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An .mlnsp,d nav&mar mo()ej 1s ysed cr
to examine The

TheSnteraction of two isolated lens-like eddiesJS-cxamined-with-the-sid-of an-inviscid-nonlinear model-The -

K_Tk_ta_wmtropic layer in which the lenses are embedded is infinitely deep so that there is no interaction between the
eddies uniess their edges touch each other. It is assumed that the is brought about by 2 mean flow which
laxeuﬁerpuslnngtheeddmmnst each other and forming a ™ Structure.

Using qualitative %«I on conununy and conservation of energy along the eddies’ edge] it is
shown that, once a lished, intrusions along the eddies’ penphenu are senemted Thse
intrusions memble‘%ns or “!éntacl and their structure gives the impression that one vortex is “hugging
the other. As time goes on the tentacles become longer and longer and, ultimately, the eddies are entirely
converted into very long spiral-like tentacles, These spiraled tentacles are adjacent to each other so that the final
result is a single vortex containing the fluid of the two parent eddies. It is speculated that the above process
leads to the actual merging of lens-like eddies in the ocean.

Because of the inherent nonlinearity and the fact that the problem i
details of the above process cannot be described analytically. Therefore, cannot prove in a rigorous manner
that the above process is the only possible merging mechanism. It is, ver, possible to rigorously show

’ analytically and experimentally that the intrusions and tentacles are inevitable. For this purpose, one of the
interacting eddies is conceptually replaced by a solid cylinder. Initially, the cyli drifts toward the eddy;
subsequently, it is pushed slightly into the eddy and is then held fixed. The subsequent events are examined in
a rigorous mathematical and experimental manner. Reprinds, (¢ de

1t is found that as the cylinder is foroed into the eddy, a band of eddy water starts envelopms the cylinder in
the clockwise direction. This tentacle continues to intrude along the cylinder parameter until it ultimately
reattaches itself to the eddy, fonmng a “padiock” flow. Simple laboratory experiments on a rotating table clearly
demonstrate that a “padlock™ flow is indeed established when a lens is interacting with a solid cylinder. Using
the details of this process it is argued that, in the actual eddy-eddy interaction case, intrusions must be established
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and that, consequently, merging of the two eddies is inevitable.

1. Introduction

Isolated lens-like eddies are common in many parts
of the ocean; they usually result from meandering cur-
rents which close upon themselves and pinch-off (e.g.,
see The Ring Group 1981; Lai and Richardson 1977,
Cheney 1977). Their abundance in the ocean and the,
almost permanent, presence of mean currents suggest
that collisions of lenses are probably a fairly common
occurrence. The processes associated with such colli-
sions and the resulting encounters are the focus of the
present study.

a. Background

So far, there has been only one set of abservations
of a direct eddy-eddy interaction (Cresswell 1982;
Cresswell and Legeckis 1986). In this case, two anti-
cyclonic lens-like eddies have collided in the vicinity

Corresponding author address: Prof, Doron Nof, Dept. of Ocesn-
ography, Florida State University, Tallahawee, FL 32306.

of the East Australian Current. Initially, they moved
around each other but within a period of about 20 days
they have completely merged (Fig. 1). These obser-
vations have generated the interest of Gill and Griffiths
(1981) who, in a short communication, have pointed
out that if two inviscid eddies with zero potential vor-
ticity are forced to merge and conserve their potential
vorticity and mass during the merging, then the final
vortex would have energy that is larger than the sum
of the individual energies.

Consequently, it is concluded that, in order for mass-
conserving merging to occur, either energy must be
supplied from an outside source, or that potential vor-
ticity is not conserved. The experiments of Nof and
Simon (1987) have demonstrated that lenses merge
without an external source of energy so that their po-
tential vorticity must somehow be altered.

For additional studies on eddies interaction the
reader is referred to Mied and Lindemann (1984),
McWilliams (1983), McWilliams and Zabusky (1982),
Overman and Zabusky (1982), Melander et al. (1987),
and Christiansen and Zabusky (1973). While being
informative, the latter investigations are not directly
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FIG. 1. The merging of two anticyclonic eddies off East Australia (adopted from Cresswell 1982). The results of Cresswell's ship surveys for December
1980, January 1981 and April 1981 are shown on top, middle, and bottom (respectively). In column | buoy tracks for several days before and after the
surveys are marked; regions having 250-m temperatures exceeding 15°C are shaded; the 12°C isotherm for 250 m is marked. The thickened ship tracks
define the temperature sections (in degrees Celsius) in column 2 where the signature layers of eddies Leo and Maria are shaded. The vertical lines in

column 2 indicate the positions for the temperature and salinity profiles of column 3.
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applicable to the preblem at hand because they do not
address [ens-like eddies. The reader is also referred to
the laboratory experiments of Griffiths and Hopfinger
(1986, 1987) and the analysis of Young (1985) which
discuss the interaction of quasi-geostrophic and geo-
strophic vortices. These eddies differ from our vortices
because the latter are of finite extent whereas the former
are infinite. That is to say, the eddies interactions which
have been considered so far have an orbital speed that
falls off as 1/r so that two eddies sense each other no
matter how far apart they are. The presently considered
lens-like eddies, on the other hand, do not sense each
other uniess they are in direct contact because dynam-
ically they are identical to isolated blobs situated on
top of a dry horizontal plate.

The purpose of the present paper is to explore an-
alytically some of the details of the merging process.
We will not be able to rigorously analyze the complete
process and all its details (such as the actual alteration
of potential vorticity) but we will be able to provide
some information on the coalescence (i.c., the estab-
lishment of arms and tentacles).

b. Methods

The reader is warned in advance that part of the
theory is qualitative and speculative in nature. The core
of the theory (i.c., the so-called “padlock” flow), how-
ever, is a rigorous mathematical and experimental
analysis. The general details of the progosed merging
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mechanism are as follows. Two isolated blobs are ini-
tially separated from each other; they are embedded
in a lighter (or heavier) infinitely deep layer so that,
initially, one vortex does not “feel” the presence of its
counterpart. The eddies are then brought together by
some mean flow which relaxes after it pushes one vortex
against the other. This creates a “figure 8” structure
with a mutual boundary along which the depth does

not vanish (Fig. 2). We shall see that because of the.

establishment of such a mutual boundary, the eddies
cannot remain separated. “Tentacles” are extended
from one vortex to another and rapid merging occurs.

Following the conclusion of Nof and Simon (1987)
we develop a theory that corresponds to a situation
where the final potential vorticity of the merged vortex
is not identical to the initial potential vorticity which
each vortex has had. The details of our proposed merg-
ing mechanism involve two main processes. The first
is the way in which each of the two vartices becomes
entangled in the “tentacles” of its counterpart and the
second is the associated change in the potential vortic-
ity. The former can be rigorously explained in terms

Side view (betore collision)

mutual
boundary

AR IR

Side view (immediately after collision)

vortex 1
vortex 2

Top view (immediately after coftision)

P10, 2. Schematic dingram of the interaction of two isolsted Jens-
like eddics. A side view of the eddies prior to any contact is shown
on top. The middie and lower panels dispixy the sideé and top views
of two eddies which are touching each ather due to, say, as advective
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of relatively simple dynamical considerations whereas
the causes of the latter are somewhat speculative. It is
suspected that the change in potential vorticity is a
result of shock waves that are present during the tran-
sient merging process.

