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Empirical performance evaluations of parallel, discrete event simulation
algorithms using deadlock avoidance and deadlock detection and recovery
wchﬁqusdev;wdbyChmdymdMimhvebeenpufmnedusingw
BBN Butterfly ™ multi . Experiments using synthetic workloads
reveal that the degree (o which processes can look ahead in simulated time
plays a critical role in the performance of distributed simulators using
these algorithms. These resulis are applied 10 a queueing network
simulation where as much as an order of magnitude improvement in
performance is observed if the distributed simulator is programmed to fully
exploit the lookahead available in the application. Performance
measurements of several hypercube-based communication network
simulators provide additional empirical data to support thesc claims.
These results demonstrate that substantial improvements in performance
are obiainable if the application can be programmed o have good
lookahead characteristics. On the other hand, other applications inhkerently
contain poor lookahead properties, and appear to be ill-syited for these

simulation algorithms. '/é’ ™ W a6 o
n—\AJ.u e W‘&wﬂb o~ ".fkp X
L Introduction —

Discrete event simulation has long been a task with computation
requirements that chalienge the fastest available computers. For example,
simulations of communication networks, parallel computer architectures,
and batuefield scenarios ofien require hours, days, or even weeks of CPU
time using traditional, single processor techniques. Simulator performance
may be improved using veclorizing techniques [Chan83a), processors
dedicated to specific simulation functions {Comf84a), execution of
independent trials on separate processors [Bile85a], or the execution of a
single instance of & simulation program on a parallel computer. The last
technique, referred to as distributed simulation, is the subject of this paper.

Simulation would initially appear 10 be a natural candidate for parallel
processing because many of the aforementioned applications contain a
high degree of parallelism. However, the exploitation of this parallelism is
elusive because the global notion of simulated time does not easily map
onto a distributed computer. This property distinguishes distributed
simulation from other forms of parallel computation.

Several schemes have been proposed to solve this problem. A survey of
the literature has been reporied by Kaude! [Kaud87a). One imponiant class
of distributed simulation algorithms is the so-called ‘‘conservative'
mechanisms. Chandy and Misra developed a mechanism based on a
deadlock avoidance technique where null messages are used to distribute
clock informaton among the processes taking part in the simulation
[Chan79a, Misr86a). Another mechanism, also developed by Chandy and
Misra, is based on a deadlock detection and recovery paradigm — the
simulator runs until deadlock, the deadlock is detected, and an algorithm is
executed to break the deadlock {Chan8la, Misr86a). Other approaches to
distributed simulation have been proposed, notably the Time Warp
approach proposed by Jefferson [Jeff85a], but the work discussed here will
be confined to deadlock avoidance and deadlock detection and recovery
techniques.

In [Fuji883) several experiments using synthetic workloads were
described that were designed 1o evaluate the effectiveness of distributed
simulation strategies using the deadlock avoidance and the deadlock
detection and recovery algorithms. These experiments were performed on
2 disuibq,led simulation testbed that was implemented on the BBN
Buterfly, M a shared-memory multiprocessor. Here, we apply these
results w specific application problems to provide empirical data 1o support
these results. In particular, paralle! simulatons of queueing networks and
the communication subsystem of a hypercube-based multicomputer
demonstrate the relationship between lookahead in the simulation
application and performance of the parallel simulator.

"This work was supported by ONR contract number N0OO!14-87-K-0184 and NSF grant
number DCR-8504826
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Logical processes, activities, and lookahead form the basis for the
synthetic workload model that is used here. The siaulation program
consists of some number of logical processes, each of which models some
portion of the system being simulated. For example, in simulating a digial
logic network, each gate (or some collection of gates) could be modeled by
a logical process. Logical processes communicate exclusively by
exchanging timestamped messages. Messages typically correspond to
events that trigger a change in system state. Each logical process must
process incoming messages in non-gecreasing timestamp order o ensure
that cause-and-effect relationships are faithfully reproduced by the
simulator,

We informally define an acrivity as a sequence or thread of events that
propagates among the logical processes in the simulation. These events
model some sequence of cause-and-effect relationships in the system being
simulated. For example, in a logic simulation, individual events are logic
signal transitions and each activity corresponds to a signal propagaung
through a sequence of logic gates. In a queneing network simulation, each
activity corresponds to a job traveling through the network. Activities are
usually dynamic. A new activity is created in the logic simulation
whenever an existing activity reaches a fanout point in the network. The
activity disappears when (for instance) it reaches an AND gate with a logic
zero on one of the other input lines. For our purposes, this informal
definition of activities and logical processes will suffice.

