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SUMMARY

Investigations at several levels of theory of the quintet states of the CO molecule,

which correspond asymptotically to the interaction of C(3p) + O(3p), show the 1 5Z+ state
to be a potentially interesting energy storage candidate. Its binding energy (ca. 750 cm"1) is
sufficiently large compared with those (<100 cm -r) of the other quintets so that one might
be able to produce the 1 51+ state preferentially. The decay pathways of the quintets need
to be investigated in order to provide a more definitive assessment of their energy storagepotenti .
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INTRODUCTION

For the purpose of energy storage we seek a molecule such as N2 or CO which has
one or more weakly bound, yet possibly stabilizable, upper states and a very deeply bound
ground state. Figure I illustrates the concept. It shows, for example, that one might be
able to extract about 11 eV for each transition of the weakly bound excited state of CO to
the ground state.
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Figure 1. Potential Eaer=y Release from a High Shin State.

High spin state molecules corresponding to the interaction of ground state atoms are
particularly likely candidates for the upper state since they typically will exhibit mainly
electrostatic, induction, and dispersion type van der Waals interactions at long-range but no
short-range "chemical" binding. Furthermore, such high spin states will have no dipole-
allowed transitions to the ground state and thus are potentially long-lived states. Recently,

Happer and coworkers (Ref. 1) have argued that 7E+, N2 (and by implication 5Z+ CO)

has spin-spin decay modes that cause it to have an unacceptably short lifetime. Since these
decay processes apparently depend on R-6 where R is an interfiagment distance, molecular
size is an important parameter. If we can increase the effective size of the 51+ CO by
surrounding it with a cluster of H2 molecules (bound to CO by van der Waals forces),
however, we may be able to increase the high-spin lifetime enough so that the cluster
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becomes an interesting high energy candidate. Thus, we have launched a detailed study of
the quintet states of the CO molecule that has the following main components:

(1) A preliminary survey of the long-range interactions of ground stute C and 0 atoms
by means of a semi-empirical model;

(2) Detailed high-quality ab inido computations of the potential energy curves for the
quintet states of CO which correspond asymptotically to ground state atoms;

(3) Detailed spin-orbit and spin-spin studies to determine the decay modes of the high-
spin CO, and to learn whether the high-spin lifetime can be increased by
surrounding CO with a cluster of H2 or He.

For the sake of clarity and completeness, this report will include portions of the
research which had been performed under contract P04611-86-K-0075/P0001 let to the
State University of New York. Some of the results of our research have been prepared in
form appropriate for publication in Chemical ysics. A semi-final 5lraft of the journal
article appears as an appendix to this report. In the first section of this report under
"Technical Discussion" I present a summary of the journal article which also serves as a
prologue to the ab inito investigations.

The next section under "Technical Discussion" comprises a report of our ab initio
quantum mechanical investigations of the quintet states of CO which correspond to the
interaction of ground state carbon and oxygen atoms. This is component (2) mentioned
above. First we introduce the problem of the high-spin states of CO and give a review of
the very scanty background literature. Then we develop the basis set which is optimized to
reproduce relevant energies and electric multipole polarzabilities of the carbon and oxygen
atoms. Next we describe the ab inido comnputations of the potential energy curves for the
1,2 5X+, 1 5A, 1 5T-, and 1,2 511 states of CO, and finally we discuss the results. The
summary indicates the direction of additional study which is required to estimate the
lifetime(s) of these quintet states. That will be component (3), mentioned above, of the
study of CO.
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TECHNICAL DISCUSSION

The Long-Range Interaction of Ground State Carbon and Oxygen Atoms in
the Zero-Overlap Approximation

For our present purposes a reasonable review of the literature of long-range
interatomic interactions is given in a few key references (Ref. 2-5). Suffice it to say that
the great bulk of the treatments of long-range interactions involve either (a) an empirical
approach where the form of the interaction potential is assumed (perhaps guided by theory)
and whose parameters are fixed by fitting to experimental data of various kinds, or else (b)
a strictly theoretical approach where the energy of interaction is calculated either
variationably or using perturbation theory. Typically, the latter approach has been limited
to the interaction of ground state species. Recently, Bussery and Aubert-Frecon (Ref. 6-8)
have developed a semi-empirical method for estimating the interaction energies of atoms in
the "t zero-overlap" regime of interatomic separations. Their scheme (which we will call the
BAF scheme) overcomes certain limitations of many theoretical approaches, which allows
it to be used to describe excited states. The BAF scheme follows the usual perturbation
theory development (Ref. 2) to the point where one needs to evaluate the components of the
energy expression in the multipole expansion. They recognize that they can use
experimental transition moment data and values of experimental atomic energy levels
instead of calculated values. When necessary they calculate excited atomic energies by
using Whittaker functions to represent the wavefunction. BAF have applied their scheme
to various halogen or alkali diatomic molecules with quite notable success as judged by
agreement with high quality spectroscopic observations or high quality ab inito results.

Bussery and coworkers (Ref. 9) have applied the BAF scheme to the interaction of
ground state C(3pj) and O(3Pj) atoms. They find that the long-range interaction energy
may be represented by the multipole expression

E(R) - C5 R-5 + C6 R- 6 + C R- 8 + CI0 R-10 +... ()

The C5R-5 rm represents the energy contribution due to the electrostatic interaction of the
permanent quadrupole in C with that in 0; that term may be either positive, negative, or
zero depending on the coupling of the atomic angular momenta to produce a particular
molecular state. The remaining terms in Eq. (1) represent the various components of the
dispersion interaction energy which corresponds to the interaction of mutually induced
multipoles. For example, the term C6R-6 represents the interaction of an induced dipole on
C with an induced dipole on 0. The magnitude of C6 depends on the particular state which
results from the interaction of the atoms, but its sign is intrinsically negative (thus, the
interaction is always attractive) only so long as both interacting atoms are in their ground
electronic states. The higher order terms correspond to the interactions involving higher
order induced multipoles.

Bussery and coworkers (Ref. 9) argued that their values of C5 are relatively reliable
but because the experimental values of transition moments and energy levels needed to
calculate C6 in the BAF scheme are so uncertain, they can only obtain crude estimates for
C6. They did not even calculate values of CS or CIO according to the BAF scheme since
the results for the higher coefficients were likely to be even more uncertain. They did find,
however, that the C6 value was roughly the same for all molecular states which correspond
to the interaction of ground state C and 0 atoms.
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Since it is clear that only a crude estimate of the zero overlap interaction energy may
be obtained presently in any case, we have obtained some rough estimates of the C6, C8 ,
and CIO coefficients by using the highly approximate expressions 13.3.36 - 13.3.38 of
Ref. 1. They are

C6 = (3/2) IC 10 acao/(Ic + 10), (2)

C8 = f IcIoacao j I¢ +- + 2 J,

(315 IV

where e is the charge of an electron, and where we have substituted in the corresponding
expressions given in Ref. I the values (a) the first ionization potential of the atoms for the
term hu and (b) the average value of the dipole polarizability calculated in the section of this
report for the a terms. We compare in Table I the values of the Co of Eq. (1) given by
Bussery and coworkers with those calculated from Eqs. (2-4).

TABLE 1. Long-range Coefficients of Eq. (1) in au.

Source C5 C6 C8  C10
present 11.2 19.7 317 2950
Bussery and coworkers 11.2 13.6 352 --

(Ref. 9)

In any case the long-range analysis suggests that all the quintet states of CO with
the possible exception of the 2 5n" state will be attractive in the long range. Each attraction
will be balanced by the exchange repulsion at some intermediate separation which
consequently gives a minimum in each curve. At sufficiently small separations the quintet
potential curves will be repulsive. No matter which estimate of the Ca terms one chooses
to use, the long-range analysis suggests that the 1 5Z+ will be by far the most deeply bound
of the quintets corresp(ndig to C(3Pj) + O( 3pj). The interaction curves will liHe in the
order 1 51+ << 1 5A < 2 51+, 151-, 1 5 n, < 2 5l at sufficiently large separations. In the
next section we examine these predictions by means of more sophisticated theory in order
to learn whether any of the quintets is sufficiently deeply bound to be an interesting energy
storage candidate.

Ab Inilio Computation of the Interaction Energy Curves for the 1,2 51+,

1 SA, 1 S1+, and 1,2 511 States of CO

I have established the motivation for investigating the quintet states of CO, and in

the last section I gave a crude analysis to show that, with the likely exception of the 2 5l
state, the quintets of CO are likely to exhibit long-range (or van der Waals) binding and,
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thus, are possible energy storage candidates. Unfortunately, there is presently no
experimental spectroscopic data with which to compare these crude predictions. Such a
situation is not unique to CO. Although fluorescence from excited sodium vapor was
described by Wood (Ref. 10) about 80 years ago, and a few of the lower lying transitions
in the molecular singlet manifold were mapped out spectroscopically about 50 years ago by
Loomis and Kusch (Ref. 11), it was quantum theoretical computations in the last decade or
so (Ref. 12) which first gave reliable information on molecular states not readily accessible
from the ground X 1Z+ state of Na2. (And Na2 is a much simpler molecule than CO!) I

g
am aware of only the pioneering quantum mechanical computations of O'Neil and Schaefer
[ONS] (Ref. 13) that even discuss the quintet states of CO. Unfortunately, their work
extends only to an internuclear separation of 5ao, and the Bussery and coworkers estimates
(Ref. 9) are valid at separations no smaller than 7 ao. The ONS results, which are obtained
from a full configuration interaction treatment based on a minimal basis set, suggest that
one or both of the I 5XZ+ and I 5n states are somewhat more deeply bound than one might
expect on the basis of the crude long-range analysis discussed in the last section.
Consequently, it appears that ntore detailed computations and analysis are in order.

