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EXECUTIVE SUMMARY

Fully developed, laminar liquid-metal flows, currents, and power losses in a rectangular channel in a
uniform, skewed high external magnetic field were studied for high Hartmann numbers, high interaction
numbers, low magnetic Reynolds numbers, and different aspect ratios. The channel has insulated side walls
. that are skewed to the external magnetic field. Both the perfectly conducting moving top wall with an exter-
nal potential and the stationary perfectly conducting bottom wall at zero potential act as electrodes and are
also skewed to the external magnetic field. A solution is obtained for high Hartmann numbers by dividing
the flow into three core regions, connected by two free-shear regions, and Hartmann layers along all the
channel walls. Mathematical solutions are presented in each region in terms of singular perturbation expan-
sions in negative powers of the Hartmann iumber.

Numerical calculations are presented for the total current carried by the core region between top and
bottom electrodes, Joulean and viscous power losses, and channel resistance at different skewed external
magnetic field angles. With the high external magnetic field, the current through the central core region be-
tween the electrodes must be paraliel to the external magnetic field lines. The two side core regions carry no
current to zeroth order. The two free-shear layers carry less current than the central core region. Both free
shear layers are treated rigorously and in detail with fundamental magnetohydrodynamic theory. The solution
for the free-shear layer velocity profiles are solved in terms of a complex integral equation. The integral
equation is solved by the method of quadratures to give the velocity profiles, viscous dissipation and Joulean
losses in the free shear layers.

In addition expressions for the viscous dissipation in the six Hartmann layers are presented. The best
approximation to the viscous disssipation in the channel is the sum of the O(M3/2) contributions from the
two free shear layers, the O(M3/2) contributions from the two Hartmann layers separating the free shear
layers from the insulators, and the O(M) contributions from three of the Hartmann layers separating core
regions from the walls. The best approximation to the Joulean power losses in the channel is the sum of the
O(M2) contribution from the central core region which carries an O(1) current between the electrodes and the
O(M3/2) contributions from the free shear layers. The expressions for the viscous dissipation and Joulean
losses in each region involved the products of universal constants electrical potentials and geometric factors.
The theoretical magnetohydrodynamic model presented here was developed to provide data to help in the
design of liquid-metal current collectors.

ADMINISTRATIVE INFORMATION

This work was a cooperative effort between the David Taylor Research Center and the University of
Illinois of Urbana Champaign, Urbana, Illinois 61801. The work was supported by the DTRC Independent
Research Program, Director of Naval Research, OCNR10, and administered by the Research Director,
DTRCO113 under Program Element 61152N, Project Number ZR00001, Task Area ZR0230201, Work Unit
1-2712-125, Project Title: Orientation Effects in Liquid-Metal Collectors.




Liquid-metal flows and power losses in ducts with moving conducting wall
and skewed magnetic field

John S. Walker
University of Hllinois at Urbana-Champaign, Urbana, Illinois 61801

Samuel H. Brown and Neal A. Sondergaard
David Taylor Research Center. Bethesda, Maryland 20084-5000

(Received 5 January 1988; accepted for publication 26 February 1988)

Fully developed, laminar liquid-metal flows, currents, and power losses in a rectangular
channel in a uniform, skewed high external magnetic field were studied for high Hartmann
numbers, high interaction numbers, lsw magnetic Reynolds numbers, and different aspect
ratios. The channel has insulating side walls that are skewed to the external magnetic field.
Both the perfectly conducting moving top wall with an external potential and the stationary
perfectly conducting bottom wall at zero potential act as electrodes and are also skewed to the
external magnetic field. A solution is obtained for high Hartmann numbers by dividing the
flow into three core regions, connected by two free-shear regions, and Hartmann layers along
all the channel walls. Mathematical solutions are presented in each region in terms of singular
perturbation expansions in negative powers of the Hartmann number. The free-shear layers are

treated rigorously and in detail with fundamental magnetohydrodynamic theory. Numerical
calculations are presented for the total current carried by the core region between top and
bottom electrodes, Joulean and viscous power losses, and channel resistance at different
skewed external magnetic field angles. With the high external magnetic field, the current
through the central core region between the electrodes must be parallel to the external
magnetic field lines. The two side core regions carry no current to the zeroth order. The two
free-shear layers carry less current than the central core region. The theoretical
magnetohydrodynamic model derived here was developed to provide data to help in the design

of liquid-metal current collectors.

NTRODUCTION

Advanced homopolar electﬁcyy%ery is being con-
sidered for many new applications€? This applied research
requires the development of mechanisms for transporting
high current at low voltages between rotating and stationary
members of the machines with minimal losses and maximal
operational stability. Thus, liquid metals rather than more
conventional brush technology are often used in the sliding
electric contact region. Generaily, these machines have large
external magnetic fields in the region of the current collec-
tor, which has a definite effect on the liquid metal by Lorentz
force interactions. Thus, to obtain current collector design
parameters, one is interested in liquid-metal channel flow
problems with applied external magnetic fields and bound-
ary conditions containing combinations of moving and
fixed, conducting, or insulating walls. These boundary con-
ditions then roughly correspond to a rotor, stator, or
sidewall of the current collector and the liquid metal to th
sliding electric contact. While many publications M
retical magnetohydrodynamic channel duct flow{C” only a
very small percentage of these investigations’ have studied
problems with moving conducting walls<”Brown, Reilly,
and Sondergaard'' have studied fully developed, viscous lig-
uid-metal flows and power lossés in a rectangular channel
with a moving conducting wall in a uniform,
verse magnetic field for moderate Hartmany numbers. The
solutions to the problem were presented in fnfinite series of a
type discussed by Hughes and Young.'J The rectangular
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channel studied had insulating side walls parallel to the mag-
netic field and a perfectly conducting moving top wall and
stationary bottom wall perpendicular to the field. The objec-
tive of this paper is to treat rigorously and comprehensively
this same problem with two major changes. The homogen-
eous transverse external magnetic field is changed to a high
field strength, homogeneous, skewed magnetic field and an
external potential is applied to the conducting moving wall,
thus making the channel transport current. These changes
complicate the channel problem by removing symmetry.
This paper should be considered as part two to the above-
mentioned paper.'' Alty'? presents solutions for a channel
with all fixed walls and a skewed magnetic field. His core
solutions are correct but his free-shear layer solutions are
incorrect. To the authors’ knowledge, no other reference in
the literature addresses this particular problem.

The purpose of this paper is to present comprehensive
two-dimensional analytic mathematical solutions for the
flow velocity and electric potential in accordance with the
principles of singular perturbation th.ory and matched
asymptotic expansions in the different regions of the chan-
nel. For high Hartmann numbers, the channel is divided into
three core regions (a central core and two side core regions),
two free-shear layers, and Hartmann layers along all the
walls. These solutions enable one to investigate the influence
on the velocity and electrical potential of insulating side
walls and of an external skewed high magnetic field. The
results will enable the derivation of the equations for the
quantities of technical interest. These quantities are load

© 1988 American Institute of Physics




currents, Joulean and viscous power dissipation, and chan-
nel electrical resistance as functions of the skewed external
field angle. The rectangular channel problem approximately
corresponds to an asymmetric liquid-metal current collector
whose channel dimensions are small compared to the radius
of curvature of the machine. In this paper a skewed magnetic
field was chosen, as opposed to the simpler case treated ear-
lier of a transverse magnetic field, because many current col-
lectors have skewed magnetic fields in relationship to the
walls.

In this work analytical expressions are derived for the
load current between the electrodes (i.e., moving and sta-
tionary conducting wall), Joulean and viscous dissipation,
and channel resistance with skewed angle. The parameters
of variation are as follows: applied skewed external magnetic
field, fluid electrical conductivity and viscosity, and channel
aspect ratio. In the work presented herein the pressure gradi-
ents are assumed to be zero. Numerical results in nondimen-
sional form are presented, along with the general analytic
solutions which can serve as benchmarkers for various nu-
merical computation procedures.

This paper presents the first correct mathematical treat-
ment of the free-shear layers resulting from skewed external
magnetic field interacting with rectangular liquid-metal-
filled channel described. In treating the magnetohydrodyna-
mic flow due to electric current between two circular elec-
trodes embedded in two parallel insulators, with a transverse
magnetic field, Hunt and co-workers'*-'* correctly treat a
similar free-shear layer, although their approach is quite dif-
ferent from the present one.

A number of steps here are standard parts of analytical
solutions for fully developed magnetohydrodynamic duct
flows at high Hartmann numbers.’~'* We have reproduced a
number of these standard steps here because these solutions
are not widely known outside the relatively small magneto-
hydrodynamic community.

Il. RECTANGULAR CHANNEL CONFIGURATION
A. Discussion of problem

The problem discussed in this paper consists of a rectan-
gular channel filled with a liquid metal in a uniform, skewed,
high external magnetic field'* (see Fig. 1). The Hartmann
number M is much greater than one (M> 1). The thin per-
fectly conducting top wall with an external mean potential is
assumed to move at a velocity component U, while the thin
perfectly conducting bottom wall is stationary at zero poten-
tial. These conducting walls are sometimes referred to as
electrodes. The side walls of the channel are insulators. We
will consider the case of fully developed laminar flow of an
incompressible fluid with uniform electrical conductivity o,
and uniform viscosity u . . The rectangular duct has a height
of L and a width of 2aL. We also assumed that no secondary
flows are generated during this process, that there is no vari-
ation of the duct cross section, and that there is no distortion
of the external magnetic field by the flow (low magnetic
Reynolds number).

The angle between the skewed external field B, and the y
axis is 8. In Fig. 2 a rotated coordinate system (x, 9, £) is
shown with respect to the coordinate system (x, y, z). is the
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Ay Bo
perfect conductor @ v = Uy ,
insulator N )V —
B, Bo B [
8
perfoct conductor at rest z
B,

FIG 1. Rectangular channel with skewed external magnetic field and mov-
1ng and stationary perfect conductor.

angle between the y axis and % axis measurad positive in the
clockwise direction. The threg coreregions C1,C2,and C3
are also shown in the figure. b is the unit vector in the direc-
tion of the external field.

B. Nondimensional magnetohydrodynamic equations

The nondimensional magnetohydrodynamic equations
for fully developed laminar duct flow in an external magnet-
ic field at an angle @ with the vertical can be expressed as

N7'(vW)v= — VP +jxb+ M 2V, (1a)
j= — Vo +vXb, (1b)
Vev=0, (l¢)
Vej = 0. (1d)

InEq. (1a), N= 0B} L /pU, represents the interaction par-
ameter,the ratio of pondermotive force to the inertial force.
M = LByjo/u, is the Hartmann number,'® the positive
square root of the ratio of the pondermotive force'® to the
viscous force. It is assumed during this work that the mag-
netic Reynolds number' R,, = U,L ou (ratio of induced
magnetic field to external magnetic field) is < 1. The nondi-
mensional variables in Eqs. (1a)—(1d) are defined as

perfect conductor
at rest n

Y40
S/x
0 < 8 < arctan (2a)

[} 2
¢

FIG 2 Rectangular channel with coordinate systems (x, y, 2) and (x, 7, £)

Walker, Brown, and Sondergaard
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v = fluid velocity vector normalized

by U, = V/Uj,, (2a)
P = pressure normalized

by olU,B3L=P*/cU,B}L,
j = electric current density vector

normalized by oU, B, = J/cU, B,, (2¢)

¢ = electric potential normalized
by U, By L = ¢*/U, B, L,
V = gradient normalized by L = LV,

(2b)

(2d)

b = unit vector paraliel to the external
magnetic field =cos 8p +sin 6z (B, = Bof)), (2e)
X,¥,Z = unit vectors in
Cartesian coordinates (see Fig. 1). 2f)

In the Cartesian system of coordinates (see Fig. 1) the y,
z coordinates are normalized by L. The moving, perfectly
conducting wall with velocity U, is at y = 1; the stationary
conducting wall is at y =0. The insulating walls are at
z= - a. The aspect ratio of the channel is represented by
2a. The magnitude of the external magnetic field B, and the
angle @ between the field and the vertical is represented in
terms of the field components as

B,= (B + BY)'", (3a)
0 = arctan(B,/B,). (3b)

Equation (1a) is the nondimensional Navier-Stoke’s
equation with an external jb magnetic force. Also, Eq.
(1b) is the usual nondimensional expression for the current
density in the channel (ohms law), and Eq. (1c) is the non-
dimensional expression for the incompressibility of the fluid.
Equation (1d) is the equation for the conservation of charge.

We define a rotated nondimensional Cartesian coordi-
nate system (x, 7, &) with the  axis parallel to the external
field B. Therefore, ) equals the unit vector b (see Fig. 2).
The coordinate ¢ is shown in the figure where  is the unit
vector in the direction £. Also note that X is the unit vector in
the axial direction along the channel into the plane of the
figure. Therefore, in our rotated, right-handed coordnate
system the equations describing the locus of the top, bottom,
left, and right walls are, respectively,

n =secd + (tan 6)§, (4a)
where — a cos 8 — sin 8<£<a cos 8 — sin 6,

7 = tan 0§, (4b)
where — a cos 8<£<a cos 6,

7= —acsc~— (ctn ), (4c)

where — a cos § — sin 0<&< — acos 6,

(4d)
where a cos @ — sin < £<a cos 8. These relationships were
derived from geometric considerations.

It should be noted that the unit vectors in the two sys-
tems have the relationships:

% = sin 64 + cos £, (5a)

7 =acsc O —ctn ¢,

J. Appl Phys., Vol. 64, No 1, 1 July 1988

(5b)

In our rotated coordinate system (x, 7, £) the physically
realizable variables for fully developed laminar flow'® can be
expressed as

§ = cos 04 —sin O£,

v =u(n,£)X, (6a)
P=P(3£), (noaxial pressure gradient), (6b)
¢ =9(n.8), (6¢)
i=Jy (&R + je (1.5)E. (6d)
Substituting these variables in Egs. (1a)-(1d) results in the
following convenient system of magnetohydrodynamic
equations in terms of the velocity and electrical potential.

The electrical potential and flow velocity are variables that
are measured in experimental work where

. J3%u  d%u

:=M"( . —) 7
Je a7 + % (7a)
. dé . ad

= T T r= =0 [} y 7
Iy n Je 3% + u(n,€) (7b)
ajr] ajz‘

=24+ =£ =0 7
3y It (e

We must now consider the moving perfectly conducting
top wall in regard to the current density j,, and potential é,,.
The nondimensional current density in the wall is

juv = au'/a( - v¢w + g)’ (88)
where
€ =v,Xb=%x4. (8b)

Since the wall is a perfect conductor,the conductivity of the
wall 0, >0, where o is the conductivity of the conducting
fluid in the channel. For ohms law in the magnetohydrody-
namic approximation, it can be shown as o, — o that V¢,
must equal £ for afinite current in a perfect conductor. Max-
well’s equation VX H = j determines the induced current
in the system. Therefore, in the top wall ¢,, = ¢, + &, where
#o is the electrode potential at £=0 and V=(d/
)W + (3 /9€)E. Similarly, in the bottom wall V¢ = 0 and
é., == 0in the bottom conducting wall of the channel.

It is now necessary to specify the boundary conditions
on the four walls of the rectangular channel. The top moving
perfectly conducting wall of the channel has the following
boundary conditions on the nondimensional velocity u(7,£)
and the potential ¢(7,£) = ¢:

u(ng) =1, (%a)

d(nE)=d=¢o+Eatyp=secOd + (tan 6)§, (9b)
where

—a cos 8 — sin 9<£<a cos 6 — sin 6.

The bottom perfectly conducting wall has the boundary con-
ditions

u(n,) =0, ¢=0aty= (tan )¢, (9¢)
where

— acos 0<é<acos 6.
The left-hand insulating wall has the boundary conditions

Walker, Brown, and Sondergaard




u(n,§) =0,
sin@j, +cos 6, =0,atp= —acscd ~ (ctn 6)§,
(9d)
where

—acos @ —sin @<§< —acos 6.

Here it must be remembered that the current density lines
must be parallel to the insulating wall. Similarly, the right-
hand insulating wall has the boundary condition

u(n7,£) =0, (10a)
sinfj, +cos 0. =0,atnp=acscd—ctn 6 (10b)

for a cos 8 — sin 8<£<a cos 6.

