r~ead(*,*, err.002 1) irI79 if(irl.t.)then
80 0022 write(*,*)' Give vmlues for siqyy, sigxy'
81 read(*, *,orr=0022) ryy,rxy
82 KI-ryy*sqrt(pi*c/2. 0)
83 XII-rxy*sqrt(pi*C/2. 0)

8S 0025 write(*,*)' Give starting and ending points xcstysixe,ye'

ze-plr(xe,y'e)I 9 write(*,*), Give grid resolution nx,ny (max =30)'

9 0 read(*, *,earr=0025) nx, ny
92 dx- (xe-xs) /float (nx-.)
92 dy- (ye-ys) /float (ny-.)
93 CU94 C Define the grid for the stress computation
95 c
96 Z-Zs
97 s-0 0
98 sM=y-0.0I99 saxy-0.0
100 1-0
102. C
102 c Perform Double Loop over the Stress Grid
1.03 C
104 do 0035 i..l~nx

2. 105 xd-dxfloat(±4-1)
1 106 do 0045 j-L,ziy

2 107 yd-dy*fl1oat(j-I)
2 1-08 1-1+1
2 1.09 yval-ys+yd
2 110 xval-xs~xd

2 11 Z- teIx(#,.)' yinlart)cx'xay'ya1

2 do3 0043 maq ,3

2I1 ccnqz
2U1 ck--
2I6 if(as()- t-I-O-)te
2I1 r t ( ,- i g l -i Y a -, v l ' -, -a
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3 119 siq(i,j,x)-l.035
3 120 0043 continue
2 121 go to 0045
2 122 endif
2 123 if (cahs (zc3) .lt. 1. Oe-6) then
2 124 vrite(*,*)" Sinluarity at z-',xva.,'y-,yval
2 125 do 0044 a-1,3
3 126 sig(i,j,)-1.oe35
3 127 0044 continue
2 128 go to 0045
2 129 endif
2 130 vrite(*,*)'
2 131 vrita(*,*)'
2 132 vrite(*,*)' Workinq on Point',i,,',j
2 133 vrite(*,*)' Coords -',xval,yval
2 134 c2 135 c Sta Loop aver defined dislocations

i2 136 c
2 137 sigl-O. 0

2 138 sig2-0.0
2 139 sig3-0.0
2 140 if(rnmic.le.O)qo to 0024
2 141 do 0023 iz-l,ic
3 142 c
3 143 c

3 144 c Check if chosen point is too. close to s~inqlarity
3 145 c

3 146 zckl-z-z0 ( iz]

3.147 zck2-z-z02(iz)
3 148 if(cabs (zckl). lt. 1. Oe-6) then
3 149 write(,*)' Singularity at x,',Xval,'y-',yval
3 150 do 0041. m1,3
4 151 siq(i, j,)-1.0e35
4 152 0041 continue
3 153 go to 0045
3 3.54 endif
3 155 if (cabs (zck2). lt. 1. Oe-6) then
3 156 "'frit(*,*)I Singularity at x-',xval,'y-',yval
3 157 do 0042 a-1,3
4 158 siq(i,j,z)-L.0e35
4 159 0042 continue
3 160 go to 0045
3 161 endif
3 162 c
3 163 c COmute the stresses at the prescribed pointI3 164 c
3 165 call P' (zfzl)
3 166 call KSI(z,f=2)
3 1267 call 21(z,1:3)
3 .68 dum-zc*z3+fz2
3 169 siq2-2.O*-.*al (fz -) -real (dum)
3 170 sigl-4.*real(fzl)-sig2d
3 171 sig3d-aiaq(duu)
3 172 siql-siql-siqld
3 173 siq2-sig2-sig2d
3 174 siq3-siq3-sig3d
3 175 0023 continue
2 176 0024 continue
2 177 c

I
I
I
U
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2 179 c
2 180 i1(irl.gt.O)then
2 161 if(abs(xval) .qt.0.00001)thon

2 182 th-ytb/.0l

2.4i (xnd l . t .0 n .ya.q.0 )t-it

2 186 thth.0

2 :7 als

21 9 t-sin(thyal
2 196 entdosi hU2 1918 h-30t
2 197 rat-cas(h)

2 202 f'r Kh/sqrt(2.0*oi*rad)
.2 203 sigi-sigi- tr*(ie 2 +)tct

2 204 siq2-sig24-( fctr*slt*ltO-ctst)
2 205 sig3sig3+(fCtr*(clt*1OClt*3t)))
2 206 c rdi

2 203 i~~,~sq

2 213 iqabsiq2mx).lt-abs sI q:))sx-siq1,j

2 215 0045 sg3 (ltontinu(Ie0sl*9t
1 216 005cntdinf
2. 217 siC,;,)sq
2128 s Prepar to p)ilthreut
2 129 siC,,)sq
2210 00w rite(*,*)' Gocai'7 opor,xde1,act' yv

2 222 005 drit*(*,*)' S~c- , Syy - ,i2, S ,- 1 2' s

2 215 reContinuer-0)o

2 230 0095 continue

217 c

223 c wcrpte,) toe Principle Stresses '
236 wie**'0~~m >, Mnmm-SDvaoi:-G

22Iod(,* am053 S
22Ifi.t4ta
22Io09041a
22Io09 11n
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237 if(ip.ge.4)then
238 smax-0.0
239 do 0120 i-l,hx

1 240 do 0125 j-lNY

2 241 siql-iq(i,j,l)

Z 245if(ip.eq.4)zp(i,j)-sipl
2 246 it(ip.eq.5)zp(i,j)-sMiP2

01248 if(abs(Zp(ij))ge..04kl) ztob(0125

2 2500125contin~ueI1 251 01.20 conti=&
252 andif
253 if(ip.Oq.1)thOU
254 write(*,*)' The mnaximum value is -',smx
255 *l seif (ip. eq. 2) thenI256 write(*,*)' The maximum value is =',smy257 elsoif (ip. eq. 3) theni
258 write(*,*)f Tho Maximu, Value is -',32MY259 es

