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A. RESEARCH OBJECTIVES AND ACCOMPLISHMENTS

The first: primary objective was to obtain an understanding
of the properties of relatively stiff polymer chains, and to
provide guidance on how these properties can be exploited to
obtain high-performance polymeric materials. More specifically,
one goal was to use semi-empirical and quantum-mechanical methods
to obtain information on the physical properties of rigid-rod
benzobisoxazole (PBO), benzobisthiazole (PBT), and structurally
related polymers. These materials are of importance to the Air
Force because of their high mechanical strength and excellent
thermal stability. Such calculations involve energy calculations
on both intramolecular (conformational) effects and interchain
interactions for the polymers in both the unprotonated and
protonated states. Of particular interest is the extent to which
the various ring structures in the chains deviate from
coplanarity, and how these deviations affect the ordering of the
chains in the «crystalline siate. A related feature is the
protonation of these chains, which occurs in the strbngly acidic
media used as solvents, and its effect on structure and
deviations from coplanarity.

One specific study (21)* involved conformational energy
calculations on two polymers (AAPBO and ABPBO) related to PBO.

Another (32) addressed chain packing in a ladder polymer (BBL),

*
Reference numbers correspond to those in the attached Cumulative

List of Publications.




and a less stiff but structurally related polymer (BBB). Good
agreement with experimental structural studies was obtained, and
the geometry optimization technique was tested on a series of
small- molecules (16). All of the rTesults obtained on these
aspects of the program are summarized in several more general
review articles (7,35,43).

Some theoretical and experimental investigations were also
carried out on more tractable random-coil polymers in order to
evaluate the theoretical methods and to obtain more insight into
the properties of the structurally related rigid-rod polymers.
These studies specifically involved some polysilanes
(6,31,38,47), polygermanes (47), polysiloxanes (9), ethylene-
based polyesters (34), and an enzyme inhibitor (DAMP) (2,4).

Electronic band structure calculations were explored with
regard to the types of cond -tivity which may be of interest for
electronic applications of the rigid-rod polymers and related
materials. Similar <calculations were also carried out on
relatively small molecules having structural features in common
with the PBO and PBT polymers. Specific systems studiec wesrc PBO
(1), two PBO-related polymers (AAPBO and ABPBO) (27), Psi (1,3),
two PBT-related polymers (AAPBT and ABPBT) (36), substituted
polyacetylenes (14), doped trans-polyacetylene (15), two polyynes
a7, iridium carbonyl chloride chains (s), and a
bis(oxalato)platinate complex (33). Several polymers were found
to have relatively small band gaps, and could therc.u.. be of
considerable practical importance. Much of this wceol  is

summarized in two review articles (41,45).
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In collaboration with Professor William J. Welsh (U.
Missouri-St. Louis) and Mr. Henry Kurtz (Memphis State U.),
theoretical studies of nonlinear optical effects in small
molecules and polymers have been initiated. The goals of this
project are: 1) to apply existing methodologies to calculate
hyperpolarizabhilities of small molecules and polymer subunits and
2) to develop new, more accurate methods for the calculation of
such hyperpolérizabilities.

Another series of investigations explored the idea of
precipitating fillers into elastomers. The goal was to provide
reinforcement of these materials. Also, since the hydrolysis
reactions used are very similar to those used in the new sol-gel-
ceramics technology, advantageous connections between these two
disciplines could be obtained.

In one series of studies, silica-type fillers were
precipitated into unimodal and bimodal siloxane polymers after
the curing process (11-13,22,29,37,39,42). It was found that the
precipitation could also be carried out during the curing process
(18,19), or before it (25). Good reinforcement was observed for
these elastomers, and for some thermosets (20) as well. Titania
particles (29) and iron oxide particles (40) also gave good
reinforcement. In some cases extraction procedures gave even
larger increases in mechanical rToperties, and thus even better
reinforcement (10).

It may also be possible t. iatroduce some deformability into
the filler particles by carrying along some hydrocarbon groups

from the material being hydrolyzed (24,28). Magnetic filler
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particles have the advantage that they can be manipulated with an
external magnetic field (23).

.Particle sizes and particle Size distributions have been
studied by elecfion microscopy and small-angle x-ray scattering
(8,30). Correlation of this information with Thydrolysis
conditions and mechanical properties 1is providing valuable
guidance for the exploitation of these materials.

The major results obtained in these reinforcement studies
are summarized in a series of review articles (26,31,46).