In this work the Hartmann number M is always as-
sumed to be high (i.e., M'> 1). In this case it can be shown
that distinct subregions of flow exist in the channel and are
shown in Fig. 3. In Appendix A is a derivation of the order of
thickness of the various regions in the channel. The angle ¢
has the range of values 0 < @ < arctan(2a).

In the inertialess core regions C 1, C2, and C 3, the first
partial derivatives d /9& and @ /dnpare of O(1). In the inertia-
less Hartmann layers h 1-h 6, the layers are of approximately
O(M ~') thickness and have O(M) normal derivatives. f,
and f, are inertialess free-shear layers (or interior regions)
which have the following characteristics:

(1) The layers separate the different core regions.

(2) The layers lie along magnetic field lines through the
corners and are driven by current singularities at the
corners.

(3) Thelayershave O(M ~'/?) thickness (see Appendix
A for detailed derivation).

(4) The first partial derivatives are of orders d/
& = 0(M""?), while 3 /3n = O(1).

Iit. ZEROTH ORDER MATHEMATICAL SOLUTIONS IN
CORE REGIONS

A. Development of theory

The generalized mathematical solutions in the cores,
where the magnetic field angle @ has the limits 0 < 8 < arc-

0 < 8 < arctan (2a)

FIG 3. Subregions in magnetohydrodynamic channel at high external
magnetic fields

J. Appl. Phys , Vol. 64, No. 1, 1 July 1968

tan(2a), can be obtained from Egs. (7b) and (7c) if the term
of O(M ~?) is neglected [i.e., j, =M ~2(8*u/dn* + *u/
J£?)], the generalized core solutions can be expressed as

$c(1.8) = — jyc(§) + ¥c(8), (11a)
3¢ dj,c (&)  dyc(§)
£)=—= — , 11
uc(n.6) € ] d + dE (11b)
and the current density components are
ng =0’ jr)C = jr]C(é‘) (llC)

The methods of singular perturbation expansions and
matched asymptotic expansions at the boundaries between
the Hartmann layer and core region are applied to the com-
plex system of coupled equations to obtain the core solutions
in the different core regions to zeroth order.

For continuity, the well-known matching principle be-
tween the core and Hartmann boundary layer will be stated
here to the zeroth order.'” If a physically realizable function
uc(x;M) at high Hartmann number can be expanded in the
core as

Uc(x;M) = Uco(X) +M_luc1 (x) +M_2ucz (x)+ -,
(12)

where x is an independent variable, and the function
u, (X;M) can be expanded at vigh Hartmann number M in
the Hartmann layer as

Uy (M) = uyo (X) + M ~uy (X) + M " 2u,, (X),
(13)

where X is a stretched coordinate,'® then

ueo (0) = lim [u,0()], (14)

where u (0) is the value of the zeroth order function at the
wall. The boundary layer value in the Hartmann layer in
stretched coordinates is the value away from the wall as
X— « (see Appendix B for details).

Cook, Ludford, and Walker'® proved that if there is a
jump to O(1) in the velocity u across the Hartmann layer,
then the jumpsin j -4 and ¢ are at most O(M ~'). The jump
in ¢is O(M ~?) for an insulator or a perfect conductor witha
normal magnetic field, but it is O(M ~') for a perfect con-
ductor with a skewed magnetic field. Therefore, to zeroth
order, we shall assume that the potential throughout the
boundary is the same as the wall potential. The asymptotic
expansions for the potential ¢, in the core area C are as-
sumed to have the form'®

b (MEM) = by (1,E) + M ¢, (7,€)

+M 24, (n.). (15)

Thus, the matching condition on the bottom and top perfect
conductor of the channel for the potential ¢, ¢ in the core
C 2 to zeroth order is

0= dc0 (= tan 65)
= — (tan 0)§ jyca0(8) + Yca0(8) (16a)
for — a cos <&<a cos 6 (stationary perfect conductor),
($o+ &) = bca0ln=sec O + (tan 6)¢ ]
= — (sec 6 + tan 6€) jyc20(8) + Y20 (§)
(16b)

Walker, Brown, and Sondergaard




for —acos 8 — sin <£<a cos @ — sin 6 (moving perfect
conductor). The zeroth-order solution for the potential in
the Hartmann layers along each perfect conductor was not
needed because the change in ¢ across the layer is only
O(M ~'), and using the value of the potential at the wall was
sufficient.

Solving these two simple simultanieous boundary value
equations (16a) and (16b) and simple algebraic manipula-
tion of the magnetohydrodynamic equations (7a)—(7c) for
core C 2 results in the expressions

Jec20 =0, Jycao = —cos (g + &), (17a)
$ca0 = c0s O(dy + §)1 — sin 6(d, + £)§, (17b)
Ucyo = (cos B)y — sin (4, + 28), (17¢)
Ucro = —sin8(d, + &) for 7

= (tan 8)¢ (bottom wall), (17d)

Ucro =1 —sin 6(d, + &) for 57 =sec & + tan 6.
(17e)

It is interesting to note that to zeroth order there is a jump in
uc, across each Hartmann layer for 8 #0.

From similar arguments the zeroth order solutions in
core C 1 are

jr,Cl.( } j_sc1.o =0, (18a)

bcio yHE Ucio =1, (18b)
and the zeroth-orde. solutions in core C 3 are

Jac30 =0, Jecs, =0, (19a)

bcio =0, ucyo=-0. (19b)

B. Discussion of core solutions of zeroth order

To zeroth order in the core C I the velocity is u¢, o = |
throughout the region. Thus, the core has the same velocity
throughout the core region as the moving wall. The two
components of current density in core C'1 to zeroth order
Jec 0 andj, ¢\ o bothequal zero. Also, the potential to zeroth
order throughout core Clis ¢, = ¢, + £.

To zeroth order in core C2 the current density follows
the external magnetic field B, and thus j.c,0 =0 and
Jnc2o = — €08 8(é, + £). The potential ¢(7,£) and u(7,£)
to zeroth order are functions of 7,£ [see Egs. (17b) and
(17c)]. It 1s interesting to note that to zeroth order there is a
jumpin u, across each Hartmann layer at the top and bot-
tom wall when 6 0.,

In core C 3 to zeroth order u, , equals zero throughout
the region. The core C 3 flow thus has no velocity throughout
the region. Both components of current density in core C 3,
Jncso andjecs o arezeroasin core C 1. The potential ¢ o is
also zero throughout the core to zeroth order.

IV. ZEROTH-ORDER MATHEMATICAL SOLUTIONS IN
FREE-SHEAR LAYERS

A. Development of basic theoretical concepts

The free-shear layers'” in regions f1and f2 in coordi-
nates (x, f, £) are shown in Fig. 4. The corner region of the
free-shear layer f1 between the insulating wall and the per-
fect conductor is at (=0, £ = — a cos 8). The free-shear
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stationary

t = ~acosh
elactrode

FIG. 4. Free-shear layers in regions /1 and f2 in coordinates (x, t, §) for
fLt=n+asinb, ®=4¢, +sin §—acos and for f2, r=secf—
sin O(tan 8 — a) —

layer f2 has the corner region between the insulating wail
and the perfect conductor at (£ =0, £ = a cos € — sin 6).
We shall work out the fundamental mathematical theo-
ry for shear layer f1; the theory for shear layer f2 can be
performed in a similar manner. To develop the theory, the
stretched coordinate § will be used. It is defined as follows:

$=M"*(£ +acos), £= —acosb +M~",
(20a)

0 _4d6 9y

o9& df I a&
Using Eqgs. (7a)-(7c), the fundamental magnetohydrody-
namic equations in the free-shear layer f1 for fully devel-
oped flow in stretched coordinate { and regular coordinate 7

(20b)

are
1 [d%u 4%u

15(77’5) (3 3 +M3§—2">,

j, = -‘9"‘;—:”’9, (21a)
: _ 1298

)= -M 3 + u(n.8), (21b)
ajr](n’g) +M|/2 ajg("’r;) =0. (21c)

dy a

The first terms in the series solutions in the free-shear layer
flare

Ja (18) = Jyr10(1:6), (223)
#(n,6) =¢/|,o(77’§), (22b)
Je =M 0 (m0), (22¢)
u=M"uzo(n8). (22d)

From Eqgs. (22a)-(22d) the following relationships can be
developed for the potential function ¢ ;, 4 (9,£)

a ,
us0(0,86) =iﬂ—3§£’l£)', (2sa)
—a ,
Joro (M8} = —'23'0—(1"9—, (23b)
U]
. 3%, (1.8)
Jeno(mg) = '——?‘g-lg';y‘g— (23c)
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Using the conservation of charge, Eq. (21¢), and Eqs. (22a)
and (22c), the following fourth-order partial differential
equation is derived:

% r10(1:8) _ 3% 10 (1)
o ac* ’
for —asin@<n< —asind +sec@and — o <{ < oo for
free-shear layer f1 (see Fig. 5).

The stretch coordinate { must extend from — o t0
in accordance with the definition of stretched coordinates.
This figure also shows the core potentials ¢, and ¢,,
which must be matched by the sides of the free-shear layer.
& r10 (17,6) must satisfy the following boundary conditions:

(1) Boundary condition at core C 2:

(24)

& 10— c0s (¢, —acos 8) (57 + asin 0) as §— .
(25a)

(2) Boundary condition at core C 1:

10— —acosf as {— — . (25b)
(3) Boundary condition at moving perfect conductor:
b 10 =@ —acos b,

at p=secf—asinf for — o0 <{< 0.
(25¢)
(4) Boundary condition at fixed perfect:
$pn0=0at p= —asinf for 0<{< . (25d)
{5) Boundary condition at Hartmann layer between
free-shear layer f1 and insulating wall (see Fig. 6):
%110

Jon (—asin 6,) = sgn(sin 6) >~ (—asin 6,0).

(25e)

Boundary condition (5) will be derived in the following sub-
section.

B. Boundary condition on Hartmann layer and free-
shear layer

For external magnetic field angles in the range of
0 <6 <arctan(2a), the Hartmann layers play a relatively
passive role except when they are adjacent to free-shear lay-

do

4y = ém + sinb - acosd

| ® e = socd - asind

| &1

] |
| "'¢cz = cosf ($g - acosb)

$cq = b0 - acosf~= | | x (n + asind)
| |
Pl
- | [-0(M-%)
! |
H |
| |
AP
Corner 2 > I L/f._-g.._’
¢ = -acosd
n = -asing

FIG 5. Free-shear layerat { = —acos 6, f1
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comaer region
n=-asing [O(M™) x G(M™)
¢t =-acosh which appears
also to free shear
y=0 layer as source
= ~a of electric

current density

FIG. 6. Free-shear layer at region f1.

ers (see Fig. 7). For Hartmann layers adjacent to core re-
gions, the layer matches any core velocity and satisfies u = 0
or 1, depending on the wall. The change in u across the Hart-
mann layer to the wall has a simple exponential structure.

Figures 3 and 6 show the Hartmann layer along the in-
sulating wall. To treat the Hartmann layer, we will return to
the original Cartesian coordinates (x, , z). Equations (1a)-
(1d) for magnetohydrodynamic fully developed flow in the
original coordinates are

2 2

0 = sin g, — cos 6, +M‘2(‘39yl; +%27u), (26a)
jy = - —g—f?_ (Sin 9)“) (26b)
== %+ (cos O)u, (26¢c)
Py .

—a% + 'Z; =0, (26d)

where

i= i, 2§ + j,(12)E, (26e)
v =u(y2)X, (26f)
¢ = d(y,2). (26g)

The stretching coordinate for the y direction in the Hart-
mann layer (tangential direction along insulating wall) is
approximately

NN

N

N e -
N

\\’/\dP
AN

Y

N

/
normal current into Hartmann layer
L e e - —

I
I
|
|
N
x

4
N

A

N\
z=-a

FIG. 7. Hartmann layer H be. ¥een free-shear layer and insulator at y = 0,
z= —a
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i =M 1/2 _a_
dy ay
(see Figs. 6 and 7). The stretching is needed because the
Hartmann layer is adjacent to the free-shear layer where
variables vary over O(M ~'’*) distances through the layer.
The stretched coordinate normal to the Hartmann layer is

9 _mI,
Jz 9z

(28)
The first terms in the series for the solutions to the magneto-
hydrodynamic equations are

u=M"u(V,Z), ¢=204(Y,Z), (29a)
jy =M (V2), ji= jw(1.2). (29b)

The Hartmann layer must match the O(M '/?) velocity in
the free-shear layer, while the Hartmann layer current den-
sity along “he insulator is of the same order of magnitude as
the velocity O(M ''?). The magnetohydrodynamic equa-
tions in the Hartmann layer in stretched coordinates can be
written as

Y=M'"%, y=M-"7Y, (27)

Z=M(iz+a), z= —a+M'Z,

Y ‘92“/1
0 =sin 9_]},,, + 72-:— y (30a)
d .
jyll = —%“‘ (sin Q)uy, (30b)
9y
c?_Z:O for 0<Y< o and 0<Z < , (30c)
Doy T _, (30d)

ay iz

At the insulating wall Z = 0 in the stretched coordinate and

the velocity u,(Y,Z=0)=0 and the current density

Ja1 (Y,Z = 0) = 0. Since the partial derivative of ¢, with

respect to Z is zero, ®,, = @, (Y ). Therefore, the current
density can be expressed as

déy(Y)

Ji=— - (sin u,(Y,2). (31)
Substituting Eq. (31) into Eq. (30a) results in the partial

differential equation

uy (.2 dg, (Y
?-L(,——) — sin? Quy (Y,Z) = (sin 6) —é"—(—)—
A dY

(32a)
The solution which satisfies u,, =0 and which does not
grow exponentially as Z — o is
J

uy(Y¥,Z)= —cs {1 —exp(—Isin@|2)],

(32b)
where the term |sin @ | has been used in case @ is negative in
the problem. The component of the current density in the y
direction is obtained from Eqs. (31) and (32a}

_ dgy(Y)
dY
Using the conservation of charge condition Eq. (30d) in
stretched coordinates
asz _ d2¢H ( Y )
oz dy?
results in the solution for j,,, (¥,Z) after integrating from
Z=0t0Z=2:

c0d¢H(Y)
dY

L (VZ) = exp( — [sin 8]2Z). (33)

exp( — |sin 8)Z) (34)

d*¢u(Y)

dy?
We now need to match the free-shear layer and the Hart-
mann layer solutions at the boundary. The geometric rela-
tionship between the coordinates (x, 7, &) and (x, y, z) are
shown on Fig 2 and are

Jony = |csc 0] [1 —exp( — |sin 8]|Z)].(35)

n=zsin@ + ycos b, (36a)
(36b)

In the free-shear layer and adjacent to the Hartmann layer

E=2zcos6 - ysinb.

2= —-a+M™'Z, y=M""?Y, (37a)

Z=M(z+a), Y=M"?, (37b)
and

E=M'"*(& +acos8). (37c)

The coordinate transformations (36a) and (36b) after sub-
stituting Egs. (37a) to (37c) are

7= —asin@ +M~"?Ycos@ + M~ '(sin6)Z, (38a)
E= —acos@—M"?Ysin@ +M~'(cos 0)Z, (38b)

E=M"¥E& +acos@) = — Ysind + M ~""*(cos 6)Z.
(38c)

In order to match a free-shear variable, such as
é 71 (n,5), to the corresponding Hartmann layer variable
4 (Y,2Z), we substitute the expressions (38a) and (38c)
into @ ;. We then use a Taylor series to obtain the proper
form for an asymptotic expansion, namely powers of M
times coefficient functions of ¥ and Z. This process gives

dpl—asind +M~"?Ycos @ + M '(sin6)Z, —Ysinf +M " cos6Z )

=¢,(—asind, —Ysin0)+[M~"*Ycosf +M '(sin6)Z]

a
+M—n/zcosgzg—gf_'(—asin6, —Ysin@) + -

Only the leading term ¢, ( —asin §, — Ysin ), enters
the matching of the zeroth-order variables. The other terms
in the Taylor series expansions of the zeroth order free-shear
layer variables enter the matching at higher orders. Physi-
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L

3%,
an

(—asinf, — Ysinh)

(39)

r

cally the zeroth-order free-shear layer solution sees the Hart-
mann layer as a zero thickness layer at the horizontal line
7= —asin . In fact, the Hartmann layer has a small
O(M ') thickness which would enter the higher order
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matching through the M ~"/2 cos 6Z 3¢ ;\ /3¢ term, and the
layer lies along a sloping line, which would enter through the
(M ~'"2Ysin@ + M ~'sin 6Z) 3¢ ;, /I term.

