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EXECUTIVE SUMMARY

Fully developed, laminar liquid-metal flows, currents, and power losses in a rectangular channel in a
uniform, skewed high external magnetic field were studied for high Hartmann numbers, high interaction
numbers, low magnetic Reynolds numbers, and different aspect ratios. The channel has insulated side walls
that are skewed to the external magnetic field. Both the perfectly conducting moving top wall with an exter-
nal potential and the stationary perfectly conducting bottom wall at zero potential act as electrodes and are
also skewed to the external magnetic field. A solution is obtained for high Hartmann numbers by dividing
the flow into three core regions, connected by two free-shear regions, and Hartmann layers along all the
channel walls. Mathematical solutions are presented in each region in terms of singular perturbation expan-
sions in negative powers of the Hartmann aumber.

Numerical calculations are presented for the total current carried by the core region between top and
bottom electrodes, Joulean and viscous power losses, and channel resistance at different skewed external
magnetic field angles. With the high external magnetic field, the current through the central core region be-
tween the electrodes must be parallel to the external magnetic field lines. The two side core regions carry no
current to zeroth order. The two free-shear layers carry less current than the central core region. Both free
shear layers are treated rigorously and in detail with fundamental magnetohydrodynamic theory. The solution
for the free-shear layer velocity profiles are solved in terms of a complex integral equation. The integral
equation is solved by the method of quadratures to give the velocity profiles, viscous dissipation and Joulean
losses in the free shear layers.

In addition expressions for the viscous dissipation in the six Hartmann layers are presented. The best
approximation to the viscous disssipation in the channel is the sum of the O(M 3/2) contributions from the
two free shear layers, the O(M 3/2) contributions from the two Hartmann layers separating the free shear
layers from the insulators, and the O(M) contributions from three of the Hartmann layers separating core
regions from the walls. The best approximation to the Joulean power losses in the channel is the sum of the
O(M 2) contribution from the central core region which carries an O(1) current between the electrodes and the
O(M 3/2) contributions from the free shear layers. The expressions for the viscous dissipation and Joulean
losses in each region involved the products of universal constants electrical potentials and geometric factors.
The theoretical magnetohydrodynamic model presented here was developed to provide data to help in the
design of liquid-metal current collectors.

ADMINISTRATIVE INFORMATION

This work was a cooperative effort between the David Taylor Research Center and the University of
Illinois of Urbana Champaign, Urbana, Illinois 61801. The work was supported by the DTRC Independent
Research Program, Director of Naval Research, OCNRI0, and administered by the Research Director,
DTRCO 113 under Program Element 61152N, Project Number ZROOOO 1, Task Area ZR023020 1, Work Unit
1-2712-125, Project Title: Orientation Effects in Liquid-Metal Collectors.

v



Liquid-metal flows and power losses in ducts with moving conducting wall
and skewed magnetic field

John S. Walker
University of Illinois at Urbana-Champaign. Urbana, Illinois 61801

Samuel H. Brown and Neal A. Sondergaard
David Taylor Research Center. Bethesda. Maryland 20084-5000

(Received 5 January 1988; accepted for publication 26 February 1988)

Fully developed, laminar liquid-metal flows, currents, and power losses in a rectangular
channel in a uniform, skewed high external magnetic field were studied for high Hartmann
numbers, high interaction numbers, m, w magnetic Reynolds numbers, and different aspect
ratios. The channel has insulating side walls that are skewed to the external magnetic field.
Both the perfectly conducting moving top wall with an external potential and the stationary
perfectly conducting bottom wall at zero potential act as electrodes and are also skewed to the
external magnetic field. A solution is obtained for high Hartmann numbers by dividing the
flow into three core regions, connected by two free-shear regions, and Hartmann layers along
all the channel walls. Mathematical solutions are presented in each region in terms of singular
perturbation expansions in negative powers of the Hartmann number. The free-shear layers are
treated rigorously and in detail with fundamental magnetohydrodynamic theory. Numerical
calculations are presented for the total current carried by the core region between top and
bottom electrodes, Joulean and viscous power losses, and channel resistance at different
skewed external magnetic field angles. With the high external magnetic field, the current
through the central core region between the electrodes must be parallel to the external
magnetic field lines. The two side core regions carry no current to the zeroth order. The two
free-shear layers carry less current than the central core region. The theoretical
magnetohydrodynamic model derived here was developed to provide data to help in the design
of liquid-metal current collectors.

" NTRODUCTION channel studied had insulating side walls parallel to the mag-
netic field and a perfectly conducting moving top wall and

l Advanced homopolar electrical in ery is being con- stationary bottom wall perpendicular to the field. The objec-
sidered for many new application This applied research tive of this paper is to treat rigorously and comprehensively

requires the development of mechanisms for transporting this same problem with two major changes. The homogen-
high current at low voltages between rotating and stationary eous transverse external magnetic field is changed to a high
members of the machines with minimal losses and maximal field strength, homogeneous, skewed magnetic field and an
operational stability. Thus, liquid metals rather than more external potential is applied to the conducting moving wall,
conventional brush technology are often used in the sliding thus making the channel transport current. These changes
electric contact region. Generally, these machines have large complicate the channel problem by removing symmetry.
external magnetic fields in the region of the current collec- This paper should be considered as part two to the above-
tor, which has a definite effect on the liquid metal by Lorentz mentioned paper." Alty' 2 presents solutions for a channel
force interactions. Thus, to obtain current collector design with all fixed walls and a skewed magnetic field. His core
parameters, one is interested in liquid-metal channel flow solutions are correct but his free-shear layer solutions are
problems with applied external magnetic fields and bound- incorrect. To the authors' knowledge, no other reference in
ary conditions containing combinations of moving and the literature addresses this particular problem.
fixed, conducting, or insulating walls. These boundary con- The purpose of this paper is to present comprehensive
ditions then roughly correspond to a rotor, stator, or two-dimensional analytic mathematical solutions for the
sidewall of the current collector and the liquid metal to thy flow velocity and electric potential in accordance with the
sliding electric contact. While many publications treat eo- principles of singular perturbation th, ory and matched
retical magnetohydrodynamic channel duct flow53Yonlya asymptotic expansions in the different regions of the chan-
very small percentage of these investigatio have studied nel. For high Hartmann numbers, the channel is divided into
problems with moving conducting walls.-Brown, Reilly, three core regions (a central core and two side core regions),
and Sondergaard" have studied fully develo d, viscous liq- two free-shear layers, and Hartmann layers along all the
uid-metal flows and power lossis in a rectan ular channel walls. These solutions enable one to investigate the influence
with a moving conducting wall in a uniform, xternal trans- on the velocity and electrical potential of insulating side
verse magnetic field for moderate Hartman numbers. The walls and of an external skewed high magnetic field. The
solutions to the problem were presented in' finite series of a results will enable the derivation of the equations for the
type discussed by Hughes and Young.' The rectangular quantities of technical interest. These quantities are load
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currents, Joulean and viscous power dissipation, and chan-
nel electrical resistance as functions of tne skewed external m
field angle. The rectangular channel problem approximately
corresponds to an asymmetric liquid-metal current collector Y .
whose channel dimensions are small compared to the radius
ofcurvature ofthe machine. In this paper a skewed magnetic
field was chosen, as opposed to the simpler case treated ear- -inmoato
lier of a transverse magnetic field, because many current col- 8
lectors have skewed magnetic fields in relationship to the fsV / t
walls.

In this work analytical expressions are derived for the ___ _ I t Z
load current between the electrodes (i.e., moving and sta- -z cndctr at ,t
tionary conducting wall), Joulean and viscous dissipation,
and channel resistance with skewed angle. The parameters FIG I. Rectangular channel with skewed external magnetic field and mov.

of variation areas follows: applied skewed external magnetic ing and stationary perfect conductor.

field, fluid electrical conductivity and viscosity, and channel
aspect ratio. In the work presented herein the pressure gradi-
ents are assumed to be zero. Numerical results in nondimen- angle between they axis and q axis measured positive in the
sional form are presented, along with the general analytic clockwise direction. The three core regions C 1, C2, and C 3
solutions which can serve as benchmarkers for various nu- are also shown in the figure. b is the unit vector in the direc-
merical computation procedures. tion of the external field.

This paper presents the first correct mathematical treat- 0 Nondimensional magnetohydrodynamic equations
ment of the free-shear layers resulting from skewed external
magnetic field interacting with rectangular liquid-metal- The nondimensional magnetohydrodynamic equations
filled channel described. In treating the magnetohydrodyna- for fully developed laminar duct flow in an external magnet-
mic flow due to electric current between two circular elec- ic field at an angle 0 with the vertical can be expressed as
trodes embedded in two parallel insulators, with a transverse N - '(v.V) v = - VP + j Xb + M - 2V2v, (Ia)
magnetic field, Hunt and co-workers' 3 -' 5 correctly treat a
similar free-shear layer, although their approach is quite dif-
ferent from the present one. V-v =, (lc)

A number of steps here are standard parts of analytical V-j = 0. (Id)
solutions for fully developed magnetohydrodynamic duct
flows at high Hartmann numbers. 9" ' We have reproduced a In Eq. (la), N = rB o Lip Uo represents the interaction par-

number of these standard steps here because these solutions ameter,the ratio of pondermotive force to the inertial force.

are not widely known outside the relatively small magneto- M = LBfoJ-tf is the Hartmann number,'0 the positive
hydrodynamic community. square root of the ratio of the pondermotive force'0 to the

viscous force. It is assumed during this work that the mag-
II. RECTANGULAR CHANNEL CONFIGURATION netic Reynolds number'0 R,, = UoL oru (ratio of induced

A. Discussion of problem magnetic field to external magnetic field) is << 1. The nondi-
mensional variables in Eqs. (la)-(ld) are defined as

The problem discussed in this paper consists of a rectan-
gular channel filled with a liquid metal in a uniform, skewed,
high external magnetic field' 2 (see Fig. 1). The Hartmann moving perfect conductor
number M is much greater than one (M> 1). The thin per-
fectly conducting top wall with an external mean potential is
assumed to move at a velocity component U, while the thin = 1V

perfectly conducting bottom wall is stationary at zero poten-
tial. These conducting walls are sometimes referred to as I: U r?4 core

electrodes. The side walls of the channel are insulators. We Y U0 ^ C3
will consider the case of fully developed laminar flow of an "I
incompressible fluid with uniform electrical conductivity o, c C o
and uniform viscositypu .The rectangular duct has a height
of L and a width of 2aL. We also asstamed that no secondary -perfet conductor
flows are generated during this process, that there is no vari- at rest
ation of the duct cross section, and that there is no distortion nsulator-' Y 0

of the external magnetic field by the flow (low magnetic 0 < 0 < arctan (2a)

Reynolds number). , z
The angle between the skewed external field Bo and they

axis is 0. In Fig. 2 a rotated coordinate system (x, 77, 4) is
shown with respect to the coordinate system (x, y, z). 0 is the FIG 2 Rectangular channel with coordinate systems (x,y, z) and (x, 7, )

J. Appl. Phys., Vol 64, No. 1, 1 July 1988 Walker, Brown, and Sondergaard
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v = fluid velocity vector normalized t =cos 0f1 - sin 0 i. (5b)

by Uo = V/Uo, (2a) In our rotated coordinate system (x, 17, ) the physically

P = pressure normalized realizable variables for fully developed laminar flow 6 can be
expressed as

by o'Uo BL = P */oU(o B L, (2b)00v = u(77, A), (6a)
j = electric current density vector P = P (7,), (no axial pressure gradient), (6b)

normalized by ofUo B = J/ciUo BO, (2c) = 0(7/, ), (6c)

= electric potential normalized j = j, (q,T) A + .4 (7r, ) . (6d)

by Uo Bo L = */Uo BO L, (2d) Substituting these variables in Eqs. ( la)-( ld) results in the

V = gradient normalized by L = LV, following convenient system of magnetohydrodynamic
equations in terms of the velocity and electrical potential.b = unit vector parallel to the external The electrical potential and flow velocity are variables that

magnetic field = cos 9J, + sin Oz^ (B Bo6), (2e) are measured in experimental work where

i,t,i = unit vectors in 4=M_2. '- ~
Cartesian coordinates (see Fig. 1). (2f) J M / + a (7a)

In the Cartesian system ofcoordinates (see Fig. I) they, 0 aq
z coordinates are normalized by L. The moving, perfectly J,= - -- -' - a- + u(r,q), (7b)
conducting wall with velocity U(i is at y = 1; the stationary a
conducting wall is at y = 0. The insulating walls are at j+ =0. (7c)
z = + a. The aspect ratio of the channel is represented by di1  d
2a. The magnitude of the external magnetic field B, and the
angle 0 between the field and the vertical is represented in We must now consider the moving perfectly conducting
terms of the field components as top wall in regard to the current densityj and potential 0,.

The nondimensional current density in the wall is
Bo = (By +(3a) L, = o,,./or( - qbo + 9), (8a)
0 = arctan(B/B ). (3b) where
Equation (la) is the nondimensional Navier-Stoke's

equation with an external jXb magnetic force. Also, Eq. = Xb = ix l. (8b)
(lb) is the usual nondimensional expression for the current Since the wall is a perfect conductor,the conductivity of the
density in the channel (ohms law), and Eq. (lc) is the non- wall a >>a, where o, is the conductivity of the conducting
dimensional expression for the incompressibility of the fluid. fluid in the channel. For ohms law in the magnetohydrody-
Equation ( I d) is the equation for the conservation of charge. namic approximation, it can be shown as o%, -. o that VqS.

We define a rotated nondimensional Cartesian coordi- must equal 4 for a finite current in a perfect conductor. Max-
nate system (x, 71, ;) with the y7 axis parallel to the external well's equation V X H =j determines the induced current
field B0. Therefore, i1 equals the unit vector b (see Fig. 2). in the system. Therefore, in the top wall 0, = 00 + , where
The coordinate " is shown in the figure where j is the unit , is the electrode potential at 4=0 and V = (d/
vector in the direction 4. Also note that i is the unit vector in dy) + (3 /d) . Similarly, in the bottom wall VgO = 0 and
the axial direction along the channel into the plane of the qS, 0 in the bottom conducting wall of the channel.
figure. Therefore, in our rotated, right-handed coordinate It is now necessary to specify the boundary conditions
system the equations describing the locus of the top, bottom, on the four walls of the rectangular channel. The top moving
left, and right walls are, respectively, perfectly conducting wall of the channel has the following

7 sec 0 + (tan 0)4, (4a) boundary conditions on the nondimensional velocity u(/,4)
and the potential qS(y/,4) =,:

where - a cos 0 - sin O<<a cos 0 - sin 0,

V tan ,, (4b) U(-,4) = 1, (9a)

where -a cos 0<9 <a cos 9, (r/,) = S = 0 o +4at r/= sec 0 + (tan 0), (9b)
where

7= - a csc 0 - (ctn 0)4, (4c)

where - a cos 0 - sin 0<< - a cos 9,- a cos 0 - sin <<a cos 0 - sin 0.
The bottom perfectly conducting wall has the boundary con-

= a csc0- ctn , (4d) ditions

where a cos 0 - sin O<4<a cos 0. These relationships were u 0, 0 at y = (tan 9)4, (90
derived from geometric considerations.