260 write(*,*)' The maximum value is "IszaxI 261 endiff
262 0070 Write(*,*)' -- Give Contour Information -- I
263 write(*,*)' #1evs, mim 1ev, max lev, # betv labels, $first
264 read(*,, arrx-0070) nlev, vin~,vmax, nl, nst
265 dlev-(vmax-vain) /float (nlav)
266 ilnbli-nstI267 do 0075 i-l,nlev

1 268 Zlev(i) -ain+ (dlav*float (i))
1 269 ilil
1 270 if(il.eq.nbl)teri
1 271 Idig(i)--l

1 272 lwt(i)-2

1 277 endif
1 278 0075 continue
279 xhigb-S.o
280 ybigh-S. 0
281 hqt-0.07
282 narc-3

284 call plots (0,ioport, model)

26 call zcseq(zp,nxnny,,x,y,xlow,ylv,xhih,yigq,zlev,ldiq,I287 1 1vgt, nlev, hqt,ndiv, narc)
288 do 0130 i-1,nlav

1 289 ZleY(i)-1.0*:lev(i)
L 290 1-.qc(i)--.0a*lwgr (i)
1 291 0130 continue

292 c call stline(-l,.1-389,0.)U293 call z cseq (zp,nnx,Zny, nx, ny, xlov,y low,xhigh, ytiigh, zlv d

29I *rt lvht dv ac
29I als-iel.139 .
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297 yln-yh±qh-ylov
29: xd 1-(xe-xs)/ (xhiqb-xlav)
299 ydel- (ye-ys)/I (yttigh-ylov)
300 hqtl-.1
301. hqt-..
302 call st-v'S (hqt3., ht2, hgtl, hgt2, 2)
303 call axis (Xlov, ylov, -l~~~.,a~1
304 call axis (alov, yloV,' , 1,.Yln,90.0,ys,ydel)
30S Call axis (Slow, ytigh,' ', ~l~0 ,a~
306 call axis (Xhighb Ylov,' '.-lYlzA,90.0,yS,ydel)
307 call plat(O...999)
308 0100 write(*,*)' 3-0 Plot -> Is
309 read (*, *, arr=OlOO) i~d
310 if(i3d.qt0ta
311 0110 write(*,*)' Givie hariz, vert, angles'
312 read (*, *,orr-00l0) "or, aver
313 call plats (0,ioportmodel)
314 call factor(f act)

315 iproj.O

31: ifranowl
320 iCUt-3

*321. call msh (znx, nyx, ny, ahaaver xow, lo, xh±gL,

324 callplat(0.,0.,999)U3253ni
326 000 rite(*,*), Try a differenxt plot -> 1'
327 read(*, *, err-0080) ixiew
328 ±f(in6v.qt.0)qo to 0050

Name 29Typoen Offset P Class

a COMPLEX 00 /DANA
ABS IN4TRINSIC
AHOR REAL 21:32IAll" tNTRINSTC
ATARI r2TRnISIC
AVER PEAL 21436
B1 UEAL 20960
32 UEAL 20964
C PEAL 0 /CRPACK/ICIT UEAL. 21300

oIc LvrIVSIC
CoI-V.=I
DEIEL 03

ILV RA 7
COPEI00

am CMLEU05
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EMOD REAL 0 /MAT /
PAC." PEAL 21312
F=T REAL 21288

F2l COMPILEX 21220I 22 COMPLEX 21228
P23 COMPLEX 21236GNOO REAL 4 /KAT
IG? REAL 21392
HGTI REAL 21422

EG2 REAL 214261 lIZGER'2 2014

I0PO UlTEZ*2 21308

130rOJ GE* 21440

1C l=ZU*2 2002 /A

IIR IRTEGER*2 21442

IZG K lt RER 21454
LFA4 lNTZGER*2 2140
LOI INTEGER*2 2146
LWGOT fl(X*2 2178
ZK flPEG*2 21318IP I.K lTEGER*2 24880
)IARC lNTZGZR*2 21396
NIL INT =R*2 21328
rnMS IWEGZR*2 20900
TOI WTEGER*2 2398 DA

flET TSEGER*2 21358

xil~ RNEL~ 21098
Kim fYL~TG~ 208
Li pvrzG=*2 2082
LDSG II4?EGXR*2 1370

mI flF1ER2 21058
MAS INTEGER*2 106so
MODE Z R 208921
NRC IERE 21372
REL INTIGEh2N213C

RUT. ITREA 200

SUT VERE 213540Iu RAL/A
IX ITv * 15

NYITw=* 16
?II 09

I. 17
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SIG REAL 3816
SIGI REAL 21162
SIG1D REAL 21256
$SIGZ REAL 21166
SIG2D REAL 21252
STG3 REAL 21170
SZG30 REAL 21260
SIN nTRINSIC