From the matching principle between the free-shear lay-
er and the Hartmann layer along the insulating wall and
adjacent to the free-shear layer, we obtain

éu(Y)=¢,(—asind, — Ysinb). (40)

This expression is derived in detail in Appendix C, using the
velocity instead of the potential.

From expression (40) the following relationship is ob-
tained:
d¢, (Y a3
———¢H (, ) =sin’ 4§ é{'

dy- a*
X(§= — Ysin 8). (41)

The z component of the current density is related to the j;
and j, components of the current density by

(—asinf, - Ysin@),

J:=c0s8j. +sinbj,. (42)
To zeroth order the normal current density in the Hartmann
layer j,; approaches the normal current density in the free-
shear layer

d’¢y(Y) Y
—d'ly—z—'cosG(M i)

+sinfj,,( —asinf, — Ysinb). (43)

J:n =

Therefore, using Eq. (41) the following relationship holds:
sinfj,r0(—asinf, ~ Ysinb)

az
OPn0 (_asin6, — ¥sind),

(44)

The current coming out of the Hartmann layer into the free-
shear layer equals the tangential second partial derivative of
the potential in the free-shear layer and is the fifth boundary
condition discussed in Eq. (25f):

jn[l.O( —a Sin 8' é')

= |csc @ |sin” @

= sgn(sin 6)19—-—3%%‘-"-(~asin 6,5, (45)

C. Partial differential equation and boundary values for
free-shear layer

We shall assume the solutions to the partial differential
equation (24) and boundary values (25a)~(25e) tobein the
form

b 10 =dy—acos b + (L), (46a)
where

t=7n+asiné (46b)
and

sin @>0 for f1, sgn(sin8) = + 1. (46¢)

®(1,0) is treated as a perturbation which approaches zero as
§~ — o, see boundary condition (25b). Also ®(+,{) ap-
proaches zero at the moving perfect conductor [see condi-
tion (25c) ). The partial differential in terms of ®(1,§) with
its five boundary conditions in terms of ¢, § is
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3b(,l)  'P(1L

Pk 3 for 0<t<sec 8, — w0 <& < oo;

(47a)

Boundary condition at core C2:

P(t8)—(go—acos@)(tcos@—1), as {— o;
(47b)
Boundary condition at core C 1:
d(1,£) -0, as £ — «; (47¢c)
Boundary condition at moving perfect conductor:
D(t,{) =0, at t=sech, for — 0 <E<o0; (47d)
Boundary condition at fixed perfect conductor:

D) = — (P —acos ), at 1=0 for 0<{ < oo;
(47¢)

Boundary condition at Hartmann layer adjacent to free-
shear layer:

*0(1g) | d(L)
T or

=0, at t=0 for — w0 <¢{<0;
(471)

We solved the partial differential equation and its
boundary values in terms of the modified complex Fourier
transform'® in the form

(k) = fm exp( — k&) (1,8)d¢, (48)

where k is generalized to become complex in the lower half-
plane (i.e., k =k, — ik,), or Im(k) <0. Accordingly, the
modified Fourier inversion formula'® is written as

o ~ Tl

1
d(1,6) = ——
(té‘) (27”) J‘—m—ﬂ

The inversion contour is in the lower half-plane, along the
line Im(k) = — 7.

The Fourier transform of the partial differential equa-
tion is in the form

%ﬂ’i = k*®, for O<r<sec, (50)
where integration by parts has been used to obtain the above
form. The right-hand side requires four integrations by parts
with

oy 07D foe
(exp( ik) % (n,g));“m 0. (5D
The upper limit {— o« gives zero because Im(k) <0; the
lower limit { - — oo gives zero because of condition (47¢).

Fourier transforming Eq. (47d), we recognize that
® =0, at 7 = sec 6, and assume that the general solution of
the Fourier transformed partial differential equation [e.g.,
Eq. (50)] is

exp(ik&)D(1,k)dk. (49)

& (1,k) = A(k)sinh[k }(sec 8 — 1) ], (52a)
where

9%’#: — k*(kycosh[k*(secO—1)]  (52b)
and

a—.(";-t(-:’—kl=k‘A(k)sinh[k2(sec9——1)]. (52¢)
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The boundary value of Egs. (47f) can be written in the more
general form

P 7P
F(&) =——(0, — (0,5), 53
(&) 3;‘2( $) + at( 5) (53a)
where
F(&)= 0, for — w <£<0, (53b)

(&), for 0<{< o,
and f () is an unknown function. The Fourier transform of
F (&) is expressed as

F (k)= %"ti (0,k) — k2P (0,k). (54)
Substituting the general expression for &(1,k), Eq. (52a),

results in the expression

F (k) = — k2A4(k)[cosh(k* sec 8) + sinh(k*sec §) 1,
(55a)

where
A(k) = — F(k)/k?exp(k?sec).
Therefore ®(t,k) can be conveniently expressed as

®(1,k) = — F (k)sinh[k>*(sec 8 — 1)]/k *exp(k * sec 8)
(56a)

(55b)

= — [ F(k)/2k*}{exp( — tk?)
—exp[ —k*(2sec@—1]},

where F (k)is an unknown function.
The convolution theorem can be used to obtain ®(1,4)

(56b)

¢(r,§>=f’ F(EG(E—E¥de*  (5Ta)

x -7

and

=r‘ fUEHGE~E*)do* (57b)
C

} ar

using the definition of F () expressed in Eq. (53b).

The Green's function G(1,{) can be obtained by the
modified inverse Fourier transform [see Eqs. (57a) and
(575)]:

1 w« 7 s
—_— exp( —tk*)
(477) - x n{ p(

— exp| — k(2 sec 6 — 1) ] }exp(ik&) :—If
(58)

There are no poles along the real & axis at k = 0, which can
be proven by expanding the exponentials in power series and
noting that these terms cancel the & * term in the denomina-
tor. Therefore, the integration of Eq. (58) can be performed
with real k. Expanding the exponential (ie, e*¢
= cos k& + isin k&) the integration can be changed from
— o to o t00to o by neglecting the odd function or sine
term.

G(1,£) was integrated by parts to obtain an integral
form which can be simply integrated to exponential and er-
ror functions
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G(1,8) =-1—J-c {texp( —tk?) — (2sec@—1)
m Jo .
Xexp[ — k(2 sec @ — 1)]}cos k¢ dk

; fm — k2
+ o h {(exp( —1k?)

— expl — k*(2sec 0— )]} (Si“k"g) dk.
(58)

Itshould se noted that sin k£ /k does not produce asingular-
ity as k—0, and that integration along real k is still allowa-
ble. G(1,£), Eq. (58), was evaluated by using the two inte-
grals

Jm exp( — tk *)cos(k¢)dk
0

= (7"%/72)t =" exp( — £ V/41), (58a)
fw exp( — tk?)(sin k& /k)dk
(4]

= (m/2)erf[{ {1t =] (58b)

to have the form
G(18)
=17~ {1 exp[ — 163 '] = (2sec 8 —1)'?
X exp[ — 163 (2secf—1)"'1}
+ (& /) {erf[}gr %)

— erf[4£(2 sec @ — 1) ~1/2]}, (58¢)

Remembering that ®(2,£) can be expressed by the con-
volution integral [see Eq. (57b)]

D10 = [ FENGUL - ¢ (59)
0
We must also satisfy the boundary condition at the fixed
conductor
b= —(f,~acosB), at t=0 for 0<{< 0. (60)
Therefore, the following relationship'® must hold.

[Tremeos-gnae
0
= — (¢, —acos 6) for 0<{< . (61)

Now all the boundary conditions have been accounted for in
the problem.

In Eq. (61), we will change coordinates to reduce the
integral equation to a form that is independent of sec 8 and of
(@, — a cos 0). The following transformation will be per-
formed:

{=2(2sec0)'’Z, {%=2(2sec §)'°Z*,
dt* =2(2sec9)'*dZ*, where 0<¢, Z< 0,
f12(2sec 6)'°Z )

= f(§) = — [(dy—acos 6)/2sec 0] F(Z). (62c)

(62a)
(62b)

The integral equations is now in the form
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r F(Z*{|Z—Z*erfc(|Z - Z%))
0

— 72 expl —(Z—Z*)%}}dZ* =1 for 0<Z < .
(63)

This equation must be solved for F (Z) in order to solve for
the velocity profile directly in the free-shear layer [see, for
example, Eqs. (22d) and (23a)]. This work will be reported
in the third part to this paper, which is in progress.

D. Characterization of free-shear layers f1and 72

For the free-shear layer f1 for 0 <8 <arctan(2a), we
will use a coordinate system (x, t, &) (see Fig. 4) with the
originat y = 0and z = — g, with £ perpendicular to Band ¢
parallel to B. The iree-shear layer /1 intersects the surface
of the moving perfect conductor at y=1 and z= —a

+tan 8, where the conductor’s electric potential is

b, =¢y—acos@=4¢, +sinfd—acosf. Here ¢, is
the moving conductor’s electric potential at the middle of its
surface, i.e., ¢ at y = 1 and z = 0. The potential of the mov-
ing conductor’s surface is then ¢=¢,, +zcosb=4¢,,
+sin @ + ¢, at p= 1. If ¢,, =0, the potential difference
between the moving and fixed electrodes is zero at z=0,
while the potential of the moving electrode is greater than or
less than that of the fixed conductor for 2> 0 or z < 0, réspec-
tively. On the left-hand side of free-shear layer f'1, the po-
tential in core C 1 is @ ;, for all z. On the right-hand side of
f1, the potential in core C2 varies linearly from &, at
t = sec @ tozeroat t = 0. Therefore, there is a jump in poten-
tial across f 1 and the magnitude of this jump varies linearly
fromzeroatt = sec 6 to — P, att = 0. Since the thickness
of f1is O(M ~''%), 3¢/I€ must be large, namely O(M ''?),
inside f'1. In the § component of ohms law,

. d¢

Je 9% + u. (64)
Jeis O(M ~'12) [see Eq. (22¢) ], s0u = dg/3€ = O(M '7?).

This leads to the conclusion that the velocity in the free-
shear layers is much larger than the velocity of the moving
wall. Therefore, even though the boundary layer is thin
O(M ~''?), it involves large velocities, so that the total flow
inside the free-shear layers is comparable to that in cores C' |
and C2:

J udé= —®, (1 —1cos ). (65)
ACROSS f1

From this equation it can be deduced thatif @ , > 0, the
free-shear layer f'1 isa high velocity jet in the minus x direc-
tion. Conversely, if ® /| <0, f1is a jet in the plus x direc-
tion. Noting Eq. (65), it is interesting to note that the inte-
gral varies linearly from O at the moving electrode to a
maximum of — ® ., atthecorneratz= —a,y=9.Q,,,
the total flow inside f'1 in plus x direction (i.e., ® ,, <0),is

o
Q,,:Ff wdé di= — 1B, secO.  (66)
0 ACROSS /1

Also, for the discussion of free-shear layer f2, we will
use a similar coordinate system (£, ¢, x) (see Fig. 4). We
shall define ® ., = 4,, + a cos 8 as the potential at the in-
tersection of /2 and the surface of the moving electrode, i.e.,
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daty = 1 andz = a. By the previous arguments for f1itcan
be shown that the velocity in the free-shear layer is much
larger than the velocity of the moving wall. The integral of
the velocity across the boundary layer is

f udé= — 19, cos 6. (67)
ACROSS /2

If®,, >0, f2isahigh velocity jet in the minus x direction.
Ifd,, <0, f2is a jet in the plus x direction.

The integral [Eq. (67)] varies linearly from O at the
fixed electrode to a maximum of — & ., atthecornery =1,
z=a. Q r2» the total flow in the plus x direction (ie.,
¢, <0),is

c6
Qrn =r J udidt= — P, sech. (68)
0 ACPR.OSS /2
The dimensional flow is determined by the definition

Q* = (UL (69)

The total dimensionless flow in the x direction equals
the total flow in the three core areas Q¢ , Q. , and Q5 and
the total flow in the two free-shear layers O, and @ ;,. The
flows in the Hartmann layers of O(M ~') will be neglected.
Therefore, the total flow Q is expressed as

0=0ci +0Qc2+Qc: +Q5 +Qp +OM ™)

+ Hartmann layers, (70a)

where
Qp = — 10, (sech), (70b)
Q= — &, (sec ), (70c)
QOc) =1tan 6, (70d)
Qc: = (2acos 8 —ssin 0) (4 cos & — 4, tan &), (70e)
Qc; =0. (70f)

After substitution of these expressions and simplification,
the total flow in the x direction Q is

Q =cos 8(acos @ — }sin 8) — ¢,,(2asin & + cos )
+ O(M ~') + Hartmann layer terms. (71)

Let us now examine the properties of the velocity pro-
files for no net current flow between the electrodes. The
O(1) electric currents in cores C 1 and C 3 are blocked by the
insulating sides, so that the “active” part of the moving elec-
trode’s surface is from z= — a + tan 8 to z = a. For zero
net current, the potential at the middle of this active part of
the moving electrode must be zero, so that

$, = — Lsin 6. (72)

Then ¢, = — (acos & —}sin §) which is negative be-
cause tan 8 < 2a. Therefore, /1 is a jet in the plus x direc-
tion. Also, ¢, = (acos@—}sind) = — P, >0, and
thus f21san equal jet in the minus x direction. The total Q is
equal to a [see Eq. (70a)].

At this point, it is interesting to note for any ¢,,, uc,
varies linearly with z from

Uc, =yp—P,(sinf), at z= —a+ytand (73)
to
Uc, =y— P, (sin0), at z=a— (1 —y)tan 6. (74)
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Now we shall plot a typical plot of uc, vs z for a fixed
value of y for zero net current (Fig. 8). The jets in the free-
shear layersin f1and f2 exactly cancel each other [see Eq.
(66) ]. Note that u, at position 1 can be greater or less than
1,dependingonyand @ (i.e., uc, >p). Atposition 2, u, can
be greater or lessthan 0, dependingonyand @ (i.e., ucy > p).

Let us now evaluate the characteristics of the velocity
profile in terms of quantity of flow for a net transport current
from the moving perfectly conducting electrode to the per-
fectly ccaducting stationary electrode. The net transport
current is

I= (Ax)J' J, dz<0, for ¢,,> —}siné. (75)
&,, is the mean voltage at the moving electrode. As &,,, in-
creases from — §sin & the jet in the positive x direction in-
side the region f'1 (i.e, P,y =&, + sin § — acos <0) de-
creases in magnitude (the quantity of flow Q,, decreases in
magnitude). All velocities in core region C 2 decrease. Also,
the jet in the negative x direction inside region f2 (i.e,
¢ ,, =d,, + acos 8> 0)increasesin magnitude. When 4,
reaches the value (a cos 8 — sin 8), then ® ;; =0, so that
thereis no jet inside region fl,anduc, =y, atz= —a+y
tan 6. At this é,,, ® ,, = 2a cos 8 — sin §; so that the flow
in the negative x direction inside region f2 is two times what
it was for d,, = — | sin 8. The total flow Q equals a — d cos
26) — (&* — 1)sin 26. Finally, as &,, increases further
from a cos @ — sin 6, jets in both regions f1 and f2 are in
the negative x direction.

Let us now investigate the velocity profiles for a net
transport current from the stationary electrode to the :nov-
ing electrode as expressed as

I=(Ax) | j,dz>0, for ¢, < —}siné. (76)

First, ¢,, decreases from — lsin @ to larger negative
values, with the result that the jet in region f1 increases in
volume of total flow. All velocities in region C2 increase.
Also, the jet in the negative x direction in region f2 de-
creases in magnitude. When ¢,, = —acos 6, so that
¢, = —~ (2acos @ — sin 0), so that the flow in the positive
x direction inside f1 is two times that for ¢,, = — | sin 6.
For this ¢,,, ®,, =0, so there is no jet inside f2 and
Uc, =y, atz=a— (1 —y) tan 8. The total flow

Q=a+acos(20) + (a* — 1)sin 26.