It should be noted that the unit vectors in the two sys- where
tems have the relationships: - a cos 9< <a cos 0.

i = sin 0 A + cos 0 i, (5a) The left-hand insulating wall has the boundary conditions

J. Appl Phys., Vol. 64, No 1, 1 July 1988 Walker, Brown, and Sondergaard
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u(,4) = 0, tan(2a), can beobtained from Eqs. (7b) and (7c) if the term

sin 9], + cos 0j. = 0, at 7= -a csc 0- (ctn 0), of O(M -2) is neglected [i.e., j =M - 2(d2u/n12 + a 2u/
(9d) d 2) ], the generalized core solutions can be expressed as

where Oc/(14) = - nixJc( / ) + bc( ), (Ila)

-ao8 i <- acos9. Uc7,T ___ d~c ( ) doc (4)
--acosO-si 1 -,) = ' + , (Jib)

Here it must be remembered that the current density lines 4 d" d"

must be parallel to the insulating wall. Similarly, the right- and the current density components are
hand insulating wall has the boundary condition 4C = 0, Jc = Jc(). (1lc)

u(/,) = 0, (10a) The methods of singular perturbation expansions and

sin Oj,, + cos Oj, = 0, at V = a csc 0 - ctn O (10b) matched asymptotic expansions at the boundaries between

for a cos 0 - sin O< <a cos 0. the Hartmann layer and core region are applied to the com-
In this work the Hartmann number M is always as- plex system of coupled equations to obtain the core solutions

sumed to be high (i.e., M> I). In this case it can be shown in the different core regions to zeroth order.
For continuity, the well-known matching principle be-

that distinct subregions of flow exist in the channel and are
shown in Fig. 3. In Appendix A is a derivation of the order of tween the core and Hartmann boundary layer will be stated

shownhere to the zeroth order. " If a physically realizable function
thickness of the various regions in the channel. The angle 0
has the range of values 0 <9< arctan(2a), uc (x;M) at high Hartmann number can be expanded in the

In the inertialess core regions C 1, C 2, and C 3, the first core as
partialderivativesa/d anddayareof0( 1). Intheinertia- uU(x;M) = UC(X) +M- 'uc (x) + M- 2uc 2 (x) + "",
less Hartmann layers h 1-h 6, the layers are ofapproximately (12)
O(M - I) thickness and have O(M) normal derivatives. fI where x is an independent variable, and the function
and f 2 are inertialess free-shear layers (or interior regions) Ub (X;M) can be expanded at tiigh Hartmann number M in
which have the following characteristics: the Hartmann layer as

(1) The layers separate the different core regions.
(2) The layers lie along magnetic field lines through the

corners and are driven by current singularities at the (13)
corners, where X is a stretched coordinate,' 6 then

(3) The layers have O(M - /2) thickness (see Appendix
A for detailed derivation). UCO (0) = limn [ Ubo M (14)

X-

(4) The first partial derivatives are of orders a/ where uco (0) is the value of the zeroth order function at the
d4 = O(M 2 ), while d/2 71 = O(1). wall. The boundary layer value in the Hartmann layer in

stretched coordinates is the value away from the wall as
III. ZEROTH ORDER MATHEMATICAL SOLUTIONS IN X (see Appendix B for details).
CORE REGIONS

Cook, Ludford, and Walker"8 proved that if there is a
A. Development of theory jump to 0(1) in the velocity u across the Hartmann layer,

The generalized mathematical solutions in the cores, then the jumps in j "-A and qS are at most O(M - ' ). The jump
where the magnetic field angle 0 has the limits 0 < 0 < arc- in is0(M 2 ) foraninsulatororaperfectconductorwitha

normal magnetic field, but it is O(M - ') for a perfect con-
ductor with a skewed magnetic field. Therefore, to zeroth
order, we shall assume that the potential throughout the
boundary is the same as the wall potential. The asymptotic
expansions for the potential Oc in the core area C are as-
sumed to have the form 6

qSc (714,M) = 0c (774) + M -'c 1~ (774~)

+-- 
-  

M - 2C2 (,. (15)

Cl C l I C3/ / ,Thus, the matching condition on the bottom and top perfect
\ i fll I conductor of the channel for the potential Oc2,o in the core

C2 to zeroth order is

0= c2.o (n = tan 0 )

- - (tan 0)4,c2,0 (') + bC2,0 ( ) (16a)

for - a cos 0<9 <a cos 9 (stationary perfect conductor),

0 < 0 < ,rct,, 12s) (00 + P) = C2. [ = sec 0 + (tan 0)p" I

FIG 3. Subregions in magnetohydrodynamic channel at high external - (sec 9 + tan 19) iC 2.0 (') + C. (4)
magnetic fields (16b)
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for -a cos 0-sin 0<k<a cos 0 -sinO (moving perfect = maO - sin
+ = lfl elctode

conductor). The zeroth-order solution for the potential in t = So I+ = Of

the Hartmann layers along each perfect conductor was not I ! 1 it
needed because the change in (A across tbe layer is only Zi fC VCosel6 t 1 Weslltn
O(M '),and using the value of the potential at the wall was +c -i I - I Q I

sufficient. I I INI tI = .coea 1 I . i '
Solving these two simple simultaneous boundary value I I C2 t4if2 I iC

equations (16a) and (16b) and simple algebraic manipula- I I+=O olm I-
tion of the magnetohydrodynamic equations (7a)-(7c) for XPt = ceinsulatin. < _ , 0

core C 2 results in the expressions won

4c2.0 = 0, J,;z2o = - cos 0(0o + 4), (17a) 4 = -acon s tatioy electrode

C2.0 =cos 0( 0 + 4)r/- sin 0( 0 +)4, (17b)
FIG. 4. Free-shear layers in regions f I and f2 in coordinates (x, t, ) fir
fl, t= 71+asin 0. 4 = 0- +sin 9- acosO and for f2, t=secO-

Uc2. = -sin 0(0 o +4) for r/ sin 0(tan 0 - a) - n

=(tan 0)4 (bottom wall), (17d)

=c. I - sin 0(4'()+ ) for -q sec 0 + tan 04.
U0e layer f2 has the corner region between the insulating wall

and the perfect conductor at (t = 0, 4= a cos 0 - sin 0).
It is interesting to note that to zeroth order there is ajump in We shall work out the fundamental mathematical theo-
u, 2 across each Hartmann layer for 0 540. ry for shear layer f 1; the theory for shear layer f2 can be

From similar arguments the zeroth order solutions in performed in a similar manner. To develop the theory, the
core C 1 are stretched coordinate 4 will be used. It is defined as follows:

J *c, .k J~ci.o=O, (18a) 4=M'/2-(4+acos0), 4=-acos0+M - 24,
0C o 1.0 + , u 0 = 1, (18b) (20a)

and the zeroth-orde; solutions in core C 3 are a-= d = M,/ . (20b)

j,C3.0= 0  J C3.,=O, (19) a- d9 a)
Using Eqs. (7a)-(7c), the fundamental magnetohydrody-

oc3.0 = 0, Uc3.o -0. ( 19b) namic equations in the free-shear layer fI for fully devel-

oped flow in stretched coordinate " and regular coordinate 71
B. Discussion of core solutions of zeroth order are

To zeroth order in the core C l the velocity is uc ,.o = 1 1 fadua u\
throughout the region. Thus, the core has the same velocity j (7,1) = + M

throughout the core region as the moving wall. The two
components of current density in core C 1 to zeroth order -= - , (21a)
Jkc :.o andjc 1 ,0 both equal zero. Also, the potential to zeroth a11
order throughout core C I is Oc,.o =4'o+4. (= Mi /2 _ 2  + u(,g), (21b)

To zeroth order in core C2 the current density follows "
the external magnetic field B0  and thus J C.o = 0 and aj ( , ) M 1/ 2 dj(117) (

Jc2.0 = - COS 0(0. + ). The potential 0(77,) and u(-q,4) +r/ M=0 (210
to zeroth order are functions of ,4 [see Eqs. (17b) and aee
(17c) 1. It is interesting to note that to zeroth order there is a The first terms in the series solutions in the free-shear layer
jump in u,, across each Hartmann layer at the top and bot- fi are
tom wall when 0 $-0. J, (77,n ) = jfi.o (7,1), (22a)

In core C 3 to zeroth order UC3.o equals zero throughout 0(77,) = 1.0 (77,0 ) (22b)
the region. The core C 3 flow thus has no velocity throughout
the region. Both components of current density in core C3, = M - lI2:Jfio (114), (22c)

Jc3.o andjC 3.o are zero as in core C 1. The potential 4 ' C3.o is u = M 12U,.o (1g,4), (22d)
also zero throughout the core to zeroth order. From Eqs. (22a)-(22d) the following relationships can be

developed for the potential function of 1, (nq')
IV. ZEROTH-ORDER MATHEMATICAL SOLUTIONS IN o 1.0 Oho
FREE-SHEAR LAYERS Ufo (77,)= 3" ( ,a)

A. Development of basic theoretical concepts - d4'110 (,)
The free-shear layers'" in regions flI and f 2 in coordi- fi.o (114) - j (23b)

nates (x, t, 4) are shown in Fig. 4. The corner region of the a11
free-shear layer f I between the insulating wall and the per- J,, o (14,) = 0l (1g) (230
fect conductor is at (t = 0,4 = - a cos 0). The free-shear ag" (
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Using the conservation of charge, Eq. (2 1c), and Eqs. (22a)
and (22c), the following fourth-order partial differential °v4 1--OwM')

a(-1 \:o7, II O1 M-equation is derived: f
a " 0 .o (7,g) 40f 10 (7g)

a 7/ 2 a 4 ,(24 ) Ha an.. . m laye rr , N
H between

for -asin0<7< -asin0 +sec~and - oo << oo for frae shear layer statonar

free-shear layer fI (see Fig. 5). isanw 2 ectodinsulatn g wal co mner region

The stretch coordinate " must extend from - oo to oo q =-rune (O(M13 x O(M-)J
in accordance with the definition of stretched coordinates. =-acoS9 which appears

also to free shearThis figure also shows the core potentials bct and OCc2, y = 0 layer as source
which must be matched by the sides of the free-shear layer. z = -a of electic

Of 1.o (7, ) must satisfy the following boundary conditions: current density

( 1 ) Boundary condition at core C 2: FIG. 6. Free-shear layer at region f .

Of.o -. cos 0( 0 - a cos 0) (V + a sin 0) as -. co.
(25a) ers (see Fig. 7). For Hartmann layers adjacent to core re-

(2) Boundary condition at core C 1: gions, the layer matches any core velocity and satisfies u = 0
or 1, depending on the wall. The change in u across the Hart-

Of,.o -'bo - a cos 0 as - oo. (25b) mann layer to the wall has a simple exponential structure.

(3) Boundary condition at moving perfect conductor: Figures 3 and 6 show the Hartmann layer along the in-
= o- a cos sulating wall. To treat the Hartmann layer, we will return to

f 0 =the original Cartesian coordinates (x,y, z). Equations (la)-
at 7/= sec 6- a sin 6 for - oo <T < oo. (Id) for magnetohydrodynamic fully developed flow in the

(25c) original coordinates are

(4) Boundary condition at fixed perfect: 0 =sin Oj - cos 0 +M 2 (U +a ' (26a)

Of,,o =0 at 71= -asinO for 0<< oo. (25d) ay7 dz2  (6

(5) Boundary condition at Hartmann layer between jy= - (sin 0)u, (26b)
free-shear layer f I and insulating wall (see Fig. 6): 9y

Jf, (-a sin 0,) = sgn(sin 0) a ( a sin 0,). j= _ O + (cos 0)u, (26c)
2az

(25e) jy + L = , (2d)

Boundary condition (5) will be derived in the following sub- y 9z
section. where

B. Boundary condition on Hartmann layer and free- J = jY (y,z) + ]. (y,z) , (26e)

shear layer v = u(y,z)i, (26f)

For external magnetic field angles in the range of 0 = O(y,z). (26g)
0 < 0 < arctan (2a), the Hartmann layers play a relatively The stretching coordinate for the y direction in the Hart-
passive role except when they are adjacent to free-shear lay- mann layer (tangential direction along insulating wall) is

approximately

+0
+m + sinO - Ocose

I e - = aecO - elne I
I I I

1 l*- +C2  Cos@ 1 0 Ocoee)
C +o -acos-]I x (n + asinO) / /I I I//

I~ lIMl/

SI H normal current into Hartmann layer

Comer 2

-acoee I = -a
-asinO

FIG. 7. Hartmann layer H be. aeen free-shear layer and insulator at y 0,
FIG 5. Free-shear layer at= -a cos 0, fI z- -a.
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Y=M1"2y, y=M-'Y, -=M"1 2 0  (27) u,,(YZ)= -cscodd(yY) [1 -exp( - Isin01Z)],ay Y dY

(see Figs. 6 and 7). The stretching is needed because the (32b)
Hartmann layer is adjacent to the free-shear layer where where the term Isin 01 has been used in case 0 is negative in
variables vary over O(M - 1/2) distances through the layer. the problem. The component of the current density in they
The stretched coordinate normal to the Hartmann layer is direction is obtained from Eqs. (31) and (32a)

Z=M(z+a), z= -a+M-'Z,--= M --. dol(y )

az dZ J4 ( Y Z )  dY exp( - Isin 0 1Z). (33)

(28) Using the conservation of charge condition Eq. (30d) in

The first terms in the series for the solutions to the magneto- stretched coordinates
hydrodynamic equations are djzH d 2qH (Y)

u=M/ 2uH(YZ), O=6H(YZ), (29a) Z= dY 2  exp(-Isin01,Z) (34)

j = M '112jy (Y,Z), jz = Jz (Y,Z). (29b) results in the solution for] (jY,Z) after integrating from

The Hartmann layer must match the O(M 112) velocity in Z = 0 to Z =Z:
the free-shear layer, while the Hartmann layer current den- d 2 (Y)
sity along 'he insulator is of the same order of magnitude as jn = Icsc 01 dy 2  [1 - exp( - Isin 0 1Z) 1. (35)
the velocity O(M 1/2). The magnetohydrodynamic equa-

tions in the Hartmann layer in stretched coordinates can be We now need to match the free-shear layer and the Hart-
written as mann layer solutions at the boundary. The geometric rela-

a 2tionship between the coordinates (x, il, 4) and (x, y, z) are
0 =sin Oj, -+- Z----(30a) shown on Fig 2 and are

y( y = zsin 0 +ycos 0, (36a)

JI1= -Y (sin O)u,,, (30b) 4 = zcos 0 -ysin 0. (36b)

for In the free-shear layer and adjacent to the Hartmann layer
- =0 for 0<Y<oo and O<Z<oo, (30c) z= -a+M 'Z, y=M" 2 y, (37a)

13, + =0. (30d) Z=M(z+a), Y=M1/ 2y, (37b)

aY aZ and

At the insulating wall Z = 0 in the stretched coordinate and " = M 1/2( + a cos 0). (37c)
the velocity u, ( Y,Z = 0) =0 and the current density The coordinate transformations (36a) and (36b) after sub-
jr,, ( YZ = 0) = 0. Since the partial derivative of qH.0 with stituting Eqs. (37a) to (37c) are
respect to Z is zero, 4P, = PI, ( Y ). Therefore, the current
density can be expressed as 77= -asin0 +M- 2YcosO +M-'(sinO)Z, (38a)

dolln(Y) (sin 0)u,( Y,Z). (31) = -acos0-M -/2 YsinO +M -(cos0)Z, (38b)

JY1 dY =M /2(4 +acos 0)= -Ysin0 +M-"/2(cosO)Z.
Substituting Eq. (31) into Eq. (30a) results in the partial (38c)
differential equation

,9 2 U11 ( yz dIn order to match a free-shear variable, such as

2 sin2 Ou1H(Y,Z) = (sin 0) dY IS/,iii, ), to the corresponding Hartmann layer variable
dY Oil( Y,Z), we substitute the expressions (38a) and (38c)

(32a) into Of i. We then use a Taylor series to obtain the proper

The solution which satisfies u, = 0 and which does not form for an asymptotic expansion, namely powers of M
grow exponentially as Z- co is times coefficient functions of Y and Z. This process gives

Ofi [ -asin0 +M- 2YcosO +M-(sinO)Z, - Ysin0 + M -,/2 cos OZ I

=Oz( -asin0, - Ysin 0) +[M- 2 Ycos +M-'(sin0)ZI (-asin0, -Ysin0)

+ M 2 cos OZ d a (-asin 0, - Ysin 0) + "" (39)

Only the leading term ofI ( -a sin 0, - Ysin 0), enters cally the zeroth-order free-shear layer solution sees the Hart-
the matching of the zeroth-order variables. The other terms mann layer as a zero thickness layer at the horizontal line
in the Taylor series expansions of the zeroth order free-shear 7= -a sin 0. In fact, the Hartmann layer has a small
layer variables enter the matching at higher orders. Physi- O(M -') thickness which would enter the higher order
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matchingthroughtheM -,/2 cos OZOdf I/d term, and the -2@(t'4) -
4 ,(P)( for 0:<sec 0, - oo < '< oo;

layer lies along a sloping line, which would enter through the 3t2  4

(M -"2 Ysin 0 + M -'sin OZ) do I /d- term. (47a)
From the matching principle between the free-shear lay- Boundary condition at core C 2:

er and the Hartmann layer along the insulating wall and
adjacent to the free-shear layer, we obtain 4)(t,4) -. ( , - a cos 0) (t cos 9- 1), as --. cc;

(47b)
45,(Y) = 1 ( - a sin 0, - Ysin 0). (40) Boundary condition at core C 1:

This expression is derived in detail in Appendix C, using the
velocity instead of the potential. 4D(t,4) -. 0, as -.- oo; (47c)

From expression (40) the following relationship is ob- Boundary condition at moving perfect conductor:
tained: (t,) =0, at t=sec9, for - oo <4< o; (47d)

d 2  sin2 9 0 (-a Boundary condition at fixed perfect conductor:-- sin" - -a sin 0, - Y sin 0),
dY(t,4)- -( b-acos0), at t=0 for 0< < oo;

X(4= -Ysin 0). (41) (47e)

The z component of the current density is related to the]4  Boundary condition at Hartmann layer adjacent to free-
andj,, components of the current density by shear layer:

j, = cos Oj + sin Oj,,. (42) d 
2
(b(t,4) aO(t,4)- + =0, at t--- for -cc<4<0;

To zeroth order the normal current density in the Hartmann a +- at

layerj.,, approaches the normal current density in the free- (47f)

shear layer We solved the partial differential equation and its

d qAl ( Y) boundary values in terms of the modified complex Fourier
J= dy 2  -cos O(M -. '"j.1f ) transform"x in the form

+ sin Oj,,f (- a sin 0, - Ysin 0). (43) 4F(t,k) = exp( - ik4)4 (t,4)d, (48)

Therefore, using Eq. (41) the following relationship holds: where k is generalized to become complex in the lower half-

sin Oj,1fo( - a sin 0, - Ysin 0) plane (i.e., k = k, - ik2), or Im(k) <0. Accordingly, the

a modified Fourier inversion formula"s is written as
=Icsc 0 Jsin

2 0 (-a sin 0, - Ysin 0).
(44)-21 - exp(ik4)4(t,k)dk. (49)

°9 " ~ ~~~~(44) t 2 ) ..