Logical processes ofien *‘look ahead’ into the simulated ume future to
schedule new events. For example, upon receiving a signal transition
event in a logical process for an inverter gate, the process can predict and
schedule a new event (a signal transition at the output of the gate) one gate
delay later in simulated time. The lookahead abilities of the process
determine how readily it will schedule new events. Processes such as the
inverter with good lookahead abilities can ‘‘sec’’ sufficienty {ar into the
future that *effect’’ events can be scheduled as soon as the *‘cause’’ event
is received. On the other hand, processes with poor lookahead ability must
first wait until simulated time is advanced before they can schedule the
effect event. For example, in a queueing network simulation with
prioritized jobs, the ‘‘departure’’ event for a low priority job cannot be
scheduled until it is first determined that no higher priority job will
preempt it.

Quantitatively, lookahead is defined as follows: if a process has
knowledge of all events that will occur up to simulated time 7, and can
predict all new events it will generate with imestamp T+ L or less, then
the process is said to have lookahead L. In general, lookahead is a
complex function that varies with time and the type of event, and is highly
dependent on details of the simulation problem and the way it is
programmed. A process can schedule a future event so long as the
timestamp on that event is less than or equal to the process's local clock
plus its lookahead. Such events are said 10 be within the ‘‘lookahcad
horizon’’ of the process.

Consider a ‘‘cause’’ event with timesamp T, that leads 10 an
*effect’” event with timestamp T4,.,. The absolute value of lookahead is
not as important as the lookahead relanive 10 Top,., = Topue » because this
will determine how far the process must advance in simulated time 10
generate the new event. Therefore, we define a quantity referred 10 as the
lookahead ratio (LAR):

T! - T
= ot cose
LAk lookahead

A low (e.g., 1.0) LAR corresponds (o a high degree of lookahead.

3. The Distributed Simulation Testbed

An 18 processor BBN Buuerfly multiprocessor was used for
experimentation. Each processor node contains a 16 MHz MC68020 with
MC68881 floating point coprocessor, 1 10 4 MBytes of memory, and a
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Table 1. Hardware Parameters

. Execution Time
Operation (microseconds
Local memory reference 0.60
Remote memory reference 40
Register-to-register instruction 071
16 bit Load (Loca! Memory) 1.3
16 bit Load (Remote Memory) 63
Parameterless function call 69
Atomic inclusive OR 20

processor node controller (PNC), a microcoded engine that processes local
and remoie memory requests. The interconnection switch is configured as
an Omega netwark. Atomic test-and-set like memory operations are also
implemented in the PNC. Execution times of various instructions and
operations are shown in table 1. Experimental data indicate that swich
contention, and hot spot congestion in particular, is unlikely [Thom86a].

Each processor executes a single operating system process. This
process is a scheduler that time multiplexes execution of the simulation
processes mapped 10 the processor. This strategy avoids excessive context
swilching overhead, and allows more direct control over the process
scheduling mechanism. Asynchronous message passing primitives were
constructed using direct memory accesses to the mailbox in the receiving
simulator process. Only a few simple Butterfly primitives, namely lock
and atomic-add operations, are used by the testbed after initialization is
complete.

4 imuyl 1 m

Two distributed simulation algorithms were implemented in the testbed:
one based on deadlock avoidance and another based on deadlock detection
and recovery. The shared memory architecture of the Buterfly was used
to improve the efficiency of these algorithms, as described below. A single
processor, event list implementation was also developed in order w0
compute speedup.

4.1 Deadlock Avoidance Strategy

The deadlock avoidance scheme developed by Chandy and Misra was
implemented first. Each logical process sends a null message to each of its
neighbors whenever it blocks. The timestamp on this message represents a
lower bound of the timestamp on any message that will be sent to the
receiver in the futre. It is equal to the local clock value of the process
plus the lookahead value because, by definition, the process cannot predict
the occurrence (or non-occurrence) of events further into the future.
Chandy and Misra have shown that this approach is sufficient to avoid
deadlock [Chan79a).

