mqin fiE COBY

RADC-TR-88-188
___ Phase Technical Report
' September 1988

e
Ll

THE BBN KNOWLEDGE ACQUISITION
PROJECT

AD-A203 846"

PR

BBN Laboratories, Inc.

=i

Sponsored by]
Defense Advanced Research Projects Agency
ARPA Order No. 5290 D I l< :

ELECTE
10 FEB 1989 ‘

E

- ey
.

o,
P AT SO
FIPE SN
}
|

RS I
.

RAE SR

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

i S ST

,.':3,.‘;;‘—,;;.\, e lmE e Logs . L A - FECI
3 -._.'_9_ gmmmmmmuudWmmmmmoMmammumm
= = interpreted as necessarily representing the official policies, either expressed or implied, of the Defense
e le_neod Research Projects Agency or the U.S. Government.

_ ROME AIR DEVELOPMENT CENTER _
— —. Alr Force Systems Command : B

VS OV R TR 7 & 1F 130
' PERRTI
g

3

T - .-— -Griffiss Alr Force Base, NY 13441-5700
s A L ommees s

89 2 0 181

Lt >

THE BBN KNOWLEDGE ACQUISITION PROJECT

Glenn Abrett
Mark H. Burstein
John Gunshenan
Livia Polany

Contractor: BBN Laboratories, Inc.

Contract Number: F30602-85-C-0005

Effective Date of Contract: March 1985

Contract Expiration Date: January 1989

Program Code Number: 8E29

Short Title of Work: The BBN Knowledge Acquisition Project
Period of Work Covered: Mar 85 - Jul 87

Principal Investigator: Albert Stevens
Phone: (617) 873-3802

RADC Project Engineer: Sharon M. Walter
Phone: (315) 330-3564

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced
Research Projects Agency of the Department of Defense

and was monitored by Sharon M. Walter, RADC (COES),
Griffiss AFB NY 13441-5700 under Contract F30602-85-C-0005.

e o ! "
| UNCLASSIFTED

} ‘ TON WIS PA :

; REPORT DOCUMENTATION PAGE. g:«':m 0704-0188

1a. REPORT SECURITY CLASSIFICATION

gy~ ——
th. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A .
L T SECURITY CLASSIFICATION AUTHORITY 3. DIRTRIBUTION/ AVAILABILITY OF REPORT
N/A Approved for public release;
L z;/crmwmmmoowucwm SCHEDULE distribution unlimited
%, PERFORMING ORGANIZATION REPORT NUMBER(S) S, MONITORING ORGANIZATION REPORT NUMBER(S)
N/A RADC-TR-88-188

'6b. OFFICE SYMBOL | 7a. NAME OF MONITORING QRGANIZATION
(If applicable)
Rome Air Development Center (COES)

63. NAME OF PERFORMING ORGANIZATION
BBN Laboratories, Inc.

7b. ADORESS (City, State, and ZIP Code)
Griffiss AFB KY 13441-5700

F 6C ADDRESS (Gty, State, and ZiP Cooe)
10 Moulton Street
Cambridge MA 02238

8a. NAME OF FUNDING / SPONSCRING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Defense Advanced (if applicable)

Research Projects Agency F30602-85-C-0005

8c. ADDRESS (City, State, and ZIP Code) | 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd eementno. [noo o [we" ACRESSION NO.

Arlington VA 22209 62301F £290 0a 01

11. TITLE (inciude Security Classification)
THE BBN KNOWLEDGE ACQUISITION PROJECT

f 12. PERSONAL AUTHOR(S)
Glenn Abrett, Mark H. Burstein, John Gunshenan, Livia Polany

13a. TYPE OF REPORT 13b. TIME COVERED 4. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
mom Mar 85 ro Jul 87 Septeaber 1988 134

1

16. SUPPLEMENTARY NOTATION
N/A

17. COSATI CODES 18. SUBIECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP -1 Knowledge Acquisitiom Frame
u 12 [} e ~ - 7 Knowledge Base Editor;
]] Knovledge Representation : Database Editor. e
~§ 19, ABSTRACT (Continue on reverse if necessary and identify by biock number) / i
| ~—{ The goal of the Expert Assistant for Knowledge Acquisition project was to create a usable

and extensible knowledge engineering enviromment that will be capsble of handling very large
knowledge bases, support experiments with knowledge engineering techniques and implement a
useable system for knowledge acquisition and msintenance. During Phase One, KREME (Know-
ledge Rapresentation Editing and Modeling Environment) was created. KREME is an extensible
experimental environment for developing and editing large knowledge- bases i.n a variety of
representation styles. KREME is described in thie report. : - .

»
LY PN -~
- S ,/f/'b.

20. OISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

?uncussmwuumo 3 same AS RPT. Ol omc users | UNCLASSIFIED
. NAME OF RESPONSIBLE INOIVIDUAL 72b. TELEPHOME (Include Ares COde) | 22¢. OFFICE SYMBOL —]

Sharon M. Walter (315) 330-3564 RADC (COES)
DD Form 1473, JUN 86 Previous editfions are obsciete. RITY £ N_OF THIS PA
UNRCLASSIFIED

Table of Contents

1. Introduction

2. Overview of the BBN Knowledge Acquisition Project

3. The KREME Knowledge Representation Editing and Modeling Environment

3.1 Functiopal Description
3.2 Basic Editing Environment
3.3 The Grapher
3.3.1 Panning the Graph
3.3.2 The Overview Graph
3.3.3 Thbe Graph Operations Menu
3.3.4 The Graph Node Command Menu
3.3.5 Editing a Network from a Graph
3.4 Editing in the State Window
3.5 Editing in the Table Edit Window
3.5.1 Adding New Slots
3.52 Modifying the Table Edit Window
3.5.3 Changing the Consents of the Table Window
3.6 Files and Multiple Language Support

4. The KREME Frame Editor

4.1 The KREME Frame Language
4.1.1 Frame Language Syntax

4.2 Using the Frame Editor
4.2.1 Editing in the Main Concept Editing View
422 Frame Editing Operations

5. Large-Scale Revisions of Knowledge Bases

5.1 The Macro and Structure Editor
5.2 Developing Macro Editing Procedures
5.2.1 Macro Example: Adding Pipes Between Components

6. Knowledge Integration and Consistency Maintenance

6.1 The Frame Classifier
6.1.1 i
6.12 Qassification

6.2 An Example of Reclassification

6.3 Using the Knowiedge Integrator to Partition and Merge Knowledge Bases
6.3.1 Load/Merge

6.4 Saving and Panitioning Knowledge Bases

6.5 Using Merge and Partition to Build Larger Knowledge Bases

7. Editing Behavioral Knowledge

7.1 Editing Rules
7.2 The KREME Rule Editor
7.3 The Rule Editor View
7.4 Procedures in the KREME Environment
7.4.1 Procedural Abstraction and Structure Mapping

8. Knowledge Extension
9. Conclusion

APPENDIX A. Loading KREME

A.l1 Loading KREME from Cassette Tape
A.1.1 Loading the FEP Files
A.12 Editing the FEP Files
A.13 Booting KREME

A.2 For Machines with No Tape Drive

APPENDIX B. A User’s Introduction

B.0.1 Introduction
B.02 Introducing KREME
B.03 Overview of this mannal
B.l The Knowledge Editor
B.1.1 Windows and Views
B.12 Using the Mouse
B.13 Command Menus
B.1.4 Buffers and the Editor Stack
B.2 Editing Frame Knowledge Bases
B.2.1 Definition of KREME Frames
B.22 Using the Frame Editor
B.23 Alternate Concept Views
B.2.4 Editing Roles
B.3 The KREME Classifier
B.3.1 Introducing the Classifier
B.4 The Macro and Structure Editor

B.4.1 Macro Editing of Knowledge Bases: Background
B.42 The Macro and Stroctare Editor View

M.

P

v g

-
3
:

B.62 EdﬁngRuhsmdzmw
B.63 The KREME Rule Editor
B.6.4 The Rule Editor View

APPENDIX C. A Session With KREME

Bibliography

. ey
—/'
\
-
\
- —
. - .
-7) e
T
3 1
Y ._
j \

m/'w

— -~

List of Figures

KREME: Functional Description

The Main Concept Editing View

The Overview Graph

The Graph Operations Mem

The Macro Structure Editor View

Steps in PIPE Macro

Two Examples of Slot Completion

An Example of Reclassification

Exampie One : Merging with Nonoverlapping Attributes
Exampie Two: Overlapping but Compatible Properties
Example Three: Unmergeabie Concepts

The KREME Rule Editor

KREME's Screen Editing Views

Windows in the Main Concept Editing View

A Simple Concept Taxonomy

: LISP form of a KREME frame definition
: A Simple Role Taxonomy

A Slot Equivalence
The Main Concept Editing View

: Panning the Graph
: The Graph Operations menu

Alternative Concept Editing Views

The Role Editing View

Inheriting Number and Value Restrictions
Combining Value Restrictions

Discovering a missing subsumer by a CMEET check.
Altering STOP-VALVE to correct 2 CMEET error.
After interaction with the classifier.

The Macro Structure Editor View

Changing RED to RED-OBJECT

Running the macro COLOR-OBJECT

Finding a new generalization.

The KREME Rule Editor

1. Introduction

This is the Final Report for Phase One of the BBN Laboratories Knowledge Acquisition Project. This research
was supported by the Defense Advanced Research Projects Agency of the Department of Defense and was
monitored by the Rome Air Development Center (RADC) under contract number F30602-85-C-0005.

The goal of this project was to create a useable and extensible knowledge engineering environment that will
be capable of handling very large knowledge bases, support experiments with knowledge engineering techniques
and implement a useable system for knowledge acquisition and maintenance. During Phase One of this project we
have created the KREME Knowledge Representation Editing and Modeling Environment. KREME is an extensible
experimental environment for developing and editing large knowledge bases in a variety of representation styles. It
provides tools for effective viewing and browsing in each kind of representation, automatic consistency checking,
macro-editing facilities to reduce the burdens of large scale kmowledge base revision and some experimental
automatic generalization and acquisition facilities.

Among the planned extensions to KREME are:
¢ The Procedure Editor
¢ A KEE Interface ‘
¢ The Addition of Boolean Connectives to Siot Restrictions
¢ Extension of the Macro Editor

We are currently in the process of extending the value restriction language to permit more complex forms
containing conjunctions, disjunctions and negations, based on the restriction language for KEE™! frames (6]. This
effort should result in an extended classifier, as well, capable of maintaining consistency among frames in the KEE
class of frame languages,

During Phase Two we will also be developing experimental kinds of automatic knowledge acquisiton:
techniques for generating comtrolled acquisition dialogues, procedures to automatically transform previously
acquired knowledge for use in new tasks, and techniques for learning by analogy and from exampies.

The appendixes to this manual provide the detailed information needed by those who will be instailing and
using KREME at their sites. Appendix A provides instructions in loading KREME from tape. Appendix B is a
User’s Introduction to KREME. Appendix C presents a sample KREME session.

THIS MATERIAL MAY BE REPRODUCED BY OR FOR THE U.S. GOVERNMENT PURSUANT
TO THE COPYRIGHT LICENSE UNDER THE CLAUSE AT 52.227-7013 (MAY 1981).

YKERE is » rademark of IneltiCorp.