The current coming out of the Hartmann layer into the free- The inversion contour is in the lower half-plane, along the
shear layer equals the tangential second partial derivative of line Im(k) = - r.
the potential in the free-shear layer and is the fifth boundary The Fourier transform of the partial differential equa-
condition discussed in Eq. (25f): tion is in the form

J, f .0 - a sin 0, 4) a 2; = k4T, for 0<tsec0, (50)

sgna(sin 0) (-a sin 0, (45)45
"n " (where integration by parts has been used to obtain the above

form. The right-hand side requires four integrations by parts

C. Partial differential equation and boundary values for with
free-shear layer exp( - i( )

ik4) 2 (m)l =0. (51)
We shall assume the solutions to the partial differential a9

equation (24) and boundary values (25a)-(25e) tobein the The upper limit '- oc gives zero because Im(k) <0; the
form lower limit 4-. - wc gives zero because of condition (47c).

Fourier transforming Eq. (47d), we recognize thatJ 1.0 = (b,, - a cos 0 + 4 ), (46a)
-c = 0, at t = sec 0, and assume that the general solution of

where the Fourier transformed partial differential equation [e.g.,

t = y + a sin 0 (46b) Eq. (50)] is

and T(t,k) = A(k)sinh[k 2(sec 0 - t)], (52a)

sin 0>0 for fl, sgn(sin 0) = + 1. (46c) where

4(t,4) is treated as a perturbation which approaches zero as d;(t,k) k -A A cosh[k 2(sec0-)I (52b)
4- - oo, see boundary condition (25b). Also (t,4) ap-
proaches zero at the moving perfect conductor [see condi- and
tion (25c) ]. The partial differential in terms of l(t,4) with d 2 4P(t,k) - k 4A(k)sinh[k 2(sec 0 - t)]. (52c)
its five boundary conditions in terms of t, 4 is at 2
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The bundary value of Eqs. (47f) can be written in the more G(t,4) -1 f { t exp( _-t 2 ) -(2 sec 0- t)
general form i1T0

F(4) = -;-(O,4) + -(0,4), (53a) xx[k(sc-)}okd

where at + f {(exp( -tic 2)
(210)J

F ( 0, for- oo<4<O, (3)/i C
F()=~ for 0<4<~ (53b -exp[ k (2 sec 0 -t)} Ik-)dA.

and f (4) is an unknown function. The Fourier transform of (58')
F ()is expressed as

It should b~e noted that sin k4 Ak does not produce a singular-
F(k) =-(O,k) - k 2T)(O,k). (54) ity as k - 0, and that integration along real k is still allowa-

at ble. G(t,4), Eq. (58), was evaluated by using the two inte-
Substituting the general expression for ;IP(t,k), Eq. (52a), grals
results in the expression

T~k M -k 2 AMk[cosh(k 2 sec 0) + sinh(k 2 sec 0)I exp( - tk 2)cos (k4)dk

where (5a (7r11 2/2)1 ' 2 exp( 4 2/4t), (58a)

A - Mk) 2 exp (k 2 sec 0). (55b) f exp( - tk 2 ) (sin k4/k)dk

Therefore 7P (t,k) can be conveniently expressed as = (1T/2)erf[ I 4f/ 2] (58b)
Zb-(t,k) T (k)sinh[k 2 (sec 0- t) ]/k'exp(k 2 sec 0) t aetefr

(56a) t aetefr

T -[(k)/2k 2
1{exp(-_tk 2 ) G(t,4) t 1/

2
{ 2 exp[ 1 2t '- (2scI t) 1/

2

exp [- k (2 sec 0- t) I}, (56b) xeP [-1/2  2 4e(2-sec'0

where TF(k) is an unknown function.X x[1(2eO t-]

The convolution theorem can be used to obtain 4l(t,4) + (4/4){erf[j4t 2/2]

-I F (4*)G(t,4 -4*)d4* (57a)- r[1 2sc0_t-1/(5)

Remembering that 4(,)can be expressed by the con-
and volution integral [see Eq. (57b)

f ~, ) (57b) cFt4=f4)0t44)4.(9

We must also satisfy the boundary condition at the fixed

using the definition of F (4) expressed in Eq. (53b). conductor
The Green's function G(t,4) can be obtained by the P=- ( 0 -acos 9), at t=0 for O<4< oo. (60)

modified inverse Fourier transform [see Eqs. (57a) and Therefore, the following relationship"9 must hold.
(57b)]1:

G(t,4) -ep - tk 2) f(4*G(O,4. - *)d4
{p(tk) - - (qS,- acos 0) for 0<(4(co. (61)

-exp[ -k 2(2sec 0- 0)1}exp (ik)-A
k2 ' Now all the boundary conditions have been accounted for in

(58) the problem.
In Eq. (61), we will change coordinates to reduce the

There are no poles along the real k axis at k = 0, which can integral equation to a form that is independent of sec Oand of
be proven by expanding the exponentials in power series and (4) - a cos 0)., The following transformation will be per-
noting that these terms cancel the k 2 term in the denomina- formed:
tor. Therefore, the integration of Eq. (58) can be performed
with real k. Expanding the exponential (i.e., eIA'4; 2(2 sec90)"12 Z, 2* =(2 sec 0)"/Z* (62a)

=cos k4 + i sin k4) the integration can be changed from d4* =2(2 sec 9)2dZ , where 0<4, Z< oo, (62b)
-c to octoO0 to oo by neglecting the odd function or sine f[22sc0'Z

term.f12se9)Z
* G(t,4) was integrated by parts to obtain an integral =f()=-I(S- a cos 0)/2 sec 9]j F (Z). (62c)

form which can be simply integrated to exponential and er-
ror functions The integral equations is now in the form
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F(Z*){IZ - Z*lerfc(IZ-- Z *1) 0 aty = I and z = a. By the previous arguments for fl it can

be shown that the velocity in the free-shear layer is much
gllexp[ - (Z-Z*)21)dZ* = 1 for 0<Z< o. larger than the velocity of the moving wall. The integral of

(63) the velocity across the boundary layer is

This equation must be solved for F (Z) in order to solve for f u d4 = - 4f2 cos 0. (67)
the velocity profile directly in the free-shear layer [see, for JACROSS/2

example, Eqs. (22d) and (23a) 1.This work will be reported If 4 f2 >0, f2 is a high velocity jet in the minus x direction.
in the third part to this paper, which is in progress. If4Pf2 <0, f2 is a jet in the plusx direction.

The integral [Eq. (67)] varies linearly from 0 at the

D. Characterization of free-shear layers f 1 and f2 fixed electrode to a maximum of - 4Jb2 at the cornery = 1,
z= a. Qf2, the total flow in the plus x direction (i.e.,

For the free-shear layer fI for 0<0<arctan(2a), we F1 2 <0), is
will use a coordinate system (x, t, 4) (see Fig. 4) with the

origin at y = 0 andz= - a, with perpendicular to B and t = ud dt I- J 2 sec 0. (68)
parallel to B. The free-shear layer f I intersects the surface O cRossf2

of the moving perfect conductor at y = 1 and z = - a The dimensional flow is determined by the definition
+ tan0, where the conductor's electric potential is Q Mix 2)Q (69)
4) = Or, - a cos 0 = b,, + sin 0 - a cos 0. Here 0,,, is
the moving conductor's electric potential at the middle of its The total dimensionless flow in the x direction equals

surface, i.e., 0 aty = I and z = 0. The potential of the mov- the total flow in the three core areas Qc 1 , QC2 , and Qc 3 and
ing conductor's surface is then = , + z cos 9= q,, the total flow in the two free-shear layers Q1 , and Qf 2 . The

+ sin 0 + , at y = 1. If 0, = 0, the potential difference flows in the Hartmann layers of O(M ') will be neglected.

between the moving and fixed electrodes is zero at z = 0, Therefore, the.total flow Q is expressed as

while the potential of the moving electrode is greater than or Q= QC I + QC2 + QC3 + Qf I + Qf 2 + O(M-)
less than that of the fixed conductor for z > 0 or z < 0, respec-
tively. On the left-hand side of free-shear layer f 1, the po-
tential in core C 1 is (D -t for all t. On the right-hand side of where
f 1, the potential in core C2 varies linearly from PfI at Qt= - 1'f, (sec 0), (70b)
t = sec 0 to zero at t = 0. Therefore, there is ajump in poten-

tial across f l and the magnitude of this jump varies linearly Q 2 - IlPf2 (sec 0), (70c)

from zeroat t = sec 0 to - 4 p at t = 0. Since thethickness Qct = tan 0, (70d)
offl is O(M - 1/2), a / must be large, namely O(M ,/2), Qc2 = (2a cos 0 - sin 0) ( cos 0-- q,, tan 9), (70e)
insidefl. In the 4 component of ohms law, Qc 3 = 0. (70f)

= - --- + u. (64) After substitution of these expressions and simplification,

d4e  the total flow in the x direction Q is

j, is O(M /2) [see Eq. (22c) ], so u =d /o "/ = 0(M /).

This leads to the conclusion that the velocity in the free- Q = cos 9(a cos 9 - sin 9) - ,, (2a sin 9 + cos 9)
shear layers is much larger than the velocity of the moving + O(M ') + Hartmann layer terms. (71)
wall. Therefore, even though the boundary layer is thin Let us now examine the properties of the velocity pro-
O(M - 1/2), it involves large velocities, so that the total flow files for no net current flow between the ele.ctrodes. The
inside the free-shear layers is comparable to that in cores C 1 0( 1 ) electric currents in cores C I and C 3 are blocked by the
and C2: insulating sides, so that the "active" part of the moving elec-

- - trode's surface is from z = -a + tan 0 to z = a. For zero

JcRossf net current, the potential at the middle of this active part of

From this equation it can be deduced that if P,, >0,the the moving electrode must be zero, so that

free-shear layer f I is a high velocity jet in the minus x direc- q,, = - I sin 0. (72)
tion. Conversely, if( f I <0, fl is a jet in the plus x direc- Then 4Pf = - (a cos 0 -Isin0) which is negative be-
tion. Noting Eq. (65), it is interesting to note that the inte- cause tan 9 < 2a. Therefore, f I i h in the plus x direc-

gral varies linearly from 0 at the moving electrode to a tion. Also, 4
Pf2 = (a cos 0- I sin 9) = - > 0, and

maximum of - at the corner at z = - a,y=O. Qf 1, thus f2isanequaljetin theminusxdirection. The total Qis
the total flow inside fl in plus x direction (i.e., 4PfI < 0), is equal to a [see Eq. (70a) 1.

o - Ic At this point, it is interesting to note for any 0,,, UC 2

Qfl CROSII varies linearly with z from

Also, for the discussion of free-shear layer f2, we will UC2 =Y-4'f 1 (sin 0), at z= -a+ytan9 (73)
use a similar coordinate system (4, t, x) (see Fig. 4). We
shall define 4 Vf2 = 0,, + a cos 0 as the potential at the in- to

tersection of f2 and the surface of the moving electrode, i.e., Uc2 = Y - Pf2 (sin 0), at z = a - (1 - y)tan 9. (74)
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Now we shall plot a typical plot of uc 2 vs z for a fixed Finally, as 0,, decreases further from - a cos 0, both fI
value ofy for zero net current (Fig. 8). The jets in the free- and f2 jets are in the positive x direction.
shear layers in fI and f2 exactly cancel each other [see Eq. From Eqs. (70a) and (70b), the difference in total vol-
(66) 1. Note that UC 2 at position I can be greater or less than ume of flow in regions fI and f2 is
1, depending ony and 0 (i.e., UC2 >y). At position 2, uc2 can - Q (2a - tan0) >0 (77)
be greater or less than 0, depending ony and 0 (i.e., uc2 >y).

Let us now evaluate the characteristics of the velocity so that the difference is independent of &,.

profile in terms of quantity of flow for a net transport current
from the moving perfectly conducting electrode to the per- V. EXPERIMENTAL EVIDENCE FOR FREE-SHEARLAYERS
fectly ccaducting stationary electrode. The net transport
current is Since we have analyzed the free-shear layers mathemat-

ically by fundamental magnetohydrodynamic theory and
I= (Ax) | j, dz <0, for gm > - I sin 0. (75) characterized some of the basic properties of these layers, we

must ask whether there is any experimental evidence ofjets
d'. is the mean voltage at the moving electrode. As 6,, in- of boundary layer thickness O(M - 112). The answer is yes.
creases from - i sin 0 the jet in the positive x direction in- Hunt and Malcolm"' 4 treat theoretically in cylindrical co-

side the region f I (i.e., +f I = 6,, + sin 0 - a cos < 0) de- ordinates and experimentally the problem of a circular elec-
creases in magnitude (the quantity of flow Qj,, decreases in trode embedded in an insulating wall in . high external mag-
magnitude). All velocities in core region C2 decrease. Also, netic field in a stationary fluid. They predict a free-shear
the jet in the negative x direction inside region f2 (i.e., layer as a jet in the azimuthal direction between the core
(Df, =d,,, + a cos 0> 0) increases in magnitude. When Qr region and the dectrode, and between the core region and
reaches the value (a cos 0 - sin 0), then CII.I = 0, so that the insulating wall. They predict that V, = O(M 112). The
there is no jet inside region f 1, and uc2 = y, at z = - a + y free-shear layer is ajet in the 0 direction, but the jet is in the
tan 0. At this b, 4

'J2 = 2a cos 0- sin 0; so that the flow +0 direction for z> 0 and the -0 direction for z <0.
in the negative x direction inside region f2 is two times what (z = 0 is midway between the two circular electrodes.) In
it was for 6,, = - sin 0. The total flow Q equals a - d cos their work experimental measurements 4 show evidence of
(20) - (a -- n )s20. Finally, as 6,. increases further these jets.
from a cos 0 - sin 0, jets in both regions f I and f2 are in However, that work is somewhat different from the jets
the negative x direction. we discuss here, in which each jet must be entirely in the + x

Let us now investigate the velocity profiles for a net or - x direction. For the work herein, the jet goes from zero
transport current from the stationary electrode to the :nov- at the intersection with the perfect conductor to a maximum
ing electrode as expressed as at the corner where the insulator and other conductor meet.