Basis Set DmmjrZ

Recall that it is our goal to obtain accurate potential energy curves for the quintet
states of CO which correspond asymptotically to the interaction of C(3P) and O(3p). Since
we presume these molecular states to be weakly bound van der Waals states, it is doubly
imporant that the basis sets for these calculations be carefilly chosen.

For both atoms we began with the 15 function Slater basis sets of McLean and Liu
[ML] (Ref. 14) which are given in Table 2. The starting bases were augmented by a
Rydberg 3s and a Rydberg 3p function (so that all the molecular calculations will have
orbitals with some Rydberg character). We discuss the optimization procedure later. We
further augmented and/or changed the basis to include polarizing functions. The latter are
necessary to account for the polarization of an atoms charge distribution when another
atom or a molecule is brought near it. These polarization effects are the driving forces
behind the formation of van der Waals interactions. In all cases, we re-optimized the most
diffuse 3d functions of the original ML bases for the dipole polarizability, we optimized an
added 4f function for the quadrupole polarizability, and we optimized an added 5g function
for the octupole polarizability. Furthermore, we performed a test for the carbon atom to see
if adding a p function improved the quadrupole polarizability. It did not. In a similar test
we added a d function to see if the octupole polarizability was changed significantly by its
addition. The octupole polarizability of C was changed by about 3% (from 699 a0

7 to 719
80

7) by adding a 3d function. This wa not deemed a large enough change to include it in
an already very large basis. However, it indicates that the error in the octupole
polarizability is relatively small. The additions and changes to the ML basis are given in
Table 2.

A few words about the optimization procedure are in order. We used the
ALCHEMY (Ref. 15) system's Slater integrals and SCF programs to optimize (i.e.,
minimize) the energy of Rydberg states of the atoms. For carbon, this was done by
minimizing the energy with respect to the added functions of the triplet P states with the
following electron configurations: Isa 2 2pa 3so 2 21x (to obtain the 3s functions) and

lsv2 IsY2 2s(7 2 2pa 3p1 (to obtain the 3p functions). It should be noted that these are not
the lowest energy states of carbon containing 3s and 3p orbitals. However, in a single
configuration calculation the 2s(2p) orbitals have to be removed to prevent orbital
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degeneracies f"om occurring. For oxygen, we added the 3s and 3p functions and
optimized th- SCF energy of the quintet S and P states.

TABLE 2(a). Modifications of the McLean and Liu (Ref. 14) 6s, 4p, 3d, 2f Slater Basis
Sets for C and 0 to Add Rydberg Character and Improve Multipole
Polarizabilities.

seq# n 1 values
carbon oxygen

1 1 0 9.4826 13.7574
2 1 0 5.4360 7.6141
3 2 0 4.2010 5.8660
4 2 0 2.6844 4.3120
5 2 0 1.5243 2.4802
6 .2 0 1.0575 1.6982
8 2 1 6.5100 7.5648
9 2 1 2.6005 3.4499
10 2 1 1.4436 1.8173
11 2 1 0.9807 1.1439
13 3 2 3.6407 4.8299
14 3 2 2.0211 2.5442
15 3 2 1.3730 1.6015
16 4 3 2.5985 3.2711
17 4 3 1.7653 2.0590

TABLE 2(b). Rydberg and Polarizing Functions. The sequence numbers indicate
where these functions belong in the basis set of Table 2(a).

7 3 0 0.60186 0.70536
12 3 1 0.48707 0.54074
15a 3 2 0.87500 1.24837
18 4 3 0.92500 1.18750
19 5 4 0.94375 1.16250

SThis replaces basis function #15 from the original McLean and Liu basis.

To obtain the dipole, quadrupole, and octupole polarizabilities, we used the ATMBIS
program of A.C. Wahl as amended by W. J. Stevens (Ref. 16) to include the finite field
approximation (Ref. 17). The added (or changed) functions were chosen to maximize the
energy difference between the field "on" and the field "off" cases. The maximization
process always took place with the function to be added present in either the sigma space
(denoted by Mg= 0) or else only in the pi orbital space (denoted by M* = 1) (except, of
course, for the optimization of the 3s). We determined the final values of. the
polarizabilities with the optimized functions present in all the appropriate orbital spaces.
The polarizabilities and atomic energies we obtained are given in Table 3. There we show
that bodi the sigma (M =0) and pi (M1 =1) projections of the polarizabilities and

6



TABLE 3. Dipole, Quadrupole and Octupole Polarizabilities of C and 0 in Atomic Units.

s Present Meyer and coworkers a,b

C ad MI =0 ..... 10.102 10.10 a

ad 1 12.362 12.990 13.05a

ad -- 12.027 12.07a

Yd .... 2.888 2.95a

czq M4 =0 41.60 4 1.7 3 b

O'q 1 46.49 61.80 61. 28b

i 1  .... 55.07 54.76b

Yq 20.20 19.55 b

aO Mk =0 . 449.57

ao 1 253.18 697.73
. .---- 615.01

To .... 248.16

0 ad M -0 .... 5.005 5.14a

ad 1 4.23 4.540 4.58a

i-d ---- 4.695 4.77a

Yd -0.465- -0.56 a

a q =0 ..... 20.32 2 0.6 1b

amq 1 11.41 14.74 15 .0 5 b

aq .... 16.60 16.90 b

Yq ....- 5.58 -5.56 b

C EO =0 --.. 141.542

a 1 37.33 98.352
o .... 112.749

Yo -43.190

a Ref. 18

b Ref. 19
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consequently the average value (E) and the anistropy (y) agree nicely with the carefully
optimized values of Meyer and coworkers (Ref. 18, 19). The energies we calculated with
these basis sets are given in Table 4. There we show that the atomic excitation energy
values (AE) which we calculate agree reasonably well with experiment (Ref. 20).

TABLE 4. Atomic Energies (in Hartree Atomic Units) and Excitation Energies (in eV)

for C and 0 Atoms.

AE

AtM 3=at CISF)-(C Cal E 
(Ref. 20)

C 3p 37.6886303 37.7800911
ID 0.6315801 0.7316137 1.32 1.26
is 0.5770546 0.6819760 2.67 2.68

o 3p 74.8102776 74.9767572
ID 0.7299571 0.9032159 2.00 1.97

-s 0.6507112 0.8221247 4.21 4.19

Either a multi-configuration self consistent field (MCSCF) or a configuration
interaction (CI) calculation is needed to obtain relatively reliable potential energy curves for
the weakly interacting systems of interest here. At large internuclear separations the
molecular orbitals are essentially atomic in nature. Thus, we can represent the electronic

structure by the configuration 1so 1sC 2s 0 2C 2poj 2pC where we have written the

atomic orbitals in the ascending order of the approximate energies of the atomic orbitals.
Clearly, we must correlate all six of the valence level p electrons, and perhaps also correlate
the carbon 2s electrons (for a total of eight). We deemed it to be too expensive to correlate
the oxygen 2s electrons as well for a total of ten correlated electrons.

Since the treatment of the 1 5A and 1 51- states is quite straightforward, let us
discuss those calculations first. We use the output vectors from an SCF calculation for the
1 51+state as input to the valence MCSCF calculation with six active electrons distributed

among two sigma and two pi orbitals. We call this a (6e-2a + 2x) MC computation. The

MC computation for the 51- state comprised four configuration state functions (CSF). We
used the MC output as the input vectors for a second order CI (SOCI) calculation which
comnrised all single and double excitations of eight electrons from three o and two n

valence orbitals; we call these a (8e-/3o + 2n) CI computation. It comprised 386,389
CSF. We also checked to see how the 8e- CI results were affected by basing them on
vectors obtained from an (8e-/3a + 2n) MC calculation (which comprised 21 CSF).

8



The (8e-/3o + 2A) CI binding energies for the 51- state were insensitive to whether
we used the (6e-/2a + 27c) or the (8e-/3o + 2-n) MC vectors as input. The results listed in

Table 5 result from the (8e-/3a + 27r) SOCI based on (8e-/37 + 27r) MC vectors. The

computations for the 5A state were quite similar to those for the 5Z.- state. The 5A results

given in Table 5 correspond to an (8e-/3o + 2n) SOCI computation comprising 540,163
CSF and which itself is based on an (8e-/3a + 2n) MC computation comprising 21 CSF.
(The SOCI computation step for each point required about 6 h of CPU time on an IBM
3090 computer.).

TABLE 5. The Potential Energies, in Units of-Eb, of Low Lying Quintet States of CO
Based on a (8e-/3o + 27c) SOCI.