1/2_

~——u

2. Overview of the BBN Knowledge Acquisition Project

Ocr goal has been to develop an environment in which the problems of knowledge acquisition faced by every
knowledge engineer anempting to build a large expert system are minimized. We believe both knowledge engineers
and subject matter experts with some knowledge of basic knowledge represemation techniques will find it easy to
use KREME w0 acquire, edit, and view from multiple perspectives knowledge bases that are several times larger
(Le., 5-10,000 concepts) than those found in most current systems.

KREME attempts to deal with the inextricably related problems of knowledge representation and knowiedge
acquisition in a unified manner by organizing multiple representation languages and muitiple knowiedge editors
inside of a coherent global environment. A key design goal for KREME was to build an environment in which
existing knowledge representation languages, appropriate to diverse types of knowledge, could be integrated and
organized a3 components of a coberent global representation system. The current KREME Knowledge Editor can
be thought of as an extensible set of globally coberent operations that apply across a mumber of related knowledge
representation editors, each tailored to a specific type of knowledge. Our approach has been to integrate existing
frame and rule representation languages in an open ended architecture that allows the extension of each of these
languages. In addition, we have provided for the incorporation of additional representation languages to handle
additional types of knowledge.

Our approach to consistency maintenance has been to develop a knowledge integration subsystem that
includes an awtomatic frame classifier and facilities for inter-language comsistency maintenance. The frame
classifier automatically maintains logical consistency among all of the frames or conceptual class definitions in a
KREME frame base. In addition, it can discover implicit class relationships, since it will determine when one
definition is logically subsumed by another, even when the knowledge engineer has not explicitly stated that
relationship. The inter-language consistency maintenance facility checks for inconsistencies in references to frames
in knowledge bases specified using other representation languages (e.g., rules, procedures).

A second important area of investigation in developing the KREME editing environment has been the attempt
to provide facilities for large-scale revisions of a knowledge base. Our experience indicates that the development of
an expert system inevitably requires such systematic revisions of the developed representation. This is often caused
by the addition or redefinition of a task the system is to perform. These kinds of systematic changes to a knowiedge
bese genenally require painstaking piecemeal revision of each affected element, one at 2 time. Our initial approach
has been to provide a macro-editing facility, in which the required editing operations can be demonstrated by
exampie and applied to specified sets of knowledge structures automatically. A libwary of generic macro-editing
operations for the most common and conoeptually simple (though potentiaily difficult to describe) operations will be
developed during Phase Two of the project.

Floally, we have begun to investigate techniques for automatic generalization of concepts defined in a
knowledge base. We will briefly describe these experiments as well, in Section 8.

-4

- G AcéA P

Underlying the entirr KREME system is a strong notion of meta-level knowledge about kmowledge
representation and knowiedge acquisition. The representation languages were implemented based on a careful
decomposition of existing knowledge representation techniques and implemented as combinable objects using
FLAVORS [7]. By organizing this meta-level knowiedge base modularly, behavioral objects implementing such
potions as inheritance and subsumption could be "mixed in" to a variety of representational subsystems making the
incorporation of new representations and their editors reasonably straightforward. That is, each object in the
meta-knowledge base encodes some aspect of a traditional representational technique, and is respoasible for its own
display, editing and internal forms.

s\

'1.
4
) !
A

3. The KREME Knowledge Representation Editing and Modeling
Environment

»
e et Susamdin

3.1 Functional Description ;

The KREME family of knowledge editors currently consists of three major editor modules: a frame editor, a
rule editor, and a procedure editor.2 (See figure 3-1.) KREME also includes 3 large toolbox of editing techniques 1[
that are shared among the editor modules. This section will describe the global environment and toolbox, later 4
sections will describe the individual editors. Sections 3.3 through 3.5 provide a discussion of the user interface. _qF
Readers who require more detail should consuit Appendix B. 4

Procedure Representation
System q

Rule Representation | - Frame Representation |
System System |

\ KREME Editing

System

-

User
Environment

Figure >-1: KREME: Functional Description

T o W UL NI\

mmmEWMiﬁ“HMdhmwvﬂmhmTw,)

3.2 Basic Editing Environment

Each type of representation inciuded in the system has defined for it ooe or more editor views. A view is a
collection of windows appearing together on the screen. Each window displays some aspect of the particular piece
of knowledge being edited and/or a set of editing operations on it. When the user desires to enter or edit a specific
piece of knowledge, the system opens the most appropriate view for the type of knowledge and the editing operation
requested. Typically, any aspect of the knowledge being edited can be cbanged or viewed in more detail simply by
pointing at it. This organization allows knowledge to be viewed by the user from multiple perspectives and at more
than one level of detail.

The editor maintains a level of indirection betweén the knowledge being edited and the representation of that
piece of knowledge in the knowledge base. This is accomplished by a mechanism like that of text editor buffers.
Changes are always made to editor definition objects which are distinct from the corresponding objects in the actual
knowledge base. The stack or list of the active defimition objects is always visible to the user. The top item in this
list is the definition currently being viewed and edited. The user is free to modify the current definition in any way
without directly affecting the knowledge base. Only when the modified definition is to be placed into the
knowledge base is a defining function appropriate to the type of knowledge (e.g., classification for concepts and
roles), executed and the knowledge base modified.

Since the editor stack is always visible, it provides one convenient method for browsing. The user may point
at any definition item currently in the stack. The object will then be displayed in the same editor view as when it was
last edited.

A number of window subsystems or tools have been developed and incorporated into the KREME editor to
make editing, viewing and browsing in knowledge bases easier and faster. They are described below.

3.3 The Grapher

KREME is equipped with a general graphing facility that rapidly draws lattices of nodes and links. Its main
use is to provide a dynamically updated display of a concept or role and its place in the specialization or inheritance
bierarchy. Whea editing 2 concept in the Main Concept Editing View or the Big Concept Graph View, or when
editing a role, KREME automatically displays all of that object’s abstractions and specializations. More abstract
objects are displayed to the left of the current editor object, and more specialized objects to the right.

As shown in figure 3-2, the current editor object appears as a black node with white letters. All other objects
appear as nodes with 2 white background. Objects that are defined as primitive are indicated by bold-edged boxes.
Nodes that have been modified (edited but not reclassified) have a grey background.

P VU

Figure 3-2: The Main Concept Editing View

611 313y andu] GIER IR K] Q1364

‘Soatielay Uo suoliay jo nuspitY ‘sealir|oy ydrag: ‘apou iy VPTY - anrngg s
Suld W2)opidjuf 1o

Jewl Yy
LT

(N012OMNS ¥) (NOILONN 2 ¥) ¥ aseey 2y NOLLINOS * W0
(304n05-¥3a0d ¥} (308N0S-¥3A0d V)

104 11 40399 AN)89

yoviy 101 p3 n._O_m g:.:_:::, ~: ___/_

tuo|adysaseg
133r80- WITHUNIIN :sez)|e)22dg
[Pt ppovun tpoy pssey 3] $34 uca.:t...t
niugvn {ntald :gc¢ mMBiA_Bhuey) 1deduo) POUIE|BY Mor} uaﬁmclm)_l_._w.‘|alll4!.! o

<INININM, j@ cusjIvz|iedsdy puwe nlo_-v?:a‘s

“{onrsg ewtinnug

uﬂnUT_
Blajewnle, ') 010} M 1daduory may)

—n

PR

3.3.1 Panning the Graph

The grapher can display a graph much larger than the window through which it is viewed. To see a part of the
network that is off the screen, the user points with the mouse at some point on the graph window not containing a
node, holds the left burton down and drags the mouse. To speed pan, the user holds down the middle mouse button.

3.3.2 The Overview Graph

Clicking the right button once over an empty part of the graph window will make the Graph Operations
Menau appear. If the user clicks gverview, 2 miniature version of the full lattice will appear in a black region in the
upper left corner of the graph window (as in figure 3-3). This overview shows a miniature version of the full
network. The visible region of the graph is indicated by a white rectangle. If the user pans with the mouse over the
main graph window, this white rectangle will follow the mouse movements. All of the mouse operations available
on nodes in the main window will also work on nodes in this window. The name of the node being pointed at is
indicated in the mouse documentation window. The overview window also can be used io pan the main graph
window. The overview is tumed off by bringing up the Graph Operations Menu and clicking the command
overview.

3.3.3 The Graph Operations Menu

The other options in the Graph Operations mena shown in figure 34 are:
e hardcopy - Sends a copy of the full graph of the lattice to the printer.

e style menu - Allows the user to choose the foat style and size of characters used for nodes on the graph.
Smaller fonts are useful to see more of large networks at once.

¢ find node - Prompts for the name of an object on the graph, and centers that node on the graph window.
It also draws a circle around the node so that the user can find it more easily. The circle disappears as

soon as the graph is panned.
e overview - Switcher the overview graph between visible and invisible.

* orientation - Switches the orientation of the graph. Normally, the lattice is drawn from left to right.
This command will cause the graph to be redrawn from the top of the screen down, and vice versa.

® speed pan - This command pops up the speed panning box without having to hold down the mouse
button. In this mode, clicking any mouse button will make it go away.

o redraw graph - Redraws the current graph.

Figure 3-3: The Overview Graph

Ut 0]

(RIS

9 "\A...J..\.ﬂ

supg wopjopINU] 10093

831 A0p OmEU 188500

si018
suou (n0119004 v) t ised W N0 20MR 4 + W30 Y.
suou (nginvHIIm ¥) 1 ases) W WEINVHIIN *+ W0 Ve
suou (Wivdu' 40 J1vis ¥) § Agr1oexy Wivddn 40" VIS W30t
L] (votavn3e v) [IR ZF] WIANIN S W0V
suou (291430 X370800 ¥) 2°10vd Wt

(wwots v)

4 J080(

(Pos siposuq lpay si8s013)

IR

e e e e

JOLG e

u0j 334 4180 INLEH

(A1 qeBusyasajuy 10..3 asw 3WNO0M PUe 3314 suUI9)
je3ysAyd @ wos) 40 feunyIdung @ ol AMPIEe ‘ues

oyl) saj20deand
As @ jo jJsed owos tusy ydj 22850
344) tsez)eyoedy

SIA teajIuyAd

g ¢ 3d8dve

e

Graph ﬁnorggign«.
hardcopy
font menu
find node
orentation
speed pan

redraw araph

Figure 3-4: The Graph Operations Menu

3.3.4 The Graph Node Command Menu

Normally, the KREME Grapher displays only the abstractions and specializations of the current editor object,
because KREME was designed to work with the very large lattices characteristic of very large knowledge bases.
The Grapher provides a number of options to enable users to tailor the display to see more (or less) than KREME
normally displays oa such grapbs.

Whenever the mouse is over a node on a graph, the mouse documentation window shows the name of the
node, followed by:

L:Edit this node. M:Graph Relatives R:Menu of Editing Options

Qlicking the left mouse button causes KREME to make the object pointed to the top editor stack item. This is
an extremely convenient way of browsing through large concept networks quickly, and focusing on different
portions of such a network. If, however, ibe user wishes to continue editing the concept that he is currently viewing,
bmseemm(otleu)ofdnm‘two:taﬁndmatmptormeodmconeeptonmcmmh,heanusethe
Graph Relatives Menu found by clicking the middle mouse button over any graph node.

The Graph Reiatives Menu, exposed by clicking the middle button over a node, contains the following
commands:

© Graph Parents - causes ail abstractions of the node clicked on to be added to the displayed graph.
¢ Graph Children - causes all specializations of the node clicked on to be added to the displayed graph.

¢ Hide Children - mﬂmmﬁﬁomofhmdech&edmwbem&mmmm
they are also children of some other node.

10

-
.

¢ Hide Node and Children - causes the node clicked on and its children to be removed from the graph.