I= (Both cases involve linear variation of velocity along the

f= (Ax) JI dz>O, for 6,, < - sinG. (76) length of the layer.

First, 0, decreases from - sin 0 to larger negative VI. TOTAL CURRENT AND POWER LOSSES BETWEEN
values, with the result that the jet in region f I increases in ELECTRODES IN THE CORES
volume of total flow. All velocities in region C2 increase.
Also, the jet in the negative x direction in region f2 de- A. Development of basic theory
creases in magnitude. When q = - a cos 9, so that We derived the total current between the electrodes (see
(1) = - (2a cos 0 - sin 0), so that the flow in the positive Figs. I and2) forthecoreregions. InthecoreregionsC land

x direction inside f I is two times that for q,0 = -_ sin 0. C 3 the c oe regions. I the c ere d
For this 0n,, 'I f2 = 0, so there is no jet inside i2 and C3thecurrentdensitiesc ,ncc3,andl.c 3 weredeter-
UC2y, at z = a - (1- y) tan 0. The total flow mined to be zero to 0( 1 ), when neglecting terms ofO(M ')

2 in the magnetohydrodynamic equations. In the free-shear
Q = a + a cos(20) + (a2 - J)sin 20. layers fI and f2, the current densitiesjnf I andj,f 2 were

determined to be of 0(I). But since the thickness of the
boundary layer is O(M - 1/2) the total current is O(M -I/)
in the r1direction. The current densities in the core C 2 were
derived to be 1c2 = 0, and J,7c2 = - cos G(qS o + ') to
0(1), neglecting terms to O(M '). Here, 0, is the nondi-
mensional potential of the perfectly conducting moving wall

FU=1 at 4" =0, in reference to the stationary perfectly conducting
/2 wall at the bottom of the channel.

The zeroth order total current I to 0( 1) carried by the
Z1 C2 C3 z -1 core C2 is

I= (Ax) JJc2 d/, (78)
J- aco ,O

where Ax = nondimensional axial length along channel,
FIG 8 Plot of typical u vs z for fixed value ofy for zero net current. I = nondimensional total current in C 2, ' = - a cos 0
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(coordinate for corner 2), and - a cos 0 - sin 0 (coordi- 0.o

nate for comer 3). The total current terms neglected in the
two free-shear layers and the two Hartmann layers along the - 1.0 -

insulatingwallsareofO(M -,/2)andO(M -'),respectively. "C -2.0
Integration of the expression for the total nondimen- -2

sional current I in core C2 is -3.0

I= -(Ax)cos 0(n, + t sin 0) (2a cos 0 - sin 0),
(79) - -4.0

C0

where 6,, is the mean voltage of the moving wall and is -5.0
defined as 6. = 6o - sin 0. ,, = at y - I and z = 0, the IL

C
potential at the center of the moving wall. The new dimen- -6.0 ,
sional quantities with superscripts (*) are defined as (-70 -,

I oU(, BL 21, (80) 00

t*= UoB(!Lfm. (81) , -8o - +m" = Uo8oLm

The other variables were defined previously in the paper. a = 1 0 - 2V

The total nondimensional zeroth-order total Joulean -0 aspect ratio 6 = 0*0= 0
power loss PT between the electrodes to O(M 2) in core C2 -10.o
can be derived by integrating the current density squared in 0.0 1.0 2.0 3.0 4.0 5.0 '6.0 7.0

the r direction, in core region C2: =,n mean potential
aCOS. U - sln O

P7 (Ax)M 2 (sec 9) (.iJc2 ) d, (82) FIG 9. Total current per unit length ofciannel vs positive mean potential

J acoso 6,, for aspect ratio a = I.

where the sec 0 comes from the integral with respect to 17.
The total zeroth order Joulean power loss terms neglected in core C 2, (I /Ax), vessthe nondimensional mean voltage at
the two free-shear layers and two Hartmann layers along the the center of the moving conductor at the top of the rectan-
insulating walls are O(M 3 2 ) and 0(M), respectively. gular channel 0,,,. The potential qSm is referenced to the per-

The expression for the power loss PT after integration is fect conducting wall at the bottom of the rectangular chan-

P, = (Ax)M 2 cos 0(2a cos 0 - sin 0) [bim (dm + sin 0) nel, which is assumed to have the potential $ = 0. Equation
(79) is used to numerically calculate the data. Equations

(as ], (80) and (81) show the parameters used to dimensionalize

where the dimensional Joulean power loss is defined as the nondimensional'variables.

P * = (.f U )P,. (83b) Figures 9-11 present straight line plots of positive mean

The current densities in the cores C I and C 3 were deter- voltage Qm plotted versus total current per unit length (I/
mined to be zero to 0( 1 ) and thus do not contribute to the
zeroth order total current and zeroth order Joulean power - _.0losses.

losses.
It should be noted that the expression for P., when the -2.0

magnetic field becomes transverse 0 = 0, and no external 'a
potential is applied $, = 0; approaches the result obtained C -4.0 ,
by the authors when working the corresponding problem .
using the infinite series type of mathematical solutions pre- -6.0

sented by Hughes and Young " ' C_2 -8.0 - \0 =50'
P, = (Ax) 2M2a'. (84)
The nondimensional resistance of the rectangular chan- I 10.0 -

nel per unit length R in core region C2 is defined as the C
nondimensional length of the resistor L divided by the non- . -12.0U
dimensional cross-sectional area A of the resistor 0 -0

R=L/A= l/(2a-tan0)(cos2 0)(Ax), (85) (° o I

where A = (2a - tan 9)cos 0(Ax) and L = sec 0. The di- +m* = UOBOL+, 0 = 300

mensional resistance R * is defined as -180 - a = 2

R = (1/LO)R. (86) aspect ratio-20.01 1 1 0'o \e1 -1 o* _
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

B. Results and discussion +, = mean potential

Figures 9-14 present straight line graphical data for the FIG. 10. Total current per unit length of channel vs positive mean potential

nondimensional total current per unit channel length in the 4,, for aspect ratio a = 2.
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0. 211.0I

-10.0 18.0 0= 0

S-20.0 A 6. --
I - UoBoL4m

0 - 14.0 aspect ratio

*C 0=40P
5 -40.0 - 12.0

Li U 1ooCo -100 I"uL -

-o oUoo B8.
-=oL.0

__ a=5.0-

-800 = UcBoL+m

-90.0 - aspect ratio 2.0

0.0 10 2.0 3.0 40 5.0 60 7.0 0.0 L

= mean potential -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0
+m = mean potential

FIG. I I Total current per unit length ofchannel vs positive mean potential FIG 13. Total current per unit length ofchannel vs negative mean potential
, for aspect ratto a = d,,, for aspect ratio a = 2.

Ax). For the range of variables studied herein the (I/Ax) the range of variables interest. The total current flows from
values are all negative quantities. The straight line plots the top moving electrode to the bottom fixed electrode.

show that for positive mean voltages the total current is flow- Figures 12-14 presents straight line plots of negative
ing from the moving wall to the bottom perfect conductor in voltages 6,,, plotted against total current pair unit length (I /

the channel in core C 2. Each figure presents data for a partic- Ax) for core C2. For the range of variable of interest herein
ular aspect ratio (i.e., a = 1, 2, 5). In each figure the angleO the (I/Ax) values are all positive quantities. These straight
is placed along each straight line plot where 0 shows the line plots show that for negative mean voltages the total cur-

external magnetic field angle. The straight line plots show rent is moving from the bottom stationary perfect conduct-

that as the positive mean voltage 6,, increases and the exter- ing wall to the moving perfect conductor at the top of the

nal magnetic field angle 0 decreases, the total negative cur- chinnel in core C 2. Each figure presents data for a particular

rent per unit length in the rectangular channel increases for channel with a given aspect ratio (i.e., a = 1, 2, 5). In each
figure the external field angle 0 is placed alongside each

10.0 100.0 10 = 100 0 (00 Ooo,
9.0 0 ,U 8 L 90.0oU B L(A

S 200 += :UOBOL UooLm

r8.0 , 80.0 a = 5a1 aspect ratio\a
aspect ratio ° 70.0 = 0

70
-C 0 30 =

2.09D.0

6.0 -0.0
c

;5.0 5000=0

C C
24.0 -0=400 2 40.0

03.0 
a1 30.0

00.

0 = 00
1.0 -10.0

0.0 0.0
-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

+., = mean potential 4= = mean potential

FIG. 12 Total current per unit length of channel vs negative mean potential FIG 14. Total current per unit length of channel vs negative mean potential
6,,, for aspect tatio a= I 4,, for aspect ratio a = 5
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straight line. These plots show that as the negative mean 6.0 x 1o , 1 1 ,
voltage 0, increases, as the aspect ratio of the rectangular f =

duct a increases, and as the external magnetic field angle 0 O M = 36.4 o 10,

decreases, the total positive total current per unit length of m
the duct increases for the range of variables of interest.

It is interesting to note at this point that positive mean
potentials ',, give a larger absolute value total current per
unit length values (1/Ax) 1 than the corresponding negative oZ
potential in a similar channel with the same 0>0. Each 3 a=S
straight line intersects the I = 0 axis at ,6,. = - 1 sin 0. C 3.0 x 1t

In Fig. 15, curves of nondimensional resistance of the * 0=30. a=2

duct per unit length R in core C 2 are plotted versus external o 0 =0. a=5
- ~0=100, 8=1 010magnetic field angle 0. Three curves are shown with aspect ==. fa ,=

ratios of a = 1, 2, and 5. Each curve has the lowest total 0
resistance at the smallest value of 0 and increases as 0 in- E

creases. The resistance of the duct decreases with aspect ra- 0
tio a, as would be expected. The nondimensional resistance ,1 a=2 -

of the rectangular channel per unit length in core C2 is de- =
fined as the resistor length L divided by the cross-sectional 0.01

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

area A of the resistor and is derived in Eq. (85). The dimen- 0.0 1 20 . 0 50 0 0

sional resistance R per unit length is defined in Eq. (86). = mean potential
Figures 16 to 19 show the nondimensional Joulean pow- FIG. 16 Nondimensional Joulean power losses per unit length of channel

er losses per unit length of channel P, versus the mean vol- versus positive mean potential 0,. for aspect ratios a = 1, 2, and 5 and exter-
tage ',A at the center of the moving perfectly conducting nal magnetic field 0 = 10, 30', and 60'

wall (i.e., moving electrode) for different external magnetic
field angles 0. For both positive and negative potentials the than the analogous negative potential. (See plots of the total
power losses are positive, since heat is lost from the system currents per unit length of the channel in the preceding part
due to Joulean heating. Power losses for external magnetic of this section.)
field where 0 equals zero (i.e., transverse external magnetic
field) were reported in an earlier paper by Brown et al." It VII. DISCUSSION AND CONCLUSIONS
should be noted that the power loss value from the negative Fully developed viscous liquid-metal flows in a rectan-
potential 0, is slightly less than the analogous power loss gular channel (duct flow) with insulating side walls that are
value from the corresponding positive potential. This is as skewed to a high, homogeneous external magnetic field were
expected because the positive potential drives a larger abso- studied. A perfectly conducting moving top wall with an
lute value of the total current per unit length of the channel

6.0 X105

20.0 PT' = tU .PT

1.0 R20(Ax) M =36.4

ie1.0 - 9i00,
a=1 a6

14 .0 0.

8 -. D2

8 12.0 - a-6. g.
c 3.0 x 105

10.0 0
A2 0-300, a-2

a2 a.0 - 0-60, a-6
.18-1r0. 0-100 a-i

*a=2 0.-300, &-1
E6.0 1

E

, 4.0 a-2

2.0 00 ,0-00 . -1
e. P C

0.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

0.0 10.0 20.0 30.0 40.0 50.0 00.0 70.0 *m - mean potential

0 Idegrees) FIG "17. Nondimensional Joulean power losses per unit length of channel

FIG. 15. Nondimensional resistance per unit length of channel vs angle of vs negative potential ,, for aspect ratios a = 1, 2, and 5 and external mag-
external, homogeneous magnetic field 0. netic field angles 0 = 10', 30', and 60'.
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Boy the Hartmann layer and core region is applied to the com-

d boundary thicknes plex system ofcoupled equations to obtain the core solutions
y i in the different core regions to zeroth order. It is assumed

that the physically realizable functions in the core uc (x;M)
can be expanded at high Hartmann number M as

boundary layer

where =old 1) uc(X;M) = UCo(X) + (1/M)uC, (x)
-ry + (IM 2 )uC2 (x) + "" , (87)

wall where x is an independent variable. The function Ub (x;M)
can be expanded at high Hartmann number M in the Hart-
mann layer as

Ub(X;M) = UbO(X) + (+/M)UbI (X)

FIG. 18. Wall %ilh the unit normalIat anangleO to the external magnetic + ( 1/]12 )Ub2 (X) + "", (88)
field direction

where X is a stretched coordinate. The zeroth order terms
are uco (x) and Ubo (X), and the first-order terms are ( IM)

external potential and a stationary perfectly conducting bot- UC (x) and (IM) Ub (X).
tom wall at zero potential act as electrodes and are also To zeroth order in the core C l the velocity uc 1 0 = I
skewed to the external magnetic field. The angles of the ex- throughout the region. The velocity is the same as the mov-
ternal magnetic field B, is in the range of values 0 < 0 < arc- ing wall throughout this core region. The two components of
tan 2a. The flow in the channel is characterized by high the current density to zeroth order~ c 1.0 andj,c 1o are both
Hartmann number M, high interaction parameter N, low equal to zero. Also the potential to zeroth order throughout
magnetic Reynolds number R,,,, channel aspect ratio a, and the core C 1 is 'c 1.0 = 00 + " throughout the core area. To
external magnetic field angle 0. zeroth order in core C 2 the current density follows the exter-

In this work, since the Hartmann number is always as- nal magnetic field BO and therefore J4c2.o = 0, and
sumed large (i.e., M> 1), it was determined by magnetohy- J,,c2.o = - cos 0(o + 4) [seeEq. (17a) ]. The zeroth order
drodynamic theory that the channel could be divided into potentials (77,y) and u(r7,) are functions of and T [see
subregions shown in Fig. 3. In the three channel core subre- Eqs. (7b) and (7c) 1. It should be noted that to zeroth order
gionsC 1, C 2,and C 3 the first partial derivativesd /danda / there is ajump on uC2 across each Hartmann layer at the top
dy are of 0( 1). The six Hartmann layers, h 1-h 6, along the and bottom wall [see Eq. (1 7e) 1. In core C 3 to zeroth order
sides of the duct are of O(M -') thickness and have O(M) UC3.0 is zero throughout the subregion. Thus, the core C3
normal derivatives. f I and f2 are two free-shear layers (or flow has no velocity throughout the subregion. Both compo-
interior regions) which have unique characteristics. The nentsofthecurrentdensityin C3,j ,C3.o andi c3.o arezero
free-shear layers separate the three core regions from each as in core subregion C I. To zeroth order the potential qC3.o is
other. A free-shear layer lies along the magnetic field lines also zero throughout the region. It was not necessary at this
through the appropriate channel corner and is driven by a point in the work to obtain the Hartmann layer solutions
current density singularity at this corner (see Figs. 4-6). adjacent to each core region to solve for the core region flow
The layers have O(M -'/2) thickness. The first partial de- profiles to zeroth order.
rivatives are of order d/d = O(M 1/2) and aday = 0( 1) The fundamental mathematical theory was developed

