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I INTRODUCTION

An Overview

The Air Force has a need to maintain force survivability and base
operability during wartime scenarios in chemical, biological and
radiological environments. The Robotic Telepresence program at the
Armstrong Aerospace MNedical Research Laboratory (AAMRL) at Vright
Patterson Air Porce Base, Dhio, is based on the need to project human
intelligence, perceptual capabilities, and motor skills into hostile
environments through the use of human driven robotic systems, thereby
removing humans from the hazardous environment. The Robotic
Telepresence program at AAMRL investigates the feasibility of utilizing
remote human- in- the-loop control of mobile dexterous robots to perform
tasks such as aircraft inspection and servicing, explosive ordinance
disposal, and environmental monitoring and decontamination.

The Robotic Telepresence concept projects human judgment, dexterity
and adaptability in real time into a lethal environment. The program at
AAMRL will develop a series of dynamic telepresence test cells
incorporating driving systems attached to the human arm and hand as well
as remote driven systems involving manipulators and dexterous
end-effectors, amongst other state-of-the-art components. The remote
system currently being evaluated consists of the Utah/MIT dexterous
hands as suitable end-effectors to be attached to the end of robot arms
such as the Merlin 6500 manipulator.

The task of integrating a system like the Utah/MIT dexterous hand
to a robot arm is kinematically complex, especially in light of the fact
that these two systems are a major part of a remote teleoperation
system. The MNerlin robot arm is kinematically unlike the human arm
while the Utah/MIT hand differs from the human hand in some aspects,
including the positioning of the thumb and the number of digits. This
makes the task of comparison between the human system and the slave
systems a difficult process at best. The integration task is further
complicated by the presence of the remotizer, which performs the
function of locating the actuators of the Utah/MIT dexterous hand away
from the physical hand itself. These complications, amongst others,
result in the need for a complete kinematic understanding of the Merlin
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manipulator as well as the dexterous hand, as well as a means for the
depiction and determination of possible complications that may arise
vhen the two slave sub-systems are attached together.

As a first step in aiding the AAMRL in this research task, the
authors have performed a complete kinematic study of the MNerlin 6500
robot arm and the direct kinematics of the UTAH/MIT dexterous hand.
This study has been performed with the basic fact in mind that a human
arm will be involved in the feedback loop and will be directing the
robot/dexterous hand combination in performing tasks with the
teleoperated system. Further, to study the problem of attachment of the
Utah/KIT hand to the Merlin, the authors have developed a computer
graphical simulation program that allows a user to study different
attachment schemes and the effect that these schemes may have on the
kinematic behavior of the slave system.

The Objectiv

The objective of this project is to develop the closed- form forward
and inverse kinematic solutions of the Merlin 6500 robot arm and the
closed-form forward kinematic solution of the UTAH/MIT dexterous hand.
A computer graphical simulation of the two systems, when connected
together in user-defined configurations, is also performed in this
study. The aim of the computer graphic simulation is to visually depict
the effect of different attachment schemes on the kinematic behavior of
the slave sub-system when combined together in specific user-specified
configurations, and to prepare the ground-work for future research with
the remote teleoperated systems.

Some Important Factors

One factor kept in mind during the development of computer
simulations was the need for the software to be transportable to the
sponsor’s systems. A second factor was the need to allow for changes
wvhen adapting the simulation to the sponsor’s available graphics
packages. As a result, all source code was written in a modular fashion
in 2 commonly used language (FORTRAN), and utilizes as few routines out
of the graphics package (DISSPLA) as possible. The simulations are
user-friendly and provide for modification and development as the
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teleoperation study proceeds. An important factor considered during the
development of the kinematic equations was that the robot/hand
combination would be driven from a remote location by a human arm
encased in an exo-skeleton. This resulted in the kinematics study being
performed using kinematic frames that could be compared to a human
arm/hand system.




IT BACKGROUND

The Need for a Teleoperative System

Since the beginning of the present decade, it has been found
necessary to perform manipulations in environments unsuitable for the
presence of a human being. Some such hazardous environments include
radiation hazard zones, chemical or biological hazard areas, undersea,
deep space, etc. A human being would find it extremely hazardous, if
not impossible, to exist in such environments, and since it is necessary
to project human judgement and adaptability to perform unstructured
tasks which require dexterous manipulation, there exists a need for
remotely operated dexterous systems which provide a means for projecting
human cognitive and motor functions into such environments. Such
systems, when fully developed, will allow an operator, present st a
comparatively safe location, to perceive and perform manipulation tasks
just as if the operator was physically present at the remote work site.

Current Vork

To achieve the above objective, various teleoperation systems
dedicated to performing tasks in specific hostile environments have been
developed over the last twenty years. Under-sea teleoperative systems
have been successfully used to perform dexterous manipulations. The
recent Titanic exploration performed by the VWoods Hole Oceanographic
Institute using the manned submersible "Alvin" and the tethered
manipulator, "Jason, il s one example. (ther efforts include the
Advanced Integrated Manipulation System (AIMS - a prototype
remote- handling system for use in hazardous environments developed by
the 0ak BRidge National Laboratory) where the master arms are kinematic
replicas of the slave arms2; the U.S. Army’s Human Engineering
Laboratory Soldier “cbot Interface Project (SRIP)2, meant for
battlefield scenarios; the ORNL/NASA Man-Equivalent Tele-Bobot (METR),
which is a modularized seven degree-of-freedom manipulatorz; the Remote
Operations and Maintenance Demonstration (ROMD) consisting of the model
M_2 manipulator (a dual-arm force-reflecting bilateral servo-manipulator
system)2; the Marine Corps/Naval (cean Systems (Center’s (NOSC)
Ground-Air TEleRobotics Systems (GATERS)z; and the current work being
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done in other countries with multiple prehension manipulator systems in
tele-robotic application33’4. A1l these teleoperative systems have been
designed to be able to perform dexterous manipulation tasks in specific

environments.

The UTAH/MIT Dexter .|

The development of anthropomorphous systems for bio-engineering
applications has resulted in research efforts being directed towards the
implementation of dexterous systems which could be utilized for a large
variety of manipulation tasks. The existence of a naturally occurring,
highly complex system like the human hand has led to the development of
semi- anthropomorphic, dexterous manipulator end-effectors. (One such
system in current existence is the UTAH/MIT dexterous hand, a sixteen
degree- of- freedom system consisting of three four-jointed fingers and a
four- jointed thumb situated off-center in the palm. A left- and right-
pair of these hands will be used at AAMRL as a research testbed to
experimentally investigate the various issues associated with
human- in- the- loop control of dexterous end-effectors.

The Merlin 6500 Robot

The Utah/MIT dexterous hand will be attached to the Merlin 6500 six
degree- of- freedom robot arm to form the remote manipulator system.
Considerations such as the payload capacity, maximum tool-tip speed,
accuracy and repeatability when encumbered by the heavy dexterous
hand/remotizer system, the primary cost, and the availability of
sufficient degrees of freedom to allow dexterous operation, etc.
affected the choice of the manipulator for the purpose of evaluating the
feasibility of integrating the Utah/MIT hands to a robot arm.

The Merlin 6500 robot arm is a six degree-of-freedom industrial
manipulator with a payload capacity of 50 1bs. and a reach of 40 inches.
The repeatability of the Nerlin 6500 arm is +0.001 inches. Each of the
six degrees-of-freedom, viz. the waist, shoulder, elbow, wrist roll,
wrist pitch and hand roll are controllable through a digital computer.
The Merlin arm is therefore well suited to the task of moving around in
three-dimensional space with the Utah/MIT hands attached at the end.




Issues

The first issue that arises when linking a robot arm to an
end-effector system is the fact that the two systems have to be combined
together physically to be able to perform a set of tasks. The next
issue that must be addressed is the availability of a suitable
work- space provided by the combined systems, such that performance of
the desired tasks when combined together would not be inhibited. Both
issues require the robot and end-effector to be kinematically understood
and accurately modeled.

The actual combination of the Utah / MIT dexterous hand to the
Merlin robot arm is complicated by the presence of a "remotizer", a
multiple-bar linkage mechanism that allows the pneumatic actuation
system of the Utah/MIT hand to be located away from the physical hand.
This study, however, does not deal with the remotizer in any way beyond
the acknowledgement of its presence as a constraint in the achievement
of anthropomorphic arm geometry as regards the robot/dexterous hand
combination. This study is intimately concerned with the kinematics of
the two remote systems, specifically, with the direct and inverse
kinematics of the Merlin 6500 robot arm and the direct kinematics of the
Utah/MIT dexterous hand.

It is necessary to study the best possible method of attachment of
the Utah/MIT hand to the Merlin robot arm. It is also needed to study
the behaviour of the two systems when combined together and to obtain an
idea of the attachment component for the two systems. This can either
be done using actual models of the robot arm, the dexterous hand and
suitable attachment pieces, or can be performed using a computer
graphical simulation, or both. The computer graphical simulation method
offers the advantage of being less costly and allows for many more
possible kinematic attachment methods to be studied. The simulation can
also be used to study the movement of the manipulator and end-effector,
as well as assist in modeling the system’s kinematic behaviour. Vith
this fact in mind, a computer graphic simulation has been developed to
model the behaviour of the left-shouldered Merlin arm and the
left- fingered UTAH/MIT dexterous hand. A minimum set of commands from
the graphics package (DISSPLA) have been used to allow for
trangportability of the software to the sponsor’s site.
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IIT SPATIAL TRANSFORMATIONS

D ipti

Robotic manipulation requires that the end-effector be moved around
in space. This involves describing positions and orientations of the
mechanism in a mathematical form. The definition of manipulator
position and orientation and the manipulation of mathematical quantities
vhich represent position and orientation is performed by using

coordinate systems (or frames) and fransformations, which contain the
description of both positions and orientationms.

Description of a Pogition

The position of any point P in the universe can be represented with
respect to a base frame by a ([3x1] position vector. As different
coordinate systems can be used, vectors must be tagged with information
identifying which coordinate system they are described in. A leading
superscript for a vector indicates the coordinate system in which it is
referenced, for example, AP refers to the position of point P, which is
described by three numerical values indicating distances along the axes
of frame {A}. Individual components of a vector are identified by the
trailing subscript x, y and z. Thus, the positional representation of
point P relative to {A} would be written as

T
L, |4, A, A
P = [ S ] (3.1)

where T denotes the transpose of the matrix.

Description of an (rientation

The complet. location of a body in space is not specified until its
orientation is also given. A point on a body could be oriented
arbitrarily while being at the same position with respect to the base
frame. To describe the orientation of a body, we attach a coordinate
system {B} to the body and then give a description of the coordinate
system relative to the reference system {A}.




Thus, positions of points are described with [3x1] vectors, while
orientations of bodies are described by body-attached coordinate
systems. One convenient way to describe the body-attached coordinate
system is to describe the unit vectors of its three principal
(orthonormal) axes in terms of the unit vectors in the universe (or
base) coordinate system. It must be noted here that the description of
two vectors would suffice, since the third can be obtained by taking the
cross-product of the given two. The unit vectors along the principal
directions of the body-attached coordinate frame {B} can be denoted as
XB, YB and ZB' Vhen written in terms of the universe or base coordinate

system {A}, these vectors are written as ‘XB, AYB, and AZB. It is
convenient to stack these unit vectors together as the columns of a

[3x3] matrix, in the order AXB, AYB and AZB. This [3x3] matrix is the

rotation matrix which describes {B} relative to {A} and is written as
SR, Explicitly, pR is given by

r r r
11 Ti2 Ti3
A o [y o4y o, |
gk = [ Iy Ty "Iy ] = | Tay Toa To3 (3.2)
T31 T32 T33

Description of a Transformation

The information needed to completely specify the whereabouts of the
manipulator end-effector is its position and orientation. The point on
the body whose position is chosen to be described is the origin of the
body-attached frame {B}. The position and orientation pair which
completely describes a body’s whereabouts is combined together to form a
transformation, which is defined as a set of four vectors giving
position and orientation information. It must be remembered here that a
frame is an orthogonal coordinate system which is described relative to
some other frame. Thus, when the frame {B} is described with respect to
the frame {A}, then gT can be represented as

A Ay A
T=| 2R 0P (3.3)
B [ B "By, ]




where :R is the rotation matrix representation of {B} relative to

A

{1}, and is specified by equation (3.2), and "Py is the vector from

org
the origin of {A} to the origin of {B} and can be written according to
equation (3.1).

sformations: Changing Degcriptions from Frame to Fram

In robotic kinematics, we are concerned with describing position
and orientation in various reference coordinate systems. Thus, we need
to be able to transform this information from frame to frame rather
frequently.

Iranslated Frames

Let the position of the point P be defined with reference to the
frame {B} as shown in Figure 1. It is required to express the position
of P with respect to {A}. When {A} has the same orientation as {B}, the
difference in {A} and {B} can be represented by a translation vector,

PBO , which locates the origin of {B} with respect to {i}.
Ig

Figure 1. Translational lapping?
{B} has the same orientation as {A}.




Since both vectors are defined relative to frames of the same
orientation, we can compute the description of point P relative to {A}
by the use of vector addition:

P = Bp . by (3.4)
org

It must be remembered that it is possible to add vectors that are
defined in terms of different frames only if the frames have the
same orientation. It must also be noted here that the point P has
itself not moved in space - only its description has changed.

The vector APB defines a translational mapping of point P from
org

its description in {B} to {A}, since all the information needed to

perform the change in description is contained in APB (along with the
org

knowledge of their equivalent orientation).

Rotated Frames
The matrix ﬁk describes the relative orientation of {B} with {A}

and is composed of the three column vectors, AXB, AYB and AZB. By our

definition, the columns of a rotation matrix have unit magnitude and
represent vectors that are orthonormal. Since the inverse of a matrix
with orthonormal columns is equal to its transpose, we have

Ap _ Bp-1 _ BT
g = & = R (3.5)
Thus, since the column vectors of ﬁk are the unit vectors of {B}

written in {A}, the rows of ﬁn are the unit vectors of {A} written in

{8}.
As such, a rotation matrix can be interpreted as a set of three
column vectors or as a set of three row vectors as follows:

T
Ay _ | Ay Ay A _ | BT BT BT
b = [ X, Y Iy ] = [ il il } (3.6)
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Ve often need to know the components of a vector with respect to a
frame {A} vhen ve knov its components with respect to a frame {B}, wvhere
the origins of frame {A} and {B} are coincident (Figure 2). This
computation is possible when a description of the orientation of {B} is
knovn with respect to {A}. This orientation is given by the rotation
matrix ﬁl.

Figure 2. BRotated frames®

Since the components of any vector are simply the projections of
that vector onto the unit directions of its frame, the projection is
computed by the vector dot product. Thus, the components of AP can be
computed as

b - Br, B,
‘py - By, By, (3.7)
Apz = BZA BP.

In order to express the above equation in terms of a rotation

11




matrix multiplication, we note from the previous equation that the rows
of gl are BXA, BYA and BZA. As such, the above equation can be written

compactly as

P (3.8)

Equation (3.8) implements a rotational mapping from frame {B} to
frame {A}, i.e. it changes the description of a vector from "P into 4.

Mappings Involving General Frames

Ve can nov address the problem of mappings involving general
frames, i.e. those frames where both translational and rotational
differences are involved. In this case, the frames {A} and {B} do not
have coincident origins, nor do they possess equivalent orientations.

The vector that locates {B}’s origin relative to {A} is called APB ,
org

while the rotation of frame {B} relative to {A} is given by ék. Given

BP, the vector describing the point P with respect to frame {B}, we wish
to compute AP, the description of the vector relative to {A}.

This is done by changing Bp to its description relative to an
intermediate frame which has the same orientation as {A}, but whose
origin is co-incident to {B}. This is mathematically performed by
pre-multiplying BP by gn, as seen previously in (3.8). Ve can now

translate between origins by performing simple vector addition, since
the intermediate frame and {A} have equivalent orientations.
Mathematically speaking, this is done as follows:

A A

P = B

B B oo ey (3.9)

org

The above equation describes a general transformation of a vector
from its description in one frame to its description in another.

Since we are also interested in a concise notation, the above
equation can be written as

12




bp - B (3.10)

vhere the operator AT is defined by

. (8x3) |, (3x1)
B PBorg (3.11)

4x4
and the P and Bp vectors are embedded in [4x1] matrices.

The 4 x 4 matrix in (3.11) is called the homogeneons transformation
operator. This transformation matrix consists of the position and
orientation sub-matrices and represents a description of the frame {B}
relative to frame {A} as well as the transformation of a vector
described in terms of frame {B} to its description in {A}.

The Nathematics of Transgformation Operators

Before we proceed further, it is advisable to explain the two
important mathematical operations in manipulator kimematics regarding
the transformation operator ﬁf, viz. concatenation and inversionm.

Nultiple transformations are performed when there exist more than
two frames and one of the frames, say {C} (or a vector represented by
one of the frames), needs to be mapped to the first frame {A} through
the second frame {B}. This situation is encountered when the available
description of the frames includes a description of the third frame {C}
relative to the second one {B}, i.e. gT is known, and the second frame

{B} relative to the first frame {A}, i.e. At is known. The compound
B

transformation is mathematically performed by the use of matrix
multiplication operations as follows

An _ Ay B
of = g of (3.12)

Here, éT represents the homogeneous transform or mapping of frame
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{C} with respect to frame {A}. Ve notice the notational convenience
here - the leading sub-script of the first term on the right side of the
above equation may be said to "cancel" the leading super-script in the
second term on the right side of the equation, to give the term on the
left side of the equation.

In many cases, it is necessary to perform a transformation matrix
inversion. Typically, this is done where the order of frame
descriptions is found to be incompatible with compound transformation
proceedures. In the example given above, if the description of {B}
relative to {C}, i.e. gT was known, then the determination of éT could

only be performed by inverting gT to obtain gT, and using the above

equation to determine éT. Thus, (3.12) will now become

Ay _ Ap  Cn-d
ol = 3T - ! (3.13)

The inversion of the transformation matrix could be easily
performed by the generalized matrix inversion method. A computationally
faster method (involving a fewer number of operations) and ome which
utilizes the inherent structure (orthogonality) of the rotation matrix
to advantage is explained below. \

To find BT, we must compute BR and BP from R and AP . From
A A Aor B By,

g 4
{(3.5), ve have

B AT

and so we change the description of APB into {B} using the

org
transformation involving general frames, as
Bdpy ) = fn.ty 4B (3.15)
org org org

Since the left side of the above equation is necessarily zero, we have
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B
p, = -Bp. 1
Aorg A Borg
S (3.16)
org

Ve can therefore write [ gT ]'1, i.e., RT as:

Borg (3.17)

Ve can thus perform the inversion operation on the transform matrix
using (3.17).
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IV MANIPULATOR KINEMATICS

Manipulator kinematics defines the geometrical properties of
motion. The direct kinematics problem is defined as the determination
of the end-effector position and orientation when the joint variables
are known [Appendix 1.7], while the inverse kinematic problem is defined
as the determination of the joint variables to achieve the desired
position and orientation [Appendix 1.8]. Ve will first examine the
generalized direct kinematic problem, followed by a study of certain
important factors involved in the generalized inverse manipulator
kinematics problem.

In order to deal with the complex geometry of a manipulator, frames
are affixed to various parts of the mechanism. Vhen the mechanism
articulates, the relationship between the frames describes the kinematic
behaviour of the manipulator.

int D iption
A manipulator consists of a set of links connected together in an
open chain by joints.

T Nani r Joi

Manipulator links can be joined together by a variety of joint
types. The commonly existing manipulator joint types6 congist of :

Revoluyte joint, where the joint consists of a simple hinge, with
the only possible relative motion between the paired members being a
rotation about the joint axis. This is the most commonly used joint in
manipulators.

Prismatic joint, where the joint consists of a sliding type
mechanism, with no relative rotation occurring between the jointed
members. The only possible relative motion is a pure (rectilinear)
translation along the slide direction. This is the next most commonly
used joint in manipulators.

Helical joint. These are rarely found in manipulators due to the
difficulty in powering the joint. The effect of a helical joint is
normally obtained by a special combination of the revolute and prismatic
joints. The joint acts like a screw-and-nut arrangement. It can be
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substituted for by a co-axial revolute and prismatic joint with a
constant ratio of rotational to translational displacement.

Cylindrical joint, which is in effect a revolute joint without the
end constraints, i.e., sliding takes place along the revolute axis.
This joint is normally found in manipulators as a co-axial revolute and
prismatic joint, with each joint independantly powered and controlled.

Spherical joint, which consists of a spherical ball and socket
arrangement. The relative motion is spherical, resulting in all points
remaining at a fixed distance from the center point of the joint. In
manipulators, the effect of this joint is obtained by three non-coplanar
independently powered revolute joints whose axes always intersect at a
point.

Flat planar joint, which consists of two flat nlanes sliding and
turning on each other. It can be kinematically constructed by two
non-planar prismatic joints and a revolute joint perpendicular to the
directions of both the prismatic joints.

Although other manipulator joints do exist, they are rarely used
due to the associated problems in powering and controlling them.

In certain cases, as in some of those above, there exist
manipulator joints with more than a single degree of freedom. These
joints can be kinematically modelled as ’n’ joints of one degree of
freedom each, connected together with ’n-1’ links of zero link length.
As such, we will, without loss of generality, consider manipulator
kinematics with joints having single degrees of freedom at each joint.

Significant Dimensions of Joints
Significant dimensions for joints consist of the link offset (di)

and the joint angle (01). Neighbouring links are joined together at any

one joint, which has an axis of motion that is common to both the links
connected at the joint. The distance along this common axes, from one
link to the next, is called the link offset (d;). The link offset d,

for joint i is thus the distance measured along the axis of joint i,
from the intersection of the common perpendicular between the axes of
joints i-1 and i, to the intersection of the common perpendicular
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between the axes of joints i and i+1. The joint angle f; describes the

amount of rotation about the common axes at the joint, between one link
and its neighbour. This parameter is measured as the angle from the
extension of the common perpendicular between the axes of joint i and
i-1 to the common perpeadicular between the axes i and i+1, in a plane
perpendicular to the axis of joint i. The link offset is considered to
be the joint variable if the joint under consideration is prismatic in
nature, while the joint angle is the joint variable if the joint under
consideration is revolute.

Axisi — 1 Axis ¢

Figure 3. Link and joint parameters?

LINK DESCRIPTION

Ve now examine the significance and kinematic representation of
links as well as their description.
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ignifican nd Kinemati resentation of Link

Links are used to connect joints. The kinematic significance of
links is that they maintain fixed configurations between their joints
and other points and lines along the axis of the joints. It is
important to note here that, regardless of the actual location, shape or
size of a 1link, a manipulator may be completely represented
kinematically by a skeleton diagram, which is a line drawing
representation of the links of the manipulator.

Significant Link Dimensions

Significant dimensions of a link consist of the link length and the
link twigt. For any two joint axes in three dimensional space, there
exists a well-defined measure of distance between them. The distance
measured along a line which is mutually perpendicular to both axes
defines the link lenmgth. The link twist is measured in a plane whose
normal is the mutually perpendicular line between the two axes (the axes
under consideration and the preceeding joint axes) and is defined by the
angle formed between the projections on this plane of the two joint axes
(see figure 3).

Any open kinematic chain can be described by specifying the values
of the joint angle, link offset, link length and link twist for each
joint-link system. 0f these four parameters, three are constant for a
joint, while the fourth parameter forms the joint variable. The
specification of an open kinematic chain by means of these four
quantities is known as the Denavit- Bartenburg convention®".

The Denavit-Hartenburg Notation

The Denavit-Hartenburg notational convention involves the
description of a robot arm by means of the link lemgth a; 1 link twist

angle e 4> link offset di’ and the joint angle 01. The method depends

on the fixing of a frame to each joint of the robot and determining the
joint parameters and joint variable range. Ve utilise the convention
that frame {i} has its origin at joint axis i and is attached to link i.
Thus, the parameter link length (ai_l) is measured as the signed

distance along the common perpendicular to the axes i-1 and i, from
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joint axis i-1 to joint axis i. The link twigt (a;_,) is measured as

the signed angle (using the right-hand rule) between the projection of
axis i-1 to axis i on a plane whose normal is the mutually perpendicular
line between axes i-1 and i. The link offset (d;) is the signed

distance measured along the axis of joint i from the point where a; ,
intersects the axis i, to the point where a, intersects that axis. The
joint angle (0,) is measured as the signed angle (using the right hand
rule) between the extension of a, ; and a;, about the axis of joint i.

In the special case of the joint being the first one under
consideration, i.e. i is 1, the link parameters are determined from the
base frame, here (i-1) is 0. Since link length a, and link twist a;

depend on joint axes i and i+l, the parameters at the end of the chain,
a and e , are set to 0 and do not need to be defined.

Affixing Frames to Links

In order to describe the location of each link relative to its
neighbours, a frame is attached to each link. The link frames are named
according to the link to which they are attached, i.e. frame {i} is
rigidly attached to link i.

The convention adopted for affixing frames to links depends on
whether the link is an intermediate link or the first/last link in the
chain.

First and L Links in the Chain

Ve attach the frame {0} to the base of the robot, or to a
non-moving section of the arm, called link {0}. This base, or reference
frame, can also be set up with its origin coinciding with frame {1} wvhen
the joint 1 variable is O (the generally preferred method). The Z-axis
of frame {0} coincides with the Z-axis of frame {1}, and so do the X and
Y axes. This ensures that a, = 0.0 and e, = 0.0. Additionally,

d1 = 0.0 if joint 1 is revolute, while 01 = 0.0 if joint 1 is prismatic.

However, when the base or reference frame is not located to coincide
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vith frame {1},  a; # 0.0 and a; # 0.0. In this case, it is not
necessary that 01 be equal to 0.0. The base frame {0} is then set up

for mere convenience.
For joint ’n’ revolute, the direction of I is chosen so that it

aligns with X, vhen § = 0.0, and the origin of frame {N} is chosen so
that dn = 0.0. In cases where three axes intersect at a point, frame

{N} is located at the point of intersection of the three axes. If joint
’n’ is prismatic, the direction of X is chosen so that 0n = 0.0 and the

origin of frame {N} is chosen at the intersection of X, 4 and joint axes

’n’ when dn = 0.0.

Axis i — 1 Axis i

Linki - 1

Figure 4. Link frames and kinematic parameterss.

Intermediate Links in the Chain
The convention used to affix frames on intermediate links involves
setting the Z-axis of frame {i}, called Z;, coincident with the joint i
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axis. The origin of frame {i} is located where the a, perpendicular
intersects the joint i axis. The direction of Zi can be in either
direction along the joint i axis. I, is set up so that it points along
a, in the direction from joint i to joint i+1. In the special case of
a; = 0, Xi is chosen normal to plane of Zi and Zi+1' The link twist a;
is measured in the right hand sense about X,. Y, is formed by the right

hand rule to complete the ith frame. Figure 4 shows the location of the
frames and the kinematic parameters.

The Link Parameters in Terms of the Link Frames
Attachment of the 1link frames to the links according to the

convention described above results in the manipulator kinematic
parameters being redefined in terms of the link frames as follows :

a. = the signed distance from Z; to Z,,y> measured along X,
a. = the signed angle between Z, and Z,,1» measured about I, in the
right hand sense,

d. = the signed distance from X, ; to X,, measured along Z;, and
0. = the signed angle between K, 4 and X,, measured about Z. in the

right hand sense.

It must be noted here that the above convention does not result in
a unique attachment of frames to links. VWhen the 1,-axis is aligned

along joint axis i, there are two choices of direction in which to point
L;. Also, in the case of intersecting joint axes (i.e. a; = 0), there

are two choices for the direction of xi, corresponding to the choice of

gigns for the normal to the plane containing I, and Z; ..

Derivation of Link Transforms
The general form of the transformation which relates the frames
attached to neighbouring links is now derived. These transformations
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are then concatenated to solve for the position and orientation of link
’n’ relative to link 0.

Axisi — 1 Axisi

Figure 5. Intermediate link frames and kinematic parameters5.

The determination of the transformation which defines frame {i}
relative to frame {i+1} is, in general, a function of the four link
parameters. For any given robot arm, this transformation will be a
function of only one variable, the other three being fixed. It must be
remembered here that we are dealing with multiple degree-of-freedom
joints as multiple joints with one degree of freedom and zero offsets
each. By defining a frame for each link, the kinematic problem has been
broken into ’n’ sub-problems. To solve each of these sub-problems, it
is further necessary to divide them further into four sub- subproblems.
Each of the four sub-subproblems consists of a basic transformation
wvhich is a function of one link parameter and can be written by
inspection.

It is necessary to define three intermediate frames {P}, {Q} and
{R} for each link. Figure 5 shows the same pair of joints as figure 4,
with the intermediate frames {P}, {{} and {R} defined. For clarity,

23




only the X and Z axes are shown.
In figure 5, frame {R} differs from frame {i-1} only by a rotation
of a; ;. Frame {q} differs from {R} by a translation a; ;. Frame {r}

differs from {Q} by a rotation 0, and frame {i} differs from {P} by a
translation di‘ To write the transformation which transforms vectors

defined in {i} to their description in {i-1}, we write

i-1p | iilT %T 3T ET ip (4.1)
or

i-1p _ i;lT ip (4.2)
where

i-ilT - iilT %T ST ET (4.3)

Equation (4.3) may therefore be written as
iilT = Rot(xi,ai_l) Trans(xi,ai_l) Rot(Zi,0i) Trans(Zi,di) (4.4)
or
iilT = Screw(X;, a;_ , a; 4) Screw(Z;, d;, 4,) (4.5)

where Screw({,r,¢) stands for a translation along an axis § by a
distance r, and a rotation about the same axis by an angle ¢.

The general form of the transformation of vectors defined in frame
{i} to their description in frame {i-1}, i.e. lilT, is obtained from

(4.5) (detailed in Appendix 2), and is given by

24




cd; -80; 0 3,1 ]
‘ 80, ca; , chce; , -8a;,  -sa; ;d;
vlp - (4.6)
8f, sa; , cb; se; ca; ; ca; 4 d;
0 0 0 1
vhere
cd, = Cos 0,
8f, = Sin 0,
ca; = Cos a; ,
sa; ; = Sina;

The Direct Kinematics of Manipulators

Having derived the 1link frames and the corresponding link
parameters, developing the direct kinematic equations is a
straight- forward process. Using the values of the link parameters, the
individual link transform matrices are computed. The manipulator arm
kinematic transformation matrices are then multiplied together to find
the single transform that relates frame {N} to frame {0}, as shown in
equation (4.7).

fr=frir2e . . Nl (4.7)

This transformation will be a function of all ’n’ joint variables.
The kinematic parameters for joint ’i’ are 8;_{» 8;_4 and d; as well as

0., the joint variable for a revolute joint. Each of these parameters,

i’
as well as the joint variable, have to be determined for each link of
the manipulator.

The Inverse Kinematics of Manipulators

The inverse kinematics problem involves the determination of the
joint angles of the manipulator which will achieve the desired position
and orientation. This more difficult problem can be solved by various
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methods, of which the prominent and easily programmable ones utilise
either geometric or algebraic manipulations to obtain a set of
solutions. One of the important factors that has to be taken into
account consists of whether the defined (known) position is at the tip
of the manipulator or at some other convenient point along the last
axis.  Another important factor to be taken into consideration is
whether there exists a solution for the desired position and
orientation. Further, the solution set may consist of one or more
solutions which will allow the achievement of the desired position and
orientation, and a choice between these solutions must be made.

Solvability

The problem of solving the kinematic equations of a manipulator to
determine the joint angles is a non-linear one. Given the values of
each of the terms in gT, we have to determine a viable set of joint

angles 01, 02, 03, « « .« ,8 . PFor a six degree-of-freedom arm, the set

n
of joint angles that needs to be determined (the unknowns) is six. Ve
have a total of 16 values obtained from the gT matrix, four of which

the 1 row) are trivial in rion h _sideg). Out of the
remaining twelve known equations, three equations define the position
values and are independant. From the nine remaining equations that

arise from the rotation matrix part of gT, only three equations are

independant. These three equations, added with the set of three
equations that arise from the position vector part of the transformation
matrix, provide a set of six equations. For a six degree of freedom
manipulator, we have six joint angles to be determined, and six
equations. These equations are a set of non-linear transcendental
equations which can be difficult to solve, specially for a general
mechanism vith six degrees of freedom with all link parameters non-zero.
This is unlike industrial manipulators where the link parameters consist
of twist angles of 0° or 90°, resulting in their sine and cosine values
being ’'nice’ numbers like 0 or 1, or where many of the offsets are 0.
As with any set of non-linear equations, it is necessary to look for the
existence of solutions, multiple solutions and the method of solution.
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n f Solyti Mani k

The question of whether or not there exists an inverse kinematic
gsolution for the successful achievement of the desired position and
orientation raises the question of manipulator workspace. Broadly
speaking, workspace is that volume of three dimensional space which the
end-effector of the manipulator can reach. For a solution to exist, the
desired goal point must lie on or within the workspace boundaries. The
dexterous workspace is that volume of space which the robot end-effector
can reach with all orientations, i.e. at each point in the dexterous
vorkspace, the end-effector can be arbitrarily oriented. The reachable
vorkspace is that volume of space which the robot can reach in at least
one orientation. Thus, the dexterous work- space of a robot is a sub-set
of it’s reachable workspace.

For each manipulator, there exists an outer and inner workspace
boundary. Thus, there exists an outer reachable and an outer dexterous
workspace boundary, as well as an inner reachable and inner dexterous
boundary. The outer and inner workspaces are a function of the
kinematic parameters of the manipulator and the joint variable range
limits.

The Existence of Multiple Solutions

Another common problem encountered in solving manipulator inverse
kinematic equations is that of multiple solutions. The existence of
multiple solutions arises due to the kinematic arrangement of
consecutive joints and the range of motion of each joint. For example,
wvhen there exist two joints with successive parallel horizontal axes,
one of the ways to achieve the desired position is with the first link
pointing upwards with the second link pointing downwards, while the same
position is achievable by the first link pointing downwards and the
second link pointing upwards. Another example of the existence of
multiple solutions involves the orienting mechanism of the robot. For
each solution, provided the joint variable ranges are not exceeded,
there will exist a wrist ’flipped’ solution. Also, the more nonzero
link parameters there exist for the manipulator arm, the more ways there
will be to achieve the desired goal. For a manipulator with six
rotational joints, the maximum number of solutions is related to the
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number of the link length parameters (ai) that are equal to zero. The

more that are nonzero, the bigger the number of solutions. For a
completely general rotary-jointed manipulator with six degrees of
freedom, there are up to 16 solutions that are possible. Table 1 shows
the relationship between the link length parameters (a;) and the number

of solutions for a six degree of freedom manipulator.

Table 1. Number of Solutions vs. Nonzero ai§

a; Number of solutions
8 =83 =35=0 ¢4
ag = g = 0 <8
ag = 0 < 16

The Methods of Solution

Unlike the process of solving a system of linear equations, there
are no general algorithms that can be adopted to solve a set of
non- linear equations. It therefore becomes necessary to note that a
manipulator is considered solvable if the joint variables can be
determined by an algorithm which allows the determination of all the
sets of joint variables associated with the goal frames position and
orientation.

The broad division of manipulator solution strategies is divisible
into closed-form solutions and nymerical solutions. Due to the
iterative nature of numerical solutions, they are much slower in
"solving" the manipulator than closed form solution techniques.
Further, most numerical iterative techniques utilised in "solving"
manipulators do not guarantee the finding of all possible solutions that
may exist for the manipulator. Closed form methods involve a solution
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based on analytical expressions or on the solution of a polynomial of
degree 4 or less, such that non-iterative calculations suffice to arrive
at a solution.

Vithin the class of closed-form solution techniques, two major
distinctions can be made. The two sub-classes of the closed-form method
include the purely algebraic solution process and the geometric process.
The geometric process, however, does involve a degree of algebraic
manipulation.

A recent major result is that all systems with revolute and
prismatic joints having a total of six degrees of freedom in a single
series chain are solvable, at least numerically. It is, however, true
that it is only in special cases that robots with six degrees of freedom
can be analytically solved. These robots possess the common
characteristic of several intersecting joint axes and/or many e, (twist

angle) equal to 0° or +90°. A sufficient condition that a manipulator

with six revolute joints will have a closed- form solution is that three
neighbouring joint axes intersect at a point.

A well-known solution method for a manipulator with all six
revolute joints and with three axes intersecting at a point is the
Pieper’s sgolytion process. This consists of transferring the known
position information about the goal point to the point of intersection
of the three axes. Successive algebraic manipulations then leads to a
solution. The advantage of Pieper’s technique is the determination of
kinematic singularities during the solution process, as well as the
determination of all possible solutions to the inverse kinematics
problem for the manipulator under consideration.

The geometric technique of closed-form solutions to inverse
kinematics has never provem to be popular, due to its inherent
diradvantage of not being able to provide kinematic singularity
information. It does possess the advantage of providing information
about the determination of which of the solutions is to be adopted.
However, the technique works to advantage only in the presence of "nice"
twist angles like 0° or +90° and becomes complicated in their absence,
and often even when some of the a; are "nice" angles.
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ional Consi ion

In path control schemes, it is often necessary to solve for the
inverse kinematic solutions of manipulator arms at a fairly high rate,
sometimes as fast as 20-30 Hz.? or faster. As such, computational
efficiency is often an issue in manipulator inverse kinematic solution
processes. Numerically iterative processes are unable to fulfill such
requirements and are therefore not generally adopted, unless there does
not exist a closed-form solution for the manipulator.

The structure of computation is also of importance. It is more
efficient to generate all of the joint variables in parallel and to use
lookup tables than to generate all of the angles serially. It is also
much more efficient to generate only one solution than all solutions,
specially when all of them are not required. Another time saving
proceedure often adopted in practice is the generation of inverse
kinematic solutions off-1line, storage in a lookup table against a set of
goal point positions, and then adjusting the solution to achieve the
exact desired goal point position. The remaining orientation joint
variables can then be computed by using the closed-form equations.
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Figure 6. The Merlin 6500 Manipulator
Frame Assignments - Side View.
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Figure 7. The Merlin 6500 Manipulator
Frame Assignments - Top View.
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Y THE MERLIN 6500 KINEMATICS

Frame Assignments for the Merlin Manipulator
The first step involved in the kinematic analysis of manipulator

mechanisms is the setup of Cartesian frames at each joint of the
manipulator. This is done following the rules for frame assignment
outlined in Chapter V, and is demonstrated in figures 6 and 7. Frame
assignments have been performed in the ’Home’ position, defined by the
inner arm, the outer arm and the link between the wrist pin and the face
plate being parallel to the floor and pointing towards the front of the
robot.

The origin of the base frame {0} has been located at the
intersection of the waist and shoulder axes, with the Z0 axis aligned

with the waist axis. This location of the origin of {0} offers the
advantage of a similarity to anthropomorphous arm geometry.

The origin of frame {1} coincides with the origin of {0}, and {1}
is coincident to {0} at the ’home’ position. The origin of {2} is
located at the center of the inner arm, with Z, positive from the origin

of {2} in the direction formed from the waist to the shoulder.

Frame {3} has an origin located at the center of the outer arm. I

lies along the axis of joint 3 and has a positive direction similar to
Lo, measured from the origin of {3}. I, is alvays parallel to Z,.

The origins of {4}, {5} and {6} are located at the center of the
wrist pin. Zy» Z5 and Z6 lie along their respective axes, with Z, and

g positive towards the end of the arm and Ly positive coming out of the
paper. The X, and Y, (i =1 to 6) axes are set up according to the

rules defined in Chapter 4.

The Kinematic Analysis Procedure )

Following the assignment of frames at each joint, it is necessary
to determine the kinematic parameters for the Merlin 6500 arm. These
parameters are determined by using the rules outlined in Chapter 4. The
direct kinematic analysis of the mechanism can then be performed by
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forming the transformation matrices using (4.6) and concatenating them.
There is always a unique result in the direct kinematic analysis of
robotic arms.

A Symm f the Kinematic Parameter
Since all the joints are revolute, the joint variables are 0i, (i-=

1 to 6), where i denotes the joint number. The kinematic parameters are
derived using the Denavit-Hartenburg convention, defined in Chapter V,
and are summarized in Table 2.

Table 2. The Denavit- Hartenburg Parameters for the
Nerlin 6500 Left-Arm Manipulator

L ]o%i 351 4 b Kinematic
(degrees)| (  inches) (inches) (degrees) |Range (degrees)

1 0° 0" o" 0, + 147°
2| -90° 0" d, (18.915") 0, + 56° to - 236°
3 0° a5(17.38") | dg (-6.915") 0 + 56° to - 236°
4 | -90° 0" dy (17.24") b, |* 360° (continuous)
5| +90° 0" 0" , + 90°
6 | -90° 0" 0" 6 |+ 360°(continuous)

Note:
1) Right hand rule used (implying counterclockwise is + ve).
2) Source : Merlin System Operators Guide - Version 3.0 / June 1985.

The Direct Kinematic Solution for the Left-Arm Merlin

The general forward kinematic task is to compute the transformation
matrix relating the tip of the end-effector to the global (or world)
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coordinate frame of the robot. 1In the present case, we define the
direct kinematic problem to be the computation of closed form equations
that relate the position of the origin of {6}, and the orientation of
the last link, with respect to {0}. It must be remembered here that the
global frame of the robot is at a height of 46.45 inches above the base
and that the hand roll frame, {6}, is located at the wrist pin.