3.3.5 Editing a Network from a Graph

Clicking the right buttonr over a graph node causes yet another menu of options to be exposed, the Concept
Graph Edit Options Menu.}

This menu coatains the following options for concepts:
¢ Show Definition - This option causes the textual (LISP) form of the concept’s definition to be
displayed over the Graph Window.

¢ Kill Concept - This causes the concept pointed to to be removed from the knowledge base. It has the
same effect as the Kill Concept command in the local command menu window, except that it works
when the user is not currently editing the concept he wishes to kill.

¢ Rename Concept - This command prompts for a new name for the concept pointed to, and immediately
replaces all references to that name with the new name rthroughout the knowledge base.

¢ Delete Parent - This command prompts for the name of a parent and then deletes that parent from the
list of defined parents of the concept initially pointed to. It also switches KREME to editing the
concept modified, so that it can then be reclassified.

¢ Add Parent - This command also prompts for a parent, adds the concept named to the list of defined
parents of the concept, and switches to editing the modified concept.

o Splice Out Parent - This command prompts for a parent, and removes that parent from the list of
defined parents of the concept, replacing it with thar concept’s parents. Again, the editor is switched to -
a view of the modified concept.

3.4 Editing in the State Window

The state window of the Main Concept Editing View displays basic information about the concept currently
being edited. The top line dispiays the name of the concept, and any synonyms or alternate names for that concept.
The name of the concept can be changed by clicking on the word Concept: and entering 2 new name,

The second line of the display shows whether the concepe is defined as primitive or not, and whether the
concept has been classified or modified since classification. Clicking on the word Primitive: causes the concept to
be marked primitive if it was not, and vice versa.

The third line displays both the direct and defined paremts of the concept, after the word Specializes:.
Defined parests ase concepts that the user specifies as abstractions of the concept. Direct parents are conceprs that
may or may pot bave been defined as parents of the current ome, but have been determined by the classifier 10

30 graphs of roles, the Rele Graph Edit Optivas Meas sppears, with eusentially the seme comeands for roles, except as nowd.

subsume the class denoted by this concept and not have any specializations that also subsume this concept. On the
Concept Graph, the direct parents of a concept are the ones with direct links to it.

This Specializes: list should be read as follows: Concepts that are unmarked are both defined pareants and
direct parents. Concepts that are defined parents but not direct parents are prefixed by a "-". Concepts that are
direct parents but not defined parents are prefixed by a "+". The user can easily add a parent to the set of defined
parents of the concept.

3.5 Editing in the Table Edit Window

Normally, the table edit window in Main Concept View displays the set of Local Slots of the concept, that
is, those slots which are defined locally by this concept and not inherited from above. The columns in the table are
labeled "Defined by”, "Role”, "Number Restriction"”, "Value Restriction", "Defauit”, and "Description".

Clicking (with the left mouse button) on the command All Slots in the table edit command window causes

KREME to display both local and inherited slots. In this display, local slots are indicated by the word *LOCAL® in
the "Defined by" column of the table. Slots inberited from a parent-show the name of that parent. Slots formed by
combining the value restrictions and/or number restrictions of several parents are indicated by the word
*CLASSIFIER®. When the table window is dispiaying all of the concept’s slots, the user can retum to viewing just
the local ones by clicking the command Local Slots.

Whenever the Table Edit Window shows slots of the current concepe, the user can edit those slots or add new
ones. To change the siot name, value restriction, oumber restriction, default, or description of a slot, the user simply
clicks the left mouse button over the thing to be changed, and will be prompted for a replacement. For all but
number restrictions, the right button will pop up a menu that inciudes the commands: Change the part of the slot
pointed to, Show Deflnition of the concept or role pointed to, Edit Definition of that concept or role, or pop up a
Graph of its abstractions and specializations. When pointing to the siot name, in the column labeied "Role”, the
user can aiso Rename Role, that is, change the name of the role, and all references to it in the knowledge base.

When the mouse is over a line in the slot table, and the entire line is encircled by a box, the right mouse button
can be used to get 2 menu of Delete Slot, Copy Slot to another concept, and Move Slot to another concept. For the
last two, KREME prompts for the name for the concept to move or copy the siot to.

S g v ——

3.5.1 Adding New Siots

Whenever the siots table window is visible, as in the Main Concept Editing View, the user can add new local
slot definitions. A new slot is added to the defined slots of the concept with the Add Slot command. When this
command is issued, the system prompts for a role name, a value restriction, a number restriction and a default form.
Any of these items can be entered by typing or by pointing to the desired name or form if it is visible.

If a role or concept named in a role restriction or default does not exist, the system will offer to make one with
the name given, and proceed to pop up the defining form for that object. When the user is finished filling out the
form, he clicks Define, and KREME will continue to ask for the rest of the new slot’s features.

When the user has finished adding and modifying the slots of a concept, be should always make the changes
permanent with the Classily Concept command.

3.5.2 Modifying the Table Edit Window

The appearance of Table Edit Windows can be modified in several ways. The tables are scrollable in both the
up-down and left-right directions.If the user does not wish to see some columns of the table, they can be selectively
removed.

3.5.3 Changing the Contents of the Table Window

Since there is not encugh room in the Main Concept Editing View to display all of a concepts defining
features at ooe time, the contents of the Table Edit Window can be changed to display those other features. To do
this, the user must use the mouse to find the table window contents menu. This menu is available wherever there
is nothing else under the mouse while still inside the table window. the user will know be has found it because the
mouse documentation window will show the words:

R: Change the contents of this table.

When the user clicks the right button, he will see the following menn options:
o Slots - Displays the table of this concept’s slots, as described above.

¢ Inverse Restrictions - Displays a table, essentially like the slots table, but of all of the slots displayed
are siots of other concepts that use the current concept as their value restriction. This table is useful
when tracing references to a concept in other concepts. When this table is displayed, the table edit
mwﬂbm Some of the editing options described for the slots table will not

¢ Slot Equivalences - This table displays the slo¢ equivalences of the current editor concept. This table
has only three columns, "Defined by", "Path 1" and "Path 2°. The two paths are designated as
denoting the same object. Since siot equivalences can be inberited, their source is also indicated in the
table, in the column "Defined by"”. When this table i visible, the table edit command window will
show the commmands Local Equivalences, AR Equivalences, and Add Equivalence. The first two just

chapgewhicheqﬁvaleucumd'sphyed.'nnlastpmmwfonwoslotpammmshmﬂdbemade
equivalent. .
« Dis; Concepts - This table is just a one column list of all of the concepts that are defined to be

disjoint from the one currently being edited. When thiy table is visible, the Table Edit Command
Window will display the commands Add Disjoint Class, Local Disjoint Classes, and All Disjoint
Classes.

3.6 Files and Multiple Language Support

All definitions manipulated by the editor are read and stored in lisp-readable text files of defining forms.
Since these files contain formatted lisp forms, they are user-readable, and can be edited offline using an ordinary
text editor. [n fact, KREME can as easily read files that were developed independently using a text editor or some
other frame editor.

Files are read in using the LOAD command. A file can be loaded into a blank KREME knowledge base or
can be loaded on top of an already existing knowledge base. This mechanism, which relies heavily on the the frame
classifier to maintain consistency, enables KREME to organize information from multiple knowledge bases to create
a single unified whole.

KREME currently reads and writes definitioos in either its own frame language syntax or NIKL syntax. This
flexibility has made it possible for KREME o be used regularly to examine and update a knowledge base of
approximately 1000 roles and concepts for the IRUS/TANUS natural language interface that was built using NIKL.
KREME can also read files of MSG (the frame language of the STEAMER [22] system) defining forms, providing
access to the extensive STEAMER knowledge base of concepts and procedures. We are currently building an
inerface to files of KEE frame definitions.

This multiple language handling facility is a crucial feature of KREME. A library of input translation

programs will enable a knowledge base builder using KREME to draw upon previously existing knowledge bases to
create new knowledge bases.

14

4. The KREME Frame Editor

This section will describe the KREME knowledge editor for a frame representation language.

4.1 The KREME Frame Language

A number of frame languages have beea developed in recent years to support Al systems
[12,2,18, 9,3, 6, 8]. These languages have all been well researched and extensively tested. For KRME, our most
important criteria for a suitable frame representation language were that it:
1. Allowed multiple inheritance
2. Was a logically worked out mature language.
3. Had some mechanism for internal consistency checking.
4. Was buiilt on 2 modular object orieated base so that the language could be decomposed in such a way as to
make it easily extensible.
NIKL (the definitional or frame language component of KL-TWO) [9, 15, 21] seemed an ideal candidate. Itis
a fuily worked out frame representation language that allows multiple inheritance, is reasonably expressive and,
perhaps most importantly, was designed to work effectively with an automatic classification algorithm that could be
easily adapted to provide a powerful mechanism for consistency checking and enforcement during knowledge base
development. However, no object-oriented implementation of NIKL existed, and the NIKL classifier was not
designed to allow modification and reclassification of previously defined concepts. A second frame language,
known as MSG, bad been built as part of BBN's STEAMER project and is object oriented in both of the above
senses.

To develop KREME, we elected to reimplement NIKL as an object oriented language using MSG as a guide.
The NIKL data structures were decomposed into 2 modular hierarchy of flavor definitions, and the KREME frame
language was then built out of these flavors. This enabled us to incorporate the sophisticated instantiation
mechanism of MSG with minimal effort. In the process, we were also able to implement a modular version of the
NIKL classifier algorithn. This provided the kind of reclassification capability required for a knowledge editing
environment and aticipmed the extension of the classifier to deal with the richer semantics of languages like
Inseilicorp’s KEE [6].

b

4.1.1 Frame Language Syntax

The remainder of this section will briefly describe the basic definitional syntax of the KREME Frame
language. As this syntax closely resembies the formal syntax of NIKL interested readers are referred to [9] for more
detail.

Following NIKL, a KREME frame is called a concept. Collections of concepts are organized into a rooted
inheritance ot subsumption lartice sometimes referred to as a taxonomy of concepts. A single distinguished concept,
usually called THING, serves as the root or most general concept of the lattice. A concept has a name, a textual
description, a primitiveness flag, a list of concepts that it specializes or is subsumed by, a list of siots, a list of slot
equivalences, and a list of concepts that it is disjoint from.

The lists of slots, slot equivalences and disjoint concepts are collectively referred to as the feqmres of a
concept. If each concept can be thougit of as defining a unique category, then features of the concept define the
necessary conditions for inclusion in that category. If a concept is not marked as primitive, the features also
coastitute the complete set of sufficient conditions for inclusion in that category.* A concept inherits all features
from those concepts above it in the lattice (those concepts that subsume it, and, thus, are more general) and may
define additional features that serve to distinguish it from its parent or parents.

Soﬁ(mﬁmuhdmkaﬁdom)conﬁnof;mhwshmammmomamb«
restriction and an (optional) default form. The value restriction specifies the class of concepts allowed as values for
that slot. As in NIKL, value restrictions usually specify a particular concept.

Slot Equivalences describe slots (and slots of slots) that by definition must always refer to the same entities.

The role name specified for each KREME siot refers to an object called a role. Roles in KREME, as in NIKL
and several other frame languages like KRYPTON (3], and KnowledgeCraft (8], are actually distinct, first class
objects that form their own distinct taxonomy, rooted at the most general possible role, usually called RELATION.
Roles describe two place relations between concepts. A role restriction at a concept is thus a specification of the
ways a given role can be used to relate that concept to other concepts.