The general mathematical solutions in the cores were for the free-shear layers f 1 and f2 in the rectangular chan-
obtained from the basic magnetohydrodynamic equations nel. The free-shear layers in regions fI and f2 in coordi-
(7b) and (7c) in thecoreifthe term of O(M --2) is neglected. nates (x, t, ) are shown in Fig. 4. The corner region of the
The method of singular perturbation expansion and free-shear layer f I between the insulating wall and the per-
matched asymptotic expansions at the boundaries between fect conductor is at (t = 0, " = - a cos 0). The free-shear

layer f2 has the corner region between the insulating wall
and the perfect conductor at (t = sec 9, § = a cos
9 - sin 0). In this work we developed the fundamental

t Imathematical theory for shear layer f 1: the theory for shear
layer f2 can be performed in an analogous manner. Alty 2

previously studied this problem of the free-shear layer in a
rectangular channel with all stationary walls, but his free-

,Y /shear layer solution is wrong.
The basic fourth order, partial differential equation for

the potential to zeroth order in f 1, 4(t, ), [Eq. (47a) ] in
/Y the free-shear layer was derived. The solution to the partial

differential equation fits five different boundary conditions
Z -- o" [see Eqs. (47b)-(47e) I. The partial differential equation

was solved in this work by using the mathematical technique
FIG. 19 Geometry of free-shear layer at z = -a. of the complex Fourier transform. The mathematical solu-
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tion to the problem using this technique evolves into an inte- 16 and 17. For limited data, power losses increase with in-
gral equation which can be solved numerically for the ze- creasing positive potential or decreasing negative potential
roth-order velocity profile in shear layer f 1. The numerical 'km and with decreasing external magnetic field angle 0.
solution of the integral equation will be presented in a future For fully developed flow, we assume that there is only
paper. From the fundamental theory for the free-shear layer one component of velocity ui and that all variables are inde-
the basic characteristics of the free-shear layer were deter- pendent of x and time i *. Therefore, the inertial term in the
mined and discussed in detail. There has been experimental Navier-Stokes Eq. (la),
verification of a similar, but not exactly the same, type of t 1

free-shear layer as presented herein, reported by Hunt and N- 'I(--J + (vV)v
Malcolm. L t

The basic theory was derived to calculate to zeroth or- is identically equal to zero for any value of the interaction
der the total current per unit length of the channel in core C 2 parameter N. Fully developed flow is always a mathemat-
due to an external potential applied across the electrodes ically correct solution of the governing equations, but it may
(i.e., perfect conducting walls). Also, the expressions for the not actually occur in the real duct flow. Under certain cir-
power losses per unit length of the channel were derived to cumstances, the fully developed flow in unstable with re-
zeroth order for core C 2. The derived expressions are depen- spect to a small, three-dimensional, time varying distur-
dent on channel aspect ratio a, external magnetic field angle bance. The disturbance grows until a different stable flow is
0, and Hartmann number M. No current is carried in cores realized. In the actual flow, all three components of velocity
C I and C 3 to zeroth order. The total current per unit length are nonzero and the flow variables depend on both x and t *.
terms neglected in the two free-shear layers and the two This flow may involve a coherent structure, such as a series
Hartmannlayersalongtheinsulatingwalls areofO(M -112) of vortices, or a chaotic structure, such as turbulence. In
and O(M '), respectively. magnetohydrodynamic flows, the magnetic field strongly af-

In this paper Figs. 9-14 show linear plots of the mean fects the instability and the structure of the periodic flow.
voltage 6,, at the center of the perfectly conducting moving For the present problem, the largest velocities occur in
wall versus total current per unit length of the channel (II the free-shear layers f I and f 2, so that inertial effects will
Ax). The potential q,. is referenced to the perfect conduct- first become significant in these layers. The key inertial pa-
ing wall at the bottom of the channel, which is assumed to rameter for these layers is a = M "2N 3 . Ifa < 1, then the
have a potential ofq = 0. The linear plots show that for the electromagnetic body force overwhelms inertial effects, the
range of variables studied for positive mean voltage d,. the inertial terms in Eq. (la) are negligible, even in the high
total current per unit length is negative. The total current is velocity free-shear layers, and fully developed flow is real-
thus flowing from the moving wall to the bottom perfect ized. This corresponds to the statement that low Reynolds
conductor in the duct in core C 2. Similar linear plots show number flows are stable in ordinary hydrodynamics. We can
that for negative mean voltages (km the total current is posi- increase a by increasing U, or by decreasing B. At some
tive and is flowing from the bottom stationary conducting critical value of a, fully developed flow becomes unstable
wall to the top moving conducting wall in core C2. and there is a transition to a periodic flow. For a slightly

The following general conclusions can be drawn from above acr, there is a velocity fluctuation wave in the free-
this range of calculated data. The plots show that as the shear layer. This wave propagates with a definite wavelength
positive mean voltage 6,, increases, as the aspect ratio of and wave speed around the circumference of the current col-
channel a increases, and as the external magnetic field angle lector which is modeled here. At first, this wave would repre-
0 decreases,the total negative current per unit length in- sent a propagating undulation in the free-shear layer. As a is
creases. The total current is flowing from the top moving increased further, the undulations grow and become a series
electrode to the bottom moving electrode. The plots also of vortices whose axes are parallel to B in the plane of the
show that as the negative mean voltage q,. increases, as the free-shear layer. The vortices are convected around the cir-
aspect ratio of the duct increases, and as the external mag- cumference of the current collector. The vortices provide
netic field angle 0 decreases, the total positive current per significant momentum transport in the 4 direction. This mo-
unit length increases. The total current is flowing from the mentum transport causes the free-shear layer to become
bottom to the top electrode. It should be noted at this point thicker and its maximum mean velocity to become smaller.
that positive mean potential 6,_ gives a larger absolute value The layer thickness grows from M - 1/2 to N - '/-, while the
total current per unit length value, I (I/Ax) I, than the corre- mean u decreases from M 112 to N 3 . However, inertial ef-
sponding negative potentials in a similar channel. fects are still negligible in the core regions, which involve

Figure 15 shows a plot of nondimensional resistance per much smaller velocities, so that the present core solutions
unit length of channel versus angle of the external, homogen- still apply. The core velocities and potentials are the same, so
eous magnetic field 13, For this data the conclusion is that the jump in potential across each free-shear layer is the
reached that tlh resistance of the channel increases with in- same. The relationshipu1 = ack1//a for each free-shear lay-
creasing external magnetic field 0 and decreasing channel er comes from ohms law, so it is unchanged. The new period-
aspect ratio a. as would be expected. ic, inertial free-shear layers with O(N -ff ) thickness must

Nondimensional Joulean power losses per unit length of have the same total flow at each t = constant level as the
channel versus mean potential 6,, for different external original M -'12 thickness layers.
magnetic field angles 0 and aspect ratios a are plotted in Figs. In the free-shear layers for fully developed flow, there is
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a large viscous dissipation because the velocity gradient oaul/ j=M-2( .+ 30 a a2+ (A2)a"=O(M). After transition to the periodic, inertial free- Y =M- -- + 0-T. (2

shear layer structure, the viscous dissipation in the mean Now we differentiate Eq. (A2) with respect to 4':velocity is much smaller since

M - + - . (A3)
-= (N 2 1),<(M). 0-, \a, 2d 2 +~ 4~ a + ~

a.g Substitute Eq. (A lb) into Eq. (Aild) to obtain

However, the mean flow also loses energy to the vortices
through the Reynolds stress. The vortices receive energy L =_ dv = a 2 (A4)
from the mean flow and lose it to viscous dissipation and to a 0/ 0oA

2

electromagnetic damping (Joulean dissipation). An infi- Substitute Eq. (A4) for eachjg into Eq. (A3)
nitely long vortex with rotation around a straight magnetic a 20 - 2 4o L 49qS 4 3 4A
field line represents a generator on open circuit: The radial + 4 + 4 + 2 2
component ofv XB is exactly cancelled by the radial electric 372 a- 2 r - 2
field, so that there is no current and no electromagnetic a2O - -

2V4 . (A5)
damping. However, in the present problem, each magnetic Oq2

field line intersects one or two perfect conductors. These Now let us consider a wall in which the unit normal ^ is
perfect conductors provide a short circuit for the vortex gen- at an angle 0 to the magnetic field direction (see Fig. 18).
erator. Electric current circulates through the conductor The unit vector il, the first derivative 8/43y, and the second
and vortex and strongly damps the vortex. If a is increased derivative can be written as in terms ofCartesian coordinates
further, nonlinear vortex interactions lead to a wide spec-
trum of vortex sizes, i.e., to turbulence. However, the turbu- q = cos 64 + sin R, (A6a)
lence is two-dimensional since any eddy whose axis is not a = cos 0 a + sin d

parallel to B is strongly damped.' The value of a when each a-17 ay 0z
transition occurs depends critically on the geometry and a2 9

2  
Cin 0  2  a32

conductivity of the duct walls. a2Y2ayaz dZ2

(A6c)
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falor thesporth gient BthesdaD rogram attheHere it noted that V4 is unchanged by rotating the axis.

Equation (A7) is a fourth order elliptic equation so that two

boundary conditions must be described at each boundary.
APPENDIX A: THICKNESS OF LAYERS IN FULLY For a magnetohydrodynamic problem, the velocity is usual-
DEVELOPED MAGNETOHYDRODYNAMIC CHANNEL ly u = 0 and either the potential 0S is given at a perfect con-
FLOWS ductor or j, could be given at a finite conductor as

The discussion herein presents a fundamental general j4 = C(O 2 /a 2) where C = (o,,, t lTL) is the wall conduc-
magnetohydrodynamic mathematical treatment for deter- tance ratio, where oa, and t are the conductivity and thick-
mining the order of magnitude of boundary layer thickness ness of the wall, respectively. Therefore, let us assume that
in fully dcveloped laminar, magnetohydrodynamic channel there are two boundary conditions at the wall at y = 0. Now
flows, consider the asymptotic solution as M- o. Unless some de-

Equations for fully developed magnetohydrodynamic rivative becomes very large qS is governed by the "reduced
channel flows with a uniform magnetic field are as follows: equation":

j- M-2(a2 + 1- -), (Ala) cos2 062 +2sin 0cosO Aog  +sin2 0 a 2il* (A8)
ak. ayaz "

= _~a (A lb) The reduced equation is only second order, so it cannot satis-

131 ' fy both boundary conditions at y = 0. Therefore, there must

-g .30 + u, (Alc) be a boundary layer adjacent to the wall where the normal
S- _derivative a/lay is sufficiently large that at least one of the

", fourth-order derivatives on the right-hand side of Eq. (A7)
- + a = 0. (Ald) is comparable to the second-order derivatives on the left-
a9 1 9 hand side. Then, near the wall, the governing equation again

Here (x, /, q') are Cartesian coordinates with the velocity u becomes fourth order and can satisfy both boundary condi-
in the x direction and the magnetic field in the 1 direction. tions at y = 0. The core region is obviously governed by the
Introduce Eq. (Alc) for the u in Eq. (Ala) to obtain "reduced equation."
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We now change y to stretched boundary layer coordi- APPENDIX B: MATCHING PRINCIPLE BETWEEN
nates. HARTMANN LAYER AND CORE REGION

Y =/-y, (A9a) The matching principle was originally stated by Lager-

y = (6) Y, (A9b) strom2'12 1 in the early 1960s, which was proven to be rigor-
ous by O'Malley22"23 in the late 1960s. The principle statesO dYd ff =_ _ (A9c) that

n inner(m outer) = m outer(n inner) (B1)
Equation (A7) is expressed in stretched boundary layer co-
ordinates as where outer core, and inner = boundary layer. We will

2 illustrate with an example 2-inner (2-outer) = 2-outer (2-
cos2 9(-) 7 + 2-sin 0Ocos 0(6 ' inner) where (n = rr, = 2).

sYaz The outer (core) expansion is

+ sin 2 0 - Uc(X;M) = Uco(X)+ M Uc (X) + M 2Uc2 (x) +"&z2 2-outer = truncated after first two terms. '132a)

=M-2 (5- 4 )-d-4 + 2(5--) +4 d± Thus,
~a2 d4 ) z4 "

(A10) 2-outer = uco (x) + M - 'uc I (x). (B2b)

The first term on the right-hand side of Eq. (A 10) is always Now, inner (n outer) = n outer rewritten in inner
much larger than the other two terms. There are three cases (boundary layer) variables so that
for various 6. In case I, cos 0 is not small [i.e., 0<0<0o( inner (2-outer) = uco (M- X) + M - Iuc I (M - 'X).
< (r/2) ], so the magnetic field has a finite component nor- (B3)
mal to the wall. Then 6 = M - and the basic governing
equation isThis is not a legitimate asymptotic expansion becauseequtons3 2 0 3

4
0 the coefficient functions uc, (M - X) depend on M. We must

Cos 2  4 - (A 1l) change this to asymptotic expansion before we go on.
dY-" 0Y4 For X fixed, M -'IX- 0 as M_- oo. (134)

This is the governing equation for all Hartmann layers for
walls where there is a finite normal component of B. The Therefore, we use expansions for small argument, i.e., Tay-

basic solutions are or series;

A, (z), A,(z) Y, A(z)exp( - Icos iY), UCO (M- X) =Uco (0) + M-X duc()- dx
A4 (z)exp( + Icos 0 I Y), 1 d 2uC (0)

where the A, (z) are arbitrary functions. Thus, all Hartmann 2 dx2

layer solutions are composed of linear combinations of these I d3 UC0 (0)

four solutions. +6 1M (3 X13 31
In case II the angle 0 = ir/2 and the magnetic field is Also expanding Uc I (M X) in a Taylor series results in the

exactly parallel to the wall. Then 6 = M - /2, and the gov-
erning equation is of the mathematical form following expansion for the truncated series

inner (2-outer)

-5y = - 47 (A12) (d c0 (0)3Z2 y4 Uco (0) +M -  Uc, (0) + X

This is the governing equation for "side layers." These are ( duc, (0) 1 x2 d 2UCO(0)
boundary layers on walls parallel to the magnetic field, and it +M 2 X- +X 2  -x2 - (B6)
is the governing equation for free-shear (or interior) layers
that lie along the magnetic field, such as the free-shear layers This is now a valid asymptotic expansion in the form
being studied within this paper.

Case III deals with the problem when cos 0 = aM -112 f (X)M ' (B7)
and 6 = M - 1l2, where a is an 0( 1) parameter in the prob-
lem. Then the governing Eq. (AI0) becomes Therefore,

2 2  + -3 20 d 4  (AIJ) 2-inner (2-outer) = truncated after second term,
2 a dYdz dz2  

aY 4 'a V 2-inner (2-outer)

This is the equation for a wall that is nearly, but not exactly, ( duco (0)
parallel to the magnetic field. The governing equation for = Uco(0) + M -' uc (0) + X dx " (B8a)

case III becomes that for case II as a-0 and becomes that
for case I as a - oo, if we redefine 6. The inner expansion can be expressed as
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inner = Uho (X) + M -'Ub1 (X) + M -2Ub2 (X), within an arbitrarily small distance from & wall and then
there is a jump across a zero thickness layer to satisfy the
wall conditions. When we stretch the normal coordinate to

outer (2-inner) = ubo(Mx) + M 'ub, (Mx). (B8b) thewall byM, we can look at the structure ofthejump across

This is not a legal expansion. Thus, we need to know the "zero-thickness" layer which has been stretched to have
how UbI (X) behaves as X- o. 0(1) thickness. However, since M .M 11

2 the Hartmann
In general, we have solution forms from Hartmann layer sees the free-shear layer to be at infinity. Specifically,

boundary layer equations, so we know how the solution be- the value which the free-shear layer "sees" at an arbitrarily
haves. Assume, for some a > 0 small distance from the wall appears to the Hartmann layer's

Ubo (X) -A 0 + A,. exp( - aX) as X- oo (B9) stretched coordinate to be infinitely far from the wall.
The free-shear layer "sees" horizontal boundaries at

and = 0 and t = sec 0, even though walls are not horizontal

ub, (x) -. A + BX + B,. exp( - aX) as X- o. here.