In the testbed, one optimization was performed to streamline the
processing of null messages. Rather than enqueucing each null message
sent 1o another processor, a single variable is associaled with each input
link that contains the timestamp of the last null message that was received.
This avoids unnecessary enqueue and dequeue operations and leads to
more efficient memory utilization.

4.2 Deadlock Detection and Recovery Strategy

The second simulation approach is based on deadlock detection and
recovery. The simulation runs until deadlock, the deadlock is detected,
and an algorithm is initiated to break the deadiock (Chan81a]. A central
controller is used to coordinate the deadlock recovery procedure.

Deadlock in the testbed is easily detected by maintaining a global
counter indicating the number of processes that are either scheduled or
running. The system is deadlocked whenever the counter reaches zero and
there is at least one process that has not yet terminated (otherwise, the
computation has terminated). Each scheduler checks the deadiock counter
whenever it fails to find a process to run, and initiates a computation to
break the deadlock if it finds the counter is zero,

The deadlock recovery algorithm locates the message in the system with
the smallest timestamp and arranges for it to be processed next. A
distributed algorithm is used 10 perform this computation. A central
controller is used 10 coordinate this activity. By convention, the scheduler
executing on PE 0 acts as the controller.

An altemative deadlock recovery algorithm was also implemented in
which messages are propagated throughout the system in order 10 restart as

many processes as possible. This algorithm is described in {Chan81a). It
was found, however, that the additional time required 0 execuie this
algorithm yielded a pet loss in performance. The performance figures
reported here are based on the former deadlock recovery approach.

4.3 Uniprocessor Simulation Algorithm

Finally, a single processor, event list simulator was developed 1 allow
comparison of distributed simulstion programs with sequential event list
implementations. In order 1o obtain a fair comparison, the uniprocessor
simulator was constructed by modifying the distributed simulator. Both
implementations maintain the same overall structure, organization,
programming style, and conventions. All code specific o parallel
computation (.., synchronization locks) was eliminated.

The event list was implemented as a splay tree {Slea85a). Empirical
evidence suggests that splay trees are among the fastest methods for
implementing an event list (Jone86a). An altemative implementation
using a singly linked linear list was also developed. It was found that this
implementation yielded performance comparable o the splay tree for small
simulations but, as expecied, ran much more slowly for the larger
simulations. The splay tree implementation is used in all comparisons with
uniprocessor simulations reported here.

4.4 Performance Metrics
Three metrics are defined to evaluate the performance of the distributed

simulation programs:

o Speedup. SU(n), the speedup using n processors, is defined as the
execution time of the single processor, event list implementation using a
splay tree divided by the execution time of the distributed simulation
program when n processors are used.

e Null Message Ratio. NMR is defined as the number of null messages
processed by the simulator using deadlock avoidance divided by the
number of real (non-null) messages processed. This measures the
overhead of the deadlock avoidance approach.

o Deadlock Ratio. DR is the number of messages processed by the
distributed simulator using deadlock detection and recovery, divided by
the number of deadlocks that occur. This figure measures the efficiency
of the deadiock detection and recovery algorithm.

The single processar execution times were obtained by running the splay
tree simulator on a single node of the Bunerfly. The same compiler as that
used by the distributed simulator was used. Therefore, compiler and
processor speed dependencies are factored out of the speedup figures.

The experiments were performed with no other applications running on
the Butterfly. Facilities, such as the window manager, were run on
processors different from those executing the simulation program. These
measures were Laken to minimize interference with the computation.

Experimental data were, for the most part, well behaved. The 95
percent confidence intervals for the measured data were typically less than
one or two percent of the reported value. Only in a few instances were
significant variations observed from one measurement to another. These
were related to the avalanche effect described later, and do not affect the
conclusions that follow from these experiments.

S, Experiments Using Synthetic Workloads

Synthetic workloads were constructed besed on the notions of logical
processes, activities, and lookahead, described earlier. Workloads
contained 16 and 64 logical processes organized in 4 by 4 and 8 by 8
toroids, respectively (a toroid is a nearest neighbor mesh with wrap-around
edge connections). Toroids were used because they do not contain
inherent bottlenecks that might color the results, and because they are rich
in cycles, and therefore represent a reasonably challenging configuration
for the simulation algorithms. It is assumed that the number of activities in
the simulation remains constant, and the lookahead of each process
remains fixed throughout the simulation and does not depend on the type
of event Within each experiment, a fixed number of messages (the
message population) circulates in a8 manner similar 0 jobs traveling
throughout a closed queueing network. Simulation activity in each process
was emulated using busy wait loops.