SIP1 REAL 21346
SI?2 REAL 21350
SMAX REAL 21330
SMX REAL 21078

) R JL 21086
SKY REAL 21062
SQRT InTrrIsrC
TH REAL 21264
TH3 REAL 21264
TRL"TA REAL 20940
VETXRA 14616VAX REAL 21364

vM12 Z I 21360REAL 20944

XDUL P 21414
XD8 REAL 20 8
XW REAL 20928
• zC REALL 20992

n EG REAL 21384
ux REAL 2140
X.DW REAL 20884
xY REAL 20920
xSC REAL 20984

SRE21108!,D R.,AL20948

YDEL REAL 21418
YDI$ REAL 20972
YE REAT., 20932
YEC REAL 20996S.0Ga UAL 2138

MH RA 21410
Y'LOW REAL 2088
Y5 REALL 20924
YSC REAL. 20988

REALP~ L 21104

z COMPLEX 21070

1 O I 0 /DAM /
N02 COILEX 400 /DAMzC COMP LEX 21120

ZCnI COMPLEX 211:0
Z CXr2 COMPLEX 2118a

ZC.K3 COMPLEX 21128
ZE COMPL X 21050
ZLZV RfAL 3616
!LOW REAL 21446
up REAL 1
ZS COMPLEX 21042

330 cI
I
I
I
I
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331 c
332 Subroutine PgI(z,fzt)
333 Complexes Z, z0l(50) , z2(50) fz, fzt,a(5o) ,an
334 Common /dam/z0l,ZO2,a,iz
335 an-a(iz)
336 call Pbi2(anz,z0(iz) ,fz)
337 fzt-(a/(z-zol (iz)) )+fz
338 c
339 c Add Negative Surge" Vector
340 c
341 an--1.0ra(iz)
342 call Pbi2(an,zz02(iz),fz)
343 fZt-fzt+fz+(an/(z-202(iz)))
344 return
345 end

Name Typne Offset P Clas"

A COMPLEX 800 /DAM /
AN COMPLEX 21458
F COMPLEX 21466

PET COMPLEX 4 *
Ii INTEGZE*2 1200 /DA /
Z COMPLEX 0 *
z01 COMPLEX 0 /DAM /
Z02 COMPLEX 400 /DAM /

346 c
347 c
348 c
349 Subroutine Ph12 (an, z, zo, fzt)
350 Complex*$ an,ac,z, zo,fzt, fZl, fz2, fz3 ,XZ

I 351 ac-cong (an)

352 zoc-conjq(zo)
353 call fX(z,Xz)
354 call F(z,zo,fzl)
355 Call F(z,zo, ,f72)
356 call G(z,zoc,fz3)
357 c fzt-1.0* ((an*fzl) + (an*fz2)+-(ac*(zo-zoc)*fz3))
358 fzt-L.0*((an*fzl)+(an*fz2)+(a*(zo-zoc)*fz3)-(an*Xz))
359 return
360 end

Name Type Offset P Class

AC COMPLEX 21498
AN COMPLEX 0 *

=HkJG -.n7R-TNSIC
Fzl COMPLEX 21518
PZ2 COMPLEX 21526
FZ3 COMPLEX 21534
FZT COMPLEX 12 *
IX COMPLEX 21510
z COMPLEX 4 *
ZO COMPLEX a *
z0C REAL 21506

361 c
362 a

I
I
I
I
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363 a
364 Subroutine F(z~zo,fz)
365 Complex*8 z,zo,fz.Xz,Xzo
366 call fx(z,Xz)
367 call f3(zo,XzO)
368 fz=(1.0-(Xz/Xzo))/(2.0*(Zzz))
369 retun
370 and

Nlame TYPO Offset P Class

F? COMPLEX8
I? COMPLEX 21590
XZO COMPLEX 21598

376 Scrutn

374 ubrotineG(z,zo,fz)
375 omplx*9 ,za,f:,Xz.Xzo,XPzoH377 calfZ(zo,xzo)

382 end

Nlame Type Offset P clas

,(Z COMI'LEX 21630
xzQ COMPLEX 21638

z COMPLEX 0

SO COMPLEX 4

383 c
3 84 a
385 cI386 Subroutine fX (z,Xz)
387 CompleX's xz, Z, pc
388 Cammn /crack/ c
389 p(ZC*
390 Xz-1.O/csqrt(zpc)
391. return
392 anid

Nam& Type offset p C3.AS

C R4ZAL a /CX /

(S CMPE 21718: m sc
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393 c
394 C
395 c
396 Subroutine tXP(z,XPZ)
397 Complex*$ Xpz,:,zpcvza,zb
398 Common /crack/ c
399 zpCz+c
400 za-csqrt(z)
4 401 za-za*za*za*csqrt(zpc)
402 zb-Sqrt(zpc)
403 zb-C-sqrt (z) * zb- 2b zb
404 XPz--0.5*((l.0/za)+(1.0/zb))
405 return

4 06 and
Name Type Offset P Class

C REAL 0 /CR.ACK/
CSQRT flh1?flsic

ZA COMPLEX 21756

23 COMPLEX 2180:

zPC COMPLEX 21.750

401 C

409 cI 9410 Subroutine KSZ (z. fzt)
411 Complex*8 z,zc,zoc,Z01(50),z02(50),fzlfz2,fz3,fzt,(S),anl.ac
412 Common /dam/zOl, z02, a, iz
413 an-a(iz)
414 zCCwtnjg~
415 call Ph12(an,zc,z0I(iz),fzl)
416 fzl-conlq(fzl)
41.7 call Phi2 (an, z, zO1(iz) , fz)
418 call PIhi2P(an,z,z01(iz),fz3)I419 fzttlfz2-(z*fZ3)
420 ac-conjg(an)
421 zococnjg(zO1(iZ))
422 fzt-fzt+(Ac/(Z-Z01(iZ)))+((al*zoc)/((Z20O1(iz))*(Z-Z01(iz))))
423 c
424 c Add Negative of Second Burqess VectorI425 c
426 an-I.0'a(iz)
427 call Pbhi2 (an,ze, z02(iz) , fzl)
428 fzl-conjq(tzl)
429 call PbjZ(an, z,z02 (iz) ,fz2)I430 call lbJ2(S,, Z02 (Lz) , fz)
432. fzt-fztfz1-fz2-(zfz3)
432 ac=conjg(an)
433 zoc-conjq(Z02(-'Z))
434 fzt-fzt4(ac/ (zz02 (iz)f +(alzoc)/ ((ZZ2 (Z)) (ZZ02 (i))))
435 return
436 end