By inspection the following relationships can be ob- The coordinate transformations are (see Figs. 2 and 4)

tained for the Hartmann layer equations: ( + a) = 4 cos 9 + I sin 9, (Cla)

lim (Ub0) = A, (BlOa) y = t cos 0 -4 sin 0, (Clb)
X -

t =ycos9 + (z+ a)sin 0, (Clc)
lim ( ) Bi (BlOb) 4=(z+a)cosO-ysinO. (Cld)

lim (u,, - B,X) =A. (B10c) Let us now consider the matching between the free-
A •- shear layer and insulated Hartmann layer. The stretched co-

Note as X-. oo, exp ( - aX) <X -" for any n. The expan- ordinates are
sion in terms of these expressions is

outer (2-inner) Y=M/ 2y, y-M -t2y (C2a)
=A o + A exp( - aMx) + M -'[A, + BMx Z=M(z+a), z= -a+M 'Z. (C2b)

.B,. exp( - aMx) ]. (BI 1) The Hartmann layer solution can be expressed as

Sinceexp ( - aMx) = exp( - aX) -OasX-- o 2 outer (2- UH = M /2UHo(Y,Z) + U nI (Y,Z). (C3)
inner) = A,, + B~x + M --'A, + asymptotically exponen- The free-shear layer coordinate and stretched coordinate
tially small terms. are, respectively,

Using the matching principle [Eq. (BI)] as X_ oo in are , respectively,
the boundary layer we obtain t=t, 4.=M/. (C4)
A, + BM X + M 'A, The velocity in the free-shear layer can be expressed as

= u (,)(() + M - 'u t (0) + M 1X du,.(0) o up = 2-outer= M "u"-(t, ) + u(')(t, ) (C5)

dx For inner (2-outer), we need I and 4 in terms of Y and Z.
(B 12) Note that t can be expressed in terms of y and z as

Therefore, the zeroth and first order matching condi- t =ycos 9 + (z + a)sin 9. (CO

tions between the core region and Hartmann layer are Substituting Eqs. (C2a) and (C2b) for stretched coordi-
nates results in the expression

A, = u,, (0) = lim [u,,() (X)], (Bl3a) t= cos O(M -,Y) + sin O(M 'Z). (C7a)

Also, 4 is expressed as
A, =u.,(O)= lim [uhl(X)-B,X], (Bl3b)

X . 4= M 112 = M 2 (M-'Z cos 0_ M -/2Ysin 0)

du,.( (0) du,, (X) (cos OM Z - Ysin 0). (COb)B, = - = lim - (B130)
dx A..z dX

Now the free-shear layer velocity uf, can be expressed as

APPENDIX C: MATCHING PRINCIPLE BETWEEN THE inner (2-outer)

FREE-SHEAR LAYER AND HARTMANN LAYER f M / (cos OM - Y + sin OM -Z),

The free-shear layer is separated from each wall by a (cosM- '2Z - Ysin 0)1 + ul. [( ),( )] + ...
Hdrtmann layer with O(M ') thickness. Since the free- (C8)
shear layer is O(M - / - ) thickness and M - '-EM , these
Hartmann layers appear to the free-shear layer to have zero The terms inner and outer are defined in Appendix B. Next
thickness. That is, the ;tee-shear layer solution applies to we need to use a double Taylor series expansion:
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u~j (t,;) =u('), (0, - Ysin 0) + t au- where si 0
(0,S -M Ysin2Z)

(+Ysin )co M"Z (C9b)
+ 4 Yi 0 ~ 0,- si ),(Ca Substituting in Eq. (C8) results in the expression

2-inner(2-outer) =MtI2 (o)(0, - Ysin9) +(cos9M-" 2Y +sin9M-'Z) d l(0, - Ysin9)

du(dt
+(COS Mf - 12Z) + fl(0 I sn9 + (COS 9M -12Y

+ sin OM Z) f~L (0, - Ysin 9) + COS GM - 1/
2 Z d-fl (0,- Ysin 9) + - (CIO)

Keeping only M"and 0( 1) terms for 2-inner (2-outer expression:

2-iner2-ute) -M 
2uf(0 - Ysin 0) + cos 0Y-!! (0, - Ysin 9)

COS OZ 2 (0, - Y sin90) + u(" (0, - Y sinG0). (CII)

When we do the matching all conditions on uf I will be at t = 0, so it sees a horizontal wall

I-inner( 1-outer) = I1-outer( I-inner): Jimn uHO(YZ) = uol)(0, - Ysin 0). (C12)
z-w
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Further studies ot liquid-metal flows and power losses in ducts with a moving
conducting wall and a skewed magnetic field
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In a previous paper the authors initiated studies of fully developed laminar liquid-metal flows,
currents, and power losses in a rectangular channel with a moving perfectly conducting wall
and with a skewed homogeneous external magnetic field for high Hartmann numbers, high
interaction parameters, low magnetic Reynolds numbers, and different aspect ratios. The
channel had insulating side walls that lvere skewed to the external magnetic field, while the
perfectly conducting moving top wall with an external potential and the stationary perfectly
conducting bottom wall at zero potential acted as electrodes. These electrodes were also
skewed to the external magnetic field. A mathematical solution was obtained for high
Hartmann numbers by dividing the flow into three core regions, two free shear layers, and six
Hartmann layers along the channel walls. The free shear layers were treated rigorously and in
detail with fundamental magnetohydrodynamic theory. The previous work, however, left the
solution for the velocity profiles in terms of a complex integral equation which was not solved.
In the present work the integral equation is solved numerically by the method of quadratures
to give the velocity profiles, viscous dissipation and Joulean losses in the free shear layers. In
addition, expressions for the viscous dissipation in the six Hartmann layers are presented. The
best approximation to the viscous dissipation in the channel is the sum of the O(M 31 2 )
contributions from the two free shear layers, the O(M 3 2 ) contributions from the two
Hartmann layers separating the free shear layers from the insulators, and the O(M)
contributions from three of the Hartmann layers separating core regions from the walls. The
best approximation to the Joulean power losses in the channel is the sum of the O(M 2 )
contribution from the central core region which carries an 0( 1) current between the electrodes
and the O(M3 "2 ) contributions from the free shear layers. The expressions for the viscous
dissipation and Joulean losses in each region involve the products of universal constants,
electrical potentials and geometric factors. The theoretical magnetohydrodynamic model
presented here was developed to provide data to help in the design of liquid-metal current
collectors.

I. INTRODUCTION In contrast to the rather extensive magnetohydrodyna-
Advanced homopolar electrical machinery is being de- mic (MHD) duct flow literature, 9 investigations treating

veloped for many new applications.'" These advanced ho- moving conducting walls, such as discussed by Hughes and
mopolar machines require current collectors for transport- Young,' 0 are rare. Brown, Reilly, and Sondergaard " have
ing high current at low voltages between rotating and studied fully developed, viscous liquid-metal flows and pow-
stationary members of the machines with minimal losses and er losses in a rectangular channel with a moving conducting
maximal operational stability. Therefore, liquid metals are wall in a uniform, external magnetic field for moderate Hart-
often used in the sliding electric contact region, instead of mann numbers. The rectangular channel had insulating side
more conventional brush technology. Generally, these ma- walls parallel to the magnetic field and a perfectly conduct-
chines have large magnetic fields in the region of the current ing moving top wall and stationary bottom wall perpendicu-
collector, which produce Lorentz forces on the liquid metal lar to the field. A previous paper' 2 by the authors treated
which can increase power losses and lead to flow instabili- rigorously and comprehensively this same problem with two
ties. Thus, to obtain current collector design parameters, one major differences. The homogeneous transverse magnetic
is interested in liquid-metal channel flow problems with ap- field was changed to a high strength, skewed magnetic field,
plied external magnetic fields and with boundary conditions and an external potential was applied to the conducting
containing combinations of mQving and fixed, conducting, moving wall, thus making the channel transport current.
or insulating walls. These boundary conditions then approx- Skewed magnetic fields are present at the collectors in some
imately correspond to a rotor, stator, or sidewall of the cur- machine designs and external potentials on the electrodes
rent collector and the liquid metal corresponds to the sliding correspond to the generated or motored voltage of the ma-
electric contact. chines. These changes complicate the channel problem by
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field at an angle 0 with the vertical can be written as

l N -'(v.V)v= -VP+jxi+M 2Vv, (1a)

V /o j= - V + vXb, (lb)

perfect conductor 0 = Uo, Vv= 0, (c)

- 2aL-insutator V.j 0, (Id)
e~ 4 where-p tn a tc n l e/

N = interaction parameter, the ratio of ponderomotive
p ,fect conductor at rest "=force to inertial force = oB L/lpUn; (2a)

B, M = Hartmann number, the positive square root of

the ratio of the ponderomotive force to the viscous
FIG I Rectangular channel with skewed external magnetic field and with force = LBo, (1a/tf) 112; (2b)
moving and stationary perfect conductors

v = fluid velocity vector normalized by U, = v*/U; (2c)

P = pressure normalized by aUfB 2 L = P*/'U,,B L;
(2d)

removing symmetry. The present paper should be consid- j = electric current density vector normalized

ered as part two of the previous paper) 2  by oUABo = j*/UBo; (2e)
The purpose of the previous paper' 2 was to present com- f electrical potential normalized by

prehensive, two-dimensional analytical solutions for the
flow velocity and electrical potential in different regions of U0BQL =

the channel (see Fig. I ). In the three core regions, the singu- V = gradient normalized by L = LV*; (2g)

lar perturbation problem for the velocity and electric poten- bi = unit vector parallel to external magnetic
tial was solved to zero order using matched asymptotic ex- field B,,(B,, = B,, ); (2h)
pansions. The solutions in the three core regions enabled the
investigation of the influence on the velocity and electrical (i,',) -unit vectors in Cartesian coordinates
potential of the insulating sidewalls and an external skewed (see Fig. 1),

high magnetic field. Furthermore, analytic expressions were b = cos 64 + sin Oi; (2i)
derived for the quantities of technical interest in the cores to where an asterisk denotes a dimensional quantity. Here a
zero order. These quantities were the load currents between and a are the electrical conductivity and viscosity of the

the electrodes (i.e., moving and stationary conducting liquid metal, while L is the distance between the perfectly
walls), Joulean and viscous dissipation, and channel resis- conducting electrodes, Uo is the velocity of the moving per-
tance with skew angle. The parameters of variation were fectly conducting top, and B,, is the strength of the external
applied skewed external magnetic field, fluid electrical c -.I-
ductivity and viscosity, and channel aspect ratio.

The fundamental magnetohydrodynamic theory for the It is assumed during this work that the magnetic Reyn-

two free shear layers was also derived to zero order. How- olds number R,, = UJLars (i.e., ratio of induced magnetic
field to external magnetic field) is much less than one, where

ever, the expressions for the velocity and electrical potential
were left in a form requiring the solution of an integral equa- I the iquiane permeil
tion. In the Cartesian system of dimensional coordinates (see

The work begun in our earlier paper' 2 is combined and Fig. I), the (x,y,z) coordinates are normalized by L. The
completed here. We have calculated the velocity profile, vis- perfectly conducting sliding wall is at a constant velocity of

cou% dissipation, and Joulean power losses in the free shear Usi aty = I, the stationary perfectly conducting wall is po-
layers by numerically solving the integral equation with the sitioned aty = 0. The insulating walls are at z = + a, where

2a is the aspect ratio of the channel. The external magneticmethod of quadratures. Furthermore, analytic expressions

for the velocity profiles and viscous dissipation in the six field angle is represented in terms ofthe field components
Hartmann layers in the channel are presented. as

In treating the magnetohydrodynamic flow due to elec- 0 = arctan( B,/B,,), (3a)

tric current between two circular electrodes embedded in and the magnitude of the external magnetic field in terms of
two parallel insulators with a transverse magnetic field, the field components is
Airy" and Hunt and Malcolm 4," treated a similar free

B,, = (B + B ) 11,  (3b)
shear layer, but their approach is quite different from ours.

Equation (I a) is the dimensionless Navier Stokes equa-
II. NONDIMENSIONAL MAGNETOHYDRODYNAMIC tion with an external ponderomotive body forcejXb. Equa-
EQUATIONS tion (lb) is the dimensionless expression for the electric cur-

The nondimensional magnetohydrodynamic equations rent density induced in the channel. Equation (Ic) is the
for laminar duct flow in an external, homogeneous magnetic dimensionless expression for the fluid incompressibility.
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moving perfect conductor .0 do -.= +u, (7b)

31 ~ ~ 1 = diI =o, (7c)
I ZI +? "-4

UoC3 coe and P is a constant.
I " |Here we assume that the Hartmann number M is large.

core C ForM>> 1, the interior of the channel is subdivided into three
core regions with all 0( 1) derivatives, two free shear layers

perfect conductor which have O(M - 1/2) thicknesses and which separate adja-
nt rest cent core regions, and Hartmann layers which haveisulator- Y

0 < 0 < arctan (2a) O(M -') thicknesses and which separate cores or free shear
Z layers from adjacent walls. In each core region,

]4 = 0, j, =j (', b )- (', U =-- ,

FIG 2 Rectangular channel with coordinate systems (x,yz) and (x,,i) (8)
neglecting O(M -?) terms. The jump in electrical potential
or normal current density across a Hartmann layer Is
O(M ). The integration functionsj,, (4) and b(4) in each
core are determined by the electric potential of either perfect

Equation (Id) represents the conservation of charge. conductor or by the boundary conditionj, = 0 at either in-
A new rotated nondimensional coordinate system sulator, neglecting O(M -') terms. This completely deter-

(x,l,) is defined with the q axis parallel to the external field mines the core solutions, which we presented in our previous
B1 . Therefore, the unit vectors A1 and b are identical (see Fig. m
2), and i is the unit vector in the axial direction along the equal at t = - a cos 0 and at = a cos 6 - sin 6, and the

channel. In our new rotated, right-handed coordinate sys- free shear layers at these planes must accommodate these

tern, the straight lines describing the top, bottom, left, and jumps in the electrical potential. The dimensionless poten-
right walls are represented by the following equations: tials at the fixed and moving conductors are zero and

71= sec 0 + (tan 0)4 ( , + 4), respectively.
for - a cos 0 - sin O< <a cos 0 - sin 0, (4a)

y = (tan O)4 for - a cos O< <a cos 0, (4b) Ill. FREE SHEAR LAYER ANALYSIS
The free shear layer in regionfI is shown in Fig. 3. The

for - a cos 0 - sin (co 4 - a cos 0, (4c) potential at the left is

7/ = a csc 0 - (cot 0)4 0,1 = O - a cos 0, (9a)

for a cos 0 - sin O< <a cos 0. (4d) and the potential at the right is

It should be noted that the unit vectors in the two sys- 0 cos 0(0, - a cos 6) (- + a sin 6). (9b)

tems nave the following relationships: The width of the layer is O(M -1/2) and the top and bottom

z = sin A + cos O l, (5a) are at - = sec - a sin 6 and = - a sin 0, respectively.

' = cos ( I - sin Oi, (5b)

In our rotated coordinate system (x,y,4) the physically
realizable variables for fully developed flow" can be ex-
pressed as

v = u(y,.), (6a)

P = P(y,4) (no axial pressure gradient), (6b)
= (7, ,(6c2) core ,-o-O(M2 )

+ ()(',) . (6C)

Substituting these variables into Eqs. ( la)-( Id) results in c C2

the following system of magnetohydrodynamic equations in
terms of velocity and electrical potential. The electrical po-
tential and flow velocity are variables that can be measured
experimentally.

J_ / M d u + 3 u (7a)

d + "), FIG. 3. Free shear layerfl separating core% cl and c2
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We shall work out the fundamental mathematical theory for where the boundary condition from matching core c2 is
shearlayerf1; thetheory forshearlayerf2canbeperformed D-(, - a osO) (tcos 0 - 1) as s'--o, (15b)
in an analogous manner. In order to develop the theory for
f 1, the stretched coordinate ' will be defined as the boundary condition from matching core ci is

4=M'12 (+acosO), 4= -acos0 -M-" 24, *-O as - (15c)
(10a) the boundary condition at the moving perfect conductor is

a =d4 a =M" 2 a "  (10b) P= 0 at t=sec0 for- oo<'<oo, (15d)
a- d- a4" - - the boundary condition at the fixed perfect conductor is

The fundamental magnetohydrodynamic Eqs. (7a)- (6,-acos0) at t=0 for 0<4< o,
(7c) in the free shear layerfI for fully developed flow in
stretched coordinate 4 and regular coordinate -q are

13u a :u\ and the boundary condition at the Hartmann layer separat-
7(7,=) I , + M - ing the free shear layer from the insulating wall is

(Ila) a~ a
jla)0-' + = at t=0 for- oo<4<0. (15f)Oi= (4,), ;- - -  at

g2 ,. u -The boundary conditions at the perfect conductors apply
C - M (7,0 + u(77,0, because the jumps in electrical potential across the Hart-

(Il b) mann layers between the free shear layer and perfect conduc-
],, ' aj. tors are O(M -'). The boundary condition Eq. (15f) is ob-dill+MI,2_._-= =0.