Both processes are highly nonlinear; the interfaces
of the blobs strike the surface (or bottom) so that the
depth variations are of O(1) and the centrifugal accel-
eration is of the same order as the Coriolis force so
that the Rossby number is also of O(1). Because of
this and the fact that the general problem is three-
dimensional (x, y, t), it is impossible to describe ail
its details analytically. It is, however, possible to prove
analytically that the formation of tentacles is inevitable;
namely, it is possible to show that once a “figure 8”
and a mutual boundary are established then each vortex
must extend an “arm” around its counterpart (Fig. 3).
To show this, one of the vortices is, conceptually, re-
placed by a solid cylinder and the flow resulting from
slightly forcing the cylinder into the remaining eddy is
examined. Note that since our model is inviscid it
makes no difference whether or not the solid cylinder
is rotating.

The main idea behind the above simplification is
that both an adjacent eddy and an adjacent cylinder
are forcing a mutual boundary along which the depth
does not vanish. A similar simplification was used by
Nof (1986a) to describe the collision between the Gulf
Stream and a warm-core ring. However, there are two
important differences between the Nof analysis and
the present model. The first is that while curvature ef-
fects are very important in the present study, they are
entirely negligible in the Nof (1986a) case. The second
is that in the present case the volume of the fluid sur-
rounding the cylinder is finite whereas in the Nof study
there is a continuous flow from one area to another.
These differences make the present study considerably
more difficult than that dxscussed in Nof (1986a). De-
spite these differences, many of the techniques used in
the above study are aiso applied here. There is some
(but limited) overlapping between the two articles be-
cause an attempt has been made to make the present
paper self-contained.

Because of the nonvanishing depth along the area
in which the fiuid is in direct contact with the cylinder, ———————
an intrusion of eddy water along the cylinder’s perim-
eter is established. It propagates in a clockwise manner
until it ultimatcly reaches the eddy on the downstream
side. At this point the intrusion reattaches itself to the
eddy and the combined eddy-intrusion flow resembles
the shape of a padiock. Because of reattachment the —_—
“padlock”™ flow is steady and, even though the problem 7
is siill nonlinear, nnponblewobmnanmamml P""'—
solution. This can be achieved by unna a constraint
resulting from integrating the equations representing
the torque relative to the center of the oyhnder Mauch U
of thre analysis and discussion in the paper is devoted .7
to the padiock flow. The mere existence of a nonvan-

|
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intrusion of vortex 1
along the edge of
vortex. 2

O

S

;

intrusion of vortex 2 ailong
the edge of vortex 1
FG. 3. The beginning of the double intrusion along the edges
of the eddies.

ishing padiock flow illustrates that intrusion of eddy
water along the cylinder is inevitable. We shall see that,
consequently, one is led to the conclusion that inter-
leaving and merging must take place. The padlock the-
ory is supported by a series of laboratory experiments
on a rotating table.

This paper is organized as follows. In section 2 the
general structure of the merging process is described
in detail; this description is largely qualitative. The
simplification of the processes in question and the
equations governing the padlock flow are given in sec-
tion 3. Section 4 contains the appropriate scaling, and
section 5 includes the solution for the padliock flow.
The Iaboratory experiments are described in section 6.
The results are discussed in section 7 and summarized
in section 8. A list of symbols is given in the Appendix.

2. A qualitative description of the merging process
The material presented in this section is mostly de-
scriptive and somewhat speculative. Consider again the
two isolated blobs shown in Fig. 2. The blobs have
uniform density and the slightly lighter fluid in which
they are embedded is infinitely deep. Initially, the blobs
donet wouch cach other 30 that there is no repulsion
or sttraction.
two etdies together 30 that the eddies’ horizontal pro-
jection resembies the “figure 8” shape and 3 mutual
Wyhm(&. 2); after this happens the
meun Bow relews. Our indtinl intuition twlls us that
e eddies’ respones to tivs exmblishraent of such 3 -
tual boundecy may simply cousist of a looutived ad-
justed fSow in the vidinity of point B, Howsver, a close
examination of the problem shows that this is not the
case. To shvow this, consider an application of the Ber-

¢
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noulli integral to the streamline connecting points A
and B assuming, temporarily, that the flow is steady
3o that the eddies’ response (1o the establishment of a
mutual boundary) consists indeed of a mere adjust-
ment in the vicinity of point B,

us?/2 = un?/2 + g'ha, @.n

where u, is the upstream speed’ (in the x direction)
along the front (point A ), and up and /p are the speed
and depth at B.

Since g is always positive, (2.1) implies that up
< ux. However, if the steady response is in the manner
shown in the lower panel of Fig. 2, as we have tem-
porarily assumed, then continuity implies that there
must be some convergence across the line connecting
point B and the center of the vortices. This suggests
that ug > u.. The above conditions, required by the
continuity equation and the Bernoulli principle, are
obviously incompatible, suggesting that there cannot
be a streamline connecting A and B. Instead, it is ex-
pected that there will be a band of water flowing around
the eddies in a clockwise manner (Fig. 3). In other
words, particles moving along the vortex edge (i.c., the
front) do not have sufficient energy to rise to point B
and, therefore, must go around their adjacent vortex
where the fluid is lower.

A formal proof for the inevitable existence of the
edge intrusion is given in the following sections with
aid of the so-called padlock flow. However, it should
be pointed out that for the special case corresponding
to u, = 0 (i.e., a vortex with a zero speed along the
edge) no proof is really necessary because under such
conditions (2.1) can never be satisfied. The establish-
ment of tentaclelike edge intrusions along the rims of
both eddies creates a structure similar to that displayed
in Fig. 4a. As time goes on the tentacles become longer
and longer. Since the volume of each vortex is finite
the tentacles will ultimately form a single vortex con-
sisting of two adjacent spirals (Fig. 4b).

By equating the volume of each individual blob to
the amount of water drained via the lengthening of the
tentacles it is possible to estimate the total merging
time. Specifically, suppose that ¢R, denotes the dis-
tance that each vortex is initially “pushed” into its
counterpart ( where R, is the deformation radius which
is of the same order as the radius of the eddy) and that
h denotes the eddy central depth. Also, recall that the
intrusion advances in a similar fashion to a gravity
current 5o that the propagation rate is of the order of
the Kelvin wave speed (eg’h)'/? (e.g., see Griffiths
1986). With the aid of this information, we can now
equate the volume of each eddy [ ~O(R,*h)] to the
fertsion Mux [e Ry, the intrusion width, times the in-

e —————

! Por clarity, the definition of symbols is given in both the text
and an sppeadix.
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F1G. 4a. Schematic diagram of the edge intrusion
in an advanced stage.

trusion depth ~0(2J!) and the intrusion propagation
speed ~O(eg'h)'/?) multiplied by the merging time
(tn). This gives,

tn ~ O(fe*?)" 22)

which shows that if the relative distance that each vor-
tex is “pushed” into the other is, say, 0.1 and the Co-
riolis parameter f is ~107* sec™!, then the merging
time is roughly 30 days.