It is also possible to use compositions and hydrolysis
conditions that make the silica the continuous phase, and the
polymer the dispersed phase (44). Such polymer-modified ceramics
could have extremely attractive properties, for example reduced

brittleness.
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CONFORMATIONAL ANALYSIS OF
SOME POLYSILANES, AND THE
PRECIPITATION OF REINFORCING
SILICA INTO ELASTOMERIC
POLY(DIMETHYLSILOXANE)
NETWORKS

J. E. MARK

Department of Chemistry
University of Cincinnat
Cincinnati, Ohio

INTRODUCTION

The polysilanes [—SiRR —] are a new class of semi-inorganic polvmers with
fascinating properties and considerable promise in a vanety of applications.
For example, some members of this series can be cast into transparent films. spun
into fibers, and converted into silicon carbide at high temperatures.'? They
can also be used as photoinitiators.? resists in UV lithography.** p-type semi-
conductors when properly doped.? and as reinforcing media in ceramics when
converted in situ into B-SiC fibers.

Relatively little is known about the conformational characteristics of the
polysilanes from either an experimental or theoretizal point of view. although
some work is in progress.>’ For this reason. conformational energies were
calculated for two of the simpler polysilanes. Information thus obtained can

434




CONFORMATIONAL ANALYSIS OF SOME POLYSILANES 435

be used to predict the regular conformations in which the polymers should
crystallize,® and the equilibrium flexibility of the chains in the undiluted amor-
phous state and in solution.®

The structurally related polysiloxanes [-~SiRR’O—] have long been known
and extensively studied.® The dimethy! polymer has been of particular interest
because of its unusual flexibility. This property is expioited. for example, in the
use of the crosslinked polymer as an elastomeric material® ' in low-temperature
applications. These elastomers, however, unlike their competitors such as
natural rubber and butyl rubber, cannot undergo strain-induced crystalliza-
gion.'!+12 They are therefore inherently weak and require reinforcement with a
high surface area filler in practically all applications.? Blending such fillers into
(highly viscous) polymers prior to crossiinking can be very difficult and filler
aggiomeration is almost impossible to avoid. For these reasons it could be
highly advantageous to generate such filler in situ, for example, by the hydrolysis
of silicates sufficiently nonpolar to dissolve in typical elastomers such as poly-
(dimethylsiloxane) (PDMS). Such techniques have now been developed, and
e results obtained should transcend the area of elastomer reinforcement,
giving information useful as well in the area of sol-gel-ceramics technology.'?

CONFORMATIONAL ANALYSIS OF SO'ME POLYSILANES
Computational Details

The first polymer of interest was polysilane (PSL) itself, [ —SiH,~], and the
specific sequence investigated is shown in Fig. 47.1.” The length [ of the Si—Si
skeletal bonds is 0.234 nm, which is considerably larger than the 0.153-nm
length of the C—C bonds in the hydrocarbon analogue, polyethylene (PE)
[—CH,CH,—).* This should reduce repulsive interactions in polysilanes, but
could be partially offset by the increased length of the Si—H bond relative to
the C—H bond (0.148 versus 0.110 nm). Skeletal bond angles in PSL are approx-
imately tetrahedral, as they are in PE.® Rotational states are trans (T), gauche

. /\/ ' .

Figure 47.1 Sketch of the polysilane chain.” Conformationai energies are calculated as a function
of the rotation angles about skeietal bonds b and ¢.
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positive (G * ), and gauche negative (G ~), and are expected to occur in the vicinity
of the symmetric locations specified by the rotational angles ¢ = 0°, 120°, and
—120°, respectively. The second polymer was poly(dimethylsilylene) (PDMSL)
[—SKCH;);—1, shown in Fig. 47.2” The model for it was similar to that for
PSL, but with the rotational angles of the methyl side groups representing
additional variables.

Distances between all pairs of atoms were calculated in the usual manner,”*
as a function of the skeletal and side-chain rotational angles. Conformational
energies were then calculated from these distances using empirical potential
energy functions, and a torsional contribution corresponding to a barrier
height of 0.4 kcal/mole (which is considerably smaller than that for PE, 2.8
kcal/mole).® Entire contour maps of the energy against rotational angles were
obtained, and then used to calculate configurational partition functions and to
average the energies and rotational angles about the minima. In this way, con-
figurational statistical weights were refined to include a preexponential or en-
tropy facieg: The statistical weights were then used in a matrix multiplication
scheme to@alculate values of the characteristic ratio (r*)o/nl?, where (r?), is the
chain dimension as unperturbed by exciuded volume effects'* and n is the
number of skeletal bonds. This ratio is much used as an inverse measure of equi-
librium chain flexibility.®  __