S=0.~ tained by matching the solution in the Hartmann layer

between the free shear layer and the insulating wall.'" Physi-The first terms in the series solutions in the free shear layerf I ewe h reserlyradteisltn al 2 Pyi
cally, this Hartmann layer must match the O(M 12) free

are
shear layer velocity uf .o at t = 0, and must satisfy the no-

i,(l, ) =JIi.o (T,7), slip condition at the insulating wall. This jump in velocity
(12a) involves a very large gradient in the viscous shear stress in-

j, ( 7,4) = M - /112 o(7,), side this Hartmann layer, i.e., 43r, 7/dz is large. The term r'xz

0(77,0 = io (7,), represents the x component of the surface force per unit area
(12b) along the x-y plane. An O(M 1/2) tangential current density

u(y,1) = M /2 U,.o (Y,), j inside this Hartmann layer provides the electromagnetic
neglecting the O(M -2), O(M'), O(M -- 1), and 0(1 ) body force to balance this large shear stress gradient. The 4

terms, respectively. total Hartmann layer current in they direction at each point
From the magnetohydrodynamic Eqs. (lI a) and along the insulating wall is proportional to the free shear

layer velocity uf.,o evaluated at t = 0. Since this velocity
varies along the insulator, the total current inside the Hart-

S.0oa 1.0 mann layer must vary as well. An increasein current must be3 ~'--° J17fo = - ,(13a)
q. ,0. = drawn from the free shear layer, while a decrease implies a

a3 /,.0  ( 2 Of 1.0 d 4 Ob. current into the free shear layer from the Hartmann layer. In
= ' , 4 (13b) the boundary condition (I 5f), the term d92 ' /(94represents

the tangential variation of uf,.0 at t = 0 since uf1,0 = AV,/
The mathematical solutions to the differential Eq. (1 3a) and (9. The term A/at represents the electric current from the
the boundary values of Eqs. (9a) and (9b) are assumed to be Hartmann layer into the free shear layer or vice versa, since
in the form - o4)/at.

Of 1.0 = 0, - a cos 0 + 4)(t,4), (14a) By using the techniques of complex Fourier transform,
where the convolution theorem can be used to obtain +)(t,4):

and t= + a sin 0, (14b) p = Jr

sin0>0 forfl, sign(sin0)= + 1. (14c) F' ....f f( *)G(t, - *)d * (16a)
Here +(t,4) is treated as a perturbing term which ap- o -
proaches zero as '-. - oo [see boundary value Eq. (9a)]. where
Also +(t,') approaches zero at the moving perfect conduc- 4) a'o [0 for-ac <4<0,
tor. The partial differential Eq. (13b) in terms of )(t,') f(') = (2 (0,4) + - (0,') =
with its five boundary conditions in terms of t and is 2 d If (4) for 0 << co.

(16b)
adt a for 0t~sec 6, - ao <"< ac, In the previous work' 2 the Green function was evaluat.

(15a) ed to have the form
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G( t,) = ( /4) {erf (4 t - "12) was obtained from G(t,') by partial differentiation [see Eq.

-erf[ (2 see 0- t)- 1/2]} (17) ]. By using the identities
2 erf(x) = sgn(x)erf(Ixl), erf(x) = 1 - erfc(x),+ 17r- 1/2{ 1/2 ep - 2 t -')

+ {I exp( -4g we obtain the expression
- (2sec0-t) " 2 expf -, g2(2sec0- t)-'}I uf f(()s) 1 f( 17) f1-0( ' 4-, =(')g (' 4'*

This solution satisfies the governing equation and all bound- X {erfcli- ( 1 * (2 sec 0 - t) -1/21
ary conditions except the condition (15f).

Remembering that P(t,') can be expressed by the con- - efc( lI" - 4 *(t-2) }d. * (24a)
volution integral [Eq. (16a)] and must also satisfy the where
boundary condition at the fixed perfect conductor f(4) = - 1(o, - a cos 0)cos OF [1 (2 sec 6) -,/2]. (24b)

4 = - (b,,-acosO) at t=0, for 0<.< oo, Substituting
(18) Z = (2sec 0) - 2._- = 2(2 sec 0),/2 Z, (25a)

the following relationship must hold: Z = i4 *(2 sec 0) -'/ * = 2(2 sec 0)/2 Z*, (25b)

f(- * * * 0) T= t cos 0t-t = 2 sec OT. (25c)

into Eq. (24a) results in the expression for uf1.0 :
for 0<4'<cc. (19)

In this equation, we change coordinates to reduce the inte- uf 9 = (0, - a COS ) (COS 0)/2 U( TZ), (26a)

gral equation to a form that is independent of sec 0 and of where

(h,, - a cos 0). U= (2 ) - 2J F(Z*)sgn(Z Z*)

f ( * 1 - Z *lerfc(IZ - Z'* ) X{rcIZ - Z'*I T - /)- eF(Z)I × >{erfc(IZZII/2) ef

- 77
- /2 exp[ _ (Z- Z*) 2]}dZ* = I x[IZ- Z'(1 - T)-1/2]}dZ*. (26b)

for 0<Z< oc, (20a) It remains to solve the integral equation for F(Z *) for

where 0<Z* < co and to substitute this solution into the integral
w) 12Zexpression for U(T,Z). The universal velocity functionS=2(2 sec 9)9"2 Z, 4* =2(2secO)1/2Z*, (20b) U(TZ) for 0<T<0.5 and - oo <Z< oo is independent of

d_*= 2(2sec 9)112dZ*, 0<, Z<00, (20c) all parameters in the problem. For a particular set ofvalues
for 9 and 0, expression (26a) scales this universal velocity

f (4) =f[2(2 sec 0)'12 Z 1 - -a cos 0) F(Z). function into the O(M I/2) free shear layer velocity u, ,0.
2 sec 0 The solution of the integral equation involves a Dirac

(20d) delta function at Z * = 0. The Hartmann layers on the insu-

This integral equation is solved numerically in detail here in lator and perfect conductor intersect to form an
order to determine the velocity profile directly in the free O(M - ) X O(M - ') corner region at y = 0, z = - a, as
shear layer. We did not solve it in the previous paper. '2  shown in Fig. 4. As noted in part a of this figure, the potential

The velocity of the free shear layer is represented to zero changes from 0 to (0, - a cos 0) over a very small distance
order by [see Eq. (12b) ] Ay = O(M - /.) at z = - a. This is the same as thejump in

u = M /2 u1 1o (7,'), (21a) 0 across the free shear layer at t = 0, but in the free shear
layer this potential difference is balanced by the large in-

where the stretched coordinate " is defined as duced electric field (uf1,0 i) X b. Inside the Hartmann layer

= M '/2(4 + a cos 0). (21b) adjacent to the insulator, u must decrease from uf 1o to 0, so

Here u, ,, is related to the zero-order potential function by that locally the large potential gradient is not balanced by
the induced electric field. This leads to a large electric cur-

-g. - - (t,') rent leaving the fixed perfect conductor through the
a; = " O(M -') X O(M -)correr region. Part of this current con-

for 0<t<sec 0, -oo <"< . (22) tinues in they direct to become the], in the insulating wall

The function Uj,,, can be represented as Hartmann layer which balances the large viscous shear gra-
dient here. The rest of this current enters the free shear layer

-* (t- 4-*)d4 (23a) directly. Since the corner region has O(M -1) dimensions,
" while the free shear layer has a much larger O(M -112) thick-

where ness, the free shear layer sees the current from the corner
dG region as a point source of electric current at t = 0 and "=0.

(t,) =l{erf(Q.T 9/2) Since F is the rescaled value of
a 4 (27)

-erf[.(2sec0-t) /2]} (23b) 2  (7
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FIG. 5. Local (t, ) coordinates for each layerf I and f2. (I) Origin is at the
comer of conductor and insulator, (2) t is parallel to the magnetic field; (3)
at corner, perfect conductor lies in " > 0 and insulator lies in < 0, and (4)
is the regular, unstretched coordinate.

I'-OIM-')

/ is solved using Gauss elimination with partial pivoting. The
__ __ value of It is adjusted until F, = F(0) is clearly the finite

o(M-, perfect conductor continuation ofF, = F(H) and F 2 = F(2H). The values of
Fo for two successive values of Jo were used to predict the

SXnext guess for Io. This process converges quickly tocomer reio- I 1. This test is quite sensitive because Io = -0.98

) Ic) gives a very large positive value of Fiand 10 = - 1.02 gives a
very large negative value of F0 . For 10= -1.00,

F0 = - 1.48, F,= -1.51, and F2 = -1.54, with
FIG. 4- Hartmann layers which separate the free shear layer fI from the H = 0.03. The values ofHZN, and n were varied over a wide
walls at the corner, the 0(M ')x O(M ')corner region and the electric
current flowing through the corner region into the free shear layer. range of values to test the accuracy of the trapezoidal rule

quadrature. The results for H = 0.03, ZN = 1.2, and n = 40
were the results used to compute U, but were essentially
identical to the values for the other similar sets of H, ZN, and

at t = 0, and j, = -oD1/t is the current which sees a n.

source at Z = 0, then The expression for U(T,Z) is evaluated in a compi rable
series of steps. We substitute F(Z*) -6(Z* -)

(28) +F(Z*). We use. a trapezoidal rule quadrature for
where 0<e<l is included to avoid any ambiguity in the O<Z*<ZN.WetakeF(Z*) = F, forZ* >ZNandintegrate
integral of 6 from Z * = 0 to oo. Here 1, represents the mag- for this range explicitly.
nitude of the electric current flowing from the corner region
to the free shear layer and is determined by the condition
that F(Z *) is bounded at Z *=0. In other words, lis cho. A. Free shear layer /
sen to remove all singular behavior from the modified inte- We have defined q, to equal (0, - a cos 0) in free shear
gral equation layerfl (see Figs. S and 6). The change in potential across

the layer isJ F(Z *){IZ - Z *Ierfc(IZ - Z *I)

- " /2 exp[ - (Z- Z*)2I}dZ*
01 0. o- acoeo

=l + Ir-'exp(-Z) -Z erfc(Z)]. (29) t - Sac

This integral equation is solved numerically using the
following steps. The integral from Z * = 0 to ZN is approxi-
mated by a trapezoidal rule and with a step size AZ * = H.
For the integral from Z* ZN to oo, we assume that
F(Z*) = F(ZN) and carry out the integration explicitly. 0- = , o, t1co

The integral from ZN to oo is then added to the coefficient of I
i t

F(ZN) from the trapezoidal rule quadrature formula. The
integral equation is evaluated at Z = iH, for i = 0 to
n = ZN/H, i.e., at Z = 0, H, 2H,...ZN. This gives n + I si- I
multaneous linear algebraic equations for the unknowns
F = F(JH) forj = 0 ton. This set ofsimultaneous equations FIG. 6 Free shear layerf1.
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AO(t) = ;(Z-. oo) - O(Z-. - o), (30a) 0 = lc p of p, . tP condluctor at

where the stretched coordinate Z is defined as m anle--Pt

S=2M-/2(2 sec 0) 1/2Z, (30b) t =t

Z= M M" 2(2sec0)- 2 , (30c) f. ha by.

where (t,4) are local Cartesian coordinates with the origin at -
the comer. Therefore, 0 =0 r-0 Ob + (O - Ob "N,

A0(t) =0 (tcos0- 1), (31) I -

so that A0 (t) varies from - b at t = 0 to 0 at t = sec 0. The Ii
velocity in the free shear layerf 1 is expressed as insuato at a ag

u = M 1/2 , (cos O) 1/2 U( T,Z), (32)

where t has been defined as t = T(2 sec 0) in Eq. (25c). > eonut or

T = 0 at the corner of the insulator and perfect conductor < o r

and T= 0.5 at the other conductor. The range of T is
0< T<0.5, which is inconvenient, but it eliminates several FIG. 8. Generalized notation for free shear layer.
square roots of two from the equations.

When Z-- o the stretched coordinate approaches the
core between two perfect conductors. When Z-. - co, the
coordinate approaches the core between the conductor and where Z is the stretched coordinate. Then
the insulator. U(T,Z) is independent of 0o, 0, and a. AO( =#i + (, - bt/A) - 01

B. Free shear layer f2 = (1 - b) [ U/t,) -1], (36a)

In free shear layerf2, 0,2 was defined to equal and the velocity u in the free shear layer is

02 = (0( + a cos 0 - sin 0) u = M " 2
(0, - b )(,) 2U(TZ), (36b)

(see Figs. 5-7). The jump in potential across the layer is where

AS(t) = q(Z- oo) - O(Z- - 00), (33a) t = 2t, T- *T= t/2t,, (36c)

where the stretched coordinate Z is defined as and the stretched coordinate Z is defined as

=2M 2 (2sec) 2 Z, (33b) =2M - 2 (2t)'/Z+-Z =M' 2 (2t,)- 2 .
Z= M /2 (2 see)- 2 , (33c) (36d)

so that As Z-- co, the stretched coordinate approaches the core
between the two perfect conductors, and as Z-. - co it ap-
proaches the core between the conductor and the insulator.

The velocity in the free shear layerf2 is expressed as The function U(T,Z) was defined as before. The results

u = - M /202(cos 0) 112 U(TZ). (34) for Uare presented in Fig. 9. Since inside the free shear layer

The definitions for TZ, and U are the same as those given = '~, = , (37)
previously. IV

and since = 0 at = 0, for >O, then u= 0 at t = , for
C. Generalized expression for velocity in free shear O>0. As T-,0, the velocity profile becomes skewed to nega-
layers tive Z with u--0 for Z>O. The volume flux inside the free

The change in potential Ao(t) across the generalized
layer is (see Fig. 8)

Ao(t) = (Z- 0o) - O(Z--. - 00 (35) T-:.:
-04 -6,  1

-. 4 - T - 0.4

,-t ---, ce -- s)g-T-LI

I -- U

It 
"- -&

z

FIG. 7. Free shear layer f2. FIG. 9. Rescaled free shear layer velocity profiles U(T,Z).
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shear layer is proportional to (sec - t), so it is 0 at P I Mao2(f -acosO)
2 (cos9) /2 (P~f), (40a)

t=sec0 or T=0.5, and maAimum at t= T=0 where where
u = 0 for A0. As T increases from 0, the profile settles to- 1/2 2

ward a nearly symmetric one with its center at Z = - 0.3. Pt - (2) -12 dzdT. (ff0b)

V. VISCOUS DISSIPATION AND JOULEAN POWER We introduce Eq. (26b) for U(T,Z), and expression (28)
LOSSES for F(Z *). We use the identities

A. Free shear layers a [Z1) = sgn(Z), a [sgn(Z)]=2 (Z). (41)

The nondimensional viscous dissipation in the total ((s Z
channel can be found by solving the following integral in the Finally we introduce the numerical results for F(Z *) and
different regions (see Fig. 10): evaluate the integral with respect to Z * with the same trape-

p * a u 2 zoidal rule quadrature to obtain a value for Psf. Pf is aP -I -a [ou2 (d u dy dz. universal constant for all free shear layers of this type and
P." = 0 o = d_ \y) +\a1) ]

J K)(L38) equals 0.0918. The dimensionless viscous dissipation for free
(3) shear layerfl 1 s written as

The contributions of the core regions are of order 0( 1), the = M3/2rf Is )t

contributions of the Hartmann layers between the cores and PTIc(

the wallsare ofO(M), the contributions of the two free shear where 0, = (0, - a cos 0).
layers are of order O(M 1 2), ,d the contributions of the two The dimensionless viscous dissipation for free shear lay-
Hartmann layers between the free shear layers and the insu- erf2 is derived from analogous arguments as
lating walls are of O(M 3/2). = M 1/20 (COS 0) /2(pf),

The nondimensional viscous dissipation in free shear Ff2 2 (43)

layerf I is expressed as where , = (0, + a cos 0 - sin 0).