‘Comoepss marked as primisive (sometimes referred to w Naswal Kinds) have no compiess st of ssfficient conditions. For example,
ELEPHANT must, by secessity, be s MAMMAL, but without an sxhaustive list of the sstribuses that distingwish it from other memmala, it must
be reprencuted as & primitive concept. The class of WHITE ELEPHANTA, oa the other hand, might be compistely described ss a ELEPHANT,
with siet COLOR restricied 0 WHITE.

16

4.2 Using the Frame Editor

The KREME frame editor has five views, the Main Concept Editing View, the Alternate Concept Editing
View, the Big Graph View, and the Macro Structure Editor View. Roles, which are also part of the KREME
Frame language, are edited with the Role Editing View. In this section, we will cover the details of the editing
operations available in the first three of these views,

4.2.1 Editing in the Main Concept Editing View

Normally, when one creates a new concept or edits 2 concept for the first ime, KREME makes that concept
the top concept on the Editor Stack, and switches to display the Main Concept Editing View. There, KREME
displays the concept as it exists at that time.

Figure 3-2 shows how the graph window immediately displays all of the abstractions and specializations of
the concept being edited, the state window shows its name, whether it is primitive or not, its edit state (classified or
oot, modified or not), its parents, and a textual description. The table window simultaneously dispiays all of the
concept’s locally defined slots.

42.2 Frame Editing Operations

Space does oot permit a full description of the functionality of the KREME frame editor so we will very
briefly touch upon a few of its more important operations.

Making new concepts. The New Concept command in the global command menu initiates the definition of a
new concept that is (1) fully specified by the user, (2) similar to some already defined concept, or (3) a
specialization of one or several other defined concepts. When the initial form for the oew concept has been
specified the system creates a new concept definition for it and shows this new definition in the main concept view.
The user is then free to add details (siots, equivalences, additional parents, etc.)tothenew\comept definition,
classify it, or edit other concepts.

Adding and modifying siots. Whenever the window displaying slots is visible, slots can be added or
modified. A pew slot is added to the defined slots of the concept with the Add Slor command. Any portion of a
slot’s definition can be emtered by typing or by pointing to a visible reference to the desired item. When a role or
concept name that is not defined is specified, the system offers to make one with the aame given.

Users may modify agy locally defined slot or inherited slot. Slots shown in table windows are modified by

pointing at the appropriste subform and then either typing in or pointing to a replacement form. Modifying an
ioherited siot canses the new definition 10 be locaily defined.

17

A

Adding and Deleting parents. The sysiem displays the classifier determined parents of a concept in two
places. The concept graph displays them as part of the abstraction hierarchy of the concept, and the state pane
indicaees both the defined and direct or computed parents of the concept after the word "Specializes:”. Since the
classifier may have found that the concept being edited specializes some concepts more specific than those given as
its defined parents, defined parents that are oot direct parents are preceded by 2 "-", while classifier determined
pareats that were not defined parents are preceded by a "+".

Adding new defined parents to a concept’s definition is done by clicking on the word "Specializes:” in the
state window and typing a concept name or pointing to any visible concept. Parents can be deleted by clicking on
their names in the list of parents displayed in the state window.

Changing names and killing concepts and roles. KREME allows the user to change the names of concepts
and roles or to delete them completely. Name changing is accomplished simply by pointing at the concept or role’s
name in the state window and entering a new name. The Xill command splices a concept out of the taxonomy by
connecting all of its children to all of its parents.

ke g-_AA Freprn

- A A e AW

5. Large-Scale Revisions of Knowledge Bases

As knowledge bases grow larger, and the sews of tasks that intelligent systems are cailed upon to perform
expands, system developers will need automatic methods for revising and reformulating accumulated knowledge
bases. Toward this end, we feel that it is important to find ways of expressing reformulations of sets of frames and
other representations and to begin developing facilities supporting the generation of new representations from old
oues.

We are taking two different approaches to these problems. First, we have developed a macro facility for
reformulations that can be expressed as sequences of standard, low-level editing operations. This facility allows
users 1o use an example to define editing macros that can be applied to sets of frame definitions. Second, we are
bailding a library of functions providing standard editing operations that cannot be defined simply as sequences of
low level editing operations. Our main purpose in this project is to collect and categorize a number of different
kinds of knowledge base reformulations. Our bope is that a large fraction of these operations can be conveniently
described using the macro facility, as it is more accessible to an experimental user community than any set of
"prepackaged” utilities, and can be more respoasive to the, as yet, largely unknown special needs of that community

5.1 The Macro and Structure Editor

One of the views available when editing concepts in KREME is the macro and structure editor. This view
(See figure 5-1.) provides display and editing facilities for concept definitions, based loosely on the kind of structure
editor provided in many LISP environments. The view provides two windows for the display of stylized defining
forms for concepts. The current edit window displays the definition of the currently edited concept (the top item on
the editor stack). The dispiay window is available for the display of amy oumber of other concepts. Any concept
which is visible in either window can be edited, and features can be copied from one concept to another by pointing
Both windows are scrollable to view additional definitions as required.

There is 2 menu of commands for displaying and editing definitions that includes the commands Add
Structure, Change Structure, Delete Structure, Dispiay Concept and Clear Display. Arguments (if any) to
these commands may be described by pointing or iyping. Thas, to delete a siot, one simply clicks cn Delete
Structure and the display of the siot to be deleted. Adding a structure is done by clicking oa Add Structure, the
leyword of the feature class of the concept one wishes to add to (e.g., Slot:). The new slot itself may be copied from
s displayed concept by pointing, or 2 new one may be entered from the keyboard. Changing (that is, replacing) a
stracture can be done by pointing in succession at the Change Structure command, the item to be replaced, and the
thing to replace it with. [n most cases, Change Structure can also be invoked simply by pointing at the structure to
be replaced, without the menu command.

praprn

~d

Noaw Hale Parameters Leneralza
¢ oLt Luncent Fetit Hote Reset

SCM.M] FIFER
S [£:U) Tw0-PORT-OEVICE
¢ [f.u) Tamay

Change View

Kill v oncept flew Helated Cancept

Primitive: YES (Unelessifieds flodified]

Specislizes: PIPE
Oesaription:

Td-sar S0k

Delete Ltracture thisplay LConcept Clear thsplay

syetdd L traaCture Leer SLEuCtus e
eV oF Bhladiy Jlimse.

Concent PIPEQ Concept TAMKL
Primicive: Vas Primitive: Mo
Adscrsctions: i PIPE) Abseractions: (TAM))
Rl Pole P riceI0 Pole Pescrictions: (Name (¥ 4P Defasie)

CLCOLOR=0F E~ectl~ 1 tA VELLOW) R VELLOW):

LQUTPUT Esactl- 1 (R URLVED 'R CRLVED Y

~m§s E~actl. 1 ¢ R3S MRSS) Equivalences:

(COLOR-OF E~actlw 1 (A COLOR 'R COLIP ! . Disjoine Classes:

(QUTPT Exactlv [‘(A THING=WITN-INPUT:
(A THING-WITH-INPYT))

Equivalences:
Disjornt Classes:

etine Macro [Run Macro | Uispliay Macro Load Macros) Map tdit
--Macpe Jerartion-- N T T Ty
9. TAMKL [current conceot]

" P
acro P1PE 1. PIPE0 (operation 1]

I{nsert s Dipe bDetueen tuo conngcted devices

1. Make 3 nev concedt uhich soectalizes PIPE, naned by ganersting 3 nunber suffia.
2. Change the INPUT value rastriction of 1ten ! o ften q.

Figure 5-1: The Macro Structure Editor View

The last two commands in the structure view's main menu provide the means to change what is dispiayed in
the display window. Pointing at Display Structure and then at any visible concept name places the definition of
that concept in the display window. Clear Display removes all items from the display window. Individual concepts
can be deleted from the display window by pointing at them and clicking. The Edit Concept command is used to
change what is displayed in the current edit window. Editing a2 new concept moves the old edit concept to the
bottom of the dispiay window.

\

5.2 Developing Macro Editing Procedures

These operations, together with the globally available commands for defining new concepts and making
specializations of old concepts essentially by copying their definitions, provide an exwemely flexibie environment in
which to define and specify modifications of concepts with respect 10 other defined concepts. Virtually all
knowledge editing operations can be done by a sequence of pointing steps using the current edit window and the
dispiay window. This style of editing is aiso used in the rule editor. The combination of editing features and
mouse-besed editor interaction style provides an extremely versatile environment for the description, by example, of
a large class of editing macros.

ancts ae il P W ol

ol

In order to have macros, defined essendally by example, work on concepts other than those for which they
were defined, the operations recorded cannot refer directly to the concepts or objects which were being edited when
the macyo was defined. This is handled by a kind of implicit variablization, where the objects named or pointed to
are replaced by references to their relationship to the initially edited object. In most cases, these indirect references
can be thought of as refereaces to the location of the object in the structure editor’s display windows. In fact, each
new object that is displayed or edited in the course of defining a macro is placed on a stack called the macro items
lis, together with a pointer to the command that caused the item to be displayed. The utility of this form of
reference will become clearer with an example.

5.2.1 Macro Example: Adding Pipes Between Components

When the STEAMER [22] system was developed, a structural model of a steam plant was created to represent
each component in the steam plant as a frame, with links to all functionally related components (e.g., inputs and
outputs) represented as slots pointing at those other objects. So, for example, a tank holding water to be fed into a
boiler tank through some pipe that was gated by a valve was represeated as a frame with an OUTPUT slot whose
value was a VALVE. The OUTPUT of that VALVE was a BOILER-TANK. The pipes through which the water
was conveyed were not represented since they had no functional value in the simulation model. If it had become
important to model the pipes, e.g. because they introduced friction or were susceptible to leaks or explosions, then
the representational modet that STEAMER relied on would have required massive revision. Each component object
in the system would bave needed editing to replace the objects in its INPUT and OUTPUT slots with new frames
representing pipes that were in tum connected by their OUTPUT slots to the next component in the system.

One of our goals in developing the KREME macro editor was to be able to make sucn changes easily. While
they are simple to describe, they nomnally require many tedious editing operations to a large number of concepts.
Figure 5-2 shows a macro that can be applied to ail objects in a system with INPUT and QUTPUT slots, in order to
generate and insert PIPEs into those siots. The macro also sets the OUTPUTS of those PIPEs to be the concept that
was the old value of the OUTPUT slot in the concept edited, and similarly redoes all INPUTs.

Figure 5-2 shows bow the macro is defined, by editing a representation of a tank (TANK1) connectad (by role
OUTPUT) to a valve (VALVE2). The sequence of steps required, defined only using the mouse, is shown in figure
5-2, as they would appear in the Macro Definition window of the editor.

In Phase Ooe, work on macro editing was only just begun. However, this technique already shows promise as
amethod for accomplishing restructurings of knowledge. We see our investigation of macro editing as only the first
step in developing a knowledge reformulation facility that will make use of the higher level structure of the
represented knowledge.