8
R

FIG 8 Plot of typical u vs z for fixed value of y for zero net current.
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Finally, as ¢,, decreases further from — acos 6, both f1
and f2 jets are in the positive x direction.
From Egs. (70a) and (70b), the difference in total vol-
ume of flow in regions f1and f2is
0, —0Qpn=12a—tan8)>0

so that the difference is independent of &, .

an

V. EXPERIMENTAL EVIDENCE FOR FREE-SHEAR
LAYERS

Since we have analyzed the free-shear layers mathemat-
ically by fundamental magnetohydrodynamic theory and
characterized some of the basic properties of these layers, we
must ask whether there is any experimental evidence of jets
of boundary layer thickness O(M ~'/?). The answer is yes.
Hunt and Malcolm'*** treat theoretically in cylindrical co-
ordinates and experimentally the problem of a circular elec-
trode embedded in an insulating wall in .. high external mag-
netic field in a stationary fluid. They predict a free-shear
layer as a jet in the azimuthal direction between the core
region and the clectrode, and between the core region and
the insulating wall. They predict that v, = O(M '/?). The
free-shear layer is a jet in the 6 direction, but the jet is in the
+ 6 direction for z>0 and the — @ direction for z<O0.
(z = 0 is midway between the two circular electrodes.) In
their work experimental measurements'* show evidence of
these jets.

However, that work 1s somewhat different from the jets
we discuss here, in which each jet must be entirely in the + x
or — x direction. For the work herein, the jet goes from zero
at the intersection with the perfect conductor to a maximum
at the corner where the insulator and other conductor meet.
Both cases involve linear variation of velocity along the
length of the layer.

VI. TOTAL CURRENT ANC POWER LOSSES BETWEEN
ELECTRODES IN THE CORES

A. Development of basic theory

We derived the total current between the electrodes (see
Figs. 1 and 2) for the core regions. In the core regions C 1 and
C 3thecurrent densitiesj,c ,jec1 1/yc3»2ndjec; weredeter-
mined to be zero to O( 1), when neglecting terms of O(M ~')
in the magnetohydrodynamic equations. In the free-shear
layers f 1 and f2, the current densities j,, -, and j, ,, were
determined to be of O(1). But since the thickness of the
boundary layer is O(M ~'/2) the total current is O(M ~'/?)
in the 7 direction. The current densities in the core C2 were
derived to be jic, =0, and jc, = —cos O(dy+ £) to
O(1), neglecting terms to O(M ~'). Here, ¢, is the nondi-
mensional potential of the perfectly conducting moving wall
at £ = 0, in reference to the stationary perfectly conducting
wall at the bottom of the channel.

The zeroth order total current I to O(1) carried by the
core C2is

g cos 6 —sin @

I= (AX) jr]CZ dgf (78)
—acos 8

where Ax = nondimensional axial length along channel,

I = nondimensional total current in C2, £, = —acos @
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(coordinate for corner 2), and &, = a cos 8 — sin @ (coordi-
nate for corner 3). The total current terms neglected in the
two free-shear layers and the two Hartmann layers along the
insulatingwallsareof O(M ~'/?)and O(M ~'), respectively.

Integration of the expression for the total nondimen-
sional current  in core C2 is

I= — (Ax)cos 6(8,. + §sin 8)(2acos @ —sin 6),
(79)

where &,, is the mean voltage of the moving wall and is
defined as &,, =, —sin6.4,, =daty = land z=0, the
potential at the center of the moving wall. The new dimen-
sional quantities with superscripts (*) are defined as

I*=0U,B,L"I, (80)
¢; =U()B(1L¢m- (81)

The other variables were defined previously in the paper.

The total nondimensional zeroth-order total Joulean
power loss P between the electrodes to O(M?) in core C2
can be derived by integrating the current density squared in
the 7 direction, in core region C 2:

acos - sin @

P, = (Ax)M*(sec ) (nc2) dE,  (82)

~acos @
where the sec 8 comes from the integral with respect to 7.
The toral zeroth order Joulean power loss terms neglected in
the two free-shear layers and two Hartmann layers along the
insulating walls are O(M*'?) and O(M), respectively.
The expression for the power loss Py after integration is

P, = (Ax)M* cos 8(2a cos 6 — sin 6) [&,,(8,, + sin )
+ {(@’ cos® @ — a cos O sin @ + sin’ 0], (83a)
where the dimensional Joulean power loss is defined as
T=(uUP,. (83b)

The current densities in the cores C 1 and C 3 were deter-
mined to be zero to O(1) and thus do not contribute to the
zeroth order total current and zeroth order Joulean power
losses.

It should be noted that the expression for P,. when the
magnetic field becomes transverse & =0, and no external
potential is applied ¢, = 0; approaches the result obtained
by the authors when working the corresponding problem
using the infinite series type of mathematical solutions pre-
sented by Hughes and Young'’

P, = 3(Ax)’M*a". (84)

The nondimensional resistance of the rectangular chan-
nel per unit length R in core region C2 is defined as the
nondimensional length of the resistor L divided by the non-
dimensional cross-sectional area A of the resistor

R=L/4A=1/(2a — tan 0) (cos *8) (Ax), (85)

where 4 = (2a - tan 8)cos 8(Ax) and L = sec 8. The di-
mensional resistance R * is defined as

R*=(1/Lo)R. (86)

B. Resuits and discussion

Figures 9-14 present straight line graphical data for the
nondimensional total current per unit channel length in the

J. Appl. Phys., Vol 64, No 1,1 July 1988

) = total current per unit length of channel
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00 10 20 30 40 50 60 70

¢, = mean potential

FIG 9. Total current per unit length of cirannel vs positive mean potential
d,, for aspect ratiog = 1.

core C2, (I /Ax),versusthenondimensional mean voltageat
the center of the moving conductor at the top of the rectan-
gular channel ¢,, . The potential ¢, is referenced to the per-
fect conducting wall at the bottom of the rectangular chan-
nel, which is assumed to have the potential ¢ = 0. Equation
(79) is used to numerically calculate the data. Equations
(80) and (81) show the parameters used to dimensionalize
the nondimensional variables.

Figures 9-11 present straight line plots of positive mean
voltage ¢,, plotted versus total current per unit length (//

~-10.0

-12.0

—o} (
( #) = oUB,L (A—lx')

) = total curront per unit length of channel

~-16.0 . =
"'l: $m" = UoBoléin 6 = 30°
-1 - a=2 = =
80 aspect ratio b =2°
9 = 10°
-20.0 1 1 1 6 =0° 1

00 10 20 30 40 650 60 70
¢, = mean potential

FIG. 10. Total current per unit length of channel vs positive mean potential
d., for aspect ratioa = 2.
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-0} (_A%) = OUOBoL (-ALX-)
¢m. = UgBolém )

a=5
aspect ratio i

) = total current per unit length of channel

-800

(ax

-9.0

-1000 1 L ! 1 ! L
00 10 20 30 40 650 60 70

$y = mean potential

FIG. 11 Total current per untt length of channel vs positive mean potential
é., foraspectratioa =35

Ax). For the range of vanables studied herein the (//Ax)
values are all negative quantities. The straight line plots
show that for positive mean voltages the total current is flow-
ing from the moving wall to the bottom perfect conductor in
the channel in core C 2. Each figure presents data for a partic-
ular aspect ratio (i.e.,a =1, 2, 5). In each figure the angle
15 placed along each straight line plot where & shows the
external magnetic field angle. The straight line plots show
that as the positive mean voltage é,, increases and the exter-
nal magnetic field angle 8 decreases, the total negative cur-
rent per unit length in the rectangular channel increases for

10.0 T T T T ¥
§=10° \0=0°
90| (E) = ouget (&)

-
n

¢m. = UoBoldm ]

a=1
aspect ratio

o @ N @ 9®
[=~] o o (-4
] T T T

total current per urit tength of channel
»
=)
i
<
1

g = 60°

1 1 1 I I

0.0 ;
-70 -80 -50 ~40 -30 -20 -10 00

¢ = mean potential

FIG. 12 Total current per unit length of channel vs negative mean potential
é,, for aspectiatioa = |
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FIG 13. Total current per unit length of channel vs negative mean potential
&, for aspect ranoa = 2.

the range of variables interest. The total current flows from
the top moving electrode to the bottom fixed electrode.
Figures 12-14 presents straight line plots of negative
voltages @,, plotted against total current pair unit length (//
Ax) for core C 2. For the range of variable of interest herein
the (1 /Ax) values are all positive quantities. These straight
line plots show that for negative mean voltages the total cur-
rent is moving from the bottom stationary perfect conduct-
ing wall to the moving perfect conductor at the top of the
channelin core C 2. Each figure presents data for a particular
channel with a given aspect ratio (i.e.,,a =1, 2, 5). In each
figure the external field angle @ is placed alongside each

100.0 T T T T T T
Iy 1
90.0 (A—x‘-‘) h OU°B°L (AX) -
$m" = UoBolém
80.0 |- a=5 -

aspact ratio
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FIG 14. Total current per umit length of channel vs negative mean potential
&, for aspect ratioa = 5
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straight line. These plots show that as the negative mean
voltage &, increases, as the aspect ratio of the rectangular
duct a increases, and as the external magnetic field angle
decreases, the total positive total current per unit length of
the duct increases for the range of variables of interest.

It is interesting to note at this point that positive mean
potentials é,,, give a larger absolute value total current per
unit length values | (7 /Ax)| than the corresponding negative
potential in a similar channel with the same 8> 0. Each
straight line intersects the / = O axisat é,, = — !sin 0.

In Fig. 15, curves of nondimensional resistance of the
duct per unit length R in core C 2 are plotted versus external
magnetic field angle 8. Three curves are shown with aspect
ratios of a =1, 2, and 5. Each curve has the lowest total
resistance at the smallest value of @ and increases as 6 in-
creases. The resistance of the duct decreases with aspect ra-
tio a, as would be expected. The nondimensional resistance
of the rectangular channel per unit length in core C2 is de-
fined as the resistor length L divided by the cross-sectional
area A of the resistor and is derived in Eq. (85). The dimen-
sional resistance R per unit length is defined in Eq. (86).

Figures 16 to 19 show the nondimensional Joulean pow-
er losses per unit length of channel P; versus the mean vol-
tage ¢,, at the center of the moving perfectly conducting
wall (i.e., moving electrode) for different external magnetic
field angles 8. For both positive and negative potentials the
power losses are positive, since heat is lost from the system
due to Joulean heating. Power losses for external magnetic
field where 6 equals zero (i.e., transverse external magnetic
field) were reported in an earlier paper by Brown et al.!' It
should be noted that the power loss value from the negative
potential ¢,, is slightly less than the analogous power loss
value from the corresponding positive potential. This is as
expected because the positive potential drives a larger abso-
lute value of the total current per unit length of the channel

20.0 T T T T T T

R = 1
180 {Za—tanglcos?oiax) .

-

ol
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-

>
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R = nondimensional resistance per unit length

20} 8 =2

a=5
0.0 L——m——e L
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FIG. 15. Nondimensional resistance per unit length of channel vs angle of
external, homogeneous magnetic field 6.
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FIG. 16 Nondimensional Joulean power losses per unit length of channel
versus positive mean potential 4, for aspect ratiosa = 1, 2,and Sand exter-
nal magnetuc field § = 10°, 30°, and 60

than the analogous negative potential. (See plots of the total
currents per unit length of the channel in the preceding part
of this section.)

Vil. DISCUSSION AND CONCLUSIONS

Fully developed viscous liquid-metal flows in a rectan-
gular channel (duct flow) with insulating side walls that are
skewed to a high, homogeneous external magnetic field were
studied. A perfectly conducting moving top wall with an

6.0 x 10° T Y T T T T
Py = U Py
M= 384

3.0 x 10°

P; = nondimensional joulean power iosses per unit length

0.0
-70 -60 -50 -40 -30 -20 -10 00
4, = mean potential
FIG ‘17. Nondimensional Joulean power losses per unit length of channel

vs negative potential 8, for aspect ratios @ = 1, 2, and 5 and external mag-
netic field angles 8 = 10, 30°, and 60°.
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d = boundary thickness

boundary layer

J
where =0lé 1)
Jy

wall

FIG. 18. Wall with the unit normal %) at an angle ¢ to the external magnetic
field direction

external potential and a stationary perfectly conducting bot-
tom wall at zero potential act as electrodes and are also
skewed to the external magnetic field. The angles of the ex-
ternal magnetic field B, is in the range of values 0 < 6 < arc-
tan 2a. The flow in the channel is characterized by high
Hartmann number M, high interaction parameter N, low
magnetic Reynolds number R,,,, channel aspect ratio g, and
external magnetic field angle 6.

In this work, since the Hartmann number is always as-
sumed large (i.e., M> 1), it was determined by magnetohy-
drodynamic theory that the channel could be divided into
subregions shown in Fig. 3. In the three channel core subre-
gionsC 1,C 2,and C 3thefirstpartial derivativesd /d¢and d /
dnareof O(1). The six Hartmann layers, 4 1-4 6, along the
sides of the duct are of O(M ~') thickness and have O(M)
normal derivatives. f1and f2 are two free-shear layers (or
interior regions) which have unique characteristics. The
free-shear layers separate the three core regions from each
other. A free-shear layer lies along the magnetic field lines
through the appropriate channel corner and is driven by a
current density singularity at this corner (see Figs. 4-6).
The layers have O(M ~'/?) thickness. The first partial de-
rivatives are of order 3/3& = O(M ''*) and 3 /dn = O(1)

The general mathematical solutions in the cores were
obtained from the basic magnetohydrodynamic equations
(7b) and (7c) in thecoreifthe term of O(M ~7) is neglected.
The method of singular perturbation expansion and
matched asymptotic expansions at the boundaries between

FIG. 19 Geometry of free-shear layerat z = — a.
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the Hartmann layer and core region is appiied to the com-
plex system of coupled equations to obtain the core solutions
in the different core regions to zeroth order. It is assumed
that the physically realizable functions in the core u (x;M)
can be expanded at high Hartmann number M as

uc(x;M) = uco(x) + (1/M)uc, (x)

+(1/M2)ucz(x)+"', (87)

where x is an independent variable. The function u, (x:M)
can be expanded at high Hartmann number M in the Hart-
mann layer as

u,,(X;M) =”bo(-x) + (1/M)Ub|(X)
+ (I/Mz)ubz(X) + -,

where X is a stretched coordinate. The zeroth order terms
areuc, (x) and u,, (X),and the first-order terms are (1/M)
Uc, (x) and (1/M) u,, (X).

To zeroth order in the core C 1 the velocity ucyy =1
throughout the region. The velocity is the same as the mov-
ing wall throughout this core region. The two components of
the current density to zeroth order jy, o anG j, ¢, o are both
equal to zero. Also the potential to zeroth order throughout
thecore Clisdc o = @, + £ throughout the core area. To
zeroth order in core C 2 the current density follows the exter-
nal magnetic field B, and therefore j.c,o =0, and
Juc2o = —cos 8(d, + &) [seeEq. (17a) ]. The zeroth order
potentials ¢(7,£) and u(n,£) are functions of 9 and & {see
Eqgs. (7b) and (7c¢)]. It should be noted that to zeroth order
thereis a jump on u, across each Hartmann layer at the top
and bottom wall [see Eq. (17¢) ]. In core C 3 to zeroth order
Uc3y is zero throughout the subregion. Thus, the core C3
flow has no velocity throughout the subregion. Both compo-
nentsof thecurrentdensityin C3, j ,c30 and j g3 arezero
asincoresubregion C 1. To zeroth order the potential g3 o is
also zero throughout the region. It was not necessary at this
point in the work to obtain the Hartmann layer solutions
adjacent to each core region to solve for the core region flow
profiles to zeroth order.

The fundamental mathematical theory was developed
for the free-shear layers f1and f2 in the rectangular chan-
nel. The free-shear layers in regions f'1 and f2 in coordi-
nates (x, ¢, £) are shown in Fig. 4. The corner region of the
free-shear layer f'1 between the insulating wall and the per-
fect conductor is at (=10, £ = — a cos 8). The free-shear
layer f2 has the corner region between the insulating wall
and the perfect conductor at (r=sec, &=acos

6 —sin 8). In this work we developed the fundamental
mathematical theory for shear layer f 1: the theory for shear
layer f2 can be performed in an analogous manner. Alty'?
previously studied this problem of the free-shear layer in a
rectangular channel with all stationary walls, but his free-
shear layer solution is wrong,.