R(ae) 1 51+ 251+ $1:- 5A

3.75 112.664062 112.619943
4.0 112.667000 112.634461 112.631212
4.1 112.667770 112.640298
4.25 112.668556 112.646220
4.5 112.669242 112.653411
4.75 112.669439 112.658154
5.0 112.669361 112.661231 112.660436
5.25 112.669134 112.663194
5.5 112.668837 112.664421 112.664146
5.75 112.668517 112.665169
6.0 112.668202 112.665609 112.665594 112.665F50
6.25 112.667908 112.665855 112.665915
6.5 112.667643 112.665981 112.666094 112.666265
6.75 112.667409 112.666033 112.666184
7.0 112.667206 112.666042 112.666221 112.66633'
7.2 112.667064 112.666033 112.666227
7.5 112.666884 112.666001 112.666214 112.666297
8.0 112.666653 112.665934 112.666168 112.666228
9.0 112.666375 112.665816 112.666075

10.0 112.666233 112.665741 112.666015 112.666034
12.0 112.666115 112.665669 112.665959
20.0 112.666033 112.665616 112.665916
30.0 112.666025 112.665611 112.665914 112.665912

The computations for the 51+ and 5"i states were somewhat more involved since
there are two states of each symmetry which correspond asymptotically to the interaction of
ground state C and 0 atoms. Let us consider the 51+ states. Neither the 1o2 2a2 30a2 4a 2

502 1Xg2 2X2 configuration which is dominant at large separations for the 1 5X+ state nor

the lo 2 22 32 4(Y2 5 6O 1C3 27t dominant configuration for 2 11+ correspond
asymptotically to ground state carbon and oxygen atoms. However, a proper ago of
the two molecular configurations does correspond at long-range to ground state atoms.

9



Thus, a mix of one part of the 1 5V: state and two parts of the 2 5Z+ state dissociates to

ground state atoms. We ran a (6e-/2a + 2%) state averaged MCSCF computation for the
5X+ states with the weighting (1/3) 1 51 + and (2/3) 2 51+. At the intemuclear separation

R = 30 ao we found the two 51+ states to be essentially degenerate (the two states were

separated by 0.028 cm - 1) as they should be. A (6e-/2o + 2n) SOCI based on these state

averaged (SA) (6e-/2o + 2x) MC output vectors yielded two roots which were separated
by 330.29 cm-l. Obviously, the energy lowering afforded by excitations to the virtual
space is different (by about 330 cmrl) for the lowest two 5Z + states. We then performed a

(8e-/3o + 2x) SOCI based on the (6e-/2o + 2x) SAMC vectors and found that the energy

separation between the two 5Z+ states was reduced to 90.58 cm -r. This SOCI computation
comprised 384,539 CSF; the (6et/2o + 2x) SOCI required 57,898 CSF. A SOCI which
correlates ten electrons would presumably decrease the asymptotic non-degeneracy even
further. Since such calculations would have required 1,648,672 CSF, we did not carry

them out. The results in Table 5 for the 1,2 5Z+ states correspond to a (8e-/3o +2x) SOCI
based on (6e-/2o + 2x) SAMC vectors.

The situation for the 1,2 51n states is even more complicated. An equal mix of the
three configurations 102 202 302 4o2 5o lS 3 2,2, 10220232402 502 6a 12 2n and
102 202 302 402 50 60 I 3 2c is needed in order to assure asymptotic dissociation to
ground state atoms. Note that the first two configurations are obviously n configurations

while the last one corresponds to the second root of 51+ symmetry. The (6e-/2o + 2x)
SAMC calculation at R=30 ao yields three roots which differ from each other by at most
0.231 curl. As with the 51-+ states the splitting between the two 5n states actually became
larger when we carried out a SOCI calculation. We found that the (6e/2o + 27t) SOCI
required 108,720 CSF, the (Se-/3r + 2x) SOCI required 705,888 CSF, and the (IOe-/4o +
2x) SOCI would have required 3,020,132 CSF had we tried to carry it out. We didn't
attempt the latter computation because of the prohibitive expense. In fact, we halted the 5n1

computations at the (6e1/2o + 2x) SOCI level based on vectors from a 50/50 mixture of
5 v+ and 5 l SAMC; these are the results presented in Tabie 6. Computations at the
(Se3o + 2x) SOCI based on the proper three-state SAMC are yet to be completed before
this work is ready for journal publication.
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TABLE 6. The (6e-/2a + 2n) SOCI Potential Energies, in Units of-Eh, of the 1,2 5n

States of CO Based on a (6e-/2a + 2n) SAMC Which is a 50-50 Mix of 51+

and 5I States.

R E(isrI) E(2 5n1)

4.0 112.575931 112.546751
5.0 112.583429 112.578824
5.5 112.584507 112.582940
6.0 112.585499 112.584103
7.0 112.586348 112.584423
8.0 112.586436 112.584449

10.0 112.586391 112.584428
12.0 112.586372 112.584438
20.0 112.586358 112.584443

Because of the problems associated with the asymptotic region, it seems best to
discuss the calculated potential energy curves in terms of binding energy curves. We
obtained the binding energy curves listed in Table 7 and shown in Figure 2 by taking the
zero of energy &o eah sA to be its molecular energy at R=30 ao. The (6e-/2a + 2x)
results we have for the 51' states are only preliminary since they are not based on the
correct SAMC which assures proper dissociation. Thus, we present in Table 7 only the I
5n state to indicate its position relative to the I and A states. The 5ri states are apparently
the most weakly bound of the quintets we consider, while the I 5E+ state is the most
deeply bound of the quintets we consider. Based on Bussery and coworkers (Ref. 9), one
might have expected that the 5A state would be slightly more deeply bound than the 2 51+

state. However, our results clearly show that 2 51+ and 15A and states are nearly
degenerate over a wide range of internuclear separations with the 1 5E- state slightly less
strongly bound. This is rather remarkable quaLai corroboration of the conclusions one
can draw from Ref. 9.

Note that the lowest 5rI state is not at all strongly bound in contrast to the early

results of ONS (Ref. 13). While we find the 1 5X+ state to be the most deeply bound of
the quintets we consider, it is not nearly so deeply bound as was suggested by ONS (Ref.
13). We have repeated their CI calculation for the 1 51+ state and calculated the basis set
superposition error according to the counterpoise scheme of Boys and Bemardi (Ref. 21).
We find their superposition error at R--4.0 aoto be about 2500 cm-1 .This large error is not
entirely unexpected since, of necessity, ONS used a minimal basis set in their pioneering
work.
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TABLE 7. Binding Energies (in cm-I) of the Quintet States of CO Which Correspond
Asymptotically to Ground State Carbon and Oxygen Atoms.

R (a) I Sz+ 2 sz;+ 1 SA 11 1 - Si

3.75 +430.8 +10023.0
4.0 -214.0 +6836.6 +7616.0 +8692.7
4.1 -383.0 +5555.6
4.25 -555.5 +4255.8
4.5 -706.0 +2677.6
4.75 -749.3 +1636.6 +642.8

5.0 -732.2 +961.3 +1202.3
5.25 --682.3 +530.5
5.5 -617.2 +261.2 +378.8 +406.3
5.75 -546.9 +97.0
6.0 -477.8 +0.4 +13.6 +70.0 +188.5
6.25 -413.3 -53.6 -0.4

6.5 -355.1 -81.2 -77.5 -39.7
6.75 -303.8 -92.6 -59.5
7.0 -259.2 -94.6 -93.5 -61.6 +2.2
7.2 -228.0 -92.4 -68.9
7.5 -188.5 -85.6 -84.5 -66.1
8.0 -137.8 -70.9 -69.4 -56.2 -17.1
9.0 -76.8 -45.0 -35.6

10.0 -45.7 -28.5 -26.8 -22.4 -7.2
12.0 -19.5 -12.7 -10.1 -6.5
20.0 -1.8 -1.1 -0.7 0.0
30.0 0.0 0.0 0.0 0.0

It is clear that the 1 5 + state of CO is sufficiently deeply bound to be thermally
stable at reasonably low temperatures. Its dissociation energy of - 750 cr I (about
1100K)is about 4kT at 0 C and about 14kT at 77K. The 15Z+ state has over ten bound

vibrational energy levels. The 2 51+ and 1 5A states, which are nearly degenerate, have
dissociation energies under 100 cnr (~ 140 K); the remaining quintets are even more
weakly bound.

This suggests a way to populate the 1 5+ state selectively. If a mixture of ground
state carbon and oxygen atomrs is kept at about 140 K in a magnetic field so that their spins

12



are kept aligned, all quintets but the 151:+ statr will be thermally unstable. Thus, any atom
recombination will form the I 5Z+ state prefertntially. i t. -e may, of course, be less subtle
ways to form the CO quintets.

200

2 0
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-200-
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-800
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Figure 2. Bindin Enery Curves for Ouintet States of CO.

Much remains to be learned about the radiative lifetimes of the quintet states and to
learn whether there are ways to control the various decay processes, before we can assess
flly the potential of high-spin CO as an early storage molecule.