The experiments discussed next assume a message population of four
messages per process and an average computation time of 1 millisecond
(selected from a random variable with a negative exponential distribution)
1o process each incoming message. A stalic process (o processor mapping
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Figure 1. Speedup of synthetic workioad as lookahead is varied.

was used that balanced the workload assigned to the available processors
while minimizing interprocessor communications.

Numerous experiments were conducted to examine the effects of

computation granularity, dynamic load balancing, message population,
message routing, and other factors. A detailed description of these re. ults
is beyond the scope of the present discussion, but is described elsewhere
[Fuji87a,Fuji88a). We will summarize some of these results and discuss
how they can be applied to a specific application.

5.1 Effect of Lookahead

The speedup curves in figure 1 show the effect of varying lookahead in
the deadlock avoidance simulator. As can be seen, lookahead plays a
critical role in determining simulator performance. Performance degrades
significantly as the lookahead ability of each process is reduced. Processes
with poor lookahead characieristics must delay generating new events,
reducing the amount of paralielism available in the simulation.

Performance of the 16 node toroid is somewhat less than the 64 node
toroid because the simulation does not contain sufficient parallelism 1o
keep all of the processors busy. In addition, as the number of processes
per processor is decreased, cach process is afforded less time to collect
messages before it is executed by the scheduler. As a result, a process may
be scheduled more often than if there were more processes mapped (o the
processor. The additional scheduling overhead and increased idle time
lead to poorer performance in the 16 node simulator, particularly as the
number of processors is increased.

5.2 Message Avalanche

Experiments using the deadlock detection and recovery strategy also
revealed an ‘‘avalanche’ phenomenon. This behavior is depicted in figure
2 where the deadlock ratio is plotied as a function of the message
population. Performance remains poor (only a few messages processed
between deadlocks) at low and moderate message populations, but then
increases dramatically once message population reaches & cenain critical
level. It was found that message avalanche was a prerequisite for
achieving good performance for this simulation strategy.

Message avalanche occurs when a message srriving at 8 process causes
the transmission of one or more additional messages, which in wm trigger
the transmission of still others, and so on. A multiplicative effect occurs
whereby an ‘‘svalanche’ of message traffic results from the original,
accounting for the dramatic improvement in simulator efficiency.

As shown in figure 2, the message population required to induce
avalanche was found ©0 be dependent on the lookahead ability of the
processes. Smaller populations were required to induce avalanche if
processes were able 10 see far into the simulated future. This is again
because poor iookahead characteristics reduce the amount of paralielism in
the simulator.

Message Avalanche
Deadiock Detection and Recovery Strategy
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Figure 2. Message avalanche occurs as the message population is increascd

53 P ith DifY Lookahead
" The experiments described above used homogeneous workloads where
each process behaved in the same way as the others. Many real
simulations contain a variety of logical processes with different lookahead
characteristics. Additional experiments were performed in which some
processes had poorer lookahead characteristics than the others.

Figures 3 and 4 show simulator overhead for the deadiock detection and
recovery, and deadlock avoidance simulators, respectively, when some
number of processes with poor lookahead characteristics are mixed with
processes with good lookahead characteristics. Experiments were
performed in which one, one fourth, one half, and finally all processes
have poor lookahead (high LAR). Figure 3 indicates that the presence of a
few processes with poor lookahead results in a perceivable performance
degradation in the deadlock detection and recovery simulator (the
avalanche point is moved to higher message populations). When a
significant fraction of the processes have poor lookahead, performance is
almost the same as that when all processes have poor lookahead. The
deadlock avoidance simulator was found not to be as susceptible to such
behavior (see figure 4), though some degradation results if a sufficiendy
high fraction have poor lookahead properties.

n; ork Si jon

To illustrate the applicability of the above results in a specific
application, queucing network simulations were performed. A five
process, central server network was simulated on the testbed. As shown in
figure S, this network contains three first-come-first-serve (FCFS)
processes that service incoming jobs in the order in which they arrive, a
fork process that stochastically rouies each incoming job o onc of its
output ports (assume for now that either port is equally likely w be
sclected), and a merge process that combines streams of incoming jobs into
a single output stream. Each server process also computes the average
number of jobs in the server and reports this figure to the user.