The basic fourth order, partial differential equation for
the potential to zeroth order in f I, ®(1,{), (Eq. (47a)] in
the free-shear layer was derived. The solution to the partial
differential equation fits five different boundary conditions
[see Eqs. (47b)-(47e)]). The partial differential equation
was solved in this work by using the mathematical technique
of the complex Fourier transform. The mathematical solu-

(88)
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tion to the problem using this technique evolves into an inte-
gral equation which can be solved numerically for the ze-
roth-order velocity profile in shear layer /1. The numerical
solution of the integral equation will be presented in a future
paper. From the fundamental theory for the free-shear layer
the basic characteristics of the free-shear layer were deter-
mined and discussed in detail. There has been experimental
verification of a similar, but not exactly the same, type of
free-shear layer as presented herein, reported by Hunt and
Malcolm."

The basic theory was derived to calculate to zeroth or-
der the total current per unit length of the channel in core C 2
due to an external potential applied across the electrodes
(i.e., perfect conducting walls). Also, the expressions for the
power losses per unit length of the channel were derived to
zeroth order for core C 2. The derived expressions are depen-
dent on channel aspect ratio a, external magnetic field angle
0, and Hartmann number M. No current 1s carried in cores
C 1 and C 3 to zeroth order. The total current per unit length
terms neglected in the two free-shear layers and the two
Hartmann layers along the insulating walls 2zreof O(M ~'/?)
and O(M '), respectively.

In this paper Figs. 9-14 show linear plots of the mean
voltage #,, at the center of the perfectly conducting moving
wall versus total current per unit length of the channel (7/
Ax). The potential ¢, 1s referenced to the perfect conduct-
ing wall at the bottom of the channel, which is assumed to
have a potential of ¢ = 0. The linear plots show that for the
range of variables studied for positive mean voltage ¢, the
total current per unit length is negative. The total current is
thus flowing from the moving wall to the bottom perfect
conductor n the duct in core C 2. Similar linear plots show
that for negative mean voltages &,, the total current is posi-
tive and is flowing from the bottom stationary conducting
wall to the top moving conducting wall in core C 2.

The following general conclusions can be drawn from
this range of calculated data. The plots show that as the
positive mean voltage é,, increases, as the aspect ratio of
channel @ ncreases, and as the external magnetic field angle
@ decreases,the total negative current per unit length n-
creases. The total current is flowing from the top moving
electrode to the bottom moving electrode. The plots also
show that as the negative mean voltage ¢,, increases, as the
aspect ratio of the duct increases, and as the external mag-
netic field angle @ decreases, the total positive current per
unit length increases. The total current is flowing from the
bottom to the top electrode. It should be noted at this point
that positive mean potential @,, gives a larger absolute value
total current per unit length value, | (/ /Ax)|, than the corre-
sponding negative potentials in a similar channel.

Figure 15 shows a plot of nondimensional resistance per
unit length of channel versus angle of the external, homogen-
eous magnetic field B,. For this data the conclusion 1s
reached that th< resistance of the channel increases with in-
creasing external magnetic field 6 and decreasing channel
aspect ratio a, as would be expected.

Nondimensional Joulean power losses per unit length of
channel versus mean potential é,, for different external
magnetic field angles @ and aspect ratios a are plotted in Figs.
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16 and 17. For limited data, power losses increase with in-
creasing positive potential or decreasing negative potential
&,, and with decreasing external magnetic field angle 6.

For fully developed flow, we assume that there is only
one component of velocity ux and that all variables are inde-
pendent of x and time 7 *. Therefore, the inertial term in the
Navier-Stokes Eq. (1a),

v 2)e o

is identically equal to zero for any value of the interaction
parameter N. Fully developed flow is always a mathemat-
ically correct solution of the governing equations, but it may
not actually occur in the real duct flow. Under certain cir-
cumstances, the fully developed flow in unstable with re-
spect to a small, three-dimensional, time varying distur-
bance. The disturbance grows until a different stable flow is
realized. In the actual flow, all three components of velocity
are nonzero and the flow variables depend on both x and ¢ *.
This flow may involve a coherent structure, such as a series
of vortices, or a chaotic structure, such as turbulence. In
magnetohydrodynamic flows, the magnetic field strongly af-
fects the instability and the structure of the periodic flow.

For the present problem, the largest velocities occur in
the free-shear layers f'1 and /2, so that inertial effects will
first become significant in these layers. The key inertial pa-
rameter for theselayersisa = M '>N ~'/3 Ifa < 1, then the
electromagnetic body force overwhelms inertial effects, the
inertial terms in Eq. (1la) are negligible, even in the high
velocity free-shear layers, and fully developed flow is real-
ized. This corresponds to the statement that low Reynolds
number flows are stable in ordinary hydrodynamics. We can
increase a by increasing U, or by decreasing B,,. At some
critical value of a, fully developed flow becomes unstable
and there is a transition to a periodic flow. For « slightly
above a,,, there is a velocity fluctuation wave in the free-
shear layer. This wave propagates with a definite wavelength
and wave speed around the circamference of the current col-
lector which is modeled here. At first, this wave would repre-
sent a propagating undulation in the free-shear layer. As a is
increased further, the undulations grow and become a series
of vortices whose axes are parallel to B in the plane of the
free-shear layer. The vortices are convected around the cir-
cumference of the current collector. The vortices provide
significant momentum transport in the £ direction. This mo-
mentum transport causes the free-shear layer to become
thicker and its maximum mean velocity to become smaller.
The layer thickness grows from M ~/2 to N ='/3, while the
mean u decreases from M '/% to N'/3. However, inertial ef-
fects are still negligible in the core regions, which involve
much smaller velocities, so that the present core solutions
still apply. The core velocities and potentials are the same, so
that the jump in potential across each free-shear layer is the
same. The relationshipu , = dé,/d¢ for each free-shear lay-
er comes from ohms law, so it is unchanged. The new period-
ic, inertial free-shear layers with O(~N ~'/?) thickness must
have the same total flow at each ¢ = constant level as the
original M ~'/* thickness layers.

In the free-shear layers for fully developed flow, there is
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alarge viscous dissipation because the velocity gradient du,/
& = O(M). After transition to the periodic, inertial free-
shear layer structure, the viscous dissipation in the mean
velocity is much smaller since

% O(N**) <O(M).
%

However, the mean flow also loses energy to the vortices
through the Reynolds stress. The vortices receive energy
from the mean flow and lose it to viscous dissipation and to
electromagnetic damping (Joulean dissipation). An infi-
nitely long vortex with rotation around a straight magnetic
field line represents a generator on open circuit: The radial
component of vX B is exactly cancelled by the radial electric
field, so that there is no current and no electromagnetic
damping. However, in the present problem, each magnetic
field line intersects one or two perfect conductors. These
perfect conductors provide a short circuit for the vortex gen-
erator. Electric current circulates through the conductor
and vortex and strongly damps the vortex. If a is increased
further, nonlinear vortex interactions lead to a wide spec-
trum of vortex sizes, i.e., to turbulence. However, the turbu-
lence is two-dimensional since any eddy whose axis is not
parallel to B is strongly damped.® The value of @ when each
transition occurs depends critically on the geometry and
conductivity of the duct walls.
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APPENDIX A: THICKNESS OF LAYERS IN FULLY
DEVELOPED MAGNETOHYDRODYNAMIC CHANNEL
FLOWS

The discussion herein presents a fundamental general
magnetohydrodynamic mathematical treatment for deter-
mining the order of magnitude of boundary layer thickness
in fully developed laminar, magnetohydrodynamic channel
flows.

Equations for fully developed magnetohydrodynamic
channel flows with a uniform magnetic field are as follows:

je=M- (a =+ gg‘;) (Ala)
Jy = --z%, (Alb)
Je= —‘;—zw, (Alc)
ajn ‘?Ig

Tn e Ald
3 + % ( )

Here (x, 1, £) are Cartesian coordinates with the velocity u

in the x direction and the magnetic field in the # direction. ’

Introduce Eq. (Alc) for the u in Eq. (Ala) to obtain
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o 3% 3 9% 8’1‘;)
.I = M -( 2 + + 2 + b (AZ)
g e % ot 3’
Now we differentiate Eq. (A2) with respect to &:

i 4 4 3; 3;
ai-f.zM—z( d'¢_, 3% a’lg + 3%
9 oo ot ok
Substitute Eq. (A1b) into Eq. (A1d) to obtain

ajE ajﬂ a ¢

+ ) (A3)

= - (A4)
% o or

Substitute Eq. (A4) for each j, into Eq. (A3)

a’¢ _2( a'¢ ¢ 3 d'¢ )

—— M ?

31]2 3172352 + 354 + 6774 + anzag-z

L =MV, A5
- o (AS)

Now let us consider a wall in which the unit normal ¥ is
at an angle @ to the magnetic field direction (see Fig. 18).
The unit vector ), the first derivative d /7, and the second
derivative can be written as in terms of Cartesian coordinates

4 = cos 6¥ + sin 6z, (A6a)
d a a
—— =cos 0 — 6— A6b
p cos c?y + sin %’ ( )
19; a2 . a2 a?
n? H* dydz o
(A6c)
Therefore in (x, y, 2) coordinates, Eq. (AS5) is expressed as
2,0 ¢ a’
o 0——
cos ayaz —= 4 sin® px:
d'¢ 9%
=M" ( K 2 ) . A7
+ or + (A7)

Here it noted that Vvis unchanged by rotating the axis.
Equation (A7) is a fourth order elliptic equation so that two
boundary conditions must be described at each boundary.
For a magnetohydrodynamic problem, the velocity is usual-
ly u = 0 and either the potential ¢ is given at a perfect con-
ductor or j, could be given at a finite conductor as
Jjy = C(3°¢/32%) where C = (0,,t /oL) is the wall conduc-
tance ratio, where ¢, and ¢ are the conductivity and thick-
ness of the wall, respectively. Therefore, let us assume that
there are two boundary conditions at the wall at y = 0. Now
consider the asymptotic solution as M — 0. Unless some de-
rivative becomes very large ¢ is governed by the “reduced
equation”:

cos? § —L a¢ -+-2sm49cos0-‘-?--¢-s-+sm2(9a ¢ (A8)
y

dydz a2’

The reduced equation is only second order, so it cannot satis-
fy both boundary conditions at y = 0, Therefore, there must
be a boundary layer adjacent to the wall where the normal
derivative d /dy is sufficiently large that at least one of the
fourth-order derivatives on the right-hand side of Eq. (A7)
is comparable to the second-order derivatives on the left-
hand side. Then, near the wall, the governing equation again
becomes fourth order and can satisfy both boundary condi-
tions at y = 0. The core region is obviously governed by the
“reduced equation.”
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We now change y to stretched boundary layer coordi-
nates.

Y=6"", (A9a)
y=©®Y, (A%)
9_4dY 3 s, 9 (A9%)
& dy Y 3y

Equation (A7) is expressed in stretched boundary layer co-
ordinates as

N 3 aS 1, 0%
cos ) —
aYoz
+sin* @ 3 ?
a3’ 3'¢)
N 206~ .
((6 )8Y‘+ ( )8Y oz -*-az4

(A10)

The first term on the right-hand side of Eq. (A 10) is always
much larger than the other two terms. There are three cases
for various 8. In case I, cos @ is not small [i.e., 0<8<6,
< (7/2)], so the magnetic field has a finite component nor-
mal to the wall. Then § = M ~' and the basic governing
equation is

9’ _ 9% (A1D)
ay: ar*’

This is the governing equation for all Hartmann layers for

walls where there is a finite normal component of B. The
basic solutions are

cos> § —=

A,(2), 45(2)Y, A (2)exp( -
A (2)exp( + |cos 81Y),

|cos 8|Y),

where the 4, (z) are arbitrary functions. Thus, all Hartmann
layer solutions are composed of linear combinations of these
four solutions.

In case II the angle @ = 7/2 and the magnetic field is

exactly parallel to the wall. Then § = M ~'/2, and the gov-
erning equation is of the mathematical form
2 4
9¢_29% (A12)

ar ~ art’

This is the governing equation for “side layers.” These are
boundary layers on walls parallel to the magnetic field, and it
is the governing equation for free-shear (or interior) layers
that lie along the magnetic field, such as the free-shear layers
being studied within this paper.

Case I1I deals with the problem when cos 8 = aM
and § = M ~ "2, where a is an O(1) parameter in the prob-
lem. Then the governing Eq. (A10) becomes

—-1/2

e 4’ ¢ " 32¢ 84¢
2 _9% INE
ar: T ayaz t 5 T ar (ALD)

This is the equation for a wall that is nearly, but not exactly,
parallel to the magnetic field. The governing equation for
case III becomes that for case II as @ —0 and becomes that
for case | as @ — 0, if we redefine 8.
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APPENDIX B: MATCHING PRINCIPLE BETWEEN
HARTMANN LAYER AND CORE REGION

The matching principle was originally stated by Lager-
strom>*?' in the early 1960s, which was proven to be rigor-
ous by O'Malley**** in the late 1960s. The principle states
that

n inner(m outer) = m outer(n inner) (B1)

where outer = core, and inner = boundary layer. We will
illustrate with an example 2-inner (2-outer) = 2-outer (2-
inner) where (n =m = 2).

The outer (core) expansion is

uc(M) =uco(x) +M uc, (x) +M 2uc, (x) + -+,

2-outer = truncated after first two terms. {B2a)
Thus,
2-outer = uco(x) + M ~uc, (x). (B2b)

Now, inner (n outer) =n outer rewritten in inner
(boundary layer) variables so that

inner (2-outer) = uco (M ~'X) + M ~'us (M ~'X).

(B3)

This is not a legitimate asymptotic expansion because
the coefficient functions u, (M ~'X) depend on M. We must
change this to asymptotic expansion before we go on.

For X fixed, M ~'X-0as M— . (B4)
Therefore, we use expansions for small argument, i.e., Tay-
lor series:
¥ duco (0)

dx
d?ucqy(0)
dx*
1 d 3u(:o (0)
M- BS
6 dx* (B2)

Alsoexpanding uc, (M ~'X) ina Taylor series results in the
following expansion for the truncated series

Ueo(M™'X) =1 (0) + M~

1 2
+_M—-2X..
2

inner (2-outer)

=uco(0) + M (ucl(o) +X"£u—j;—x92‘)

duc, (0) N —-X’ d*ucy(0)

. (B6
ax 2 dx? )()

+M‘2(

This is now a valid asymptotic expansion in the form

SAXM (B7)

Therefore,

2-inner (2-outer) = truncated after second term,
2-inner (2-outer)

= uco(0) + M~ (uc,(O) +Xfﬁ;‘;£)—).

(B8a)

The inner expansion can be expressed as
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innel' = uho (X) + M— lu,,, (X) + M —2llb2 (X),
2-inner = u,o (X) + M ~'u,, (X),
outer (2-inner) = u, o (Mx) + M ~'u,, (Mx). (B8b)

This is not a legal expansion. Thus, we need to know
how u,, (X) behaves as X — .

In general, we have solution forms from Hartmann
boundary layer equations, so we know how the solution be-
haves. Assume, for some a >0

ub()(X) —'A0+A‘, exp( —aX) as X—*oo (B9)
and

Uy, (x)—A4,+B,X + B, exp( —aX) as X— .

By inspection the following relationships can be ob-
tained for the Hartmann layer equations:

lim (u,,) = A, (B10a)
X
d
lim ( o ):B,, (B10b)
X ox daXx
(B10c¢)

lim (u,, —BX)=4,
Note as X— w0, exp ( — aX) <X " for any n. The expan-
sion in terms of these expressions is
outer (2-inner)

=A,+ 4, exp( —aMx) + M ~'[4, + B,Mx

+ B, exp( — aMx)]. (B11)

Sinceexp ( — aMx) = exp( — aX) —-0as X— « 2 outer (2-
inner) = 4, + B\x + M ~'A4, + asymptotically exponen-
tially small terms.