The direct kinematic problem thus can be defined as the
determination of the gT matrix, computable as

el gT (5.1)

OT _
11 |o 0 1 0 (5.2)
0 0 0 1
|
1o _ ~
2'1' = 0 0 1 d2 d2 ~ 18.915"
0 0 0 1 J b
L
- 0 ]
€3 83 )
2 - ~
3T = 83 Cq 0 0 ag 17.38"
0 0 1 d dy = -6.915" (5.4)
0 0 0 1
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]
C4 '84 0 0
3 - ~ 1]
4T = 0 0 1 d4 d4 ~ 17.24
'84 ‘04 0 0 (5-5)
0 0 0 1
4p - .
5T = 0 0 1 0
55 ¢ 0 0 (5.6)
0 0 0 1
0 A
Sm _
6T = 0 0 1 0
0 0 0 1]

According to the principle of concatenation of transformations,
developed in Chapter 3, we have

4., _ 4 5
6T = 5T * 6T (5'8)
Therefore,
4 _
6T = 8g Cs 0 0
85C6 - 858 Cs 0 (5.9)
| 0 0 0 1 ]

Further, using the principle of transformation matrix concatenation, we
have
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3, _ 3. 4
lle.
[ €4C5Cq 848
85%
3n _
0

~C4C586784%¢

~858¢

84¢58¢"

0

4%

(5.10)
5 dy
0 1 ]

Now, since the joint axes for {2} & {3} are always parallel, we obtain
éT using the trigonometric sum of angle formulas

CoC3 - BgSg
SgC3 *+ CoS3

Cog =
893 ©

to yield a simple result.

Since
1n _ 1m 2
g1 =5l . 3T
we have
[ o3 So3
1n _
ol = 0 0
893 “Co3
0 0
Now, as
1n _ 1m 3
gl = 3T - &I

p—t

o O

and

25¢q |
dg+dg

8989
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ve get
1 1 1 1]
11 T19 13 Py
1. _ |1 1 1
61 = | T2 Tao Ta3 1py
1 1 1
I3 T3 T33 P (5.15)
0 0 0 1
vhere
1

T3y = C93[C4C5Ce - 84861 - B2385C
T1g = -Co3(c4C58¢ * 84Cg] * 8938584
r13 = - [C93¢485 + 893Cs]

1

Tyy = - [84C45ce + C48¢]
1 -

Tgg = 84C58g = C4Cq
1 _

Tog = 848y

T3y = -893(C4C5Cq - 848g] - Co385Cg
T3g = 893CyCs8g + 84Cg] + CogBy8g
T33 = 893€4B5 - Ca3C5

o
»
|

= -~dy899 + 35CH
d2 + d3

©
1t

P, = ~d4Co3 - 3989

The final product of all six link transformations is given by

o =0r. o1 (5.16)

wvhich results in the final gT matrix, given by,
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]
T11 T12 T13 Py
T21 92 Ta3 Py
Op _
6l = | T3y T3 T33 Py (5.17)
0 0 0 1
vhere

Ty = ¢1leg3(cyCslq - 848g) - 89g85ce] + 84 [84¢5cq + 48]
Tyy = 81[cog(cqC5cq - 8456) - 89385Ce] - ¢4[84c5q + C48¢]
T3y = ~BaglcyCscq - 8485] - Cog8sce

T1g = ¢q[-cog(cycqsg + 84Cq) + 89g8584] - 8y [s,Ce8¢ - c,cq]
Tyg = 8y[-cog(cyCs8g + 84Cq) + 8yg8585] + ¢y [8 584 - cyc]
T3g = 89g(c4Cs8¢ + 84Cq] + Cogss8g

Ti3 = -C1[Cy3cyB5 + 89qCs] -8, [884]
Ty = ~81[Co3¢y85 + S9g¢s] + ¢4 [8,8;]
T33 = 893Cy85 - C93Cyg

©
o)
i

= ¢q[-dysy3 + agcy] - 8y(dy + dy)
y = 81[-d4893 + agcg] + c;(dg + dg)

© =
N
1 !

= -dyCoq - 898y

The transformation matrix gT, given by (5.17), completely defines

and locates the position of the wrist pin and orientation of the link
connecting the tip of the Merlin arm to the wrist pin, with respect to
the base frame. The position of the tip of the Merlin manipulator with
respect to the base frame is easily computable from the above
transformation matrix. This requires the addition of the product of
each term in the ’approach’ vector (the third column vector of the gT
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matrix) and the distance between the tip of the arm and the wrist pin
(or the distance between the tip of the arm and the point under
consideration), to the corresponding term in the position vector (fourth
column in the gT matrix). Thus, if ’dg’ defines the distanmce between

the tip of the Merlin 6500 arm and the wrist pin (or the point under
consideration), then the gT matrix can be modified so that the position

data provided by the transformation matrix gT refers to the end of the

arm, as follows :

p: = 01(1,4) = p_ + dg . 0(1,3)

-0 _ 0
) = g'r(2,4) = py + dg - gw(z,z) (5.18)
p, = ¢T(3,4) = p, + dg . ¢T(3,3)

The direct kinematic solution could have alternatively been
performed by setting the origin of {6} at the tip of the Merlin arm (or
at the point under consideration), instead of the wrist pin. This
method would, however, cause computational complications when performing
the inverse kinematic solution for the arm, since the soluticn process
by Piepers method requires three axes intersecting at a point and the
origin of the three frames for these axes are set at the point of
intersection.

Dir Kinematics for ight-arm Merli
Ve now need to develop the direct kinematics for the right
shouldered MNerlin manipulator. This can be performed either by

repeating the above process completely for the right arm Nerlin
manipulator, or by utilizing the solution developed for the left arm
manipulator vith adjustments being made to the values of the kinematic
parameters. The former process involves re-assigning frames,
determining the Denavit- Hartenburg parameters and then computing gT for

the right arm manipulator. The latter process maintains the frame
assignments made for the left arm while adjusting the numeric values of
those parameters that would be affected by the conversion of the left
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arm to a right arm manipulator, and using the direct kinematic equations
for the left arm robot, given by (5.17).

A close examination of the left- and right- shouldered arms reveals
that they differ kinematically at the shoulder only. Ve thus adjust the
Denavit-Hartenburg parameters indicated by d, and d3 to be d2 ~ -18.915

inches and d3 ~ 6.915 inches. Equations (5.17), when solved for with
the above values of d2 and d3, result in the direct kinematic solution

for the right arm NMerlin manipulator.

The Inverse Kinematic Soluytion for the Left-Arm Merlin.

Since the last three axes of the Merlin manipulator intersect at
the wrist pin, we adopt an algebraic method (Pieper’s) to solve for the
inverse kinematic solution. Since we may be given the position &
orientation of the hand-roll plate, and the origins of frames {4}, {5}
and {6} are located at the wrist pin, we need to account for the
distance between the wrist-pin and the tip of the hand roll plate, which
is ~ 3.5". This affects the position vector only - the orientation
vector remains unchanged.

The transformation matrix defining the position and orientation is
giver by (5.17), and is

[
11 T1o I3 Py
Om _
61 = | T21 T2 To3 Py
T31 T3o T33 P,
0 0 0 1

vhere Tyys Tygs =+ Tagzs Pys Py p, are specified by the kinematic

equations given in (5.17).
Let d6 be the distance measured from the tool mounting surface to

the wrist pin (d6 ~ 3.5") and the position of the tool mounting surface

be given by a vector p’ = {p; p; p;}T, where
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o ]
Py Py T3
p’ = p; = py + d6 . r23 (5-19)
| p La4
| ° | |

Therefore, the position of the wrist pin is specified by

Py 1 Px 1 -¢;[cygcy8y + 8ggcs] - 8;[8,8;] 1
Py [ = | Py |- dg -84 [€3CyB5 + ByaCs] + ¢y [8485] (5.20)
L P, L P, L 893C485 = C93%5

Ve now examine the kinematic parameters to determine the number of
solutions that will be obtained when solving the inverse kinematics of
the Merlin robot.

Since a; = a; = a; = 0, we determine (from Chapter 4) that the

number of solutions for the left shouldered Merlin arm will be four in
number. Since a,, ag and a; are unaffected by the shoulders

configuration, four further solutions will be obtained for the right arm
Merlin robot. This results in a total set of eight solutions for the
inverse kinematics of the Merlin robot. These solutions can be seen to
include the following configurations for each of the left and right
arms :

1) Inner arm up, outer arm down, wrist roll, wrist pitch.
2) Inner arm down, outer arm up, wrist roll, wrist pitch.
3) Inner arm up, outer arm down, wrist ’flipped’ over.
4) Inner arm down, outer arm up, wrist ’flipped’ over.

Four similar solutions exist for the MNerlin right-shouldered
manipulator.

Ve now proceed to solve the inverse kinematics of the Merlin left
arm manipulator. The inverse kinematic solution process requires
solving
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or = J2(0)) . 2n(ey) . 2100y . 3100y . t10sy) oT(05) (5.21)

0

for 01, i = 1 to 6, when 6T is given as numeric values, with the

position vector of gT having been adjusted according to (5.20), if

necessary.
Putting the dependence of 01 on the left side of the equation gives

-1
[‘1"[(01)] Cor = 306,) . 2n(ey) - 30s,). f100y) . Sn(sy) (5.22)

Inverting gT , we rewrite (5.22) as

g 8 0 0] [ryy 1y Ty Py ]
1
o 0o 1 0 T3y T3p T3z Py
o o o 1] o o o 1

where éT is given by (5.15).
Equating the (2,4) elements from both sides of (5.23), ve get

“8yPy * CyPy = d, + dg (5.24)
Substituting
Py = P Cos ¢ and
y J
.
where p = Jpx2 + py2
and ¢ = Atan? (py, px) (5.26)

into equation (5.24), ve get
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p(Sin¢ Cosd, - Cos¢ Sind,) = d, + dg

which results in

dy + dg
Sin(¢ - 4,) = (5.27)
p

Using

SinZ L + Cos? A = 1,
ve get

'd2+d32
Cos(¢ - 01) =% {1- B (5.28)

Since we know Sin(¢ - 4,) and Cos(¢ - 6,), ve find (¢ - 8,) as

d, +d [d, + d,]2
(4- 6,) = Atan2 [ 2 3], : Jl - [ 2 3]

p p

Using the value of p from (5.26), we get

(4-6,) = Atan2[[d2 +dg], = [p7+ b, - |y + 4y J (5.29)

b = Atan2(p, p,) - Atan2[[d2 R ds], *Jp: v 2 - [d2 R d3]2] (5.30)

In equation (5.30), we have utilized the Atan2 function to
determine the value of 01. Use of the cosine or arc sine function would

lead to inaccurate, incomsistent and ill-conditioned solutions, since
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the accuracy of the arc cosine function in determining the angle is
dependant on the angle [Cos # = Cos(-4)], while, when Sin # approaches
zero, 8 = 0° or + 180°. A more consistent approach is to use the Atan2

function, which returns the value of # adjusted to the proper quadrant.
The Atan2 function is defined as follows

0°¢ 0 ¢ 90° for +x and +y
90° < 8 ¢ 180° for - x and +y

0 = Atan2(y, x) =
- 180°¢ 0 < - 90° for -x and -y
L-90°gago° for +x and -y

Note that, in (5.30), there are two possible solutions to 01,

depending on the + sign in the second term of the equation. The
positive solution is obtained for the left arm Merlin 6500 manipulator,
while the negative solution represents the inverse kinematic solution
for f, for the right arm Merlin 6500 manipulator with different frame

assignments than those made for the left arm.
Since 01 i8 now known, we now know the left side of equation (5.22)

and (5.23).
Equating the (1,4) elements of (5.23), we have

CyPy *+ 84D = -d4s23 + 29Cq ' (5.31)

¥y
Equating the (3,4) elements of equation (5.23), we have

Squaring equations (5.24), (5.31) and (5.32) and adding, we get

Py By ¢ g =+ dj - Taydgsg v [dy + )’

44




Therefore,

2 2. 2 .2 2 .2
-2a5d,85 = Py * Pyt Py 3g- [dz + da] dy

which results in

iy - _2;32%;[,,3 e nte sl [t 0 q)? -dgl (5.33)
Since

sg + cg =1
wve have

Cq = *Jl - sg
Therefore

By = Atan2[ Bgy * Jl - sg ] (5.34)
where

8y = 2;;d4 p2 . p? s pl -l [d2 . d3]2 - d3 (5.35)

Thus, 03 can have two values, depending on the + sign used in

(5.34). Each of the solutions represents the elbow up or down solution.
Both of the above solutions for 03 are valid for the left and right arm

Nerlin robot. The values of d, and d, that are used in (5.35) will
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depend on whether the arm solution desired is for the left or for the

right arm.

Equation (5.22) can now be written so that we have the left side as
a function of the known variables 01 and 03 and the unknown 02, as

-1
[gT(02)] . o1

Since
Op _ Op 1
gl = 4T . 4T
we have
€1Ca3
§1Co3
0 _
31(0g) = | -899
0

3
aT(0y

~Cq893
8893
“Co3

0

Ve invert [ gT(02)] using (3.18), to get

C1Co3
“C1893

81
_s1

4
) - 5T(dg) .
_81
¢4
0
0
Ca3 893
So3 “Co3
c1 0
0 0

Equation (5.36) can now be written as
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6T(%)

a2s1c2+c1(d2+d3)

8989

1 J

"29Cq
3.283
- (d2+d3)

(5.36)

(5.37)

(5.38)




[ €iCog  B4Cog Bgg -B9C3 | [ Tyy Tip Tyg By

_ 3
“CiSy3 -BiByy -Cg3  By83 | [ Ty Tgy Tpz Pyl =gl (5.39)

-8y ¢g 0 -(dgHdg)| [ T3y T3y T3z P,

0 0 0 1 ]L 0 0 0 1

where
B5Cg ~855g Cs dy
3n _ .
6T = -s4c5c6-c4s6 s4c5s6 C4Cq 8485 0
L 0 0 0 1

Equating the (1,4) and (2,4) elements of equation (5.39), we have

C1CogPy * 81CggPy - BggP, - 89C3 = 0

i ) ] _ (5.40)
C1893Py = B1893Py = CogPy + 8983 = dy

Taking the known terms to the right side of the equation, we have

Co3(CiPy * ByPy) - 8g3p, = 39C3

.41
893(c{Py *+ 8;Py) + Cygp, = ay83 - dy (5-41)
Let
A=cyp, + 84py
B=pz
C = a5Cq
D=3283‘d4

Therefore, (5.41) now becomes
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[
(=]

] (5.42)
CogB + 8ogh

|
[

Solving for Co3 and 893 by Cramers rule, we have

. (ag85 - dyg)p, + agcg(eypy + 84py)
g = 20 2 : (5.43)
P, + (clpx + slpy)

_ (3983 - dg)(cpy + 84Py) - 3gc3P,
fy3 = : : , (5.44)
Py * (c1Py + 84Py)

and

{(3985 - dg)p, + 8gcq(c,p, + slpy)] (5.45)

Due to the four possible combination of solutions of 01 and 4,,
there will be a total of four possible solutions for 023. As such, the

four possible solutions for 02 are computed as

92 = fgq - 03 (5.46)

vhere the appropriate solution for 03 is used when forming the
difference. Since the computed value of 4, is used in solving (5.45),
and hence (5.46), the left arm (positive) solution for #, provides the
left arm solution for 02 (which account for two of the four solutions
obtained above), while the right arm solution for 01 (the negative
solution) provides that solution for f, which is valid for the right arm

only (and which account for the remaining two solutions obtained

48




for 02).

Ve now know the entire left side of equation (5.39). Equating the
(1,3) and (3,3) elements from both sides of (5.39), we get

I33893 = ~C485
8485

T13¢1C23 * To381C93
(5.47)

+

"Ty384 T93%y

If, in (5.47), 85 # 0, ve solve for §, as follows

_ 1
8y = (-Tyg8y * Tog¢q) 55
and
€4 = (-TyaCiCoa - TaB8:Con *+ TaaSna) L
4 1371723 2371723 33723 85
Therefore

by = Ata“2[("1331 + Tg3¢q)s (-T43¢1Co3 - To38:Cog * r33323)] (5.48)

If, however, 85 = 0, then 05 = 0° or 180°, and the manipulator is

in a singular configuration, in which the wrist roll and hand roll axes
(z4 and zg) line up and cause the same motion of the last link of the

robot. In such a case, all that can be solved for is the sum or
difference of §, and fg- This condition of singularity is detected by

checking to see if the two arguments of the Atan2 function of equation
(5.48) are close to zero. If they are, 04 should be chosen to be the

present value (or any other arbitrary value) of the wrist roll angle.
Vhen 06 is computed at the last stage using the present (or arbitrary)

value of 04, it is adjusted according to the value chosen for 04.
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Considering equation (5.21) again, ve now know 8., 0y, 85 and 0,.

So we rewrite equation (5.21) to get all the knowns on the left side, as
follows:

[gr}‘l . or = £1(dg) . S1(8y) (5.49)

Ve know that

Op _ O
4T = oT.

Since

ey t= @)t @t
ve have

i) - i) )

Ve compute [2T]'1 using (3.18) and (5.5) as

- 0 -C 0
3.1-1 _ | 54 4
[4T] =10 10 -4, (5.50)
0 0 0 1
Having computed gT]-l in (5.38), we solve

- e (e

to get
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o 9
C1CpgCq*Bi8y  B1CoaCy-CiBy -ByaCy -29CqCy+8,(dy+ds)
[01]'1 -C1CqB8*8.Cy ~81CoqBy-CiCy  BoggBy  BgCaBytcy(dy+dy)

4 =
“C1893 ~81893 “C3 983y
0 0 0 1 J
(5.51)
Equation (5.49) can nov be written as
Op|-1  Op - 4p (5.52)
4 6 6 :
Op . . 4T
vhere T is given by (5.17) and gT by (5.9)
Equating the (1, 3) and (3, 3) terms of (5.52), we have
-13(c1Co3Cy + 818y) - Tog(8,Cogcy - Cy8y) + IazByaCy = 8g .59
5.53
"C1823%13 - 81823723 ~ Ca23"33 = C5 -
Ve therefore solve for 05 as
05 = Atan2(sg, cj) (5.54)

vhere s, and c, are given by (5.53).

Rewriting (5.21) to get the known terms on the left side, we have

Opnl-1 O 5
[5T] . O = Sn(gy) (5.55)
As before
O0p _ O 4
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Therefore
Om]-1 _ [4q]-1 Omp|-1
[5 ] - [5T] . [4T] (5.56)
40]-1 -
Ve compute |;T| ~ using (3.18) and (5.6) as
Cg 0 85 0]
4T -1 _ -8g Cg 0
5 - -1 0 0
| 0 0 0 1 ]

Having computed [gT]’l in (5.51), we solve for [gT]'l as

[ c5(c1C93¢,*8154)-C 8385 C5(81C93C4mC184)" 8189385
[OT]-I i} -85(C1C304*8184)-C1893%5  ~85(81093¢4" C154)- 8152305
9 €16354 - 51%4 81Co384 * 1%

| 0 0

~809C,C5 CogBs  {C5(-a9eaey+8,(dyrdg)+ss(2g85-dy)}]

5930485 CogCs 1~ 85(-29C3Cy+8,(dg+dg)+c5(agsg-dy)}
~85384 ~89Cq84 - C4(dy+ds)

0 1 J

(5.57)

Since we know [gT] from (5.7), we equate the (1,1) and the (3,1)
elements of (5.55), to get

{°5(°1°23°4 + 8y84) - c182335}r11 *

{°5(81°23°4 - ©484) - s182335}’21 " 1%23%% * °2335}r31 -

|
(2]
[=>]

(5.58)

- {°1°2384 - s1°4}r11 - {s1°2334 * °1°4}’21 ¥ {32384}r31 = S¢]

52




Ve therefore determine 06 by
vhere s and cg are given by (5-58).

Since there are two possible solutions for each of 01 and 4,,
equation (5.59) results in a total of four solutions for fg. If the
positive value for 0, is used in solving (5.59), then the solution
obtained for fg by (5.59) is for the left arm Nerlin robot, while if the
negative solution for 01 is used, we obtain the solution for the right

arm Merlin robot.
Additional solutions are obtained by flipping over the wrist of the
manipulator, and are given by

0 = 8, + 1801 , 1
0 = -0, and (5.60)
03 = G + 1801.

After all of the above eight solutions have been computed, some (or
all) of them may ha.e t¢ be discarded Lecause of joint limit violations.
0f the remaining valid solutions, it is advisable in most cases to
choose the one closest to the current configuration of the manipulator.

nverse Kinematic r the Bight-arm Merlin Manij r
0f the above eight solutions which constitute the solution set for
the inverse kinematics for the left and right arm Merlin 6500
manipulator, those solutions obtained using the positive solution for 01

represent the inverse kinematic solution for the left arm Merlin robot,
wvhile the four solutions obtained using the negative solution for 4,

represent the solution set for the inverse kinematics for the right arm
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Merlin robot with adjusted frames.

An alternative procedure for developing the closed-form inverse
kinematics for the right arm Merlin manipulator involves using the same
set of equations developed for the left arm Merlin but adjusting the
kinematic parameters involved in converting from a left arm Merlin robot
into a right arm Merlin. As explained in Chapter 5, this essentially
involves retaining the orientation of the frames assigned to the
individual joints and negating those parameters that will effect the
conversion of the left arm to a right arm Merlin robot, viz. d, and dg.

Thus, setting d, = -18.915" and d, ~ 6.915" will result in a left arm

Merlin becoming a right arm Merlin robot. Using the above adjusted
parameter values for the right arm parameters in the left arm (01

positive solution set) equations results in the solution being obtained
for the right arm Merlin 6500 manipulator. The major advantage of this
process is the avoidance of new frame assignments, reduced code in
computer implementations as well as the fact that new frame assignments
and joint angle measurement processes do not have to be followed. This
process has therefore been adopted in the computer implementation of the
equations (Appendix IV).
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VI VORKSPACE DEVELOPMENT FOR THE MERLIN 6500 ROBOT ARM

Yorkspaces of Manipulators

The working volume of a manipulator is called the manipulators
workspace. The workspace of any manipulator is defined as the set of
positions that the end-effector can achieve when the joints vary over
the full range of possible values®.

Manipulator workspaces are divided into reachable and dexterous
workspaces. The reachable workspace for a manipulator arm is defined as
that volume of space that the manipulator’s end-effector can reach in at
least one orientation (Appendix A1.10). The dexterous workspace of a
manipulator is defined as that volume of space which the end-effector
can reach with all possible orientations (Appendix A1.11). The
dexterous workspace of a manipulator is always a sub-set of the
reachable workspace.

Each of the dexterous and reachable workspaces of a manipulator
possess an outer and inner boundary. The outer boundaries are
determinable by the set of positions in Cartesian space corresponding to
the tip of the end-effector (or tool) of the manipulator, when the
joints of the manipulator are taken through their full range of motion.
The inner boundary for manipulators (with the last three axes
intersecting at a common point) are defined by the set of positions in
Cartesian space that .the point of intersection goes through when the
joint motions are taken through their full range of motion.

Previous work on manipulator workspace generation has been
performed by a variety of methodsg’lo’ll. Since manipulator workspaces
are geometrically complex, it has been found easier to obtain an
understanding of their shape by developing their workspaces in two
dimensions i.e. in planes. The complete workspace is a composite of the
tvo dimensional workspaces in all three dimensions and can be formed by
overlaying the two perpendicularly, and aligning the axes common to both
planes. The workspaces that are commonly developed for manipulators
consist of the horizontal workspace (a projection of the manipulator
wvorkspace onto a horizontal plane) and the vertical workspace (a
projection of the workspace onto a vertical plane).

The process of two dimensional workspace development consists of
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the division of the degrees-of-freedom of the manipulator into those
that act in the vertical plane, those that act in a horizontal plane and
those successive degrees-of-freedom that can be combined together to
produce a motion with an axis perpendicular to the axes in which each
joint acts separately.

The Horizontal Yorkgpace of the Merlin 6500 manipulator

The only possible link motions in the horizomtal plane that the
Nerlin 6500 arm possesses consist of the waist rotation over a range of
204 degrees and the wrist yaw over a range of 180 degrees. The wrist
yawing motion is formed by a wrist roll of 90 degrees, followed by a
wrist pitching motion over the full range of 180 degrees. The
manipulator is therefore kinematically representable as shown in
figure 8.

X0,XA
YO,YA A
20,28 (outd
4
XC 12.00 //
SHOULDER
b o7¢ out
D Cl ~ —
&E‘ LOVER _ARM _ XB= /{_B
A 7B (oub
UPPER ARM
YB
~ 34,62 -

Figure 8. The Horizontal Plane Representation
of the Merlin 6500 arm
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The Merlin 6500 horizontal degrees-of-freedom can be assumed to
form a manipulator with the kinematic parameters as in Table 3.

Table 3. The Nerlin 6500 Horizontal Plane Representation
and the Corresponding Denavit-Hartenburg Parameters.

o " " 0
i e 4 3; 4 d; g, and range
[+] [+
A 0 0 0 + 147
B 0° -d (=~ 12") 0 90° constant
C 0° L" (» 34.62") 0" 0 to -180°

Using these kinematic parameters, the transformation matrices that
relate each frame with respect to the previous frame can be computed
using the general form of the lilT matrix, given in equation (4.6). It

is required here to determine both the end-points of each link. These
end-points can be determined from the last column, i.e. from the
position vector, of the concatenated transformation matrices. Since the
intersection of the waist and shoulder axes is always at a fixed point,
the graphical origin is located at this point. The process of transform
concatenation can be performed so that the determination of the
end-points is made during the concatenation process.

Using the general form of the transformation matrix developed in
(4.6), we develop the kinematic transform matrices relating each
link- joint system to its previous one. Thus,

[ ¢y -84 0 0]

8 c 0 0

RT =1 ! (6.1)
0 0 1 0
0 0 0 1
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B, | % ¢ O
¢l =
0 0 1
0 0 0
Since
Op _ Op A
pT = 4T . T
ve have,
19 “819
0on _ | 512 12
Bl =
0 0
0 0
I

Further, since

Om _ O B
CT = BT . CT
ve have
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-dcl'

-d81

(6.2)

(6.3)

(6.4)

(6.5)




[ Ci93 8193 0 (dey + Legy) |
8 c 0 (-ds, + Ls,,)
0 0 1 0
0 0 0 1

From the position vector (last column) of equations (6.4) and
(6.6), vwe can extract the graphical co-ordinates of the end-points of
the lines representing the kinematic skeleton of the MNerlin 6500
manipulator arm.

Ve finally need to compute the position of D with respect to the
origin A. From figure 8, we note that {D} is located on the sliding
vector (Y-axis) of {C}, at a distance dg" from {C}. The position of {D}

in each of the X- and Y- coordinate directions is given by

=
1]

x €, + dg - ('8123)
(6.7)

(—
1]

y Cy + d6 . (0123)

The graphical coordinates of each point A, B and C are therefore
determinable from (6.4), (6.6) and (6.7), and are

Ax =0 ; Ay =0

B, = -de, ; B, = -ds,

C, = -de, + Lcyy ; G, = -ds; + Ls, (6.8)
Dy = -dey + Ieyy - dgSypg 5 Dy = -dsy + Lsyp + dgeygg

vhere ’s’ denotes the sine, and ’c’ the cosine, of the sum of the
joint angles in the subscript.

The Vertical Vorkspace of the Merlin 6500 Manipulator

Ve now proceed to develop the vertical plane workspace of the
Nerlin 6500 left arm manipulator.
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Figure 9. The Vertical Plane Representation
of the Merlin 6500 arm

In the vertical plane, the Nerlin 6500 arm can be represented by
its degrees-of-freedom which allow motion only in that plane. These
degrees- of-freedom are the Shoulder Pitch, Elbow Pitch and VWrist Pitch.
Thus, with the base frame origin setup according to the graphical X, Y
and 7 coordinate system, we are able to represent the manipulator arm as
shown in figure 9.

This system possesses the following Denavit- Hartenburg parameters
(summarized in Table 4)
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Table 4. The Merlin 6500 Vertical Plane Representation
and the Corresponding Denavit- Hartenburg Parameters.

i e 4 a; 4 d; §; and range
2 ay = 0° ag = 0" dy = 0" + 236° to -56°
3 ay = 0° ay = 17.38" dg = 0" + 146° to -146°
5 a = 0° ay = 17.24" dg = 0" + 90° to - 90°

Now, using the general form of iilT, given by (4.6), we have

2T = (6.9)
0 0 1 0
0 0 0 1
8 c 0 0
§T = 3 3 (6.10)
0 0 1 0
0 0 0 1
and
- i -
Cg 8g 0 ay
3 8 c 0 0
s = 5 5 (6.11)
0 0 1 0
0 0 0 1
L
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Using the principle of transformation matrix concatemation, we have

2
. 3t (6.12)

[ o3 893 0 25Cq |
8 c 0 a,8
gT _ | B2 23 289 (6.13)
0 0 1 0
0 0 0 1

Ve extract the X- and Y- coordinate positions of {3} from the
position vector of (6.13) to get

Bx = 89 Cg and :
_ 6.14)
By = 29 8y
Further, since we have
or = or. 3 (6.15)
we get
Cogs - Sa3s 0 39Cy + 84Co3
s c 0 808y + 8,8
gT - 235 235 272 4°23 (6.16)
0 0 1 0
0 0 0 1
J

From (6.16), we extract the position of C, given by
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(]
|

x - %€ * 34Co3
(6.17)

3
1

y = 382 * 24593

Since {D} is d¢" away from {5}, along the normal vector (Xg), the

position of D can be computed as

=
)

x = Ox + dgCo3p

y = Cy + d6.8235

=]
|

x = 20 * 34C3 + dgCogy
(6.18)

=
|

y = g5y * 3893 + dgSoqy

Since we now know all the endpoint positions, we can develop the
workspace of the manipulator in two planes (the horizontal and the
vertical), given the range of motion of each joint. A computer
simulation of each of the planar workspaces of the Merlin 6500
manipulator workspace was performed and the results are shown in figures
10 and 11. The source code listings used to generate the vertical and
horizontal plane workspaces (using Fortran and the DISSPLA graphics
package) are given in Appendix V.
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SHOULDER STEP_SIZE = 9.125 DEGREES
ELBOW STEP SIZE = 3.125 DEGREES
WRIST PITCH STEP SIZE = 10.0 DEGREES

BASE LEVEL

MERLIN 6500 VERTICAHL WORKSPALE

Figure 10. Computer Simulation Results of the
Merlin 6500 Vertical Plane Vorkspace.
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VII THE UTAH/MIT DEXTEROUS HAND

Previous work

The kinematics of articulated hands has been examined in detail
previouslylz, while that of the Utah/MIT dexterous hand has been solved
by Narasimhan13. The present work differs from that performed at MIT in
that the frame assignments have been performed with a base frame set up
at the intersection of the 0th joint axis for the middle finger and the
thumb. Further, the origin of the frames for joint 0 of each finger has
been located at the intersection of the axis of joint 0 with the a;

perpendicular to axis 0 and which passes through joint 1. The process
of direct kinematic closed-form equation development for the dexterous
left- and right- hand has also been presented in detail. The current
work has been performed keeping in mind the fact that the Utah/KIT
dexterous hands have to be attached to manipulators for dexterous
tele-operation purposes. Further, the current work proceeds to examine
the differences in the direct kinematics of the left- and right-
dexterous hands and proposes a minimal-change method for solving the
direct kinematics of the right hand, using the closed-form equations of
the left hand. The major advantage of such a method is that the direct
kinematics of one dexterous hand only has to be programmed, since
changes to the values of the appropriate Denavit-Hartenburg parameter
values will allow for switching from the left to the right hand, and
vice-versa.

Direct Kinematics

The generalized process of direct kincmatic closed-form equation
development has been dealt with in Chapters 4 and 5. The frame
assignments for the left-fingered Utah/MIT dexterous hand is as shown in
figures 12 and 13, and follows the basic frame assignment procedure
outlined in Chapter 4.

The direct kinematic analysis of the Utah/MIT dexterous hand
involves the division of the hand into four manipulators, viz. the
thumb, finger 1, finger 2 and finger 3. Finger 1 denotes the finger
situated on the thumb side of the palm, finger 2 the middle finger and
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finger 3 the finger situated on the opposite side of the palm from the
thumb. Since the fingers 1, 2 & 3 are kinematically similar with

respect to the base frame {0}, except for the offset along X , i.e. a,

ve will let a, be a variable depending on the finger we are referring

to. :

Further, since we are dealing with a multiple manipulator system, a
trailing sub-script ’t’ will be used to refer to the thumb while ’f’
(f =1, 2 or 3) will be used to refer to the fingers 1, 2 or 3.

Thumb Kinematics
The direct kinematic closed-form equations for the thumb are now
developed with respect to the common base frame.

Denavit- Hartenburg Parameters for the Thymb

Ve now develop the Denavit-Hartenburg parameters for the thumb,
following the rules developed in Chapter 4. The joint variables for
each joint are the joint angles, 01 (i =1to4). Ve have again adopted

the right- hand rule (counter-clockwise is positive) for determining the
sign of the angles.

Table 5. The Denavit-Hartenburg Parameters for the
Thumb of the Utah/MIT Hand.

a. a. d. Joint . .
. i-1 i-1 i : Kinematic
1 (degrees) | (inches) (inches) Variable Range of 4.
i édegrees)
(degrees) A7, 14, 15)
1 e, =0° | a;=-0.75"| d, = 3.125" 07 -45° to -135°
o -15° to +60°
2 | a; =90° | a,= 0.375" d, = 0" [ 0+
° 6.5° t °
3 | ;=0 |a;=1.7"| dy=0" 65 | 65 to 90
° 00 0
4 | a;=0° |a;=1.3"| d, = 0" ) to + 90
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Thymb Transformation Matrices:

The thumb transformation matrices are developed using the iilT
matrix developed in Chapter 4 and is given by equation (4.6).
8 c 0 0
O, - | 1 1 Since a, = 0° (7.1)
| 0 0 0 1|
. 0 0 -1 0 . .
and d2 = 0"
0 0 0 1|
2 53 ¢ 0 0 .
3% = | o 0 { 0 Since a, = 0° (7.3)
and d3 = o"
| 0 0 0 1]
3 g & 0 0 .
4t = | o 0 { 0 Since ag = 0° (7.4)
and d4 = Q"
0 0 0 1|

Direct Kinematic Equation Development for the Thumb
For the thumb, the direct kinematic closed-form equations can be
developed using

1. 2. 3
4T = 1T¢ « 9Ty - 3Ty - 4T (7.5)

Now

1n 2
4%y = 1Ty - 9Ty - 4Ty

1]
(=]
-3

(7.6)
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vhere

2% _ 2
4Ty = 3% - 4Ty (7.7)

From (7.7), we have
[(cgq 833 0 a5+ a5y ]
2, | %4 3 O 8383
4t 0 0 1 0
| 0 0 0 1 )
Further, from (7.6),
0n _ 0 1
O, = O, . 4, (7.8)
where
1. 1o 2
PR M (1.9)
From (7.9), ve have:
[ Co34 8034 0 aj+asCotagls |
iy 0 0 -1 0 .10
N 7.10
4t 7 ) 8934 €234 0 Ag8y*agiys
0 0 0 1 ]
From (7.8) we have
CiCozq ~CiBpgq 8y  8p*C;(2;+39Co+a3Css)
op _ | "84 “S1%23¢ "G S1(8113p0pr350y (7.11)
4t | 8934 €934 0 ag8y+agsys+d;
| o0 o0 0 1
7




The above matrix represents the position of the origin of {4} with
respect to the base frame {0} and the orientation of the last link with
respect to the base frame {0}.

Position of Points on the Lagt Link
The position of any point on the last link of the thumb which is
"L" inches from the novigin of frame {4}, is given by

’

P, =P +n .L where p = 2Tt(1,4) and n_ = th(l,l)

P; = Py +hy L  where Py = th(2,4), and ny = th(2,1) (7.12)
i 0 0

P,=P, +mn, . L where p, =,T.(3,4),and n = 4T (3,1)

Finger Kinematics
The direct kinematics for the fingers are now developed with
respect to the common base frame.

Denavit-Hartenburg Parameters for the Fingers

Ve now proceed to develop the Denavit- Hartenburg parameters for the
fingers of the Utah/MIT dexterous hand. Ve develop these parameters
using the convention outlined in Chapter 4. Ve have also adopted the
right-hand rule (counter-clockwise positive) for determining the sign of
angles.

Here, a, depends on the finger we are referring to. Thus,
a, =-1.375" for finger 1, a, = 0" for finger 2 and a, = 1.1875" for

finger 3 for the left hand.

It must be mentioned here that the frame assignments are similar
for all the fingers, and so the kinematic parameters for the different
fingers vary in one regard only, viz. a_ - the offset along the palmar

surface.
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Table 6. The Denavit- Hartenburg Parameters for the
Fingers of the Utah/MIT Hand.

Q. a.: d. Joint . .
. i-1 i-1 i . Kinematic
1 (degrees) (inches) (inches) Variable Range of 0,
i Edegrees)
(degrees) 7, 14, 15
-1.375" o
4.25 +65° to
1 |ag= -¢°= -12°) a;= 0" dy= Tosg * by +115°
1.1875" | 1 200s30°
+120°
2 a, = 90° a;= -0.6" | dy = 0" N to +191°
3 | a,=0° =1.7" | dy = O" 9 +3.5° |
2 = 3 = L. 3 = 3 to +90
0° to
4 aa = 00 33 = 1-3" d4 = 0“ 04 +90°

Finger Transformation Matrices:

The finger transformation matrices are obtained using the general
form of the I;IT matrix developed in Chapter 4 and given by (4.6).

¢4 -84 0 aofw
0 €484 Cycq 8 8,4dy )
O - _g ! _s¢c c¢ c¢d Since a, = -4 ( = -12°) (7.13)
1 1 ¢ ¢1 a_ =a
o %
0 0 0 1] =1, 203
02 ‘sz 0 alw
1 0 0 - 0 . °
oTf = s, cy 0 0 Since a; = 90 (7.14)
and d2 =0
0 0 0 1]
¢g  s3 0 ay]
9 S3 Cq 0 _ )
=1 o 0 ) 0 Since ay = 0 (7.15)
and d3 =0
0 0 0 1]
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3 84 ¢ 0 0 . ,
= o 0 1 0 Since a4 = 0° (7.16)
and d4 = o
0 0 0 1]
Direct Kinematic Equation D ment for the Fingers

The closed-form direct kinematic equations for the fingers can be
developed using

Op _ 0 1 2 3

als = 1T¢ « 9T - 3T¢ . alg (7.17)

Using the process of transformation matrix concatenation, we have

Om _ O 1 2
vhere
20 _ 2 3

From (7.19), ve solve for ZTf as

€34  ~S34 0 agrageq |
2. _ | %3¢  ©34 0 a8y
Aty =

0 0 1 0

0 0 0 1

From (7.18), we can write

0 _ 0 1

4Tf = le . 4Tf (7.20)
where

1 1 2

4Tf = 2Tf 4Tf (7.21)
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[ Co3q 834
L 0 0
4'f Sy34  C234

0 0

Ve therefore compute in using (7.21), to get

Again, from (7.20), wve get

C1C234 “Cy8934
C451234 "Cg518234
*845934 *84%234
Te = |.s.s.c §,5,8
¢51%234 4515234
*C45234 *C4C234
0 0

0 a +8,CH+asCHa ]
-1 0 (1.22)
.22
0 3989+a4894
0 1
81 aof"°1("‘1*a2°2*"‘3°23) 7
-C4Cy s¢d1+c¢81(a1+a2c2+a3c23)
+s¢(3282+a3323)
84C4 c¢d1-s¢sl(a1+a2c2+a3c23)
0 1
(7.23)

The above matrix represents the position of the origin of {4} and
the orientation of the las* link of the fingers with respect to the base

frame {0}.

Positions of Points on the Last Link
The position p’ of any point on the last link of the fingers which
is ’L’ inches from the origin of frame {4} is given by

y _ -
Py = Py * Dy L  where Py =

) = + . L here =
Py = Pyt Ty waere by
p; =p, + 1, . L where P, =

0
4Tf(1,4) and n,
0
4Tg(2,4) and o
ng(3,4) and n

0

Or¢(1,1)

0

a1 (2,1)
0

(7.24)

Equations (7.11), (7.12), (7.23) and (7.24) represent the direct
kinematics of the Utah/NIT dexterous left hand.
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The Dir Kinemati h h/MIT Right Han

For the right Utah/MIT dexterous hand, the direct kinematics can be
developed in one of two possible ways, viz. by going through the
procedure outlined above, with new frame assignments for the right hand,
or by using the frames assigned previously and the equations developed
above and adjusting the numeric values of the Denavit-Hartenburg
parameters to correspond to a right hand.

Ve have adopted the latter procedure, and have developed and
simulated the direct kinematics of the right hand by changing the sign
of the a, parameter for the thumb and fingers. Thus, for the thumb,

ag = +0.75" (7.25)

while for the fingers, the value of a, is given by

1.375" for finger 1
3, = 0" for finger 2 (7.26)
f -1.1875" for finger 3

The above adjusted values of the parameters can be used with the
direct kinematic equations given by (7.23) to obtain the direct
kinematics of the right Utah/MIT dexterous hand.
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VIII THE SINULATION PROGRAN

Intr ion

The objective of this computer graphical simulation is to model the
kinematic behavior of the Merlin 6500 robot arm and the Utah/MIT
dexterous hand, when joined together in user-defined combinations. The
aim is to allow a user to simulate and study differemt kinematic joint
arrangements between the Merlin robot and the Utah hand and move the
combined systems together in three dimensional space. This should
provide the user with the capability of investigating various strategies
for physically attaching the Utah/MIT hand to the end of the arm, in
terms of the ranges of motion and also the total workspace of the
combined system.

Robot Simulation

The simulation adopts the methodology of depicting links by
six-sided figures, thus closely approximating the actual system. Each
of the links consist of a system, and are connected at the ends to other
links (or systems) by joints. All of the joints of the Utah/MIT
dexterous hand (sixteen) and the Merlin manipulator (six) are revolute
in nature.