Results for Polysilane

. Polysilané was found to show a preference for pairs of gauche states of the same
- sign (GBG*) over the corresponding trans states (TT) by ca. 0.5 kcal/mole, in
contrast to the analogous r-alkanes which prefer TT over G*G* by ca. 1.0
keal/mole.® Even G*G¥ statss, commonly found to be prohibitively repulsive

for most polymers, were preferred over the TT states by 0.4 Kcal/mole.” The =
predicted crysililline state conformation couid thus be described as helical, of a
pitch #imilar to that shown by polyoxymethyiene [ —CH,O—1]. It is thus quite
different {rom the PE preferred form. which is the planar, all-rrans, zig-zag

- M N
N N
VANA AN

Figere 472 Sketch of the polyidimethylsilylenet chan.”




CONFORMATIONAL ANALYSIS OF SOME POLYSILANES 437
conformation. The same conclusion was reached in an earlier theoretical study
of this chain® which focused exclusively on discrete minima. As can be seen
from Fig 47.3, nearly all regions of configurational space were within 2 kcal/
mole of the minima. indicating considerable chain flexibility. This was confirmed
by the unusually low value, 4.0, calculated for the characteristic ratio. The value vl
for PE is approximately 7.5. Ury-
I y L.
’r Results for Poly(Dimethyisilylene) o
N -.». ul
Previous calculations® on this polymer indicated the G* G* conformation again nu-
preferred. The present results,” however, indicate G*G* and TG* (or G=T) "C‘:
3 conformations to have essentially the same energies (0.08 versus 0.00 kcal/ 1 for
L mole). If the energy difference is indeed this smalil, the conformation actually 1 the
adopted by the chain upon crystallization would probably be determined by and-
{ differences in chain packing energies. 1 the
Location of G* states at angles that minimize the energy would place them Uni-
at +95°. This revision in the direction of the T state, and the diminished number ‘Scu:
]
achs
p cess.
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Figure 47.3 Conformational energy map for the polysilane segment giving the energy, in kcal/ rersity b
mole relative to the conformational energy minima designated by “ + ™ on the map. The energy
contours are shown as a function of the rotational angies ¢, and ¢..” The shaded region corresponds
to energies greater than 2 kcal/mole above the minima.
)




438 CONFORMATIONAL ANALYSIS OF SOME POLYSILANES

of compact G* states should increase the characteristic ratio to the vicinity of
15. This would make the PDMSL chain considerably less flexible than both
PSL and PE.

PRECIPITATION OF REINFORCING SILICA INTO
ELASTOMERIC NETWORKS

Some Experimental Details
Silica may be prepared by the hydrolysis
SI(OC2H5)‘ + 2H20 b SlOz + 4C2H50H (”

of tetracthylorthosilicate (TEOS), in the presence of any of a variety of catalysts.
There are three techniques by which silica thus precipitated can be used to
reinforce an elastomeric material. First, an already cured network, for example,
prepared from PDMS, may be swollen in TEOS and the TEOS hydrolyzed
in situ.}®~2° Alternatively, hydroxyl-terminated PDMS may be mixed with
TEOS, which then serves simultaneously to tetrafunctionally end link the
PDMS into a network structure and to act as a source of SiO, upon hy-
drolysis.?! ~?3 Finally, TEOS mixed with vinyl-terminated PDMS can be
hydrolyzed to give a SiO,-filled polymer capable of subsequent end linking by
means of a multifunctional silane.?*

Precipitation Rates

The rates of the precipitation reaction were studied through plots of weight
percent filler against time. Typical results for the C;H;NH j-catalyzed system
within an already cross linked PDMS elastomer are shown in Fig 47.4.'°
Although the rates increass with catalyst concentration,® as expected. they
are seen to vary in a complex manner. One complication is the deswelling of
the network due to migration of TEOS and the by-product ethanol to the
surrounding agueous solution. The loss of TEOS should be smalier in the case
of the more dilute C,HNH, solution (since it is more hydrophilic). and this
would explain the relatively simple monotonic form of the corresponding pre-
cipitation curves. In the case of the more concentrated C;HNH; solutions the
curves level off, because of the TEOS migration, and then turn downward.
presumably because of loss of colioidal silica. At constant time. less filler s
precipitated in the case of the networks having the larger value of the molecular
weight between crosslinks. and this is probably due to larger losses of TEOS
and silica from the larger “pores™ in these networks in the highly swollen state.'®

Mechanical Properties of the Filled Elastomers

The clastomeric properties of primary interest here are the nominal stress
f*={ A*® (where f is the equilibrium elastic force and A* the undeformed
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Figare 47.4 Weight percent filler precipitated as a function of time.!* The circles locate the resuits
for 2.0 wt%; ethylamine and the tnangies the resuits for 25.0 wt%;; the open symbols are for networks
having a molecular weight between crosslinks of 8.0 x 10° g'mole, and the filled symbols 21.3 x 10°
g/mole.

cross-sectional area), and the reduced stress or modulus?* [f*] = f*/(x — x™?)
(where x = L/L, is the elongation or relative length of the sample).