Using the matching principle {Eq. (B1)) as X— « in
the boundary layer we obtain

Ay +BM X + M 4,

dlico (0
= U (0) + M " 'uc (0) + M 1y Lco(0)

(B12)

Therefore, the zeroth and first order matching condi-
tions between the core region and Hartmann layer are

Ay = Uy (0) =}im [uho (XD ], (B13a)

A,=u(-,(0)=}im [4p) (X) - BX], (B13b)
du., (0 du,, (X

B,=M= lim _""_‘(_l (B13¢)

dx X ax

APPENDIX C: MATCHING PRINCIPLE BETWEEN THE
FREE-SHEAR LAYER AND HARTMANN LAYER

The free-shear layer is separated from each wall by a
Hartmann layer with O(M ~') thickness. Since the free-
shear layeris O(M ~'/?) thicknessand M ~' <M ~ ', these
Hartmann layers appear to the free-shear layer to have zero
thickness. That is, the iree-shear layer solution applies to
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within an arbitrarily small distance from a wall and then
there is a jump across a zero thickness layer to satisfy the
wall conditions. When we stretch the normal coordinate to
the wall by M, we can look at the structure of the jump across
the *“zero-thickness” layer which has been stretched to have
O(1) thickness. However, since M> M '/ the Hartmann
layer sees the free-shear layer to be at infinity. Specifically,
the value which the free-shear layer *“sees” at an arbatrarily
small distance from the wall appears to the Hartmann layer’s
stretched coordinate to be infinitely far from the wall.

The free-shear layer “sees” horizontal boundaries at
t =0 and ¢ = sec 8, even though walls are not horizontal
here.

The coordinate transformations are (see Figs. 2 and 4)

(z+a)=£&cos @ +tsin, (Cla)
y=tcos@—E£sin6, (Clb)
t=ycos 8 + (z+ a)sin 6, (Clc)
&= (z+a)cos § — ysin 6. (Cl1d)

Let us now consider the matching between the free-
shear layer and insulated Hartmann layer. The stretched co-
ordinates are

Y=M'"%y, y=M~'’Y

Z=M(z+a), z=—a+M"'Z

(C2a)
(C2b)

The Hartmann layer solution can be expressed as
uH =M”2UH0(Y,Z)+11”|(Y,Z). (C3)

The free-shear layer coordinate and stretched coordinate
are, respectively,

t=1, ;=MI/2§. (C4)
The velocity in the free-shear layer can be expressed as
u, =2-outer = M'"uR(1,L) + ul(1,6) (C3)

For inner (2-outer), we need ¢ and § in terms of Y and Z.
Note that ¢ can be expressed in terms of y and z as

t=ypcos @ + {z+ a)sin 6. (C6)

Substituting Eqs. (C2a) and (C2b) for stretched coordi-
nates results in the expression

t=cos 8(M ~V2Y) +sin (M ~'2).

Also, § is expressed as

(C7a)

E=M"E=M"*(M~"Zcos 0~ M ~""*Ysin 6)
= (cos M ~'Z — Ysin 6). (C7b)

Now the free-shear layer velocity u,, can be expressed as

inner (2-outer)
=M "4 [(cos OM ~'1*Y 4 sin OM ~'Z),

(cosM ~'"°Z—Ysin0)) +uly, [( ),( )]+
(C8)

The terms inner and outer are defined in Appendix B. Next
we need to use a double Taylor series expansion:

Walker, Brown, and Sondergaard




W W - a“(fi:
uf (48) =uf} (0, — Ysin6) +1¢

(0, — Ysin 8)

(l)

Ju
+ (£ + Ysin ) —— (0, — Ysin 8), (C9a)

J

2-inner(2-outer) =M”2(u‘°’(0 — Ysin 8) + (cos OM ~'2Y +sin M —'Z) ——

+ (cos OM ~'/?Z) 821 (0, — Ysin 8) + - ) ult) (0, — Ysin 6) + (cos OM ~'°Y

4 sin M ~ |Z)

(O — Ysin @) +cos OM ~1/2Z2 L

Keeping only M '"?and 0(1) terms for 2-1nner (2-outer expression:

(0)

du
= MI/Zu(O)(O — Ysin 8) + cos 8Y aﬂ

2-inner(2-outer)

o
+ cos 6Z

a&él (0, — Ysin 0) + u‘})(0, — Ysin 6).

When we do the matching all conditions on u ,; will be at z =0, so it sees a horizontal wall

l-inner(1-outer) = l-outer( l-inner):
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Further studies ot liquid-metal flows and power losses in ducts with a moving
conducting wall and a skewed magnetic field
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In a previous paper the authors initiated studies of fully developed laminar liquid-metal flows,
. currents, and power losses in a rectangular channel with a moving perfectly conducting wall
and with a skewed homogeneous external magnetic field for high Hartmann numbers, high
interaction parameters, low magnetic Reynolds numbers, and different aspect ratios. The
channel had insulating side walls that svere skewed to the external magnetic field, while the
perfectly conducting moving top wall with an external potential and the stationary perfectly
conducting bottom wall at zero potential acted as electrodes. These electrodes were also
skewed to the external magnetic field. A mathematical solution was obtained for high
Hartmann numbers by dividing the flow into three core regions, two free shear layers, and six
Hartmann layers along the channel walls. The free shear layers were treated rigorously and in
detail with fundamental magnetohydrodynamic theory. The previous work, however, left the
solution for the velocity profiles in terms of a complex integral equation which was not solved.
In the present work the integral equation is solved numerically by the method of quadratures
to give the velocity profiles, viscous dissipation and Joulean losses in the free shear layers. In
addition, expressions for the viscous dissipation in the six Hartmann layers are presented. The

best approximation to the viscous dissipation in the channel is the sum of the O(M */2)
contributions from the two free shear layers, the O(M */?) contributions from the two
Hartmann layers separating the free shear layers from the insulators, and the O(M)
contributions from three of the Hartmann layers separating core regions from the walls. The
best approximation to the Joulean power losses in the channel is the sum of the O(M ?)
contribution from the central core region which carries an O(1) current between the electrodes
and the O(M */?) contributions from the free shear layers. The expressions for the viscous
dissipation and Joulean losses in each region involve the products of universal constants,
electrical potentials and geometric factors. The theoretical magnetohydrodynamic model
presented here was developed to provide data to help in the design of liquid-metal current

collectors.

1. INTRODUCTION

Advanced homopolar electrical machinery is being de-
veloped for many new applications.'™® These advanced ho-
mopolar machines require current collectors for transport-
ing high current at low voltages between rotating and
stationary members of the machines with minimal losses and
maximal operational stability. Therefore, liquid metals are
often used in the sliding electric contact region, instead of
more conventional brush technology. Generally, these ma-
chines have large magnetic fields in the region of the current
collector, which produce Lorentz forces on the liquid metal
which can increase power losses and lead to flow instabili-
ties. Thus, to obtain current collector design parameters, one
is interested in liquid-metal channel flow problems with ap-
plied external magnetic fields and with boundary conditions
containing combinations of mqving and fixed, conducting,
orinsulating walls. These boundary conditions then approx-
imately correspond to a rotor, stator, or sidewall of the cur-
rent collector and the liquid metal corresponds to the sliding
electric contact.
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In contrast to the rather extensive magnetohydrodyna-
mic (MHD) duct flow literature,”” investigations treating
moving conducting walls, such as discussed by Hughes and
Young,'® are rare. Brown, Reilly, and Sondergaard'' have
studied fully developed, viscous liquid-metal flows and pow-
er losses in a rectangular channel with a moving conducting
wallin a uniform, external magnetic field for moderate Hart-
mann numbers. The rectangular channel had insulating side
walls parallel to the magnetic field and a perfectly conduct-
ing moving top wall and stationary bottom wall perpendicu-
lar to the field. A previous paper'? by the authors treated
rigorously and comprehensively this same problem with two
major differences. The homogeneous transverse magnetic
field was changed to a high strength, skewed magnetic field,
and an external potential was applied to the conducting
moving wall, thus making the channel transport current.
Skewed magnetic fields are present at the collectors in some
machine designs and external potentials on the electrodes
correspond to the generated or motored voltage of the ma-
chines. These changes complicate the channel problem by
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FIG 1 Rectangular channel with skewed external magnetic field and with
moving and stationary perfect conductors

removing symmetry. The present paper should be consid-
ered as part two of the previous paper. '

The purpose of the previous paper'* was to present com-
prehensive, two-dimensional analytical solutions for the
flow velocity and electrical potential in different regions of
the channel (see Fig. 1). In the three core regions, the singu-
lar perturbation problem for the velocity and electric poten-
tial was solved to zero order using matched asymptotic ex-
pansions. The solutions in the three core regions enabled the
investigation of the influence on the velocity and electrical
potential of the insulating sidewalls and an external skewed
high magnetic field. Furthermore, analytic expressions were
denived for the quantities of technical interest in the cores to
zero order. These quantities were the load currents between
the electrodes (i.e., moving and stationary conducting
walls), Joulean and viscous dissipation, and channel resis-
tance with skew angle. The parameters of variation were
applied skewed external magnetic field, fluid electrical ¢ -
ductivity and viscosity, and channel aspect ratio.

The fundamental magnetohydrodynamic theory for the
two free shear layers was also derived to zero order. How-
ever, the expressions for the velocity and electrical potential
were left in a form requiring the solution of an integral equa-
tion.

The work begun in our earlier paper'” is combined and
completed here. We have calculated the velocity profile, vis-
cous dissipation, and Joulean power losses in the free shear
layers by numerically solving the integral equation with the
method of quadratures. Furthermore, analytic expressions
for the velocity profiles and viscous dissipation in the six
Hartmann layers in the channel are presented.

In treating the magnetohydrodynamic flow due to elec-
tric current between two circular electrodes embedded in
two parallel insulators with a transverse magnetic field,
Alty"* and Hunt and Malcolm''* treated a similar free
shear layer, but their approach is quite different from ours.

1. NONDIMENSIONAL MAGNETOHYDRODYNAMIC
EQUATIONS

The nondimensional magnetohydrodynamic equations
for laminar duct flow in an external, homogeneous magnetic
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field at an angle 8 with the vertical can be written as

N='(vW)v= —VP+jxb+M V%, (1a)

j= — V¢ + vxb, (1b)

Vv =0, (lc)

Vej =0, (1d)
where

N = interaction parameter, the ratio of ponderomotive
force to inertial force = cB}L /pU,; (2a)
M = Hartmann number, the positive square root of
the ratio of the ponderomotive force to the viscous
force = LB,(a/ps)""%; (2b)
v = fluid velocity vector normalized by U, = v*/U,; (2¢)
P = pressure normalized by oU,BiL = P*/0U,B3L;

(2d)

j = electric current density vector normalized

by oU,B, = j*/oUyBy; (2e)
¢ = electrical potential normalized by

UuByL = ¢*/UyB,L; (2f)
V = gradient normalized by L = LV*; (2g)
b = unit vector parallel to external magnetic

field By (B, = B,b); (2h)
(%,¥,Z) = unit vectors in Cartesian coordinates

(see Fig. 1),

l;=0059$I+sin 6z; (2i)

where an asterisk denotes a dimensional quantity. Here o
and p, are the electrical conductivily and viscosity of the
liquid metal, while L is the distance between the perfectly
conducting electrodes, U, is the velocity of the moving per-
fectly conducting top, and B, is the strength of the external
magnetic field.

It is assumed during this work that the magnetic Reyn-
olds number R,, = U,Lou (i.e., ratio of induced magnetic
field to external magnetic field) is much less than one, where
4 is the liquid’s magnetic permeability.

In the Cartesian system of dimensional coordinates (see
Fig. 1), the (x,p,2) coordinates are normalized by L, The
perfectly conducting sliding wall is at a constant velocity of
U,k at y = 1, the stationary perfectly conducting wall is po-
sitioned at y = 0. The insulating walls are atz = 4 a, where
2a is the aspect ratio of the channel. The external magnetic
field angle @ is represented in terms of the field components
as

0 = arctan(B,/B,), (3a)

and the magnitude of the external magnetic field in terms of
the field components is

B,= (B, +B}H'"". (3b)

Equation (1a) is the dimensionless Navier Stokes equa-
tion with an external ponderomotive body force j X b. Equa-
tion (1b) is the dimensionless expression for the electric cur-
rent density induced in the channel. Equation (lc) is the
dimensionless expression for the fluid incompressibility.
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FIG 2 Rectangular channel with coordinate systems (x,.z) and (x,7,£)

Equation (1d) represents the conservation of charge.

A new rotated nondimensional coordinate system
(x,7,6) is defined with the 7 axis parallel to the external field
B,. Therefore, the unit vectors 7 and b are identical (see Fig.
2), and X is the unit vector in the axial direction along the
channel. In our new rotated, right-handed coordinate sys-
tem, the straight lines describing the top, bottom, left, and
right walls are represented by the following equations:

7 =secd + (tan 8)&

for —acos 8 — sin 8<&<a cos 8 — sin 6, (4a)
7 = (tan §)¢ for — acos 6<E<acos b, (4b)
n= —acscl - (cot )&

for —acos @ — sin 0<E< —acos 6, (4¢)
7 =acsc—~ (cot )&

for a cos @ — sin 8<&<a cos 6. (4d)

It should be noted that the unit vectors in the two sys-
tems nave the following relationships:

i=.sin(}f|+cost?é, (5a)
9=cos()1‘]—sin0€, (5b)

In our rotated coordinate system (x,7,£) the physically
reahzable variables for fully developed flow'® can be ex-
pressed as

v = u(1),£)X, (61)
P=P(13.¢) (noaxial pressure gradient), (6b)
o= (1), (6¢)
3=y A+ (nH)E, (6d)

Substituting these variables into Egs. (1a)-(1d) results in
the following system of magnetohydrodynamic equations in
terms of velocity and electrical potential. The electrical po-
tential and flow velocity are variables that can be measured
experimentally.

o3 u  3*u
=M '(—"—,'4‘—"-;), (7a)
J: ENCRANETE
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j'r)_ —-a;’ j§= _'"a?"*“uy (7b)
o .
Ty %y, (7c)
an 9

and P is a constant.

Here we assume that the Hartmann number M is large.
For M'> 1, the interior of the channel is subdivided into three
core regions with all O(1) derivatives, two free shear layers
which have O(M ~'/?) thicknesses and which separate adja-
cent core regions, and Hartmann layers which have
O(M ~') thicknesses and which separate cores or free shear
layers from adjacent walls. In each core region,
=0 Jy =i (6, $= (@) — 7, @), u=2
£ Iy ] ? 7 ’ 3§ ’

(8)
neglecting O(M ~?) terms. The jump in electrical potential
or normal current density across a Hartmann layer Is
O(M ~'). The integration functions j, (£) and (&) in each
core are determined by the electric potential of either perfect
conductor or by the boundary condition j, = O at either in-
sulator, neglecting O(M ') terms. This completely deter-
mines the core solutions, which we presented in our previous
paper.'? The electrical potentials in adjacent cores are not
equal at £ = —acos @ and at £ = a cos @ — sin 8, and the
free shear layers at these planes must accommodate these
jumps in the electrical potential. The dimensionless poten-
tials at the fixed and moving conductors are zero and
(@, + &), respectively.

lIl. FREE SHEAR LAYER ANALYSIS

The free shear layer in region /1 is shown in Fig. 3. The
potential at the left is

G =y —acosb, (9a)
and the potential at the right is
b =cos 8(p, — acos 8)(n + asin 6). (9b)

The width of the layer is O(M ~'/?) and the top and bottom
are at 77 = sec @ — a sin 6 and 7 = - a sin 6, respectively.

FIG. 3. Free shear layer f1 scparating cores ¢l and ¢2
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We shall work out the fundamental mathematical theory for
shear layer £ 1; the theory for shear layer /2 can be performed
in an analogous manner. In order to develop the theory for
[1, the stretched coordinate £ will be defined as

E=M"*(E+acosf), €= —acosf +M 'L,
(10a)

9 de a a

The fundamental magnetohydrodynamic Eqs. (7a)-
(7c) in the free shear layer f1 for fully developed flow in
stretched coordinate £ and regular coordinate 7 are

(10b)

d*u 3%u
9 M_"_ y
Je(m) = (a T+ ag?)
(11a)
J, () = ""’ Lt
) ) a¢
g = —M”-— y WS /s
Je 3% (78) + u(,8)
(11b)

% L M2 %

dn 9
The first terms in the series solutions in the free shear layer £ 1
are

=0.