21

v Cancept Kl Concept " Tew Helated Concept Change View T
ept: PP ¢ [£:u] Two-PORT_DEVICE
Prinitive: YES (Unclassified; Nedified) |© (51 Tamt

Specializew: PIPE
Oescription:
Ed-sar Stack

Leinte Hiraclure

itpiay Concept LUlear thivplay

Sl bl ture Change Glructure

e nt Ldit Jim-- —eiSPIVY OF Abiviid Jhms -
Concept PIPEQ Conceot TANKL
Prinitive: ey Primitive: No
Rbgeractions: (PIPE) Abstractions: (TAMK)
A1 Polg Pegericrio N N@ ¢ Pole Revytrictions: (Name NP UP Defaule]
- [(B I ((COLOR-0F Enactiv L (R YELLOW) (R VELLOW) }

(OUTPUT Eaactly 1 (R VALVED: A YRALVES)))
$)? Equivalences:

(ms§ E~ag

tiv 1 1A MASS) (A
(COLOR-OF E.actlv 1 (R COLORY (R COLOPY) Disjoint Classes:
(QUTPUT E-actlwv 1 (A THING-HITH=INPUT
LA THING-WITH-TMPUTY)
Equivalences:
Disjornt Classes:

I oad PMacros Map bLdit

lexbines Moaycro raplay Macro

=G PY I8MS JONRICK e
8. 1AMl (current concept)
1. PIPEG [operstion 1]

e Macde
Macro PIPE
Insert & Dioe Detwsen tuo comnected devices

1. Make 3 nau concept which specializes PIPE, named by generating a nundber suffix.
2. Change the INPUT value restriction of item 1 to iten 9.

While Editing TANK1:
Click on Define Macro. (Makes Macro Item 0 = TANKI).

1. Make a new concept which specializes PIPE. (Creates PIPEO as item 1).

2. Change the INPUT value restriction of item 1 (PIPED) to item O (TANK1).

3. Change the OUTPUT value restriction of item 1 (PIPEQ) to the OUTPUT value restriction of item 0

(OUTPUT of TANKI = VALVEI),

4. Classify the current edit concept (Defines PIPED).

5. Change the OUTPUT value restriction of item 0 (= VALVEI) to item 1 (PIPEO).

6. Classify item 0 (TANKI).

7. Edit the QUTPUT value restriction of item 1 (Creates item 2 = VALVED).

8. Change the INPUT value restriction of item 2 (INPUT of VALVEI = TANKI) to item 1 (PIPED).

9. Classify all items.

Figure 5-2: Steps in PIPE Macro

6. Knowledge Integration and Consistency Maintenance

One of the most time consuming tasks in building large knowledge bases is maintaining intermnal consisteacy.
Modification, addition or deletion of knowledge in one part of a knowledge base can have wide ranging
consequences to both the meaning and structure of the knowledge stored in otber parts of the knowledge base. A
central component of the KREME system design was that it incorporate tools for consistency maintenance both
within and across representation languages. These tools are collectively referred to as the knowledge integrator.
When pew knowledge is entered or existing knowledge modified it is the task of the knowledge integrator to
propagate, throughout the knowledge base, the changes that this new or modified knowledge entails, and to report
any inconsistencies that have been cansed by the change.

In essence, the knowledge integrator takes each new or changed chunk of knowledge (e.g., a frame, role, rule
or procedure) and determines, first, how the new definition fits into the knowledge base and, second, which other
definitions depend on the current one for their meaning within the knowledge base. These dependencies are placed
oa an agenda which, in turn, causes them to go through essentially the same process.

The knowiedge integration subsystem for frames is basically an extension of the classification algorithm
developed for the NIKL representation language. The NIKL classifier correctly inserts new frames into their proper
spot in a taxonomy, by finding the most specific set of concepts whose definitions subswned the definition of the
pew concept. The KREME classifier was designed to additionally allow existing concepts and roles to be modified
and and then reclassified, so that the effects of redefinitions are automaticaily propagated throughout the entire
frame network. This was accomplished by redesigning the original NIKL classifier to take advantage of the
meta-level descriptions of KREME Frames and implementing the new classifier using the dependency directed
agenda mechanism of the overall knowledge integrator.

6.1 The Frame Classifier

The remainder of this section will give a brief description of the frame classification part of the knowledge
integrator, which is the most completely developed portion of the system. For a formal description of the NIKL
clagsifier algorithm see (15, 16]. For a more complete description of a somewhat simpler classifier for an editing
environment, see {1].

The frame classifier works in essentially two stages, starting from a concept or role definition, as supplied by
the editor or read from a file. The first stage, called complerion, refers to the basic ipheritance mechanism used by
KREME Frames to install ail inherited features of a concept or role in its internal description. The completion
algorithm, when given 2 set of defined parents and a set of defined features for an object determines the full,
logically entailed set of featres of that object. The second stage is the actual classification or reclassification of a

Ly~

role or concept. That is, the determination of the complete, most specific set of parents of the object in its respective

6.1.1 Completion

The completion algorithm is broken up into modular chunks that correspond to the decomposition of the
frame language. There is a distinct component that deals with slot ipheritance, another component that deals with
disjoint class inheritance, a third that deals with slot equivalence inberitance and so on. This organization makes it
quite straightforward to extend the language with new features that handle inheritance in different ways.

Figure 6-1 shows some of the complexities of slot inheritance. In 6-1A, the most specific value restricrion for
the slot LIMBS at 4-LIMBED-ANIMAL is inherited from one parent (ANIMAL) while the most specific number
restriction, EXACTLY 4, is inherited from 4-LIMBED-THING. The completion algorithm determines that the
restriction for the role LIMBS at the concept 4-LIMBED-ANIMAL must be EXACTLY 4 LIMBS.

Figure 6-1B shows one case for which the effective value restriction must logically be the conjunction of
several concepts. Since ANIMAL-WITH-LEGS is both an ANIMAL, and a2 THING-WITH-LEGS, all of its
LIMBS must be both ORGANIC-LIMBs and LEGs. If the concept ORGANIC-LEG, specializing both ORGANIC-
LIMB and LEG, exists when ANIMAL-WITH-LEGS is being classified, the integrator will find it and make it the
value restriction of the siot LEGS at ANIMAL-WITH-LEGS. If it does not exist, the integrator stops and asks if the
user would like to define it (that is, define a concept that is both an ORGANIC-LIMB and a LEG).

6.1.2 Classification

The second stage of the frame classification algorithm finds all of the most specific subsumers of the concept
being defined of redefined. This is the actual classification stage, and is essentially a special-purpose tree walking
algorithm.

The basic classifier algorithm takes a completed definition (that is, a definition pius all its effective, inherited
feamres) and determines that definition’s single appropriate spot in the lattice of previously classified definitions.
The result of a classification is a unique set of the most specific objects that subsume the definition and a unique set
of the most general objects that are subsumed by the definition. When the classified definition is installed in the
Iattice ail the concepts that subsume its features will be above it in the lattice and all the concepts that are subsumed
by its features will be below it.

The classifier is built sround 2 modularly constructed subsumption test that compares the compieted sets of
features of two objects. The object being classified is repeatedly compared to other, potentially related, objects in
the latice to see whether its compieted definition subsumes or is subsumed by those other objects. For one
definition to subsume the other, its full set of features must be a subset of the features of the other. As with

Figure 6-1: Two Examples of Slot Completion

4 limbed
limbs ;
thing limb
exactly 4
- organic
animal | limbs limb
any number
4 limbed -
. limbs
animal
exactly 4

Inheriting different number and value restrictions.

.

et o ey

Sy

thing
with legs

legs

animal
with . legs

{ Conjoined Value Restrictions.

ey

~te

completion, subsumption testing is partitioned by featare type (Le slot, disjoim-class exc). One object subsumes the
other when all of its individual feature-type subsumption checks recurn EQUIVALENT or SUBSUMES, and there is
at least one vote for SUBSUMES. mavmgofdisundoimoddxor;aninﬁmuemndbmq. If a new
feature type is added to the language one need only define a subsumption predicate for that feamre, and objects
baving that feature will be appropriately classified.

6.2 An Example of Reclassification

The power of frame reclassification in an editing environment can be illustrated with the following relatively
simple example. Suppose a knowledge base deveioper bad defined both GASOLINE-POWERED-CAR and
INTERNAL-COMBUSTION-POWERED-CAR as specializations of CAR. but had inadvertently defined
INTERNAL-COMBUSTION-ENGINE as a kind of GASOLINE-ENGINE. [n this situation, the classifier would
deduce that INTERNAL-COMBUSTION-POWERED-CAR must be a specialization of GASOLINE-POWERED-
CAR, 2s shown in figure 6-2 A, since the former restricted the role ENGINE to a subclass of the lagter’s restriction of
the same role.

Redefining INTERNAL-COMBUSTION-ENGINE as a kind of ENGINE (rather than a GASOLINE-
ENGINE), and thea reclassifying, causes ail of INTERNAL-COMBUSTION-ENGINE's dependents to also be
reclassified, including INTERNAL-COMBUSTION-POWERED-CAR. Since GASOLINE-ENGINE no longer
subsumes INTERNAL-COMBUSTION-ENGINE, the restrictions for GASOLINE-POWERED-CAR no longer
subsume those of INTERNAL-COMBUSTION-POWERED-CAR, and the classifier therefore finds that
GASOLINE-POWERED-CAR does not subsume INTERNAL-COMBUSTION-POWERED-CAR. This is shown in
figure 6-2B.

The combination of inconsistency detection during the completion phase and the automatic propagation of
classification changes that occurs during reclassification makes KREME a powerful and extremely useful tool for
knowledge base development and refinement. Since the effects of reclassification are immediarely made apparent to
users via the dyaamically updated graph of the subsumption lattice, they sometimes find that the definitions they
have provided have some unanticipated logically eatailed effects on their taxonomy. Sometimes these effects are
surprising, aithough comrect. Otber times, they lead to changes and additions which make the knowledge base more
compiete and correct.

R T -

— ———————

Figure 6-2: An Example of Reclassification

internal

combustion

powered car
’ A. Before Reclassification
[|

]
-

B. After Reclassification

«d

6.3 Using the Knowledge Integrator to Partition and Merge Knowledge Bases

6.3.1 Load/Merge

Perhaps the single most important use for the Knowledge Integrator is to emable orderly merging of
independently developed knowledge bases. The process of loading one knowledge base into another is made
somewhat involved by the need to merge and/or split and rename concepts that have the same name in both
petworks.

There are a number of complex cases to deal with. The simplest case occurs when two definitions of the same
concept have different but complementary attributes. The KREME merge logic simply forms the union of the
attributes of both concepts and edits all pointers to either concept so that they point to the new, eariched concept.
(See Figure 6-3.)

A somewhat more complex case occurs when slots shared by both concepts are given different restrictions.
(See Figure 6-4.) The system chooses the most specific restriction for the slot.

If concepts with the same name have properties that make it impossible to merge them — that is, the ideatical
games really stand for different concepts in the two knowledge bases (6-5), then the system will inform the user of
this fact and ask the user for 2 new name for one concept.

The user has some coutrol over this entire process and can set switches which cause the system to always

query when it finds two concepts with the same name, always merge concepts if it can, or never merge concepts,
keeping the knowledge bases distinct.

6.4 Saving and Partitioning Knowledge Bases

Any time during the development of a knowledge base, the user can save the entire developing knowledge
base to a disk file. This is a useful feature whea developing small knowledge bases or working on a piece of a

knowledge base that will later be merged into a larger whole.

Another useful facility is KREME's ability to partition a knowledge base along user-designated lines and save
the partitions in distinct files. This is accomplished by allowing the user to designate a set of seed concepts. KREME
will then crese and save a partition of the entire knowledge base, based on the seeds. In an oversimplifed sease, the
partition consists of the seeds, all specializations of the seeds, and all the concepts that the seeds ecither direcdy or
indirectly depend on. This facility can be ased (o break up a single knowledge base into several overlapping
sabcomponents.