The Link Dimensioning Approach

The method used to graphically depict a robot involves breaking the
subject robot into sub-units (links) and modeling these sub-units using
a six-sided (cubic) figure by wusing the geometrical spatial
relationships of each link’s corners.

It is assumed that each link can be represented by a six sided box.
The box is dimensioned to be able to closely contain the dimensions of
the real link being represented. It thus takes eight points to describe
a link. Picture-perfect accuracy is sacrificed with this method, but
accurate link orientations can be achieved. The points are measured
vectorially with respect to a local origin which is the point of
rotation or translation for that particular link of the manipulator.
Each link of a robot is related to other links by means of translation
and rotation vectors which are defined with respect to the local origin
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of the link. The point, translation and rotation vectors can be be
stored in a data file that holds all the information necessary to model
a manipulator.

Data Files
The eight point vectors defining a link are stored in a specific

manner. The first row of eight numbers defines the X-coordinates of the
eight points of the link. The second row defines the Y-coordinates,
while the third row defines the Z-coordinates. Thus a 3 x 8 matrix is
needed to represent each link. For example, a link may be defined as in
Table 7.

Table 7. Link Definition in Data Files

Corner number |— 1 2 3 4 5 6 7 8

Axes |
X- coordinates 8 8 8 8 0 0 0 0
Y- coordinates 2 2 -2 -2 2 2 -2 -2
Z- coordinates 2 -2 2 -2 2 -2 2 -2

Rotation and translation vectors are also stored in a specific
manner. The first row is the X, Y and Z coordinates of the translation
vector while the second row is the rotation vector, consisting of
rotation angles about the X, Y and Z axes. An example of the rotation
and translation vectors, as stored in the data file, is given in
Table 8.

Once the dimensions for each link of a system is stored in a data
file in a form that can be read into the program, the system is defined
for the purposes of modeling. Point vectors are stored in order of link
sequence as one group, while translation and rotation vectors are stored
in order of link sequence as another group. In the main program, arrays
are dimensioned to store the dimensional values of a link. A data point
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Table 8. Rotation and Translation Vectors Stored in Data Files

Coordinate X Y z
1" L] 1"t
Translation vector 30 0 5
Rotation angles 90° 0° 0°

array (an example is POINTS) is dimensioned as POINTS(8,3,I,J), where 8
denotes the number of points in each link, 3 the number of coordinate
dimensions, I the number of links in the system and J the number of
systems. The translational/ rotational array (an example is GO) could
be dimensioned as G0(3,I,J,K), where 3 denotes the number of dimensions,
I =1 the translational vector and I = 2 the rotational vector, J the
number of links and K the number of systems.

Link Dimensioning

The robot model is made up of a series of links, for example the
base link, stand, waist, upper arm and lower arm. The origin of each
link is the point of rotation of the joint. The dimensional
relationship between each link must be defined. The notation necessary
to relate one link to the previous link is a translation vector and a
rotation vector. The link translation vector originates at the previous
link in the open kinematic chain and ends at the origin of the current
link. It is defined with respect to the previous link’s coordinate
system. The rotation vector relates the orientation of the current
coordinate system to the previous coordinate system.

Rotational transformation must occur in a fixed order, viz.
rotation about the X-axis first, followed by rotation about the Y-axis
and finally, if necessary, about the Z-axis. (The Z-rotation component
is currently left as zero, thereby saving that component for use as a
dynamic rotation in the program). For a link with a coordinate system
translated 30 units in the X-direction and offset 5 units in the
Z-direction, with a 90 degree rotation about the X-axis, the vectors
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would be represented in a data file as in table 9.

Table 9. Link Translations and Rotation Angles.
Coordinate X Y //
Translation 30" 0" 5"
Rotation angles 90° 0° 0°

The first row defines the translational vector components in the X,
Y and Z coordinate directions and the second row defines the rotation
angles about the X, Y and Z axes. These values are used to fill the
transformation matrix for a specific link.

Coordinate System Transformation

The orientation of each link is defined with respect to the
previous link using rotation and translation vectors. The values of the
vectors are measured with respect to the previous coordinate system.
The vectors are loaded into a transformation matrix by using input data
from the matrix [G0] to form the transformation matrix [TR]. The

following equations are used to determine each component of the matrix
[TR]

60(1,1,L,S) = Translation in the X direction

(L is the link number and S is the system number)
60(2,1,L,S) = Translation in the Y direction
60(3,1,L,S) = Translation in the Z direction
G0(1,2,L,S) = Rotation about the X axis

(Counterclockwise is deemed positive),
60(2,2,L,S) = Rotation about the Y axis
60(3,2,L,S) = Rotation about the Z axis

The transformation

TR(1,1,L,5)
TR(1,2,L,S)

matrix, TR, is formed using :

C0S(60(3,2,L,S)) * C0S(60(2,2,L,S))
-SIN(G0(3,2,L,5)) * C0S(G0(2,2,L,S))
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TR(1,3,L,8) = SIN(G0(2,2,L,S))

T™(1,4,L,S) = 60(1,1,L,S)

TR(2,1,L,5) = C0S(60(3,2,L,5)) * SIN(60(2,2,L,5)) *
SIN(60(1,2,L,5)) + SIN(60(3,2,L,S)) * C0S(60(1,2,L,5))

TR(2,2,L,5) = -SIN(GO(3,2,L,S)) * SIN(60(2,2,L,S)) *
SIN(60(1,2,L,5)) + C0S(60(3,2,L,5)) * C0S(60(1,2,L,S))

TR(2,3,L,5) = -C0S(60(2,2,L,5)) * SIN(60(1,2,L,S))

™(2,4,L,5) = 60(2,1,L,S)

TR(3,1,L,5) = -C0S(60(3,2,L,5)) * SIN(60(2,2,L,S)) *
C0S(€0(1,2,L,5)) + SIN(60(3,2,L,S)) * SIN(GO(1,2,L,S))

TR(3,2,L,S) = SIN(G0(3,2,L,5)) * SIN(G0(2,2,L,5)) *
C0S(G0(1,2,L,S)) + C0S(60(3,2,L,5)) * SIN(GO(1,2,L,S))

TR(3,3,L,5) = C0S(G0(1,2,L,5)) * €0S(60(2,2,L,S))

R(3,4,L,S) = 60(3,1,L,5)

TR(4,1,L,5) = 0

TR(4,2,L,5) = 0
TR(4,3,L,8) = 0
TR(4,4,L,8) = 1

The notation used for transformation from {B} to {A} is BTA (B
transformed to A). To describe points in {C} with respect to {A}, the
transformation matrix BTA must be premultiplied by the transformation
matrix CTB. This operation is performed in each link so that points in
each link can be defined in the base or global coordinate system. Ve
need to know the definition of the coordinates of a point defined in {C}
in the coordinate system of {A}. To find this, it is necessary to
multiply the transformation matrix CTa by the vector defining the point
in {C}.

To get the vector coordinates of a point in a link in the global
system, the (4X4) transformation matrix is multiplied by a (4X1) vector
composed of the three coordinates of the point and a 1 in the fourth
rov. The result of the product is the definition of the vector in the
global system. This operation has to be performed for all links in all
systems.

Once the dimensions of each point of each link are known in the
global system, the three dimensional points must be transformed into two
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dimensional screen drawing points.

A perspective view is desired, where objects appear to be shrinking
with increasing distance. This requires choosing a focal point, defined
in global X and Y coordinates, and a viewing point (or VPOINT - =2
distance along the global Z axis).

A drawn view really has tunnel vision, it can only ’see’ objects
that are within a 20 degree cone directly in front of the viewer.
Imagine two lines, one drawn from the viewpoint to the global origin and
the other drawn from the viewpoint to a point defining a link. If this
angle between these two lines is zero, the point will be assigned 2-D
coordinates of (0,0). If the angle is equal to 20 degrees, the 2-D
coordinates will be assigned coordinates corresponding to the edge of
the screen. If the angle lies between 0 and 20 degrees, the assigned
2-D coordinates will be assigned proportional to the angle. If the
angle is greater than 20 degrees, then the point will not be shown in
the view.

Once the 2-D coordinates of all points are known, a graphics
package can be employed to connect lines between the appropriate points
so that the cubes defining the links can be drawn. The robot thus
consists of a series of links assembled together at the joints.

The Graphics Software Menus

The graphics package operates using a VI 240 or a Tektronix 4010
screen. It is organized to be user-friendly, and thus incorporates a
main menu and sub-menus. The organization of the menus and sub-menus
follows a logical pattern determined by user operations. The program
begins with a main menu and two sub-menus. The main menu is the entry
point for both the sub-menus as well as the program exit point. One of
the options in the main menu also allows the user to see the system, as
currently defined, on the screen.

Major sub-menus consist of the setup and operations menus. The
set-up sub-menu allows the user to perform the tasks of defining the
system in terms of the viewpoint, the focal point and the factor of
magnification for subsequent views, which of the possible systems (the
room, left/right arm Merlin, left/right Utah/MIT dexterous hand) are to
be drawn, the relative position of the Utah/MIT hands with respect to
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the end of the Merlin arms, the positioning of the robots in the room,
draving the systems as curre.:ly defined, which of the two possible
remote slave systems is to be currently active (only one slave system is
active at any one time) and finally, returning to the main menu.

The Execution sub-meau allows a user to move the individual joints
of the selected systems, viz. the Merlin and the Utah/NIT hand, to save
a view and to recall a saved view, to move the Merlin from its current
position to another point, defined by its position and orientation, to
move all joints of the robot, in user-defined steps, and to return to
the main menu.

Each item in each of the menus is discussed in more detail below.

he Main Men

The user chooses one of the following options from the main menu

Go to the setup menu.

Go to the execution menu.

Draw the system, as currently defined.
Exit from the program.

The Setup Menu
The set-up menu consiscs of the following options, each of which is
explained below :

VIEVPOINT

The position in global coordinates the the robot is to be viewed
from is chosen by this operation. The global origin is located at the
lower, far left corner of the room. On the screen, ’X’ is positive
tovards the right, 'Y’ is positive towards the top and ’Z’ is positive
coming out of the screen.

FOCUS AND NAGNIFICATION

The focal point is defined in screen coordinates as (0,0) and is in
the center of the screen. The focal point is not in global coordinates,
which factor may cause confusion when the viewpoint is changed and the
focal point is not (0,0). Each view, no matter vhat the viewpoint, has
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a unique screen focal point, i.e. (0,0). Any new focal point for a
specific view is measured with respect to the focal point at (0,0).

The user may define the magnification for a specific view.
Increasing the magnification will make the objects being viewed appear
larger. A point in the center of the screen will remain in the center
of the screen.

SYSTEMS DRAVING
The following are defined as systems:
The Room in which the slave systems are placed,
A Left-Arm Merlin Robot,
A Left Utah/MIT dexterous hand,
A Right-Arm Merlin Robot,
A Right Utah/MIT dexterous hand.

Prior to any specific view, the user may choose to enable or
disable the drawing of any of the above systems. After selecting this
option, a menu is displayed, prompting the user to choose one of the
available options related to drawing (or not drawing) a system.

FIXED HAND POSITIONING

The fixed position of the Utah/MIT hand relative to the Merlin
wrist may be changed by the user. The base coordinate system of the
hand is related to the wrist coordinate system by a translation vector
and a 90 degree rotation about the ’X’ axis of the wrist coordinate
system. The hand can be positioned with respect to the robots hand roll
system by a translation vector and a rotation vector. After selecting
this option, the user is prompted to define these vectors.

REPOSITION ROBOT

The robot may be positioned anywhere in the room. The origin of the
room coordinate system is the far left, bottom corner of the room as
seen in the initial view. The position of the robot is defined by a
vector from the origin of the room to the center of the base of the
robot. The program prompts the user for input necessary in redefining
this vector.
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CEANGE ACTIVE ROBOT

Robot positioning and reconfiguring is performed working from the
menus during the operation of the program. It is possible for two
robots to be viewed at the same time. However, only one robot is deemed
active at any one time. This opticn allows the user to choose which
robot is the one to be acted upon at any one time. This allows for
multiple arms to be used in simulations.

RETURN T0 NAIN MERU
Choosing this option returns the user to the main menu.

DRAV ROBOT

This option provides a view of the systems, as currently
configured.

The Execution Meny
The execution menu possesses several options, each of which are
discussed below :

NOVE ROBOT JOINT ANGLES

Each of the joint angles of the Merlin robot can be moved
individually. Unce this option is chosen, another menu will be
displayed prc->ting the user to choose the link to be repositioned.
Once a link is chosen, the user is informed of the current angle and is
prompted for the desired joint angle in degrees. After input, the link
menu is displayed again until the user requests an exit from that menu.

NOVE INDIVIDUAL FINGER JOINTS

Each of the Utah/MIT hand’s joint angles can be moved individually.
Once this option is chosen, another menu is displayed prompting the user
to choose the finger to be repositioned. Once a finger is chosen, a
third menu is displayed prompting the user to choose the joint to be
repositioned. Next the user is informed of the current specified joint
angle and is prompted for the desired joint angle in degrees. After
input, the joint menu is displayed again until the user requests to exit
that menu, following which the finger-choosing menu is displayed until
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an exit is requested.

SAVE THIS VIEV

If a user wishes to leave his work and resume later at the ending
point of the last session, this option will store the current parameters
that define the configuration of the present view. These parameters are
written to a file named >SAVE.DAT’. Only one view can be stored during
the course of a program run. A second save will write over the first
save. After leaving the program, the save file could be renamed to
avoid being written over by a future run. If this renamed file is to be
used in a program, it will need to be copied to ’SAVE.DAT’ prior to
running the program.

DRAV ROBOT FRON SAVED DATA FILE

The user may resume work from a previocusly saved parameter file.
After selecting this option, the next view drawn will be defined by
parameters read from a file named ’SAVE.DAT’.

NOVE ROBOT TIP POINT T0 POINT

This option uses the inverse kinematics of the Merlin robot arm to
move the tip of the Merlin arm from the current position to the user
defined position. The goal (or desired) position is chosen by
specifying the desired position and orientation of the tip of the Merlin
manipulator, relative to the global frame of the Merlin (defined in
Chapter 5). The user also has to select the desired joint angles from
the computed set of valid angles that are determined by the inverse
kinematic computation. The file INKIN.FOR has to be compiled and linked
to the simulation program for this option to be active.

NOVE ALL JOINTS OF THE ROBOT, IN STEPS

The user will be prompted to enter a complete set of six joint
angles and the number of steps. The user also chooses to either erase
between views, or to draw each view on the same screen.

Figure 14 shows a succession of positions, detailing the robot’s
movements from the current position to the position defined by the set
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of angles that were entered by the user. The number of views is
determined by the number of steps. Intermediate angles are computed by
interpolation of the initial and final angles.
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Figure 14. The Computer Graphical Program
- Simulation Results.
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IX CONCLUSIONS

Th 1

This study has presented the methodology and mathematics of
kinematic anmalysis in chapters I, II, III and IV, follcwed by the
derivation of the direct and inverse kinematic closed-form equations for
the Merlin 6500 left- and right- shouldered manipulator in chapter V. A
graphical simulation proceedure and results of the planar workspace for
the Merlin 6500 left-shouldered robot arm is detailed in chapter VI.
The study then proceeds to examine the development of the direct
kinematic closed-form equations for the Utah/MIT dexterous hand in
chapter VII. This is followed by a discussion of the computer graphical
simulation for the Merlin and Utah/MIT dexterous hand, when combined in
user defined configurations, detailed in chapter VIII.

Further VWork

The current study has examined only the direct kinematics of the
Utah/MIT dexterous hand. As the slave system is driven from a remote
location by a human arm encased in an exo-skeleton, and since it is
necessary for the slave system to grasp objects at the same position and
with the same orientation as the driving master system, it becomes
necessary to perform kinematic transformations between the master and
the slave systems. These transformations will typically involve the
direct kinematics of the human hand, whose output data can be utilized
as an input to the inverse kinematics of the Utah/MIT hand, thus
allowing for objects to be grasped by the slave system in a similar
fashion to the master system. Thus, a study of the kinematic mapping
between the human hand and the Utah/MIT hand must be made, so that when
the activating system (the human arm) grasps an object, the remote
system follows it in action. Lastly, there is a need to study the
mechanism of object grasping by the human hand as well as by the
Utah/MIT hand, for different object geometries. This will permit the
Utah/MIT hand to grasp and manipulate the remote object in as dexterous
a fashion as the human arm.

The current study notes the existence of the remotizer of the
Utah/MIT dexterous hand and the constraint it poses for the operation of
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the remote system. A further study must also deal with the effect of
the remotizer on the use of the Utah/MIT hand as an end-effector for the
slave system. This would typically involve studying the effect of the
remotizer on the workspace of the remote slave system, such that the

workspace would be a maximum without undue effect on the remotizer
links.

90




APPENDICES

91




APPENDIX 1
DEFINITIONS

In any scientific study, it is necessary to make clear the meaning
of certain technical words that are being used, so as to avoid confusion
in their use by different users with varying backgrounds. As such,

certain key words used in this study are explained below :-

A1.1 Kinematics Kinematics is the science of motion which treats
motion without regard to the forces that cause it. Within the science
of kinematics, one may study the geometrical properties of motion or the
time derivatives of position. Ve limit the present study to the

geometrical properties of motion.

A1.2 Manipulator (or Robot) 4 manipulator is kinematically defined to
be a set of nearly rigid links connected together in a chain by joints
which allow relative motion of the neighbouring links. In the case of
rotary or revolute joints, the displacements are joint angles, while in

the case of sliding or prismatic joints, these displacements are joint

offsets.
A1.3 Degrees of freedom The degrees of freedom present at any

joint of a mechanism are computable as the number of independent
position variables that need to be specified to locate specific parts of
the mechanism. In the case of typical industrial manipulators, since

such a manipulator is wusually an open kinematic chain, and
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because each joint position is usually defined with a single variable,
the number of joints equals the number of degrees of freedom. Each

joint may, however, possess one or more degrees of freedom.

A1.4 Frame A frame is defined to be a co-ordinate system attached to
a joint of a manipulator. The end-frame is generally attached to the
tip of the manipulator or to the last joint of the open kinematic chain,
while the base frame is generally attached to a non-moving component of
the manipulator. In this report, a frame is always referenced by the

character inside {}.

A1.5 Cartesian space is defined as the space in which the position
of a point is given by three position data values along the three
orthogonal axes, X, Y and Z, while the orientation of a body is given by

three orientation data value sets.
A1.6 Joint Space is defined as the space in which the position of a
point, and the orientation of a link, are defined in terms of the joint

variable (or degrees of freedom).

A1.7 Forvard Kinematics The forward (or direct) kinematic problem is

defined to be the computation of the position and orientation of the
end-effector frame relative to the base frame. This problem can also be
thought of as changing the representation of manipulator position and
orientation from a joint space description into a Cartesian space

description.
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A1.8 Inverse Kinematics The inverse kinematics problem is defined to
be the computation of the joint variables when the position and
orientation of the end-effector frame is known with respect to the base
frame. This problem can also be thought of as changing the
representation of manipulator position and orientation from a Cartesian

space description to a joint space description.

A1.9 VYorkspace The work-space of a manipulator is defined as the
set of positions which the end-effector can achieve when the joints

degrees of freedom vary over the full range of possible values.

A1.10 Reachable work-space The reachable work-space of a manipulator
is defined as that volume of space which the robot end-effector can

reach in at least one orientation.

A1.11 Dextrous work-space The dexterous work-space of a manipulator
is defined as the volume of space which the robot end-effector can reach
with all possible orientations. The dexterous work-space of a
manipulator is always a sub-set of the reachable work-space of that

manipulator.
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APPENDIX 2
ROTATION AND TRANSLATION MATRICES

In chapter IV, we derived the general form of the transformation
I;IT by using equation (4.1) to (4.5). Equation (4.4) involved
rotations and translations about the Xi and Zi axes. These rotation and

translation matrices are shown below, in general terms.

Let us first examine a rotation of a° about the X axis. The

transformation matrix is given by

! 0 0 ]
Rot(X, a) = 0 Cos @ -Sin a
0 Sin a Cos a

A translation along the X axis by a distance of ’a’ is given by

[0 0 a
Trans(X, a) = 0 0 0
L0 0 0 |

A rotation about the Z axis by an angle #° is given by

Cos § -Sin 4 0

Rot(Z, ) = Sin 8  Cos # 0




A translation along the Z axis for a distance ’d’ is given by

0 0 0 ]
Trans(Z, d) = 0 0 0
0 0 d |

Therefore, in equation (4.5), if we substitute the appropriate form
of the rotations and translations, viz. a rotation about the Xi axis by
a, , degrees and a translation along the X. axis by a, (i.e. a
Screw{X,, a;, 4, a; }), and a rotation about Z, by /4, degrees and a
translation along the Z. axis by a distance d; (i.e. a Screw{Z,, 4.,
d;}), and multiply out equation (4.5), we get equation (4.6), as follows

A T i -
1 0 0 35 1 cd, 80, 0 0
i
0 se; , ca; 0 0 0 1 d
| 0 0 0 1] 0 0 0 1]
i.e.
r _ 1
cd; 80, 0 25 4
1 s, ca; 4 ch, ca,_ 4 -sa; 4 -sa; 4 d.
T =
i
sf, sa; 4 cl, sa._4 ca;_4 ca; 4 d;
0 0 0 1 )
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APPENDIX 3

DIRECT KINEMATICS SIMULATION FOR THE MERLIN 6500 - LEFT ARN

ccceceeccecceeeecceeccccccccececceecccceccccccccececceececeecececceccccecece
C MERLIN ROBOT LEFT ARM KINEMATICS SINULATION PROGRAN
¢cccceccccceceecceceecccccccceccececececccccceeccccccceceecccecceececccececc
C NAIN PROGRAN

C DEFINE REAL & INTEGER VARIABLES

INTEGER INTRO
REAL T(4,4),V,S,E,VR,VP,HR

C DESCRIBE THE PROGRAM

10

PRINT *,’ THIS PROGRAM PERFORMS A MATHEMATICAL SIMULATION OF’
PRINT *,”> THE KINEMATICS OF THE MERLIN 6500 LEFT ARM ROBOT.’

PRINT *,° °

PRINT *,° DO YOU NEED AN INTRODUCTION TO THE PROGRAN ? °
PRINT *,” YES ----> 1.’

PRINT *,> N0 ----> 2.°

INTRO = 2

EEAD§5,*) INTRO

IF(INTRO .EQ. 1) THEN

CALL INTROD

ELSE IFSINTno .EQ. 2) THEN

GOTO 11
ELSE
PRINT *,’ ENTRY ERROR’
GOTO 10
ENDIF

C FInp THE USER- DEFINED ANGLES

11

CALL ANGLES(V,S,E,VR,VP,HR)
PRINT *,* °

CALL DIRKIN(V,S,E,VR,VP HR,T)
CALL TOUT(T)

5TOP

END

¢cececccceceetecccceeececceccecceccccceeceeccccccececcccccececeeccccccce
C INTRODUCTION TO THE PROGRAMME

SUBROUTINE INTROD
PRINT *,” THE PROGRaN REQUZSTS THE USER TC ENTER THE JOINT’
PRINT *,° ANGLES FOR EACH OF THE FOLLOVING JOINTS :--°

g&igT *,0 JOINT RANGE °

T*> — s

PRINT *,” VAIST JOINT RANGE + 147 TO - 147 DEGREES )’
PRINT *,’> SHOULDER JOINT ( RANGE + 56 TO - 236 DEGREES )’
PRINT *,° ELBOV JOINT RANGE + 56 TO - 236 DEGREES )’
PRINT *,” WRIST ROLL RANGE + 360 TO - 360 DEGREES )’
PRINT *,° WRIST PITCH RANGE + 90 TO - 90 DEGREES )’
Eg%gg *,” T00L ROLL RANGE + 360 TO - 360 DEGREES )’
PRINT *,’ THE PROGRAM RETURNS THE FINAL TRANSFORMATION’
PRINT *,° MATRIX i.e. THE POSITION & ORIENTATION MATRIX’
Egigg *,’ DEFINED AT THE VRIST PIN QR TIP OF THE AR.’
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RL LURN
D
CC”.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
C ENTRY OF JOINT ANGLES BY THE USER
SUBROUTINE ANGLES(V,S,E,VR,VP,HR
REAL V1,S1,E1,VR1,VP1,HR1,V,S.E,VR,VP,HR,PI
C DEFINE PI
PI = 3.141592654
C VAIST
101 V = 0.0
Vi = 0.0
PRINT * > ENTER VAIST ANGLE ( +/- 147 DEGREES ) =-> °
READ(5,%) Vi
IF §ABS( 1% .GT. 147.0) THEN
PRINT *,° ERROR -- RANGE IS +/- 147 DEGREES. °’
GOTO 101
ENDIF
V=Vl *PI/ 180.0
C SHOULDER
102 S = 0.0
S1 = 0.0
PRINT *,> ENTER SHOULDER ANGLE ( 56 TO - 236 DEGREES ) ==> °
READ(5,%) S1
IF ((S1 .GT. 56.0) .OR. é31 .LT. -236.0)) THEN
PRINT *,° ERROR -- RANGE IS 56 TO - 235 DEGREES. °’
GOTO 102
ENDIF
S =S1*PI / 180.0
C ELBOV
103 E = 0.0
E1l = 0.0
PRINT * > ENTER ELBOV ANGLE ( 56 to -236 DEGREES ) ==> ’

READ(5,%) E1

IF ((E1 .GT. 56.0) .OR. éEl .LT. -236.0))THEN
PRINT *,° ERROR -- RANGE IS 56 TO - 236 DEGREES. °
GOTO 103

ENDIF

E=El*PI/ 180.0
C WVRIST ROLL
104 WR = 0.0
VR1 = 0.0
PRINT * ° ENTER VRIST ROLL ( +/- 360 DEGREES ) -=> ’
READ(5,%) WR1
IF (ABS(VR1) .GT. 360.0) THEN
PRINT *,> ERROR -- RANGE IS +/- 360 DEGREES. °’
GOTO 104
ENDIF
VR - WR1 * PI / 180.0
C WVRIST PITCH
105 WP = 0.0
VP1 = 0.0
PRINT * > ENTER VRIST PITCH ( +/- 90 DEGREES) ==> °
READ(5,%) WP1
IF (ABS(WP1) .GT. 90.0) THEN
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PRINT *,’ ERROR -- RANGE IS +/- 90 DEGREES. ’
GOTO 105
ENDIF
WP = ¥P1 * PI / 180.0
C HAND ROLL
106 HR = 0.0
HR1 = O.
PRINT *; E
READ(5,*) HRI1
IF(ABS HR12 .GT. 360.0) THEN
PRINT *,> ERROR -- RANGE IS +/- 360 DEGREES. °’
GOTO 106
ENDIF
BER - HRt * PI / 18C.0
RETURn
END
¢ceeceeeeceeeeecceececencececceececcecceceececceccecccecceccceccccecccce
C KINEMATICS IMPLEMENTATION
SUBROUTINE DIRKIN(V,S,E,WR,WP,HR,T)
INTEGER I,J,TIP
REAL T(4,4),C1,C2,C3,C4,C5,C6,51,52,53,54,55,56,023,523,D2,D3,
$R11A,R11B,R12A,R12B,R13A,R13B,k14A,R14B,V,S,E,VR,WP,HR,D6
C INITIALIZE MATRIX

0
> ENTER HAND ROLL ( +/- 360 DEGREES ) ==> ’
)

DO 301 I = 1,4
DO 301 J = 1,4
T&I,J) = 0.0
301 CONTINUE
T(4,46 = 1.0
C DEFINE COSINES AND SINES
C1 = COS(VW
€2 = C0S(S
€3 = COS{E
C4 = CO0S va;
C5 - COS(VP
C6 = COS(HR)
$1 = SIN(V'
$2 = SIN(S
S3 = SIN(E
S4 = SIN(WR
S5 = SIN(VWP
S6 - SIN(HR
€23 = C0S(S + E
S23 = SIN(S + £
C DEFINS D2, D3 & D6{ APPROXIMATELY ) FOR THE LEFT ARM.
C D2 IS THE SIGNED DISTANCE FROM THE GLOBAL X AXIS TO THE SHOULDER
C CENTRAL AXIS ( ALIGNED ALONG THE UPPER ARM ). D3 IS THE SIGNED
C DISTANCE FROM THE SHOULDER CENTRAL AXIS TG THE ELBOV CENTRAL
C AXIS, ALIGNED VITH THE CENTER OF THE LOWER ARM. THESE VALUES
C (D2 & D3) CHANGE SIGN FOR THE RIGET ARM. D6 IS THE SIGNED
C DISTANCE FRON TRE WRIST PIN T0 THE TIP OF THE ROBOT ARM.
C ( REPER TO ARM KINEMATICS FOR HORE DETAILS. )
D2 = 19.00
D3 - -7.00
D6 = 3.5
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C DEFINE TRANSFORM MATRIX ENTRIES
R11A = (C23 * é(C4 * cs * cs) (S4 * S6))- (523 * S5 * C6))

R11B = (S4 * (5 * C6) + (C4 * S6
T(1,1) = (C1 * R11h) + (S1 * R11B)
T(2,1) = (51 * JH1h) - (C1 * R11B
T(3,1) = -523 * 504 * 05 * C6)- g 4 * $6))- gczs * S5 * C6)
R124 = - €23 * ((C4 * C5 * se% 4 * (6))+(523 * S5 * S6)
R12B = ((S4 * C3 * $6)- (C4 * C6))
T(1,2) = (C1 * R124)-(S1 * n123
1(2,2) = (S1 7 Ri2k)+(Ct 7 Ri2
T(3.,2) = $23 * ((ce +'05 * 56)+(S4 * C6))+(C23 * 55 * $6)
R13A = (C23 * C4 * S5)+(S23 * C5)
R13B = (S4 * S5)
T(1,3) = (-Ct ) R134)- (S1 * R13B
T(2,3) = (-S1 * R134)+(C1 * R13B
1(3.3) = (523 * C4 *'85)- (C23 * C5)
R14A = (-17.24 * 523)+(17.38 * C°)
R14B = (D2 + D3a
T(1,4) = (C1 * R144)- (S1 * R14B
T(2,4) = (S1 * R14A)+(C1 * R14B
T(3,4) = (-17.24 * czsa 317 .38
c DEC%DE O% DAA 10 5E REFORTED T TIP Of VRIST PIN
IP = 0

PRINT *,’ DO YOU VANT POSITION TO BE REPORTED TO TIP °
PRINT *;’ OF ROBOT ARM (1) OR WRIST PIN (0) ? °
READ(5,*) TIP
T POSTRON DAT IS T0 BE REPORTED V.R.T. TIP OF ROBOT ARM
ADD D6 * APPROACH VECTOR T0 POSITION VECTOR I.E.
T(ROV, 4% =T nov 4) + (T(nov 3) * D6)
BEN

oYX

IF%T P .E(Q.
= T 1,4) + (T(1,3) * D6
T 2,4 = T(2.4) + (T(2.3) * D6
T(3,4) = T(3,4) + (T(3,3) * D6
ENDIP
RETURN
END

CCCCCCCCCCCeeeeeeeeeeeecccececcceeceeeeCeCeCCCeeceeCeeeeCeeeeeeeeeee
C OUTPUT TO SCREEN
SUBROUTINE TOUT(T)
REAL T(4,4)
INTEGER I,J
C OPEN DATA PILE
OPEN(UNIT=6,STATUS="NEV” ,FILE="LDKIN.0UT")
PRIN
D0 601 I = 1,4
C VRITE TO SCREEN

vanzé % éT I,JB ,J=1,4
C VRITE TO OUTPUT FILE LDKIN.QU
VRITEéG *) (1(1,3),3=1,4)
601 CONTINU
FRINT *,7 ?
%ETURN
ND
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
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DIRECT KINEMATICS SIMULATION FOR MERLIN 6500 RIGHT ARM

CCCCCCCCCCeceeeceeeceeecceecceceeceeceeceeceeceececececceeCecCCCCCCececeee
C MERLIN ROBOT RIGHT ARM KINEMATICS SINULATION PROGRAN
€CCCCCCCCCCeeeeeeceeceeceececeecececeececeececeececeeCeeecceetecCcceece
C MNAIN PROGRAN

C DEFINE REAL & INTEGER VARIABLES

C DESCRIBE THE

10

INTEGER INTRO
REAL T(4, 4; ,V,S,E,VR,VP,HR
ROGRAN

PRINT *,° THIS PROGRAN PERFORMS MATHEMATICAL SIMULATION OF’
PRINT :,: THE KINEMATICS OF THE MERLIN 6500 RIGHT ARM ROBOT.’
PRINT *,’ °
PRINT *,” DO YOU NEED AN INTRODUCTION TO THE PROGRAN ? °
PRINT *,’ YES ----> 1.’
PRINT *,” N0 ----> 2.’
INTRO = 2
READ(5,*) INTRO
IFéI TRO .EQ. 1) THEN

ALL INTROD
ELSE IF(INTRO .EQ. 2) THEN

GOTO 11
ELSE

PRINT *,’ ENTRY ERROR °

GOTO 10
ENDIF

C FIND THE USER-DEFINED ANGLES

11

CALL ANGLES(V,S,E,VR,VP,HR)
PRINT *,’

CALL DIRKIN(V,S,E,VR,VP,HR,T)
CALL TUUT(T)

STOP

END

cececcccceceeccceccceccecececcceeeeceecceeececccceeeeccccceccccecccecceeec
C INTRODUCTION TO THE PROGRAMME

SUBRDUTINE INTROD
PRINT *,” THE PROGRAM REQUESTS THE USER TQ ENTER THE JOINT °

PRINT *,”> ANGLES FOR EACH OF THE FOLLOVING JOINTS :-- °
PRINT :,: JOINT RANGE °
PRINT —_— —
PRINT *z’ WVAIST JOINT RANGE + 147 TO - 147 DEGREES ) °
PRINT *,’ SHOULDER JOINT ( RANGE + 56 TO - 236 DEGREES ) '’
PRINT *,’ ELBOV JOINT RANGE + 56 TO - 236 DEGREES ) °
PRINT *,’ VRIST ROLL RANGE + 360 TO - 360 DEGREES ) °’
PRINT *,”> WRIST PITCH RANGE + 90 TO - 90 DEGREES ) °
g%igg :,: TO?L ROLL RANGE + 360 T0 - 360 DEGREES ) °
PRINT *:’ THE PROGRAN RETURNS THE FINAL TRANSFORMATION °
PRINT *,” MATRIX i.e. THE POSITION & ORIENTATION MATRIX °
g%}g% :,: DE?INED AT THE WVRIST PIN OR TIP OF THE ARM. °’

’
RETURN
END
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CCCCCCCCCCeeeeeeeeeeeeececeeeeceeeeeeeCeeeCeCCCCCCCCCCCCCCCCCCCCCCeee
C ENTRY OF JOINT ANGLES BY THE USER
SUBROUTINE ANGLES(V,S,E,VR,VP, nnz
REAL V1,S1,E1,VR1,VP1,ER1,V,S.E,VR,VP,HR,PI
C DEFINE PI
PI = 3.141592654
C VAIST
101 V = 0.0
Vi = 0.0
PRINT *,° ENTER VAIST ANGLE ( +/- 147 DEGREES ) =
READ(5 ‘z Vi
IF (ABS( 12 .GT. 147.0) THEN

PRINT *,° ERROR -- BANGE IS +/- 147 DEGREES. °
GOTO 101
ENDIF
V=V1*PI/ 180.0
C SHOULDER
102 S = 0.
S1 = 0.0
PRINT *;; ENTER SHOULDER ANGLE ( 56 TO -236 DEGREES ) ==> °
READ
IF (§81 et 56.0) OB, (St IT. -936.0)) THEN
PRINT *,’ ERROR -- RANGE IS 56 TO - 236 DEGREES. °
GOTO 102
ENDIF
S = S1 * PI / 180.0
C ELBOV
103 E = 0.0
E1 = 0.0
PRINT *,> ENTER ELBOV ANGLE ( 56 to -236 DEGREES ) ==> °
READ(5,*) E1
IP ( B1 JGT. s6. 0) -0k, (BL LT, -236.0))THEN
PRINT *,’ ERROR -- RANGE IS 56 TO - 236 DEGREES. °
GOTO 103

ENDIF
E=E1*PI/ 180.0
C VRIST ROLL

104 VR = 0.0
VR1 = 0.0
PRINT *,’ ENTER VRIST ROLL ( +/- 360 DEGREES ) ==> ’
READ(S5, z VR1

R

IF ABS 1) .GT. 360. 02{ THEN
PBINT * > ERROR -- RANGE IS +/- 360 DEGREES. ’
GOTO 104

ENDIF

VR = VR1 * PI / 180.0
C WRIST PITCE
105 WP = 0.0
VP1 = 0.0
PRINT *.° ENTER VRIST PITCH ( +/- 90 DEGREES) ==> °’
READ(5,%) VP1
IF (ABS(WP1) .GT. 90.0) THEN
PRINT *,’ ERROR -- RANGE IS +/- 90 DEGREES. °
GOTO 105

102




ENDIF
VP = VP1 * PI / 180.0
C HAND ROLL
106 HR = 0.0
HR1 = 0.0
PRINT *,°

;) ENTER HAND ROLL ( +/- 360 DEGREES ) ==> ’

lEADéS, a HR1

IP(ABS(HR1) .GT. 360.2{ THEN
PRINT *,® ERROR -- RANGE IS +/- 360 DEGREES. °
GOTO 106

ENDIF

HR = HR1 * PI / 180.0

RETURN

END

¢cccccccccecceccccccccceeccecececceccccccccecccceeccececcceecccecceccceecceeeece
C KINEMATICS IMPLEMENTATION

SUBROUTINE DIRKIN(V,S,E,VR,VP,HR,T)

INTEGER I,J,TIP

REAL T(4,4a,c1,cz,cs,c4,cs,cs,81,sz,ss,S4,ss,ss,c23,szs,n2,D3,
1

$R11A,R11B,R124,R12B,R13A,R13B,R144,R14B,V,S E, VR, VP, HR,D6
C INITIALIZE MATRIX
DO 301 I = 1,4
DO 301 J = 1,4
T&I,J) = 0.0
301 CONTINUE
T§4,4a = 1.0
C DEFINE COSINES AND SINES
C1 = COS(V
€2 = COS(S
€3 = COS(E
C4 = COS(V
C5 = COS(WP
C6 = COS(HR
S1 = SIN(V
S2 = SIN(S
3 = SIN(E
S4 = SIN(V
S5 = SIN(VP
S6 = SIN(ER

(e¥eleoleoXeoNalaole]

DEFINE D2, D3 & D6( APPROXIMATELY ) FOR THE RIGHT ARM.

D2 IS THE SIGNED DISTANCE FROM THE GLOBAL X AXIS T0 THE SEOULDER
CENTRAL AXIS ( ALIGNED ALONG THE UPPER ARM %. D3 IS THE SIGNED
DISTANCE FROK THE SHOULDER CENTRAL AXIS T0 THE

AXIS, ALIGNED VITH THE CENTER OF THE LOVER ARM. THESE VALUES
(D2 & D3) CHANGE SIGN FOR THE LEFT ARM. D6 IS THE SIGNED
DISTANCE FROM THE VRIST PIN TO THE TIP OF THE ROBOT ARM.

( REFER TO THE ARN KINEMATICS FOR MORE DETAILS. )

DEFINE TRANSFORM MATRIX ENTRIES

C23 = COS(S + E
S23 = SIN(S + E

ELBOV CENTRAL

D2 = - 19.00
D3 = 7.00
D6 = 3.5

R11A = (C23 * ((C4 * C5 * C6)- (S4 * S6))- (S23 * S5 * (6))
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RL1B = (($4 *,05 * C6) + (C4 ¥ ssz)
4 * S6

T(1,1) = (C1 * R114) + (S1 * R11B

T(2,1) = (S1 * R11A) - (C1 * R11B

T(3,1) = -523 * éC4 * 05 * C6)- g g) éczs * S5 * (6)
RI124 = - (23 * ( (S4 * C6))+(S23 * S5 * S6)

4% 05 * $6):
R12B = ((S4 * C5 * S6)- (C4 *

T(1,2) = (C1 * R124)- (S1 * R12B
T(2,2) = (S1 * R124)+(C1 * R12B
T(3,2) = S23 * ((C4 * C5 * S6)+(S4 * C6))+(C23 * S5 * S6)
RI3A = (C23 * C4 * S5)+(S23 * C5)
R13B = (S4 * S5)
T(1,3) = (-C1 * R13A Sl * R13B
T(2,3) = (-S1 * R13A Cl * R13B
T(3,3) = (523 * C4 * ss)-(czs * (5)
R14A = (-17.24 * $23)+(17.38 * C2)
R14B = (D2 + nsa
T(1,4) = (C1 * 14A Sl * R14B
T(2,4) = (S1 * n14A + c1 * R14B
T(3,4) = (-17.24 * 023& é17 .38
C DECIDE ON DATA TO BE REPORTED TO TIP o VRIST PIN
TIP = 0

PRINT *,° DO YOU VANT POSITION TO BE REPORTED TO TIP °
PRINT *&’ OF ROBOT ARM (1) OB WRIST PIN (0) ? °
READ(5,%) TIP

IF POSITION DATA IS TO BE REPORTED V.R.T. TIP OF ROBOT ARN

ADD D6 * APPROACH VECTOR TO POSITION VECTOR I.E.