Simulation and empirical studies by Seethalakshmi and Reed
respectively concluded that the central server network is ill-suited for the
conservative  distributed  simulation  algorithms  discussed  here
[Seet79a, Reed88a). We reproduce and explain the poor results that these
researchers observed in terms of message population and lookahead, and
utilize this knowledge to improve performance.

The “‘classical”* implementation of the FCFS process uses two types of
events: arrival events (scheduled by other processes) denote jobs armiving
at the server, and departure events (scheduled by the FCFS process itself)
denote jobs completing service. The actions execuied by the server
process for each event type are shown in figure 6. NJobs indicates the
number of jobs currendy residing in the server, and ServiceTime indicates
the time required to service each job. Code for computing statistics is not
shown.

The classical server process has very poor lookahead properties. This is
because it will not transmit an amival event message with umestamp TS
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until it has first advanced its local simulated time clock to 7§ by
processing a departure event. In effect, it has a lookahead value of zero.

The lookahead properties of the FCFS process can be improved by
eliminating the departure event, and generating a new arrival event as soon
as one is received. Because an FCFS queueing discipline is used, the
departure time can be determined as soon as the message is received. The
optimized program is shown in figure 7. EndService denotes the time at
which the server process will become idle if no additional jobs are
received in the future. This program exhibits very good lookahead abilities
because it can schedule events far into the simulated time future.

6.1 Performance Using Identical Servers

Simulators using each of these server programs were developed and
executed on the Butterfly testbed. In all of the experiments described
below, each logical process was mapped 10 a separate processor, and static
scheduling was used. Service times for server processes were selected
either deterministically or from a random varisble with a negative
exponential distribution.

The resulting speedup and simulator efficiencies for the central server °

queueing mode! using the deadlock detection and recovery strategy are
shown in figures 8 and 9, respectively. The deadlock avoidance simulator
yielded similar speedups. As can be seen, reprogramming the server o
have better lcokahead characteristics dramatically improves performance.
Speedup is improved by as much as an order of magnitde. These results
are consistent with those obtained using synthetic workloads.

The performance results of the classical server process are qualitatively
similar to those reported by Reed and Seethalakshmi. The servers used in

Server  jeee———u———

—=>
Merge b———» Server | Fork
> 1

Server  jfem—oou—m——————

Figure 5. Central server queueing model.

ARRIVAL EVENT at TIME T:
Nlobs := NJobs + 1;
IF (NJobs = 1) THEN /* if server was previously idle ¢/
Schedule (local) Deparwure Event at time T + ServiceTime:

DEPARTURE EVENT at TIME T:
Schedule (remote) Arrival Event at time T;
NJobs := NJobs - I;
IF (NJobs > 0) THEN /* if job(s) waiting in queuve */
Schedule (local) Departure Event at time T + ServiceTime:

Figurc 6. “‘Classical’* program for FCFS scrver (poor lookahead).

ARRIVAL EVENT at TIME T:

IF (T < EndScrvice) THEN /* if server busy */
BEGIN
Schedule (remote) Arrival Event at time EndService+ServiceTim..,
EndService := EndService + ServiceTime;
END

ELSE /* serveridle */
BEGIN
Schedule (remote) Arrival Event at time T + ServiceTime;
EndService := T + ScrviceTime;
END

Figure 7. Opumized program for FCFS server (good lookahcad).

those studies are a variation of the classical server described above, and
share the same (poor) lookahead properties — a message will not be
forwarded unti] another message is first received with a timestamp at least
as large as the departure time of the first Therefore, lookahead provides
an explanation for the poor performance that they observed.

Although the above results are encouraging, il is important (o keep in
mind that reprogramming the application to exhibit greater lookahead
ability is not always possible. The above optimization relied on the servers
using an FCFS scheduling discipline. As we shall soon see, many
applications inherently contain poor lookahead propertics.

Finally we note that, at first glance, reprogramming logical processes 0
maximize lookahead may complicate other aspects of the simulation, ¢.g..
statistics collection. For example, the optimized server does not pause for

events, so statistics that are most easily collected at job departure
must be collecied at other points in simulated time. This problem is easily
reconciled by scheduling local departure events (as was done before) that
are only used for statistics collection purposes.