13/14



REFERENCES

1. Happer, W., Bohin, K.D., and Walker, T.G., "The Stability of Spin Polarized
Nitrogen Crystals." Chem, Phys. Lett., Vol. 135, No. 4-5, pp. 451-53,
April 1987.

2. Hirschfelder, LO., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and
LiaidL John Wiley and Sons, New York, 1954.

3. Chang, T.Y., "Moderately Long-Range Interatomic Forces." Re.&o. l.. ,
Vol. 39, No. 4, p. 911, October 1967.

4. Rosenkrantz, M.E. and Krauss, M., "Damped Dispersion Interaction Energies for
He-H 2, Ne-H2 and Ar-H2." hys. Rev A, Vol. 32, No. 3, pp. 1402-11,
September 1985.

5. Krauss, M., Regan, R.M., and Konowalo'w, D.D., "Rare Gas Interaction Energy
Curves." . y. Chem., To be published, 1988.

6. Saute, M., Bussery, B., and Aubert-Frecon, M., "Coefficients d'interaction a
grande distance C5 et C6 pour les 23 etats moleculaires de C12 et de Br2."
Mol, ys., Vol. 51, No. 6, pp. 1459-74, 1984.

7. Bussery, B. and Aubert-Frecon, M., "Calculated Long-Range Electrostatic and
Dispersion Interactions of M (N, 2 S) with M (N8 

2 S) or M (Np 2P) for
M=Li or Na when Neglecting Spin-Orbit Effects." Chem,. Phy_ Lett,
Vol. 105, No. 1, pp. 64-71, March 1984.

8. Bussery, B. and Aubert-Frecon, M., "Multipolar Long-Range Electrostatic,
Dispersion, and Induction Energy Terms for the Interactions between Two
Identical Alkali Atoms Li, Na, K, Rb, and Cs in Various Electronic States."
J. Chem, yL., Vol. 82, No. 7, pp. 3224-34, April 1985.

9. Bussery, B., Rosenkrantz, M.E., Konowalow, D.D., and Aubert-Frecon, M.,
"Semiempirical Determination of the Long-Range Molecular States
Dissociating to C(3pj) + O(3pj)." To be published. (See Appendix A to this
report for a draft of this article.)

10. Wood, R.W., "Fluorescence and Magnetic Rotation Spectra of Sodium Vapour,
and their Analysis." PhihjLg , Vol. 12, No. 6, p. 499, October 1906.

11. Loomis, F.W. and Kusch, P., 'The Band Spectrum of Caesium." Phys. Rev.,

Vol. 46, No. 4, p. 292, August 1934.

12. Konowalow, D.D., Rosenkrantz, M.E., and Olson, M.L., "The Molecular
Electronic Stmcture of the Lowest IZg, 3E, IT.+, 31:+, Il', Ing'

g' u u 9
and 3flg States of Na2." J. Chem. Phys, Vol. 72, No. 4, pp. 2612-15,
February 1980.

15



13. O'Neil, S.V. and Schaefer, H.F., III, "Valence-Excited States of Carbon
Monoxide." J. Chem. Phys., Vol. 53, No. 10, pp. 3994-4004, November
1979.

14. McLean, A.D. and Liu, B., private communication.

15. Liu, B. and Yoshimine, M., "The Alchemy Configuration Interaction Method. I.
The Symbolic Matrix Method for Determining Elements of Matrix
Operators." J.Cem ,s. Vol. 74, No. 1, pp. 612-19, January 1981.

16. Wahl, A.C., Bertoncini, PJ., and Kaiser, K., amended by WJ. Stevens and
C.M. Lee, "ATMEIS Computing System for the Calculation of
Wavefunctions and Properties." (private communication)

17. Cohen, H.D. and Roothann, C.CJ., "Electric Dipole Polarizability of Atoms by
the Hartree-Fock Method. I. Theory for Closed-Shell Systems." . Chem.
EbyL, Vol. 43, No. 10, pp. S-34-38, November 1965.

18. Werner, HJ. and Meyer, W., "Finite Perturbation Calculations for the Static
Dipole Polarizabilities of the First-Row Atoms." Phys. Rev. A., Vol. 13,
No. 1, p. 13, January 1976.

19. Reinsch, E.A. and Meyer, W., "Finite Perturbation Calculation of Static
Quadropole and Mixed Dipole-Octupole Polarizabilities for the Ground
States of the First-Row Atoms." hys. Rev, A., Vol. 18, No. 5, p. 1793,
November 1978.

20. Moore, C.E., "Atomic Energy Levels." Nat, Stand. Ref. Data Ser.. Nat. Bur.
S 35, Vol. 1, 1971.

21. Boys, S.F. and Bemardi, F., "Basis Set Superposition Errors Calculated by a
Superposition Technique." Mol. Phy. Vol. 19, pp. 544-46, 1970.

16



APPENDIX

Semi-Empirical Determination of the Long-Range Molecular States
Dissociating to C(3p1 ) + O(3pj)

The following material is an incomplete semi-final draft of a manuscript we have
prepared to submit for publication in Chemical Physics. It is intended only to provide the
detail necessary to precit the contents of the first part of the technical discussion in this
report.
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I. Introduction

The theoretical or semi-empirical treatment of the long-range interaction of a pair of atoms is best
developed for systems in which the interacting fragments are closed-shell [1] or else where one or both
fragments differ from a closed shell electronic configuration by a single electron. For example, the semi-
empirical model of Bussery and Aubert-Frecon (BAF) has been quite successful in either predicting or
reproducing the very long range interaction energy curves for alkali or halogen diatomic molecules [2-4] as
judged by comparison with experimental spectroscopic or exacting theoretical ab initio results. The
situation is not nearly so sanguine for the interaction of more general open-shell fragments, however. It is
our objective in this paper to explore the extension of the BAF model to the interaction of open-shell
fragments.

We choose presently to study the interaction of grouni-state open-shell C and 0 atoms. Our
motivation for this choice stems in part from the interest in characterizing the weakly bound quintet
molecular states resulting in the interaction of atomic C (3P) + O(3P) as possible energy storage states.
Furt2ermor, there are new ab initio computations [5] and spectroscopic observations [6] in progress with
which to compate our results. Toward this end, we present here the long-range interaction coefficients for

the electrostatic and dispersion energies and the resulting potential energy curves which correspond to the
C (3p) + O(3p) interaction.

In Section U we review the BAF method as applied to the CO molecule. We consider both the
[AS] and [JJ] angular momentum coupling schemes which are appropriate, respectively, to the cases
where the atomic spin-orbit energy is small or large compared to the interaction energy. We first build up
the symmetry-adapted molecules wavefunctions for atoms in their ground term or ground level for these
two coupling cases. First order perturbation theory enables us to compute the quadrupole-quadrupole
energy terms leading to the C5 coefficients. Second order perturbation theory gives rise to the induction
and dispersion terms characterid by the C6, C8,... coefficients.

In Section III we discuss details of the calculations. There we demonsate the sensitivity of our
results to input parameters of the model such as the value of <cr2>, the mean square radial position of the
electrons in the gound stat atoms and the line strengths of electric dipole transitions of the atoms.

In Sections IV and V we examine both Hunds case "a" and case "c" interaction energy curves for

internuclear separations R> 2f r + <r2 ] suggested by the Le Roy criterion [6]:

(for CO R - 6.7 bohr). In the (AS) coupling case the present model suggests somewhat weaker binding
thun obtained in the ab inWo computations of Rosenkrantz and coworkers [5]. Due to the strong spin-orbit
interaction in oxygen, however, we conclude that the (JJ) coupling scheme must be used for an adequate
description of these very long-range interactions.

II. Model

The method we use in this work is basically the same as that already described and used for the
halogen and alkali dimers [2-4]. The present summary is consequently brief. We investigate the
molecular states due to the interaction of the ground state atoms C and 0 for intermuclear distances
sufficiently large so that the overlap between the atomic wavefiuction is presumed to be negligible.
Consequently, we neglect overlap and exchange effects. In the usual perturbation theory treatment up to
second order we invoke the multipolar expansion of the perturbation operator:
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0 Vi.(a,b)

1=1 j=1 RI~~

where

Vij (ab) = (-)i dm(ij) Q.(a) Q'm(b)

and

1

dm(i,j)=(i+j) I ((i-m)! (i+m) f (j -m)! j+m))" 2

- (a) = .riYri (Oa, 0 a)

(r, 0, 0 ae the spherical polar coordinates).