Also the viscous dissipation for a generalized free shear

P i = M 2 f (39a) layer using the generalized formulation for the free shear
Jo J , \ d / layers can be expressed as [Eqs. (36)]

where Pt.f = M 31 2 (o, - kb )2(t ) -' 
2

(P), (44)

uf 1, (t, ) = (o - a cos 0) (cos 9)I/2 U(TZ) (39b) where P. is again the universal constant 0.0918.

and
duf .0 u B. Viscous dissipation in the Hartmann layers

u--- (2) -/2( = - a cos ) cos 0 -( T,Z). Let P'r.H I be the dimensionless viscous dissipation for
(39c) the Hartmann layer between the free shear layerf I and the

1/2 39 insulator at z = - a and let P'TH2 be the dimensionless vis-
Since d = 2 (2 sec 9) dZ and dt = 2 sec 0 dT, the vis- cous dissipation for the Hartmann layer between the free
cous dissipation inf 1 can be e-pressed as

/ / -

/ /
/ /

I / /

I /C2 I I/
4 hial- C3 

i

h -

FIG. 11. Hartmann layer adjacent to free shear layerfl. The O(M )free
shear layer velocity U ,o is zero at t = sec 0 for all " and at I = 0 for '> 0.
There are no O(M "') velocities in the Hartmann layers between the free

FIG 10. Subregions in magnetohydrodynamic channel flow at high exter- shear layerand the perfect conductors, so that Pr, = O(M "') in theselay-
nal magnetic fields ers.
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shear layerf2 and the insulator at z = a. U 10, Z)
In a previous paper,' 2 we found the zero-order velocity

in the Hartmann layer H (see Fig. 11) to have the form
-0.70

u=. uM 1 .0 (0, - Y sin 0)

X [ I - exp( - Isin 0 i)], (45)

where

Y=M" 2y and -==M(z+a) (46)

are the stretched tangential and normal coordinates for this
Hartmann layer, respectively. Here 4 = - Y sin 0 in the ,_z
free shear layer at t = 0. In the Hartmann layer

du
-- = (0, - Ysin 0)1sin 0az

FIG 12. Sketch of U(T,Z) at T= 0.
Xexp( - Isin 0 I2), (47)

while au/3y is only O(M). We introduce the result Eq. (47)
into expression (38) for the dimensionless viscous dissipa- (38) for the viscous dissipation, so that the contribution to -

tion, where Pll from the corner region is only O(M '). This contribution

dy = M -/d Y, dz= M - ,'d, (48) represents a small correction to the viscous dissipation in the

for this Hartmann layer. The ranges of integration for both Y Hartmann layer between the insulator and free shear layer

and E are from 0 to oo. The integral with respect to - can be fl.

carried out explicitly since it only involves The only O(M -12 ) contributions to the viscous dissipa-

exp( - 2lsin 0 -). The result is an expression for the di- tion arise from the two free shear layers and the

mensionless viscous dissipation in this Hartmann layer, O(M -') x O(M - 12) Hartmann layers separating the free
shear layers from the adjacent insulators. Summing both free

P = M "Isin 0 1 I [1u., (0, - Ysin 0)1 dY. shear layers and their Hartmann layers gives the following

(49) expression for the O(M 3 12 ) viscous dissipation

Substituting 4= - Ysin 0, or dY= -csc 0 d, noting P =M12 ±&)(cs) 2 (PfP, )' (53)
that sin 0 is positive for this Hartmann layer, and reversing where P1,f = 0.0918 and Pl,n = 0.197 26.

the limits of integration gives The coefficient (Pmf + Ppii) = 0.2891 of the O(M 1 2)
dimensionless viscous dissipation is relatively small. With

Pil = 1M1 . [u." (0,t) ] 2 d. (50) the assumption that M> 1, we have so far assumed that the2. O(M) contributions to the viscous dissipation are negligible
Note that the expression is independent of the angle of the compared to the O(M 12) leading term in the asymptotic
insulator relative to the free shear layer. The integral in- expansion. In actual homopolar devices, M has a moderately
volves only the free shear layer solution which depends on large value, for example, 50, so that M 2 is not much larger
only two parameters: the jump in 0, namely 01 than M. If the coefficient of the O(M) term is larger than
= (04, - a cos 0), and the length of the layer t, = sec 0. (PI + P,, ), then the O(M) term might be as large as the
Changing the variables from ul 10 to Uandfrom' toZgives O(M'/ 2) term for actual values of M, such as 50. There are

P,1, = M '1/0 (cos 0) 2 (P, ), (5la) four contributions to the O(M) dimensionless viscous dissi-
pation:

where () The O(M) correction or perturbation in the free
If 2] shear layers.

P1 = (2) 1/2 [U(0,Z) dZ. (51b) (2) The O(M) correction or perturbation in the Hart-

P was calculated numerically from Eq. (26b) and the val- mann layers separating the free shear layers from the insula-

ue is 0.197 26, which is more than double the value for the tors.
free shear layer. (3) The viscous dissipation in the (M-t) XO( M i)

U(0,Z) has a discontinuity or step at Z = 0 from rough- corner regionsaty = 0,z ± a, associated with thejumpin
ly - 0.7 to0, asshown in Fig. 12. Thecorner region which is U(0,Z) from - d0.7 toO.
O(M ') O(M ') must match this discontinuity. Hunt (4) The viscous dissipation in the Hartmann layers
and Stewartson " give the solution inside the corner region. between the core regions and the walls where there is ajumpIn this region u = 0(M "/2),du/dy = O(M "a:), and dul in the 0( 1) velocity across the Hartmann layer.
Iz = O(M/1), so that The first three contributions to the O(M) dissipation

are all proportional to the free shear layer solution. We will
[(d + ( U O(M (52) assume that this proportionality leads to coefficients which

y z are comparable to (Pf + Pm,1 ), so that these contributions

However, dy = O(M -') and dz = O(M ') in expression are indeed O(M - 2-) smaller. On the other hand, the Hart-
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mann layers adjacent to the core regions involve a contribu- In the core regions cl and 3, j,, = O(M -'); in the core

tion that is related to the potentials in the perfect conductors region c2, j,, = 0(1); and in all three core regions,
and not to those in the free shear layers. In particular, the jg = O(M -2). Therefore, the contributions to the Joulean
viscous dissipations in the Hartmann layers adjacent to the power losses are O(M 2) for the core region c2 and 0( 1) for
two perfect conductors increase as the aspect ratio of the the core regions cI and c3. In a previous paper, 2 we present-
channel, 2a, increases. Real current collectors have large ed the expression for the Joulean losses in the core region c2,
values of 2a, for example, 25, so that the O(M) Hartmann namely
layercontribution maybe larger than the O(M31 2) free shear pT2 = f f 2 (cos 0) (qS3 - #1). (59)
layer contribution.

The Hartmann layers adjacent to the cores are num- Equation (59) assumes that in = - cos 0(o + 4) every-

bered h 1 to h 6 in Fig. 10. The core solutions were presented where in the parallelogram defined by (tan 0) <i7<

in a previous paper.' 2 Hartmann layers h 1, h 3, and h 4 in- (tan 0)4 + sec 0, for - a cos O<9 <a cos 0 - sin 0, and
volve no jumps in the 0(1) velocity u, and their viscous that j = 0 everywhere in the two triangles for 4< - a cos 0

dissipation is at most O( 1). For Hartmann layersh 2, h 5, and and for 4>a cos 0 - sin 0. In reality, the 0( 1 ) current den-
h 6, the velocity varies exponentially from the core value to sity deviates from these values inside the free shear layersf I
the wall value (0 or 1 ). The velocities inside these Hartmann andf2 and in the Hartmann layers h 2 and h 5, so that these
layers are viscous layers contribute corrections, either additions or

subtractions, to the Joulean power losses based on the core
Uh6 = 1 -exp[ -M~sinOI(z+a), (54a) solutions.
Uh2 = u,2 (y= 1){1 - exp[MIcos 0 1(y- 1)]} + 1, The current lines do not actually end exactly at

(5:) = - a cos 0 and at 4 = a cos 0 - sin 0. Instead, the cur-

uh5 = uc2 (y = 0){1 - exp[ - M Icos 0 ly]}. (54c) rent lines fringe an O(M -/2) distance beyond these lines
inside the free shear layers. Thus the cross-sectional area of

In core c2, is determined by the potentials of the perfect the effective conductor between the two electrodes is the
conductors and u = d /. Integrating the viscous dissipa- 0( 1) area of the core region c2 plus the O(M - 1/2) areas of
tion per unit volume over each of the Hartmann layers h 6, the two free shear layers fl and f2. The O(M -12) addi-
h 2, and h 5 gives tional current inside the two free shear layers contributes an

Ph6= M sin 0, (55a) O(M 3/2) additional Joulean power loss. The steps to deter-

Ph 2 = Ph= M sin2 0(0 - '), (55b) mine the free shear layer contribution exactly parallel the
steps to determine the O(M 31 2) viscous dissipation due to

where again qS, = 00 - a cos 0, and the free shear layers. The total addition due to both free

02 =qo0+acos0- sin 0=0 , + AOb, (55c) shear layers is

AO = 2a cos 0- sin 0> 0, (55d) PTf = 0.6692 M'/ 2(cos o) 1/
2 ( + ). (60)

for 0<tan 0<2a. Therefore, the viscous dissipation in the The additional Joulean power losses due to the extra fringing
free shear layers and adjacent Hartmann ' ayers H is propor- current inside the free shear layers is more than twice the
tional to viscous dissipation in the free shear layers and associated

2 +02 =24 2 +02qS(Aq$) + (AO) 2, (56) Hartmann layers, as given by Eq. (53).
In the Hartmann layers h 2 and h 5, the current lines

while the viscous dissipation in the Hartmann layers adja- from the core region c2 must bend in order to enter the per-
cent to the core c2 is proportional to feet conductors at right angles. This bend in the current lines

0-q$ = [ +3(A) + (A0) 2 ] (57) makes the current density in the Hartmann layer less than
that in the core. Since Eq. (59) assumes that the core solu-

The quantity (A0S) can be moderately large. For example, tion applies all the way to the perfect conductors, it slightly
for 2a = 25 and 0 = 45', (AqS) = 17, which can make the overestimates the Joulean power losses very near the con-
Hartmann layer dissipation comparable to that of the free ductors. The O(M) correction due to both the Hartmann
shear layers for modest values of M. Therefore, the best ap- layers h 2 and h 5 is given by
proximation to the viscous dissipation would be the sum of = - M(sin 9)2 cos 0( - ). (61)
the 0(M 31 2) contribution from the free shear layers and
Hartmann layers H and of the O(M) contribution from the The best estimate of the Joulean power losses is given by the
Hartmann layers h 6, h 2, and h 5. sum of Eqs. (59)-(61).,

C. Joulean power losses VI. CONCLUSIONS

In addition to viscous dissipation, there are Joulean In a rectangular duct having insulating sides, a moving
power losses due to the flow of electric current through the perfectly conducting top wall, a stationary perfectly con-
electrically resistive liquid metal. The Joulean power losses ducting bottom wall, and a strong, skewed magnetic field,
are given by there are free shear or interior layers lying along the two

p= , - g 2  magnetic field lines through opposite corners of the crossP T
PTJ IJ - - i2 ( +j2)dy dz. (58) section. These free shear layers separate pairs of inviscid core

J o regions and must match different electrical potentials in the
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adjacent cores. These layers involve very large, O(M "') di- program at the David Taylor Research Center, Bethesda,
mensionless velocities, while the core velocities ore only MD 20084-5000, sponsored by the office of the Chief of Na-
0( 1). These high velocity sheet jets can be in either the plus val Research, Director of Naval Research.
or the minus x direction, i.e., with or opposite to the moving
wall's direction. The direction of flow in each free shear layer APPENDIX: HUNT AND STEW4RTSON'S INTEGRAL
depends on the sign of the electrical potential at the point EOUATION FOR A SIMILAR FREE SHEAR LAYER
where the layer intersects the moving conductor, that is, on The integral equation of interest in the present paper is a
the signs of q, and 0 2. These values depend on the direction Fredholm integral equation of the first kind
of the load current: if there is a significant load current from
the stator to the rotor, then both qS, and 4'2 are negative; if F(Z *) {IZ - Z * Ierfc( IZ - Z *1)
there is a significant current from the rotor to the stator, then /

both , andq , are positive; if there is no load current, thenSb - ITI exp[ - (Z - = I. (Al)
is negative and 02 is positive. Hunt and Stewartson's' t integral equation has the form

The boundary value problem for the free shear layers
was reduced to an integral equation in a previous paper.' 2  g(p) = (2rr) - /"2 g(t)exp[ - !(t--p)"ldt. (A2)
The numerical solution of this integral equation is presented
here. The velocity profiles in the free shear layers are also Equation (Al) can be reduced to Eq. (A2) by three steps:
presented here. These profiles are reduced to a universal integration by parts, differentiation with respect to Z and
function U(T,Z) for all similar shear layers. The scaling for rescaling Z and Z * by (2) 12* Substituting the expressions
any particular shear layer depends on only two parameters: z. ^ dG(z*)
the jump in the electrical potential across the layer at the G(Z*) = o F(Z)dZ, dZ* = F(Z*) (A3)
corner where the insulator and conductor meet, i.e., 4', and dZ *
, for free shear layersf I andf2 here, and the length of the into the ihomogeneous integral Eq. (Al) and integrating

free shear layer along the magnetic field line, i.e., sec 0 here. by parts gives the equivalent form:
Since there are large velocities inside very thin regions, (I

the free shear layers and adjacent Hartmann layers involveoG(Z*)sgn(Z- Z*)erfc(Z -- Z*I)dZ* = 1.
large viscous dissipation. Their contributions to the dimen- (A4)
sionless viscous dissipation are O(M /2), while those of the Differentiation with respect to Z gives
cores are only 0( 1). We have also computed the O(M) vis-
cous dissipation in the Hartmann layers between the cores G(Z) = - f/"  G(Z*)exp[ - (Z - Z*) 2JdZ*
and the walls. Finally we determined the contributions to the 0
Joulean power losses from the core region c2, from the free (A5)

shear layersf I andf2, and from the Hartmann layers h 2 and If we now irtroduce the change of variables
h5. Z=p(2) -2, Z*=t(2)

Here we assumed that the flow is laminar. Very strong G [p(2) - 1/2] = A g(p) (A6)
magnetic fields would completely eliminate turbulence and
instability in the laminar flow. However, in actual homopo- into the integral Eq. (A5), then we obtain Hunt and

lar devices, the magnetic field is strong enough to make the Stewartson's integral Eq. (A2). HereA is an arbitrary multi-

turbulence two-dimensional, but is not strong enough to plicative constant since their integral equation is homogen-

eliminate turbulence completely or to eliminate instabilities eous. The integral Eq. (Al) has a unique solution, but one

which lead to vortices aligned with the magnetic field. The must recognize that F(Z) has a singularity at Z = 0 and

two-dimensional turbulence or aligned vortices would be must adjust the strength of the singularityl, to obtain a

stroogest in the free shear layer because of the large velocity numerical solution which gives a bounded Fat Z = 0. The

gradients here. The effects of this turbulence or vorticity integral Eq. (A2) does not have a unique solution. Hunt and
would be to increase the thickness of the free shear layer, to Stewartson " made the solution unique with the condition

reduce the maximum free shear layer velocity proportion- dg(p) 1 as p- oo, (A7)
ately, and to reduce the viscous dissipation considerably. dp
Two-dimensional turbulence or aligned vortices in a strong which they derived by matching the adjacent core solution.
magnetic field involve relatively little dissipation, unlike No such condition is needed here, and F- - 2 automatical-
three-dimensional turbulence. Therefore, the present ex- ly as Z- oo, which is equivalent to condition (A7).
pressions for the viscous dissipation should provide conser-
vati: e overestimations.
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