6.2 Performance Using Mixeg Servers

Additional experiments were performed to examine the effect of mixing
processes with poor and good lookahead characteristics. Recall that
experiments using synthetic workioads revealed that a small number of
processes with poor lookahead could significantly degrade performance of
the deadlock detection and recovery simulator. The deadlock avoidance
simulator was found not to be as susceptible to such behavior.

The central server queueing network simulations were repeated where
one of the three servers was implemented using the classical server
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program described earlier, and the remaining servers used the optimized
program. The resulting simulator is not unlike one that would result if one
of the servers was (say) a prioritized queue while the others were FCFS.

The speedup and efficiency of the deadlock detection and recovery
simulator is shown in figures 10 and 11. When the central server (the
process receiving messages from the merge process) has poor lookahead
propertics, performance is almost as poor as when all of the servers have
poor lookahead. When one of the secondary servers (the servers receiving
messages from the fork process) has poor lookahead, performance is
better, but still well below that of the simulator using only optimized
servers. These results are consistent with those obtained using synthetic
workloads, and demonstrate that a few processes with poor lookahead can
significanily degrade overall performance in the deadlock detection and
recovery simulator,

When the classical program was used 1o implement a secondary server,
the routing probabilities in the fork were modified so that 10, 50, and
finally 90 percent of the message traffic was routed o the classical server.
It is interesting to note that performance improves as more traffic is routed
toward the server with poor lookahead. If litde traffic is directed toward
this server, the simulator is constantly deadlocking because the merge
process is forced 10 block because it cannot determine whether or not it is
safe to proceed without first receiving a message from this server. Routing
additional message traffic toward this server helps the simulator w
overcome (somewhat) the server’s poor lookahead characteristics.
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Figure 10. Speedup of detection and recovery simulator with one classical server.
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Figure 11. Overhead of detection and recovery simulator with one classical server

Speedup and overhead curves for the deadlock avoidance simulator are
shown in figures 12 and 13. The deadlock svoidance simulator tends 10 be
more forgiving of processes with poor lookahead. Poor performance
results when the central server process has poor lookahead. However,
performance begins to approach that of the optimized simulator in some
situations where one of the secondary servers has poor lookahead. In
particular, good performance is obtained if a significant fraction of the
message traffic (50 to 90 percent) is routed around the process with poor
lookahead. Unlike the deadlock detection and recovery simulator. null
message traffic is generated by the classical server w allow the merge
process to proceed. Because processes with poor lookahead tend o buffer
messages rather than immediately forwarding them, it is best to minimize
the amount of traffic routed to the classical server because this only
detracts from the available parallelism.

1. Communjcation Network Simulations

Simulations of the message passing subsystem of a hypothetical
multicomputer were also performed. The multicomputer is organized in a
hypercube topology, and Sullivan's algorithm is used to route messages to
their respective destinations (Sull77a). Like the queueing network and
synthetic workload experiments, a fixed message population was used o
control the amount of available paraliclism. Initially, each message is
assigned & destination 1o which it is to be routed, and a message length.
The destination is selecied from a uniform distribution (excluding the

ke
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Figure 12. Speedup of deadlock avoidance simulator with one classical server.

processor where the message initially resides), and the message length is
selected from an exponential distribution. When a message reaches its
final destination, a new destination and message length are seiected. All
communication links in the hypercube are assumed to provide the same
bandwidth. Three simulators were developed that contain varying degrees
of lookahead, as will be described next.

FCFS is a simulator in which messages are simply forwarded on the
output link selected by the routing algorithm in FCFS order. Like the
FCFS queueing network described earlier, this simulator has great
lookahead ability because messages arriving at a logical process (with
timestamp denoting the arrival time in the hypercube) can be immediately
forwarded.
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PRIO is a simulator with intermediate lookahead properties. Here,
messages are classified as either high priority or low priority.
Communication links in the hypercube give preference to high priority
messages when selecting the next message 1o be transmitted. A low
priority message is only forwarded if there are no high priority messages
waiting to use the link. Messages within each priority level are processed
in FCFS order. Each message is assigned a new priority whenever a new
destination address and message length are selected and maintains this
priority until it reaches the destination processor.

No preemption occurs in this simulator. Once the link begins
forwarding a low priority message, it will continue to send it, even if a
high priority message arrives before transmission is complete.