The spin-orbit separation of 43.4 cm I for C and 227 cr-I for 0 validates the LS coupling for the
atoms and the Hund's case coupling "c" for the molecule. The molecular states may then be classified

following the representation ±) where 'I - I Mja + Mjb I is the absolute value of the projection of the total
electronic angular nnontum along the internuclear axis. The superscripts ± are related to the states

= 0. In this representation the interaction between C(3Pj) + 0( 3pj) gives rise to 49 molecular states:

states dissociation
G+ -  C(3P0 ) + O(3P0)

0-,1 C(3P0 ) + O(3P,)
0-,1 C(3PI) + O( 3Po)
0+, 0+, 0-, 1, 1, 2 C(3 P,) + O( 3P,)
0+ , 1, 2 C(3Po) + 0( 3P2)
0+ , 1, 2 C(3P 2) + 0( 3P0 )

0+ , 0-, 0-, 1,1, 1, 2,2,3 C(3 PI) + O( 3P 2)
0+, 0-, 0-, 1, 1, 1, 2, 2, 3 C(3P2 ) + O(3p,)
0+ , 0+, 0+, 0-, 0-, 1, 1, 1, 2, 2, 2, 3, 3, 4 C(3P2 ) + O(3P2)

The zero order molecular functions needed in the perturbation procedure are built up as simple products of
non-ovedapping atomic wavefunctions labeled a and b. Following Chang's [7] procedure each function
may be written as:

nv
V= XO'vk I JkMk >a I JkMk>b

k=I

The basis functions, 1 are presented in Appendix I for the 49 molecular states.
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We also investigate the interaction between the two ground state atoms C and 0 where we neglect
the spin-orbit effect within each atom. The corresponding molecular states may then be classified
following the 2 'IA* representation where S is the total spin, A is the projection of the total orbital angular
momentum on the intemuclear axis, the superscripts ± denoting the symmetry properties of the coordinate
wave functions. In this representation (Hund's case coupling a) the interaction gives rise to 18
molecular states: two states of each symmetry 1,3,5+, two states of each symmetry I,3.Sfl, one state of
each symmetry 1.3,51., one state of each symmetry 1,3,5A, dissociate to C(3P) + O(3p). The molecular
basis functions derived in Chang's (71 procedure may be written as:

nu

Yu = XC*k I Sk Lk MSkMLk >a I S' L' Mk M' >b
k=i

The expaided foam of the V are presented in Appendix H for the 18 molecular states.

The terms in the mat-ix elements of the interaction energy which depend only on the angular part of
the atomic wave functions (quantities A and C in equations (7, 15, 25, 30) of ref [4] remain valid for CO
while the terms which depend on the radial part of the atomic wavefunctions take on specific forms. In the
paticular case of the carbon-oxygen interaction in their ground tam 3p, the initial guion to be
considered is Is2 282 2p2 for the carbon atom and ls2 2s 2 2p4 for the oxygen atom. For both of them the
optical electron is included in one group of equivalent electrons p2 or p4 md has to be decoupled from the
other. In the framework of the fractional parentage scheme, the resulting expressions for the various
radial quatities me d folowing

a) for the electrostatic energy terms:

R . <1I) La 11 Qi 11 (1n) La>

=n l [0 S a (2L + 1) (21+1) ()

x{ I I Lk LI } I ' 10) nl Iri Ini1>

R is given by a relation similar to Eq(1), where primed atomic quantum numbers are used.

SL0 SILI quantities are the fractional parentage coefficients for the I I In'I[SILII)SLI

configuration [8]. The sum is over the various spectral terms SILl of the configuration [ID- 1. From the
selection rules doe to the non-zero conditions of the 3j-Wigner coefficients, the only allowed values are
i=i'= 2 which give rise to a C5 contribution in the electrostatic energy term:

EP = E2( X) = E5 (u,)/R5
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b) for the dispersion energy terms:

R b-" <a Lal1 Qi 11- L><ya L' 11 QC 11 ya L>

(2)

x <% Lb 11 11 -( Lb> <(iLi, 11 Qj' 11 yb Lb> [KE (n';i I" Rn" -~

where y includes all the quantum numbers necessary to represent the electronic state. The sum is carried
over all the electronic excited states of each atom. In the particular case of the carbon-oxygen interaction
three types of excitation can occur.

i). Excitation la'--I -I (n"l")

The excited optical electron is one of the (lS) electron group. Only one group of equivalent
electrons needs to be considered. The matrix elements can be written.

<(In) La ii Qi il In-I[SILI] n" I" L'><In-I[SILI] n I' L' i Qi" II (l n ) La>

rn Sa.I-4i-3i+ (La+l (2L "+)2 1(21" l) (2a)

{LI 1 IL}LI 1Y' L; } I i 1-;)(1,; i" I ) n I ,.In;Y n"I i l
L{ 1 0 0 0 0 0 0 a<nl rianl'><n ' v;Iri'Inl>
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ii) Excitation In 1 -P- 1 n- I P44

b: The excitation Occurs between two groups of equivalent electrons. The matrix elements are given

<ln[SiLi] 1' [S2L2] SaLa 11 Q'1I in-i [Sj ' P'S ]S~La<aL~I i I 5  a

S~2 S' a~ a (23Lj, l()a

(2L3 +1) (2Lj +1) (Ma +1)(2L" +L) (211 +1)(21 +L) (2'+ 2)j Y L3 14 1 L3 (b

a}L L2 L}{ Lj L2 L L

<n:Il ri I nil ><n'l I ri1 I ni>
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iii) Excitation In 1P .... In- 1' ln"1"

Two groups of equivalent electrons have to be considered but only one is modified. For that

particular cae, we give the general expressions for the multipolar transition moments.

< (1) [SILl] 1"p [S 2 L2] SaLa I Qi II S3L3 n" 1" Ll> (2c)

x <S 3L3 n 1 L'l Qi" II I . [S2LI] P [$2L 2] SaLa>

=n IGS (2S3 +1)(2S1 +1tS3 I S 12 8asa (21,3+1) (2Ll +1){L3n5 $2SI La }2( ' i i + a

S 1 l i I2 L i

(21, + 1)5 (2L3+1+
2

1)1)3 13aLI)fJ(2 0l)() (21+1) (21- + 1

x <nl I ri I na l'>)<' a I'a I ri'I nl>

For the contribution of atom b, expressions similar to Eqs. 2(a-c) may be derived using the substitutions

L' -+ Lb , LA -+ Lt3. The selection rules due to the non-zero conditions of the 3j-Wigner coefficients lead
to.

Edisp ( ,X) -  E2n (i), X) / R2 n

n=3

where 2n = i + i"+ j + j-. Thus, only even powers of R are involved in the multipolar expansion of the
dispersion energy.

M. Calculations.

For both the electrostatic and dispersion energy terms whether or not we include spin-orbit effects,
we obtain each matrix element as a sum of products of purely angular terms (eqs. 7, 15, 25, 27 of ref. [4])
with radial ones (eq. 5.1 and 2). Angular terms are computed exactly from the Wigner 3j and 6j
coefficients. The numerical evaluation of the radial terms requires the knowledge of the radial
wavefunctions for the initial state as well as for all the excited states.

For the investigation of the carbon-oxygen interaction, we have chosen the following approximate
wavefunctions:

a) The Carbon and Oxygen 2p and 2s orbital wave functions displayed in Appendix llhave
been determined from SCF calculations using the ALCHEMY program [9]. In order to check the quality
of the present ground state wave functions, we compare in Table 1 present values with other ab initio
calculations [10-14] of <r2>. Good agreement is found with Froese-Fischer's Hartree-Fock calculations
[12]. But our values are small compared to Desclaux' Dirac-Fock calculation [14] or other recently
published data [11] for carbon as well as for oxygen atoms and result in a smaller value of R. To improve
the C5 evaluation, the Desclaux results for <r2> have been used in our computations.

b) The excited wavefunctions have been determined in the Coulomb approximation. They are
described by a Whittaker function where the effective quantum number v and the effective charge z* are
determined i the hydrogenic model. That is,
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I / [2(E-S ILI] -E[SILj] fl1SL)]2 and z* =n [2(EjS1 L1 1 - E[SILiI nISL)]2.

Here, E[sL 1 nISL is the average value of the experimental electronic state energy defined by:

E[SILI]nISL--- (23+1) E[SiLI]n1SLJ/Y- (2J+l)

and E[SILI] is the average energy value of the 2S 1 + 1LI terms which is equal to or larger than the
ionization potential of the neutral atom.

For the n"s series the quantum defect p--n-v is roughly constant, so we represent the excited state
by a Whittaker function with an effective quantum number. For the n"d series the effective charge z*
keeps roughly the same value so we represent the excited states by a Whittaker finction with an effective
charge. For highly excited states not known experimentally, we use a Whittaker function where v = n and
z* = I which makes it equivalent to a hydrogenic function. We have limited our evaluation to the
determination of the C6 coefficient for which only the n"s and n"d series are necessary.

In Table 2a and 2b we compare the line strengths for some carbon and oxygen electric dipole
transitions computed in this work (using the approximations which we have just described) to other
theoretical and experimental values. The line strengths (in au.) are related to oscillator strengths or
emission transition probabilities by the relations:

S= g Xfik303.8 and S = gkX3Akit2.0264 x 1018

where gi and gk are the statistical weight of the lower and upper state respectively, X, is the transition
wavelength in (in A), fik is the absorption oscillator strength and Ai is the emission transition probability.
Furthermore, we have:

S -- (2s 1) (<y L JQl F YL,,>)2

where s is the atomic spin quantum number and <y L I Q1 P Y"L"> is the dipole transition moment given by
Eqs. 2a, 2b and 2c using i--'l.