T(ngg %% annv 4% + (T(ROV,3) * D6)

QM

= T;1 4) + (T(1,3) * D6
T 2 4 = T{2.4) + (T(2.3) * D6
T(3.4) - Tt3,4 T(3,3) * D6
ENDIF
RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCeeeeeCeeeeeeeeceeeeecceceeeeeeeeecCeeeeeeeeee
C OUTPUT TO SCREEN
SUBROUTINE TOUT(T)
REAL T(4, 4}
INTEGER I
C OPEN DATA FILE
OPEN (UNIT=6,STATUS=NEV* ,FILE="LDRIN. 0UT")
PRIN
D0 601 1 = 1,4
C WRITE T0 SCREEN

vanmés,*% éT(I,J%,J=1,4
C VRITE TO OUTPUT FILE LDKIN.OU
VRITE(6,*) (T(I,J),J=1,4)
601 CONTINU

PRINT *,° *

RETURN

END
CCCCCCCCCCCCCCCCCeCCCCeeCCCCeeeeeeeeeeeCeeecCCCeCCCCCeCeCCCeeeeeeeeee
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APPENDIX
NERLIN 6500 MANIPULATOR INVERSE KINEMATICS SIMULA.ION - FORTRAN CODE
- LEFT ARM

¢cceeccececececccceccececeecececcceeeecececccecececcccceceeeecceccCccCccceeeee
C MERLIN LEFT SHOULDERED ROBOT INVERSE KINEMATICS PROGRAN

C PROGRAMMED BY :-- RANVIR S. SOLANKI
¢ VRIGHT STATE UNIVERSITY
¢ DAYTON, OH - 45435

ccceceecececceccccccccecceccecccecccecccecceecceecccececcccccccecceccceccce
C MAIN PROGRAM
C DEFINE REAL & INTEGER VALUES
INTEGER FLAG,RESTART,VSPACE
REAL T(4,4), Z(4 7% T1 T2P1,T2P2,T3P,T3N,T4A,T4B,T5A,T5B,
$T64,T68, A2 D2 D3,D4, 06 PI, VP WN, Sl S2 EP EN, VRl VR2
SVR3 VR4, VPl VP2 VP3 VP4 HRI HR2 HR3 HR4 DUl TPP JTPN
PRINT * > MERLIN 6500 LEPT SHOULDER ARM ’
PRINT * i INVERSE KINEMATICS SIMULATION °
1 PRINT * ?

C DEFINE VALUE OF CONSTANTS
PI = 3.141592653589792
C SETUP KINEMATIC PARAMETERS FOR THE MERLIN 6500 50 LB. ROBOT
C A2 IS THE DISTANCE BETVEEN SHOULDER JOINT AND ELBOV JOINT
A2 = 17.38
C D4 IS THE DISTANCE FROM ELBOV JOINT TO WRIST PIN
D4 = 17.24
C D6 IS THE DISTANCE FRON VRIST PIN TO TIP OF THE END- EFFECTOR
D6 = 3.5
C SET UP D2 AND D3. D2 IS THE DISTANCE FROM THE VAIST VERTICAL
C AXIS TO THE CENTER OF THE UPPER ARM. D3 IS THE DISTANCE FROM
C THE CENTER OF THE UPPER ARM TO THE CENTER OF THE LOVER ARM.
C FOR LEFT HAND, D2 AND D3 ARE
D2 = 19.00
D3 = -7.00

C INITIALIZE ALL GLOBAL VARIABLES ( RETURNED VARIABLES ARE
C INITIALIZED INSIDE THE SUBROUTINE ONLY )

WP = 0.0

S1 =0.0

S2 = 0.0

EP = 0.0

EN = 0.0

WR1 = 0.0

¥R2 = 0.0

¥VR3 = 0.0

VR4 = 0.0

WP1 = 0.0

VP2 = 0.0

VP3 = 0.0

VP4 = 0.0

HR1 = 0.0

HR2 = 0.0

HR3 = 0.0
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aQ X K]

A & O

R4
DUX
T2P1
ToN1
T2P2
T2N2 = 0.

INITIALIZE 5 Z L MATRIX

THE FIRST COLUMN OF THE MATRIX IS A FLAG FOR VALIDITY OF THE

SET OF JOINT ANGLES BEING ALL VITHIN THEIR RANGES. THE REMAINING

4 X 6 MATRIX IS USED TO STORE THE RESULTS OF THE COMPUTATIONS

IN THE ORDER VAIST, SHOULDER, ELBOV, VRIST ROLL, WRIST PITCH,

AND HAND ROLL.

D021-=1,4
D023 =1,7
ZSI,J) = 0.0
CONTINUE

ENTER POSITION AND ORIENTATION MATRIX FROM DATAFILE OR SCREEN
CALL IATENTER(T,DGa

FLAG SET UP FOR END POSITION IN{GUT OF VORKSPACE.

VSPACE = 0 IF THE END- EFFECTOR IS INSIDE THE VORKSPACE

VSPACE = 1 IF THE END-EFFECTOR IS OUTSIDE THE VORKSPACE

SET DEFAULT VSPACE FLAG = 0
VSPACE = 0

COMPUTE VAIST ANGLES T1

IN THE CALL STATEMENT BELOV, T IS THE 4X4 POSITION AND

ORIENTATION VORKSPACE, T1 IS THE CUMPUTED VAIST ANGLE.

CALL VAISTéT,Tl,D2,D3,VSPACE%
IF POSITION DESIRED AS END-POINT IS OUTSIDE THE VORKSPACE,
GET A NEV SET OF ENDPOINTS FROM THE USER.
IFéVSPACE .EQ. 1) THEN
0T0 3
ENDIF

CONVERT VAIST ANGLE FROM RADIANS TO DEGREES

A DUMMY VARIABLE énun& IS USED HERE SINCE VE ARE DEALING

VITH ONE VAIST ANGLE ONLY.

CALL RADEG(Tl,0.0,VP,DUl%
STORE RESULTS OF WAIST IN [Z] MATRIX (SECOND COLUMN)
D051=1,4
7 1,2& = WP
CONTINU
xﬂssgpigg VSPACE FLAG TO 0 FOR ELBOV ANGLE COMPUTATIONS.
= 0
COMPUTE ELBOV ANGLES T3P,T3N.
CALL ELBOVéT,T3P,T3N,A2,D2,D3,D4,VSPACE%
IF USER DEFINED END-POSITION IS OUTSIDE THE WORKSPACE,
RE-ENTRY OF KATRIX BY THE USER.
IFéVSPACE .EQ. 1) THEN
0T0 3
ENDIF

CONVERT ELBOV ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T3P,T3N,EP,EN%

STORE RESULTS OF ELBOV ANGLE SOLUTION IN THE FOURTH COLUMN

OF MATRIX [Z]

D06I-=1,2

o
SO

QOO O- -
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Z2(1+2,4)
6 CONTINUE
C CONPUTE § SHOULDER + ELBOV ) ANGLES TPP,TPN
CALL SHOULDER(T,A2,D4,T1,T3P,T3N,TPP,TPN)
C COMPUTE SHOULDER ANGLES T2P1,T2P2
T2P1 = TPP - T3P
T2P2 = TPN - T3N
C CONVERT SHOULDER ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T2P1,T2P2,51,S2)
C STORE RESULTS OF SHOULDER ANGLES IN [Z] MATRIX (THIRD COLUMN)
B0 7 I =1,2
Z(1,3) = St
Z(1+2,3) = S2
7 CONTINUVE
C COMPUTE VRIST ROLL ANGLES
FLAG = 0
CALL VROLL(T,T4P1,T4P2,T1,TPP,TPN)
C CONVERT VRIST ROLL ANGLES FROM RADIANS TO DEGREES
CALL RADEG T4P1,T4P2,VR1,VR2;
C COMPUTE ’VWRIST FLIPPED’ SOLUTIONS
VR3 = VR1 + 180.0
VR4 = VB2 + 180.0
C STORE RESULTS OF VRIST ROLL IN [Z] MATRIX (FIFT¥ COLUMN)

Z(1,4) = EP
= EN

7(1,5) = WR1
7(2,5) = VR3
Z(3,5) = WR2
7(4,5) = VB4

C COMPUTE VRIST PITCH ANGLES
CALL WPITCH(T,T5P1,T5P2,T1,TPP,TPN,T4P1,T4P2)

C CONVERT VRIST PITCH ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T5P1,T5P2,VP1,VP23

C COMPUTE ’REVERSED PITCH’ SOLUTIONS

VP3 - - WP1
VP4 = - VP2
C STORE RESULTS IN [ Z ] MATRIX - SIXTH COLUEN
Z(1,6) = WP1
7(2,6) = WP3
7(3,6) = VP2
7(4,6) = WP4

C COMPUTE HAND ROLL

CALL HROLL(T,T6P1,T6P2,T1,TPP,TPN,T4P1,T4P2,T5P1,T5P2)
C CONVERT HAND ROLL ANGLES FROM RADIANS TO DEGREES

CALL RADEG(T6P1,T6P2,HR1,HR2g
C COMPUTE *HAND FLIPPED’ SOLUTIONS FOR HAND ROLL

HR3 = HR1 + 180.0
HR4 = HR2 + 180.0
C STORE RESULTS IN THE [Z] MATRIX (SEVENTH COLUMN)
2(1,7) = BR1
72(2,7) = HR3
7(3,7) = HR2
7(4,7) = HR4
C NORMALIZE THE COMPUTED RESULTS
CALL NORMAL(Z)
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C CHECK FOR VALIDITY OF EACH SOLUTION SET
CALL VALID(Z)
C PRINT OUT VALID RESULTS ( VALID IF WITHIN JOINT ANGLE RANGE )
PRINT *,’ THE VALID INVERSE KINE¥ATICS RESULTS ARE :== °’
D0 51 1 =1,4
IFsz (1,1) Eq. o.o% THEN
RITE(5,*) 'THE VALID SOLUTION NUMBER IS ’,I
VRITE(5,*) (Z(1,3),I=2,7)
ENDIF

51 CONTINUE
C QUERY FOR RESTART
RESTART = 0
PRINT *,” TO RESTART PROGRAM, ENTER 1 °’
PRINT *,’ TO EXIT THE PROGRAM, ENTER 0 °
READ(5,93) RESTART
IFéRESTART .EQ. 1) THEN
0T0 1
ENDIF
98  FORMAT(I)
STOP
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCoCCCeCCeeeCCCeeeeeeCCCeeeceeeeceeece
C POSITION AND ORIENTATION DATA ENTRY ROUTINE
SUBROUTINE MATENTER(A,D6)
INTEGER MATCH,TIP,DFILE
REAL A(4,4),PX1,PY1,PZ1,PX,PY,PZ,D6
C INITIALIZE LOCAL VARTABLES
PX1
PY1
PZ1

(=)

~3

bt
[ 1 A A 1 B
OOOOOO

0
0
0
.0
.0
C INITIALIZE M
100 DO 101 I =
D0 101 J
A(1,)
101 CONTINUE
C SET DEFAULT TO READ FROM DIRECT KINEMATICS DATA FILE
DFILE = 1
C READ FROM DATA FILE ?
PRINT *,’ READ TRANSFORM MATRIX FROM LDKIN.QUT ? °
PRINT *’ ENTER 1 IF YES, 2 IF NO °
READ(5,%) DFILE
IFSDFILE .EQ. 1) THEN
PEN (UNIT=6,FILE=’LDKIN.0UT® ,STATUS="0LD’)

-
—

H

-
-3
TR -]
—
O = b e
O —

DO 105 1 = 1,4
READ(6,%) {A(1,0),9-1,4)
105 CONTINUE
CLOSE(UNIT=6)
ELSE

C  DATA ENTRY OF POSITION AND ORIENTATION MATRIX
D0 102 I = 1,3
DO 102 J = 1,4
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PRINT *,’ ENTER TRANSFORM MATRIX ENTRY’,I,J
READ(5,%) A(I,J)
102 CONTINUE
C ADJUST ROV 4 ENTRIES TO PREVENT ENTRY ERROR
0.0

0.0
0.0
1.0

C PRINT OUT MATRIX TO SCREEN
PRINT *,’ °
PRINT *,’ THIS IS THE ENTERED TRANSFORM MATRIX. °
CALL AOUT(A)
PRINT *,” IF YOU VANT TO CHANGE THE MATRIX, ENTER 0 °
PRINT *,’ IF POSITION ENTRIES REFER T0 THE TIP OF THE ’

PRINT *,> END EFFECTOR ----- ENTER 1°
PRINT *,” IF POSITION ENTRIES ARE VITH RESPECT TO THE °
PRINT *,”> WVRIST PIN ---------- ENTER 2 °

READ55,104) TIP
C ALLOV POR CHANGE OF TRANSFORM MATRIX ENTRIES

IFéTIP .EQ. 0) THEN

0T0 100

ENDIF
C ADJUST END EFFECTOR POSITION TO WRIST PIN IF POSITION GIVEN IS
C AT THE TIP OF THE END- EFFECTOR

IF(TIP .EQ. 1) THEN
C SETUP POSITION PARAMETERS TO END- EFFECTOR TIP

PX1 = A(1,4
PY1 = A{2,4
PZ1 = A(3,4

C ADJUST POSITION PARAMETERS TO WRIST PIN
PX1 - D6 * A(1,3
PY1 - D6 * A(2,3
PZ1 - D6 * A(3,3
C RESETA$OSITIUN PARAMETERS IN [A] MATRIX TO WRIST PIN
1,4
A{2.4
A(3,4
ENDIF
104 FORMAT(I)
RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
C OUTPUT OF MATRIX TO SCREEN
SUBROUTINE AOUT (M)
REAL M(4,4)
INTEGER 1,J
D0 1001 I = 1,4
VHITE§5,*) (¥(1,1),I=1,4)
1001 CONTINUE
RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
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C VAIST ANGLE COMPUTATION
SUBROUTINE VAIST(4,V1,X2,X3, SPACE&H
REAL A(4,4),V1,X2,X3,REO,PX,PY,TERN1, TERN2,
$T2,X23
INTEGER I,J,SPACE
C INITIALIZATION OF LOCAL VARIABLES
V1 = 0.0

¢ SET UP UF PUSITIUN PARAMETERS
PX = A(1

C COHPUTE FiRST TERM FOR WAIST ANGLE SOLUTION
TERM1 = ATAN2(PY,PX)
C COMPUTE TERN2
X23 = (X2 + X3)
PXSQ = PX * PX
PYSQ = PY * PY
PXPYSQ = PXSQ + PYSQ
X235Q = X23 * X23
C USER- SPECIFIED POSITION INSIDE WORKSPACE 777
C SET FLAG T0 INSIDE VORKSPACE
SPACE = 0
IFéPXPYSQ .GT. xzasqg THEN

C SPECIFIED POSITION IS INSIDE WORK-SPACE, SO COMPUTE SECOND TERM
GOTO 301
ELSE
C USER SPECIFIED POSITION IS OUTSIDE WORKSPACE.
C COMPUTE DIFFERENCE IN TERNS
ERROR = éABS(PXPYSQ - X238Q %
C IF THE COMPUTED ERROR < 0.0001, THEN COMPUTATIONAL ERROR
C COULD HAVE CAUSED THE POSITION TO LIE OUTSIDE THE WORKSPACE.
IF (ERROR .LT. 0.0001& THEN
C YES, COMPUTATIONAL ERROR OCCURED. COMPUTE T2, FOLLOVED BY
C THE SECOND TERM.
T2 = SQRT(ERROR)
GOTO 302
ELSE
C USER SPgC{FIED POSITION IS DEIFINITELY OUT OF WORKSPACE
PACE = 1
PRINT *,” OUTSIDE WORKSPACE ’
GOTO 303
ENDIF
ENDIF
301 T2 = SQRT(PXPYSQ - X235Q)

302 TERH2 = ATAN2(X23, T2}

C COMPUTE SOLUTION FOR WAIST ANGLE Vi
W1 = TERM1 - TERM2

303 RETURN
END

cceecceecceccecceeecceccceecceeccccccceeccccececcecceccececccecccececce
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C ELBOV ANGLE DETERMINATION ROUTINE
SUBROUTINE ELBOV(A,EP,EN,B2,X2,X3,X4,SPACE)
INTEGER SPACE
REAL A(4,4),EP,EN,B2,X2,X3,X4,KA,KB,X23,T1,T2P, T2N
C INITIALIZE LOCAL VARIABLES
EP = 0.0
0.0

[
[
[ T T )]

0.0
0.0
0.0

X23
ON PABAMETERS OF TRANSFORM MATRIX

e

ERN OF ARCTAN FONCTION

X3 )

PX) - (PY * PY) - (PZ * PZ
2 + X123 * X23) + (X4 * X4
T1 2.0 * B2 * X4)

T1SQ = Tl - T

C DETERMINE IF USER DEFINED POSITION IS OUTSIDE WORKSPACE
SPACE = 0
C POSITION IS INSIDE THE VORK-SPACE IF T1SQ < 1.0
IFéTISQ .LE. 1.0) THEN
"T0 401
ELSE
USER DEFINED POSITION MAYBE OUTSIDE VORKSPACE
THEREFORE, COMPUTE THE ERROR
ERROR = %ABSBl.O - TISQ{)
CHECK TO SEE IF COMPUTATIONAL ERROR COULD HAVE CAUSED THE
POSITION TO LIE OUTSIDE THE VORKSPACE
IF(ERROR .LT. 0.0001) THEN
= SQRT(ERROR)
GOTO 402
ELSE
C USER ENTERED POSITION IS OUTSIDE VORKSPACE
PRINT *,’ OUTSIDE VORKSPACE °
SPACE =
GOTO 403
ENDIF
ENDI¥
C COMPUTE SECOND TERM OF ARCTAN FUNCTION
401 T2P = SQRT(I 0 - T1SQ)
402 ToN =
C COMPUTE THE Tvo POSSIBLE SOLUTIONS FOR ELBOV ANGLE I.E. EP & EN
EP = ATAN2£T1,T2P
= ATAN2(T1,T2N
403 RETURN
END

ccceecceeececccccecceececcccceceeccccceccceecccceecccecccceecccccceccecce
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C

C

aom

SHOULDER + ELBOV ANGLE DETERMINATION ROUTINE
SUBROUTINE SHOULDER(A,B2,X4,VP,EP,EN,APP,APN)
INTEGER 1,J
REAL A§4,43,B2,x4,VP,EP,EN,TlPP,T1PN,T2PP,T2PN,C1P,SiP
$C3P,C3N,S3P,S3N, T1PPA,T1PNA,T2PPB, T2PNB, APP, APN
INITIALIZE LOCAL VARIABLES
T1PP
T1PN
T2PP
T2PN

wouonon

0.0
0.0
0.0
0.0

a -]
—t
nonu

COMPUTE
C1P
S1P

TION PARAMETERS
C3p
S3p

AND SINE FUNCTION VALUES OF THE APPROPRIATE ANGLES
SIN
COS
C3N CUS

1l
(o]
S
w2

[ T T I T I 1
wn
b
-

S3N = SIN(E
COMPUTE ALL PUS IBLE FIRST TERMS OF ARCTAN2 FUNCTION
VAIST POSITIVE, ELBOY POSITIVE (T1PP)
TIPPA = B2 * C3P * PZ
TIPP = §§(B2 * $3p) - x4% §C1P * PX) + (S1P * PY))) - T1PPA
VAIST POSI ELBOV NEGATIVE (T1PN)
TIPNA = B2 * C3N * PZ
TIPN = (((B2 * S3N% - X4) * §C1P * PX) + §S1P * PY))) - T1PNA
COMPUTE ALL POSSIBLE SECOND TERMS OF ARCTAN2 FUNCTION
VAIST POSITIVE, ELBOV POSITIVE (T2PP)
T2PPB = ((B2 * C3P) * §(CIP PX) + (S1P * PY)))
T2PP = § B2 * S3P } *+ P7) + T2PPB
VAIST POSITIVE, ELBOV NEGATIVE (T2PN)
T2PNB = ((B2 * C3N) * §(CIP PX) + (S1P * PY)))
T2PN = (((B2 * S3N a * P7) + T2PNB
COMPUTE ALL FOUR POSSIBLE S
APP = ATAN2(T1PP,T2PP
APN = ATAN2(T1PN,T2PN
RETURN
END

LUTIONS OF (THETA 2 + THETA 3)

CCceccccecccceccecececcccccceccccceecceaerreccccccceccecceeccccccccccce

C

WRIST ROLL ANGLE DETERMINATION ROUTINE
SUBROUTINE VROLL&A,PPP,PPN,VP,TZSPP,TZSPN)
INTEGER FPPP,FPP
REAL A(4,4), PPP ,PPN,WP,T23PP,T23PN,T1P,R13,R23,R33,
$S1P,C1P, C23PP C2°PN S23PP S23PN SNGCEK
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C INITIALIZE LOCAL VARIABLES

T1P = 0.0
T2PPP = 0.0
T2PPN = 0.0
PPP = 0.0
PPN = 0.0
C SET UP SINGULARITY CHECK CONDITION

SNGCHK = 0.005
C SET FLAGS TO NON-SINGULAR CASE

FPPP = 0
FPPN = 0
C SETUP MATRIX ORIENTATION PARAMETERS
B13 = A(1,3)
R23 - A(2,3
B33 - A(3,3
C SETUP TRIG. FUNCTIONS
StP = SIN(WP
CtP - COS(WP

S23FP - SIN(T23PP
C23PN - C0S(T23PN
S23PN = SIN(T23PN)
C COMPUTE ALL FIRST TERMS OF ARCTAN2 FUNCTION
TIP - - (R13 * S1P) + 6R23 * C1P)
C COMPUTE ALL SECOND TERMS OF ARCTAN2 FUNCTION
T2PPP - R13*C1P*C23PPi : ER23*SIP*C23PP; . §R33*S23PP;

C23PP = COS T23PP§

T2PPN = - (R13*C1P*C23PN R23*S1P*C23PN) + (R33*S23PN
C CHECK FOR SINGULARITY CONDITIONS AT WRIST PITCH
IF((TtP .LT. SNGCHK .AND. T1P .GT. - SNGCHK; -AND.

$(T2PPP .LT. SNGCHK .AND. T2PPP .GT.- SNGCHK)) THEN
FPPP = 1
ENDIF

IF((T1P .LT. SNGCHK .AND. TIP .GT. - SNGCHK) .AND.
3(T2PPN .LT. SNGCEK .AND. T2PPN .GT. - SNGCHK)) THEN

FPPN - 1
ENDIF
C SET WRIST ROLL TO v.0 RADIANS IF SINGULARITY DETECTED
C AT WRIST PITCH, ELSE COMPUTE VRIST ROLL. NOTE THAT THIS VILL
C CAUSE THE ROLL 10 SHUV UP ONLY IN HAND ROLL ANGLE.
¢ SGLUTIGN £ 1
IF(FPPP .EQ. 1) THEN
Frp 0.0
ELSE
PPP  ATAN2({T1P.T2PPP)
ENDIF
¢ SOLUTION & 2
IF(FPPN _EQ. 1) THEN
PPN - 0.9
ELSE
PPN - ATAN2(TIP,T2PFY,
ENDIF
RETURN
END

ceecceceececcccccceceecececceecceeccecceccceccccecccceececcecececcceccec
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C VRIST PITCH DETERMINATION
SUBROUTINE WPITCH(A,A5P1,A5P2,VP,APP,APN,V4P1,V4P2)
REAL A(4,4),A5P1,A5P2,VP,APP,APN,V4P1,V4P2,
$T5A1PPPP, T5A2PPPP, T5A3PPPP, T5APPPP, T5A1PPNP, T5A2PPNP, T5A3PPNP,
$T5APPNP, T5B1PPPP, T5B2PPPP, T5B3PPPP, T5BPPPP, T5B1PPNP, T5B2PPNP,
$T5B3PPNP,T5BPPNP,R13,R23,R33,C1P,S1P,C23PP,S23PP,
$C23PN,S23PN,C4P1,S4P1,C4P2, S4P2

C INITIALIZE LOCAL VARIABLES TO 0.0

T5A1PPPP = 0.0
T5A2PPPP = 0.0
T5A3PPPP = 0.0
T5APPPP = 0.0
T5A1PPNP = 0.0
T5A2PPNP = 0.0
T5A3PPNP = 0.0
T5APPNP = 0.0
T5B1PPPP = 0.0
T5B2PPPP = 0.0
T5B3PPPP = 0.0
T5BPPPP = 0.0
T5B1PPNP = 0.0
T5B2PPNP = 0.0
T5B3PPNP = 0.0
TSBPPNP = 0.0
A5P1 = 0.0
A5P2 = 0.0

C SETUP ORIENTATION PARAMETERS
R13 = A(1,3
23 = 4(2,3
k33 = A(3,3

C SETUP TRIG. FUNCTIONS
C1P = COS(WP
S1P = SIN(WP
C23PP = COS(APP
S23PP = SIN(APP
C23PN = COS(APN
S23PN = SIN(APN
C4P1 = COS(V4P1
S4P1 = SIN(V4P1
C4AP2 = COS(V4P2

S4P2 = SIN(V4P2
C COMPUTE FIRST TERMS OF THE ARCTAN2 FUNCTIONS

T5A1PPPP = - (R13 * ((C1P * C23PP * C4P1) + (S1P * S4P1
T5A2PPPP = - (R23 * ((S1P * C23PP * (C4P1) - (C1P * S4P1
T5A3PPPP = R33 * S23PP * (C4P1

T5APPPP = T5A1PPPP + T5A2PPPP + T5A3PPPP

T5A1PPNP = - (R13 * ((C1P * C23PN * C4P2) + (S1P * S4P2
T5A2PPNP = - (R23 * ((S1P * C23PN * C4P2) - (C1P * S4P2
T5A3PPNP = R33 * S23PN * C4P2

TS5APPNP = T5A1PPNP + T5A2PPNP + T5A3PPNP
C COMPUTE SECOND TERMS OF THE ARCTAN2 FUNCTIONS

TSB1PPPP = - (C1P * S23PP * R13
T5B2PPPP = - (S1P * S23PP * R23
T5B3PPPP = - (C23PP * R33)
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T5BPPPP = T5B1PPPP + T5B2PPPP + TSB3PPPP

T5B1PPNP = - (C1P * S23PN * R13
T5B2PPNP = - (S1P * S23PN * R23
TSB3PPNP = - (C23PN * R33

TSBPPNP = T5BiPPNP + T5B2PPNP + T5B3PPNP
C COMPUTE VRIST PITCH ANGLES USING ARCTAN2 FUNCTION
A5P1 = ATAN2(T5APPPP,T5BPPPP
A5P2 = ATAN2(T5APPNP,T5BPPNP
RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
C DETERMINATION OF HAND ROLL ANGLES
SUBROUTINE HROLL(A,A6P1,A6P2,VP,APP,APN,A4P1,A4P2,A5P1,A5P2)
INTEGER I,J
REAL A(4,4£,A6P1,A6P2,VP,APP,APN,A4P1,A4P2,A5P1,A5P2,
$PPPPPA1,PPPPPA2,PPPPPA3,PPPPPA,PPNPPA1,PPNPPA2, PPNPPA3, PPNPPA
SPPPPPB1,PPPPPB2,PPPPPB3, PPPPPB, PPNPPB1,PPNPPB2, PPNPPB3, PPNPPB
C INITIALIZE LOCAL VARIABLES TO 0.0
PPPPPAL = 0.0
PPPPPA2 = 0.
PPPPPA3
PPPPPA
PPNPPA1
PPNPPA2
PPNPPA3
PPNPPA
PPPPPB1
PPPPPB2
PPPPPB3
PPPPPB
PPNPPB1
PPNPPB2
PPNPPB3
PPNPPB .
C INITIALIZE WRIS
A6P1 = 0.0
A6P2 = 0.0
C SETUP ROTATION PARAMETERS
R11 = A(1,1
B21 = A(2,1
R31 = A(3,1
C SETUP UP TRIG. FUNCTIONS
C1P cosgvp

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
IST

ROLL ANGLES T0 0.0

Hn»su i nu

SIN(VP
COS(APP
SIN(APP
COS(APN
SIN(APN

C0S(A4P1

SIN(A4P1

COS(A4P2

SIN(A4P2

COS(A5P1

SIN(A5P1
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N
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C5P2 = COS(A5P2
S5P2 = SIN(A5P2

C CONPUTE THE FIRST TERMS FOR THE ARCTAN2 FUNCTION
PPPPPA1 = R11 * ((C1P * C23PP * S4P1) - (S1P * C4P1;
PPPPPA2 = R21 * ((S1P * C23PP * S4P1) + (C1P * C4P1
PPPPPA3 = R31 * (S23PP * S4P1)
PPPPPA = - PPPPPA1 - PPPPPA2 + PPPPPA3
PPNPPAL = R11 * ((C1P * C23PN * S4P2) - (S1P * C4P2
PPNPPA2 = R21 * ((S1P * C23PN * S4P2) + (C1P * C4P2
PPNPPA3 = R31 * (S23PN * S4P2)

PPNPPA = - PPNPPA1 - PPNPPA2 + PPNPPA3
C COMPUTE THE SECOND TERMS FOR THE ARCTAN2 FUNCTION
PPPPPBL = R11 * (C5P1 * ((CLP * C23PP * C4P1) + (SP * S4P1))
§ - (C1P * S23PP * S5P1))
PPPPPB2 = B21 * (C5P1 * ((SIP * C23PP * C4P1) - (C1P * S4P1))
$ - (S1P * S23PP ssp1g)
PPPPPB3 = R31 * ((S23PP * C4P1 * C5P1) + (C23PP * S5P1))
PPPPPB = PPPPPB1 + PPPPPB2 - PPPPPB3
PPNPPBI = R11 * (C5P2 * ((C1P * C23PN * C4P2) + (SIP * S4P2))
§ - (C1P * S23PN * S5P2))
PPNPPB2 = R21 * (C5P2 * ((S1P * C23PN * C4P2) - (C1P * S4P2))
$ - (SiP * S23PN ssng)
PPNPPB3 = R31 * ((S23PN * C4P2 * C5P2) + (C23PN * S5P2))
PPNPPB = PPNPPB1 + PPNPPB2 - PPNPPB3
C COMPUTE THE HAND ROLL ANGLE USING THE ARCTAN2 FUNCTION
A6P1 = ATAN2(PPPPPA,PPPPPB
A6P2 = ATAN2(PPNPPA,PPNPPB
RETURN
END
CCCCCCCCCCCCCeCCCCeeCCeeeeeeeecceeeeeeCeeeeeeecceceeeeeeeeeeeeeeeee
C RADIAN TO DEGREE CONVERSION ROUTINE
SUBROUTINE RADEGéRADl,RAD2,DEG1,DEG2)
REAL RAD1,RAD2,DEG1,DEG2,PI

C INITIALIZE LOCAL VARIABLES AND RETURNED VALUES
DEG1 = 0.0
DEG2 = 0.0

a

DECLARE CONSTANTS

PI = 3.141592653589792
PERFORM CONVERSION

DEG1 = RAD1 * 180.0 / PI

DEG2 = RAD2 * 180.0 / PI

REgURN

EN
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeee
C CHECK FOR VALIDITY OF SOLUTIONS

SUBROUTINE VALID(A)

REAL A(4,7}

INTEGER I,
CHECK FOR VALIDITY ON ALL JOINTS.IF OUT OF RANGE,FTIRST COLUMN=1.0
NOTE THAT THE RANGES ARE OFFSET BY 0.01 DEGREES TO TAKE CARE
OF COMPUTATIONAL ERRORS CAUSED BY THE MACHINE.

DO 200 I = 1,4
VAIST RANGE IS FROM + 147 TO - 147 DEGREES.

IF(ABS(A(I,2) .GT. 147.01) .OR.

<

(o] A
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C SHOULDER RANGE IS FROM + 56 T0 236 DEGREES.
ééA (1, 3% .GT. 56.01) éA(I,3) .LT. -236.01)) .0R.
C ELBUV RANGE IS FRON + 56 T0 236 DEGREES
{ § a .GT. 56. olz .R. (A(I,4) .LT. -236.01)) .OR.
C VRIST ROLL IS CONTINUOUS. RANGE IS +)- 360 DECREES.
$  ABS(A(I,5) .GT. 360.01) .OR.
C VRIST PITCH RANGE IS Flnl + 90 TO -90 DEGREES.
ABS§Aé } 90.01) .OR.
C HAND ROLL IS CONTINUOUS. RANGE IS +é 360 DEGREES.
ABS é g .GT. 360. 01% HEN
C IF 0UT OF ot ET FLAG (COLUMN 1 OF RESPECTIVE ROV) -
I,1) = 1.0
END%E
200 CONTINUE
RETURN

END
CCCCCCCCCCCCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee
C NORMALIZE THE COMPUTED RESULTS SO THAT EACH ANGLE BRANGES
C FROM -180.0 TO 180.0 DEGREES

SUBROUTINE NORMAL(A)

REAL A(4,7)

INTEGER I,]

C NORMALIZE THE ANGLES TO BETVEEN - 180 AND +180 DEGREES

D0 701 I = 1,4

DO 701 J = 2,7
IF(A§I,J) .GT. 180.0) THEN
A( ,Jg = A§I ,J) - 360.0

ELSEIF (A( } .LT. -180.0) THEN
A(T,3) = A(1,J) + 360.0
ENDIF
701  CONTINUE
RETURN

END
¢ececccccceeeeccecccceececcceccecceccccecececcceeecccececccceccececcccceeccce
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MERLIN 6500 MANIPULATOR INVERSE KINEMATICS SIMULATION - FORTRAN CODE
- RIGHT ARN

¢cccceccccceeceeccccccecceccccccecececcccceeeccccccecceecceccccccceeccee
¢ MERLIN ROBOT INVERSE KINEMATICS PROGRAM

C PROGRAMMED BY :-- RANVIR S. SOLANKI
C VRIGHT STATE UNIVERSITY
C DAYTON, OH - 45435

cccececceccecececcececccceceecccecececeecccceececcecccecceeeccccccceecececece
C MAIN PROGRAM
¢ DEFINE REAL & INTEGER VALUES
INTEGER FLAG,RESTART,WSPACE
REAL T(4,4),Z(4,7g ,T1,T2P1,T2P2,T3P,T3N,T4A,T4B,T54,T58,
$T64,T6B,42,D02,D3,D4, D6 PI, VP LU Sl S2 EP EN, VRI VR2
$Vl3 VR4, VP1 VP2 VP3 VP4 HRl HR2 HR3 HR4 DUl TPP TPN
PRINT * » NERLIN 6500 RIGHT SHOULDER ARM °
PRINT * ? INVERSE KINEMATICS SIMULATION °
1 PRINT * ?
DEFINE VALUE OF CONSTANTS
PI = 3.141592653589792
SETUP KINEMATIC PARAMETERS FOR THE MERLIN 6500 50 LB. ROBOT
A2 }S THE DISTANCE BETVEEN SHOULDER JOINT AND ELBOV JOINT
2 =17.38
D4 IS THE DISTANCE FROM ELBOW JOINT TO VRIST PIN
D4 = 17.24
D6 IS THE DISTANCE FROM VRIST PIN TO TIP OF THE END- EFFECTOR
D6 = 3.5
SET UP D2 AND D3. D2 ISTHE DISTANCE FROM THE WAIST VERTICAL
AXIS TO THE CENTER OF THE UPPER ARM. D3 IS THE DISTANCE FROX
THE CENTER OFTHE UPPER ARM TO THE CENTER OF THE LOVER ARN.
FOR RIGHT HAND, D2 AND D3 ARE
D2 = -19.00
D3 = 7.00
INITIALIZE ALL GLOBAL VARIABLES é RETURNED VARIABLES ARE
INITIALIZED INSIDE THE SUBROUTINE ONLY )
VP = 0.0
S1
S2
EP
EN
VRi
WR2
VR3
VR4
VP1
VP2
VP3
VP4
HR1
HR2
HR3
HR4
DUX

[+ XY Te) aQ (o] [ X o] (]

(X!

0
0.
0
0

¢ ODOOO

QO OO OO OCOOODOOO. -
QO OO0 OOODODOOO

I wnwnnn
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T2P1 = 0.0
T2N1 = 0.0
T2P2 = 0.0
T2N2 = 0.0
INITIALIZE & Z | MATRIX
THE FIRST COLUMN OF THE MATRIX IS A FLAG FOR VALIDITY OF THE

SET OF JOINT ANGLES BEING ALL VITHIN THEIR RANGES. THE REMAINING
4 X 6 MATRIX IS USED T0 STORE THE RESULTS OF THE COMPUTATIONS
IN THE ORDER VAIST, SHOULDER, ELBOV, WRIST ROLL, WRIST PITCH,
AND HAND ROLL.
D02I-=1,
D0 2J=1,7
ZSI,J) = 0.0
CONTINUE
ENTER POSITION AND ORIENTATION MATRIX FROM DATAFILE OR SCREEN
CALL MATENTER T,DG&
FLAG SET UP FOR END POSITION IN{GUT OF VORKSPACE.
WSPACE = 0 IF THE END-EFFECTOR IS INSIDE THE WORKSPACE
WSPACE = 1 IF THE END- EFFECTOR IS OUTSIDE THE WORKSPACE
SET DEFAULT WSPACE FLAG =
WSPACE = 0
COMIUTE VAIST ANGLES T1
IN THE CALL STATEMENT BELOW, T IS THE 4X4 POSITION AND
ORIENTATION VORKSPACE, T1 IS THE COMPUTED VAIST ANGLE.
CALL VAIST(T,Tl,D2,D3,VSPACE%
IF POSITION DESIRED AS END-POINT IS OUTSIDE THE WORKSPACE,
GET A NEV SET OF ENDPOINTS FROM THE USER.
IFéVSPACE .EQ. 1) THEN
0T0 3
ENDIF
CONVERT VAIST ANGLE FROM RADIANS TO DEGREES
A DUMMY VARIABLE éDUl% IS USED HERE SINCE VE ARE DEALING
VITH ONE VAIST ANGLE ONLY.
CALL RADEG(TI,0.0,VP,DUI%
STORE RESULTS OF VAIST IN [Z] MATRIX (SECOND COLUMN)
DO5I=1,4
72(1,2) = WP
CONTINU
RESET THE WSPACE FLAG TO 0 FOR ELBOW ANGLE COMPUTATIONS.
VSPACE = 0
COMPUTE ELBOV ANGLES T3P,T3N.
CALL ELBOW(T,T3P,T3N,A2,D2,D3,D4,VSPACE)
IF USER DEFINED END-POSITION IS OUTSIDE THE VORKSPACE,
RE- ENTRY OF MATRIX BY THE USER.
IFéVSPACE .EQ. 1) THEN
0T0 3
ENDIF
CONVERT ELBOV ANGLES FROM RADIANS TO DEGREES
CALL RADEG(TBP,T:;N,EP,EN%
STORE RESULTS OF ELBOV ANGLE SOLUTION IN THE FOURTH COLUMN
F MATRIX (2]
DB6I=1,2
(1,4) - EP
Z(1+2 4) =
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CONTINUE
COMPUTE § SHOULDER + ELBOV ) ANGLES TPP,TPN
CALL SHOULDER(T,A2,D4,T1,T3P,T3N,TPP,TPN)
COMPUTE SHOULDER ANGLES T2P1,T2P2
T2P1 = TPP - T3P
T2P2 = TPN - T3N
CONVERT SHOULDER ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T2P1,T2P2,SI,S2{
STORE RESULTS OF SHOULDER ANGLES IN [Z] MATRIX (THIRD COLUMN)
D07I=1,2
2(I,3) = S1
7(I+2,3) = S2
CONTINUE
COMPUTE VRIST ROLL ANGLES
FLAG = 0
CALL VROLL(T,T4P1,T4P2,T1,TPP,TPN&
CONVERT VRIST ROLL ANGLES FROM RADIANS TO DEGREES
CALL RADEG T4P1,T4P2,va1,v32g
COMPUTE ’WRIST FLIPPED’ SOLUTIONS
VR3 = VR1 + 180.0
VR4 = VR2 + 180.0
STORE RESULTS OF VRIST ROLL IN [Z] MATRIX (FIFTE COLUMN)

Z(1,5) = WAl
7(2,5) = W3
7(3,5) = WR2
7(4,5) = VR4

COMPUTE WRIST PITCH ANGLES
CALL VPITCH(T,T5P1,T5P2,T1,TPP,TPN,T4P1,T4P2)
CONVERT VRIST PITCH ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T5P1,T5P2,VP1,VP2B
COMPUTE ’REVERSED PITCH’ SOLUTIONS

VP3 = - VP1
VP4 = - VP2
STORE RESULTS IN [ Z ] MATRIX - SIXTH COLUMN
2(1,6) = VP1
7(2,6) = VP3
72(3,6) = VP2
7(4,6) = VP4

COMPUTE fIAND ROLL
CALL HROLL(T,T6P1,T6P2,T1,TPP,TPN,T4P1,T4P2,T5P1,T5P2)
CONVERT HAND ROLL ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T6P1,T6P2,HR1,HR2g
COMPUTE *HAND FLIPPED’ SOLUTIONS FOR HAND ROLL
HR3 = HR1 + 180.0
HR4 = HR2 + 180.0
STORE RESULTS IN THE [Z] MATRIX (SEVENTH COLUMN)

Z(1,7) = HR1
72(2,7) = HR3
7(3,7) = HR2
Z7(4,7) = HR4

NORMALIZE THE COMPUTED RESULTS
CALL NURMAL(Z%

CHECK FOR VALIDITY OF EACH SOLUTION SET
CALL VALID(Z)
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C PRINT OUT VALID RESULTS § VALID IF VITHIN JOINT ANGLE RANGE
PRINT *,’ THE VALID INVERSE KINEMATICS RESULTS ARE :== °
DO 51 I'=1,4
IF62{1,1) .EQ. o.o& THEN
RITE(5,*) ’THE VALID SOLUTION NUKBER IS °,I
VRITE(5,*) (Z(1,d),J=2,7)
ENDIF
51 CONTINUE
C QUERY FOR RESTART
RESTART = 0
PRINT *,> TO RESTART PROGRAN, ENTER 1 °
PRINT *,” T0 EXIT THE PROGRAN, ENTER 0 °
READ(5,98) RESTART
IFéRESTART .EQ. 1) THEN
070 1
ENDIF
98  FORMAT(I)
STOP
END
CCCCCCCCCCCCCCCCCCCCCCCeCCCCCeeCCCCeCCCCeeCCCeeeCCeeeeeeeeecerce
C POSITION AND ORIENTATION DATA ENTRY ROUTINE
SUBROUTINE MATENTER(A,D6)
INTEGER MATCH,TIP,DFILE
REAL A(4,4),PX1,PY1,PZ1,PX,PY,PZ,D6
C INTTIALIZE LOCAL VARTABLES
PX1 = 0.0
PY1
P71
PX
PY
PL -
C INITIALIZE HAT
100 DO 101 I =
D0 101 J
A(LJ)
101 CONTINUE
C SET DEFAULT 10 READ FROM DIRECT KINEMATICS DATA FILE
DFILE = 1
C READ FROM DATA FILE ?
PRINT *,’ READ TRANSFORM MATRIX FROM LDKIN.QUT ? °
PRINT * ° ENTER 1 IF YES, 2 IF N0 °
READ(5,%) DFILE
IF(DFILE .5Q. 1) THEN
PEN(UNIT=6,FILE="LDKIN.0UT’ ,STATUS="0LD")
D0 105 I = 1,4
READ(6,*) (A(I,J),J=1,4)
105 CONTINUE
CLOSE (UNIT=6)
ELSE
C  DATA ENTRY OF POSITION AND ORIENTATION MATRIX
DO 102 T = 1,3
D0 102 J = 1,4
PRINT *,’ ENTER TRANSFORM MATRIX ENTRY’,T,J
READ(5,%) A(I,J)

| Y R { I I E R

SCSOOOO

.0
.0
.0
.0
.0
HATRIX [A]
4

1,4
0.0

o e
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102 CONTINUE
C ADJUST ROV 4 ENTRIES TO PREVENT ENTRY ERROR

A(4,1) = 0.0
A(4,2) = 0.0
A(4,3) = 0.0
A(4,4) = 1.0
ENDIF
C PRINT OUT MATRIX TO SCREEN
PRINT *,° °

PRINT *,’ THIS IS THE ENTERED TRANSFORM MATRIX. ’
CALL AOUT(A)
PRINT *, IF YOU VANT TO CHANGE THE MATRIX, ENTER 0 °
PRINT *,° IF POSITION ENTRIES REFER TO THE TIP OF THE °
PRINT *,” END EFFECTOR ----- ENTER 1 °
PRINT *,° IF POSITION ENTRIES ARE WITH RESPECT T0 THE °
PRINT *,” WVRIST PIN ---------- ENTER 2 °
READ85,104& TIP
C ALLOV FOR CHANGE OF TRANSFORM MATRIX ENTRIES
IFéTIP .EQ. 0) THEN
0T0 100
ENDIF
C ADJUST END EFFECTOR POSITION TO WRIST PIN IF POSITION GIVEN IS
C AT THE TIP OF THE END- EFFECTOR
IF(TIP .EQ. 1) THEN
C SETUP POSITION PARAMETERS TO END- EFFECTOR TIP

PX1 = A(1,4
PY1 = A(2,4
PZ1 = A(3,4

C ADJUST POSITION PARAMETERS TO WRIST PIN

PX1 - D6 * A(1,3

PY1 - D6 * A(2,3

PZ1 - D6 * A(3,3

C RESETAPOSITION PARAMETERS 1IN [A] MATRIX TO WRIST PIN
1 4§ PX

o
-
TRNTE!