The above processes strongly suggest that merging
will indeed take place. There remain, however, two
important aspects that need to be addressed. The first
is that we still need to rigorously prove that the intru-
sions are indeed inevitable. The second is that we need
toexplunhowthepowenmlvommyxsalmeddunng
the merging. The former aspect is rigorousty discussed
in sections 3-S5 whereas the latter is qualitatively ad-
dressed below,

Ruamndthitthealwwonofpmualvommy
is probably achieved via the action of shock waves? in
the nose of the intrusion. The fact that intrusions con-
tain bores is not new. It was first pointed out by Ben-
jamin (1968) for nonrotating iows. The laboratory ex-
periments of Steen et al. (1982), Grifiiths and Hopéin-
n(ma),uxmmnmum),

the analysis presented by Sitapson (1982 ) and Griffiths

along straight

coastlines slso contain shock waves,
Also, thé study of Nof {1987 ) hae demonstrated thet
the absduice oftoet wives-ia an intrusion along a

&E"ma‘ﬁ‘#’.&ﬁ"‘"‘m‘;ﬁmﬁ“
0 & Sifnsice butwatn msvpening and dimipetive offeces:
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coast is only possible under rather special conditions.
That is, it has been demonstrated that steadily prop-
agating solutions which do not involve shock waves
are only possible for specific circumstances. These spe-
cial solutions are not the most general solution to the
probiem which must involve steepening and dissipation
associated with depth discontinuities. In an indepen-
dent study, Nof (1986b) has demonstrated that rotating
shock waves cause a major aiteration of potential vor-
ticity. We, therefore, speculate that, as the fluid is in-
truding along the adjacent vortex edge, its potential
vorticity is altered.

Note that, during the merging, all the fluid in the
vortices is processed by the shocks so that the potential
vorticity of all the fluid is altered. Griffiths and Hop-
finger (1987) argue that this was not the case in their
merging experiment. They contend that in their linear
eddies only a small fraction of the fluid could be pro-
cessed by the shock. While this could have been the
case in their experiments, intrusions with zero potential
vorticity such as ours will process all the fluid contained
in the vortex. This can be easily seen by examining the
system in a coordinate system moving with the intru-
sion’s nose. It is expected that in such a system, all the
intruding fluid will circulate through the shock because
the shear is of O(1). Unfortunately, a quantitative de-
tailed analysis of the shocks in the intrusion is quite
complicated. It is beyond the scope of this study and
will be the subject of a future investigation.

This completes our qualitative, and somewhat spec-
ulative, description of the merging processes. We now
turn to the rigorous part of the analysis where the
“padlock™ flow is analyzed.

mmmmdummnmmm
Note that complee merging occurs beosuse the intrusions “leak” all
the fuids of the vortives.
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3. The steady “padiock” flow—governing equations
and constraints

The present section has two aims. First, we want to
show that the eddy’s response to the presence of the
cylinder cannot consist of a mere adjustment in the
contact area (Fig. 5). Namely, we wish to prove that
there must always be a flow around the cylinder so that
the time dependent intrusion (Fig. 6a) is inevitable.
The second aim is to find how the eddy responds to
the forced cylinder. Specifically, one would like to
compute the padlock flow speed, width and depth as
a function of the distance that the cylinder is pushed
into the eddy. Because of the inherent nonlinearity of
the problem, which has not been removed by our sim-
plification, it is unlikely that one will be able to find
analytical solutions for the whole ficld. Consequently,
we ghall make an attempt to find the desired flow pat-
tern without solving for the entire field.

a. General description

Consider the system shown in Fig. 6b. Theongmof
our coordinates system is located at the center of the
cylinder; it will become clear later that this choice is

y
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FIG. 6a. The initial intrusion stage. Ultimately, the intrusion reat-
taches itself to the eddy and a steady “padiock™ flow is established.

not arbitrary. The x axis is perpendicular to the line
connecting the center of the cylinder with the center
of the vortex; the y axis is a continuation of the above
line and the system rotates uniformly at ///2 about the
z axis. The padlock flow is embedded in an infinitely
deep motionless layer; its potential vorticity is zero.
The way that the padlock flow is conceptually formed
is not important for our analysis. It is useful to point
out, however, that one can think of several ways by
which it can be established. An obvious procedure is
to physically force the cylinder into an eddy. Another
method is to, conceptually, pull out a long tube (con-
taining heavy fluid which is not, necessarily, at rest)
in the neighborhood of a solid cylinder. A third method
would be to inject the heavy fluid near the bottom of
the cylinder.

Whatever generation method is used, there will be
some period of agjustment, and ultimately, a steady
ﬂwmﬂbeemhlnhcd.mthnﬁndm(ﬁg.%)the

and center are aligned with those of the padlock flow.
Wemmmmmum'wm

established is not important for the present analysis,
What we wish to find out is whetber or not the final

adjusted sisse can only be mociated with a padiock

—————————
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edge of the

undisturbed vortex
centered at A

section (1)

FIG. 6b. Schematic diagram of the “padlock™ flow. Point A is defined as the point
at which the speed of the padlock flow vanishes; fi is the depth at A and the radius of
undisturbed vortex (which is centered st A and has a maximum depth ) is

2V2R, [where R, = (g'h)'"/f}.

flow. Namely, we ask the following question: Is there
a solution corresponding to a mere adjustment in the
contact area? The answer to the latter question would
be positive if the width of the padlock flow turns out
. to be zero. We shall see that this is not the case; i.c.,
we shall see that there must be a flow around the cyl-
inder whenever the edge of the undisturbed vortex ex-
tends beyond the surface of the cylinder (¢ ¥ 0).

b. Governing equations for sections 1, 2 and 3

The governing equations for the final adjusted state
are the usual shallow water equations. For a padlock
flow with zero potential vorticity we have,

Ov/ox — /Oy +f=0, i=1,23 (3.18)

L I

3 Fl 2 (ko) =0, i=
, ax ) + - (h@) =0, i=1,23 (.49

i=1,2,3 (3.1d)

.,,...4,
i
|
{
!

- where u and v are the horizontal depth-independent

velocity components in the x and y direction, and the
subscripts 1, 2 and 3 denote that the variable in ques-
tion is associated with sections 1, 2 and 3, respectively.
Note that because of the symmetry of the problem (i.e.,
v = 0, h, = 0 along cross sections 1, 2 and 3) the x
momentum equation [du,/dx + v(du,/dy) — fu;
= ~g’(3h/3x)] and the continuity equation (3.ic)
imply that

o

—~=0

ox

In addition, note that, as in many radially symmetric
eddies, dv,/dx is not necessarily zero where x = 0 even

though v = 0.
The boundary conditions for sections 1, 2 and 3 are

=0 y=-—rl—¢) -
' —4Y2-R,-2V2-RAL - vy) (3.39)
b=k y=-r(1-¢)-2V2-R, (3.3b)

3.2)

e A e 41 Mot 1o

®e

———— .
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w=0,=0 y=-rfl —¢)— 2V2. Rs (3.3)
[t )m-mi1-0-2vT- R 2v1) = (3% hyonriny)  (3:4)
[122 + 28 ha)m-r, = (3% + 28'M3)y=s,  (3.53)
h=h y=-r(l—-e~2V2-R; (3.5b)
wy=v,=0, y=-ro(l —€)~2V2-Ry .(3.50)
hy=0; y=r(l+1s), : (3.6)

where 7o is the radius of the cylinder and R, is the
deformation radius based on the depth at the center
of the padlock flow (i.c., where the speed vanishes) so
that the radius of the undisturbed vortex is 2V2- Ry.
The v, and y; denote nondimensional locations at
which the depths of the flow in sections | and 3 vanish
(Fig. 6b). Conditions (3.3a) and (3.6) state that the
depth of these flows vanishes at some unknown loca-
tion; conditions (3.4) and (3.5a) reflect the conser-
vation of energy along the streamlines that bound the
flow from left and right (looking downstream).
Namely, (3.4) and (3.5a) are simply a result of an ap-
plication of the Bernoulli integral to the streamlines
connecting G and E, and B and D (see Fig. 6b). Con-
ditions (3.3b) and (3.5b) state that at A the depths of
the two sections are identical to some given depth (/)
and (3.3¢) and (3.5¢) reflect the requirement for a
vanishing speed at the center of the vortex.