Table 2 lists the transition moments we have calculated together with values taken from the
literature (15 - 41). We have found few literature values for the 2s2 2p2 - 2s 2p 3n"l" tramitions in carbon
with which to compare our calculated results. No transition moment or related quantity determination has
been reported very recently for that atom. Overall, our approximate values agree best with the
experimental results of Boldt [19]. The agreement is good for the [2po] 3d 3D excitation while our
calculated values are small compared to Boldt's for the [2Po] 3s 3p and [2Po] 3d 3p transitions. It should
be noted in Table 2-a that there often exist serious discrepancies between the various experimental values
of the line strengths, so disagreement with experiment is not necessarily an indication of inadequacies in
our calculations.

We have taken for carbon the most recent and presumably most accurate theoretical transition
moments given by Froese-Fischer and Saha (38] who used the MCSCF method with Breit-Pauli
conections. A comparison of their tranition moment values (listed in the column labeled FF) in Table 2-a
with other calculated values shows that correlation effects are apparently quite important for the transition
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between 2S2 2p2 2p and 2S 2P3 3S, 3p and 3D. Nevertheless, discrepancies between theoretical and
experimental results still persist and are in some cases important, especially for the 2s.2p 3 3p transition. In
order to see the influence of this choice, we have also computed the C6 coefficients using the results of
Nicolaides' many body calculations [34] for the 2s 2p3 transition moments which are seen to be in good
agreement with experimental values.

In Table 2-b, we compare our present values for the electric dipole moments for the 2s 2p3 n"l and
2s 2p5 transitions in oxygen with other theoretical and experimental data. Perhaps the most reliable
computed values are those of Froese-Fischer [25] who applied a MCSCF method with Breit-Pauli
corrections for the relativistic effects. Our values are too small for the 3S term while Froese-Fischer's
value for the 3s 3S term is close to the experimental one. Our present results are close to those due to
A[mstrong (26] whose extended Coulomb approximation calculations are similar to ours. For the [21301 3s
3D and [2PO] 3s" 3p terms, our values are too large while Froese-Fischers compare well with experiments
for the 3D tenn. All the theoretical values for the 3P term are very low compared to the single experimental
value. There may be a large error in experimental results for the [2P0] 3s"3p transition due to the
autoionizing character of that term. Also, Pradhan and Saraph [27] have computed the oscillator strengths
for these transitions based on a close coupling method in the frozen-core approximation. Their values are
larger than those of Froese-Fischer. For the n's" and n"d" series, our values are similar to Pradhan and
Saraphs (27] and Chung's (28] results for the 3S and 3D terms. Chung's calculations are based on the
Haitree-Fock single-configuration wavefunctions with a Is2 2s2 frozen core (our core is not frozen). Our
values are between those of the two authors for the n"s" series and very close to Chung's values for the
n"d" series, but lower than the experimental data [18] for both the n"s" and n"d" series. Our values
decrease with n" more quickly than do the experimental ones. This fact may have a non-negligible
influence on the C6 evaluation. A large discrepancy can be seen for the (2Do]3d" 3p line strengths
between experimental and theoetical dee tions. The Froese-Fischer value of the transition
probability for the 2s 2p5 3P transition in oxygen and is found to lie between experimental and other
theoretical results. This value has been included in our computation as well as that of Nicolaides [34]
which gives rise to different C6 values. From these comparisons results the fact that for the first electric
dipole transition moments (at least the 3s, 3d excitations), our approximate scheme does not give reliable
results. The correlation effects are preponderant in these carbon and oxygen transitions and more complex
calculations than the present ones are necessary.

The evaluation of the quantities Ril requires furthermore the knowledge of all the excited state
energies which we take as the experimental ones [35]. We have included 20 excited states in the
summation in Eq(2). Higher excited states do not make significant contributions to the long range
coefficient value.

IV. Results and Discussion

We have performed the perturbation theory calculation of the first order quadrupole-quadrupole
interactions as well as second order induced dipole-induced dipole interactions for the system
C(3pj) + O(3Pj). We write each interaction energy matrix element as:

= E5(uk,) + E6(v,k) +

where Rj (u) is the dissociation energy for the molecular state u. Let us first consider the case where we
neglect spin-orbit effects.
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Due to the neglect of the exchange contribution the various B5 and E6 terms are identical for the
multiplets 1, 3, 5 of each symmetry. Thus, the 18 x 18 interaction energy matrix reduces to 4
submatrices. There is one of order 2 for each of symmetries D+ and " and one of "order 1" for each of

the states A and 1-. (See Appendix IV for explicit expressions of the E5 and E6 matrices). For the states

Z+ and Rl, the corresponding submatrices have to be diagonalized for various values of the internuclear

separation , thus providing an interaction energy curve &0 (R) for each state A. These curves are shown
in Fig. 1.

We have evaluated the energy expressions for values of R starting from 7 au. and increasing by
I

stepsof0.a1 .u. The lowerlimitis suggestedbythe LeRoy criterionR > 2[<r2> + <r > .Bya

least squares fit of these energy values for each state to the expression:

* CS() + C6(0)+

allows us to determine fitted values for the two long range coefficients C5 and C6 for each molecular state

I+ and L These values are presented in Table 3.

In the fits we have included increasing values of R until the dissociation limit was reached (at a
precision of 0.05 curl). Note that under the present assumption of neglecting spin-orbit effects within
each atom, the eighteen states correspond to a unique averaged dissociation limit. The values of the C6

coefficients for the I+, 1-, 11 and A molecular states are all within a factor of two of each other. Thus, the
main diffaerce between the various interaction energies results from their.different C5 coefficients.

The different C6 values which are listed in Table 3 show the sensitivity of these quantities to the
choice of the 2s2 2pa - 2s 2pak+l transition moments and the choice of the first 3s or 3d atomic transition
moments. We have computed the C6 [#I] estimations using the approximations discussed in Section M
for all dipole transition moments and Nicolaides' estimates for the 2.2 2pa - 2s 2pa+l transition moments
for carbon 3S, 3p, 3D terms and the oxygen 3p term (34]. We have computed the C6 [#2] estimations
using these same approximations as in #1 except that here we use Froese-Fischer's estimations for
2s2 2pa - 2s 2pD+I transition moments in carbon [38] and oxygen [25]. We have computed the C6 [#3]
estimations using values for the first dipole transition moments (3s and 3d excitatiom) obtained from
experiment, correlated computations (selected from Table 2a and 2b) or our own estimates and Froese-
Fisches results for the 2.2 2pP - .s 2 p +l trasiti moments together with the approximation used in
#1 for higher excited states. It is evidenthat the C6 coefficients are very sensitive to the determination of
the first dipole transition moments which contribute 60% of the total C6 value (note that this contribution is
about 90% for alkali dimers).

A C6 estimation based on Unsold's approximation has been given by Chang [7]. He estimates C6

= 20.8 au. and Cs = 10.65 a.u. for the 1,3-51+ states. Our CS value for these molecular states is in good
agreement with Chang's determination while our C6 value is much lower than his estimation. The

2
accuracy of the C5 depends mainly on the accuracy of the values used for the averaged quantities <rc>,

2
<ro which apparently is good (see Table 1). For the C6 coefficients, the accuracy of the present

determination is limited by the accuracy of the values of the transition moments we use. Note that our
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calculated values of these quantities were seen to be in good agreement with (but generally smaller than)
those available from experiment or other theoretical calculations. We note also that experimental values,
when they are available, are sometimes given with rather large uncertainties. There is a particularly
significant spread in the values for the carbon transition 2s 2p3 3p , for example; different values
S = 12.47 [39] or S = 3.62 [34] are at our disposal. The Coulomb approximation gives reasonable
transition moments for Carbon and Oxygen excited states as judged by comparison with the available
experimental values. Apparently, only the first few transition moments are sensibly affected by correlation
effects. Consequently, obtaining improved C6 values depends sensibly on obtaining more reliable values
of the first few transition moments from either theory or experiment. We have found the contribution of
the dispersion energy to the long-range interaction energy to be relatively small (C6 less than 20 au.)
compared to the quadmipole-quadrupole interaction energy for the 1 Z+ and 2 H states. Indeed, we have at
R = 7 a.u. (which is the lower limit of the "pure" long-range interactions) C6(R C5) = 0.11 for the
1 1,3.SL+ states and 0.16 for the 2 1,3,511 states. For the 1,35A states, the dispersion energy due to the
induced dipole-induced dipole interaction is of the same order as the electrostatic one. We have
C6/(C5*R) = - 0.65. So, for the 1,35A states, a very accurate C6 coefficient would be more significant
than it is for other states.

No experimental electronic energy curves of the CO molecule are known up to now for internuclear
separations as large as 7 au. Recently, however, Rosenkrantz, Bohr and Konowalow (RBK) [5] have
performed multi-reference second order configuration interaction calculations on the quintet states of CO
which correspond asymptotically to the interaction of ground state C and 0 atom. With the exception of
the 2 5H state which is essentially repulsive each of the quintets is relatively weakly bound with a potential
minimum which lies at an internuclear separation R > 4.75 ao (By comparison, the strongly bound ground
state has its potential minimum at about 2 ao). RBK find somewhat greater binding than we do. If we
assume that the RBK curves are nearly exact, it is evident that the overlap and exchange effects have a
non-negligible contribution to the interaction energy well beyond the limit (6.7 au.) given by the Le Roy
criterion. Tbe difference between the "pure" van der Waals interactions which we calculate here and the
computed energy curves of RBK give us an estimate of exchange and damping effects and the magnitude
of the dispersion terms we have neglected for each molecular state. In fact, at such internuclear
separations, the interaction energy for all the electronic states dissociating to C(3P) + O(3p) (except,
possibly, for the Z+ states) is small compared with the spin-orbit energy of the oxygen 3p term. So, the
spin-orbit interaction must be taken into account. As a first approximation, we include the spin-orbit
energy on each atom and present the electronic energy curves in the so-called Hund's case "c" coupling
scheme which gives rise to 49 molecular states.