A(2,4) = PY
A(3.4) = PZ
ENDIF
104 FORMAT(I)

RETURN

END
CCCCCCCCCCCCCCCCeCeeeCeeeeccceeeceecceeceeceeceeeceeceeeeeceeceeceeeee
C OUTPUT OF MATRIX TO SCREEN

SUBROUTINE AOUT(N)

REAL ¥(4,4)

INTEGER I,J

DO 1001 I = 1,4

VRITE(5,*) (M(I,I),J=1,4)
1001  CONTINUE

RETURN

END
CCCCCCCCCCCCCCCCCCCCCCeCCeeeceeececCeeeeeCeeCeeCeeccecceeceeceeeeeeee
C VAIST ANGLE COMPUTATION

SUBROUTINE VAIST(A,Vl,X2,X3,SPACE§

REAL A(4,4),V1,X2,X3,RHO,PX,PY,TERMI, TERN2,
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$T2,X23
INTEGER »SPACE

OF LOCAL VARIABLES

J
N
.0
0

T2 = 0.0
C SET UP OF POSITION PARAMETERS
PX = A(1,4
PY = A(2,4
C COMPUTE FIRST TERM FOR VAIST ANGLE SOLUTION
TERM1 = ATAN2(PY,PX)
C COMPUTE TERN2
123 = (X2 + X3)
PXSQ = PX * PX
PYSQ = PY * PY
PXPYSQ = PXSQ + PYSQ
X235Q = X23 * X23
IS USER- SPECIFIED POSITION INSIDE THE VORKSPACE ?
SET FLAG TO INSIDE VORKSPACE
SPACE = 0
IF(PXPYSQ .GT. xzssQﬂ THEN
C SPECIFIED POSITION IS INSIDE VORK- SPACE, SO COMPUTE SECOND TERM
GOTO 301
ELSE

(e Xor]

C USER SPECIFIED POSITION IS OUTSIDE VORKSPACE.
C
C COMPUTE DIFFERENCE IN TERNS
ERROR = (ABS(PXPYSQ - xzssq%)
C IF THE COMPUTED ERROR < 0.0001, THEN COMPUTATIONAL ERROR
C COULD HAVE CAUSED THE POSITION TO LIE OUTSIDE THE WORKSPACE.
IF(ERROR .LT. o.ooo1a THEEN
C YES, COMPUTATIONAL ERROR OCCURED. COMPUTE T2, FOLLOVED BY
C THE SECOND TERN.
T2 = SQRT(ERROR)
GOTO 302
ELSE
C USER SPECIFIED POSITION IS DEFINITELY 0UT OF WORKSPACE
SPACE = 1
PRINT *,’ QUTSIDE WORKSPACE °
GOTO 303
ENDIF
ENDIF

301 T2 = SQRT(PXPYSQ - X23SQ)
302 TERM2 = ATAN2(X23,T2%
C COMPUTE SOLUTION FOR VAIST ANGLE V1
Vi = TERM1 - TERM?
303 RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCeeCeeeceeceeeceeCeeeecCeeceeCeecccceeceeeceeee
C ELBOV ANGLE DETERNINATION ROUTINE
SUBROUTINE ELBOW(A,EP,EN,B2,X2,X3,X4,SPACE)
INTEGER SPACE
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REAL A
C INITIALIZ
EP
EN
KA
KB
T1

,4) ,EP,EN,B2,X2,X3,X4,KA,KB,X23,T1,T2P, T2N
LOCAL VARIABLES

4
.0
.0
.0
.0
.0

ON PARAMETERS OF TRANSFORM MATRIX

ERM 9F ARCTAN FUNCTION
X3
PX) - (PY * PY) - (PZ * PZ
2) + (X23 * X23) + (X4 * X4
A+ KB) / ( 2.0 * B2 * X4)
T1Sq = T1 * T1
C DETngINE IF USER DEFINED POSITION IS OUTSIDE WORKSPACE
PACE = 0
C POSITION IS INSIDE THE VORK-SPACE IF T1SQ < 1.0
IFéTlSQ .LE. 1.0) THEN
0TO 401
ELSE
USER DEFINED POSITION MAYBE CUTSIDE WORKSPACE
THEREFORE, COMPUTE THE ERROR
ERROR = £ABSS1.0 - T15Q))
CHECK TO SEE IF COMPUTATIONAL ERROR COULD HAVE CAUSED THE
POSITION TO LIE OUTSIDE THE VORKSPACE
IF(ERROR .LT. 0.0001) THEN
T2P = SQRT(ERROR)
GOTO 402
ELSE
C USER ENTERED POSITION IS OUTSIDE WORKSPACE
PRINT *,” QUTSIDE VORKSPACE ’
SPACE = 1
GOTO 403
ENDIF
ENDIF
C COMPUTE SECOND TERM OF ARCTAN FUNCTION
401 T2P = SQRT(1.0 - T1SQ)
402 T2N = - T2P
C COMPUTE THE TVO0 POSSIBLE SOLUTIONS FOR ELBOV ANGLE I.E. EP & EN
EP = ATAN2(T1,T2P
EN = ATAN2(T1,T2N
403 RETURN
END
CCCCCCecceeeeeeeeeeeeeeeecCeCeeCeCeeeCeCCCeeeeCeceCCCCeeCecCeeeeee
C SHOULDER + ELBOV ANGLE DETERMINATION ROUTINE
SUBROUTINE SHOULDER(A,B2,X4,¥P,EP,EN,APP,APN)
INTEGER 1,J
REAL A(4,4),B2,X4,VP,EP,EN,T1PP,T1PN,T2PP,T2PN,C1P,S1P

-
=
o on

QA [ap Nap]
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$C3P,C3N,S3P,S3N,T1PPA,T1PNA,T2PPB,T2PNB,APP,APN
C INITIALIZE LOCAL VARIABLES

T1PP
T1PN
T2PP
T2PN
T1iPPA
T1PNA
TiPP = 0.0
TIPN = 0.0
T2PPB .

1l

0.0
0.0
0.0
0.0

(I

0.0
0.0

oo

TION PARAMETERS

AND SINE FUNCTION VALUES OF THE APPROPRIATE ANGLES

(]
[SV]
o
[ N T I R T T
(]
=
w2

S3N

I
4
4
4
N
CUSE
COMPUTE ALL PUS IBLE FIRST TERMS OF ARCTAN2 FUNCTION

(v N Nap]

VAIST PUSITIVE; ELBOV POSITIVE (T1PP)
T1PPA C3P * PZ
TIPP = (£(Bz * §3p) - 4% * %ClP * PX) + (S1P * PY))) - T1PPA
C VAIST POSITIVE, ELBOV NEGATIVE (T1PN)
TIPNA = B2 * C3N * PZ
TIPN = (((B2 * S3N§ - X4) * §01P * PX) + (StP * PY))) - T1PNA
COMPUTE ALL POSSIBLE SECOND TERMS OF ARCTAN2 FUNCTION

WAIST POSITIVE, ELBOV POSITIVE (T2PP)
T2PPB - ((B2 * C3P §(01P PX) + (SIP * PY)))
T2PP - % B2 * S3P 4) * P7) + T2PPB
C VAIST POSITIVE, ELBOV NEGATIVE (T2PN)
T2PNB = ((B2 * C3N) * ((C1P * PX) + (S1P * PY)))
T2PN = (((B2 * S3N) - X4) * PZ) + T2PNB
C COMPUTE ALL FOUR POSSIBLE SOLUTIONS OF (THETA 2 + THETA 3)
APP = ATAN2(T1PP,T2PP
APN = ATAN2(T1PN,T2PN
RETURN
END
CCCCCCCCCCCCCCCCCCCCoCCeeCecCCeeeeeeCeCecCeccecCeeceeCeeCeeceeceeeeee
C WRIST ROLL ANGLE DETERMINATION ROUTINE
SUBROUTINE WROLL(4,PPP,PPN,WP,T23PP,T23PN)
INTEGER FPPP,FPPN
REAL A(4,4),PPP,PPN,WP,T23PP,T23PN,T1P,R13,R23,R33,
$S1P,C1P,C23PP,C23PN,S23PP,S23PN, SNCCHK
C INITIALIZE LOCAL VARIABLES
TIP = 0.0

[ Nap Nap!

125




(X XeoNe!

cccccccccccececcceececccecccecccccccceeecceccccccccccccecceccccccccccccecce

T2PPP
T2PPN
PPP =
PPN = 0.
SET UP SINGULARITY CHECK CONDITION
SNGCEK = 0.005
SET FLAGS TO NON- SINGULAR CASE
FPPP = 0
FPPN = 0
SETUP MATRIX ORIENTATION PARAMETERS
R13 = A(1,3
R23 = A(2,3
R33 = A(3,3
SETUP TRIG. FUNCTIONS
S1P = SINgVP

Zoo il u
COOO
OO

C1P = COS(WP
C0S(T23PP
SIN(T23PP
C23PN = COS(T23PN
S23PN = SIN(T23PN
COMPUTE ALL FIRST TERMS OF ARCTAN2 FUNCTION
TIP = - (R13 * SIP) + 5B23 * C1P)
COMPUTE ALL SECOND TERMS OF ARCTAN2 FUNCTION
T2PPP = —£R13*CIP*C23PP2 - §R23*SIP*C23PP) " §R33*S23PP;

C23pPP
S23PP

oW

T2PPN = - (R13*C1P*C23PN) - (R23*S1P*C23PN) + (R33*S23PN
CHECK FOR SINGULARITY CONDITIONS AT VRIST PITCH
IF((T1P .LT. SNGCHK .AND. TiP .GT. - SNGCHK) .AND.
$(T2PPP .LT. SNGCHK .AND. T2PPP .GT.- SNGCHK)) THEN
FPPP = 1
ENDIF
IF((T1P .LT. SNGCHK .AND. TP .GT. - succux& .AND.
$(T2PPN .LT. SNGCHK .AND. T2PPN .GT. - SNGCHK)) THEN
FPPN = 1
ENDIF
SET WVRIST ROLL TG 0.0 RADIANS IF SINGULARITY DETECTED
AT VRIST PITCH, ELSE COMPUTE WRIST ROLL. NOTE THAT THIS VILL
CAUSE THE ROLL TO SHOV UP ONLY IN HAND ROLL ANGLE.
SOLUTION § 1
IF(FPPP .EQ. 1) THEN
PPP = 0.0
ELSE
PPP = ATANZ2(T1P,T2PPP)
ENDIF
SOLUTION # 2
IF(FPPN .EQ. 1) THEN
PPN = 0.0
ELSE
PPN
ENDIF
RETURN
END

ATAN2(T1P,T2PPN)

C VWRIST PITCH DETERMINATION

SUBROUTINE WPITCH{A,A5P1,A5P2,WP,APP,APN,V4P1,V4P2)
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REAL A(4,4),A5P1,A5P2,VP APP,APN,V4P1,V4P2,
$T5A1PPPP . T5A2PPPP, T5A3PPBP, TSAPPPP,T541PPNP, T5A2PPNP, T5A3PPNP,
ST5APPNP, T5B1PPPP,T5B2PPPP, T5B3PPPP, TSBPPPP, T5B1PPNP, T5B2PPNP,
$T5B3PPNP, T5BPPNP R13,R23,R33,C1P,S1P,C23PP,S23PP,
§C23PN,S23PN, C4P1,S4P1,C4P2, S4P2

C INITIALIZE LOCAL VARIABLES T0°0.0

T541PPPP = 0.0
T5A2PPPP = 0.0
T5A3PPPP = 0.0
T5APPPP = 0.0
T5A1PPNP = 0.0
T542PPNP = 0.0
T5A3PPNP = 0.0
TSAPPNP = 0.0
T5B1PPPP = 0.0
T5B2PPPP = 0.0
T5B3PPPP = 0.0
T5BPPPP = 0.0
T5B1PPNP = 0.0
T5B2PPNP = 0.0
T5B3PPNP = 0.0
T5BPPNP = 0.0
A5P1 = 0.0
A5P2 = 0.0

C SETUP ORTENTATION PARAMETERS
R13 = A(1,3
R23 = A(2,3
R33 = A(3,3

¢ SETUP TRIG. FUNCTIONS
CiP = COS(WP
S1P = SIN{WP
C23PP = COS(APP
S23PP = SIN(APP
23PN - COS(APN
S23PN = SIN(APN
C4P1 = COS(W4P1
S4P1 - SIN(V4P1
C4P2 = COS(W4P2
S4P2 = SIN(W4P2

C COMPUTE FIRST TERMS OF THE ARCTAN2 FUNCTIONS
TSAIPPPP = - (R13 * ((C1P * C23PP * C4P1
T5A2PPPP = - (R23 * ((S1P * C23PP * (4P1
T5A3PPPP = R33 * S23PP * CdP1
T5APPPP = T5ALPPPP + T5A2PPPP + T5A3PPPP
T5A1PPNP = — (R13 * éClP * (23PN * C4P23

CiP * S4P1

'+
—~—~—

Sip * S4P1;gg

'+

S1P * S4P2
T5A2PPNP - - (R23 * ((S1P * C23PN * C4P2 EClP * S4p2§§§
T5A3PPNP - R33 * S23PN * (4P2

TSAPPNP = T5A1PPNP + T5A2PPNP + T5A3PPNP
C COMPUTE SECOND TERMS OF THE ARCTAN2 FUNCTIONS

TSBIPPPP = - 501? * $23PP * R13

T5B2PPPP = (SIP * S23pp * R23§

T5B3PPPP - - ((23PP * R333

T5BPPPP - T5B1PPPP + T5B2PPYP + T5B3PPPP

T5BIPPNP - - (C1P * S23PN * R13)
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T5B2PPNP = - (S1P * S23PN * R23)
T5B3PPNP = - (C23PN * nasz
TSBPPNP = T5B1PPNP + T5B2PPNP + T5B3PPNP
C COMPUTE VRIST PITCH ANGLES USING ARCTAN2 FUNCTION
A5P1 = ATAN2(T5APPPP,T5BPPPP
A5P2 = ATAN2(T5APPNP,T5BPPNP
%;:gm
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee
C DETERMINATION OF EAND ROLL ANGLES
SUBROUTINE HROLL(A,A6P1,A6P2,VP,APP,APN,A4P1,A4P2,A5P1,A5P2)
INTEGER I,J
REAL A(4, 4% ,A6P1,A6P2, VP, APP,APN,A4P1,A4P2,A5P1,A5P2,
$PPPPPA1,PPPPPA2,PPPPPA3, PPPPPA,PPNPPA1,PPNPPA2,PPNPPA3, PPNPPA
SPPPPPB1,PPPPPB2,PPPPPB3,PPPPPB, PPNPPB1,PPNPPB2, PPNPPB3 , PPNPPB
C INITIALIZE LOCAL VARIABLES TO 0.0
PPPPPAL = 0.0
PPPPPA2 = 0.
PPPPPA3
PPPPPA
PPNPPA1
PPNPPA2
PPNPPA3
PPNPPA
PPPPPB1
PPPPPB2
PPPPPB3
PPPPPB
PPNPPB1
PPNPPB2 = 0
PPNPPB3 = 0.
PPNPPB = 0.
C INITIALIZE VRIS
AGP1 = 0.0
A6P2 = 0.0
C SETUP ROTATION PARAMETERS
R11 = A(1,1
B21 = A(2,1
31 = A(3,1
C SETUP UP TRIG. FUNCTIONS
C1P = cosgvr

0
0
0
0
0.
0.
0.
0
0
0
0
0

0
0
0
0
0
0
0
.0
.0
.0
0
0
0
0
0
T

ROLL ANGLES TO0 0.0

S1P = SIN(VWP

C23PP = COS(APP
S23PP = SIN(APP
C23PN = COS(APN
S23PN = SIN(APK
C4P1 = COS(A4P1
S4P1 = SIN(A4P1
C4P2 = COS(A4P2
S4P2 = SIN(A4P2
C5P1 = COS(A5P1
S5P1 = SIN(A5P1
C5P2 = COS(A5P2
S5P2 = SIN(A5P2

LI T T T £ A 1 O T 1




C COMPUTE THE FIRST TERMS FOR THE ARCTAN2 PUNCTION

PPPPPA1 = R11 * ((C1P * C23PP * S4P1; - ESIP * C4P1;}
PPPPPA2 = BR21 * ((S1P * C23PP * S4P1) + (C1P * C4P1
PPPPPA3 = R31 * (S23PP * S4P1)

PPPPPA = - PPPPPAL - PPPPPA2 + PPPPPA3

PPNPPA1 = R11 * ((C1P * C23PN * S4P2) - (S1P * C4P2;3
PPNPPA2 = B21 * ((S1P * C23PN * S4P2) + (C1P * C4P2
PPNPPA3 = R31 * (S23PN * S4P2)

PPNPPA = - PPNPPA1 - PPNPPA2 + PPNPPA3

C COMPUTE THE SECOND TERMS FOR THE ARCTAN2 FUNCTION
PPPPPB1 = R11 * (C5P1 * ((CIP * C23PP * C4P1) + (SIP * 54P1))

$ - (CLP * S23PP * S5P1))

PPPPPB2 = R21 * (C5P1 * ((S1P * C23PP * C4P1) - (C1P * S4P1))
$ - (SIP * S23PP SSPI%)

PPPPPB3 = R31 * ((S23PP * C4P1 * C5P1) + (C23PP * S5P1))

PPPPPB = PPPPPB1 + PPPPPB2 - PPPPPB3
PPNPPB1 = R11 * icspz * ((CLP * C23PN * C4P2) + (S1P * S4P2))
$ - (C1P * S23PN * S5P2))
PPNPPB2 = R21 * (C5P2 * ((S1P * C23PN * C4P2) - (C1P * S4P2))
$ - (S1P * S23PN ssng)
PPNPPB3 = R31 * ((S23PN * C4P2 * C5P2) + (C23PN * S5P2))
PPNPPB - PPNPPB1 + PPNPPB2 - PPNPPB3

C COMPUTE THE HAND ROLL ANGLE USING THE ARCTAN2 FUNCTION

A6P1 = ATAN2(PPPPPA,PPPPPB
A6P2 = ATAN2(PPNPPA,PPNPPB
RETURN

END

£CCCCCCCCCCOCeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
C RADIAN TO DEGREE CONVERSION ROUTINE
SUBROUTINE RADEGéRADl,RAD2,DEG1,DEG2)
REAL RAD1,RAD2,DEG1,DEG2,PI
C INITIALIZE LOCAL VARIABLES AND RETURNED VALUES
DEG1 = 0.0
DEG2 = 0.0
C DECLARE CONSTANTS
PT = 3.141592653589792
C PERFORM CONVERSION
DEG1 = RAD1 * 180.0 / PI
DEG2 = RAD2 * 180.0 / PI
RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee
C CHECK FOR VALIDITY OF SOLUTIONS
SUBROUTINE VALID(A)
REAL A(4,7)
INTEGER I,]
CHECK FOR VALIDITY ON ALL JOINTS.IF OUT OF RANGE,FIRST COLUMN=1.0
NOTE THAT THE RANGES ARE OFFSET BY 0.01 DEGREES TO TAKE CARE
OF COMPUTATIONAL ERRORS CAUSED BY THE MACHINE.
DO 200 I = 1,4
VAIST RANGE IS FROM + 147 TO - 147 DEGREES.
IF(ABSéA(I,2 .GT. 147.01) .OR.
SHOULDER BANGE IS FROM +56 TO -236 DEGREES.
$ ((A(1,3) .GT. 56.01) .OR. (A(I,3) .LT. -236.01)) .OR.

(o] (o] (Yo K]
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ELBOV RANGE IS FRON + 56 TO - 236 DEGREES.
$ ((A}I 4% .GT. 56. 013 OR. (A }1 ,4) .LT. -236.01)) .OR.
VRIST ROLL IS CONTINUOUS. RANGE IS +/- 360.0 DEGREES.
$  ABS(A(I,5) .GT. 360.01) .OR.
VRIST PITCH RANGE IS FROM + 90 T0 - 90 DEGREES.
$ ABsglé % .GT. 90.01) .0OR.
ONT

A QO O &0 &

HAND ROLL I NUQUS. RANGE IS +/- 360 DEGREES
$ ABS( AéI 7% .GT. 360.01 & THEN
IF OUT OF RA? E,SET FLAG (COLUMN 1 OF RESPECTIVE ROV) =
I,1) = 1.0
END%F
200 CONTINUE
RETURN

END
CCCCCCCCCCCOCCCeeeereceereceeceeeececceceecceceeeeceeceeeecececceeeece
C NOBRMALIZE THE COMPUTED RESULTS SO THAT EACH ANGLE RANGES
C FROX -180.0 TO 180.0 DEGREES

SUBROUTINE NORMAL(A)

REAL A(4, 7}
INTEGER 1
C NORMALIZE THE ANGLES TO BETWEEN - 180 AND +180 DEGREES
D0 701 I = 1,4
DO 701 J = 2,7
IF(A(I,J) .6T. 180.0) THEN
A(1,1) = A(1,3) - 360.0
ELSEIF(A(T,J} .LT. -180.0) THEN
A(L,1) = A(1,3) + 360.0
ENDIF
701 CONTINUE
RETURN
END

CCCCCCCCCeeeeereceeeeeerecececececeeeeeeecceeecececcceeeeccceceeeeee
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APPENDIX 5
MERLIN 6500 MANIPULATOR VORKSPACE DEVELOPMENT - FORTRAN CODE
VERTICAL VORKSPACE DEVELOPMENT

CCCCCCCCCCCCeeeeeeeeeeeeeeeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeece
C PROGRAM VSPACE.FOR :-= MERLIN 6500 VERTICAL VORKSPACE DRAVING
C BY :== RANVIR S. SOLANKI
C VRIGHT STATE UNIVERSITY
C DAYTON, OF 45435.
C GRAPHICHS PACKAGE USED : DISSPLA
CCCCCCCCCCCCCCCCCCeceeeeeeeececceeCCeeeeCeeeeeeeeeeeeeeeeeeeeeeeeeee
REAL X(1, 2; ,Y(1,2),S,E,P,A2,A4,D6,PI
C SET VALUE OF
PI = 3.141592653589792
SETUP KINEMATIC PARAMETERS FOR THE MERLIN 6500 ROBOT.
A2 IS THE LENGTH OF THE UPPER ARM.
A2 = 17.38
A4 IS THE LENGTH OF THE LOVER ABN.
A4 = 17.24
D6 IS THE DISTANCE FROM THE VRIST PIN TO THE TIP OF THE ARN.
D6 = 3.5
TVO0 TYPES OF OUTPUT ARE ALLOVED BY THIS PROGRAN, HARDCOPY BY USING C
HE OUTPUT FILE STD00001.DAT, AND SCREEN OUTPUT ON A TEKTRONIX
4010 SCREEN, VHICH CAN BE SCREEN- DUMPED.
SETUP FOR OUTPUT FILE STD00001.DAT. OUTPUT FILE IS CURRENTLY
ENABLED.
CALL TALARS
SETUP FOR TEKTRONIX 4010 SCREEN OF HIGH RESOLUTION.
THIS OPTION IS CURRENTLY DISABLED.
CALL TEKALL(4010,960,0,1,0)
SETUP PAGE SIZE OF 8" x 8"’
CALL PAGE(8.0,8.0)
SETUP PLOT AREA OF 7.5" x 7.5". A BORDER OF 1/2" IS NECESSARY.
CALL AREA2D(7.5,7.5)
FRAME PLOT AREA.
CALL FRAME
SETUP GRAPH SCALE (X RANGE FROM -50 TO 50, Y SAME AS X)
CALL GRAFS 50.0,SCALE’,50.0,- 50.0, *SCALE’ ,50.0)
VRITE TITLE ON PLOT
CALL RLMESS(’MERLIN 6500 VERTICAL VORKSPACE’,30,-20.,-49.)

DRAVING OF THE LINKS AS EACE LINK MOVES DEVELOPS THE VORKSPACE
OF THE ROBOT ARM. THERE ARE ONLY THREE VERTICAL PLANE MOTIONS,
SHOULDER MOTION, ELBOV MOTION, AND VAIST PITCH MOTION.

DRAVING IN DISSPLA IS DONE BY CONNECTING TWO POINTS.

EACH POINT IS SPECIFIED BY ITS ’X° AND ’Y’ POSITIONS.

’X* IS POSITIVE TO RIGHT OF SCREEN, °Y’ IS POSITIVE UPVARDS.

NO TRANSFORMATIONS ARE NEEDED, AS THE VERTICAL DIRECT KINEMATICS
HAVE BEEN COMPUTED VITH THE BASE FRAME SET UP ACCORDING TO THE
GRAPHICS FRAME, i.e., VITH X POSITIVE TO THE RIGHT, Y POSITIVE
UPVARDS. THE X AND Y POSITIONS OF EACH POINT AT THE END OF THE
LINK ARE COMPUTED AND STORED. THUS, [X(1,1), Y(1,1)] ARE THE X,Y

Yo loleoXele e Yoo e Xe o] o [ap] o [op] [ X K X ap] OOOHG a a [ N ]
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COORDINATES OF THE FIRST POINT, VHILE [X(1,2), Y(1,2)] ARE THE
COORDINATES OF THE SECOND POINT.

DRAV GROUND LEVEL LINE

X AXIS POSITION OF GROUND LEVEL LINE
I(1,1) = -45.0
X(1,2) = 45.0

(> IelrivivLe]

C Y AXIS POSITION OF GROUND LEVEL LINE
Y(1,1) = -46.45
Y(1,2) = -46.45
C DRAV GROUND LEVEL LINE
CALL CURVE x,v,z,oa
C INDICATE CENTER OF GROUND LEVEL LINE
I(1,1) = 0.0
X(1,2) = 0.0
Y(1,1) = -45.0
Y(1,2) = -48.0

CALL cnnvn&x,v,z,O)
INDICATE GROUND LEVEL LINE ON PLOT.
CALL RLMESS(’BASE LEVEL’,10,-5.0,-45.0)
DEVELOP VERTICAL VORKSPACE USING VERTICAL MOTION JOINT KINEMATICS.

INDICATE STEP SIZE FOR EACH JOINT ON THE PLOT.
CALL RLIESS%’SHOULBER STEP SIZE = 9.125 DEGREES’,34,-48.,46.)

aa, [ap]

CALL RLMESS(’ELBOV STEP SIZE = 9.125 DEGREES’,31,-48.,43.)

CALL RLMESS(’VRIST PITCH STEP SIZE = 10.0 DEGREES’,36,-48.,40.)
C DRAV UPPER ARM LINK FROM 0,0 TO END OF LINK ACCORDING TO
C THE CURRENT SHOULDER ANGLE, IN STEPS INDICATED ABGVE.

D0 10 S = 237.0,-57.0,-9.125

1(1,1) = 0.0
Y(1,1) = 0.0
X(1,2) = A2 * COS(S * PI / 180.0
Y(1,2) = A2 * SIN(S * PI / 180.0

CALL Unvn(x,v,z,o&
C DRAV LOVER ARM LINK FROM BEGINNING TO END OF LINK ACCORDING TO
C THE CURRENT ELBOV ANGLE, IN STEPS INDICATED ABOVE.
DO 10 E = 146.0,-146.0,-9.125
X(1,1) = A2 * COS(S * PI / 180.0
Y(1,1) = A2 * SIN(S * PI / 180.0
X(1,2) = A2 * COS(S * PI / 180.0) +
$ A4 * COS((S + E) * PI / 180.0)
Y(1,2) = A2 * SIN(S * PI / 180.0) +
$ A4 srng#s + E) * PI / 180.0)

CALL CURVE(X,Y,2,0)
C DRAV WRIST PITCH LINK (VRIST PIN TO TIP OF VRIST) ACCORDING TO THE C
CURRENT WRIST PITCH ANGLE, IN STEPS INDICATED ABOVE.
D0_10 P = 90.0,-90.0,-10.0
X(1,1) = A2 * COS(S * PI / 180.) +

$ A4 * COS((S + E) * PI / 180.0
Y(1,1) = A2 * SIN(S * PI / 180.) +

$ A4 * SIN((S + E) * PI / 180.0
X(1,2) = X(1,1) + D6 * COS((S + E + P) * PI / 180.0
Y(1,2) = Y(1,1) + D6 * SIN((S + E + P) * PI / 180.0
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CALL CURVE(X,Y,2,0)
10  CONTINUE
C CLOSE ALL DEVICES AND EXIT DISSPLA.
CALL ENDPL(0)
CALL DONEPL
CALL EXIT
C EXIT PROGRAN
STOP
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeee

HORIZONTAL VORKSPACE DEVELOPMENT

£CCCCCCCCCCCCCCCCCOCCCCCCCCCCeeCeeCCCeCCCeCCCeCCeecceeceeecceeeeeeee
C PROGRAM HSPACE.FOR :== MERLIN 6500 HORIZONTAL VORKSPACE DRAVING
C BY :== RANVIR S. SOLANKI
C VRIGHT STATE UNIVERSITY
C DAYTON, OH 45435.
C GRAPHICHS PACKAGE USED : DISSPLA
£CCCCCCCCCCCCCOCCCOCCCCCCOCCCCCCCCCCCOCCCeCCCeCCCeCCCeCCCeceeeeceeee
REAL X(1,2).Y(1,2),¥,5,P,L,42,44,D,06,PT
C SET CONSTANT VALUES (PI )
PI = 3.141592653589792
SETUP KINEEATIC PARAMETERS FOR THE MERLIN 6500 ROBOT.
A2 IS THE LENGTH OF THE UPPER ABM.
A2 = 17.38
A4 IS THE LENGTH OF THE LOVER ARN.
A4 = 17.24
L IS THE CONBINED LENGTH OF THE UPPER AND LOVER ARNS.
L =42 + A
D IS THE OFFSET OF THE LOVER ARM FROM THE YO AXIS.
D = 12.0
D6 IS THE DISTANCE FRON THE WRIST PIN TO THE TIP OF THE ARM.
D6 = 3.5
TVO TYPES OF OUTPUT ARE ALLOVED BY THIS PROGRAM, HARDCOPY BY
USING THE OUTPUT FILE STD00001.DAT, AND SCREEN OUTPUT ON A
TEKTRONIX 4010 SCREEN, VHICH CAN BE SCREEN- DUNPED.
SETUP FOR OUTPUT FILE STD00001.DAT. OUTPUT FILE IS CURRENTLY
ENABLED.
CALL TALARS
SETUP FOR TEKTRONIX 4010 SCREEN OF HIGH RESOLUTION.
THIS OPTION IS CURRENTLY DISABLED.
CALL TEKALL(4010,960,0,1,0)
SETUP PAGE SIZE OF 8" x 8"
CALL PAGE(8.0,8.0)
SETUP PLOT AREA OF 7.5" x 7.5". A BORDER OF 1/2" IS NECESSARY.
CALL AREA2D(7.5,7.5)
FRAME PLOT AREA.
CALL FRANE
SETUP GRAPH SCALE (X RANGE FROM -50 TO 50, Y SAME AS X)
CALL GRAF(-50.0,*SCALE’,50.0,-50.0,*SCALE’,50.0)

(o} [} « [N K K] [+ X X Nap Nap] o (o] (] (] am
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VRITE TITLE ON PLOT
CALL RLMESS(’MERLIN 6500 HORIZONTAL WORKSPACE’,32,-25.,-49.)

DRAVING OF THE LINKS AS EACH LINK MOVES DEVELOPS THE WORKSPACE
OF THE ROBOT ARM. THERE ARE ONLY TW0 HORIZONTAL PLANE MOTIONS,
THE WAIST MOTION AND THE VRIST YAV ACTUALLY THE VRIST PITCH
MOTION AFTER A SET ROLL OF 90 DEGREES )

DRAVING IN DISSPLA IS DONE BY CONNECTING TWO0 POINTS.

EACH POINT 1S SPECLFIED BY ITS ’X’ AND Y’ POSITIONS.

’X*> IS POSITIVE TO RIGHT OF SCREEN, ’Y’ IS POSITIVE UPWARDS.
NO TRANSFORMATIONS ARE NEEDED, AS THE HORIZONTAL DIRECT KINEMATICS
HAVE BEEN COMPUTED VITH THE BASE FRAME SET UP ACCORDING TO THE
GRAPHICS FRAME, i.e., VITH X POSITIVE TO THE RIGHT, Y POSITIVE
UPVARDS. TEE X AND Y POSITIONS OF EACH POINT AT THE END OF THE
LINK ARE COMPUTED AND STORED. THUS, £X 1,1), Y(1, 1)% ARE THE X,Y
COORDINATES OF THE FIRST POINT, VAL X(l 2), Y(1,2)] ARE THE
COORDINATES OF THE SECOND POINT.

DRAV REFERENCE LINE THROUGH 0,0

X AXIS POSITION OF REFERENCE LINE.
X(1,1) = -45.0
X(1,2) = 45.0

Y AXIS POSITION OF REFERENCE LINE.
Y(1, 1% = 0.0
Y(1,2) = 0.0
DRAV REFERENCE LINE.
CALL CURVE(X,Y,2, o%
INDICATE CENTER OF REFERENCE LINE.
X(1,1) = 0.0
X(1,2) = 0.0
Y(1,1) = 2.0
Y(1,2) = -2.0

CALL CURVE(X,Y,2, og
INDICATE REFERENCE LINE ON PLOT.
CALL RLMESS(’REF.’,4,-48.0,-3.0)
CALL RLMESS(’LINE’,4.43.0,-3.0)
DEVELOP HORIZONTAL VORKSPACE USING HORIZONTAL JOINT KINEMATICS.

INDICATE STEP SIZE FOR EACH JOINT ON THE PLOT.

CALL RLMESS(’VAIST STEP SIZE = 3.0 DEGREES’,29,-48.,46.)

CALL RLMESS(’WRIST YAV STEP SIZE = 10.0 DEGREES’,34,-48.,43.)
DRAV SHOULDER OFFSET LINK FROM 0,0 TO END OF LINK ACCORDING TO
THE CURRENT WAIST ANGLE ’V’, IN STEPS INDICATED ABOVE.

DO 10 V = 147.0,- 147.0,-3.0

X(1,1) = 0.0
Y(1,1) = 0.0
X(1,2) = -D * COS(V * PI / 180.0
Y(1,2) = -D * SIN(V * PI / 180.0

CALL CURVE(X,Y,2,0

DRAV ARM LINK FRON SHUUEDER JOINT TO WRIST PIN VITH THE SHOULDER
ANGLE SET TD 90 DEGREES.