It is important to distinguish clearly between the un-
disturbed state and the initial state. As mentioned be-
fore, the undisturbed vortex is defined as a zero poten-
tial vorticity vortex which is centered at the center of
the padklock flow (i.c., the point where the velocity
vanishes) and has the same as the maximum
padiock flow (k); its radius is 2V2 - R,. The initial state,
on the other hand, is the state which leads to the in-
trusion and the padlock flow—of no interest for the
present study.
¢. Constraints

The flows in the various sections are connected to
each other via (3.4) and (3.5) but there are two ad-
ditional constraints that the unknown variables must
satisfy. The first results simply from continuity and
can be written in the form,

£ whydy + f: ushady + £ whsdy = 0. (3.7

The second eqiiation will be derived from the con-
servation of torque. As in Nof (1986a), we begin by
noting that the moment of momentum corresponds to
the cross-produtt of the position vector r and the mo-
mentum equations,

ou _  du Lad
y(u;;-i- va—y—fv+(ax),

& & h
-x(u0x+ o”+fu+ 3’3;)-0. (3.8)

VoLuME 18

To show that (3.8 ) provides an additional connection
between sections 1, 2 and 3, it is multiplied by 4 and
the continuity equation (3.7a) is incorporated. This
gives

8 . . 9 - g9
ax”"‘ y)+yay(huv) Soyh + 2 %

(k*y)
9 0 P
xox(huv) 3y (hxv®) — fuhx
AT
28y(h x)=0, (3.9)
which can be rearranged and integrated over the region
shown in Fig. 7, to give

400
O &2
ﬂ.ax(huy foy+Eny huvx)dxdy

+ [f 3y (huvy +fx - % hx ~ va’)

X dxdy =0 (3.10)

P10, 7. An (Bustration of the imegration area for the computation
of the torque associated with the padiock flow.
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where ¢ is a streamfunction defined by
¥ ok N
ay uh; ax vh. (3.1

By using Stokes’ theorem, (3.11) can be written in the

form,
¢(Im’y -fyy+ gh’y - huvx)dy - ¢ (huvy
A 2 *
- hxv? + fyx - % h’x)dx =0. (3.12)
where ¢ is the boundary of the flow. This equation can
be further simplified by defining ¥ to be zero along the

edge where h = 0 and noting that along any streamline
udy = vdx. This gives,

B
[ - 14+ gwr2)yay
E
+ L (hu? = £ + gh*/2)ydy
D
+ J; (—SfYy + gh*y/2)dy
- LD (f¥x ~ g'h*x/2)dx = 0. (3.13)

In deriving (3.13) it has been taken into account that
the sum of the integrals of hu’y and huwvy along BD

vanishes because there is no normal flow through the

boundary of the cylinder.

The first two terms in (3.13) are the moments of
the flow force in sections 1, 2 and 3. The last two terms,
on the other hand, represent the torque corresponding
to the pressure exerted on the cylinder by the sur-
rounding flow. Since we chose our origin to be in the
center of the cylinder and the pressure is always per-
pendicular to the surface with which the fluid is in
contact, we would expect this torque to vanish. It is
easy to show that since the cylinder surface is given by
x2+ y = 1,2, we have xdx + pdy = 0 0 that the sum
of the last two integrals in (3.13) equals zero as ex-
‘gectedﬂenee,ﬂnintenatedtmqueukesthesimple
form,

A
[ han =, + 2390
B
+ [ (b = o + #1235y

+ J: (hytn® = f¥s + g'hy*/2)ydy = 0, (3.14)

where we have incorporated our special notation for
the various sections,

DORON NOF 895

4. Scaling and expansion of the padlock flow
a. The basic state

Before discussing the scaling of the problem and the
general structure of the expansion, it is instructive to
look at the details of the basic state. The structure of
the zero-order state, corresponding to the cylinder
“kissing” an eddy with zero potential vorticity, is not
a priori obvious. To show this, consider the application
of the Bernoulli integral to the surface of the cylinder
(3.5). It implies that even when ¢ — 0 the velocity
along the cylinder surface is of O(1) because the eddy
speed along the edge is O(l1) [see (1.1) with r
= 2(2¢°h)'7?/f]. As in Nof (1986a), this means that
the basic flow around the cylinder is not zero; rather,
it consists of an infinitesimal ribbon flowing at a speed
(2g'h)""2. To find the details of this ribbon flow it is
noted that even though the basic state contains only
an infinitesimal strip, it must, of course, satisfy the
equations of motion.

In this context, it is convenient to consider the po-
tential vorticity equation and momentum conservation
in cylindrical coordinate (7, ¢),

1d, .
;E(ﬁ),,) +f=0 “4.1)
YO

‘-r"+ Uo"'gldr, (4.2)

where U, is the tangential velocity, the bar (~ ) indicates
association with the basic state and we have assumed
that the basic flow is purely tangential (i.e., 7; = /99
= 0). The most general solution of (4.1) and (4.2) is

T e,
Vs = 2+r,
e(r2— oy (1 _1)\a?
h (ro r)ag,+(r°2 I‘Z)Zg', 4.3)

where a is an unknown constant and we have used the
condition h = 0 at = r,. Since at 7 = r, the absolute
value of the velocity must be (2¢'h)!/? (in order to
satisfy the Bernoulli relationship along the surface of
the cylinder), we find from (4.3) that

Lz"? (ro— 2V2R,) (4.4)
where R, = (¢'4)'/*/ f. Namely, for any given cylinder
(ro), we must take a specific value for a. For simplicity,
we shall consider only cylinders with 7, = 2V2R, so
that & = 0. Other cylinders can, of course, also be con-
sidemda@ﬂ:eaoluﬁon,whichwiﬂbednorﬂydeﬁved,
can be easily extended to cylinders with all diameters.
Hm,_suqheandadsoluﬁomdonotpmvideany
new physical insights and, therefore, are not presented.

b. Scaling

In the subsequent analysis the following nondimen-
sional variables will be used:

a =
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u* = u/(gh)'?; v* = v/(gh)"*

h* = h/h
x* =x/Ra; y*=y/Rq; . 4.5)
8 =rn/Ri=2V2, r*=r/Ry
v =/ I2(B*If), Ry=(gh)'(f