.1'7,(77»§) =j7]f|.0(77!§)7

(12a)
j_s(771§) = —”-.h;flo("? 0,
é(n1,8) =¢f],0(17’§)’

(12b)

ll(7],§.') =M"? Uro (77,4‘),
neglecting the O(M ~'/2), O(M ~"), O(M ~"'?), and O(1)
terms, respectively.

From the magnetohydrodynamic Egs. (lla) and
(11b), the following relationships can be developed:

94, . 9,
Usio =%’ Jusio = — (?f?;o ) (13a)
) a¥¢ a‘.‘ ad¢
Jero = a;’;” : a‘f}’;” = a;{,‘”. (13b)

The mathematical solutions to the differential Eq. (132) and
the boundary values of Eqs. (9a) and (9b) are assumed to be
in the form

br10 =¢y—acos @ + P(1,0), (14a)
where

t=7n-+asinb, (14b)
and

sin@>0 for f1, sign(sin@) = (14c)

Here ®(1,{) is treated as a perturbing term which ap-

proaches zero as { — — o [see boundary value Eq. (9a)].

Also ®(1,{) approaches zero at the moving perfect conduc-

tor. The partial differential Eq. (13b) in terms of ¢(1,{)

with its five boundary conditions in terms of # and ¢ is
aid 3o

—at_z = F for O<t<sec 4,

— 0 <§< o,
(15a)
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where the boundary condition from matching core ¢2 is

b (p,—acosB)(tcosf@—1) as {—0, (15b)
the boundary condition from matching core cl is
®-0 as {— — w, (15¢)

the boundary condition at the moving perfect conductor is

(15d)
the boundary condition at the fixed perfect conductor is

Y= —(d,—acosf) at =0 for 0<{< o,
(15e)

and the boundary condition at the Hartmann layer separat-
ing the free shear layer from the insulating wall is

‘;;?+%=o at t=0 for— w<£<0. (15D

The boundary conditions at the perfect conductors apply
because the jumps in electrical potential across the Hart-
mann layers between the free shear layer and perfect conduc-
tors are O(M ~'). The boundary condition Eq. (15f) is ob-
tained by matching the solution in the Hartmann layer
between the free shear layer and the insulating wall.'? Physi-
cally, this Hartmann layer must match the O(M '/?) free
shear layer velocity uy, o at t = 0, and must satisfy the no-
slip condition at the insulating wall. This jump in velocity
involves a very large gradient in the viscous shear stress in-
side this Hartmann layer, i.e., 7., /dzis large. The term 7,
represents the x component of the surface force per unit area
along the x-y plane. An O(M '/?) tangential current density
Jy inside this Hartmann layer provides the electromagnetic
body force to balance this large shear stress gradient. The
total Hartmann layer current in the y direction at each point
along the insulating wall is proportional to the free shear
layer velocity u,,, evaluated at ¢ =0. Since this velocity
varies along the insulator, the total current inside the Hart-
mann layer must vary as well. Ani increasein current must be
drawn from the free shear layer, while a decrease implies a
current into the free shear layer from the Hartmann layer. In
the boundary condition ( 15f), theterm 3% ®/3¢ * represents
the tangential variation of u;, o at # =0 since uyy o = 3¢/
d5. The term 3 /0t represents the electric current from the
Hartmann layer into the free shear layer or vice versa, since
Jp = — 00/t

By using the techniques of complex Fourier transform,
the convolution theorem can be used to obtain ®(#,$):

D=0 at t==secd for— o <<,

o= f FEHGUL —*)der

o — T

=f i SENG(E—E&*)d®, (16a)
0 —1r
where
0 for— w <§<0,
0 0
I = 3§2 > §)+ ( )= lf(é') for0<{< .
(16b)

In the previous work'? the Green function was evaluat-
ed to have the form
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G(15) = (& /) ef (461 7'7%)

—erf{1¢(2sec 6 — 1) ~'?]}
+ %77_- I/2{t 1/2 exp( -—},;21")

—(2sec@—1)"?exp[ —1£*(2sec§—1)"']}.
(17)
This solution satisfies the governing equation and all bound-
ary conditions except the condition (15f).
Remembering that ®(1,£) can be expressed by the con-
volution integral [Eq. (16a)] and must also satisfy the
boundary condition at the fixed perfect conductor

b= —(dy—acosf) att=0, for 0<{< oo,
(18)

the following relationship must hold:
[ reme0s- e = - 8- acoso)
0

for 0<¢ < e. (19)

In this equation, we change coordinates to reduce the inte-
gral equation to a form that is independent of sec € and of
(¢, — acos ).

f F(Z*)Z = Z*[erfe(|Z — Z¥))
0

—7 "expl —(Z—-Z*)*)}dZ* =1
for 0<Z < o, (20a)
where
£E=212sec6)'?Z, £*=2(2sech)'?Z*, (20b)
dt*=12(2sec 0)*dZ*, 0<{, Z< w, (20c)
FUO) =f12(25ec0) 2 Z] = — $u=0a50) 7y
2sec @
(20d)

This integral equation is solved numerically in detail here in
order to determine the velocity profile directly in the free
shear layer. We did not solve it in the previous paper.'*

The velocity of the free shear layer is represented to zero
order by [see Eq. (12b)]

u=M""u, (1.8, (21a)
where the stretched coordinate ¢ is defined as

E=M"(& +acos ). (21b)
Here u,,, is related to the zero-order potential function by

Upyo = 8—2%'9‘ = %% (48)

for O<tgsecd, — w << . (22)

The function u, , can be represented as

Upro = J‘ f(“*)—(“: E*)dee, (23a)
where
%g(t.s)—'{erf(}sgt ')
—erf[IE(2secf~1) '*1} (23b)
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was obtained from G(#,{) by partial differentiation [see Eq.
(17) ). By using the identities

erf(x) = sgn(x)erf(|x}|), erf(x) =1 — erfc(x),
we obtain the expression

o (16) = f FE*)send—£%)

X {erfc{L|é — £ *|(2sec 6 — 1) ~'12)
—erfc(J|6 — £ *|t"2)}dE *, (24a)
where
f(&) = — Uy —acos O)cos OF [15(2 sec 6) ~'/*]. (24b)
Substituting

=1£(2sec ) "2 =2(2sec §)'* Z, (25a2)
Z*=1(*(2secO) Pl *=2(2sec 6)2Z*, (25b)
T'={cos Ot—t =2 sec OT. (25¢)

into Eq. (24a) results in the expression for u,, ,:
up o = (&, — acos 8)(cos 6)''* U(T,Z), (26a)
where .
U=(2) --‘“f F(Z*)sgn(Z — Z*)
O

x {erfc(|Z — Z*|T~""?) —erfc
X[|Z = Z*|(1 = T)="2]}dZ*. (26b)

It remains to solve the integral equation for F(Z *) for
0<Z™* < « and to substitute this solution into the integral
expression for U(T,Z). The universal velocity function
U(T,Z) for 0<T<0.5 and — o0 < Z < oo is independent of
all parameters in the problem. For a particular set of values
for @ and ¢, expression (26a) scales this universal velocity
function into the O(M '/2) free shear layer velocity uy, .

The solution of the integral equation involves a Dirac
delta function at Z * = (. The Hartmann layers on the insu-
lator and perfect conductor intersect to form an
O(M ~")yXO(M ~") corner region at y=0, z= —a, as
shownin Fig. 4. As noted in part a of this figure, the potential
changes from 0 to (@, — a cos @) over a very small distance
Ay = O(M ~"'?)atz= — a. Thisis the same as the jump in
¢ across the free shear layer at ¢t = 0, but in the free shear
layer this potential difference is balanced by the large in-
duced electric field (u,) oX) Xb. Inside the Hartmann layer
adjacent to the insulator, ¥ must decrease from u,, 4 t00, so
that locally the large potential gradient is not balanced by
the induced electric field. This leads to a large electric cur-
rent leaving the fixed perfect conductor through the
O(M ~') X O(M ~") correr region. Part of this current con-
tinues in the y direct to become the j, in the insulating wall
Hartmann layer which balances the large viscous shear gra-
dient here. The rest of this current enters the free shear layer
directly. Since the corner region has O(M ~') dimensions,
while the free shear layer hasa much larger O(M ~'/2) thick-
ness, the free shear layer sees the current from the corner
region as a point source of electric currentatt = Oand { = 0.
Since Fis the rescaled value of
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FIG. 4. Hartmann layers which separate the free shear layer f1 from the
walls at the corner, the O(M ') X O(M ) corner region and the electric
current flowing through the corner region into the free shear layer.

at t =0, and j, = — d®/dt is the current which sees a
source at Z =0, then
F(Z*) =1,8(Z* - €) + F(Z*%), (28)

where 0 <€<1 is included to avoid any ambiguity in the
integral of § from Z * = 0 to «. Here I, represents the mag-
nitude of the electric current flowing from the corner region
to the free shear layer and is determined by the condition
that ' (Z*) isbounded at Z * = 0. In other words, I, is cho-
sen to remove all singular behavior from the modified inte-
gral equation

r FZ9{|Z - Z*ferfe(|Z = Z*])
(1]

-1/2

expl —(Z~2Z*)*1}dZ*
=14 L7 "2 exp( — Z2) — Zerfc(2)]. 29)

This integral equation is solved numerically using the
following steps. The integral from Z * = 0to ZN is approxi-
mated by a trapezoidal rule and with a step size AZ* = H.
For the integral from Z* =ZN to «», we assume that
F(Z*)=F(ZN) and carry out the integration explicitly.
Theintegral from ZN to o is then added to the coefficient of
F(ZN) from the trapezoidal rule quadrature formula. The
integral equation is evaluated at Z =iH, for i=0 to
n=2ZN/H,ie,at Z=0, H, 2H,...ZN. This gives n + 1 si-
multaneous linear algebraic equations for the unknowns
F, = F(jH) for j = Oto n. This set of simultaneous equations

- T
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FIG. 5. Local (,£) coordinates for each layer f 1 and £2. (1) Originisat the
corner of conductor and insulator, (2) ¢is parallel to the magnetic field; (3)
atcorner, perfect conductor hiesin £ > Oand insulator hiesin £ <0,and (4) &
is the regular, unstretched coordinate.

is solved using Gauss elimination with partial pivoting. The
value of I, is adjusted until F, = Fl (0) is clearly the finite
gontinuation of F = F(H ) and F2 F (2H). The values of
F, for two successive values of I, were used to predict the
next guess for I,. This process converges quickly to
Iy = — 1. This test is quite sensitive because J, = — 0.98
givesa very large positive value of Fyand [, = — 1.02 givesa
very large neganve value of F(, For I,= — 1.00,
F(,— —1.48, F, = —1.51, and I'2= — 1.54, with
H = 0.03. The values of H,ZN, and n were varied over a wide
range of values to test the accuracy of the trapezoidal rule
quadrature. The results for # = 0.03, ZN = 1.2,and n = 40
were the results used to compute U, but were essentially
identical to the values for the other similar sets of H, ZN, and
n.

The expression for U(T,Z) is evaluated in a comps rable
series of steps. We substitute F(Z*) = —6(Z*—¢)
+ F (Z*). We use a trapezoxdal rule quadrature for
0<Z *<ZN. WetakeF(Z*) = F forZ * > ZNandintegrate
for this range explicitly.

IV. GENERALIZED FREE SHEAR LAYER SOLUTIONS
A. Free shear layer f1

We have defined ¢, to equal (@, — a cos 0) in free shear
tayer f1 (see Figs. 5 and 6). The change in potential across
the layer is

Gy = Gy =~ acosfl

/£ t = secf

! i
! i
L
| ]
¢=¢1: =¢-¢1(0003
] |
i |
| |
] !
| |
| {

FIG. 6 Free shear layer /1.
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Ap() =¢(Z— ) —d(Z~ — ), (30a)
where the stretched coordinate Z is defined as

£=2M ~"?(2sec 9)'°Z, (30b)

Z={M"*(2sec0)" "%, (30c)

where (1,£) are local Cartesian coordinates with the origin at
the corner. Therefore,

Ad(t) =@, (tcos 6~ 1), (31)
so that A@(z) varies from — ¢, at7=0toOat? = sec 6. The
velocity in the free shear layer f1 is expressed as

u=M'"?¢,(cos §)'*U(T,2), (32)

where ¢ has been defined as ¢ = T(2 sec 8) in Eq. (25¢).
T =0 at the corner of the insulator and perfect conductor
and T=0.5 at the other conductor. The range of T is
0<Tx0.5, which is inconvenient, but it eliminates several
square roots of two from the equations.

When Z - « the stretched coordinate approaches the
core between two perfect conductors. When Z— — o, the
coordinate approaches the core between the conductor and
the insulator. U(7,Z) is independent of ¢, 6, and a.

B. Free shear layer 12
In free shear layer f2, ¢, was defined to equal

&> = (@ + a cos & — sin 6)
(see Figs. 5-7). The jump in potential across the layer is

Ap() =(Z— ) —(Z~ — ), (33a)
where the stretched coordinate Z is defined as

E=2M""?(2sec )2, (33b)

Z=1M"*(2sec0)" "%, (33¢)
so that

Ad(r) = — @,(tcos @~ 1). (33d)
The velocity in the free shear layer 2 is expressed as

u= —M"*¢,(cos 8)"2U(T,Z). (34)

The definitions for T,Z, and U are the same as those given
previously.

C. Generalized expression for velocity in free shear
layers

The change in potential Ad(r) across the generalized
layer is (see Fig. 8)

A() =d(Z~0) —(Z— — ), (35)

——r—L-.L——l-M

¢ = —gyitcont — 1)

!
|
|
|
o=0 |
|
|

-

)'/ ¢ = ¢y =g, +0cos) - shv
At
FIG. 7. Free shear layer 2.
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FIG. 8. Generalized notation for free shear layer.

where Z is the stretched coordinate. Then

A¢(t) =¢b + (¢l _¢b)(t/tl) _¢l

=(d, — ) [ (/1) =1}, (36a)
and the velocity u in the free shear layer is
u=M"($, —$,)(t,)""?U(T,2), (36b)
where
t=2t,ToT=1t/2t, (36c)

and the stretched coordinate Z is defined as

£ = 2M V(U ZZ =\ MV (2,) V.
§ }
(36d)

As Z- o, the stretched coordinate approaches the core
between the two perfect conductors, and as Z— — « it ap-
proaches the core between the conductor and the insulator.

The function U(T,Z) was defined as before. The results
for Uare presented in Fig. 9. Since inside the free shear layer

(37)

and since =0 at =0, for {50, then u=0at r=0, for
£>0. As T—0, the velocity profile becomes skewed to nega-
tive Z with 4 —0 for Z»0. The volume flux inside the free

o
1
®
T T T T T T T T 1T 71

FIG. 9. Rescaled free shear layer velocity profiles U(T,Z).
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shear layer is proportional to (sec & —1¢), so it is O at
t=secd or T=0.5 and maximum at r= T =0 where
u = 0for £>0. As T increases from 0, the profile settles to-
ward a nearly symmetric one with its center at Z = — 0.3,

V. VISCOUS DISSIPATION AND JOULEAN POWER
LOSSES

A. Free shear layers
The nondimensional viscous dissipation in the total

channel can be found by solving the following integral in the
different regions (see Fig. 10):

Ll L1 s

The contributions of the core regions are of order O(1), the
contributions of the Hartmann layers between the cores and
the walls are of O(M), the contributions of the two free shear
layersare of order O(M *'?), .nd the contributions of the two
Hartmann layers between the free shear layers and the insu-
lating walls are of O(M >'?).

The nondimensional viscous dissipation in free shear
layer f1 is expressed as

sec & a
Prpy =0 f (”’”’) dt i, (392)

where
Up o (66) = (dg — acos 6) (cos 8)*U(T,Z)  (39b)
and

y

d
“rio _ (2)~Y*(d, — a cos B)cos O %( T.Z).