The 49 x 49 energy matrix Ejnt is factored into 6 submatrices of order 10 for the symmetry 0+ of
order 9 for the symmetry 0-, of order 15 for the symmetry 1, of order 10 for the synmmetry 2, of order 4
for the symmetry 3, and of "order 1" for the state 4. The E5 and E6 submatrices are presented in Appendix
V (a-e) for the 0+, 0-, 1, 2 and 3 symmetries respectively. For the 4 symmetry molecular state, and only

for this symmetry, we have C5 = E3, C6 = E6 and C5(4) = C5 (1 3 5 A), C6(4) = C6 ( 1,3,5A). For each
symmetry we diagonalize the corresponding submatrix for numerous values of R providing Eu(R) for each

state v. Graphic representation of the 49 molecular states are shown in Fig. 2 (a-e).

Some long-range extrema are seen for the 0+, 0-, 1, 2 and 3 symmetry states. We present in
Table 4 their position (in au.) and interaction energy (in cm'1). The ninth state of symmetry "1" and the
eighth state of symmetry "2" have a well depth of 11.8 and 15.5 cm -r respectively. The other states which
exhibit a minimumn have a well depth less than 5 cm-; this is smaller than the precision we have on each
molecular state and is, consequently, not significant. At shorter internuclear separations the (JJ) coupling
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molecular states give rise to the (AS) coupling states. But, as is suggested by the present results shown
in Fig. 2, the (AS) coupling scheme is not accurate enough even at R = 7 au. to represent the long-range
interactions of C(3p1 ) + O( 3pj) except, possibly, for those leading to the X+ states. We give in Fig. 3 a
correlation diagram between Hund's case "c" and Hund's case "a" molecular states. By comparing the
curves for the various states described by the quantum number A or Q, it appears that the "4" symmetry
state comes from the 5A state. We note more particularly that the first "3" symmetry molecular state comes
from the 3A state, the second comes from the 5A, the third comes from the 1 51 state and the fourth comes

from the 2 511 state.
V. Sunmmary and Conclusion

The present paper reports estimations of potential energy curves and long-range coefficients of the
molecular states of CO dissociating to C(3Pj) + O(3pj). These interactions give rise to singlet, triplet and
quintet Z+, Z-, 11 and A molecular states in (AS) coupling or 0+,-, 1, 2, 3 and 4 symmetry states in
(JJ) coupling. They result in a quadrupole-quadnipole interaction (Cs/R5) energy term due to the
permanent quadrupole of each carbon and oxygen atom in their ground state configuration, plus dispersion
interactions (C6JR 6 + CaS18 +....) energy terms. Since the requisite input data is so uncertain we compute
only the induced dipole-induced dipole energy terms (C6/R6) for each state. The C6R-6 interactions are
quasi independent of the molecular state since C6 is nearly the same for the I+, V', n and A states.
Furthennore, the C6/R 6 energy contribution is small relative to the quadrupole-quadrupole energy for the
1 Z+ and 2M1 states but is of the same order for the 1 A states while the elecutstic energy vanishes (C5

=0) for the 2 E+, 1 V and 1 H molecular states. The C5 coefficients are given with a good accuracy
while the accuracy of the C6 coefficients depends mainly on the uncertain quality of the electric dipole
moments, especially those evaluated in the Coulomb approximation. The evaluation of the dispersion
energy is the most significant shortcoming of the BAF approach as applied to long-range CO interactions.
The available data and the approximations which worked so nicely for the alkalies [2-4] are insufficiently
accurate for CO. In particular, the atomic electric transition dipole moments (whether obtained from theory
or experiment) are highly uncertain. We have noted that even well-corad computed transition
moments [38] may disagree significantly with experimental results. For this molecule, which is probably
a "worst case" for the BAF approach, other ways to approximate the dispersion energy may be more
reliable. Clearly then, we have not obtained a truly satisfactory description of the dispersion interaction
energy. However, in a systematic study of rare gas interactions Krauss and coworkers [1] have found that
the neglect of overlap effects leads to an ov'timation of the dispersion energy. Thus, our neglecting
overlap effects in the induced dipole-induced dipole interaction, which we do treat, compensates, at least in
part, for our neglecting the higher order terms.

With the possible exception of the 1 52:+ state, the (AS) coupling case is not accurate enough even
at R = 7 au. due to the strong spin-orbit interaction in the 3p oxygen atom. So, spin-orbit interactions
must be included and the (J3) coupling case must be considered for an accurate description of the long-
range. In that coupling scheme, long-range bound states are predicted for some "1" and "2" symmetry
molecular states. Unfortunately, no experimental data to compare these with are known for these long-
range molecular states.
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Table 1: Mean-square radii <r2 >/ao2 of incomplete p shells for carbon and oxygen 3 p
term and R/ao4 resulting value (ao is the Bohr radius)

Ref Carbon Oxygen R
This work 3.74717 1.97801 8.89433
H.F 12  3.746801 1.974975 8.8798
H.F 12  3.889709 2.001392 9.3418
H.F.S 13  3.892540 1.93133 9.0213
Dy 14  3.88985 2.00067 9.3387
H.F 1  3.890 2.001 9.341
Ref-7 3.7483 1.9741 8.8794
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Table 2a: A comparison of line strengths for some electric dipole transitions in carbon

Transition Present F.F.[39] Other theories Expt. Xexpt(A)
2s2p3 3Do  5.21 4 .7 1f, 3.75e, 3.56e 4.2h, 3.84a-b, 3.52c-d 1561.1
2s2p3 3po ..- 12.47 3.82f , 3.62e 1.5h, 2.48d 1329.3
2s2p3 3So 4.446 7.6g, 7.620-  945.5
(2 Po)3s 3po 6.74 ---- 5.30 f  8.3h, 6.52c 1657.2
(2Po)4s 3po 0.84 ------ 0.76 h ,1.86 d 1280.4
(2Po)3d 3po 0.65 .... 1. 1h, 1.42 i  1261.3
(2 Po)3d 3Do  2.3 --- 2.4 h, 3.406 i  1277.5

a-D. T. Pegg et al. (1970) [15]
b-M. C. Poulizac et al. (1971) [16]
c-G. M. Lawrence et al. (1966) (17]
d-N. H. Brooks et al. (1977) [18]
e-C. A. Nicolaides et al. (1971-73) [21,34]
f-A. W. Weiss (1967) [22]
g-A. B. Bolotin et al. (1956) [20]
h-G. Boldt (1963) [19]
i-J. Bromander et al. (1978) [40]
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Table 2b: A comparison of line strengths for some electric dipole transitions in oxygen

Transition Present F.F(23,3 2 ) Other Theories Expt. Xexp( A)

2s2p5 3po 5.30 4.645, 1.63 d, 4.46k, 6.69fm 792.0
2.0 6

h, 3.45h
(4SO)3s 3So 1.26 1.75 0.91e, 2 .10 d, 1.2cj 1.85b, 1.81a l  1303.5
4s 0.22 -- 0.16 e , 0 .2 9d 0.42a, 0.28i  1040.1
5s 0.081 _- 0.057c, 0 .097d 0.23a 977.2
6s 0.040 -- 0.0027c, 0.046d 951.6
7s 0.022 - 0.015e 938.5
8s 0.014 9.28E-3•  -- 930.9
9s 9.35E-3 6.11E-3C .... 926.1
10s 6.57E-3 4.24E-3e  .... 922.9
(23)o)3s 3D 2.4 1.49 1.65d, 1.6J,0 1.7b, 1.43a, 1.49i 989.5
(2po)3s 3po 1.62 1.01 2 .06d, 0 .9 6 j,c, 1.92h, 2.13h, 3.27b, 4.01f 878.5
(4SO)3d 3D 0.33 -- 0.33e , 0 .6 3 d, 0.31J 0.88a 1026.6
4d 0.16 - 0.43d, 0.17e 0.34a 972.5
5d 0.09 - 0.092e, 0.18d 0.21a 949.4
6d 0.053 0.054e , 0 .11d 0.15a 937.3
7d 0.033 -- 0.035e 0.12a 930.2
8d 0.022 0.023e 925.6
9d 0.016 -- 0.017 e  .... 922.5
(2DO)3d 3p0 0.22 -- 0.037d, 0.18J, 0.33h, 0.86h 6.41f  811.4

a-N. H. Brooks et al. (1977) [18]
b-W. H. Smith et al. (1971)[231
c-B. H. Armstrong (1966) [26]
d-A. K. Pradhan and H. E. Saraph (1977) [27]
e-S. Chung et al .(1986) [28]
f-E. J. Knystautas et al. (1973) [29]
g-U. I. Safronova (1975) [33]
h-W. L. Luken et al. (1976) [36]
i-C. Zeippen et al. (1977) [37]
j-P. S. Kelly (1964) [24]
k-C. A. Nicolaides (1973) [34]
I-C. A. Nicolaides et al. (1976) [41]
m-G. M. Lawrence (1970) [30]
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Table 3: Long-range coefficients C5 and C6 for the interactions C(3P) + O( 3p)