Note that in sections 1 and 3, which are lacated far
from the contact area, the flow is taken to be purely
tangential. This is clearly supported by our laboratory
experiment (section 6). In section 2, however, some
demuomftomradnllysymmetncmouonmpou‘bk
because of the presence of the cylinder. In view of this,
we shall use polar coordinates for sections 1 and 3 and
Cartesian coordinates for section 2. [ The subscript ¢
will denote association with polar coordinates (i.c., v,
is the azimuthal speed ) whereas the lack of a subscript
will indicate that the variable in question is associated
with Cartesian coordinates.] For section } it is con-
venient to transfer the coordinate system use cy-
lindrical coordinates (7, 3) situated at the center of the
padlock flow [0; —ro(2 - €)]. In terms of the nondi-
mensional numbers defined by (4.5), the governing
equations for this section are
'l'"d" (75.) +1= 0' (§|)2/F+ 0. = % (4.68)
where?,éamrelatedtotheonginaleoordinatusystem
(x*, y*) via,

Fsind = y* + 2V2(2 - ¢); 7cosd = x* (4.6b)

[ie,7=y*+ 2V§(2 — €); £ = x*}. For section 3 it
is not advantageous to transfer the coordinates system.
We, therefore, take,

l
e (r‘v::) =0, (oB)r*+vd= —1'1.
(4.6c)
The nondimensional equations for section 2 are
found from (4.5) and (3.1) to be
Gvf Ouf ..
G "oy T170 (4.72)
L P
"o P (4.7b)
-x-,- (hfut)=0 (4.7¢)

where we have taken into account that v8 = 0 because

of symumetry. (Note, however, that, as mentioned be-,

fore, the terms containing dvT /dx* are not necessarily
2610 event v¢ = (.) The boundary conditions
(3.3)-(3.6) take the form,

=0 y=-W(E3-c-7) “8)

A ot T < A BT e

- —

VOLUMI; 18 .
ht=1; y*=-2V2(2-¢) (4.8b)
W=v=0 y*=-2Y2(2~¢ (4.8¢)

[(uF)? o2 B3y = [(#3) hynzyZ14yy  (49)
[(u$)? + 2h2) o2 3
= [(u3)? + 2h% 122 (4.100)

At=1 y*=-2Y2(2-¢ (4.10)
ut=v3=0;, y*=-2V2(2-¢) (4.10c)
RE=0; y*=22(1+7v;) (@&11)

Similarly, the constraints (3.7) and (3.14) can be ex-
pressed as,

fﬂmﬂ) htd f T skt dy
+
-2/I(3-¢e-v1) uthtdy ~2,/23(2-¢) uthdy
2 /2(14y3)
+f uthtdy* =0 (4.12)
22

~2/2(2-¢}
[ (P (ury? -

-2/2(3~-1y)

¥1 + (h1)?/2)y* dy*

-242
w0 - vt + 21
2.J2(2—¢)

-2J2(1473)
+f [h3(u2)? ~ ¥ + (h3)?/2]y*dy*
22

=0. (4.13)
¢.- Perturbation expansion

As in Nof (1986a), the expansion in ¢ is not straight-
forward for two reasons. First, as already pointed out,
the basic state (¢ = ) contains speeds of O(1). Second,
the choice for the origin of the coordinates system im-
plies that the basic flow is a function of ¢. Recall that
the choice of the origin for the coordinate system was
“1mposed” by the use of the integrated torque. If the
origin were in any other location, then the integrated
torque associated with the pressure along BCD would
have remained nonzero thus making it impossible to
connect the three sections. It will become clear shortly
that while these conditions make the expansion some-
what more involved they do not present any funda-
mental difficulty.

It is assumed that, for sections 1 and 3, the expansion
has the form,

Dot = —F/2 + DSV + 205D + (4.142)
hy=1-(M8+ ek + 6271; D4 ... (4.14b)
yi=enW + ey, D+ . (4.14¢0)
o = —r%/2 + e0l? + e*u‘%’ 4o (4.15a)
ht =1~ (r*)* /8 + ehy'V + P + - - - (4.15b)
T3 =ers™ + ety D 4 .. {4.15¢)
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where (4.3) and (4.5) have been used to express the
terms corresponding to the basic state. Note that, as
before, the tilde ( ) denotes association with a polar
coordinates system whose origin is located at the center
of the eddy instead of the center of the cylinder (x*
= y* = 0). The relationship between 7and x* and y*
is casily found from (4.6b) to be,
F={(x*)2+[y* +2V2(2 ~ 91*}'2.  (4.15d)

As in Nof (1986a), the expansions (4.14)~(4.15)
take into account that the width of the fiow around
the cylinder (v3) is O(eR;) because this is also the
width of the flow blocked by the cylinder (i.e., section
BB’, Fig. 6b). In other words, the width of the flow in
section 3 is of the order of the distance that the cylinder
is “pushed” into the eddy. The depth near the cylinder
boundary in section 3 must be of the same order
as the depth at B because the blocked transport is
O(g’hp?/2f) and the transport at cross sectirn 3 is
O(g’h3./2f), where hs, is the depth nefr the wall at
section 3. Namely, a Taylor series expansion (around
the edge of the undisturbed eddy) for the depth at B
shows that hs ~ O(eh) and, consequently, A3,
~ O(eh). These scales are consistent with the scales
that one finds along the immediate vicinity of the rim
of any lens-like eddy.

As mentioned, in section 2 the flow is not necessarily
radially symmetric so that the expansion is

ut = [y* +2¥2(2 - 6))/2
+e™ + P+ .. (4.16a)
v = —x*/2+ e, P+ 20,0+ ... (4.16b)
Rt =1~[y* +2¥2(2 - )]%/8
+ thz(" + ‘2h2(2) + e *. (4.16(:)
Recall now that because of our choice for the origin
of (x*, y*), our basic state contains ¢ when it is ex-
pressed in terms of x® and y*. While this does not
create any difficulties, it is perhaps more elegant to
express (4.16a) and (4.16¢) in the form,
uf = [y* + 4V2)/2 + (1, ~ V2)
+epP+ ... (4172)
ht =1 —(y* + 4V2)2/8 + e(h,"" + y*V2/2)
+ P -1+ ... @4.17)
In this form, the power series are expressed in a way
that clenrly separates the 2ero-order terms from the

remaining terms. Hereafter, the first terms in (4.17)
will be referred to as 4, and h,'?, respectively.