The parallel simulator for this system has intermediate lookahead
properties. Logical processes have excellent lookahead for high priority
messages, but poorer lookahead for those with low priority. Just as is the
case for the FCFS simulator, high priority messages can be forwarded as
soon as they arrive because the departure time can be immediately
determined. However, a low priority message cannot be forward until
simulated time in the logical process has advanced to the depariure time
(the time the hypercube begins sending the message) because it must first
be determined that no high priority message will receive service ahead of
it

A r wi r

The third simulator, PREEMPT, is identical to the PRIORITY simulator
except that high priority messages preempt service of low priority
messages. When a low priority message is preempted, it is assumed that
the message must be completely resent once no other high priority
messages remain that are waiting to use the link. The simulator for this
system cannot forward a message to another logical process until simulated
time has advanced to the arrival time (the time the (ail of the message
reaches the receiving hypercube node), so it has even poorer lookahead
properties than the preceding simulator.
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Figure 13. Overhead of deadlock avoidance simulator with one classical server
14 Performance Results

The hypercube simulations were performed on the Buuerfly, and
compared with execution of the sequential event list implementation.
Unlike the previous experiments, these were performed on the Buuerfly
Plus, an upgraded version of the Bunerfly that features 32 bit data paths
(the original Butterfly has 16 bit data paths). The switch remains the same,
so this effectively increases the cost of interprocessor communications.
Because the simulation testbed already minimizes interprocessor
communication, no program modifications were required. Experiments
indicated that this hardware modification did not significantly affect the
speedup measures derived earlier.

Overhead for these three simulators is shown in figures 14 and 15 for
hypercubes of dimensions 4 and 6 (16 and 64 nodes respectively). Eight
processors were used in these experiments. Upon reaching its destination,
each message is assigned a high priocity with probability Py, . In these
experiments, Py, Was selected to be either 0.01 or 0.50.

As predicted, the observed overhead steadily increases as the lookahcad
properties of the simulation are diminished. This is reflected in higher null
message ratios in the deadlock avoidance simulator, and a larger message
population required to induce avalanche in the detection and recovery
simulator. Overheads are generally lower in the dimension four hypercube
than the cube of dimension six for a fixed message population (as
measured in messages per process) because there are fewer
communication links; the simulators operate at peak efficiency when there
is at least one message on each incoming link because no blocking occurs.

The lookahead properties of the simulator increase as Py, increases
because more high priority messages are generated that can be forwarded
as soon as they are received. This explains the lower overheads that were
observed when Py, was increased.

Speedup curves for the hypercube simulators are shown in figures 16
and 17. Using eight processors, the parallel simulator executed anywhere
from 5.7 times faster 10 nearly 20 times siower than the splay tree
simulator, depending on the lookahead properties of the application. Some
data points for very high message populations are missing because
insufficient memory was available on a single processor to conduct an
event list simulation. ’

The hypercube simulations provide additional evidence o suppon our
contention that lookahead properties of the application are crucial 0
obtaining efficient performance for simulators using the deadlock
avoidance and deadlock detection and recovery strategies. While the
queucing network simulations demonstrated that it is possible to obuain
dramatic speedups by reprogramming the simulation w fully exploit its
lookahead properties, these experiments demonstraie that some simulations
inherently contain poor lookahead, and cannot be improved by
reprogramming. Such simulations appear to be poorly suited for the
conservative simulation algorithms using deadlock avoidance and
deadlock detection and recovery techniques, except in a few special
circumstances such as networks that contain no feedback loops.
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Figure 14. Overhead in hypercube simulator using deadlock recovery.
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Figure 15. Overhead in hypercube simulator using deadlock avoidance.

iv head: Non-Even

The influence of lookahead on performance can be viewed from another
perspective: processes with very good lookahead ability are able to act in a
largely autonomous fashion; their behavior is not heavily influenced by the
activities of other processes, so they can perform simulation work at **full
speed,’’ limited only by the rate at which they can be fed work, and the
number of CPU cycles (or other resources) that they can obtain. The
optimized queueing network server process is & good example of such
autonomous behavior.

On the other hand, processes with poor lookahead ability must
frequently obtain additional information from other processes before they
can safely proceed. This is unforiunate because not only must such
processes wait for real events to be generated by other processes
(corresponding to data dependencies that cannot be circumvented), but
often they must also wait (o be sure other events will not occur. The fact
that an airplane will not crash and close the airport in the next moment of
simulated time must be discovered before the airport process can go about
its business of deciding what will happen next. We call these *‘phantom’
events that never materialize non-events. Chandy and Misra recently
captured these notions in an elegant formalism called conditional and
unconditional knowledge [Chan87a).
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Figure 16. Speedup of hypercube simulator using deadlock recovery.