6.5 Using Merge and Partition to Build Larger Knowledge Bases

Taken together, the merge and partition facilities suggest an approach that we think will prove to be an
extremely powerful paradigm in the building of very large, very complex knowiedge bases. When a knowledge base
ZTows 1o a size & which it becomes difficult to deal with in its entirety, the partition/save facility can be used to
divide it into several overlapping logical subcomponents, each of which is a full scale, consistent knowledge base in
its own right.

These muitiple, smailer knowledge bases can be worked on independently of each other with full confidence
that the loader/merger can put the independently built subcomponents together in an orderly, consistent fashion.

In Figure 6-5, there are two networks. The "ball" in Network | stands for a concept that is a kind of round
object. In Network 2, the name "ball” stands for a kind of formal dance. These are differenct concepts with
unmergeable properties. In both networks, Event and Object would be defined to be disjoint. In this case, the Merger
would ask the user for a new name for one of the concepts and would keep them distinct.

Figure 6-3: ExmphOm:NlugingwﬁhNomvedzppingAuﬂbum

Machine

Car | Engine | Engine

oo

PR

Figure 6-4: Example Two: Overapping but Compatible Properties

Ceenng
D
Creenns
Ceer

Machine

Car

Engine

Engine

Engine

k) |

Ruto Engine

e e g T

-t

Figure 6-5: Example Three: Unmergeable Concepts

Network 1

Shape

Network 2

Property

Round

——— -

7. Editing Behavioral Knowledge

KREME embodies a set of mechanisms for representing and editing behavioral knowledge. One mechanism
involves associating behaviors with frames. Since frames can also be associated with flavors, betaviors have been
implemented so that they can be compiled into flavor methods.

A click of 2 mouse button and the rabular features window in the main concepe view is turned into the toplevel
behavior editor. All behaviors currently defined for the concept are shown. Each has a name and a type. There are
three types of behaviors currently allowed; Rules, Procedures, and Methods. Existing behaviors can be 9dited or
new ones defined. A modified form of the Symbolics™? flavor examiner can be accessed to show various useful
information about method combination and derivation.

Methods are simply flavor methods. Editing a2 method throws up a text editor window which can be interacted
with in normal editing style or in structure editing style. Edmngormpumnganewmlepacketaccessesmekule
Editor. Editing or inputting a new procedure accesses the Procedure Editor.

7.1 Editing Rules

The rule language used by KREME is a language called FL.EX [17], based in large part on the LOOPS rule
language. FLEX allows rules to be defined in rule packezs, which organize sets of rules that are meant to be run
together. In the KREME eavironment, rule packets can be artached to concepts, just as if they were functional
methods. In addition, they may be inherited by more specialized concepts. FLEX incorporates a2 mechanism for
dealing with uncertainty, based on EMYCIN (20]. The FLEX runtime environment also provides an elementary
history and tracing mechanism, and an explanation system that produces pseudo-English explanations from rule
traces. For efficiency, FLEX also provides a means for rule packets to be compiled as LISP code, and run without
the rule interpreter present. \

The KREME rule editor is built oa top of the KREME structure editor. Ouve defines and edits rules by
specifying and filling out portions of rule templates. The user refines these tempiates either by using the mouse to
copy pats of existing rules or by pointing at slots to be filled and typing in the desired values. Ouce a rule-set has
been developed, the rule editor provides commands to run packets and debug them. It can also generate traces or
rule histories paraphrased in psendo-English. Mechanisms are also provided for deleting and reordering rules, and
loading and saving them from files. The rule editor is shown in figure 7-1

The rule editor is aiso tied to the KREME's knowledge integration subsystem. At present, all references to

SSymbelics is & tredemark of Symbelice, Inc.

PRT TV N S RO

slots of frames made in rules are checked for validity by the knowledge integrator. If invalid, the user is alerted and
may switch, if necessary, to editing the associated frame. If the problem was simply that he/she named a noo-
existent slot, a valid one may be selected from a menu. In the near foture, the knowledge integrator will also check
such cross-references in the opposite direction, as when a slot referred to by some rules is deleted or changed in the
frame editor.

KREME at present edits rules in the FLEX [17] rule language. In FLEX, rules come in rule packers, and the
KREME Rule Editor edits an entire packet at one time. Rule packets provide a way to organize rules.

The forward chaining rule packets come in four varieties, indicating the type of control mechanism used for
rule fring.
o do-1-rule-packets execute the first nile whose test succeeds.
o do-all-rule-packets execute all rules whose tests succeed.
o while-1-rule-packets repeatedly test all rules, firing one, untl no tests succeed.
o while-all-rule-packets repeatedly fire ail rules whose tests succeed. until none succeed.

Rule packets are comnected to KREME frame systems or other data contexts by specifying an access
environment. An access environment is an object that receives messages dealing with the accessing of values for
references in the rules. It handles all messages to get or set the values of variables and their confidences.

7.2 The KREME Rule Editor

Rules are defined and edited by specifying and filling out portions of rule tempiates. To refine these templates
either use the mouse to copy parts of existing rules or point at sots to be filled and type in the desired values.

There are also commands 1o run packets and debug them and to generate traces or rule histories paraphrased

in pseudo-English, and delete rules and reorder rules, and load and save rules from files.
\

7.3 The Rule Editor View

Many of the windows in the Rule Editor View should be familiar by now. The complete list is as follows:

1. Global Command Window displays global commands that can be selected by the user. In this
example, the user has used the mouse to select Edit Packet. The user’s selection is highlighted.

L“MW&W“MM&MREMMMWM&N

3. Lditor Stack Window dispiays the names of the items recently edited and some information on their
Current stage. [tems in the editor stack window can be selected for editing with the mouse.

4. Behavior Command Window is a menu of commands that apply to Rules and Rule Packets.
(Behavior is another term for rule packets, or functional methods on instances of concepts.)

S. Current Edit Item Window displays the item that has been selected for editing.

6. Dispay Kelated Items Window allows the user to view otber rule packets and scroll through them.
Rules and parts of rules can be copied from the Scyoll Window into the Current Edit Item Window.

7. Editor Interaction Window displays screen prompts and user input. The user’s edits are made in this
window and then displayed in the Current Edit Item Window.

8. Related Behaviors Window displays an index of other rule packets that are related to the one
currently being edited. With the mouse, the user can rapidly scroll through this index and select a
related rule packet for viewing or editing.

To get into the Rule editor use the New Packet or Edit Packet command in the global command window.

Thereafter, the structure editor can be used in much the same way the Macro Structure Editor is used to edit
concepts. The Rule Structure Command Menu contains the commands:

¢ Define Behavior is similar to Classify Concept. It makes the definition of the packet permanent, and
allows it to be run or attached to a concept.

 Similar Behavior - Creates a packet with the same rules, etc. but gives it a new name, and presents it to
be edited to make it different.

« Kill Behavior - Kills the definition of this packet.

o Display Packet - Displays the packet in the Display of Related Items Window.

When a whole rule packet is outlined, the user can choose to Edit Packet (L:), or (R:) chc_:ose from a menu of
Edit Packet, Edit Basis or Display Lisp Form.

Other editing commands are found on the keywords and component pieces of packets and rules. For instance,
clicking left on Rule: places a new (empty) rule in the packet, which can then be filled out by clicking oa IF to add
a new condition (conditions are treated as part of a conjunction) or THEN to add a new action. Clicking right gives
a menu of Add (Empty Rule), Copy One Rule from somewhere else into this packet, and Copy Rule Set which
copies all of the rules from another packet.

Clicking over Type: gives the user a choice of the standard types of rule packets, described above.

Packet Classes: allows the user to specify a flavor to be mixed into the packet. Arguments: and Return
Variables: each allow the user to add a new one (L:) or choose from a menu of Add One, Add Several, Edit and

Replace.

When a whole rule is outlined, clicking left will be replace the rule with another rule that the user points at.
Clicking right gives a menu of Repiace Rule, Edit Attributes and Delete Rule.

Whenever expressions appear (after the word Precondition:, or as parnts of conditions or actions), the user
may Replace the expression (L:), or choosing from 2 menu (R:) of
* Replace the expression with another one.

o Edit the expression as text.

© Delete the expression.

© Add Before another expression (copied from somewhere by pointing).
© Add After another expression.

» Exchange two expressions positions.

© Parenthesize a set of expressions together.

© Deparenthesize an expression into pieces.

o Evaluate the expression in the current context.

7.4 Procedures in the KREME Environment

An obvious weakness of many knowledge representation languages is their inability to handle declaratively
expressed knowledge about procedures as partially ordered sequences of actions, particularly if that knowledge is
represented at multiple levels of abstraction. Although a number of systems have been developed that do various
forms of planming, (5, 13, 14, 19], most have not encoded their plans in an entirely declarative or inspectable
fashion. Certinly the current generation of expert system tools does not provide mechanisms geared to the
description of this kind of knowledge. Although it is clear that much of an expert’s knowledge about a domain is
about procedures and their application, little work has been done on devising ways to capture that information
directly.

The STEAMER project [22] began to address the issue of declarative representatioas for procedures in the
course of developing a2 mechanism to teach valid steam plant operating procedures. The representation system
developed for this task had to be directly accessible to the stadents who were the system’s users, and it had to serve
aamofexplamﬁonswbenemummade..Mwasabletodwaibeth&uprocednﬁu.deoompose
them, show how they were related to similar procedures and, in general, deal with them at the "knowledge level”
[10] rather than as pieces of programs or rule sets. Although the syntax of the language was quite primitive, with
0o provisions for branching or iteration; the mechanisms for procedural abstraction, specialization, and path or
reference reformulation that formed the heart of the language seemed to form the kemel of an extremely useful

The KREME representation language family includes a descendant of the STEAMER procedure language,
built using KREME's library of knowledge representation primitives. Each KREME procedure has a name, 2
description, an action that the procedure is meant to accomplish, a list of steps, and a list of ordering constraints that
determine the partial ordering of the steps. Steps have an action and an object which nsmes the conceptual class of
things that step acts upon. Procedures are attached to specific frames and can be "compiled” into flavor methods.

Each step in a procedure may either be a primitive action or another procedure. If the object of a step defines

— -

- ——

ok 4

W | 0

PN N0 S40000-4Ng pIIDPOY
3 9 1E-99d Wensed
v 1€ Ivd ¥Ry
#2-Ivd Ya4rryg
aX3-$N9-I81N 2139084
€2-Ivd 33400y
dX3-nQ-dNI 3347e4
IZ-Ivd 334
12-0vd 9484
£20v4 20904
S8-Ivd 19284
2e-Ivd 104004
18-9v4 107104
“AJI¥IA 1819004

Sh ot TYvg

"

duy JBEn

oy Ados ‘ony oug Adoy oy hpy jo oy

:oum 1y
AdoD 03 9INJ & 318|085 :owWeJYy {

aopse diolW
[{ec -- 8z}
+ [3MSSId NI DNLIY MIYII3N dund-110-13nJ 0nua) Ia
pue [{ee -- 62) = (39nNSSIyd

INTY SNIIENIAIDIFE dund-110-130N4 UNYNE - wwousﬂsuwwmuu 1
L]

{344SHN + NIDAUU-AI|MS]R
pue (AMITW-ATWIIHd » SAIYIS]H Uayd
[a3M91 - 100 ST (SNIYIS-INAMOTIW Onbaa)]s It

(AROIW-ATWIISG » SNIYIS]E van
[OMOT M- 100 ST [(SNIYIS-IHIMOTW MIT-AVddNS-UHI W) I JI

[AMOIW +» SNIULIS]E vy
((S AT W-ATWIINL » 68AMITI W)
91 [SNIYAS-ININOLI Y Onyualle 1
1eagny
UOU 1UG) I PUDIBIY
(N19MA-AILIS SNIYLS) t981qe) ep UNIBY
(S304-0N0323) 13 veunby
(134004-940010) (89890 180V¢
1A0Md-INY-1-00 904
N0-AJ1430 1I10NO%d

- rusty paoy 4o Aepdsiq--

1omg 01203
swvi (03] 12

0 [n23} 12

wevt {3 0
193re0-03¢ [m!3) :0

a
MOUPIn Oy

D pannnTny AR

L R RTNTAI AN

Figure 7-1: The KREME Rule Editor

[344SHN + HIJAUU-A31US]E Vs
[(8S [33nSS38d ¥3BUEHD dUNd-T110-13N4 ONH4A - $S04-0H0IIS) ¢)
¢ [39nS934d JIBUMI dUNd-1I0-13n4 Onbual e J1

{IMSHN + HISAU- LTI MS]E UsYY
{toe -- 82)
= (33NSSIdd WIIT MIIYNINIIIY Nd- 110-1IN4 OALNE] Ie

PuUs {(BE -- 021 = [34NSSIud .
SHIY NI NONIOIN JiNd-T110-13NJ OAUNE - wSulguwu—
[]
. !