S. Solution fer the padlock flow

a. General solution for section 1

Substitution of (4.14) into (4.6) and elimination of
the terms corresponding to the basic state gives the
O{¢) equation,

1d (n -
’.dr,(rﬁ )= 5.1)

The solution is: D5" = A4,/#, where A4, is an unknown
constant. Since 9, cannot approach infinity at the
center of the vortex (7 = 0) we find that

P =4,=0 5.2)

and 4,V = B, where B, is a constant to be determined.
At the center of the vortex the depth % must match the
undisturbed depth ( = 1) because of our definition of
the basic state. Hence, we have B, = 0 and

LM =0. (5.3a)
Also, with the aid of (4.8a) one obtains,
5.0 =0. (5.3b)

It is a simple matter to show that, in a similar fashion
to the first-order solution, the second-order solution in
section 2 also vanishes, i.e.,

D=3 =4,®0=0, (5.3¢)

b. Simplified equations for section 2
From (4.16) and (4.7) one finds the O( ¢) equations,

avz"’ auz“’ _
e 3y =0 (5.42)
ov m oh )]
©) 2 My o IR
Uy Fyr + up/2 3y (5.4b)

a—f;; [ = (*)/8)uV + hyV/2] = 0. (5.4c)

The O(¢?) balances are
F" 2) ou 2)
e a;' =0 (5.5a)
av a) 60 2) yt
w2 Y \_, @
ax* *oxe (2) u2 /2
@
+ u2(2) = - a—;l—;T- (S.Sb)

6xt {Th®y* /2 + kW,

+[1 = (*)?/8Ju,@} = 0. (5.5¢)
The geometry of the section in the immediate vicinity
of section 2 is shown in Fig. 8.
¢. General solution for section 3
By substituting (4.15) into (4.6¢c) and eliminating
the basic state, one obtains the equations,

‘%Er_[r‘v Y +ern @1+ 0() =0 (5.7)
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FIG. 8. The geometry in the vicinity of section 2.

dhy

0=c¢ e (5.8)
It will become clear shortly that the term containing
v53 is actually O(¢) and not O(e?) so that it must be
included in the O(¢) balance.

To simplify the structure of (5.7), it is recalled that
the first-order flow (in section 3) takes place within a
distance of O(¢) from the cylinder surface so that, as
in Nof (1986a), one may introduce the transformation,

r* =2Y2(1 + &%)
?vhere £* ~ O(1). In terms of this new variable, (5.7)
is,
1 oy E[g*_ doa?
2V2 de*  (2V2 dt*
which shows that dv{¥/dt* = 0. This and (5.8) give,
v$d = By, hy® =4, (5.9)
where B; and A, are constants to be determined from
the boundary conditions. Substitution of (5.9), (4.15),
(5.2), (5.3) and (4.14) into the polar version of the
boundary conditions (4.9) and (4.11) gives
["’/zﬁ-zﬁuny.m) =[-r*/2 + 633];'-2,/3&».1,"))
(5.10)
[1 = (r*)3/8]+ edy = 0; r* =2V2(1 + ey; V)
(5.11)

+ vf,%’] +0(e2) =0

which, with the aid of (5.3b), yields,
By = V29,0 Ay = 24, (5.12)

By now, most of the first-order solution for section 3
has been derived; the only part that is still missing is

75'". As we shall see, there are two equations and a
boundary condition (4.10a) that we have not used yet.
The latter immediately gives,

V2u, ™ = B, at y* = -2V2. (5.13)

d. The torque constraint

Since (4%) ~ O(3) ~ O(e) it follows that the third
integral in (4.13) is, at the most, O(¢?). With the aid
of the transformation j = y* + 2¥2(2 — ¢) and (5.3b),
the approximate form of (4.13) {up to O(e?)] can be
rewritten as

J:ﬁ[ﬁ,(ﬂ,)z - + (B)22)9 - 2V2(2 - 1dy

2,/2'—1 -
+ [ @ - b+ (2]

X [7—2V2(2 - ))dj + O(e?) =0 (5.14)
where, as before, the tilde () above the variables u, ¥

-and h indicates that they are expressed in terms of X,

7. Substitution of (4.14), (4.17), (5.2) and (5.3) into
(5.14) and elimination of the basic state gives,

2,/2 .
J; [2],2(0),;2(0),;2(1) + (ﬁz(o))2h2(l) - 4,2(1)

+ hz(O)kz(l)](j‘; - 4V-2-)dj7+ J‘2\/7-¢ []1 (0)(&' (0))2
. 2 2
- VO + (B )?/2)( — 4¥2)df + O(¢*) = 0.
(5.15)

This equation can be further simplified by noting that
the second integral is associated with the area where
7@ ~ O(e), and §,@ ~ O(e?) so that it is, at the
most, of O(e?). Hence, to O(e), (5.15) reduces to

2,2
f [2},2(0)g2(0)ﬂ2(l) + (az(O))zhzu)
0

— D + B,OR,M)(5 - 4V2)dP + O(>) = 0
which, in terms of the x*, y* coordinates, is

_zﬁ
‘[’ [2h2(0)u2(0)u2(l) + (uz(o))zhz(‘) — #,2(1)

+ b Oh,M]y*dy* + O(e2) = 0. (5.16)

A solution satisfying (5.16), the boundary condition
(5.13) and the governing equations (5.4a—c ) is simply,

0 = B =y, 0 =0, (5.17)
This leaves only one unknown, v3(", which will be
computed from the O(¢?) balances.

e. The second-order balances

Two comments should be made before discussing
the O(¢?) equations. First, the O( ¢) continuity equation

o
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is automatically satisfied by the O(¢) solution that we
have derived for section 2. Second, although the O(¢?)
continuity constraint involves the O(¢) variables in
section 3, it also involves the O(¢?) variables in section
2. In other words, as in Nof (1986a) it is necessary to
find the O(¢2) solution in sections 1 and 2 in order to
obtain the O(¢) solution in section 3.

In view of this, we shall consider now the O(¢?)
potential vorticity equation, the momentum balance,
and the local continuity balance for section 2 {Eqs.
(5.5a-c)) which have the solufion,

392(2)
ax
where § is a constant to be determined.

This solution satisfies the boundary condition ;'
=0, = b, = 0 at x* = y* = 0 as required. Together
with the first- and second-order solutions for the various
sections and the second-order solution for section 1
(relation (5.3c)], the second-order balance of the in-
tegrated continuity equation gives

1426 =(ysM)2 (5.19a)

Similarly, the second-order balance of the integrated
torque (4.13) yields

34678~ 3+ (7:")2=0. (5.19b)
Equations (5.19a) and (5.19b) have the solution,

uz"’ = 5)7,

=8 hP=-5y2 (5.18)

va® = 1.316; a=o.366] (5.19¢)

This completes the derivation of the solution.

| The complete solution
The total solution for section 1 is

ut = §/2 + O(e?)

ht =11 = (/81 +0() | (5.200)
ot=0

vi =0+ O(e’)

In terms of the nontransformed coordinates [sec
(4.6b)], it takes the form,

ut = (y* + 4Y2)72 - V3. ¢ + O(¢%)

ht = [1 = (y* + 4Y2)/8) 5.20b
+ e(y® + 4Y2)¥2/2 - €2 + O(e?) ©-200

v =0, v,=0+0()

where, as pointed out earlier, the terms of O(¢) in

(5.20b) are not actual ' but

'dynamical perturbations
rather & result of our choice for the origin of the co-
ordinste system,

Similarly, the solution for section 2 is
u% = j/2 + 0.366€2 + O(e*)
v=0
ht = [1 —(5)*/8] — 0.183(§)’¢* + O(¢’)

(5.20c)
which in the (x*, y*) coordinates can be written as
ut = (y* +4¥2)/2 - V2-¢ )
+ 0.366(y* + 4V2)e2 + O(¢?)
ht = (1 - (y* + 4V2)%/8]
+e(y* +4V2)V2/2 re (5-20d)
— [0.183(y* + 4V2)? + 1]¢?
+ O(€?)
v =0 )
For section 3, the solution is,
ut = -y*/2+ 1.861e + O(€?)
ht =1 - (»*)?/8 + 2.632¢ + O(¢?) L6521

+1 = 1.316¢ + O(¢?)
1=0

Note that since v%, the width of the intrusion around
the cylinder, is not zero for ¢ # 0 there must always
be a flow around the cylinder as stated before. Due tc
the cylinder, part of the circulation in section 2 is
blocked. Consequently, the flow intensifies near the
cylinder surface and the portion of the eddy flux that
is “blocked™ (by the cylinder) is simply diverted from
its original position to the perimeter of the solid cyl-
inder. The solution demonstrates that, no matter how
small the penetration of the cylinder into the vortex,
a current engulfing the cylinder must always be present.