Typical stress-strain isotherms obtained on the in siru filled PDMS net-
works are given in Fig. 47.5. The data show?* the dependence of the reduced
stress on reciprocal elongation. The presence and efficacy of the filler are dem-
onstrated by the large increases in modulus, with marked upturns at the higher
elongations. Figure 47.6 shows the data of Fig. 47.5 plotted in such a way that
the area under each stress-strain curve corresponds to the energy E, of rupture,
which is the standard measure of elastomer toughness. Increase in % filler
decreases the maximum extensibility a, but increases the ultimate strength
f2. The latter effect predominates and E, increases accordingly. In some cases,
extremely large levels of reinforcement are obtained. Such networks behave
nearly as thermosets, with some brittleness (small x,), but with extraordinarily
large values of the modulus [ /*].!°

Characterization of the Filler Particles

Transmission electron microscopy,'® and light scattering and neutron scatter-
ing measurements?® are being used to study the filler particles. As illustration, an
electron micrograph for a PDMS elastomer in which TEOS has been hydrolyzed
is shown in Fig. 47.7.'® The existence of filler particles in the network. originally
hypothesized on the basis of mechanical properties.'? is clearly confirmed. The
particles have average diameters of approxima:ely 250 A, which is in the range
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Figwre 47.8 The reduced stress as a function of reciprocal elongation. at 25°C. for PDMS networks
filled in 2.0 w1% C,H;NH, solution.'® Each curve is labeled with the w1% filier 1n the network
ncluding results for the unfilled elastomer.

of particle sizes of fillers typically introduced into polymers in the usual biending
techniques. The distribution of sizes is relatively narrow, with most values of the
diameter falling in the range 200-300A.'¢

Strikingly, particles aggregation invariably present in the usual types of
filled elastomers is absent. These materials should be useful in charactenzing
effects of aggregation, and could be of practical importance as well '*

Other Novel Filling Techniques

In typical filled systems, anisotropy of mechanical properties can anse only if
the filler particles or their agglomerates are asymmetric, since they are then
onented as a result of the flow of the un-crosslinked mix during processing
operations. In fact, fibrous fillers are often used for the express purpose of
introducing mechanical anisotropy. Recent studies, however, show that even
when the particies are spherical, if they are magnetic and the filled elasiomer is
cured in a magnetic field, then highiy anisotropic thermal®” and mechanical®®
properties can be obtained.

The filler used in one study?® was an extremely fine commercial magnetic
powder (MG-410 Magnagio} in which the particles are very neariy sphencal,
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Figwre 47.6 Reduced stress as a function of reciprocai clongation for the networks filled in the
50.0 wt¥%, C;H,NH, solution.

Figure 41.7 Transmission electron micrograph (118,800X) for in-situ filled PDMS getwork con-
taining 34.4 we% filler.'® The average pasticie diameter is 250 A,
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Figwre 478 Reduced stress shown as a function of reciprocal elongation for magnetic-parucie
filled PDMS strips cut paraliel and perpendicular to the magnetic field imposed during the cuning
procedure.3*

with an average diameter of approximately 10 um. The particles and benzoyl
peroxide were mixed into high molecular weight PDMS. and the mixiure was
cured in a magnetic field provided by a 580-gauss permanent magnet. (The final
product contained about 31.5% by weight of magnetic filler. which corresponds
to roughly 6% by volume.) The cured sheet was cut into rectangular strips
parallel 10 and perpendiculiar to the vector of the magnetic field.

The stress—strain isotherms obtained are shown in Fig. 47.8.7% Thzy are seen
to be very different from those usually obtained. which almost invanably have
a constant, positive slope in the region of low to moderate elongation.?® The
isotherms also show the highly anisotropic nature of the reinforcement obtained
in the presence of the magnetic field. For example, the maximum value of
[ £*] for the strip cut paraliei to the field exceeds the corresponding value for
the perpendicular strip by a factor of nearly 3.

Another novel technique is the generation of magnetic filler particles by
the in situ thermal or photochemical decomposition?®-*° of carbony] compounds
of iron. nickel. or cobalt. with elastomer curing being carned out in a magnetic
field.
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