Molecular State Footnote C5 (a.u.) C6 (a.u.)*

1 1,3,51:+ a -11.20 -5.81
b -11.20 -7.34
c -11.20 -8.76

1 1,3,5 A a -1.87 -5.16
b -1.87 -7.47
C -1.87 -8.51

2 1,3,51+ a 0. -4.85
b 0. -6.42
c 0. -7.28

1 1,35y.- a 0. -5.61
b 0. -7.92
c 0. -9.29

1 1 3 5n" a 0. -4.81
b 0. -6.08
c 0. -6.97

2 1,3'5rl a +7.47 -5.70
b +7.47 -6.95
c +7.47 -8.49

*Extended hydrogenic approximation for all dipole transition moments except:

a. G. A. Nicolaides values [34] for the 2s2 2pP - 2s 2pD+1 transitions.
b. G. Froese-Fischer's values [32,29] for the 2s22pn - 2s 2pn' l transitions.
c. Conelated calculations, experimental or estinated values for the 2s22pP - 2S22pn-l 3s, 3d transitions

and values given by G. Froese-Fischer for the 2s2 2pu - 2s 2pm 'l transitions.
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Table 4: Position and Interaction Energy of the long-range extrema of CO
dissociating in C(3pj) + O(3 Pj)

Molecular Interaction
Symmetry State no Extrema Type Position (a.u.) Energy (cm1)

0+  7 max -7. +3.4
8 min -8.8 -2.7

max -6.8 +1.2

0- 2 max -9.7 +1.9
9 mi -8.2 -2.3

7 m= -6.6 +24.9
9 min -7.6 -11.8

max -7.0 -11.1
10 max -6.6 +15.4
11 min -7.0 -6.6

max -6.4 -3.2
12 min -8.6 -1.7

2 5 num -8.6 +3.1
6 max -6.6 +29.8
8 mm -7.7 -15.5

max -6.4 -4.0
10 nn -8.1 -2.7

3 3 max -6.5 +33.6

A-20



A 0

A A?

I 
-4

A? A?

AA

C

A %
- A

A?

-4-

-44

C6C

AH + ' 01 1"7 -
-4 W 4 n -

-A 2



o 7o AC

- , 4

+4 -H 11 1 '-'H It 11 -

-1 io ; 1 11 It
+-+ + T C? ,

-0E A° AU A° . " r /- r

on in, . .onmnen wi

A-22

U 1I I I I I I II I



A9+0 A0

AA
-4 A9 -

-H 4- +'-
-4AP -H

- .4

+1 4 -H-H +

-4 -4 Nq

e4 e-41in w wl l mwl w wl %

-~~ - - - A23 A ~ ~ A0 A



A-24



Appendix II: Molecular basis functions for C(3Pj) + O(3 Pj) interaction

1. 3pe(C) + 3P 2(o) interaction: Ediss = 0.0 cm "1  3 states

0+ = I O0c 120>0
I = ± I00>C 12±1>0
2= I 00.,C I2±2>0

2. 3 p,(C) + 3 P2 (0) interaction: Edis = 16.4 cm " 1  9 states

0+=- ( I 1-1>C 1 21>0-I 11 Ir 1 2-1>0
1

0-=-. I -l> 121>0 + Ib:,c 12-1>0

-=I 0locI 20>o
1=III±1>r21 20)0

1 =1 10>C12:±1>0

1 = I I+ bC I ± 2 0
2= ± I 1 ± >2 12±1>0

2=±I 10>C 1 2 1 2>O
3 =11:1:1>( 2 2 2>

3. 3 p2 (C) + 3 p2 (O) interaction: Edl. = 43.4 cm "1  14 states

0+=-L(12 2>CI22>0+I22>CI2-2>0)

0+ =- (12- 1>C 12 1>0+1 21>C 1 2 - 1>0)
4~2

0- =22 (12- 2>C 12 2>0- I 22>C 1 2- 2>)

0-=-L (12- b12 12 1>0-12 1>C 12- 1>0}

0+ = 12 0>C 12 0>0

1 =± 12± C 12 0>0

1 =:± I 20>C I2 ± 1>0

1 = ± I 2 I>C 1 2 ±: 2.AO
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2=12*2>C I 2 0>0

2=12 ± 12+ ±>o

2=12 O> 12±2>)

3=±12±2>C 12+ 1>0

3 = ::± 12 ±I I>C 12 :::2>0

4 = 12 ± 2>C 12 ± 2>0

4. 3 P,(C) + 3P1 (O) interaction: Edis - 158.3 cm " 1  2 states

0. = 10 0r2 I 1 0)0

I =100>C I I + 1>O

5. 3 P,(C) + 3Pl(O) = Ediss interaction: 174.7 cm-1  6 states

0+= . I 11 - 1,C I 1>0+1 >l I I, - 1>0 )

o- 11 ocI 100

0"=/L11 I I -I>C II l>o -lIl>c II-1>o}

1 =I 1 : I>C I 1 0:0

I =±* I 1OC I I * 1)0

2= 1 ± I>C I ± 1>0

A-26



6. 3P 2 (C) + 3 Pi(O) interaction: Ediss : 201.7 9 states

0+=--- 12 I>C I I - 1>O -12 - I>C I I 1>O})

0"=-2 ( 12 1F I I - 1:>0+1 2- 1b I I 1>0 )

0-=120>C I 1 0>0

I =1 20>C I I * 1>0r

I =12± 1IC I I 0>0

1=12+2>-1 1+1>
2=±12± br I I + 1o

2=±12±2>C 1 0>O
3=12±2>CI 11>

7. 3 P.(C) + 3 pO(O) interaction = Ediss = 227 cm-1  1 state

0-,=OO>c 10 00

8. 3P 1 (C) + 3 PO(O) interaction = Edis= 243.4 cm "1  2 states

0- =I I 0-0 10 0>0
1 =1 ±t>C I 0 0>0

9. 3P 2 (C) + 3 pe(O) interactions = Ediss = 270.4 cm " 1  3 states

0=120)1-2 10 0>0
I = ± 12± I>C 10 0>0

2=12± 2>L I 00)

Total: 43 molecular states
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Appendix III: 2p Orbital SCF Wavefunctions for Carbon and Oxygen
Atoms
'P(2p) = Ni Ci r N e-i e ym (0,0)

i i

Atom n I ;i C1 (2pa) Ci (2pa)

C 2 1 6.51 -.010247216 -.0102472161
2 1 2.6005 -.2319540338 -.2319540339
2 1 1.4436 -.5469976538 -.5469976544
2 1 .9807 -.2823784197 -.2823784190

0 2 1 7.5648 -.0765520772 -.0165527165
2 1 3.4499 -.3277071772 -.3225525816
2 1 1.8173 -.6188261938 -.5656618839
2 1 1.1439 -.1184586922 -.1867904703

2s Orbital HF Wavefunctions for Carbon and Oxygen Atoms

Atom n I i Ci

C 1 0 9.4826 .0107111691
1 0 5.4360 .2081422862
2 0 4.2010 .1476498490
2 0 2.6844 -.3354681690
2 0 1.5243 -.7504500909
2 0 1.0575 -.0810066997

0 1 0 13.7574 -.0047624085
1 0 7.6141 -.2215772275
2 0 5.8660 -.1918271486
2 0 4.3120 .2536208043
2 0 2.4802 .6082459022
2 0 1.6982 .3482806491
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Appendix IV: Explicit E5 and E6 Matrix Elements for 1,3,5X+, 1.3 ,5X-, and 1 3 -5 A molecular states in

terms of 9 2 and 9tI( with a, P E {0,1,2) %2 and 91a = 1 are given by the

relations (1) and (2) respectively.

1. 1,3,5Z+ states

[E5( 1,1) E5(1,2) .4 5

5664 20 2 2+ 0

r E6(1,1) E6(1,2) i r 2 .1 2 9 8] -.o 2 0628539 (9 2 + t )
E6 (2,2) .2 [

[ 5 .0785674 1 q  +[-_2 .04714045 [3 .040855 22

5 1 (912 + I2) + 41

2. 1,3,5y- states:

E5(1,1) = C5(1) = 0

E6(l,l) = C5(l) = - +(901+ 9t10)+ l-t I 12+ 9t21) + " 8 22

3.- 1,3 ,5l states:

[E5 (1, 1) E5 (,2)] 4 4

E5(2,2) TU

FE6(l,l) E6(1,2) 5 5 q~+ 9o+
T 7I

4 2 g~+ 52
2595 35W 2 t

4. 1,3,5$A states:

2 12 1
E6 (l,1) = C6(1) = Y (902 +1 - " 12 + 9t21) + 16'922
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