¢

(39¢)

Since df = 2(2 sec 8)'2dZ and dt = 2 sec 8 dT, the vis-
cous dissipation in 1 can be evpressed as

FIG 10. Subregions in magnetohydrodynamic channel flow at high exter-
nal magnetic fields
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Py, = M** (¢, —acos 6)*(cos 6)'/2(P,;), (40a)
where !
Py= (2)-”2f f (‘w) dZ dT. (40b)

We introduce Eq. (26b) for U(T,Z), and expression (28)
for F(Z *). We use the identities

-(%<izl>=sgn(2), %[sgﬂ(Z)] —25(2). (41)

Finally we introduce the numerical results for ﬁ(Z *) and
evaluate the integral with respect to Z * with the same trape-
zoidal rule quadrature to obtain a value for P,,. P, is a
universal constant for all free shear layers of this type and
equals 0.0918. The dimensionless viscous dissipation for free
shear layer /1 1s written as

Py, =M (cos 6)'*(P,p), (42)

where ¢, = (¢, — a cos 6).
The dimensionless viscous dissipation for free shear lay-
er f2 is derived from analogous arguments as

Prpo =M?¢ (cos 0)'*(P,,), (43)

where ¢, = (d, + a cos @ — sin 6).

Also the viscous dissipation for a generalized free shear
layer using the generalized formulation for the free shear
layers can be expressed as [Eqgs. (36)]

P’lf=M3/2(¢l _¢b)2(t )—HZ(P[)’ (44)
where P, is again the universal constant 0.0918.

B. Viscous dissipation in the Hartmann layers

Let P, be the dimensionless viscous dissipation for
the Hartmann layer between the free shear layer f1 and the
insulator at z= — g and let Py, be the dimensionless vis-
cous dissipation for the Hartmann layer between the free

_.7__.____.._../..
/ // Yu' -
/ / ., 0
/ /
/ /
/
/ “no*o
I
| /
-1 ; o0
i /
Y
\l /
\
corner region

FIG. 1 1. Hartmann layer adjacent to frec shear layer 1. The O(M '"?) free
shear layer velocity lgro 1S ZEFO AL = sec @ foralifandatr=0for{>0.
There are no O(M ''~) velocities in the Hartmann layers between the free
shear layer and the perfect conductors, so that P, = O(M*'?) in these lay-
ers,
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shear layer f2 and the insulator at z = a.
In a previous paper,'? we found the zero-order velocity
in the Hartmann layer H (see Fig. 11) to have the form

u=M"u,4(0, — Ysin )
X[l —exp( —[sin8|=)], (45)
where
Y=M"% and E=M(z+a) (46)

are the stretched tangential and normal coordinates for this

Hartmann layer, respectively. Here { = — Ysin 8 in the
free shear layer at t = 0. In the Hartmann layer
du

= = My, (0, — Ysin 6)[sin 6|
4

Xexp( — |sin 8|E), (47)

while du/dy is only O(M). We introduce the result Eq. (47)
into expression (38) for the dimensionless viscous dissipa-
tion, where

dy=M~"*dY, dz=M"'dE, (48)

for this Hartmann layer. The ranges of integration for both Y
and = are from 0 to . The integral with respect to = can he
carried out explicitly since it only 1nvolves
exp( — 2|sin |E). The result is an expression for the di-
mensionless viscous dissipation in this Hartmann layer,

Py =AM ‘Izisin 6| J(; [4710(0, — Ysin 6) ]2 dY.
(49)

Substituting { = — Ysin 8, or dY = — csc 8d¢, noting
that sin @ is positive for this Hartmann layer, and reversing
the limits of integration gives
"
Prm = QMVZ [“11.0(0[)]2(1;- (50)
Note that the expression is independent of the angle of the
insulator relative to the free shear layer. The integral in-
volves only the free shear layer solution which depends on
only two parameters: the jump in ¢, namely ¢,
= (d, — acos 8), and the length of the layer ¢, = sec 6.
Changing the variables from u,, , to Uand from { to Z gives

Pun =M *$} (cos 9)”:(P,,”), (51a)
where
0
P = m'“f [U(0.2)]? dZ. (51b)

P,;; was calculated numerically from Eq. (26b) and the val-
ue is 0.197 26, which is more than double the value for the
free shear layer.

U(0,Z) has adiscontinuity or step at Z = 0 from rough-
ly —0.7100, asshown in Fig. 12. The corner region which is
oM ')XO(M ') must match this discontinuity. Hunt
and Stewartson'® give the solution instde the corner region.
In this region u = OG(M"'*),0u/dy = O(M"'*), and du/
dz = Q(M*?), so that

[(%)2 + (%;—)2] =0(M").

However, dy = O(M ') and dz = O(M " ') in expression

(52)
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FIG 12. Sketch of U(T,Z) at T=0.

(38) for the viscous dissipation, so that the contribution to -
P,, fromthe cornerregionis only O(M "). This contribution
represents a small correction to the viscous dissipation in the
Hartmann layer between the insulator and free shear layer
fL

The only O(M *'?) contritutions to the viscous dissipa-
tion arise from the two free shear layers and the
O(M ~') X O(M ~'’?) Hartmann layers separating the free
shear layers from the adjacent insulators. Summing both free
shear layers and their Hartmann layers gives the following
expression for the O(M *'?) viscous dissipation

Pp, =M ($t + 83)(cos 0)*(P,, + Py),

where P, = 0.0918 and P, = 0.197 26.

The coefficient (P, + P,y ) = 0.2891 of the O(M*'?)
dimensionless viscous dissipation is relatively small. With
the assumption that M'> 1, we have so far assumed that the
O(M) contributions to the viscous dissipation are negligible
compared to the O(M ') leading term in the asymptotic
expansion. In actual homopolar devices, M has a moderately
large value, for example, 50, so that M */?is not much larger
than M. If the coefficient of the O(M) term is larger than
(P, + P,y ), then the O(M) term might be as large as the
O(M *'?) term for actual values of M, such as 50. There are
four contributions to the O(M) dimensionless viscous dissi-
pation:

(1) The O(M) correction or perturbation in the free
shear layers.

(2) The O(M) correction or perturbation in the Hart-
mann layers separating the free shear layers from the insula-
tors.

(3) The viscous dissipation in the O(M ~') XO(M ~')
corner regionsaty = 0,z = + g, associated with the jumpin
U(0,Z) from — 0.7to 0.

(4) The viscous dissipation in the Hartmann layers
between the core regions and the walls where there is a jump
in the O(1) velocity across the Hartmann layer.

The first three contributions to the O(M) dissipation
are all proportional to the free shear layer solution. We will
assume that this proportionality leads to coefficients which
are comparable to (P, + P, ), so that these contributions
areindeed O(M ~ '/?) smaller. On the other hand, the Hart-

(53)
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mann layers adjacent to the core regions involve a contribu-
tion that is related to the potentials in the perfect conductors
and not to those in the free shear layers. In particular, the
viscous dissipations in the Hartmann layers adjacent to the
two perfect conductors increase as the aspect ratio of the
channel, 24, increases. Real current collectors have large
values of 2a, for example, 25, so that the O(M) Hartmann
layer contribution may be larger than the O(M >/?) free shear
layer contribution.

The Hartmann layers adjacent to the cores are num-
bered 4 1to h 6in Fig. 10. The core solutions were presented
in a previous paper.'? Hartmann layers 4 1, 4 3, and A 4 in-
volve no jumps in the O(1) velocity u, and their viscous
dissipationisat most O(1). For Hartmann layers 4 2, 4 5,and
h 6, the velocity varies exponentially from the core value to
the wall value (O or 1). The velocities inside these Hartmann
layers are

U =1—expl ~Mlsin@|(z+a)], (54a)
0y, =y (y=1{l —exp[M|cos 8|(y— D]} +1,

(5¢ )
Ups = Uy (y=0){1 —exp[ — M |cos §|y]}. (54¢)

In core ¢2, ¢ is determined by the potentials of the perfect
conductors and u = d¢/d¢. Integrating the viscous dissipa-
tion per unit volume over each of the Hartmann layers 4 6,
h2,and h 'S gives

Pe =4 Msinb, (55a)

Py, =P, =} Msin® 6(43 — ¢1), (55b)
where again ¢, = ¢, — a cos 6, and

¢, =@, + acos 0 —sin = ¢, + A, (55¢)

Ad =2a cos @ —sin 8> 0, (55d)

for 0<tan 6<2a. Therefore, the viscous dissipation in the
free shear layers and adjacent Hartmann layers H is propor-
tional to

87 + 83 =267 +24,(Ad) + (Ad)?, (56)

while the viscous dissipation in the Hartmann layers adja-
cent to the core c2 is proportional to

¢ — 81 = (84)[34] + 3¢, (M) + (AP)?].  (5T)

The quantity (A¢) can be moderately large. For example,
for 2a = 25 and 6 = 45°, (A¢) = 17, which can make the
Hartmann layer dissipation comparable to that of the free
shear layers for modest values of M. Therefore, the best ap-
proximation to the viscous dissipation would be the sum of
the O(M*'?) contribution from the free shear layers and
Hartmann layers A and of the O(M) contribution from the
Hartmann layers 46, 22, and A 5.

C. Joulean power losses

In addition to viscous dissipation, there are Joulean
power losses due to the flow of electric current through the
electrically resistive liquid metal. The Joulean power losses
are given by

P%
#UG

t
Py = =M2Ja f G2 +jDdydz. (58)
-aJ0
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In the core regions cl and ¢3, j, = O(M ~'); in the core
regiori 2, j, =0(1); and in all three core regions,
Je =0(M =2). Therefore, the contributions to the Joulean
power losses are O(M ?) for the core region ¢2 and O(1) for
the core regions c1 and ¢3. In a previous paper, '? we present-
ed the expression for the Joulean losses in the core region ¢2,
namely

Pp, = § 4 ?(cos 6) (43 — 4}). (59)

Equation (59) assumes that j, = — cos (¢, + £) every-
where in the parallelogram defined by (tan0)é<n<
(tan 6)¢ + sec 8, for — acos 0<E<acos @ —sin 6, and
that j = 0 everywhere in the two triangles for £< — a cos
and for £>a cos @ — sin 6. In reality, the O(1) current den-
sity deviates from these values inside the free shear layers f'1
and /2 and in the Hartmann layers % 2 and 4 5, so that these
viscous layers contribute corrections, either additions or
subtractions, to the Joulean power losses based on the core
solutions.
The current lines do not actually end exactly at
= —acos §and at £ = a cos  — sin . Instead, the cur-
rent lines fringe an O(M ~'/?) distance beyond these lines
inside the free shear layers. Thus the cross-sectional area of
the effective conductor between the two electrodes is the
O(1) area of the core region c2 plus the O(M ~'/?) areas of
the two free shear layers f1and f2. The O(M ~'/?) addi-
tional current inside the two free shear layers contributes an
O(M *'?) additional Joulean power loss. The steps to deter-
mine the free shear layer contribution exactly parallel the
steps to determine the O(M *'?) viscous dissipation due to
the free shear layers. The total addition due to both free
shear layers is

Pr = 0.6692 M */*(cos 6)"*(¢} + ¢3). (60)

The additional Joulean power losses due to the extra fringing
current inside the free shear layers is more than twice the
viscous dissipation in the free shear layers and associated
Hartmann layers, as given by Eq. (53).

In the Hartmann layers A2 and h 5, the current lines
from the core region c2 must bend in order to enter the per-
fect conductors at right angles. This bend in the current lines
makes the current density in the Hartmann layer less than
that in the core. Since Eq. (59) assumes that the core solu-
tion applies all the way to the perfect conductors, it slightly
overestimates the Joulean power losses very near the con-
ductors. The O(M) correction due to both the Hartmann
layers #2 and 4 5 is given by

Py, = — M(sin 8)* cos 6(¢3 — ¢3). (61)

The best estimate of the Joulean power losses is given by the
sum of Eqs. (59)-(61).

Vi. CONCLUSIONS

In a rectangular duct having insulating sides, a moving
perfectly conducting top wall, a stationary perfectly con-
ducting bottom wall, and a strong, skewed magnetic field,
there are free shear or interior layers lying along the two
magnetic field lines through opposite corners of the cross
section. These free shear layers separate pairs of inviscid core
regions and must match different electrical potentials in the
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adjacent cores. These layers involve very large, O(M '/?) di-
mensionless velocities, while the core velocities are only
O(1). These high velocity sheet jets can be in either the plus
or the minus x direction, i.e., with or opposite to the moving
wall’s direction. The direction of flow in each free shear layer
depends on the sign of the electrical potential at the point
where the layer intersects the moving conductor, that is, on
the signs of ¢, and &,. These values depend on the direction
of the load current: if there is a significant load current from
the stator to the rotor, then both ¢, and ¢, are negative; if
there is a significant current from the rotor to the stator, then
both ¢, and ¢, are positive; if there is no load current, then ¢,
is negative and ¢, is positive.

The boundary value problem for the free shear layers
was reduced to an integral equation in a previous paper. '
The numerical solution of this integral equation is presented
here. The velocity profiles in the free shear layers are also
presented here. These profiles are reduced to a universal
function U(T,Z) for all similar shear layers. The scaling for
any particular shear layer depends on only two parameters:
the jump in the electrical potential across the layer at the
corner where the insulator and conductor meet, i.e., ¢, and
¢, for free shear layers £1 and /2 here, and the length of the
free shear layer along the magnetic field line, 1.e., sec @ here.

Since there are large velocities inside very thin regions,
the free shear layers and adjacent Hartmann layers involve
large viscous dissipation. Their contributions to the dimen-
sionless viscous dissipation are O(M ), while those of the
cores are only O(1). We have also computed the O(M) vis-
cous dissipation in the Hartmann layers between the cores
and the walls. Finally we determined the contributions to the
Joulean power losses from the core region c2, from the free
shear layers f1and /2, and from the Hartmann layers h 2 and
hs.

Here we assumed that the flow is laminar. Very strong
magnetic fields would completely eliminate turbulence and
instability in the laminar flow. However, in actual homopo-
lar devices, the magnetic field is strong enough to make the
turbulence two-dimensional, but is not strong enough to
eliminate turbulence completely or to eliminate instabilities
which lead to vortices aligned with the magnetic field. The
two-dimensional turbulence or aligned vortices would be
strongest in the free shear layer because of the large velocity
gradients here. The effects of this turbulence or vorticity
would be to increase the thickness of the free shear layer, to
reduce the maximum free shear layer velocity proportion-
ately, and to reduce the viscous dissipation considerably.
Two-dimensional turbuience or aligned vortices in a strong
magnetic field involve relatively little dissipation, unlike
three-dimensional turbulence. Therefore, the present ex-
pressions for the viscous dissipation should provide conser-
vative overestimations.
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APPENDIX: HUNT AND STEWARTSON’S INTEGRAL
EQUATION FOR A SIMILAR FREE SHEAR LAYER
The integral equation of interest in the present paper is a
Fredholm integral equation of the first kind
[ Fztiz - z4jeteqz - 24
0

—a Pexp[ = (Z~Z%)?]}dZ*=1. (A1)

Hunt and Stewartson’s'® integral equation has the form

glp) = (21r)—”2f g(texp[ — }(r—p)’ldr. (A2)
0

Equation (A1) can be reduced to Eq. (A2) by three steps:
integration by parts, differentiation with respect to Z and
rescaling Z and Z * by (2)"/>. Substituting the expressions

z. A A
o dzZ*

into the Inhomogenenus integral Eq. (A1) and integrating
by parts gives the equivalent form:

=FZ*) (A3)

f G(Z*)sgn(Z — Z*)erfe(|Z - Z*|)dZ* = 1.
(4]
(A4)

Differentiation with respect to Z gives

G(Z)=n" '“F G(Z*)exp| — (Z — Z*)*)dZ~.
(

)

(AS)
If we now irtroduce the change of variables
Z=p(2)_ 1/2’ Z* - t(z)—ll2’
Glp(2) '*1=Aglp) (A6)

into the integral Eq. (AS5), then we obtain Hunt and
Stewartson’s integral Eq. (A2). Here 4 isan arbitrary multi-
plicative constant since their integral equation is homogen-
eous. The integral Eq. (A1) has a unique solution, but one
must recognize that F(Z) has a singularity at Z=0 and
must adjust the strength of the singularity /, to obtain a
numerical solution which gives a bounded Fat Z = 0. The
integral Eq. (A2) does not have a unique solution. Hunt and
Stewartson'® made the solution unique with the condition

aglp) |
dp
which they derived by matching the adjacent core solution.
No such condition 1s needed here, and F— — 2 automatical-
ly as Z— 0, which is equivalent to condition {A7).

as p— oo, (A7)
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