UOU 188(QE) Iep U IBY
SoU 1R UGy ‘

SUCU 18988€() 1834O0¢
1990Ud-INg-1-04 1904}
RN TW-NIIY 1104004

PR SR

-l B3PI RNIRD- -

]
R~ o) i
oA T, . . .

uagadyanesg
3 39828,

Sy 1]
pom

Gy

Yy

a procedure for the action of that step then this procedure is said to be a sub-procedure of the enclosing procedure.
For example, the ALIGN procedure attached to the concept SUCTION-LINE could have a step ALIGN <PUMP>. If
the coacept CENTRIFUGAL-PUMP, which is the object of this step for SUCTION-LINES, defined a procedure for
the action ALIGN, thea the step ALIGN <PUMP> could be expanded into the steps of the procedure for aligning a
cenerifagal pump.

7.4.1 Procedural Abstraction and Structure Mapping

For knowledge acquisition purposes, it would be very useful if procedures were represented in an abstraction
hierarchy like that for frames. In a strong sense, it seems difficult to define exactly what it means for one abstract
procedure to subsume another. However, from an acquisition standpoint, much power can be gained by allowing
abstract procedures to form templates upon which more specific procedures can be built, and eveamally providing
tools for automatic plan refinement like those found in NOAH (14]. For example, if you have some idea about how
to grow plants in general, and you want to grow tomatoes, you will use your knowledge about growing plants in
general as a starting point for leaming about growing tomatoes. The final procedure for growing tomatoes will
incinde some (presumably more detailed) versions of steps in the more general procedure, and may also include
steps that are analogous to those used in growing other plants for which more detailed knowledge exists.®

The KREME Procedures editor has 2 mechanism for building templates of new procedures out of more
abstract procedures. When a new procedure is being defined at a concept, the procedural abstraction function
determines whether any of that concept’s parents have a procedure for accomplishing the same action. If so, an
initial procedure template is built by combining the steps and constraints of all the inherited, more abstract
procedures. The paths (objects) of the steps are adjusted, using the concept's slot equivalences, to use "local” slot

names, as much as possibe, As yet this facility does not have the ability to do detailed reasoning with constraints on

steps, as NOAH does. We expect to greatly expand this capability during Phase Two of the project.

‘hnhﬂd“d““u“[‘]nmwm

AT Y WT"

8. Knowledge Extension

Oune task faced by knowledge engineers is getting experts to express generalizations about their domains of
expertise. While much of the detailed information about particular problems can be accessed and represented by
looking & specific examples and problems, the expert’s abstract classification of problem types and the abstract
features he uses o recognize those problem types are less direcly available. Experienced knowledge engineers are
often able to discover and define useful geaeralizations which experts perceive as relevant to their own reasoning
processes. The experts may then suggest improvements, related generalizations, or more abstract generalizations.

Our initial experiment in knowledge-base extenision in Phase 1 has been the development of a frame
generalization algorithm. Our cumrent generalizer finds potentially useful generalizations by searching for sets of
concept features that are shared by several unrelated concepts.

Whea the generalizer finds a set of at least & features shared by at least m concepts, where k and m are
user-settable parameters, the system forms the most specific concept definitioa that would enclose all of the features
but would still be more general than any concepx in the set. Since our simple algorithm has no other external notion
of "interestingness” it simply displays this posential new concept definition to the user. For example, given three
concepts that are all ANIMALS and independently define the siot WINGS, the generalizer would suggest forming 2
specialization of ANIMAL with the slot WINGS, that these concepts would all specialize. If the user wanted to
introduce this concept, be would respond by naming the new generalization (e.g., FLYING-ANIMAL), which would
then be classified and inmegrated with the network. The features that are enclosed by this new, more general
concept, are automatically removed from each of the more specific concepts being generalized.

A o

Spat s Mo,

N

9. Conclusion

The goal of the BBN Laboratories Knowledge Acquisition Project is to build a versatile experimental
computer environment for developing and maintaining large knowledge bases. We are pursuing this goal along two
complementary paths. First, we have counstructed 2 flexible, extensible, Knowledge Representation, Editing and
Modeling Enviroament in which different kinds of representations (initially frames, rules, and procedures) can be
used. We are now using this envirooment to investigate acquisition strategies for a variety of types and
combinations of knowledge representations. In building and equipping this “"sandbox”, we have been adapting and
experimenting with techniques which we think will make editing, browsing, and consistency checking for.each style
of representation easier and more efficient, so that knowledge engincers and subject matter experts can work
together to build significantly larger and more detailed knowledge bases than are presently practical.

The second aspect of our research plan is the development of more automatic tools for knowledge base
reformulation and extension. An important part of this endeavor is the discovery, categorization and use of explicit
knowledge about knowledge representations; methods for viewing different knowledge representations, techniques
for describing knowledge base transformations and extrapolations, techniques for finding and suggesting useful
geveralizations in developing knowledge bases, semi-automatic procedures of eliciting knowledge from experts, and
extensions of consistency checking techniques to provide a mechanism for generating candidate expansions of a
knowledge base.

We are attempting to provide a laboratory for experimenting with new representation techniques and new
tools for developing knowledge bases. If we are successful, many of the techniques developed in our laboratory will
be adopted by the comprehensive knowledge acquisition and knowledge representation systems required to support
the development and maintenance of future Al systems.

e 2

LA anas o - 0 o
.

Appendix A
Loading KREME

A.l Loading KREME from Cassette Tape

Each site can test KREME by loading KREME from tape according to the directions in this Appendix and
then editing the sample networks provided on the tape. Once KREME has been loaded, Appendix B provides
instructions on how to edit and create knowledge bases using KREME,

KREME requires 2 Symbolics machine with Genera-7.0 already installed and with at least 18000 blocks free
in its FEP. If your machine has no tape drive, you will have to read the tape on another machine that does have one
and then transmit the bands to your machine. (See section A.2) We will use the terms destination machine and tape
drive machine to refer to these two machines. Note that you must have at [east 18000 biocks free on the destination

" machine’s FEP as well as having at least 18000 blocks free on the FEP of the machine with the tape drive,

A.1.1 Loading the FEP Files

There are four FEP Files on the tape. Your machine may already have inc-7-0G1-from-Genera-7-0.load. If
30, do not create a FEP file for that file and do not load it from the tape.

Log in to the machine and create three (or four) FEP files in the following way:

Czeate YEP File inc-7-0Gl-from-Genera-7-0.load 1290
Creste FEP File inc-BBN-from-inc-genera-7-0Gl.load 5600
Czeate FEP File Kreme-from-Boot7.load 9580

Create IE? rFile Kreme.boot 1

Log out and hait the machine.
Put the FEP Files tape in the tape drive .

Type the following to the FEP:

scan V1i27-disk
(This teaches the FEP about disk restore.) Then type

disk zestorze
The machios will then ask if you've dove Set Disk Type. Answer Y7 The machine then asks if yon want to restore
the FEP files on the tape. In each case answer Y and press carriage return. (If you already have the first band on your
system, answer N for that band.) In each case, the system will then prompt

"I the dioks is mow anul has nst beva initinfined, so¢ your local syssem wizard,

file to restorxe?
Accepet the default file name by pressing carriage remm.

The machine displays numbers as it reads from the tape. The machine then asks about the other files in tum.
Each time, answer Y to restore the file and then press carriage retum to accept the defauit file name.

A.1.2 Editing the FEP Files

Now you must edit the file Kreme.boot to set the CHAQS address correctly. To do this, boot the machine
(using a boot file other than Kreme.boot) and edit Kreme.boot. Change the line containing the CHAOS address to
set it to the address of the destination machine. You can get the correct CHAOS address for the destination machine
from the system manager or by looking at the address in another .boot file on the destination machine.

You must also edit the Load Microcode line in Kreme.boot so that it contains the number of the microcode
version on the bost. To determine that number, ask the system manager or look at a .boot file that boots a 7.0 world.

Now log out and halt the machine.

A.1.3 Booting KREME

Type the following to the FEP:
Boot Kreme.boot

Because the band is being booted at a site other than the site at which it was built, the machine will ask you if
the site is still BBN. Answer NO and the machine will name itself DIS-LOCAL-HOST.

If the machine has ideatity problems (It thinks it is still at BBN.), the simplest way to deal with them is to
unpiug the ethernet before booting Kreme.boot. See your local system wizard if you want a more elegant solution.

Once the boot is compiete, you'll have 2 KREME window with the

KREME :
prompt. Now get to a Lisp Listener via

<select>L
Then log in with the command

(si:login-to-sys-host)
Logging in in this way avoids interacting with the BBN system accounting software. Then load the carry-tape with
the command

(tape:cazry-load)
The cay-tape contzins two sample KREME networks, mech-netlisp and org-netlisp. You will have to choose a
place on your machine t store these fles.

ke Wk oy

You are now ready to use KREME with the beip of KREME: A User's Introduction. Try loading a sample
network from ove of the files you read off the carry-tape.

A.2 For Machines with No Tape Drive

First, load the FEP Files from the tape onto the tape drive machine by following the instructions in section
A.1.1. Then boot that machine, using a boot file other than Kreme.boot. Then.transmit the FEP Files to the
destination machine by typing the following to a Lisp Listener: (Answer Y when the system asks if you really want
to.)

(si:transmit-band "fepl:>inc-7-0Gl~from-genera-7~0.load"

destination-machine)

(si:transmit-band "fepl:>inc-bba-£from-inc-genera~-7-0.load"

destination-machine)

(si:transmit-band "fepl:>Kreme-£from-boot7.load"
destination-machine)

¢

Copy rile fepl:>Kreme.boot destination-machine| £ep0:>Kreme . boot
You are now finished using the machine with the tape drive. You may delete the KREME files on that
machine before going to the destination host. :

Now continue with the instructions in section A.1.2,

“[ue

Appendix B
A User’s Introduction

Abstract

This appendix provides an imtroduction and preliminary user’s manual for KREME, BBN's Knowledge
Representation, Editing and Modeling Eavironment. KRMhsbeenengmeetedmenablemexstoxepresem
much of their knowledge about a domain while minimizing the classic problems of knowledge acquisition when
building large expert systems. The manual documents KREME's component editors for two distinct representation
languages; KREME Frames and KREME Rules. In order to maintain internal consistency in a Frame Knowledge
Base, a problem which becomes increasingly more complex as taxonomies get larger, KREME provides a classifier
to automatically check subsumption relations berween frames. The KREME editing eavironment provides a2 macro-
editing facility, for large-scale revisions of portions of a knowledge base. The macro editor allows sets of operations
to be performed repeatedly over portions of a knowledge base. The required editing operations can be demonstrated
by example and applied to specified sets of knowledge structure automatically. The KREME Rule Editor provides
full support for important rule editing operations.