Name Type Offset P Class
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A COMPLEXC 800 /DMC
Ac COMPLEX 21926
AN COMPLEX 21878

71 COMPLEX 21894 2TfSX
?Z2 COMPLEX 21902
nZ3 COMPLEX 21910
FIT COMPLEX 4
II tkFTGER*2 1200 /DAM: /

10 COMPLEX 40 *

Io COMLE 0CDA

4S calc~ ~ zcf

447 camlex* GP~c,z ~ zfl~,fz3,X

448 catll 0* (efz,~llfz+c (z-oc fzz)*cz

44S fZt-.0*(an*fZl+an*fz2+ac*(zo-zoc) 'fz3)a*XZ
450 return
45L end

Name TMe Offset P Class

AC, COMPLEX 22022
C0NWG f12Tfl(SIC

ni COPLEX 22040

XPZ COMPLEX,2203
zz10(zXo. COPE Crzo * ~ ~ Xo

461RVA ft/(.0(*c)(22030

462 c eur

4 3 d45I
45Iuruio .(~o:z
45Iope~ ,o.Zx~z~p
45Ialf~~z
45Ialf~oxo
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Name Type Offset P Class

n COMPLEx a *
Xvz COMPLEX 22130
Xz COMPLEX 22114
XZO COMPLEX 22122
z COMPLEX 0 *
zo COMPLEX 4 0

464 C

466 C
467 Subroutine GP(z, zo, fz)

468 Complex'S z,zo,fz,fzl,fz2,z,zo,XPZ,XPzo
469 call fX(zXz)
470 call fX(zo,Xzo)
471 call fXP(z,XPz)
472 call M(zo,XPzo)
473 fzl-1.0-(Xz/Xzo)+(( (z-zo) *Xz*XPzo)/(XzoXzo))
474 zfz/z-o*Zo *zz)
475 fz2-( (Z-2o) *Xzo XPz)/ (Xzo*Xzo)
476 fZ2 Z2+((XPZO*XZ)/ (XZO*XZO) )-(XPZ/XZO)
477 fz2-fz2/(2.0* (z-zo) *(5-zo)
478 fz-fz2-fzl
479 eturn

NaYe Type 0ffset P Class

?z COMPLEX
FZI COMPLEX 22218
PZ2 COM7PLEX 22290
X!Z COMPLEX 22202
XPZO COMPLEX 22210

Xz COMPLEX 22186
XIO COMPLEX 22194
z COMPLEX 0 *

ZO COMPLEX 4 *

481 c

482 C
483 Subroutine PM(z,fzt)
484 Complex*8 z,z0l(50) z02(50) fZ,fzt,a(50),an
485 Colon /d&m/zOl.z02,a,iz
486 an-a(iz)
487 call Phi2P(an,..701(iz),fZ)
488 fz't Z- (am/( (z-zo (iz )*(z-z0 (iz))))489 an--. O-a(!:z)
490 call Phi2P(an, z.Z02 (iz) ,fz)491 :!zt-fzt+fz-(a ( (z--z02 (iz))* (z-zo2 (iz)) ))

492 return
493 and

Name Type Offset ? Class

A COMPLEX a00 /DAM

I
I
I
I
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AN COMPLEX 22386

COMPLEX 22394
FZT COMPLEX 4 *
IZ IIITEGER*2 1200 /DAM /
Z COMPLEX 0 *
zol coMPLEX 0 /DAM /Z02 COMPLEX 400 /DAM

494 c
4 5 c
496 Subroutine Prince (sigl, sig2, siq3, sipl, sip2, sdev)

497 if (sigl.qa.1.0e1.2.or.siga .qe.1.0e12.or.sig3.-go. I.G12) then
498 sip1-1.0e35
499 sip2"1.0e3S
S00 sdev-1.0e35
So1 goto 0999502 endif
503 sd ev ((siql-sic2)/2.0) **2+sig3**2
504 sdev-sqrt (sdev)
505 s-(siql+siq2)/2.0
506 if(s.qe0.0) then
507 sipl-s+sdev
508 sip2-s-sdev
509 else
510 sipl-s-sdsv
511 s ip2-s+sdev

312 edif513 0999 rturn

Na*51 Type ed Offset P Class

S REAL 22442SDEV REAL 20 *
SIGI REAL 0 *
SIG2 REAL 4
SG3 REAL &SIP1 REAL 12 *
SZP2 REAL 16*
SQRT TNTRXNSIC

Nane Type Size ClassI AXIS SUBROUTInm
-RACK 4 COM'.ON
DAM 1202 COMON
SSUBROOTfNE
7ACTOR SUBRO INEFn SUBROUTINE
FIX SUBROUTINE
FIP SU=Tprz
G SUBROUTINE
GP SUBROUTINE
KS I SUBROUTTNENAT 16 COMMON

,M E S UBROU '/M

I
I
I'
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PE2 SUBROTIE
P812P SUBROUTfINE

PIMP SUBROUTIEPLOT SUBROUTINE

Kim~c SUBROUTINE

STAXIS SUBROUTINE
STRESS PROGRAX

514 Sourc& Lines

I
I

I
I
I,I
U
U
I
I
I
I



297
Page 1
06-27-88
19:46:10

DLine 1 7 Microsoft FORTI'W77 V3.20 02/84
1 SStorage: 2
2 $Debug
3 Program KxLzlot
4 C**i**' ***''''' *'****''t* *****e***'**'''*"
5 c*-*** This program is designed to compute the near and far field *
7 c***** energy releas, rates using a complex potential formulation. *7 C***** The near field is evaluated[ via the stress intensity factors *
a c***** and che far field is computed through a numerical integration*