X(1,1) = -D * COS(V * PI / 180.0)
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X(1,2) = -D * COS(V * PI / 180.0) +
$§ L * COS((V + 90.0) * PI / 180.0)
Y(1,1) = -D * SIN(V * PI / 180.0
Y(1,2) = -D * SIN(V * PI / 180.0) +
$ L* SINé V + 90.0) * PI / 180.0)
CALL CURVE(X,Y,2,0)
C DRAV VRIST YAVING LINK (VRIST PIN TO TIP OF VRIST) ACCORDING TO
C THE CURRENT VRIST YAV ANGLE, IN STEPS INDICATED ABOVE.
0 10 P - £.0,-180.0,-10.0
X(1,1) = -D * COS(V * PI / 180.) +

$ L * COS((V + 90.0) * PI / 180.0)
Y(1,1) = -D * SIN(V * PI / 180.) +
$ L* SIN§ V + 90.0) * PI'/ 180.0)
X(1,2) = X(1,1) - D6 * SIN((V + 90.0 + P) * PI / 180.0
Y(1,2) = Y(1,1) + D6 * COS((W + 90.0 + P) * PI / 180.0
CALL CURVE(X,Y,2,0)

10  CONTINUE
C CLOSE ALL DEVICES AND EXIT DISSPLA.

CALL ENDPL(0)

CALL DONEPL

CALL EXIT
C EXIT PROGRAM

STOP

END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCeececCCececceeceeeeeeeeee
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APPENDIX 6
MANUFACTURERS DRAVINGS OF THE FINGERS AND THUMB

FOR THE UTAH/MIT DEXTEROUS HAND.
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APPENDIX 7
DIRECT KINEMATICS SIMULATION FOR THE UTAH/MIT DEXTEROUS HAND
PROGRAK UDKIN.FOR

CCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCChCCCCCCCeCCCCCecCeeeeeeeeeceeee
C UTAH/MIT DEXTROUS HAND DIRECT KINEMATICS SIMULATION PROGRAM
C BY :== RANVIR S. SOLANKI
C VRIGHT STATE UNIVERSITY
C DAYTON, OHIO - 45435
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee
C MAIN PROGRAN
C DEFINE REAL & INTEGER VARIABLES.
REAL ANG§4,4&,T64,4z,F1(4,4),F2(4,4),F3(4,4),PT,PF1,PF2,PF3
INTEGER 1,J,RERUN,FLAG
AS MULTIPLE DIGITS ARE INVOLVED IN THIS SIMULATION, WE REPRESENT
THE THUMB BY USING VARIABLES ENDING IN ’T’, FINGER 1 VARIABLES
VITH °F1°, FINGER 2 VITH °F2° AND FINGER 3 WITH °F3’.
DESCRIBE PROGRAN.
PRINT *,” THIS PROGRAM PERFORMS A MATHEMATICAL SIMULATION °
PRINT *,’ OF THE KINEMATICS OF THE UTAH/MIT DEXTROUS BAND. °
10  PRINT *,* °
OPEN OUTPUT FILE *HANDKIN.OUT’.
OPEN UNIT=6,STATUS=’NEV’,FILE=’HANDDKIN.UUT’%
FIND THE USER-DEFINED ANGLES FOR THE THUMB AND FINGERS.
CALL ANGLES(ANG%
THE USER HAS THE OPTION OF FINDING THE POSITION V.R.T. ANY
POINT ON THE FINGERS OR THUMB, OR FINDING THE POSITION OF
THE LAST JOINT. DETERMINE IF USER VANTS POSITION V.R.T.
LAST JOINT ON FINGERS OR IF THE POSITION REQUIRED IS V.R.T.
A PARTICULAR POINT ON THE FINGER OR THUMB.
SET DEEAULT TO BE POSITION VW.R.T. LAST JOINT.
FLAG = 0
CALL PUSIT%FLAG,PT,PFl,PF2,PF3%
COMPUTE THE DIRECT KINEMATIC TRANSFORM MATRICES [T],[F1],[F2],[F3]
CALL DIRKIN(ANG,T,Fl,F2,F3,FLAG,PT,PF1,PF2,PF3&
C OUTPUT THE DATA TO SCREEN AND A DATA FILE (HANDKIN.OUT)
CALL TOUT(T,F1,F2,F3)
RERUN = 0
PRINT *,’ RERUN SINULATION ? ( 1 = YES, 0 = N0 ) ==>
READés, ) RERUN
IFéR RUN .EQ. 1) THEN
0T0 10
ENDIF
C CLOSE OUTPUT FILE
CLOSE (UNIT=6)
STOP
END
CCCCCCCCCCCCCCCECCCCCCCCCCeeeCCCCCCCCCeCCCeeCCCeeceeecCeeeeeeeeeee
C ENTRY OF JOINT ANGLES BY THE USER
SUBROUTINE ANGLES(ANG%
REAL ANG(4,4),PI,ANGLE(4,4)

(Yo Xe]
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INTEGER I1,J,F
TV0 NATRICES ME DEFINED HERE, [ANG) AND [ANGLE].
WATLIX (ANGLE] S THE NATRIX VEERE THE USER ENTERED VALUES FOR THE
JOINT ANGLES ON THE THUMB § ROV 1 ENTRIES g AND ON FINGERS 1,2,3.
( ROV 2,3,4 ENTRIES ) ARE STORED IN DEGREES.
THE DEGREE VALUES OF THE ANGLES FOR THE JOINTS ON THE THUKB AND
FINGERS ARE THEN CONVERTED TO RADIANS AND STORED IN MATRIX [ANG).
JOINT 0 DATA OF EACH PINGER/THUMB IS STORED IN COLUMN 1, JOINT 1
DATA 1 COLUEN 2, JOINT 2 DATA IN COLUEN 3 AND JOINT 3 DATA IN
COLUMN 4.
ROV 1 REPRESENTS THE THUMB VALUES, ROV 2 REPRESENTS FINGER 1
VALUES, ROV 3 REPRESENTS FINGER 2 VALUES, ROV 4 REPRESENTS FINGER
3 VALUES IN BOTH MATRICES [ANG] AND [ANGLE]
DEFINE CONSTANT PI
PI = 3.141592653589792
INITIALIZE MATRIX [ANG] AND [ANGLES] ENTRIES TO 0.0
D0 100 I = 1,4
D0 100 J = 1,4
USER ENTERED ANGLES MATRIX { VALUES IN DEGREES )
ANGLE(L,J) - 0.0
JOINT ANGLES NATRIX ( VALUES IN RADIANS )
ANG(I,J) = 0.0
100 CONTINUE
C ENTRY BY USER OF THE THUMB ANGLES
¢ JOINT 0 ON THUMB
101 PRINT *,’ENTER THUMB JOINT 0 ANGLE (-45 T0 - 135 DEGREES) ==> °
READ(5,%) ANGLE(1,1)
C JOINT 1 ON THUMB
102 PRINT * 'ENTER THUNB JOINT 1 ANGLE (-15 T0 +60 DEGREES) ==> °
READ(5,%) ANGLE(1,2)
C JOINT 2 ON THUMB
103 PRINT * 'ENTER THUNB JOINT 2 ANGLE (+6.5 T0 +90 DEGREES) ==> ’
READ(5,%) ANGLE(1,3)
C JOINT 3 ON THUMB
104 PRINT * ENTER THUMB JGINT 3 ANGLE (0 TO 90 DEGREES) ==> ’
READ(5. ) ANGLE(1 4)
C USER ENTRY OF JOINT ANGLES FOR FINGERS
DO 110 F = 1,3
C JOINT O OF FINGERS 1,2 & 3
111 PRINT *,’ ENTER FINGER ’, F
PRINT *,> JOINT 0 ANGLE { 65 TO 115 DEGREES ) ==> ’
READ(S,*) ANGLE((F1),1)
C JOINT 1 OF FINGERS 1,2 & 3
112 PRINT *,’ ENTER FINGER’, P
PRINT *,” JOINT 1 ANGLE ( 120 TO 190 DEGREES ) =->’
READ(3, ) ANGLE((P+1),2)
C JOINT 2 OF FINGERS 1,2 & 3
113 PRINT *,’ ENTER FINGER’, F
PRINT * > JOINT 2 ANGLE (3.5 T0 90 DEGREES ) ==> °
READ(S, ) ANGLE((F+1),3)
C JOINT 3 OF FINGERS 1,2 & 3
114  PRINT *,’ ENTER FINGER’, F
PRINT * > JOINT 3 ANGLE (10 T0 90 DEGREES ) ==> ’
READ(5,*%) ANGLE((F+1),4)

(o] eX¥rieirieizivirivEieie i e

ca O
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110 CONTINUE
C CONVERT ANGLES FROM DEGREES TO RADIANS, STORE RADIAN VALUES IN
C MATRIX [ANG)

i]

115 1 4
1,4
= ANGLE(I,J) * PI / 180.0

115 CONTINU
C VRITE TO FILE

WVRITE(6,*) > °

VRITE 6, g > ANGLES DATA IN DEGREES. ’

VRITE(6,*) > ROWS REPRESENT THE DIFFERENT DIGITS. °

WRITE(6,* ; > COLUMNS REPRESENT THE JOINT NUMBERS. °
DO 116 1 = ;,%

WRITE(6,*) (ANGLE(I,J).J=1,4)

116 CONTINUE

RE
EN

TURN
D

ccccceeceeecceccceececccceeecceecceceeeeeccccceccececceeccceccceeccecc
C USER ENTRY OF POINT ON FINGERS AND THUMB W.R.T. VHICH POSTTION
C IS TO BE REPORTED.

SUBROUTINE POSIT(FLAG,AT,A1,A2,A3)
REAL AT,A1,A2,A5,TMAX FIMAX FOMAX,#3HAX
INTEGER FLAG
C INITIALIZE LOCALLY COMPUTED VARTABLES TO 0.0
AT = 0.0
A1 = 0.0
A2 = 0.0
A3 = 0.0
PRINT *,’ °
PRINT *,” ENTER 0 IF THE POSITION DATA REPORTED IS REQUIRED °
PRINT *,° V.R.T. THE LAST JOINT ON THE FINGERS AND THUMB. °
PRINT *,” ENTER 1 IF THE POSITION DATA IS TO BE REPORTED °
PRINT *,* V.R.T. A POINT ON THE THUB AND FINGERS OTHER °
PRINT *,’ THAN THE LAST JOINT : ==> °
READ(5, 300) FLAG
300 FonnATé
IFéFLA .EQ. 1) THEN
C DEFINE THE MAXIMUK LENGTH OF LAST LINK OF ALL FINGERS.
THAX = 1.125
FIMAX = 1.0625
F2MAX = 1.0625
F3MAX = 1.0625

C DETERMINE POSITION V.R.T. VHICH DATA IS T0 BE REPORTED.

301

302

PRINT *,’ ENTER DISTANCE ALONG THUMB ( IN INCHES ) V.R.T. °
PRINT *,’ WHICH YOU WANT THE POSITICN TO BE REPORTED --> °
READ(5,%) AT

IF((AT .GT. THAX) .OR. (AT .LT. 0.0)) THEN

PRINT *,’ >>> INTRY ERROR <<< ’

PRINT *,’ MAX. LENGTH OF iHUMB LAST LINK =’,THAX,’INCHES’

GOTO 301

ENDIF
PRINT »,° ENTER DISTANCE ALONG FINGER 1 (IN INCEES) V.R.T;
PRINT *,’ VHICH YOU VANT THE POSITION TO BE REPORTED -=» °’
READ(5,%) Al
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TF((A1 .GT. F1MAX) .OR. (Al .LT. 0.0)) THEN
PRINT *,’ >>> ENTRY ERROR <<< ’
PRINT *,’ MAX. LENGTH OF FINGER 1 LAST LINK =’ ,F1MAX,’INCHES’
GOTO 302
ENDIF
303 PRINT *,’ ENTER DISTANCE ALONG FINGER 2 (IN INCHES) V.R.T. °
PRINT *,° WHICH YOU VANT THE POS.:{ION TU BE REPORTED ==> ’
READ(5,*) A2
IF((A2 .GT. F2lAX& .0R. (A2 .LT. 0.0)) THEN
PRINT *,’ >>> ENTRY ERROR <<< ’
PRINT *,” MAX. LENGTH OF FINGER 2 LAST LINK =’,F2MAX,’INCHES’
GOTO 303
ENDIF
304 PRINT *,’ ENTER DISTANCE ALONG FINGER 3 (IN INCHES) V.R.T. °’
PRINT *,°> VHICH YOU VANT THE POSITION TO BE REPORTED ==> °
READ(5,%) A3
IF( (A3 .GT. F3HAX§ .0R. (A3 .LT. 0.0)) THEN
PRINT *,’ >>> ENTRY ERROR <<< °’
PRINT *,’ MAX. LENGTH OF FINGER 3 LAST LINK =’,F3MAX,’INCHES’
GOTO 304
ENDIF
ENDIF
RETURN
END
cceececeeceeccecceccecceecceccceeccececceccccccceccececceccccecceecccce
C DIRECT KINEMATICS IMPLEMENTATION FOR THE UTAH/MIT HAND
SUBROUTINE DIRKIN(ANG,T,F1,F2,F3,FLAG,AT,A1,A2,43)
INTEGER I,J,FLAG

REAL ANG%4,4%,T(4,4&,F1(4,4%,F2§4,4),F3§4,4%,CIT,C2T,C23T,

$C234T,S1T,S2T,523T,5234T,A0T,A1T,A2T,A3T,D1T,PI,AT,A1,A2,A3,
$AOF1,AOFQ,AOFS,ANGFl(1,4%,ANGF2(1,4),ANGF3§1,4),HAT(4,4)
C MATRIX T REFERS TO THE POSITION AND ORIENTATION MATRIX OF THUMB.
C MATRIX F1 REFERS TO POSITION AND ORIENTATION MATRIX OF FINGER 1.
C  MATRIX F2 REFERS TO POSITION AND ORIENTATION MATRIX OF FINGER 2.
C  ¥ATRIX ¥3 REFERS TO POSITION AND ORIENTATION MATRIX OF FINGER 3.
C INITIALIZE ALL THE LOCALLY COMPUTED MATRICES
DO 401 I = 1.4
DO 401 J - 1,4
T(1,J) = 0.0
F1(1,3) - 0.0
F2(I,J) = 0.0
F3éI,J = 0.0
401 CONTINUE
C ASSIGN THE (4,4) TERM UF ALL KINEMATIC MATRICES TO0 1.0
T(4,4) - 1.0
F1(4,4) = 1.0
F2(4,4) - 1.0
F3(4,4) - 1.0
C THUMB COMPUTATIONS
C
C DEFINE COSINES AND v ixBS MEEDED FOR KINEMATICS FOR THE THUMB
CIT = COS(ANG(1,1})
C2T - COS ANGél,Z)
C23T = COS{ANG(1,2) + ANG(1,3))
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(2347 = cns§Anc(1 2) + ANG(1,3) + ANG(1,4))
SIT = SIN(ANG(1,1
S2T = SIN(ANG(1.2
§23T = SIN(AN 31’2 + ANGél,3)

§234T = SI %AN (1,2% + ANG(1,3) + ANG(1,4)
C DEFINE KINEMATIC PARAMETERS (A0,A1,A2,A3 & D1) FOR THUMB IN
C INCHES.
AOT = - 0.75
ALT = 0.375
2T = 1.70
A3T = 1.30
DIT = 3.125
C COMPUTE THE KINEMATICS POSITION AND ORIENTATION MATRIX FOR THUMB.
T(1,1) = C1T * (234T
T(1,2) = - C1T * S234T
T(1,3) = S1T
T(1,4) = AOT + C1T * (AT + (A2T * C2T) + (AST * C237))
T(2,1) = SIT * (234T
T(2,2) = -SIT * $234T
T(2,3) = -C1T
T(2,4) = SIT * (A1T + (A2T * C2T) + (A3T * (23T))
T(3,1) = $234T
7(3,2) = C234T
7(3,3) = 0.0
T(3,4) = (A2T * S2T) + (A3T * S23T) + DIT

[N Nap N ap]

FINGER COMPUTATIONS
THESE TRANSFORM MATRICES ARE COMPUTED IN SUBROUTINE FINGER.
FINGER 1 COMPUTATIONS
STORE ANGLE DATA IN VECTOR ANGF1(1,4)
DD 402 I = 1,4
ANGFlél,I) = ANG(2,I)
402 CONTINU

C SET A0 TERM FOR FINGER 1

AOFt = -1.375
CALL FINGER(:NGF1,AO0F1,F1)

C PINGER 2 COMPUTATIONS
C STORE ANGLE DATA IN VECTOR ANGF2(1,4)

D0 404 I = 1,4
ANGF2é1,I) = ANG(3,I)
404 CONTINU

C SET A0 TERM FOR FINGER 2

C FINGER 3 COMPU

AOF2 = 0.0
CALL FINGER;ANGF2,AOF2,F2)
ATIONS

C STORE ANGLE DATA IN VECTOR ANGF3(1,4)

C

aQaa,m

DO 406 I = 1,4
ANGF3(1,I) = ANG(4,I)
406 CONTINU

SET A0 TERM FOR FINGER 3

AOF3 = 1.1875

CALL FINGERéANGF3,AOF3,F3&
IF THE USER HAS REQUESTED FOR POSITION TO BE REPORTED V.R.T. A
POINT ALONG THE LAST LINK, THEN UPDATE POSITION VECTOR TO BE
(POSITION VECTOR + (NORMAL VECTOR * LENGTH)).
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IF(FLAG .EQ. 1) THEN
1,4) = T(1,4) + (T(1,1) * AT

T(2,4) = T(2,4) + (T(2,1) * AT
T(3,4) = T(3,4) + (1(3,1) * AT
F1(1,4) = F1(1,4) + (P1(1,1) * A1
F1(2,4) = F1(2,4) + (F1(2,1) * A1
F1(3,4) = F1(3,4) + (F1(3,1) * A1
F2(1,4) = F2(1,4) + (P2(1,1) * A2
F2(2,4) = F2(2,4) + (F2(2,1) * A2
F2(3,4) = F2(3,4) + (F2(3,1) * A2
F3(1,4) = F3(1,4) + (P3(1,1) * A3
F3(2,4) = F3(2,4) + (F3(2,1) * 43
P3(3,4) = F3(3,4) + (P3(3,1) * A3

ENDI

RETURN

END

CCCCCCCCCCCCCCCCeeeeCCCeeeeeeceeeeeeeeeeeeeeeeeceeeeecccceeeeeeeeee
C OUTPUT TO SCREEN AND DATA FILE "HANDKIN.OUT"

SUBROUTINE TOUT(T,F1,F2,F3

REAL T(4 4} JP1(4,4),F2(4,4),F3(4,4)

INTEGER
C DESCRIBE OUTPUT IN DATA FILE
VRITE;G é * TRANSPORMATION MATRICES V.R.T. BASE FRAE ’

TH

VRITE(6
C VRITE OUT THOMB MATRIX {T]
PRINT *,’ THUMB MATR
VRITE(6,*) ’ THUMB NATRIX °

VRITE(6.*) * °
D0 501 I = 1,4

C VRITE TO SCREEN

VRITES . % ST(I ,J),J3=1, 4&
C VRITE TO OUTPUT FILE HANDKIN.OQUT
VRITE(6,*) (T(I,J),J=1,4)
501 CONTINU

PRINT *,” °

C VRITE OUT FINGER 1 MATRIX {Fl]
PRINT *,’ FINGER 1 NATR
VRITE(6,*) °
VRITE(6,*) ’ FINGER 1 MATRIX ’
VRITE(6.*) * °
DO 502 I = 1,4

C WRITE TO SCREEN

VRITESS,*% §F1é1,J&
C WRITE TO OUTPU EA
VRITEéS ,¥) (F1(1,9)
502 CONTINU
PRINT *,’ °
C VRITE OUT FINGER 2 NATRIX {rzl
PRINT *,’ FINGER 2 MATRIX
VRITE(6,*) ’ °
VRITE(6,*) ° PINGER 2 MATRIX °
VRITE(6,*) * °
D0 503 I = 1,
C VRITE TO SCREEN

’le’
DKIN.
,d=1

’

b
1)
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VRITES % §r2 I, J&,J=1,4R
C WRITE TO OUTPU ANDKIN.DAT
VRITE(6,*) (F2(I,J),J=1,4)
503 CONTINTE
PRINT *,’ °
¢ VAITE OUT PINGER 3 NATRIX {FS]
PRINT *,” PINGER 3 NATRIX
vansis *¥) 2

]

VRITE(6,*) > FINGER 3 MATRIX °
VRITE(6,*) ° °
D0 504 I = 1,4

C VRITE TO SCREEN

C URITEvgﬁTESTPU% éFséIHi&Dgli gZT

VRITE(6,*) (F3(I,),J=1,4)
504 CONTINU
RETURN
CCCCCCCCCCOCCCOCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCOCCCCCCCeCCCeCCCeeeees
C KINENATIC COMPUTATIONS FOR FINGERS.
SUBROUTINE FINGER(A,AOF KIN)
REAL A(1, 4} JKIN(4,4 ,A0F
INTEGER 1
C INITIALIZE LOCALLY COMPUTED MATRIX [KIN]
D0 601 I = 1,4
D0 601 J = 1,4
KIN(I,J) = 0.0
601 CONTINU
SET TRANSFORM MATRIX KIN[4,4] TERN TO 1.0
KIN(4,4) = 1.0
DEFINE P1
PI = 3.141592653589792
DEFINE THE VALUE OF ANGLE PHI IN DEGREES FOR THE FINGERS.
PHI = 12.0
CONVERT ANGLE PHI TO RADIANS.
RPHI = PHI * PI / 180.0
DEFINE COSINES AND SINES FOR ANGLE PHI.
CPHI = cosgnpnlg

aQ O QO o @

SPHI = SIN(RPHI
C DEFINE COSINES AND SINES FOR FINGERS.

C1F = C0S A 1,1
C2F = COS(A(1,2
C23F = C0 A(1,2 s A 3)
C234F = co K(1,2) + A(1,3) + A(1,4))
SIF = SIN 1,1
SoF = SIN 1,2
S23F = SI A(1,2 + A(1,3)
S234F = SI §A(1,2 + A(l 3) + A(1 l
C DEFINE KINEMATIC PARAMETERS 5 1, 2 D1) FOR FINGERS.
AP = - 1.2 * SIN(30.0 * PI / 180
A%F = 1.7
A3F = 1.3
DIF = (4.25 / CPHI) + (1.2 * C0S(30.0 * PI / 180.0))
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C COMPUTE THE KINEMATIC POSITION AND ORIENTATION MATRIX FOR PINGERS.
KIN(1,1) = C1F * C234F
KIN(1,2) = - C1F * S234F
KIN(1,3) = S1F
KIN(1.,4) = AOF + C1F * (A1F + (A2F * C2F) + (A3F * C23F))
KIN(2,1) = (SPHI * S234F) + iCPHI * S1F * (234F
KIN(2,2) = (SPHI * C234F) - (CPHI * SIF * S234F
KIN(2,3) = - CPHI * CiF
KIN(2,4) = (D1F * SPHEI) + CPHI * S1F * (A1F + (A2F * C2F)
$+ (A3F czarg& + SPHL * ((A2F * szrg A3F * S23F))
KIN(3,1) = (CPAI * S234F) - (SPHI * SiF * C234F
KIN(3,2) = (CPHI * C234F) + (SPHI * SIF * S234F
KIN(3,3) = SPHI * CiF
KIN(3,4) = (DIF * CPHI) - SPEI * S1F * (A1F + (A2F * C2F)
$+ C23F)) + CPHI * ((A2F * S2F) + (A3F * S23F))
%ﬁnm

ccececceecceeccecceccececececcecececcceecceececeeececcecccceececcececcecceccecce
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APPENLIX 8

COMPUTER GRAPHICAL SIMULATION - FORTRAN CODE
AND DOCUMENTED DATA FILES

PROGRAN SIMULATION.FOR

CCOCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCeeCCeeeCeeeCeeeeeeeeeeeeeeeeeeee
DIMENSION X0(8,3,10,14),60(3,2,10, 14& ,TR(4,4,10,14), B{G) ,C(6),
SFOCUS£2),AXDAT(8 .3), xn&s ,2 1000) LINKNUN(20) ,CF(4),M1(6,4),
$2(6,4),43(6,4,100) , INITS (6, 2&
REAL X0,TR,G0,XD,D,PT,X,Y,Z,ZPOINT,B,N,ANG,FOCUS,, NAG,
$ ANGLE,TEKP,XH,YH,ZH,XP,YP,Zp LINITS,N1,M2 K3
INTEGER NUM,ROBNU,A,C,COUNT,BF ,N1,N2,N,ACTIVE,
$ AF,0PTION,SET,EXECUTE,SYSNUN,LINKNUN,REGEIVE , BANDNUN(2),
$ ROOMNUM,NERLNUN(2) ,CF,END,MONITOR,INIT,KINNUN,STEPS
CHARACTER DFILE*20
LOGICAL nnav&e) ,ERASE, REPEAT
€CCCCCCCCCCCCCCCCCCCCCeeeCCCeCeCCCeeeeeeeeeeeeeecceeeeeceeeeceeeee
SET- UP PARAMETERS
7 IS INITIAL VIEVPOINT IN INCHES ALONG Z AXIS
7=220
ZPOINT IS TOTAL INITIAL DISTANCE FROM DRAVING ORIGIN TO VIEWPOINT
ZPOINT=220
nnAv§1x5a ARE LOGICAL VARIABLES
TF THE LOGICAL IS FALSE THAT UNIT VILL NOT BE DRAWN
IF TRUE - THAT UNIT VILL BE DRAVN
ROOM = DRAV(1)
LEPTARM MERLIN = DRAV(2
RIGETARM MERLIN = DRAV(3
LEFTHAND UTAE = DRAV(4
RIGHTHAND UTAH = DRAV(5
DRAV(1) = .TRUE.
DRAV(2) = .TRUE.
DRAV(3) = .FALSE.
DRAV(4) = .TRUE.
DRAV(5) = .FALSE.
Nic I8 1IN TIAL AGNIFICATICN
NAG=1
REPEAT IS LOGICAL TO TELL IF NORE THAN ONE VIEV IS TO BE DRAWN
REPEAT = .PALSE.
PI VALUE OF PI
PI=ACOS(-1. o%
THE ACTIVE ROBOT VILL BE THE LEFTHANDED ROBOT
ACTIVE=1

READ ROON.DAT

X0 STORES 3- DINENSIONAL CORNER POINTS OF ALL LINKS
EXAMPLE xoSI,J,x,Lg
I IS THE POINT NUMBER
J IS THE 3 DIMENSIONAL POINT VECTOR
K IS THE LINK NUMBER
L IS THE SYSTEM NUMBER

[ ¥eXeReXeleo e X Q2 [ X!

e iriririeieeoNeoNe] a (e (o} a
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¢ G0 STORES TRANSLATIONAL AND ROTATIONAL VECTORS ALL LINKS
¢ Gﬂ%l »J,K, L&
¢ S’THE TRANSLATION VECTOR
C J IS THE ROTATION VECTER
C K IS THE LINK NUMBER
C L IS THE SYSTEM NUNBER
¢
C LINKNUM  NUMBER OF LINKS IN EACH SYSTEM(A FINGER IS A SYSTEN)
C
C ROBNUN COUNTER FOR READING ROBOTS
ROBNUM = ROBNUNM + 1
c ROOMNUX ROOM SYSTEM NUMBERING VARIABLE

ROONNUM = ROBNUM
cceeecccccceecccccccccccceccecceeeccceccececececccccccccccccccCCCCeeeee
C FILE *ROONM.DAT’> STORES THE 3- DIMENSIONAL POINTS DEFINING THE ROOM

OPEN(UNIT 7,FILE="RO0OM.DAT’ ,STATUS = ’OLD’)

READ LINKNUI(ROOINUI}
READ 7 (SXOSI J,K,RO0MNUN) ,1=1,8),J=1,3) K=
$ 1,L NKN }
READ (7,* 65603 K nuonuuu) 1=1,3),J=1,2),
K= 1 LINKNOK (ROOMNUN) )
. CLGSE(UNIT 7)
g READ MERL.DAT
DO 87 N = 1,2
ROBNUM=ROBNUN+1
C MERLNUM MERLIN ROBOT NUMBERING VARIABLE
C HEHLNUI§ a LEFT HAND , MERLNUM(2) RIGHT HAND
NERLNU ﬁnz - ROBNUM
C RECEIVE NUMBER OF SYSTEM TO BE LINKED TO (ROBOT TO ROON)

RECETVE(MERLNTN (X)) = RODMNO
C MERL.DAT STORES THE 3-DINENSIONAL DATA POINTS,TRANSLATION VECTORS,
C AND ROTATION VECTORS
OPEN(UNIT 7,FILE="NERL.DAT’ ,STATUS = *0LD’)
READ LINKNU!(ROBNUI&
READ ((XO(T,J,,ROBNUN), I=1,8),3=1,3) =
3 iﬁL(NKN M(R Bg(l } y
READ (7, GO(I,J,K,ROBNUN) ,I=1,3),J=1,2
$ K=1,L} ﬁéu(nnnnvlj) )»11,2),
CLOSB(ATT-T)
87 CONTINUE
C ADJUST TRANSLATION MATRIX FRON PILE ’MERL.DAT’ TO BUILD A

C RIGHT HANDED RQBOT
G0(1,1,2,MERLNUN(2))= X0(1,1,2, nuuuuuu& c0(1 1,2,MERLNUN(2))
G0(2,1,5,MERLNUM(2 -60(2,1,5,MERLNUM (2
-GO§3 1,6, MERLNUM (2
-60(3,1,7,MERLNUN (2

G0(3,1,6,MERLNUN(2
G0(3,1,7,MERLNUM(2
gccggggcggggcccccecccccccccccccccccccccccccccccccccccccccccccccccccc

C
C  HANDNUM SYSTEM NUMBERING VARIABLE
C HANDNUM(1) LEFT EAND  HANDNUM(2) RIGHT HAND
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DO 111 N=1,2
HANDNUI&N) =ROBNUM + 1

RECEIVE(HANDNUM(N)) = MERLNUM(N)
D0 98 I=1,4
RECEIVE(HANDNUM(N) + I) = HANDNUM(N)
98 CONTINUE

C ’UTAE.DAT’ IS DATA FILE VHICH STORES THE POINT VECTORS,TRANSLATION C
VECTORS, AND ROTATION VECTORS VITH RESPECT TO EACH LINKS OVN
C COORDINATE SYSTEM.
OPEN(UNIT=7,FILE=’UTAH.DAT® ,STATUS="0LD’)
D0 109 L=1,5
ROBNUH-ROBNUK--1

READ(7,* LINKNUH ROBNUN)
REA (7 )(((X0(I,,K, RUBNUI& ,1=1,8),
$ 3) ,K=1, LINKNUM (ROBNUN) )
READ(7 *5(((60( 1,1,K, ROBNUN& ,1=1,3),
$ 321,2) ,K=1, LINENU (ROBNUN) )
109 CONTINUE
CLUSEﬁUNIT =7)
111 CONTINUE

C ADJUST TRANSLATION MATRIX FROM FILE ’UTAH.DAT’ TO BUILD A
C RIGHT HAND
60(1,1,2, (HANDNUM(2)+1))=-60(1,1,2, (HANDNUM(2)+1
60(1,1,2, (HANDNUM(2)+2))=-G0(1,1,2, (HANDNUM(2)+2
G0(1,1,2, (HANDNUNM(2)+3))=-GO(1,1,2, (EANDNUN(2)+3
G0(1,1,2, (HANDNUM(2)+4))=-G0(1,1,2, (HANDNUM(2)+4

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C INITIAL VIEWPOINT

C
C INIT INITIAL SETUP VARIABLE-CAUSES PROGRAN TO
g CALCULATE INITIAL VIEVING ANGLES.
INIT = 1
GOTO0 199
119 INIT = 0
C

CCcccccccccececeeececccccccccecececccceceeccecccccecccecececececcceccececcce
C MONITOR SETUP

C

C MONITOR TYPE OF VORKSTATION VARIABLE

¢
WVRITE(6,*) ’IF VORKING ON A TEKTRONICS 4010 - ENTER 1’
WRITE(6,*)°IF VORKING ON A TEKTRONICS 4207 - ENTER 2’
VRITE 6;* >TF VORKING ON A REGIS - ENTER 3’
READ(6 l MONITOR

VRIT
gCnggggggCéggCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
v
C SETTING OPTION EQUAL TO ZERO TELLS THE PROGRAM VHERE TO RETURN
C AFTER THE INITIAL DRAVING.
OPTION = 0
C GO TO THE DRAVING ROUTINE
G0 TO 587
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cceeccccccccececececccccceececceccceccececceeccceeccceccceeecceecececcecceecce
C MAIN MENU

C
C  OPTION MENU SELECTION VARIABLE
C
143 VRITE(6,*)’  OPTIONS’
VRITE(6,*)’ GO TO SET-UP MENU - ENTER 1’
VRITE(6,*)’ GO TO EXECUTE MENU - ENTER 2°
VRITE(6,*)’ DRAV CURRENT ROBOT - ENTER 0’
VRITE(6,*)’  QUIT - ENTER 10’
READ*, CPTION
VRITEéG,*)
£CCCCCCCCCCCCCCCCeeCCCeeCCCeCCeeeeeeeeCeeeeeeeceeeeccceeeeeeeeeeee
C SETUP MENU
C
C  SET SETUP MENU SELECTION VARIABLE
C
IF (OPTION .EQ. 1) THEN
157 WRITE(6,*)’CHANGE VIEWPOINT, INPUT - 1°
VRITE(6,*)’CHANGE FOCUS,AND MAGNITUDE, INPUT - 3’
VRITE(6,*)’CHANGE SYSTEMS DRAVING,  INPUT - 4’
VRITE(6,*)’CHANGE FIXED HAND POSITION, INPUT - 6’
VRITE(6,*) REPOSITION ROBOT, INPUT - 7’
VRITE(6,*)’CHANGE ACTIVE ROBOT INPUT - 8°
VRITE(6,*) ’RETURN TO MAIN MENU, INPUT - 9’
VRITE(6,*) DRAV ROBOT INPUT - 0’
VRITE(6,*)’QUIT INPUT - 10°
READ*,SET
VRITEéG,*)
£CCCCCCCCCCCCCCETTCCCCCCeCCeeeeeeeeceeCeeeeeeeccececeeeeeeeeeeeeeeee
C VIEWPOINT
C

C X,Y,Z - THE VECTOR TO THE VIEWPOINT

C
IF (SET .EQ. 1) THEN
VRITE(6,*
VRITE(6,*)’0LD VIEVPOINT - X,Y,Z’
VRITE(6,190)X,Y,2
190 FORMAT(’ °,3F6.0,’ INCHES’%
VRITE(6,*) INPUT - NEV VALUES - X,Y,Z IN INCHES’
READ*,X,Y,Z
VRITE(S,*%
C THE FOLLOVING CODE DETERMINES THE ORIENTATION OF THE ROOM AND
C EVERYTHINT INSIDE.
C
g FIRST DETERMINE THE PITCH OF THE VIEWPOINT
199  IF SZ .EQ. 0) THEN
I éx .EQ. 0) THEN
0§2,2,1,1)=0
ELSE IF (X .LT. og THEN
60(2,2,1,1)=P1/2
ELSE
60(2,2,1,1)=-P1/2
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END IF

ELSE

60(2,2,1,1)=- ATAN(X/ABS(Z))

END IF

IF (Z .LT. 0) THEN
60(2,2,1,1)=PI - 60(2,2,1,1)

END IF

A,

ROTATE ROOM FOR A SIDE (OR OTHER) VIEV

IF ((X .E. 0) .AND. éz .EQ. 0)) THEN
IF (Y .LT. 0) THEN
60(1,2,1,1)=-PI/2
ELSE
60(1,2,1,1)=PI/2
END IF
ELSE
G0(1,2,1,1)=ATAN(Y/SQRT( (X*X)+(Z*Z)))
END IF

[ Xap Nap]

DISTANCE FRON VIEVPOINT TO FOCAL POINT(VHICH IS INITIALLY [0,0,0])

ZPOINTzSQRT&X*X+Y*Y+Z*Z)
IF (INIT .EQ. 1) THEN
G0 TO 119
ELSE IF éINIT .EQ. 2) THEN
G0 T0 502
END IF

VRITE(6,*)
GO TO 157

FOCUS AND MAGNITUDE

FOCUS TW0 DIMENSIONAL SCREEN FOCAL POINT FOR VIEVING
X IS POSITIVE TO THE RIGHT
Y IS POSITIVE UPWARDS

MAG MAGNIFICATION VALUE

ELSE IF (SET .EQ. 3% THEEN
VRITE(6,*)’ OLD FOCUS X,Y IN INCHES’
VRITE(6,259) (FOCUS(I),I=1,2&

259 FORMAT(’ » 9F6.0,° 1 ans’g
VRITE 6,*&’ INPUT NEV FOCUS IN INCHES’
READ *, (F CUS(I{,I=1,2)
vanngs,*)’ 0LD MAGNIFICATION’

> YrieleololeoleRaoNel

VRITE(6,264) MAG
264 FORMAT(’ » 16.0)
VRITE(6,*)’  INPUT NEV MAGNIFICATION’
READ *,MAG
VRITE(6,*)
GO TO 157
C SYTEMS DRAVING MENU
C - CAUSES THE SYSTEMS TO BE OR NOT TO BE DRAWN
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aQQC,

[ap Xap Nan N oo

ELSE IF SET EQ 4% THEN
270 IF (DRAV(1 RUE.) THEN
VRIT (6 *)’DU NOT DRAV ROON, ENTER 1°
ELSE
VRITE%G,*)’DRAV ROOX, ENTER 1’
END 1

IF (DRAV(2) .EQV. .TRUE.) THEN
VRITE(6,*)°D0 NOT DRAV LEFTARM MERLIN, ENTER 2’
ELSE

VRITE(6,*)’DRAV LEFTARM MERLIN, ENTER 2’
END IF
IF (DRAVE3) .EQV. .TRUE.) THEN

VRITE(6,*)’D0 NOT DRAV RIGHTARM MERLIN, ENTER 3’
ELSE

VRITE(6,*)’DRAV RIGHTARM MERLIN, ENTER 3°
END IF

IF (DRAV(4) .EQV. .TRUE.) THEN
VRITE(6,*)’D0 NOT DRAV LEFTHAND UTAH,  ENTER 4°
ELSE

VRITE(6,*)’DRAV LEFTHAND UTAH, ENTER 4’
END IF
IF (DRAVé5) (EQV. .TRUE.) THEN
VRITE(6,*)’D0 NOT DRAV RIGHTHAND UTAH, ENTER 5’
ELSE
VRITE(6,*)’DRAV RIGHTHAND UTAH, ENTER 5’
END IF
VRITE(6,*)’T0 QUIT, ENTER 6’
READ *,N
IF (DRAV(N) .EQV. .FALSE.) THEN
DRAV(N) = .TRUE.
FISE
DRAV(N) = .FALSE.
END IF
IF (N .EQ. 6) THEN
GOTO 157
END IF
GOTO 270
POSITION HAND
ANG , ANGLE TEMPORARY STORAGE OF ANGLES FOR READING INPUT

ELSE IF (SET .EQ. 6) THEN
VRITE(G, % YOU ARE GOING TO BE ASKED FOR PITCH,
$ YAV, AND ROLL,’
VRITE 6,*3’ AND THEN X,Y, AND Z OFFSET FOR THE UTAH HAND’
VRITE(6,*)’ VITH RESPECT TO THE CENTER END OF THE ARN’
THE YAV,PITCH, AND ROLL ANGLES ARE APPLIED TO A BLANK INITIAL

YECTOR MATRIX ON THE HAND, AS IS THE OFFSET VECTOR
YAV

VRITE%G ;302) €0(1,2,2, HANDNUN(ACTIVE)) /P1*180
302 FORMAT(® CURRENT VAV ANGLE IS’,F8.2,° DEGREES’)
VRITE(6, % INPUT NEV YAV ANGLE IN DEGREES’

READ* , ANGLE
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60(1,2,2,HANDNUM (ACTIVE) )=ANGLE/180*PI
C PITCH
VRITE(6,308) 60(2,2,2, KANDNUI§ACTIVE))/PI*180
308 FORMAT(> CURRENT PITCH ANGLE 1S’,F8.2,” DEGREES’)
VRITE(G, i INPUT NEV PITCH ANGLE IN DEGREES’
READ*, ANG
60(2,2,2,IANDNUK (ACTIVE))=ANGLE/180*PI
C ROLL
VRITE%6,314) c0§3 ,2,2, HANDNUlﬁACTIVE))/PI*ISO
314 FORMAT(® CURRENT ROLL ANGLE 1S’ F8.2,” DEGREES’)
VRITE(G, { INPUT NEV ROLL ANGLE IN DEGREES’
READ* ANGLE
%3 ,2,2, EANDNUX (ACTIVE) ) =ANGLE/180*PI
C OFFSE
C
C XH,YH,ZE  HAND POSITIONING VARABLES

C
WVRITE(6,*)°X,Y,Z OFFSET FOR THE UTAH HAND IS MEASURED’
VRITE(6,*) FROM THE CENTER END OF THE ROBOT WRIST PIN’
WRITE(6,*)’THESE VALUES ARE MEASURED VITH RESPECT T0’
WRITE(6,*)’ THE LAST COORDINATE SYSTEM OF THE MERLIN’
WRITE(6,327)XH,YH,ZH

327 FORMAT(’ CURRENT X Y,Z OFFSET IS ’,3F8.2,’ INCHES’)

WVRITE(6, & ENTER HAND OFFSET 1,Y, 7 IN INCHES’

READ YH,ZH
GO(1,1,2,EANDNUN(ACTIVE))=XE
G0(2,1,2, EANDNUY(ACTIVE))=YH
G0{3, 1,2, HANDNUM(ACTIVE))=ZH
VRITE(6, %)

GO TO 157

REPOSITION ROBOT

XP,YP,ZP ROBOT POSITIONING VALUES

ELSE IF (SET .EQ. 73 THEN
VRITE(6,*) ’ENTER REPOSITION POINT OF MERLIN ROBOT’
VRITE(6,*)’POSITIVE X IS TO THE RIGHT’
VRITE(6,*) POSITIVE Y IS UP’
VRITE(6,*) ’POSITIVE Z IS OUT OF THE SCREEN’
VRITE(6,*)’THE ORIGIN IS THE LOVER,BACK,LEFT CORNER OF ROOM’
VRITE(6,*)’THE OLD X,Y,Z POSITION IS °
VRITE(G, 347)GO§1 1,2, IERLNUI(ACTIVE& G0§2,1,2,
$  MERLNUM(AC IVE%% ,60(3,1,2,MERLNUM(ACTIVE))
347 FORMAT(3F8.2,’ INCHES’
VRITE(G,*Z’ENTER PLACEMENT OF BOTTOM CENTER OF ROBOT-’,
$ X,Y,Z IN INCHES’
READ*,XP,YP,ZP
60 1,1,2,!ERLNUI§ACTIVE§§=XP

aoamae,

G0(2,1,2 MERLNUM{ACTIVE))-YP
G0(3,1,2,MERLNU(ACTIVE))=ZP

VRITE(6,*

VRITE(6,*)’THE BASE OF THE ROBOT MAY BE ROTATED.’
VRITE(6,*) ’THE CURRENT ROTATION IN DEGREES IS’
VRITE(6,*) GO0(2,2,2,MERLNUN(ACTIVE))*180/PI,> DEGREES’
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VRITE(6,*) ENTER BASE ROTATION IN DEGREES’
READ* N
G0(2,2,2,XERLNUM(ACTIVE))=N/180*PI
G0T0 157
C CHANGE ACTIVE ROBOT
ELSE IF ( SET .EQ. s& THEN
IF (ACTIVE EQ 1) THEN
ACTIVE =
ELSE
ACTIVE =
END IF
VRITE(6,*)’ACTIVE ROBOT IS °,ACTIVE
VRITE(6
GOTO 157
C RETURN
ELSE IF (SET .EQ. 9) THEN
GOTO 143
C REDRAV
ELSE IF (SET .EQ. 0) THEN
GOTO 587
C QuIT

ELSE IF (SET .EQ. 10) THEN
GOTO 656
ELSE
GO TO 157
END IF
cccecceeceecceccecceecceecccecccecceceeccceececececcecccccecececcceccece
C EXECUTE MENU
C
C EXECUTE MENU SELECTION VARIABLE
C
ELSE IF (OPTION .EQ. 2% THEN
374 WRITE(6,*)’MOVE ROBOT INDIVIDUAL JOINTS,  INPUT

'
—
-

WVRITE 6,* ’MOVE INDIVIDUAL FINGER JOINTS, INPUT - 2’
VRITE(6,*)’SAVE THIS VIEV, INPUT - 3’
WVRITE(6,*)’DRAV ROBOT FROM SAVED DATA FILE,INPUT - 4°
VRITE(6,*) MOVE ROBOT TIP POINT TO POINT, INPUT - §°
WVRITE(6,*) MOVE ROBOT- ALL JOINTS IN STEPS, INPUT - 6’
WRITE(6,*)’RETURN TO MAIN MENU, INPUT - 9’
VRITE(6,*)’DRAV ROBOT, INPUT - O°
VRITE(6,*)’T0 QUIT, INPUT -10°
READ* EXECUTE

VRITEéS,*)