6. Laboratory experiments

To assess the weaknesses and limitations of the fore-
going theory a set of simple laboratory experiments on
a rotating table was performed. The lens-like eddy was
formed on the bottom of a cylindrical tank by injecting
dyed salty water through a tube (3 cm in diameter)
containing a permeable foam. A cylinder (5 cm in di-
ameter) was situated a distance of 5 cm away from the
center of the tank where the injection tube was located.



el

116G. Y. Subsequent photographs of a (la: oratory-generated) lens-like eddy responding to the presence of a solid cylinder. The
sequence shaws the structure of the eddy and the intrusion during the various stages of the interaction. Physical conziants f= 3,35
s Apfp = 1L0052; T = 21.5°C. The process shown in (a-f) lasted for about 20 seconds; the diameter of the ¢ylindc. is § em. Note
that, (i) « padlock flow is indced cstablish.c., as predicted by the theory, (it} the eddy does not rotate around the cyiinder, (iii) the
fens remains roughly circular as assumed - the development of the theory, and (iv) during the interaction the eddy grows in time
hecause of the continuous injection of dye:. salty water through the battom (sce text).

o
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RG. 10, The coalescence of two quasi-geostrophic anticyclones in & two-layer basin (adapted
from Griffiths und FHopfinger, 1287). Photographs were tnken at the clapsed times shown on the
counter (in background rotations periods). Coalescence begins at the first frame and ends in the
second. The diameter of the cddies before the interaction was 18 cm; for other details see Griffiths
and Hopfinger 1987, Note that, as the interuction begins, fluid from the bluc vortex is engulfing
the red vortex and t ultimatel! , two adjacetit spirals are formed as suggested by our model.

901




place. s can be seen in Fig. 9. the intrusion predicted
by the theory (snd shown in Fig. 6a) is cicarly evident;
also, the interaction clearly leads to a padlock flow as

suggosted by the theory (Fig. 6b).

It should be pointed out that, because of mechanical
limitations, the injection could not be terminated dur-
ing the actual execution of the experiment. Conse-
quently, the lens continued to slowl: grow in size dur-
ing the interaction as is apparent in Fig. 9. This did
not have a major efiect on the results because the
growth was small compared to a propagation speed of
the intrusion. It should also be mentioned that, due to
the fact that the upper layer was finite rather than in-
finite and due to the conservation of potential verticity
and angular momentum, a weak anticyclone was
formed on top of the lens. Its influence on the inter-
action as probably myinor because the ratio of the lens
depth to ihe total depth was small (about 1/10) so that
the speeds on top were also small.

7. General comments

Before discussing the application of our results to
actual merging in the ocean, it is appropriate to com-
ment on the “replacement™ of one of the interacting
eddies by a solid cylinder, An obvious similarity be-
tween a colliding eddy and a colliding cylinder is that
both features dre expected to exert a pressure on thes
eddy as they collide with it, and both features have
similar geometry in the x—y plane. As we saw earlier,
the exerted pressure is the key to the merging process
and, therefore, it is believed that a solid cylinder pro-
vides an adequate *analog.” .

However, there are also some important differences
between the solid cylinder and an actual eddy. For ex-
zr.ple, although both the actual eddy and the solid
cylinder are subject to pressure forces, the former can
adjust itse.” 1o the surrounding pressure, whereas the
latter remains unaltered. In addition, as pointed out
carlier, the actual eddy is drained via the intrusions so

that a steady state is not reachcd before a complete

merging is dachieved.

While we should be on guard against oversimplified
models {such as this one may seem, at first, to be),
attacking ihe complete merging problem analytically
appears to he hopelcss. Even numerical integrations
cannot provide the desircd solution because of the dif-
ficulty in handling fronts < 4 = 0). Some simplifications
are, therefore, necessary and examination of the cyl-
inder-eddy intzraction is uscful for understanding the
basic processes in question. Namely, the results of our
analytical study pinpoint the effects which one should
look for in more compliczted and more realistic mod-
cls. 1t is worth pointing out that there is a similarity
hetween our proposed merping mechanism (Figs, 3 and
4) and the laboratory ouservations of Griffiths and
Hopfinger (1987} (see Fig. 10). Both include inter-
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leaving spirals even though Griffiths and Hopfinger’s
(1987) experiments involved iincar quasi-geostrophic
eddies whereas our process addresses nonlinear lenses.

As pointed our earlicr, the main dynamical difference -

between these two kinds of eddies is that Griffiths and
Hopfinger’s eddies interacted before they touched each
other whereas our vortices do not sense each other un-
less a mutual boundary is cdtablished. It should also
be pointed out that the numerical experiments of
McCreary and Kundu (1987) also suggest that merging
takes place through the formation of intrusions and
arms. )

As far as the application of our general merging pro-
cess to Cresswell’s (1982 ) study is concerned, it appears
that the essential dvnamics may be similar. Because of
the simplifications involved, a detailed quantitative
comparison is, obviously, impossible. However, the fact
that otir model suggests a mechanism for eddy merging
is, of course, in agreement with Cresswell’s observa-
tions. The time scale for merging {relation (2.2) which
gives ~30 days for e = 0.1 and /' ~ 107* s '] is also
appropriate cven though it is difficult to say what the
actual value of e should be.

A potentially serious difference between Cresswell’s
observations and the present study is the fact that
Cresswell's eddies were with unegual densities whereas
our model addresses eddies with identical densities. It
is easy to see, however, that such a difference is not
major because all that it implies is that the mean po-
sition of the intrusions along the rims will not be taking
place on the same level. Instead, the mean position of
the intrusions will take place on diffcrent levels as
shown schematically in Fig. 11. The major causc of
the merging—the establishment of a mutual boundary
with a nonzero vanishing depth——is present in both the
collision of eddies with equal densities and the collision
of eddies with uriequal densitics. The laboratory ex-
periments of Nof and Simon (1987} on eddies with
unequal density support these considerations.

An additional aspect of Cresswe 1's study that is not
present in our study is the observation of a clockwise
migration of the entire eddies (Fig. 1). It is difficult to
say what the causes of such an effect could be but it
might be a resuli of the transient merging process which
we have not studied in detail.