10 c
1i Couplex* z, Zcz01,z02, fzl, fz2fz3, an,
12 oi admdum m2dum3du4,zs,ze,dz,an,tot,KI2
13 Real*4 k,siq(30,30,3) ,e od,nu,zp(30,30),zlev(50) ,vertex(16)
14 Common /vat/ eod,gqod,nu,k
15 Common /dam/z0l,z02,a,iz
16 Common /crack/ c
17 Da nnx,nny,xlov,ylov /30,30,1.0,1.0/
18
1: pi-3.141592654

20 writ&(*, *)' Give materfal properties'
21 0005 write(*,*)' emod,nu, 0-> pl. stress 1-> pl. strain'
22 read(*, *, err0005) emod, nu, ipl
23 if(ipl.eq.0)then
24 k-(3.0-nu)/(.O+nu)
25 else

26 k-3.0-4.0*nu27 endif
28 gmod-emod/(2.0* (1.0+nu))
29 0010 write(*,*)' Give main crack length'
30 read(*,*,err 00i0)c
31 write(*,-)' Give rad,theta,csd,cod'32 read(*, *) rad, .heta, bx, by33 theta- (theta*pi) / 180.

34 c
35 c Compute the Burgess Vector
36 c
37 ci-cos(th ta)
38 si-sin(tleta)
39 trans-czplx(ci,si)
40 duzpemplx (0, 1)
41 a-cmplx(bx,by)I42 a-trans*a
43 a-(gmod/(pi* (k,1) )) *a
44 a-a/dum
45 c
46 c Compute Nondimnsionalizinq factor in Ballarini's paper
47 c48 facat-(r'ad**I. 5) *(k+l. 0)/(qaod*. Ol*sqrtc (bx*bx+by*by))
49 fac- fact,*sqTr.(p i/2.•0 )

i 50o open { 5, ile-' KI. dat 1, status-, new" )
51 open ( , file-' I. dat ', statu4s-I now ')52 do 0050 iI-1,I70

1 53 beta-float(il-1)* i/180.0
1 54 dum-cplx(o,1)
1 55 xs-rad*cos(beta)
1 56 ysrad*sIn(beta)

1. 5-1 ye-ys (0. 0 z'sin (theta))
i 58 Xa-Xs ( 0.01*cos (tdoea))
1 59 Z01-7=px(xs,s)

I
I
I
I

I
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06-27-1:
19:46:0

0 Lne# 1 7 Microsoft FORTRAN77 73.20 02/84
1 60 z02-c~plx(x*,y*)
1 61 c
1 62 c Start computation of the, Near Field Energy Release RatesI1 630c
1 64 Ktot-cplx(0.0,0.O)
1 65 an-a
1 66 zez201
1 67 dum-csqrt((z&+c)/ze)I1 68 dun--I.OG*an* (real (dun) -1. 0)
1 69 01 70 duvm2-csqt (conjq (z*))
1 71 dum2-2.0.duT2*dum2*dua*csqrt (conjg (ze) +c)
1 72 dual- (cojq (an) *aimagq(zo) *c)/duzu2

1 73 dum2-cinplx(0.O,l.O)
1 74 dual-dml'd=2
1 76 =l2-2. o'sqrt ((2. Opi)/c) (dumdum.)
1 76 an-1. 0~a
1 77 ze-202

1 78 dunu-csqrt ze4'c) / e)
1 79 dum-l. 0'an* (real (dun) -1. 0)

1 80 c
1 81 dum2-csqrt(conjq(ze))
1 82 duim2-2. *dum2*dtmL2*duu2*csqrt (conjg (ze) +C)

1 83 dum_1-(conjq(an) *aimaq(zo) *c)/dum2
1 84 du~w2-plx(0.0,L.O)
1 85 dual-duml~dum2
1 86 K12X2-(2.0*sqrt( ((2*pi) /c) 1*(dum4.dual))
1 87 Etat-Ktot+K.2I1I 88 c
1 89 c Nondimensionalize by the factor in Ballarini' s Paper
1 90 c

1 91 Zr.KIfact*ral (Xtat)
1 92 rXIZ--1. 0*fact*aimaq (Ktot)
1 93 ril-float(il-1)

97n c Ose s tPCl

A COM~PLEX 16 /DIA /
A.DfPG =,frRN~sIC
AN COMPLEX 14792
BET7A REAL i4764
3X REAL 74"02
3Y REAL 1-4706IC REAL 0 /CP.ACX /
C7 REAL 14710
CHPLX INTRNSIC

COWG INTRIN~SIC
Cos INTRNSIC

UM COMPLEX 72 i nsc
DUE. COMPEX '_4920
DOM2 COMPLEX 14848UDVN3 COMPLEX
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0 Line# 1 7 Microsoft FORTRANA77 73.20 02/84
DU4 COMPLEX **
Da COMPLEX "**
EHO0 RZAL 0 /PMT

iAeT REAL 14758
FLOAT ZWXRfNS CF~x CO MPLEX **

7Z3 COMPLEX '*,

GHOD R.AL 4 /XAT /
11 INTGER*2 14762
IPL nTMEG* 2 14692
.z aliTZGZR*2 24 /DAM /

I RYAL 12 /MAT
1C2 COMPLEX 14960I 2 COMPLEX 14784
NnIx IN4TZ *2 14676
NY nTEGEX*2 14678

sU RZAL 8 /MT /IP2. REAL 14688

PAD REAL 14694
REAL 2.TRNSIC
RI1 REAL 15136
Ri REAL 15128
RKII REAL 15132
$7 REAL 14714
SIG REAL 3876

iQRT 16 O3TONSZ

iTEMTA REAL 14698
TRANS COMPLEX 14719

VETXREAL 3812
)=M RE.AL 14780
XLOW REL146:0

i x~s 147 a
YE REAL 14776
TLOW RE.AL 14684
TS REL14772
6" COMPLEX **

iz0 o T. COPE 0 /DM /
Z02 COMPLEX 8 /A
zC COMPLEX **
ZE COMPLEX 14800
ZL-rV REAL 3612
ZP RZAT- 12
Z3 COMP'LEX **

CRACXC 4 COMMON

DAK 26 COMMON
.'CTUPLO PROGRAM
KhT 16 COMMON
Pas& one No -Z" or-s Detected

99 SourceS .'Lmtes
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19:48:36

0 Line# 1 7 Microsoft FORTRAN77 V3.20 02/84
1
2 $Storage: 2

3 $DebugI Program ksuin
6 c***** This program is designed to compute the stress intensity *

7 c***** factor at various locations in front of the crack tip for*** amohddmg itiuin
se***** smoothed damage distribution.