Ccccececeececceeccecceccecceceecececeeccccccecccceecceececccececcccccece

C MOVE ROBOT
C DEFINES ACTIVE LINK NUMBERS
LINITS DEFINES THE LIMITS OF EACH JOINT IN DEGREES

[ Re Yo e

DATA C/4,5,7,8,9,10/
DATA LIlITS/~147,-236,—236,-360,-90,-360,147,56,56,360,90,360/
IF (EXECUTE .EQ. 1) THEN

395 VRITE(6,*)’CHOOSE JOINT FOR CHANGE’
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VRITE(6,*) *VAIST -1
VRITE(6,*) ’SHOULDER - 2’
VRITE(6,*) *ELBOV -3
VRITE(6,*) °WRIST ROLL - 4’
VRITE(6,*) °WRIST PITCH - 5°
VRITE(6,*) ’HAND ROLL - 6°
VRITE(6,*) *T0 EXIT - 0’
READ *, A
IF (A .EQ. 0) THEN
GO TO 374
ELSE
ANG = G0(3,2,C(A) ,MERLNUM (ACTIVE))*180/PI
408 VRITE§6,409) ANG
409 FORMAT(’ OLD VALUE ’,F8.2,’ DEGREES’
VR{TE(G ,*)’ INPUT - NEV VALUE IN DEGREES’
READ
IF ((D .LT. LIMITS§A ,1)
$ (D .GT. LIMITS(A, )) THEN
VRITE(6,415) LIMITS(A,1 % ,LIKITS (A,2)
415 FORMAT(’ ANGUE MUST BE BETWEEN °,
$ F8.2,° AND °,F8.2,’ DEGREES®)
GO TO 408
END IF
G0(3,2,C(A),MERLNUN(ACTIVE)) = D*PI/180
GO T0 395
END IF

cceecececccccecececceccceccccceeeececccecccceccccccccccecceccceccecccecce
C MOVE FINGERS

[ap]

CF IS THE SYSTEM VARIABLE

C
C
C AF IS THE SYSTEM COUNTER VARIABLE
C
C BF IS THE LINK VARIABLE
C
ELSE IF éEXECUTE .EQ. 2) THEN
432 WRIT
WRITE(6,*)’CHOOSE JOINT FOR CHANGE’
VRITE 6,* ’0TH FINGER - 1’

VRITE(6,*) ’1ST FINGER - 2
VRITE(6,*) ’2ND FINGER - 3°
VRITE(6,*) ’>THIRD —
VRITE(6,*) ’TO EXIT - 0’
READ *, AF

VRITE(S6,*)

D0 443 1-1,4

CF(I)=HANDNUM(ACTIVE) + I
443 CONTINUE

CCCCCCCCCCCCCCCCeCeeeeeeeeeeeeceeceCeeeeccecececeeecceceeeececeeeeee
C CF FINGER JOINT VARIABLE
IF éAF .EQ. 0) THEN
0 TO 374
ELSE
450 A = CF(AF)




VRITE(6,*)’CHOOSE POSITION FOR CHANGE’

VRITE(6,*) >1ST JOINT - 1’
VRITE(6,*) ’2ND JOINT - 2°
VRITE(6,*) *3RD JOINT - 3’
VRITE(6,*) ’4TH JOINT - 4
VRITE(6,*) °TO EXIT - ©°
READ *, BF

END IF

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeCCeCCeeceeeceececcceeeeceeceeeeeee
IF éBF .EQ. 0) THEN
0 TO 432
ELSE
BF = BF+1
VRITE(6,*)
VRITE 6,466%(G0$3,2,BF,A))*180/PI
466 FORMAT(’  OLD VALUE ’,F8.2,’ DEGREES’)
VRITE(6,*)’ INPUT - NEV VALUE IN DEGREES’
READ*,D
G0§3,2,BF,A) = D*PI/180
VRITE(6,*)
GO TO 450
END IF
CCCCCCCCCCCCCCCCCCCCCCCeCCCeCeeceececeecececceeeeceeeeceecccececeeeee
C SAVE VIEV
C STORES THE VARIABLE LINK PARAMETERS IN AN QUTPUT FILE

c
ELSE IF (EXECUTE .EQ. 3) THEN
NPEN/UNIT-8,FILE="SAVE.DAT’ ,STATUS="NEW’)
VRITE(8,*) X,Y,Z,ZPOINT,NAG,FOCUS
DO 484 1-1,ROBNUM
DO 484 J-1,LINKNUM ROBNUM%
VRITE(8,*) (60(L,1,J,I),L=1,3
VRITE(8,*)(G0(L.2.J,1),L=1.3
484 CONTINUE
CLOSE (UNIT=8)
50 T0 374
CCCCCCCCLCCLLCCCECCCCiEeCeeeeeeeeCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeeee
ELSE IF (EXECUTE .EQ. 4) THEN
C DHAV FROM THE LAST SAVED VIEW
C CALLS THE VARIABLE LINK VALUES FROM AN OUTFILE AND DRAVS THE ROBOT
OPEN(UNIT=8,FILL="SAVE.DAT’ ,STATUS="0LD’)
READ(8,*) X.Y,Z,ZPOINT,¥AG,FOCUS
DO 498 I1-1,ROBNCH
DO 498 J=1,LINKNUN (ROBNUM
READ?S,*\éGOEL,I,J,I

JL=1,3
READ 3

8,*5(60(L,2,J,1),L=1,
498 CONTINUE
INIT = 2
GO T0 199
502 INIT = 0
CLOSE (UNIT-8)
GO TO 587
CCCCOCCCCCCCCCCCCCLiCCeeCCCCCCCaeeeCeCCeeeeeeCCCCCCeeeeeeeeCeeeeeeee

ELSE IF (EXECCTE .EQ. 5) THEN
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MOVE TO POINT
B STORAGE OF JOINT ANGLES

C

C

g

C  KINNUM  PARAMETER PASSED IN CALL INKIN
g KINNUM=1 (LEFT HAND),KINNUN=2 (RIGHT HAND)
C

INKIN PROVIDES THE ANGLES TO DRAV TO A CERTAIN POINT
CALL INKIN(B,KINNUM)
" 5&8 5.2, g(I) KER (ACTIVE))=B(I)/180*PI
3,2 , NERLNUX y 180
518 CONTINé
G0 TO 587
CCCCecceeecceccccccccecceccceccceccccccecccecceccecceeccccccccccccce

ELSE IF (EXECUTE .EQ. 6) THEN
MOVE BY ANGLES

NUX NUMBER READING VARIABLE

STEPS NUMBER OF INCREMENTS DURING MOTION

ERASE LOGICAL - IS SCREEN ERASED BETWEEN VIEVS

REPEAT LOGICAL FOR INTERNAL MEMORY CONCERNING DRAVING SETUP
533 VRITE(6, *a’INPUT THE SIX ANGLES,

$ VAIST,SHOULDER,ELBOV,VRISTROLL,  VRISTPITCH ,HANDROLL)’
VRITE;G ¥)? CURBENT ANGLES IN DECREES ARE’

e Yrieoleleleleo e e Nl a

VRITE(6,36) (60(3,2,C{I),MERLNUN(ACTIVE))*180/PI,I=1,6)
36 FORMAT(6F7.1)
READ§6 1(1231 1% JI=1, 6%
VANT THE SCREEN ERASED BETWEEN STEPS’

VRIT
VRITE(6,*)’IF YES INPUT 1’
VRITE(6,*)’IF N0 INPUT 0’
READ* ,NUM
IF (NOM .EQ. 1) THEN
ERASE = .TRUE.
ELSE
ERASE = .FALSE.
END IF
D0 556 1 1,6
((M2(I,1) .LT. LINITS 1,1
$ ¥2(1,1) .6T. LIlIT éI, THEN
RITE(S, 552{ I,LINITS(I,1),LINITS(I,2)
552 FOR!AT( ANGLE- "*,12, NUST BE BETWEEN ’,
$ F7.1,° AND },F7.1,” DEGREES’)
G0 TO 533
END IF
556 CONTINUE
D0 560 I=1,6

¥1(I,1)=60(3,2,C(I),MERLNUN(ACTIVE))

l2£1,1§=l2£1,1)/180*PI
560 CONTINUE
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¥1 IS THE CURRENT SET OF ANGLES, M2 IS THE FINAL SET(TO BE INPUT
BY USER%, ¥3 IS RETURNED FROM GENANG AND CONTAINS THE EQUALLY
SPACED INCREMENTAL SET OF STEP NUMBER OF ANGLES.

CALL GENANG§11,12,6,l,ls,STEPS)
D0 573 J=1,STEPS
IFRéJ .EQ. STEPS) THEN
PEAT = .FALSE.
ELSE
REPEAT - .TRUE.
END IF
D0 570 I=1,6
G0é3,2,C(I),IERLNUI(ACTIVE))=I3(I,1,J)
570  CONTINU
GOTO 587
572 CONTINUE
573 CONTINUE
G0 TO 374
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCeCCCCeCCeeeeeeceeee
C RETURN TO MAIN
ELSE IF (EXECUTE .EQ. 9) THEN
GOTO 143
gccgggggccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
v

XD STORAGE OF TVO DIMENSIONAL DRAVING CORNER POINTS
COUNT COUNTER FOR LINK DRAVING FRAMES

ELSE IF (EXECUTE .EQ. 0) THEN
587  CALL TRANSFILL&GG,T ,1,LINENUN(1),1)
IF (DRAV(lB .EQV. .TRUE.) THEN
CALL XDFILL(X0,XD,TR,LINKNUM(1),1,
. FOCUS, MAG, COUNT, ZPOINT)
E
C THE TRANSFORMATION MATRIX OF THE LAST LINK ON THE MERLIN MUST BE
C ATTACHED TO THE FIRST TRANSFORMATION MATRIX ON THE HAND, AND THE
C FINGERS MUST BE ATTACHED TO THE HAND
D0 592 L = 2,3
IF (DRAVL) EQV. .TRUE.) THEN
CALL ADD ON(GD, TR, LINKNU L, RECEIVE
CALL TRARSFILL(GO,T2,2,LINKNUN(L) L
CALL XDFILL(X0,XD,TR,LINKNUM(L),L,
$ FOCUS, NAG, COUNT, ZPOINT)
END IF
592 CONTINUE
D0 598 N = 4,5
IF SDRAV(Ns .EQV. .TRUE.) THEN
D0 594 L=KANDNUI(N-3z,§HANDNUI(N-3%+4
CALL ADD_0N§G0,TR, INENUM, L, RECETVE
CALL TRANSF LL(GU,TR,Z,LINKNUH(LE,L
CALL XDFILL(X0,XD,TR,LINKNUN(L),L,
$ POCUS , MAG , COUNT, ZPOINT)
594  CONTINUE

QMo

[ X+ Ee e X
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END IF
598 CONTINUE
604 CONTINUE

IF THERE IS ONLY ONE VIEV - DRAV VIEW

IF (REPEAT .EQV. .FALSE.) THEN
CALL DRAVBOT(XD,MONITOR,COUNT)
COUNT = 0
ELSE

IF MORE THAN ONE VIEW, DOES THE USER WANT TO ERASE
BETWEEN VIEWS? IF TO BE ERASED SET FLAG.(-999)
ADVANCE COUNT.

IF SERASE .EQV. .TRUE.) THEN
OUNT = COUNT + 1
XD%I,I,CUUNT) = -999
END I

END IF
RETURN TO SECTION OF PROGRAM FROM WHICH REDRAV VAS CALLED

IF (OPTION .EQ. 1) THEN
G0 TO 157
ELSE IF (OPTION .EQ. 2) THEN
IF (EXECUTE .EQ. 6) THEN
G0 T0 572
ELSE
GO TO 374
END IF
ELSE
G0 TO 143
END IF
gccggggccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ELSE IF (EXECUTE .EQ. 10) THEN
GOTO 656

[ Yo ke Xe X Qo

[ X Xp ]

C

ccececccecceeececeeccccceececcccceeceecccceceecececceecceecccccccecceccecccecc
C RETURN TO EXECUTE MENU

C
ELSE
GO TO 374
END IF
CCCCCECCCCCCCCCCCCCeCeeeeeeeeeeeeceeeeeeeeeeeceeececceeeeeeeeeeeeee
ELSE IF (OPTION .EQ. 0) THEN
GOTO 587
C QUIT
ELSE IF (OPTION .EQ. 10) THEN
GOTO 656
ELSE
G0 TO 143
END IP
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C END OPTION
656 CONTINUE
STOP
END
C END OF MAIN PROGRAM
CCCCCCCCCeeeeceeeececeececeeteceeeeeeeeceeeeceeCeCeCCeCeCCeCeceecee

R STORES TRANSFORM MATRICES FOR ALL LINKS
ADD_ON LINKS THE TRANSFORMATION MATRICES OF SYSTEMS

SUBROUTINE ADD_ON(GO,TR,LINENUN,ROBNU,RECEIVE)

REAL co(3,2,1o,1og,Tn 4.4 10,102

INTEGER ROBNUM,LINKNUN(20] ,RECETVE(20)

D0 15 J=1,4

D0 15 11,4
TR(I,J,1,ROBNUN)=TR(I,J ,LINENUM(RECEIVE(ROBNUN)) ,RECEIVE
$ (ROBNUN))
15 CONTINUE

CALL TRANSFILL(GO,TR,2,LINKNUM(ROBNUK),ROBNUN)

ngrunn

END
gccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
g TRANSFILL FILLS TRANSFORMATION MATRIX

SUBROUTINE TRANSFILL(GO,TR,BEG,END,R)
REAL G0(3,2,10,14),TR§4,4,10,14
INTEGER BEG,END,R,ZPOINT,MONITO

D0 29 I=BEG,END

[ Y YrEeYe]

TR(1,1,1,R)=C0S c053,2,1,n *cnsgcosz,z,l,n&
TR(1,2,1,B)=-SI éc (3,2,1,8))*C08(60(2,2,1,89)
TR(1,3,1,R)=SIN(G0(2,2,1,k)
TR(1,4.1.R =G0§1,1,I,R
TR(2,1,1,8)=C0 ( 0(3,2,1,33)*31N£c0(2&2,1,na)*

s SIR(Go(1,2, ,R&)+SIN{G (3,2, ,ng) CiS(60(1,2,1,1))
TR(2,2,1,R)=-SIN(G0(3,2,1,R))*SIN{G0(2,2,1,R))

$ SIN§G0(1,2,I,R&)+ OS§G0(3;2,I,R3)*COS{GG(1,2,I,R))
TR(2,3,1,R)=-C0S(6 (2,2,1,0)) *s1N{G0(1,2,1,1))
TR(2.4,1.R =6082,1, )
TR(3,1,I,R)=-C0S(G0(3,2,1,R))*SIN(G0(2,2,1,R))*

$ COS(GO(1,2,1,1))+STR(GO(3,2, 1, 1) 43IR(80(1,2,1,1))
TR(3,2, ,R)zSIN{G0(3,2,I,Ra)* I {cn(2i2,1,na)*

$ 05(60(1,2,1,8))+C0S(60(3,2, 1)) #siN{G0(1,2,1,k)
TR(3,3,1,R)=C05(60(1,2,1,8))*C0d(60(2,2,1,8))
TR(3,4,1,R)=60(3,1,1.8)
TR(4,1,1.8)=0
TR(4,2.1.R)=0
TR(4,3,1.R)=0

conrige

20 CONTINUE

CALL TRANSFORM(TR,1,END,R)

RETURN

END
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gCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C TRANSFORN CALCULATES THE TRANSFORMATION MATRIX BY MATRIX
C NULTIPLICATION

C
SUBROUTINE TRANSFORM(TR,SYS,END,R)
DIMENSION TR(4,4,10,14),MATA(4,4),MATB(4,4) ,MATC(4,4)
REAL TR,MATA,MATB,MATC
INTEGER SYS,END,R
D0 23 I = (SYS+1),END

D0 15 K = 1,4
D0 15 J = 1,4
MATA(J,K) = TnEJ,x,§I-1),n)
MATB(J,K) = TR(J,K,I1,R)

15  CONTINUE
CALL MULMATMAT (MATA,MATB,MATC)
D0 22 K=1,4
D0 22 J=1,4
TR§J,K,I,R) = MATC(J,K)
22 CONTINUE
23 CONTINUE
RETURN
END
C

8CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C XDFILL FILLS THE XD ARRAY (8 X 2 X COUNT) VITH DRAVING POINTS
C POSITIONS

C
SUBROUTINE XDFILL(X0,XD,TR,END,R,FOCUS,MAG,COUNT,ZPOINT)
DIMENSION X0(8,3,10,14),TR(4,4,10,14) ,MAT(4,4),
$ vnc§4),cunné4&,xnés,2,500),Focus 2
REAL X0,TR,MAT,VEC,CORD,X,Y,Z,XD, THX, THY,ZPOINT,FOCUS,MAG
INTEGER END,R,COUNT
DO 43 L=1,END
COUNT = COUNT + 1

= TR(J,K,L,R)
18 CONTINUE

3
3 2X0(I,3,L,R)
21 CONTINUE
. VEC(4)=1.0

C MULMATVEC IS A MATRIX OPERATION OF MULTIPLYING THE VECTOR BY THE
C TRANSFORMATION MATRIX

C
c CALL MULMATVEC(MAT,VEC,CORD)
C THE SCREEN VIEV ALLOVS A 20 DEGREE VIEVING TUNNEL

C THE FOLLOVING CODE PLACES THE DRAVING POINTS IN THEIR RESPECTIVE
C PLACES IN THE SCREEN VIEV. IF THE POINTS LIE OUTSIDE THE
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C 20 DEGREE TUNNEL, THEY VILL NOT BE DISPLAYED

C
X = CORD(1) - ROCUS 1;
Y = CORD(2) - FOCUS(2
Z = ZPOINT - CORD(3)
TEX=ATAN(X/Z
THY=ATAN Yéz
XD(I,1,C0UNT) = 50*THX/.349*MAG
ID(I,2,COUNT) = 50*THY/.349*MAG
42 CONTINUE
43 CONTINUE
RETURN
END

¢cececcececceccccceccecccccccccecceccccccceccecccceecceceeececceccece
C

C MULMATVEC MULTIPLIES A 4X4 MATRIX VITH A 4X1 VECTOR OUTPUT C(4X4)

C
SUBROUTINE MULMATVEC(A,B,C)
REAL A§4,4),B(4),C(4),SUI
D0 14
SUN = 0
20123 = 1,4
SUM = A(I,J)*B(J) + SUN
12 CONTINUE
061) = SUN
14 CONTINUE
RETURN
END
gccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C MULMATMAT MULTIPLIES TV0 4X4 MATRICES, VITH OUTPUT C(4X4)

C
SUBROUTINE MULMATMAT A,B,Cg
REAL A§4,4),B(4,4),C 4,4),50K
DD 161 = 1,4
DO 15 J
SUN =
D0 13K = 1,4
SUM = A(I,K)*B(K,J) + SUM
13 CONTINUE
C%I,J) = SUM
15  CONTINUE
16 CONTINUE
RETURN
END

Cccccecceeececcecceeececccecccccecccecceceececccececeeccececceccccecccce

SUBROUTINE GENANG GENERATES AN ARRAY OF ANGLES.

GIVEN AN INITIAL SET OF ANGLES, A FINAL SET OF ANGLES, AND THE
NUMBER OF STEPS, IT COMPUTES EQUALLY SPACED INTERMEDIATE ANGLES,
GOING FROM THE INITIAL TO THE FINAL ANGLE.

SUBROUTINE GENANG(M1,M2,N1,N2,M3,STEPS)
REAL N1(6,4),M2(6,4),43(6,4,200) ,DELM(6,4)

H

1,4

(=)

(e Yoo EeNe o]

161




INTEGER N1,N2,STEPS
VRITE(6, *)'INPUT - NUNBER OF STEPS’
READ(6,*) STEPS
D0 11 J=1,N2
D0 11 I=1,N1
DELM(I,J)=(M2(I,d)-M1(1,J))/STEPS
11 CONTINUE
D0 15 K=1,STEPS
D0 15 J=1,N2
D0 15 I=1,N1
¥3(I,J,K)=M1(I,])+DELM(I,J)*K
15 CONTINUE
RETURN
END
£CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee

SUBROUTINE DRAVBOT CONTAINS THE DISSPLA SETUP CALLS.

IT RECEIVES THE TWO DIMENSIONAL SCREEN DRAVING POINTS.

EACH SET OF EIGHT POINTS OF A LINK ARE CONNECTED IN A CERTAIN
SEQUENCE TO REPRESENT A SIX SIDED CLOSED OBJECT (THE LINK).

SUBROUTINE DRAVBOT(XD,MONITOR,COUNT)
REAL XD(8,2,1000B, (16),Y§16)
INTEGER MONITOR,B(16),COUNT

DATA B/1,2,4,3,7,5,6,2,6,8,4,8,7,5,1,3/

g SYSTEM MODULE CALL

[ XN Nar Nar Kap]

IF (MONITOR .EQ. 1) THEN
CALL TEKALL(4010,960,0,1,0)
ELSE IF (MONITOR .EQ. 2) THEN
CALL TK41(4107)
ELSE
CALL REGIS(3,0)
ENDIF

C THE FOLLOVING ARE DISSPLA DRAVING COMMANDS

CALL BLOWUP(1.0)

CALL NOCHEK

CALL PAGE(11.0,11.0)

CALL AREA2D(10.5,10.5%

CALL GRAF(-50.0,’SCALE’,50.0,-50.0,°SCALE’ ,50.0)

CALL INTAXS

CALL SCLPICS.Ol)
. D0 51 I=1,COUNT

g IF FLAG (XD(1,1,COUNT)=-999) ERASE SCREEN AND DBAV NEXT VIEV

IF (XD(1,1,I) .EQ. -999) THEN
CALL ENDPL(0)
CALL PAGE(11.0,11.0)
CALL AREA29(10.5,10.5%
CALL GRAF(-50.0,°SCALE’,50.0,-50.0,’SCALE’,50.0)
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CALL INTAXS
CALL SCLPIC(.01)
ELSE
D0 45 J=1,16

FILL THE DRAVING ARRAY IN A SEQUENCE THAT RESULTS IN DRAVING
A CUBE VHEN THE CONSECUTIVE POINTS ARE CONNECTED VITH LINES

X(3)=XD(B(J),1,I
Y(J)=XD(B(J),2,I
. 45  CONTINUE

C DRAV THE LINK.
¢

(XK Xe]

CALL CURVE(X,Y,16,1)
ENDIF
51 CONTINUE
CALL ENDPL(0)
CALL DONEPL
RETU.N
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee

PROGRAM INKIN.FOR

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCeCCececeeeeeeeeeeeee
C KERLIN ROBOT INVERSE KINEMATICS PROGRANM
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeCeeeceCeeCeCceeceecececeeeee
SUBROUTINE INKIN(ANG,HAND)
C DEFINE REAL & INTEGER VALUES
INTEGER FLAG,VSPACE,HAND,SET
REAL T(4,4&,T1,T2P1,T2P2,T3P,T3N,T4A,T4B,T5A,T5B,T6A,
$T6B,A2,D2,D3,D4,D6,PI,VP,S1,52,EP, EN,VR1,VR2,VR3, VR4,
$VP1,VP2,VP3,VP4,HR1,HR2,HR3, HR4,DUM,Z(4,7),TPP, TPN,ANG(1,6)
1 PRINT *,°
VALUE OF CONSTANTS
PI = 3.141592653589792
SETUP KINEMATIC PARAMETERS FOR THE MERLIN 6500 50 LB. ROBOT

A2 {S THE DISTANCE BETVEEN SHOULDER JOINT AND ELBOV JOINT
2 =17.38
D4 IS THE DISTANCE FRONM ELBOV JOINT TO WRIST PIN
D4 = 17.24
D6 %S THE DISTANCE FROM WRIST PIN TO TIP OF THE END- EFFECTOR
6 = 3.5
SET UP D2 AND D3. D2 IS THE DISTANCE FROM THE VAIST VERTICAL
AXIS TO THE CENTER OF THE UPPER ARM. D3 IS THE DISTANCE FROM
THE CENTER OF THE UPPER ARN TO THE CENTER OF THE LOVER ARM.

“I'.\na roOnm wiag
AU unA A BANY .

IF(HAND .EQ. 1) THEN

[ X KaNe! o (e} aa, o
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C

C
C

Qoo e

[JC I ]

[N [ Xap Nap (e K N Nap] [}

D2 = 19.00
D3 = -7.00
ELSE
SET UP D2 AND D3 FOR THE RIGHT HAND.
D2 = -19.00
D3 = 7.00
ENDIF

INITIALIZE ALL GLOBAL VARIABLES ( RETURNED VARIABLES ARE
INITIALIZED INSIDE THE SUBROUTINE ONLY )
0.0

w
[ V)
' " oo
[ T T T I T |
oo cooo

OO ODOO. = =
CORLeLePPPPPPooo0
OCOCOOOODOOCOOOO

DUN
T2P1 = 0.0
T2P2 = 0.0

INITIALIZE 5 Z ] MATRIX

TEE FIRST COLUMN OF THE MATRIX IS A FLAG FOR VALIDITY OF THE

SET OF JOINT ANGLES BEING COMPUTED BEING ALL VITHIN THEIR RANGES.

THE REMAINING 4 X 6 MATRIX IS USED TO STORE THE RESULTS OF

THE COMPUTATIONS IN THE ORDER -- VAIST, SHOULDER, ELBOV,

VRIST ROLL, VRIST PITCH, HAND ROLL
D02I-=1,4

D023 =1,7
ZSI,J) = 0.0
CONTINUE

ENTER POSITION AND ORIENTATION MATRIX FROM DATAFILE OR SCREEN
CALL MATENTER(T,DS&

FLAG SET UP FOR END POSITION IN{UUT OF VORKSPACE

VSPACE = 0 IF THE END-EFFECTOR IS INSIDE THE VORKSPACE

VSPACE = 1 IF THE END-EFFECTOR IS OUTSIDE THE WORKSPACE

SET DEFAULT WSPACE FLAG = 0
VSPACE = 0

COMPUTE VAIST ANGLES T1.

IN THE CALL STATEMENT BELOV, T IS THE 4 X 4 POSITION AND

ORIENTATION VORKSPACE, T1 IS THE COMPUTED VAIST ANGLE.

CALL VAISTET,Tl,D2,D3,VSPACE%
IF PASITION DESIRED AS END-POINT IS OUTSIDE THE WORKSPACE
GET A NEV SET OF ENDPOINTS FROM THE USER.
IFéVSPACE .EQ. 1) THEN
0TO0 3
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o, o O

ENDIF
CONVERT CONPUIED VAIST ANGLE FROM RADIANS TO DEGREES.
A DUNNY IS USED HERE DUI%, SINCE ONLY ONE VAIST ANGLE EXISTS.
CALL RADEG(T1,0.0,¥P,D l%
STORE RESULTS OF VAIST IN [Z] MATRIX (SECOND COLUMN)
DO 5T=1,4
Z I,2E = VP
CONTINU
RESET THE VSPACE FLAG TO O FOR THE ELBOV COMPUTATIONS.
WSPACE = 0
COMPUTE ELBOV ANGLES T3P,T3N
CALL ELBOV(T,T3P,T3N,A2,D2,D3,D4,VSPACE)
IF USER DEFINED END POSITION AND ORIENTATION IS OUTSIDE
THE VORKSPACE, RE-ENTRY OF MATRIX
IFéVSPACE .EQ. 1) THEN
0T0 3
ENDIF
CONVERT ELBOV ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T3P,T3N,EP,EN%
STORE RESULTS OF ELBOV ANGLE SOLUTION IN THE FOURTH COLUMN
OF MATRIX [Z]
P061=1,2
Z(1,4) = EP
Z(I+2,4) = EN
CONTINUE
COMPUTE § SHOULDER + ELBOV ) ANGLES TPP,TPN
CALL SHOULDER(T,A2,D4,T1,T3P,T3N,TPP,TPN)
COMPUTE SHOULDER ANGLES T2P1,T2P2
T2P1 = TPP - T3P
T2P2 = TPN - T3N
CONVERT SHOULDER ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T2P1,T2P2,SI,S2E
STORE RESULTS OF SHOULDER ANGLES IN [Z] MATRIX (THIRD COLUMN)
DO 71 =1,2
Z(I1,3) = S1
2(1+2,3) = S2
CONTINUE
COMPUTE WRIST ROLL ANGLES
CALL VBULL(T,T4P1,T4P2,T1,TPP,TPN&
CONVERT VRIST ROLL ANGLES FROM RADIANS TO DEGREES
CALL RADEG T4P1,T4P2,VR1,VR2&
COMPUTE ’WRIST FLIPPED’ SOLUTIONS
WR3 = VR1 + 180.0
VR4 = VR2 + 180.0
STORE RESULTanF VRIST ROLL IN [Z] MATRIX (FIFTH COLUMN)
1

VB3
VB2
= VR4
COMPUTE VRIST PITCH ANGLES
CALL VPITCH(T,T5P1,T5P2,T1,TPP,TPN,T4P1,T4P2)
CONVERT WRIST PITCH ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T5P1,T5P2,VP1,VP2)

NN
oD B s
I u

’
b
’
b

G U e

165




C COMPUTE ’REVERSED PITCH’ SOLUTIONS

VP3 = - WP1
VP4 = - VP2
C STORE RESULTS IN [ 2 ] MATRIX - SIXTH COLUMN
Z(1,6) = WP1
7(2,6) = VP3
7(3,6) = VP2
Z(4,6) = VP4

C COMPOTE HAND ROLL

CALL HROLL(T,T6P1,T6P2,T1,TPP,TPN,T4P1,T4P2,T5P1,T5P2)
C CONVERT HAND ROLL ANGLES FROM RADIANS TO DEGREES

CALL RADEG(T6P1,T6P2,HR1, HR2%
C COMPUTE ’HAND FLIPPED’ SOLUTIONS FOR HAND ROLL

HR3 = HR1 + 180.0
ER4 = ER2 + 180.0
C STORE RESULTS IN THE [2] MATRIX (SEVENTH COLUNN)
2(1,7) = HR1
2(2,7) = HR3
7(3,7) = HR2
7(4,7) = R4

C NORMALIZE THE COMPUTED RESULTS.
CALL NURMAL(Z%
C CHECK FOR VALIDITY OF EACH SOLUTION SET.
CALL VALID%Z)
C PRINT OUT VALID RESULTS § VALID IP VITHIN JOINT ANGLE RANGE )
PRINT *,’ THE VALID INVERSE KINEMATICS RESULTS ARE :
D0 51 I=1,4
IF(Z&I ,1)".EQ. 0. o% THEN
VRITE(5,*) *THE VALID SOLUTION NUMBER IS °,I
VRITE(5,*) (5(I,),3=2,7)
ENDIF
51  CONTINUE
C SETSDEFAULT FOR USER CHOSEN SET OF RESULTS =
ET =
C QUERY USER FOR CHOICE OF SET OF RESULTS FRON VALID SET.
PRINT *,> ENTER YOUR CHOICE OF ANGLES éAS A SET) °
PRINT *,’ FROM THE DIFFERENT SETS ABOVE °
READ(5,52) SET
52 FURIATéI
C COPY CHOSEN SET OF RESULTS TO VECTOR ANG(1,6)
D0 53 J = 1,6
ANG§1,J) = Z(SET,J+1)
53  CONTINUE
RETURN
END
£CCCCCCCCCCCCCCCCCCCCeCeeeoeeeeeeCeeeeeeeeeceeeccceeeeeeeeeeeeeece
C POSITION AND ORIENTATION DATA ENTRY ROUTINE
SUBROUTINE MATENTER(A,DS6)
INTEGER MATCH,TIP
REAL Aé4 ,4),PX1,PY1,PZ1,PX,PY,PZ,D6
C INITIALIZE LOCAL VARTABLES

PX1 = 0.0
PY1 = 0.0
PZ1 = 0.0
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PX = 0.0
PY =0.0
PZ = 0.0
¢ INITIALIZE X
100 DO 101 I
1
A(I,J
101 CONTINUE
C  DATA ENTRY OF I
D0 102 I =
D0 102 J = 1,4
PRINT *,’ ENTER TRANSFORM MATRIX ENTRY’,I,J
READ(5,%) A(I,J)
102 CONTINUE
C ADJUST ROV 4 ENTRIES TO PREVENT ENTRY ERROR

X
4
1,
0
PO ON AND ORIENTATION MATRIX
1,

4
0
POSIT
3
1,

A(4,1) = 0.0
A(4,2) = 0.0
A(4,3) = 0.0
A(4,4) = 1.0
C PRINT OUT MATRIX TO SCREEN
PRINT *,° °

PRINT *,° THIS IS THE ENTERED TRANSFORM MATRIX. °

CALL AUUT(A%

PRINT *,°> IF YOU VANT TO CHANGE THE MATRIX, ENTER O °’
PRINT *,’ IF POSITION ENTRIES REFER TO THE TIF OF THE °

PRINT *.’ END EFFECTOR ----- ENTER 1 °
PRINT *,° IF POSITION ENTRIES ARE VITH RESPECT T THE °
PRINT *,’ WRIST PIN ---------- ENTER 2 ’

READ(5,104) TIP
104 FORMAT(I)
ALLOV FOR CHANGE OF TRANSFORM MATRIX ENTRIES
IFéTIP .EQ. 0) THEN
0T0 100
ADJUST END EFFECTOR POSITION TO VRIST PIN IF POSITION GIVEN IS
AT THE TIP OF THE END- EFFECTOR
ELSEIF%TIP EQ. 1% THEN
C SETUP POSITION PARAMETERS TO END- EFFECTOR TIP
PX1 = A(1,4
PY1 = A(2,4
PZ1 = A(3,4
C ADJUST POSITION PARAMETERS TO VRIST PIN
PX = PX1 - D6 * A(1,3
PY = PY1 - D6 * A(2,3
PZ = PI1 - D6 * A{3.3
C BESET POSITION PARAMETERS IN [A] MATRIX TO VRIST PIN

(0]

[ N

Honon

A(1,4) = PX
A(2,4) = PY
A(3.4) - PZ

ENDIF

RETURN

END

gecececcecececccccceceeeccccceeceecccccceececcccccececceccecceeecceccceeece
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C OUTPUT OF MATRIX TO SCREEN
SUBROUTINE AOUT (M)
REAL M(4,4)
INTEGER I,J
D0 1001 I'= 1,4
VRITEg %) ((1,3),3=1,4)
1001 CONTINUE
RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee
C VAIST ANGLE COMPUTATION
SUBROUTINE WAIST(A,V1,X2,X3, SPACEgM
REAL A(4,4),V1,X2,X3,RE0,PX,PY, TERN1, TERN2,T2,X23
INTEGER I,J,SPACE’
C INITIALIZATION OF LOCAL VARIABLES
Vi = 0.0

TERM1 =
TERM2 =
X23 0.

C SET UP

0.0
0.0
0

ITIUN PARAMETERS

= 0.0

OF PO
PX = A§1,
PY = A(2,
C COMPUTE FIRST TERM FOR VAIST ANGLE SOLUTION
TERM1 = ATANZ(PY,PX)
C COMPUTE TERM2

X23 = (X2 + X3)

PXSQ = PX * PX
PYS = PY * PY
PXPYSQ = PXSQ + PYSQ

12380 = X23 * X23
C IS USER-SPECIFIED POSITION INSIDE THE VORKSPACE ?
C SET VORKSPACE FLAG TO INSIDE WORKSPACE
SPACE = 0
IF%PXPYSQ .GT. x23sqg THEN
C SPECIFIED POSITION IS INSIDE WORK- SPACE, SO COXPUTE SECOND TERN
gnTn 301
ELSE

g USER SPECIFIED POSITION IS OUTSIDE WORKSPACE.
C COMPUTE DIFFERENCE IN TERNS
ERROR - éABS(PXPYSQ - X23SQ &
C IF THE COMPUTED ERROR < 0.0001, THEN COMPUTATIONAL ERROR
C COULD HAVE CAUSED THE POSITION TO LIE OUTSIDE THE VORKSPACE.
IF (ERROR .LT. 0.00013 THEN
C YES, COMPUTATIONAL ERROR OCCURED. COMPUTE T2, FOLLOVED BY
C THE SECOND TERN.
= SQRT(ERROR)
GOTD 302
ELSE
C USER SPEC{FIED POSITION IS DEIFINITELY OUT OF VORKSPACE
SPACE = 1
PRINT *,’ QUTSIDE WORKSPACE °
GOTO 303
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ENDIF
ENDIF
301 T2 = SQRT(PXPYSQ - X235Q)
302 TERMZ = AiAN2(X23,T2}
C COMPUTE SOLUTION FOR VAIST ANGLE V1
V1 = TERM1 - TERM2
303 RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCeCCCeeCCeCCCeeeCCeeceeeececeeecceecceeeeceeeee
C ELBOV ANGLE DETERMINATION ROUTINE
SUBROUTINE ELBOV(A,EP,EN,B2,X2,X3,X4,SPACE)
INTEGER SPACE
REAL A(4,4),EP,EN,B2,X2,X3,X4,KA,KB,X23,T1,T2P, T2N
INITIALIZE LOCAL VARIABLES

el
[ o
w o in

N PARAMETERS OF TRANSFORM MATRIX

-~ 2

ERN 9F ARCTAN FUNCTION

3
X)- (PY * PY) - (P * PZ
+ (X23 * X23) + (X4 * X4
T1 / (2.0 * B2 * X4)
C DETERMINE IF USER DEFINED POSITION IS OUTSIDE VORKSPACE
SPACE = 0
C POSITION IS INSIDE THE VORK- SPACE IF T1SQ < 1.0
IFéTlSQ .LE. 1.0) THEN
0T0 401
ELSE
USER DEFINED POSITION MAYBE OUTSIDE VORKSPACE
THEREFORE, COMPUTE THE ERROR
ERROR - £ABS(1.0 - T1sq%
CHECK TO SEE IF COMPUTATIONAL ERROR COULD HAVE CAUSED THE
POSITION TO LIE OUTSIDE THE VORKSPACE
IF(ERROR .LT. 0.0001) THEN
12P = SQRT(ERROR)
GOTO 402
ELSE
C USER ENTERED POSITION IS OUTSIDE WORKSPACE
PRINT *,’ QUTSIDE WORKSPACE ’
SPACE = 1
GOTO 403
ENDIF
ENDIF
C CUMPUTE SECOND TERM OF ARCTAN FUNCTION

[ Xe] [ Rap]
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401 T2P = SQRT(1.0 - TiSQ)
402 TN = - T2P
C COMPUTE THE TVQ POSSIBLE SOLUTIONS FOR ELBOV ANGLE I.E. EP & EN
EP = ATAN2(T1,T2P
EN = ATAN2(T1,T2N
403 RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCeeeeee
C SHOULDER + ELBOV ANGLE DETERMINATION ROUTINE
SUBROUTINE SHOULDER(A,B2,X4,VP,EP,EN,APP,APN)
INTEGER I,]
REAL A§4,4),B2,X4,VP,EP,EN,T1PP,TIPN,T2PP,T2PN,01P,SIP

$C3P,C3N,S3P,S3N, T1PPA, T1PNA,T2PPB, T2PNB, APP, APN
C INITIALIZE LOCAL VARIABLES
TiPP = 0.0
T1PN = 0.0
T2PP = 0.0
T2PN = 0.0
T1PPA = 0.0
T1PNA = 0.0
TiPP = 0.0
T1PN = 0.0
T2PPB = 0.0
T2PNB = 0.0
APP = 0.0
APN = 0.0
C SETUP OF POSITION PARAMETERS
PX = A(1,4
PY = A(2,4
PZ = A(3,4
C COMPUTE COSINE AND SINE FUNCTION VALUES OF THE APPROPRIATE ANGLES
C1P = COS(VP
S1P = SIN(WP
C3P = COS(EP
S3P = SIN(EP
C3N = COS(EN
S3N = SIN(EN

C COMPUTE ALL POSSIBLE FIRST TERMS OF ARCTAN2 FUNCTION

C WAIST POSITIVE, ELBOW POSITIVE (T1PP)
TIPPA = B2 * C3P * PZ
T1PP = $§$B2 * S3p) - x4% * }CIP * PX) + (S1P * PY))) - T1PPA
C WAIST POSITIVE, ELBOV NEGATIVE (T1PN)
TIPNA = B2 * C3N * PZ
TIPN = (((B2 * ssng - X4) * §c1p * PY) + §SIP * PY))) - TIPNA
COMPUTE ALL POSSIBLE SECOND TERMS OF ARCTAN2 FUNCTION

VAIST POSITIVE, ELBOV POSITIVE (T2PP)
T2PPB = ((B2 * C3P) * §(CIP PX) + §s1p * PY)))
T2PP = (((B2 * S3P) - 4% * PL) + T2PPB
C VAIST POSITIVE, ELBOV NEGATIVE (T2PN)
T2PNB = ((B2 * C3N) * £§CIP PX) + $SIP * PY)))
T2PN = (((B2 * S3N a * Pzg + T2PNB
( COMPUTE ALL FOUR POSS LUTIONS OF (THETA 2 + THETA 3)

[ X Nap]

BLE S
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APP = ATAN2 T1PP,T2PP;
APN = ATAN2(T1PN,T2PN
RETURN

END

CCCCCCCCCCCCCCCCeeCeeceeceeCeeceeceeceeceeccccecCecCCCCCCCCCCCCCCeeee
C VRIST ROLL ANGLE DETERNINATION ROUTINE

aaoa,

SUBROUTINE VROLL‘A,PPP,PPN,VP,T23PP,T23PN)
INTEGER FPPP,FPP
REAL A(4,4), PPP PPN,VP,T23PP,T23PN,T1P,R13,R23,R33,
$S1P,C1P, C23PP C23PN,323PP S23PN SNGCHE
INITIALIZE LOCAL VARTABLES
T1P = 0.0
T2PPP = 0.0
T2PPN .0
PPP =
PPN =
SET UP SINGULARITY CHECK CONDITION
SNGCHK = 0.005
SET FLAGS TO NON- SINGULAR CASE
FPPP = 0
FPPN = 0
SETUP MATRI
R13 = A
A
A