Speedup of Hypercube Simulator

Specdup Deadlock Avoidance (8 processors)
8.

16nodes
> FRIG (a0 roempcon, Py 0
o PRIO (no son), Pygee 0.50
T PRIO (no ion), Pave® 0.01
» PREEMPT, P = 0.50
V PREEMPT. Fare = 0.01

“r— Y

W
i

44+ FCFs

+ PRIO. Py = 0.50
+ PRIO, Py = 0.0)
2 PREEMPT, Papu= 0.50
= PREEMPT. P = 0.01

0+ : : . .
H 4 16 64 256 1024

Message Population (messages per LP)
Figure 17. Speedup of hypercube simulator using deadlock avoidance

In the deadlock avoidance simulator, knowledge of non-events is passed
explicitly through the use of null messages. In the deadlock detection and
recovery simulator, this information is obtained by system deadlock —
processes with messages waiting to be processed must wait until they can
be certain that specific events will mor occur. Certinty as to the
eventuality of non-events comes about when the deadlock is broken, and
the deadlock resolution protocol is invoked. Sequential, event list
simulators incur little or no overhead for non-events.

If non-events are possible, but occur infrequently, the simulator is ofien
forced to wait needlessly, leading to very poor performance. The
hypercube simulator containing preemption and few high priority messages
is one example of such behavicr. Optimistic simulation methods such as
Time Warp appear to offer the greatest potential for addressing this
problem, if the associaied state saving and rollback overheads can be
overcome.

9. Conglysions
Extensive empirical performance evaluations of distributed simulation
programs were performed using the deadlock avoidance and deadlock
detection and recovery algorithms developed by Chandy and Misra. The
principal results of these studies are:




o The lookahead ability of logical processes plays a critical role in
determining the efficiency of the deadlock avoidance and deadiock
detection and recovery algorithms. This is atoributed to the fact that
processes must spend an excessive amount of time waiting to be sure that
certain events will aot occur if their lookahead ability is poor.

o Message avalanche was observed in the deadlock detection and recovery
simulator for moderate 10 high message populations, and was necessary
10 schieve efficient execution. The poorer the lookahead sbility of a
process, the larger the message population necessary o achieve
avalanche. If lookahead is sufficiently poor, avalanche may never be
observed for workloads of practical interest.

® Deadlock detection and recovery simulators containing different types of
logical processes can be adversely affected by a small number of
processes that exhibit poor lookahead ability. The existence of a few
such processes can greatly increase the message populstion necessary 10
achieve avalanche, even if many other processes contain very good
lookahead properties. The deadlock avoidance simulator is not as
severely affected by this behavior if the bulk of the simulation activity
avoids processes with poor lookahead.

o Queueing networks that contain cycles, previously thought to be ill-
suited for conservative distributed simulation algorithms, can achieve
good performance if servers are reprogrammed (o take advantage of all
available lookahead.

¢ Simulation applications such as those containing infrequent preemptive
events inherently have poor lookahead propertes, and appear ill-suited
for thesc algorithms. Applications containing state dependent behavior
(e.g., load balancing mechanisms) similarly coniain moderate 10 poor
lookahead properties.

o Simulations of several hypercube-based communication networks with
varying degrees of lookahead provide empirical data to support the above
conclusions.

These studies demonstrate that parallel simulation algorithms can
achieve significant speedups over sequential event list implementations if a
moderate to high degree of parallelism is present, even if there are many
feedback loops in the logical process topology. However, good lookahead
properties are essential to obtaining good performance in simulations using
deadlock avoidance or deadlock detection techniques. The fact that a few
processes with poor lookahead properties can significantly degrade
performance also limits the usefulness of these approaches.

Because conservative simulation algorithms must continually predict
what will not happen in order 1o be able to safely proceed, these studies
raise considerable doubt as to whether any conservative paraliel simulation
algorithm can obtain significant speedup in applicatons containing poor
lookahead properties. In these situations, optimistic simulation algorithms
such as Time Warp appear to offer much greater potential for achieving
significant speedups.
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