10 cI1 Co*pl** * ZZst, znd, zinc,zc, z01(400) ,*z02*(400),

12 1 a(200),dml,dm,dum2,zs,zedz,an,Ktot,Xl2,ft313 Real*4 k.au,xs(400),XO(400),Oys(400),ye(400),bl(400),b2(400),
I 14 1 vol (20,$)

15 pi-3.141592654
16 write(*,*)I Give material properties'
17 0005 write(*,*)' euod,nu, 0-> pl. stress 1-> pl. strain'
18 read(*, *, arzr0005) emod, nu, ipl
19 if(ipl..q.0)then
20 k- (3.0-nu) / (1.O+nu)
21 else
22 k13.0-4.0*nXIU
23 endif
24 gmod-esod/(2.0- (1. 0+nu))
25 0010 write(*,*)" Give main crack length'
26 read(*, *, erl0010) c
27 0007 write(*,*)' Damage zone length'
28 read(*,*,ezr@0007)
29 0038 write(*,*)' Give sig-xy'
30 read(*,*,err,0038)siqxy
31 rinit-sigy*ysqrt (pi*0 .5-c)
32 write(*,*)' '
33 0039 write(*,*)' Give Approximate Dislocation #'
34 -ead(*, *, err-0039) nfudge
35 phi=(20.0*pi)/180.0
36 open (5, file-'vol. out ', status-' old')
37 vtot-0.0
38 do 0006 j-1,8

1 39 do 0008 i-1,20
2 40 read(S,*)vol(i,j)
2 41 vtot-Vtot+vol(i,J)

2 42 0008 continue
1 43 0006 continue

44 write(*,*), total. volume -',vtot
45 vtot-vtot/ float (nfudge)
46 C-'064 (5 )
47 c

I 48 c symmxize the volume distributions

50 do 0130 i-1,20
1 51 vol (i,i) -0.5" (vol (i,l)+ voI (i, 8) )

1 52 vo1(±,3)-vol(±,1)
1 53 vol(i, Z).0.5*(vol(i,2)+vol(i,7))
1 54 voI(i,7)-vol(i,2)
1 55 vol(i,3).0.5"(vol(j,3)+vol(i,6))I1 56

1 vol(i, vol(i,4)

I
I
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O Line# 1 7Microsoft FORTRlAN77 V3.20 02/84
60 0
61 c Compute an equivalent I of dislocations

62 c
63 ic-0
64 xf-4.0/25.4
65 yt-5.0/25.4
66 open(5, file-' dis. out', status- new')
68 do 0100 j-l,8

1 69 do 0110 1-1,20
2 70 xlc-xf*float(i-1)
2 71 xuc-xf*float(i)
2 72 ylc -0.78740+(yf*tloat(J-I))
2 73 yuc-0. 78740+ (yf* float (j)
2 74 ncdis-int(vol (i, J)/vtot)
2 75 if(ncdis.qt.0)then
2 76 ydel- (yuc-ylc) / (float (ncdis))
2 77 do 0115 i.1-,ncdis
3 78 ic-ic+1
3 79 xs (ic -ilc
3 80 xe (ic) -uc
3 81 ys (ic) -ylc+ (ydel*float (i-1I))
3 82 if (yuc. It. 0.0. or.ylc.lt. 0.0)t hen
3 83 zphi-1.0*phi
3 84 else3 s zphi,,phit
3 86 endif

i3 87 yo (ic) -yx (ic) +( (iuc-xlc) *tan (zphi))

3 as if(abs(ys(ic)).]t.0.005)ys(ic)-sign(0.005,ys(ic))
3 89 if (abs (ye(ic)). It. 0. 005)ye (ic) -sign(0.005,ye (ic))
3 90 write(5,*) xs(ic) ,ys(ic) ,xe(ic) ,ye(ic)
3 91 c
3 92 c Enter the function for the Slippaqe function here
3 93 c
3 94 bl ( ic)-o. 0005, (400.0/float (nfudge))
3 95 b2(ic)-0.0a3 96 0115 continue

71 
:endi 

e2 8 0 o ntinue
1 99 0100 continue
100 close(5)101 w:ite (*, *) ic, ' dislocations generated'
102 open (5, file-' kcrak, out I, xtatus-1 now13 oe(6 ie'ka.el, t~l 'nw' )

104 open (7, file- ' ktot. o=1 •, status- I new ')]m
105 do 0016 j-1, 100

1 106 write(*,-)' working on ',j,'lt .oint'
1 107 dum-cmplx (0, 1)
1 108 do 0017 *-I,-,c

109 xcen- (xax-loat (j-l))/100. 0
2 10 xes-xe (i) -xcen
2 I1i xss-xs(i)-xcen
2 112 yes-ye(i)

2 113 yss-ys(i)
2 114 den-xes-rss
2 115 if (den. It. 0.000001) then
2 116 theta-pi/2.0
2 117 else
2 118 heta-atan ((yes-yss)/den)

I
I
1
I
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D Line# . 7 Microsoft FORTRAZ477 73.20%02/84U2 11Hidi
2 122 dumtl-cplX (xd, yd)