R23 Z
SETUP TRIG. FU CTIONS

R33 =

S1P = S N(V

CiP = COS(V

C23PP = CLS 23PP

S23PP = SIN(T23PP
C23PN = COS(T23PN
S23PN = SIN(T23PN
COMPUTE ALL FIEST TERMS OF ARCTAN2 FUNCTION
TIP = - (R13 * S1P) + énzs * C1P)
COMPUTE ALL SECOND TERMS OF ARCTAN2 FUNCTION
T2PPP = - R13*ClP*C23PPi - 3n23*s1p*czsppi + znss*szsppg
TI0 CH

OO "o
OOO

RIENTATION PARAMETERS

It u

X0
1,3
2, 3
3, '3

T2PPN = - (R13*C1P*C23PN) - (R23*S1P*C23PN) + (R33*S23PN
CHECK FOR SINGULARITY CONDITIONS AT VRIST PI
IF(STIP .LT. SNGCHK .AND. T1P .GT. - SNGCHK) .AND.
$§T2 PP .LT. SNGCHK .AND. T2PPP .GT.- SNGCHK)) THEN
PPP =
ENDIF
TF((T1P .LT. SNGCHK .AND. T1P .GT. - snccnx& .AND.
$§T2PPN .LT. SNGCHE .AND. T2PPN .GT. - SNGCHK)) THEN
PPN =
ENDIF
SET VRIST ROLL TO 0.0 RADIANS IF SINGULARITY DETECTED
AT VRIST PITCH, ELSE COMPUTE VRIST ROLL. NOTE THAT THIS VILL
CAUSE THE ROLL TO SHOV UP ONLY IN HAND ROLL ANGLE.
SOLUTION § 1
IF(FPPP .EQ. 1) THEN
PPP = 0.0
ELSE
PPP = ATAN2(T1P,T2PPP)

1m




ENDIF
C SOLUTION § 2
IF(FPPN .EQ. 1) THEN
PPN = 0.0
ELSE
PPN = ATAN2(T1P,T2PPN)

ENDIF

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
C VRIST PITCH DETERMINATION

SUBROUTINE WPITCH(A,A5P1,A5P2,VP,APP,APN,V4P1,V4P2)

REAL A(4,4),A5P1,A5P2,WP,APP,APN, V4P1,V4P2,
$T5A1PPPP,T5A2PPPP, T5A3PPPP, T5APPPP, T541PPNP, T5A2PPNP, T5A3PPNP,
$T5APPNP,T5B1PPPP, T5B2PPPP, T5B3PPPP, T5BPPPP, T5B1PPNP, T5B2PPNP,
$T5B3PPNP, T5BPPNP,R13,823,R33,C1P,S1P,C23PP,S23PP,
$C23PN,S23PN, C4P1,S4P1,C4P2,S4P2

C INITIALIZE LOCAL VARIABLES T0 0.0

T5A1PPPP = 0.0
T542PPPP = 0.0
T5A3PPPP = 0.0
T5APPPP = 0.0
T5A1PPNP = 0.0
T5A2PPNP = 0.0
T5A3PPNP = 0.0
T5APPNP = 0.0
T5B1PPPP = 0.0
T5B2PPPP = 0.0
T5B3PPPP = 0.0
T5BPPPP = 0.0
T5B1PPNP = 0.0
T5B2PPNP = 0.0
T5B3PPNP = 0.0
T5BPPNP = 0.0
A5P1 = 0.0
A5P2 = 0.0

C SETUP ORIENTATION PARAMETERS
R13 = A(1,3
223 = A(2,3
R33 = A(3,3

C SETUP TRIG. FUNCTIONS
C1P = COS(VP
S1P = SIN(VP
C23PP = COS(APP
S23PP = SIN(APP
C23PN = COS(APN
S23PN = SIN(APN
C4P1 = COS(W4P1
S4P1 = SIN(W4P1
C4P2 = COS(W4P2
S4P2 = SIN(W4P2

C COMPUTE FIRST TERMS OF THE ARCTAN2 FUNCTIONS
T5A1PPPP = - (R13 * ((C1P * C23PP * C4P1) + (S1P * S4P1
T5A2PPPP = - (R23 * ((S1P * C23PP * C4P1 CiP * S4P1
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T5A3PPPP = R33 * S23PP * C4P1
T5APPPP = T5A1PPPP + T5A2PPPP + T5A3PPPP

TSAIPPNP = - (R13 * ((C1P * C23PN * C4P2) + (S1P * S4P2
T5A2PPNP = - (R23 * ((S1P * C23PN * C4P2) - (C1P * S4P2
T5A3PPNP = R33 * S23PN * C4P2

T5APPNP = T5A1PPNP + T5A2PPNP + T5A3PPNP
C COMPUTE SECOND TERNS OF THE ARCTAN2 FUNCTIONS

TSB1PPPP = - (C1P * S23PP * R13

T5B2PPPP = - (S1P * S23PP * R23

T5B3PPPP = - (C23PP * l33g

T5BPPPP = T5B1PPPP + T5B2PPPP + T5B3PPPP
T5B1PPNP = - (C1P * S23PN * R13

T5B2PPNP = - (S1P * S23PN * R23

T5B3PPNP = - (C23PN * R33

T5BPPNP = T5B1PPNP + T5B2zPNP + T5B3PPNP
C COMPUTE VRIST PITCH ANGLES USING ARCTAN2 FUNCTION
A5P1 = ATAN2(T5APPPP,T5BPPPP
A5P2 = ATAN2(T5APPNP, ,T5BPPNP
RETURN
END

cceeceececeecececececeeccececcceccececccceccccccececccececceceeececceececcecececceccce

C DETERMINATION OF HAND ROLL ANGLES

SUBROUTINE HROLL(A,A6P1,A6P2,VP,APP,APN,A4P1,A4P2,A5P1,A45P2)
INTEGER I,J
REAL A(4, 4% ,A6P1,A6P2,VP,APP,APN,A4P1,A4P2,A5P1,A5P2,

SPPPPPAL ,PPPPPA2, PPPPPA3 PPPPPA PPNPPAI PPNPPA2 PPNPPA3 PPNPPA
SPPPPPBI PPPPPB2, PPPPPB3 PPPPPB PPNPPBI PPNPPB2 PPNPPB3, ,PPNPPB

C INITIALIZE LOCAL VARTABLES "T0 0.0
PPPPPAL =
PPPPPA2 =
PPPPPA3 =
PPPPPA =
PPNPPAL =
PPNPPA2 =
PPNPPA3 =
PPNPPA =
PPPPPB1 =
PPPPPB2 =
PPPPPB3 =
PPPPPB =
V

H
o
<

PPNPPB1
PPNPPB2
PPNPPB3
PPNPPB

C INITIALI?E
A6P1 =
A6P2 =

C SETUP ROT
R11 =
R21
R31

C SETUP U
C1p
S1p

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
IST

n ST ROLL ANGLES TO 0.0
o o
TION PARAMETERS

A
A
A
A(3,
TRIG. FUNCTIONS
COS(VP
SIN(WP

IO0N
1,1
2,1
3,1

LI e - A T AT
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C23PP = COS(APP
S23PP = SIN(APP
C23PN = COS(APN
S23PN = SIN(APN
C4P1 = COS(A4P1
S4P1 = SIN(A4P1
C4P2 = COS(A4P2
S4P2 = SIN(A4P2
C5P1 = COS(A5P1
S5P1 = SIN(A5P1
C5P2 = COS(A5P2
S5P2 = SIN(A5P2

C COMPUTE THE FIRST TERMS FOR THE ARCTAN2 FUNCTION

PPPPPA1 = R11 * ((C1P * C23PP * S4P1) - (SiP * C4P1
PPPPPA2 = R21 * ((S1P * C23PP * S4P1 CiP * C4P1
PPPPPA3 = R31 * (S23PP * S4P1)

PPPPPA = - PPPPPA1 - PPPPPA2 + PPPPPA3

PPNPPA1 = R11 * ((C1P * C23PN * S4P2) - (S1P * (C4P2
PPNPPA2 = R21 * ((S1P * C23PN * S4P2 CiP * C4P2
PPNPPA3 = R31 * (S23PN * S4P2)

PPNPPA = - PPNPPA1 - PPNPPA2 + PPNPPA3

C COMPUTE THE SECOND TERMS FOR THE ARCTAN2 FUNCTION

PPPPPBI = Ri1 * (C5PL * ((C1P * C23PP * C4P1) + (SIP * S4P1))

$ - (C1P * S23PP * S5P1))

PPPPPB2 = R21 * (C5P1 ((SlP * (23PP * C4P1) - (C1P * S4P1))

$ - (S1P * S23PP ssp1g)

PPPPPB3 = R31 * ((S23PP * C4P1 * C5P1) + (C23PP * S5P1))

PPPPPB = PPPPPB1 + PPPPPB2 - PPPPPB3

PPNPPBL = R11 * (C5P2 * ((CLP * C23PN * C4P2) + (SIP * 54P2))

$ - (CIP * S23PN * S5P2))

PPNPPB2 = B21 * (C5P2 ((SlP * (23PN * C4P2) - (C1P * S4P2))

$ - §S1P * S23PN ssng)

PPNPPB3 = R31 * ((S23PN * C4P2 * C5P2) + (C23PN * S5P2))

PPNPPB = PPNPPB1 + PPNPPB2 - PPNPPB3
C COMPUTE THE HAND ROLL ANGLE USING THE ARCTAN2 FUNCTION

A6P1 = ATAN2(PPPPPA,PPPPPB

A6P2 = ATAN2(PPNPPA,PPNPPB

RETURN

END
CCCCCCCCCCCCCCCCCCCCeeeeeeeeeeeeeeeeeeeeeeCeCeeeeeeeeeeeeeeeeeeeeee
C RADIAN TO DEGREE CONVERSION ROUTINE

SUBROUTINE RADEGéRADl ,RAD2,DEG1,DEG2)

REAL RAD1,RAD2,DEG1,DEG2,PI
C INITIéLIZE LOCAL VARIABLES AND RETURNED VALUES

DEG1 = 0.

DEG2 = 0.0
C DECLARE CONSTANTS

PI = 3.141592653589792
C PERFORM CONVERSION

DEGL = RAD1 * 180.0 / PI
DEG2 = RAD2 * 180.0 / PI
RETURN

END

Ccccccccccecceececeecceccccccccecccecceceeceeccccceccceeccceccceccececcccccece
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C CHECK FOR VALIDITY OF SOLUTIONS
SUBROUTINE VALID(A)
REAL A(4, 7}
INTEGER I

C CHECK FOR VALIDITY ON ALL JOINTS.IF OUT OF RANGE, SET COLUMN 1 =
C NOTE THAT THE RANGES ARE OFFSET BY 0.01 DEGREES TO TAKE CARE
C OF COMPUTATIONAL ERRORS CAUSED BY THE MACHINE.
DO 200 I = 1,4
C VAIST RANGEG IS +/- 147 DEGREES
IF(ABS&A I,2) .6T. 147.013 .0R.
C SHOULDER RANGE IS +56 TO - 236 EGREES
ééA (1,3) .6T. 56.01% 6A (I, 3& .LT. -236.01)) .0R.
C ELBOV RANCE IS THE SAME AS THE SHOULDER RANGE
$ ((A§ A .GT. 56. oni 0. (A(I,4) .IT. -236.01)) .0R.
C WRIST ROLL 1S CONTINUOUS. RANGE IS + 360 DEGREES
$ ABS(AéI ,5) .GT. 360.01) .OR.
C WRIST PITCH IS +/- 90 DEGREES
$ ABSéAéI,G% .GT. 90.01) .OR.
C HAND ROLL IS CONTINUOUS. RANGE IS + é' 360 DEGREES
$ ABS(AéI,7g .GT. 360. o1%z
C IF OUT OF RANGE, SET PLAG (COLUAN 1 OF RESPECTIVE ROV) =
I,1) = 1.0
END%F )
200 CONTINUE
RETURN
END

ccceececcceeccececeeccececceceececccceeeeccccrcecccecceecccececccccceceeeeeee
C NORMALIZE THE COMPUTED RESULTS SO THAT EACH ANGLE RANGES
C FROM -180.0 TO 180.0 DEGREES

SUBROUTINE NORMAL(A)

REAL A(4,7)
INTEGER 1,J
C NORMALIZE THE ANGLES TO BETVEEN - 180 AND +180 DEGREES
DO 701 I = 1,4
DO 701 J = 2,7
TF(A(T,3) 'GI. 180.0) THEN
K(L1) = A(1,3) - "360.0
ELSEIF(A(I,J} .LT. -180.0) THEN
A(T.3) = A{I,3) + 360.0
ENDIF
701 CONTINUE
RETURN
END

€cceccecceccecccccecceccccccccccccccecceccecccecececccccececccecece

DATAFILE ROOM.DAT

2

00000000
00000000
00000000
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144 144 144 144000 0
90 90 0 090 90 00
108 0 108 0 108 0 108 0

000
000

-72 -45 -54
000

DOCUMENTED DATA FILE ROOM.DOC

CECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
WARNING:
THIS FILE SERVES AS A DOCUMENTATION FOR THE DATA FILE USED T0
DRAV THE ROOM THAT VILL CONTAIN THE MERLIN ROBOT.
IT IS NOT TO BE USED FOR THE ACTUAL DRAVING.
¢cecccccceeecceececceecceceecccecceececcccccecececccccecceececcccccecccceecce
THE FIRST NUMBER TELLS THE HOST PROGRAM HOV MANY LINKS COMPOSE
THE SYSTEM THAT IS TO BE READ.

2
¢cccccceccccceccecceecceeccceecccecccccecccccecececceeccceecceeeecceece
EACH LINK IN EACH SYSTEM OF THE CURRENT DRAVING ROUTINE USED IS AN
0BJECT DEFINED BY EIGHT POINTS IN 3D SPACE.

THE FIRST ROV OF NUMBERS IS VALUES OF ’X° FOR THE EIGHT POINTS.
THE SECOND ROV IS FOR THE ’Y’ VALUES. THE THIRD ROV IS FOR °Z° VALUES.

THE ORDER OF THE POINTS IS IMPORTANT.

/ i
/| /
5 | 1
|
/ 7
/ /
7 3

IN THE PROGRAM, THE POINTS ARE CONNECTED IN THE FOLLOVING ORDER
1,2,4,3,7,5,6,2,6,8,4,8,7,5,1,3
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THIS TRACES 0UT THE FIGURE(VHICH NEED NOT BE A CUBE).
SOME LINES ARE RETRACED.
IN DISSPLA, THIS IS THE MOST EFFICIENT METHOD OF DRAVING THE OBJECT.

THE FIRST LINK IN THE DATA FILE IS BLANK, IT IS AN ORIENTATION LINK.

00000000

00000000

00000000

THIS IS THE SET OF POINTS THAT DEFINE THE CORNERS OF THE ROOM.
144 144 144 144000 0

90 90 0 0 90 90 0 0
108 0 108 0 108 0 108 0

CCCCCCCCCCCCCCCCCCCeeeecceeeeeecctiececcececcceeeeecccccececccceCecce
THE FOLLOVING NUMBERS DEFINE THE TRANSLATION VECTOR AND ORIENTATION
VECTOR OF A LINK VITH RESPECT T) THE PREVIOUS LINK.

THEY ARE DEFINED AS X,Y,A COORDINATE VALUES.

THE FIRST IS BLANK, IT IS AN ORIENTATION VECTOR.
000
000

TLESE VECTORS PLACE THE BACK LEFT BOTTOM CORNER OF THE ROOM VITH
RESPECT TO THE ORIGIN, VHICH IS CENTER OF THE SCREEN.

-72 -45 -54 TRANSLATION VECTOR

000 ROTATION VECTOR
¢cceeeccccececceccceccecceccccecececcccceecececcccccccececcccccceccccccce

DATAFILE MERL.DAT

10

00000000

00000000

00000000

18.75 18.75 18.75 18.75 -18.75 -18.75 -18.75 -18.75
4.14.1004.14.100

18.75 -18.75 18.75 -18.75 18.75 -18.75 18.75 -18.75

-3.12 -3.12 -3.12 -3.12 3.12 3.12 3.12 3.12
-27.9 -27.9 00 -27.9-27.90 0
3.12 -3.12 3.12 -3.12 3.12 -3.12 3.12 -3.12

-20.3 -20.3 -20.3 -20.3 7.0 7.0 7.0 7.0
9.0 -9.0 9.0 -9.0 9.0 -9.0 9.7 -9.0
4.9 4.9 -14.4 -14.4 4.9 4.9 -14.4 -14.4

-15-15-15-1533 3 3

-4-444-3-333
3-33-33-33-3
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-3-3-3-320.3 20.3 20.3 20.3

-3-333-3-333

3-33-33-33-3

33-3-333-3-3

-14 -14 -14 -14 17.2 17.2 17.2 17.2

3-33-33-33-3

OO
oo O
oo
OO O
OO
[ e R e
OSSO O
OO O

OO0
OO
OO
OO O
OO
QOO
QOO
OO O

O DO
[ = =)
QOO
OO
OO O
oo
OO O
OO

OO
oo
(=R o]

40 0 54
000

0-42.350
1.5708 0 0

0120

-1.5708 0 0

o C
oo
oo

00-1.5708

17.3 0 -6

017.2 0

-1.5708 0 0

000
1.5708 0 0

178

-1.5708 0 0

000




DOCUMENTED DATA FILE MERL.DOC

ccceecceecceececceccceecceeccceeccecececceecceccecceccccecceecceeccececece
VARNING:

THIS FILE SERVES AS A DOCUMENTATION FOR THE DATA FILE USED TO DRAV THE
MERLIN ROBOT. IT IS NOT TO BE USED FOR THE ACTUAL DRAVING.

DOCUMENTED DATA FILE:-

CCCCCCCCCCCCCCCCCTCCCeeeeeeeeeeee eCCCCceccCCCCeCCCeeeccccccceeeeeec

THE FIRST NUMBER TELLS THE HOST PROGRAM HOV KANY LINKS COMPOSE THE
SYSTEN THAT IS TO BE READ.

10

ccccceeeecceceeccecececcccccececcceecceccecceecceceeecceecececccececeeccce

THE FIRST LINK IN THE DATA FILE MUST BE A BLANK LINK IF THE SYSTEN IS TO
BE APPENDED TO ANOTHER SYSTEM (THE ROBOT IS GOING TG BE PLACED IN THE
ROOM, VHICH IS ITS OWN SYSTENM).

00000000
00000000
00000000

¢ceceeccceceeececeeecceceecceccecccccccccccccccceeceececeeeceececeeccececccccee
EACH LINK IN EACH SYSTEM OF THE CURRENT DRAWING ROUTINE USED IS AN
0BJECT DEFINED BY EIGHT POINTS IN 3D SPACE.

THE FIRST ROV OF NUMBERS IS VALUES OF °X’ FOR THE EIGHT POINTS.
THE SECOND ROV IS FOR THE ’Y’ VALUES. THE THIRD ROV IS FOR ’Z’ VALUES.

THE ORDER OF THE POINTS IS IMPORTANT.

/6I /2
o /|
S 1

|
; 7
/ |/
7 3

IN THE PROGRAM, THE POINTS ARE CONNECTED IN THE FOLLOVING ORDER
1,2,4,3,7,5,6,2,6,8,4,8,7,5,1,3
THIS TRACES OUT THE FIGURE(VEICH NEED NOT BE A CUBE). SOME LINES ARE

gg}RéCED. IN DISSPLA, THIS IS THE MOST EFFICIENT METHOD OF DRAWING THE
ECT.

THIS IS THE SET OF POINTS REPRESENTING THE BASE SUPPORT.
18.75 18.75 18.75 18.75 - 18.75 - 18.75 -18.75 - 18.75
4.14.1004.14.100

18.75 -18.75 18.75 -18.75 18.75 -18.75 18.75 -18.75
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THIS IS THE SET OF POINTS REPRESENTING THE COLUMN BETVEEN THE BASE & THE
MOTOR HOUSING.

-3.12 -3.12 -3.12 -3.12 3.12 3.12 3.12 3.12

-27.9 -27.9 00 -27.9 -27.90 0

3.12 -3.12 3.12 -3.12 3.12 -3.12 3.12 -3.12

THIS IS THE SET OF POINTS REPRESENTING THE WAIST AND MOTOR HOUSING.
-20.3 -20.3 -20.3 -20.3 7.0 7.0 7.0 7.0

.0 -9.09.0-9.0 9.0 -9.0 9.0 -9.0

4.9 4.9 -14.4 -14.4 4.9 4.9 -14.4 -14.4

THIS IS THE SET OF POINTS REPRESENTING THE COUNTERVEIGHT OF SHOULDER.
-15-15-15-1533 33

-4-444-3-333

3-33-33-33-3

THIS IS THE SET OF POINTS REPRESENTING THE UPPER ARM.
-3-3-3-320.3 20.3 20.3 20.3
-3-333-3-333

3-33-33-33-3

THIS IS THE SET OF POINTS REPRESENTING THE LOVER ARN.
THE COUNTERVEIGHT IS INCLUDED IN THIS DATA SET.
33-3-333-3-3

-14 -14 -14 -14 17.2 17.2 17.2 17.2
3-33-33-33-3

THIS IS THE SET OF POINTS REPRESENTING THE VRIST ROLL. IT IS BLANK
BECAUSE IT HAS NO PHYSICAL DIMENSIONS, BUT BECAUSE 0F THE VAY THE
PROGRAM IS SET UP, THE LINK MUST HAVE DIMENSIONS EVEN IF THEY ARE ZERO.
00000000

o
po’
[ )
o

=
w2
-
=
=3

OF POINTS REPRESENTING THE WRIST PITCH.

OCOoOO

=]

OO O OO Ok D«
w2
—

=
oo™ oo m OO

OO Wn OSOoOOoOWn o O

<]
OO OO OO

OF POINTS REPRESENTING THE HAND ROLL.

OO OO O3 o
[=X=Roid, ocoooWwm (=]
OO 3 OO OO

SO O
(=]
o
o
(o]

ceceecceccceccecccccccccccccccecceeccecccccceccceccccecccceccceccececce
THE FOLLOWVING NUMBERS DEFINE THE TRANSLATION VECTOR AND ROTATION VECTOR
OF A LINK VITH RESPECT TO THE PREVIOUS LINK.

THE FIRST SET MUST BE BLANK SO THAT THE MERLIN CAN BE APPENDED TO THE
ROON.

THE ZEROES VILL BE REPLACED IN THE PROGRAN VITH THE VECTORS OF THE LAST
LINK OF THE SYSTEM TO BE APPENDED TO.
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0 0 0 - TRANSLATION VECTOR
0 0 0 - ROTATION VECTOR

THIS IS THE TRANSLATION VECTOR OF THE BASE.

THEY ARE DEFINED AS X,Y,Z COORDINATES OF THE BOTTOM CENTER 0F THE BASE
VITH RESPECT TO THE FAR LEFT LOVER CORNER OF THE ROON.

IN THE PROGRAM, VHEN THE ROBOT IS TO BE REPOSITIONED, THESE NUMBERS VILL
BE CHANGED BY THE USER. THE DEFAULT IS SE[ T0 [54,0,54]

THESE ARE THE VECTORS OF THE ROBOT’S BASE WITH RESPECT TO THE ROOM.
54 0 54 - TRANSLATION VECTOR

000 - ROTATION VECTOR

THESE ARE TEE VECTORS OF THE ROBOT’S COLUMN WITH RESPECT TO THE BASE.
04.10 - TRANSLATION VECTOR

0 0 3.1416 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE RGBOT’S WAIST WITH RESPECT TO THE COLUMN.
0-42.35 0 - TRANSLATION VECTOR

1.5708 0 0 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT’S COUNTERVEIGHT WITH RESPECT TO THE
WAIST.

0120 - TRANSLATION VECTOR

-1.5708 0 0 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT’S UPPER ARM VWITH RESFECT TO THE
SHOULDER COUNTERVEIGHT.

006 - TRANSLATION VECTOR

000 - ROTATION VECTOR

EHESE ARE THE VECTORS OF THE BROBOT’S LOVER ARM WITd RESPECT TO THE UPPER
RN.

17.3 0 -6 - TRANSLATION VECTOR

00-1 708 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT’S WRIST ROLL WITH RESPECT TO THE
LOVER ARM.

017.2 0 - TRANSLATION VECTOR

-1.5708 0 0 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT’S VRIST PITCH WITH RESPECT TO0 THE
WRIST HOLL.

000 - TRANSLATION VECTOR

1.5708 0 0 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT’S HAND KOL. Witd KESPLCT TO THE WRIST
PITCH.

000 - TRANSLATION VECTOR

-1.5708 0 0 - ROTATION VECIOGR
¢Cccceceeceeceeeccecceeccececcecceaceccececereccueccecceececceccecceccce
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DATAFILE UTAH.DAT

4

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000060

00000000

1.8-1.91.8-1.91.8-1.91.8-1.9

4.25 4.25 4.25 4.25 000 0
.375 .375 -1.5 -1.5 .375 .375 -.375 -.375

000

000

000

000

0060

-1.5708 0 3.1416

000

0 1.5708 0

5

00000000

00000000

00000000

-.5-.5.5.5-.5-.5.5.5

-.9 .5 -.5.5-.5.5-.5.5
.21.21.21.20000

1.71.71.71.70000

.45 .45 - .45 - .45 .45 .45 - .45 - .45
.45 - .45 .45 - .45 .45 - .45 .45 - .45

1.31.31.31.30000

4 .4-.4-.4.4 .4-.4-.4
4-.4.4-.4.4-.4.4-4

1.0625 1.0625 1.0625 1.0625 0 0 0 0
.35 .35 -.35 -.35 .35 .35 -.35 -.35
.35 -.35 .35 -.35 .35 -.35 .35 -.35
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000
000

-1.375 4.25 -.75
-1.34 0 1.5708

0 1.5708

o Wew Wen [, [ DO O
O W OSO=-INnOo
<o M

.5 -.5 .5 .5
. .5 .5 -.5 .5
20000

]
B v O
ot
1
« U n
— Ut n
i

1.71.71.71.70000
.45 .45 - .45 - .45 .45 .45 - .45 - .45
.45 - .45 .45 - .45 .45 - .45 .45 - .45

1.3 1.31.31.300
4 .4 -.4-.4 .4 4 -
4 -

-.4 .4 -.4

0

bh)&r—‘
.::-.po

4
4 . .4
1.0625 1.0625 1.0625 1.0625 0 0 0 0

.35 .35 -.35 -.35 .35 .35 -.35 - .35
.35 -.35 .35 -.35 .35 -.35 .35 -.35

000
000

.10 4.25 - .75
-1.34 0 1.5708

0 01.2
1.5708 0 1.5708

0
0

D = D =
O W O]
OO OO

183




1.71.71.71.70000
.45 .45 -.45 - .45 .45 .45 - .45 - .45
.45 - .45 .45 - .45 .45 - .45 .45 - .45

1.31.31.31.30000
4 .4-.4-.4.4 4-.4-.4
4-.4 .4-.4.4-.4.4-.4

1.0625 1.0625 1.0625 1.0625 0 0 0 0
.35 .35 -.35-.35 .35 .35 -.35 -.35
.35 -.35 .35 -.35 .35 -.35 .35 -.35

000
000

1.1875 4.25 - .75
-1.34 0 1.5708

001.2

1.5708 0 1.5708
700

00
3
0

O -t

00
0

COO OCOO on O -
OO OOO

-
oo oo

.\I OO OO0

(=4 (=N ] OO
DO OCOO (e Rl ]
[N o) OO

'Eﬂ\l [ e o] oo Oo

7
.5 .5 .5 .5 -
-.5.5-.5.5

1.71.700
-.5-.5 -,

[ o

5
5 .5-.5.5

1.3125 1.3125 0 0 1.3125 1.3125 0 0
.45 .45 .45 .45 - .45 - .45 - .45 - .45
-.45 .45 - .45 .45 - .45 .45 - .45 .45
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1.125 1.125 0 0 1.125 1.125 0 0
4 .4 .4 . 4-.4-.4-.4-.4
-4 .4-.4 4-.4 .4-4 .4

000
000

.75 3.125 0
-1.5708 0 -1.5708

375 0 0
1.5708 0 0

1.700
000
1.3125 0 0
000

.375 .375 -.375 -.375 :..375 .375 -.375 -.375
3.875 3.875 3.875 3.875 0 00 0
-1.91.8-1.91.8-1.91.8-1.91.8

DOCUMENTED DATA FILE UTAH.DOC

CSCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
VARNING:

THIS FILE SERVES AS A DOCUMENTATION FOR THE DATA FILE USED TO DRAV
THE UTAH HAND. IT IS NOT TO BE USED FOR THE ACTUAL DRAVING.

DOCUMENTED DATA FILE:-

ccececcccccceeceeccececcecccceeecececcececccecceecececccccceeeecceccccecccecce
THE FIRST NUMBER TELLS THE HOST PROGRAM HOV MANY LINKS COMPOSE
THE SYSTEM THAT IS TO BE READ.

4

CCCCCCCCCCCCCCCCCCCCCCCrCeeceeeeceecceeceeecceecceecceeeceeeeceeceee
THE FIRST LINK IN THE DATA FILE OF SYSTEM MUST BE A BLANK LINK IF THE
SYSTEM IS TO BE APPENDED T0 ANOTHER SYSTEM(THE HAND IS GOING TO BE
PLACED ON THE MERLIN ROBOT).

000060000
00000000
00000000

CCCCCCCCCCCCCCCCCOCCCCCCCCCCCCeeeeCCeeecceeeecCceeeecteeecelccceeec
THE SECOND LINK IN TEE DATA FILE FOR THE HAND MUST BE A BLANK.
IN THE PROGRAN, THE USER HAS THE OPTION OF REPOSITIONING THE BAND.
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TO MAKE THIS POSSIBLE, A BLANK LINK IS REQUIRED.

00000000
00000000
00000000

CCCCCCCCCCCCCeeceeeeceeeeeeecceeeceeeceeceeececeeccceCcCeecCecceceeeee
THE THIRD LINK IN THE DATA FILE FOR THE HAND NUST BE A BLANK. THIS IS
NECESSARY T0O ACHIEVE PROPER ORIENTATION OF THE HAND.

00000000
00000000
00000000

CCCCCCCCCCeCeeececceeeeceeeececeeeccceeeccCCeeeCeceeCeCCcCCeCCCCeeee
EACH LINK IN EACH SYSTEM OF THE CURRENT DRAVING ROUTINE USED IS AN
OBJECT DEFINED BY EIGHT POINTS IN 3D SPACE.

THE FIRST ROV OF NUMBERS IS VALUES OF ’'X’ FOR THE EIGHT POINTS.
THE SECOND ROV IS FOR THE Y’ VALUES. THE THIRD ROV IS FOR ’Z2° VALUES.

THE ORDER OF THE POINTS IS IMPORTANT.

/6l /2
S
|
Y
Y /

IN THE PROGRAM, THE POINTS ARE CONNECTED IN THE FOLLOVING ORDER
1,2,4,3,7,5,6,2,6,8,4,8,7,5,1,3
THIS TRACES 0UT THE FIGURE(VEICH NEED NOT BE A CUBE). SOME LINES ARE

%gg%éCED. IN DISSPLA, THIS IS THE XOST EFFICIENT METHOD OF DRAVING THE
T.

¢ccececeececceeeceeeecceeeecceeeecceeececeeeececeeeccCCCcccccCCceeeee
THIS IS THE SET OF POINTS REPRESENTING THE PALM SECTION.
1.8-1.91.8-1.91.8-1.9 1.8 -1.9

4.25 4.25 4.25 4.25000 0

.375 .375 -1.5 -1.5 .375 .375 -.375 -.375

CCCCCCCCCCCCCCCCCCCeecClrecceceeceeeeeeccceeeccceccceCeecccccecceeec
THE FOLLOVING NUMBERS DEFINE THE TRANSLATION VECTOR AND ROTATION VECTOR
OF THAT LINK VITH RESPECT TO THE PREVIOUS LINK. THEY ARE DEFINED AS
X,Y,Z COORDINATE VALUES.

THE FIRST MUST BE BLANK IF IT IS T0O APPENDED T0 ANOTHER SYSTEM
THE ZERQES VILL BE REPLACED IN THE PROGRAN VITH THE VECTORS OF THE LAST
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LINK OF THE SYSTEM T0 BE APPENDED TO.
000 TRANSLATION VECTOR
000 ROTATION VECTOR

THE SECOND NUST BE BLANE TO ALLOV FOR REPOSITION OF THE HAND.

THE ZEROES VILL BE REPLACED IN THE PROGRAM VITH THE VECTORS THAT DEFINE
THE REPOSITIONING OF THE HAND.

000 TRANSLATION YECTOR

000 ROTATION VECTOR

THESE ARE THE TRANSLATION AND ROTATION VECTORS OF SECOND AND THIRD ENPTY
LINKS.

000 TRANSLATION VECTOR

-1.57 0 3.14  ROTATION VECTOR

THESE ARE VECTORS OF THE PALM VITH RESPECT TO THE THIRD ENPTY LIRK.
000 TRANSLATION VECTOR
0 1.5708 0 ROTATION VECTOR

CCCCCCCCCCCCCOCCCCCTCeCCCCCeCCCeCecCCCCCCCCCecCCeCCCCCCCCCCCCCCCCCCCC
NUMBER OF LINKS OF THE FIRST FINGER.

5

EMNPTY LINK FOR APPENDING THE FIRST FINGER TO THE PALN
00000000

00000000

00000000

TBIS IS THE SET OF POINTS REPRESENTING THE (ZERO)TH LINK SECTION.
-.5-.5.5.5-.5-.8.5.5

-.5.5-.56.5-.5.5-.5.5

1.21.21.21.20000

THIS IS THE SET OF POINTS REPRESENTING THE FIRST LINK SECTION.
1.71.71.71.70000

.45 .45 - .45 - .45 .45 .45 - .45 - .45
.45 - .45 .45 - .45 .45 - .45 .45 - .45

THIS IS TEE SET OF POINTS REPRESENTING THE SECOND LINK SECTION.
1.31.31.31.30000

4 .4-.4-.4.4.4-4-.4

4-.4 .4-.4.4-.4.4-4

THIS IS THE SET OF POINTS REPRESENTING THE THIRD LINK SECTION.
1.0625 1.0625 1.0625 1.0825 0 0 0 0
.35 .35 -.35 -.35 .35 .35 -.35 -.35
.35 -.35 .35 -.35 .35 -.35 .35 -.35

g}ﬁgY TRANSLATION AND ROTATION VECTORS FOR APPENDING THE FTNGER TO THE

000
000

187




!lIIIlIIllllIllIllllllIlllll.lllllllllIllllllll.ll...lIlIIIIIIIIIIIIIIII---:~7

THESE ARE THE VECTORS OF THE ZEROTH LINK VITE RESPECT TO THE HAND.
-1.375 4.25 -.75 TRANSLATION YECTOR

-1.34 0 1.5708 ROTATION VECTOR
THESE ARE THE VECTORS OF THE FIRST LINK VITH RESPECT TO THE (ZERO)TH.
001.2 TRANSLATION VECTOR

1.5708 0 1.5708 ROTATION VECTOR

THESE ARE THE VECTORS OF THE SECOND LINK VITH RESPECT T0 THE FIRST.
1.700 TRANSLATION VECTOR

000 ROTATION VECTOR

THESE ARE THE VECTORS OF THE THIRD LINK VITH RESPECT TO THE SECOND.
1.300 TRANSLATION VECTOR

000 ROTATION VECTOR

Cccccccceecccccccccecccccccccccccccccccccccccccececccecceeccecccccec
NUMBER OF LINKS OF THE SECOND FINGER.
5

]
o]
-

LINK FOR APPENDING THE SECOND FINGER TO THE PALN.

ocooom:
SO O

-3

o o o b

B Ot O = OO
W

F POINTS REPRESENTING THE (ZERO)TH LINK SECTION.
.5 .5 .5

0
0
0
T 0
-5 -
5 .5-.5.5
0
0

0
0
0
SE
.5
.5
1.

(= . t

000

F POINTS REPRESENTING THE FIRST LINK SECTION.
0000

45 .45 - .45 - .45 .45 .45 - .45 - .45

.45 - .45 .45 - .45 .45 -.45 .45 - .45

Hi—!
=
N!tﬂ M

THIS IS THE SET OF POINTS REPRESENTING THE SECOND LINK SECTION.
1.31.31.31.30000
4 .4-.4-.4.4 .4-.4-4

4-.4 .4-.4.4-.4.4-.4

THIS IS THE SET OF POINTS REPRESENTING THE THIRD LINK SECTION.
1.0625 1.0625 1.0625 1.0625 0 0 0 0
.35 .35 -.35 -.35 .35 .35 -.35 -.35
.35 -.35 .35 -.35 .35 -.35 .35 -.35

E{PTY TRANSLATION AND ROTATION VECTORS FOR APPENDING THE FINGER TO THE
HAND.
000
000

THESE ARE THE VECTORS OF THE 6ZEBO%TH LINK VITH RESPECT T0 THE HAND.
-.10 4.25 -.75 TRANSLATION VECTOR
-1.34 0 1.5708 ROTATION VECTOR
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THESE ARE THE VECTORS OF THE FIRST LINK VITH RESPECT T0 THE (ZERO)TH.
001.2 TRANSLATION VECTOR
1.5708 0 1.5708 ROTATION VECTOR

THESE ARE THE VECTORS OF THE SECOND LINK VITH RESPECT TO THE FIRST.
1.700 TRANSLATION VECTOR

000 ROTATION VECTOR

THESE ARE THE VECTORS OF THE THIRD LINK VITH RESPECT TO THE SECOND.
1.300 TRANSLATION VECTOR

000 ROTATION VECTOR

CCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeaeeeccececcecceeccee
NUMBER OF LINKS OF THE THIRD FINGER.

NPT

P INK FOR APPENDING THE THIRD FINGER TO THE PALM.
0
0
1
5

0
0
0

THIS 0

.5 - -.5-.5.5.5

N -.5.5-.5.5

12 1.2 1.2 0000

THIS IS THE SET OF POINTS REPRESENTING THE FIRST LINK SECTION.
1.7 1.7 1.7 0000

.45 .45 - .45 - .45 .45 .45 - .45 - .45

.45 - .45 .45 - .45 .45 - .45 .45 - .45

0
0
0
0
SET OF POINTS REPRESENTING THE (ZERO)TH LINK SECTION.
.5
.5
1.
S
1.

2
T
7

THIS IS THE SET OF POINTS REPRESENTING THE SECOND LINK SECTION.
1.31.31.31.30000
4 .4-.4-.4 .4 .4-.4-.4

4-.4 .4-.4 .4-.4.4-.4

THIS IS THE SET OF POINTS REPRESENTING THE THIRD LINK SECTION.
1.0625 1.0625 1.0625 1.0625 0 0 0 0
.35 .35 -.35-.35 .35 .35 -.35 -.35
.35 -.35 .35 -.35 .35 -.35 .35 -.35

EMPTY TRANSLATION AND ROTATION VECTORS FOR APPENDING THE FINGER TO THE

HAND.

000

000

THESE ARE THE VECTORS OF THE SZERU)TH LINK VITH RESPECT TO THE HAND.
1.1875 4.25 -.75 TRANSLATION VECTOR

-1.34 0 1.5708 ROTATION VECTOR

THESE ARE THE VECTORS OF THE FIRST LINK VITH RESPECT T0 THE (ZERO)TH.
001.2 TRANSLATION VECTOR

1.5708 0 1.5708 ROTATION VECTOR
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THESE ARE THE VECTORS OF THE SECOND LINK VITH RESPECT TO THE FIRST.
0 TRANSLATION VECTOR
ROTATION VECTOR

ARE THE VECTORS OF THE THIRD LINK VITH RESPECT TO THE SECOND.
0 TRANSLATION VECTOR
ROTATIGN VECTOR

¢cccceecececceccecececccccececcceecccceecececccecceccececcecceccceccecccccecee
NUMBER OF LINKS OF THE THUMB.
5

=

-3

OOO
[=~4

LINK FOR APPENDING THE THUMB TO THE PALN.

(=
OO

ET OF POINTS REPRESENTING THE (ZERO)TH LINK SECTION.

QOO

E

bt 3 ooog oo™
-3 - COO [ X X =)

]

0
0
0
S
0
0
0
S
1.

U‘OE!J ooOom OO
Cﬂﬂ'—] oo o

OF POINTS REPRESENTING THE FIRST LINK SECTION.
1.700
5. -.5-.5-.5
2.5 .5 .5 .5 - 5 .5-.5.5

THIS IS THE SET OF POINTS REPRESENTING THE SECOND LINK SECTION.
1.3125 1.3125 0 0 1.3125 1.3125 0 0
.45 .45 .45 .45 - .45 - .45 - .45 - .45
-.45 .45 -.45 .45 - .45 .45 -.45 .45

THIS IS THE SET OF POINTS REPRESENTING TEE THIRD LINK SECTION.
1.125 1,125 0 0 1.125 1.125 0 0

4 .4 .4 . 4-.4-.4-.4-.4

-4 .4-.4 .4-.4.4-.4 .4

EMPTY TRANSLATION AND ROTATION VECTORS FOR APPENDING THE THUMB TO THE

U‘H
U‘

HAND.

000

000

THESE ARE THE VECTORS OF THE 6ZERO%TH LINK VITH RESPECT TO THE HAND.
.75 3.125 0 TRANSLATION VECTOR

-1.5708 0 -1.5708 ROTATION VECTOR

{gEgE ARE THE VECTORS OF THE FIRST LINK VITH RESPECT T0 THE (ZERO)TH
N

3750 0 TRANSLATION VECTOR
1.5708 0 0 ROTATION VECTOR
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THESE ARE THE VECTORS OF THE SECOND LINK VITH RESPECT TO THE FIRST.
1.700 TRANSLATION VECTOR
000 ROTATION VECTOR

THESE ARE THE VECTORS OF THE THIRD LINK VITH RESPECT T0 THE SECOND.
1.3125 0 0 TRANSLATION VECTOR
000 ROTATION VECTOR
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