8. Summary

A conceptual qualitative model for the merging of

two isolated lens-like eddies has been developed with
the assumptions that: (i) the eddies are embedded in
an infinitely barotropic fluid; (ii) with the exception
of shock waves which are presumed to be presont dur-
ing the transicnt merging process, all rnotions are fric.
tionless and hydrostatic; (iit) mass is conserve during
the merging.
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intrusion of
vortex 2

intrusion of
vortex 1

Eddies with equal densities

intrusion of
vortex 1

intrusion of
vortex 2

Eddies with unequal densities

G, 11. A cross section of pairing vortices, The upper panel shows
eddies with identical densities; their merging is qualitatively displayed
in Figs. 3 and 4. The lower panel displays eddies with unequal den-
sities, While the merging is generated by the establishment of a mutual
boundary with a nonvanishing depth as in the equal density case,
the final situation is different from that displayed by Fig. 4a. Here,
instead of forming two adjacent spirals, the lighter vortex is “climbing™
on top of the heavier lens. This is supported by the labomtory X
periments of Nof and Simon (1987),

Qur attention has been focused on two lens-like ed-
dies (with equal densities) which are pushed against
each other by a mean flow that relaxes after the eddies
are in contact. It is argued that the establishment of a
“figure 8” structure (associated with a mutual bound-
ary with a nonzero depth) forces the generation of
“tentacles” and “arms.” These features correspond to
intrusions along the eddies’ edges; they result from the
fact that particles along the peripheries do not have
sufficient energy to rise to the mutual nonzero depth
(Fig.:2). The establishment of tentacles causes the ed-
dies'to wrap around each other (Fig. 3). As.time goes
on, the tentacles become longer and longer so that they
effectively “drain”. the vortices. Ultimately, a single
vortex corresponding to two adjacent splrals is formed
(Fig. 4).

While the details of the above process can be easily
described in a qualitative manner, it is impossible to
rigorously prove the complete process analytically be-
cause it is both nonlinear and three-dimensional (x,
y,t). It is, however, possible to prove analytically that
the establishment of tentacles is inevitable. To “how
this, we have conceptually replaced one of the inter-
acting vortices by a solid cylinder (Figs. 5 and 6). This
simplification removes the time dependency from the
problem because there is now only one tentacle which,

upon engulfing the cylinder, forms a steady “padlock”

flow. Using a constraint associated with the conser->

vation of torque (i.e., moment of momentum) and a
perturbation scherne, we have constructed the detailed
solution even though the simplified problem is nonlin-
ear. A set of laboratory experiments supports our an-
alytical analysis of the padlock flow (Fig. 9). ,
With the aid of the above'model, it has been shown
that two lens-like eddies which are compressed against
each other will merge within the period ~O(e3/2f)"!
[where ¢ is the relative distance that each vector is
squeezed]. Following Nof and Simon (1987), it is
speculated that during the merging the poténtial vor-
ticity cf penetrating oceanic vortices is altered via the
action of shock waves near the nose of the tentacles.
This is based on: 1) several studies (e.g., Griffiths 1986;
Nof 1987) which have shown that transient intrusions
contain bréaking waves or shocks (bores) and 2) a re-

. cent study (Nof 1986b) which illustrated that shock

waves cause major alterations in the potential vorticity.
The details of the potential vorticity alteration by the
dction of shock waves in the intrusion is quite com-
plicated and is beyond the scope of this study; it will
be the focus of a future investigation. Finally, it should
be pointed out that the observations of Griffiths and
Hopfinger (1987) (Fig. 10) and the recent numerical
experiments of McCreary and Kundu {i987) also il-
lustrate that the merging of anticyclones takes place
via the establishment of arm< and tentacles.
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APPENDIY
List of Symbols ..

Ay, B Integration constants associated with ( 5. 1)'

Az, By Integration constants associated with (5 7)
. and (5.8). Their relationship to v, is
given by (5.12).

b Racius :of eddy for energy calculations
(section 1).

E Total energy (kinetic plus potential).

f The Coriolis parameter. . -

g - “Reduced gravity” (gAp/p where gis the

gravitational acceleration and Ap is the
density difference between the layers).

h ' Maximum depth of vortex (i.e., depth at -
B the point of no speed); it is also the
maximum depth of the padlock flow at
, . point.A,
hy o Depth at point B (Fig. 2).
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Nondimensional depth (#/4).

Section 2--subscripts which denote the
initial and final state (respectively). Ty
section 3, *1"" (1, 2, 3) denotes associa-
tion with various sections (3.1).

Radius in polar coordinates whose origin
is located at the center of the solid cyl-
inder.

Deformation radius (g'h)'/?/ f.

- In section 3—radius of solid eylinder (Fig,
6b}; in scction 4 it is shown that, for our
case, 7q is also the radius of the undis-
turbed vortex, 2(2g'h)"/2.

Nondimensional radius in a polar coor-
dinates system with an origin at the cen-
ter of the cylinder.

Nordimensional radivs and angle in a po-
lar coordinate system whose origin is lo-
cated at the center of the undisturbed
vortex (i.e., center of padlock flow).

Merging time,

Sr=ed along the x axis (i.e., in a Cartesian
coordinates) for points A and B (Fig.
2).

Speeds in Cartesian coordinates whose or-
igin is located at the center of the solid
cylinder (Fig. 6b).

Nondimensional speeds in Cartesian co-
ordinates whose origin is located at the
center of the solid cylinder (Fig. 6b).

Velocity and depth (in Cartesian coordi-
nates located at the center of the solid
cylinder) of the undisturbed vortex.

The undisturbed velocity and depth in a
Cartesian coordinate system located at
the center of the undisturbed vortex.

First- and sccond-order perturbations to
the basic flow (in Cartesian coordinates
located at the center of the solid cylin-
der).

Initial orbital speed in polar coordinates
whose origin is situated at the center of
the vortex.

Nondimensional orbital speed and depth
in a polar coordinates whose origin is
located at the center of the undisturbed
vortex.

The distance between the center of a point
vortex and a wall (section 5).

Space and time coordinates in a Cartesian
coordinates whose origin is situated at
the center of the solid cylinder.

Space in a Cartesian coordinates located
at the center of the undisturbed vortex
(point A, f;‘/x/g 6b). 1t is related to x, y
by, y = J2V2(2 — €)1 x = X,

Nondimensional Cartcsian coordinates in

VOLUME 18

a system whose origin is situated at the
center of the solid cylinder.

14 An integration constant associated with the
solution of (4.1).
¥ Distance between the edge of the padlock

flow (in section 1) and the edge of the
undisturbed vortex (nondimensional-
ized by 2V2 R,).

Y3 Distance between the edge of the intrusion
(in scction 3) and the surface of the
solid cylinder (nondimensionalized by
2V2R,).

8 A nondimensional coefficient associated
with the second-order flow in section 2.
It is found to be equal to 0.366.

€ In section 2—the distance that each vortex
is “‘pushed” into the other (Fig. 2); in
secnon 3—the distance between the
edge of the undisturbed vortex and the
edge of the cylinder (Fig. 6b). Note that
the undisturbed vortex is defined as a
zero potential vorticity lens which is
aligned with the center and depth of the
padlock flow (i.e., it has the same center
and depth as the padlock flow).

Streamfunction.
Nondimensional streamfunction.

= gﬁ 95 Integration in a counterclockwise (clock-

wise) manner along a closed curve.
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