2 124 201(i)-czplX(:css,yss)

2 127 a(i)-a(i)/dux
2 128 0017 Continue

1 130 c Start Comutation Of the Stress Intansity Factor

I1 134 Do 0030 l-1,ic

2 137 duw-csqrt ((ze+c) /Ze)
2 138 dum-1. 0*an* (real (dun) -1. 0)

2 139 dum2-cqrt(conjq (ze) )
2 140 duau2-2. *dum2*dum2*dUM2*csqrt (conjq(ze) +Cl)
2 141 duma- conjq (a) *aimag (ze)*c1)/dux2
2 142 dur2-Czplx(O.0,l-O)
2 143 dualmdua1*dAm2U2 144 X12-2. 0sqrt ( 2*pi) /cl) *(du~+dua)
2 145 an--1.0*a(i)
2 146 Ze-z02(i)
2 147 dun-sqrt ((ze+cl) /=a)
2 148 dun--I. 0*an* (real (dum)-1. 0)I2 149 dumu2-sqrt (conj q(ze) )
a IS0 dum2-2 0*dUIm2*d=2*drm2*csq'rt (conjq ( ze) 4c1)
2 131 du-1-(conjq (an) *ai-ag(ze) *cl) /dux2
2 152 dum2-cplx (0 -0,1. 0)
2 153 duml-dmZa*dtmx2
2 154 12-IZ- (2. 0 *sqrt ( (2 *p i) / c) * (du .duml))

2 S tot.Ktte+X12Fatr

1 1675
16 138C rite out th Stress Intensity Factors

I 170 rite(*,I*)' maq(1Ktotcac)~rcak' Ktt',o
1 171 0016 conTinue i

3.172 crasieS)t:piO5*
1713 craXrk.(6 rni

1 174 write (Sxe, )z~

A. 165 wrt&(, cdrI~ o-.crkrK:
U 6 rt 7 )Xatr
I 6 rt(,)

II6 Aie**1SresItniyFcos
1I-0 wi&**' Kap ,rKZI Krc-,krkl Ko-,o
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19:48:36
0 Lineo# 1 7 Microsoft FORTRAN77 V3.20 02/84

Name Type Offset P Class

A COMPLEX 6416
ABS INTRINSIC
AIKAG INTRINSIC
AN COMPLEX 18452
ATAN INTRINSIC

1 REAL 15056I2 REAL 16656
C REAL 18278
CL REAL 18434
CPLY INTRINSIC
CON~ INTRINSIC
Cos INTRINSIC
CSQRT INTRINSIC

DEN REAL 18386
DUN COMPLEX 18352
DOMI COMPLEX 18402
DU(M2 COMPLEX 18508
DZ COMPLEX 18268
EMOD REAL 18260I FLAT INTRINSIC

K12 COMPLEX 181

I rNTEGER*2 18306
11 INTEGER*2 18340i~I INTEGER-2 la308 = ,c

EAL INTRINSIC

IPL INT GER*2 18269
S ITSGER*2C 18304

T REAL 1827012 COMPLEX 1 612

OT COMPLEX 18438
NCOI INTGER* 2 18334

N7DE= GER*2 1 2:4

VOU REAL 14416

PHI REAL 18206
Ci1 REAL 18256

REAL1NTINSIC

RINIT REAL 18290

RXSA REAL 18704

I l REL 18780

SIGXY REAL 18286SiN _HTNTLSIC
SQRT I RISI
TAN S $iC

J ETA R&L 8390
TOT REAL 18788
VOL IFA 144 1:
VTT REAL 18300
XCE.N iRA 8366
XD) REAL 18394
XE REAL 12816
XS REAL 1837o

x7p REAL 13310
XLC REAL 18318

CaW REAL 18282

I
I
I

I
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xE REAL 8016
XSS REAL 18374
XUC REAL 18322
YD REA 8398

TOEL R.,L 18336
yx REAx, 11216
YES REAL 18378
TYI REAL 18314
YLC REAL 18326
YS REAL 9616
YSS REAL 18382

YUC REAL 18330
z COMPLEX
Z30 COMPLEX 16
Z02 COMPLEX 3216
zC CCOMPLEX
ZZ COM]PLEX€ 18460

zn2c COMPLEXZND COMPLEX *1**4

ZPIZ REAL 18348
Z3 COMPLEX ***
ZST COMPLEX **

IName TYPO Size Class

xELnF PROGRAM

Pasw one No Errors Detected
175 Source Lines

I

I
I
I
U
I
I

I
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0 Line# 1 7 Microsoft FORTRAC77 Paq0e0/8
1 $DEBUG
2 $STORAGE: 2
3 Proqran Plotxy
4 *****t**~*****************a*ea*~,.

c***** This routine is desiqned to draw up to 5 file4s on an x-y plot

7 Common/vork/xl (500) , yl (500) 0 x2 (5O0) ,y2 (500)

8 Charac~er
t 10 filen=I 9 ckiaracter'1 itexttmttt(20) ,1tt(20) ,ytt(20)

10 charactar*20 atit,xtit, ytit, leqd
11 equivalence Catt(l) ,mtit) , (xtt(i) ,xtit), (ytt(i) ,ytit)
12 data xmax 10.0/, ymax/8.0/, xax/7.0/, yax/5.0/, xt/1.5/
13 c
14 c Input General Information

17 000 write(*,*)' Give Xlin,Xmax:X3.bl,Yuin,Ynax,Ylbl'

19 iforce-1
20 yat-yax40.1
21 fl-7.O/x
22 f2-5.0/yax
23 if(f1.le.f2)then
24 fmin-f 1I25 else
26 fmin-fz
27 endif
28 0055 format('
29 vri te(*,*) Give X - Axis title'I30 read(*,0050) rtit
31 write(*,0055)
32 0050 format(aL20)
33 write(*,*)' Give Y - Axis title'
34 ldite(*, 0055)
35 read(*,0050)ytit
36 write(*,*)" Give M~ain Title'
37 wr2.te(*,0055)
38 read(*,0050)mtit
39 0008 write(*,*) I Select Output Device:'I40 write(*,*)' Terminial ->0'
41 write(*,W) Printer 1> i
42 road(*, *,earr.0008) iout
43 if(iout.eq.0)then
44 iocort-93
45 inodel-93U ~ ~~46 00 eliseFctr

49 endi:

50

54 c tr ~r*L) for, File Input

57 if-L
58 npen-1
59 if(isym.eq.o)tien
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0 Line# 1 7 Mi(crosoft FORTge7 732 28
60 1t-0
61 elsoif (isyn. qt. 0. and. isys. . 15) then
62 1t-lU63 elsoif (isyn. t. 0.and. isy. g. -15)then

65 1t-.

67 open (5 file-'is. out',statzs- Iold'
68 npl-O

1 72 i2(dly.qt.0.0)than

1 73 rpl-npl+1

1 5yl(np3.)-dly.0(d.2)

1 78 ondifI .1 79 if(d2y.qt.0.0)then
1 80 npl-npl+l
1. 81 xl(npl)-d2x
1 82 yl(npl)-d2y+.02
1. 83 xZ(npl)-d2x
1 84 Y2 (npl) -1..0* (d2y+. 02)

8 6 0030 continuermtio

as close(S)
89 np2-12pl

91 c Start plotting tedsndt
92 c
93 C InitializeiptinomtoI 94 c
95 call plots (0, ioport, modol)
96 call factor(fact)
97 call window(O., 0. , xax,ymax)
98 C
99 C Sot plot origin at coords (1.25,1.25)

1.01 call plot (1 .25,1.25, -3)

104c
105 lollxn
i06 x!.(npl2)(xmx-x=)/xax
107 yl (npl+.) -fan
L08 y1 (np3.+2) -(yux-yun) /yaxI 3.09 x2(nP2l.3.3.,Mn
110 X2 (no2+2) -(=x-) /Xx=
Ill1 y2(np243.)-Imn
!12 y2 (np2+2) ,(ymx-y-n) /yax
1.13 c
31514 c Draw each of the curves

116 do 0031 .1-1,2
. 3.17 jf (j1.sq. 1) then
I 3.18 call stline(ltf,0.25,l10.)
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Appendix B

1 Representative Volume Data Base

I
I
I
I
I
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I
IREPRESENTATIVE VOLUME" STUDY

--- CLUSTER AREA DATA BASE ---

I 16. 18. 31. 20. 9. 6. 21. 36. 27. 25. 21. 34. 18. 21. 9. 15. 18. 22. 18. 16.

12. 18. 19. 20. 19. 17. 11. 15. 12. 8. 16. 14. 14. 16. 18. 11. 8. 15. 31. 28.

16. 18. 28. 19. 14. 11. 20. 18. 18. 27. 8. 20. 20. 30. 21. 16. 18. 20. 20. 26.

26. 12. 18. 15. 18. 18. 33. 6. 20. 23. 21. 27. 12. 25. 18. 15. 27. 35. 33. 22.

20. 13. 35. 18. 19. 15. 12. 25. 31. 14. 16. 20. 30. 22. 21. 19. 20. 18. 21. 16.

25. 17. 23. 25. 27. 20. 21. 18. 11. 21. 18. 10. 26. 33. 9. 18. 16. 19. 19. 16.

14. 15. 27. 13. 19. 12. 31. 33. 18. 21. 14. 18. 20. 36. 15. 20. 11. 10. 21. 17.

18. 18. 20. 25. 17. 32. 16. 17. 33. 34. 16. 21. 21. 14. 27. 19. 15. 27. 31. 16.

31. 19. 15. 23. 17. 16. 34. 20. 15. 27. 25. 17. 30. 16. 14. 17. 25. 18. 17. 15.

20. 32. 18. 19. 15. 17. 19. 36. 15. 24. 19. 22. 23. 11. 17. 29. 25. 33. 19. 15.

17. 19. 36. 15. 24. 21. 16. 25. 17. 23. 25. 27. 20. 21. 18. 11. 21. 18. 10. 18.

21. 16. 25. 17. 23. 25. 27. 20. 21. 18. 11. 21. 18. 10. 26. 33. 9. 18. 16. 19.

19. 16. 14. 9. 15. 17. 31. 13. 18. 23. 18. 30. 25. 19. 15. 21. 15. 18. 33. 16.

18. 22. 8. 16. 14. 14. 16. 18. 11. 8. 15. 31. 28. 16. 18. 28. 19. 14. 11. 20.

18. 18. 27. 8. 20. 20. 30. 21. 16. 18. 20. 20. 26. 7. 16. 18. 21. 20. 9. 6.

21. 33. 35. 16. 31. 19. 15. 23. 17. 16. 34. 20. 15. 27. 25. 20. 9. 6. 21. 33.

35. 29. 26. 25. 20. 18. 17. 30. 16. 14. 17. 25. 18. 17. 15. 16. 19. 22. 23. 11.

17. 29. 25. 33. 19. 15. 17. 19. 36. 15. 24. 20. 9. 6. 21. 33, 35. 29. 26. 25.

20. 18. 21. 16. 25. 33. 19. 15. 17. 19. 36. 15. 25. 19. 18. 16. 12. 18. 19. 20.

19. 17. 22. 24. 18. 11. 10. 3. 31. 16. 23. 19. 33. 35. 29. 26. 25. 19. 3. 25.I
I
U
I
I
I



I
I
I
U
I

Appendix C

U LSD Histogram Plots
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