B.0.1 Introduction

This report provides a user’s manual for KREME, BBN’s Knowledge Representation, Editing and Modeling
Environment. KREME was designed to facilitate the process of developing and editing representations of
knowledge about a domain, while minimizing the classic problems of knowledge acquisition that come up during
the development of large expert systems. Knowledge engineers and subject matter experts with some knowledge of
basic knowledge representation techniques will find it easy to use KREME to acquire, edit, and view from multiple
perspectives knowledge bases that are several times larger than those found in most current systems.

B.0.2 Introducing KREME

KREME is perhaps best thought of as a family of related editors for different styles of knowledge
representations. The current version of KREME provides, within a uniform enviroament, a number of special
purpose editing facilities that permit knowledge to be represented and viewed in a variety of formalisms appropriate
to its use, rather than forcing all knowiedge to be represented in a single, unitary formalism. In addition o a general
editing euvironment, KREME provides tools to do the kinds of validation and ~oasistency checking so essential
during the development or modification of knowledge bases. As the size of knowledge bases grows, and more
people become involved in their development, this aspect of knowledge acquisition becomes increasingly important.
In the hybrid or multi-formalism repeesentational systems that are becoming prevalent (11, 3, 21], techniques must
be provided for consistency checking not oaly within a single representational system, but between relaed systems.

At present, KREME cootains individual editors for three distinct representation languages; one for frames aod

one for rules, and one for representations of ordered sequences of steps in operating procedures®.

Frames, (also known as Concepts), are the primary way of expressing declarative knowledge about classes or
kinds of things, both physical objects and abstract concepts or terms. Each concept or frame defined by a user is
meant to stand for a class of things of a particular kind. Frames have, as part of their definitions, a set of slors,
denoting the different relationships that things of that kind may, in general, bave with other objects or concepts.
The names of slots refer to roles, which are independently defined.

Rules are the primary way of expressing knowledge about inferential procedures. The basic form of a rule is
IF {condition} THEN (action}. Rules are normaily clumped together in rule packets. A packet is a set of rules
whose conditions are checked when trying to make a specific decision about something. In KREME, oae edits a
whole packet ar one time, rather than individual rules.

KREME has a mumber of useful features that enable it to make inferences about the knowledge it is given.
KREME Frames are represented in a hierarchical network of more and more abstract classes. Any concept below
another concept in the network inherits certain attributes from given information about concept(s) above it; these
superordinate concepts are called parents of the subordinate concept. KREME's graphic components help you to
construct networks quickly and easily. Editing features facilitate adding new concepts by taking advantage of
similarities among to-be-added concepts and existing ones.

Onpe of the most time consuming tasks in building knowledge bases is maintaining internal consistency.
Adding, deleting and modifying slots and parents in a frame taxonomy may affect the subsumption (parent/child)
relations between frames and, perhaps more importantly, may change sets of properties inberited by more specific
frames. The possible consequences of a change in ope part of a network grows rapidly as taxonomies get l.-~er.
Consequemly, the size and complexity of knowledge bases is limited by the extent to which antomatic means are
provided for consistency checking. '

The KREME classifter helps the user maintain consistency between the definitions of all concepts defined in a
KREME Frame knowledge base. It is invoked whenever a concept or role is defined or redefined. The classifier
first gathers all of the features to be inherited by a concepe, and then determines exactly where the coacept should be
placed in the specialization hierarchy, by deducing what its most specific parents and least specific children should
be. The classifier makes sure that the pasents of a concept inciude not only those concepts that the user has specified
directly, but all concepes that describe more general classes that logically inciude the given concept as a subclass.

The KREME editing envirooment provides facilities for large-scale revisions of portions of a frame
knowiedge base, in the form of 2 macro-editing facility. This facility provides editing operations that can be built up
into little "scripts”, and then applied repestedly to many definitions. These "scripts™ or macros are demoastrated
once, by exampie, and then can be used over and over agsin.

*The precedures language, based on werk dews for the STEAMER ICAI systam [22], is scill under development, and will not be discussed
forther in this meassal

-

The development of the macro editor was inspired by our experiences developing other expert systems, We
found that over the life cycle of such systems, they inevitably require systematic, large scale revisions of portions of
the developed representations. This kind of large-scale revision is caused by the addition or redefinition of a task
the system is to perform. Previous to KREME, such systematic changes to a knowledge base have only been
possible by painstaking piccemeat revision of each affected element.

B.0.3 Overview of this manual

Our general strategy in this maoual will be to provide a brief introduction to important aspects of the system
being discussed at the beginning of a section and to provide detailed information about the KREME -facilities and
procedures for using those facilities fater in the section.

We begin in section B.1 with an overview of the KREME eavironment, providing details of the basic features
of the knowledge editing eavironment that are common to both the KREME frame and rule editors.

Using KREME to edit Frame knowledge bases is discussed extensively in sections 3-5. Following a brief
discussion of KREME frames, section B.2 details of the KREME system for representing knowledge in frames and
editing those frames are presented. Section B.3 provides a brief discussion of the frame classifier and interactions
with it. The macro editor is described in section B 4.

Section B.§ gives a brief description of the KREME mechanism for finding geperalizations in KREME Frame
Knowledge Bases. The KREME rule editor, and its relationship to the frame editor is described in section B.6. In
Appendix C, we have provided an example of how to create new concepts using the KREME frame editor.

B.1 The Knowledge Editor

In this sectica, we describe the overall design of the KREME environment, and give details of the features of
KREME that are universal \» all of its component editors.

B.1.1 Windows and Views

We first present some of the basic design features of KREME, and how it appears to the user. This section
will deal with the appearance of the screen when using KREME.

" At any given time while using KREME, you will be looking at oue of a oumber of views into a developing
knowledge base. Each view is a collection of rectangular windows that together fill up the Symbolics screen. We
bave tried to select and arrange the windows in each view 30 that you can edit a particular kind of knowledge
representation effectively and conveniently. ’

B.1.1.1 Views

A view is a particular editing perspective on some aspect of a knowledge base or representation of an object.
In KREME, each view is a set of windows appearing simultanecusly on the Symbolics screen. Figure B-1 shows
the six views currently available. They are:
1. The Top Lavel View is seen when you first enter KREME, and whenever you are loading a
previously saved imowledge base.
2. The Main Concept Editing View is the standard view for editing individual concepts.
3. The Alternate Concept Editing View contains windows available in the Main Concept Editing View

(Slots, Inverse Restrictions, Equivalences, Disjoint Concepts), but displays the tables of concept
features that are not normally visible all at one time. It does not show the Concept Graph.

4. The Big Concept Graph View uses most of the screen to show the Concept Graph, and does not
show any tables of concept features.

5. The Macro Structure Editor View provides an altemative method for viewing and editing individual
concepts. More importantly, it provides a convenient means of viewing a number of concepts at one
time, copying features from one concept to another, and defining and running knowledge editing
macros. This editing system is described in detail in section B.4.

6. The Role Editing View is used to edit roles, the relationships that name slots. It is much like the
Main Councept Editing View.

7. The Rule Editor View, which operates much like the macro structure editor, is used for editing the
rules in rule packets.

As you can see, maay of the windows that appear in these views are “shared” by several different views. This
is part of the basic design of KREME, to provide a uniform style of interaction while focusing on what is needed for
editing each type of representation. Next we discuss what these windows are, and what they are for.

B.1.1.2 Component Windows

Figure B-2 shows the Main Concept Editing View in more detail, broken down into its component windows.
As you will see, many of these windows appear in other views, as well. The Main Coacept Editing View is the one
you will probably use most of the time when you are editing frames. It contains the following windows (numbers in
parentheses correspond to the labels in the figure):

The global command window (1) contzins conunands that may be invoked at any time while running
KREME. These are described in detail in section B.1.3.

The editor stack window (2) shows the names of the things being edited and some information about their
current edit state (e.g., whether they have been modified). The top item in the editor stack is the current
editor object, the object which is the focus of the current view.

The state window (3) always displays pertinent information about the top item on the editor stack, which is
called the curremt editor object. For concepts, the state window contains the concept’s name(s), a line
specifying whether the concept is primitive and whether the concept has been classified (defined) or ook,
and whetber it has been modifted in the editor since it was last classified. It also includes lines giving the
concept’s paremxs, and a textual description. Varianes of this window appear whenever you are editing a
concept, 4 role, or a rale packet.

rHeameatng s nerer jlize
e ot

! Filonsme 10 Toad from: kremw conCept—detsimech=net

(Poing Losd 11e KREME: COWEPT-OEFS MECH-NET.LISP (4/62/87 20:56:39)..
Doing read file (4/02/87 0B:58:38)..
Losding RREME : CONCEPT-0EFS ;MECH-NET . LISP NEVEST into pachage KL

L oad Tletwark flevwe Llanc et Tlerwe Rode Parameters
Saver Metwork | Edit Concept } Pt Role Heset

e

Flevew e lated CLoncept Change YView

Oescription:

LanAargitze) sarametears

‘tack Heget
-G: (Cim) ORJECT
3 e [Bim] Tmine
Prinitives YES ’ tamsrt i : [G:w) LOCATION
Spesializes: THING (Clamsifieds Medified] |1 7] ruqine
lb.u-t.u-m R thing serving a0 & fosws of ton, d&f ten andsor sution- Thees :+ {Civ] POVER-SSURCE
g thet ore typicslly clessifiod as nowne- - Deng /06 : (€M) macwinE
Thin i3 & vory subjestive predicnte~ ld.a'tmth.m‘tvcf!t-ﬂm

R Editor Stack

{
{8 LOCATION)

nxe Crectty L (8 313T) (8 3178)
Shwe
Local € lonces Locs! Disjoint Classes
wed by Paun oth 2 i i —
B,

PRAPERTY

il o Tl 2

-——

ey

Figure B-1, continued.

Neaw Holaer
Edit Rote

Lond llatwork (layw { cncept

“lave Metwark

" Laneratize
Pap Stack

oty Concent Hirw Belhted Concrpt

Concept: LBJELL
Prinitive: YES
Seecislizes: THING

Big Councept Graph View

Tlisvw M ey

Load HNetwori e L onoept

ave Metwark Yot Concept

How tidiatad Hoile
Thrcnnta Wath otg

Printeive: VES
0ifferentintes: *RELATIONS
Osnatin: Def ingd: THING
Ranvge: Oef ined: INING
Description:

Conputed: THING
Conputed: THING

{(Clossifiod; Unvedified]

Chuange Voo

(Clessified: Nedified]

Lanarallize
Pop Gtack

HBJECT

Kill rote

FParametecs.
Heset

Prr—xm
-
7 Ecual Tarmme] ‘

Concepts ariginoting ciots for this Rie
vev-nkwer SOUTNE !

T TParamaters
Reset

T LC0] FOLOR-OF

: (Cim| oeJeCt

B CELT IR]

: [CiM) LOGATION

1 [RI0) EWRENE

i {CiU] POVER-SOURCE
1 (Cim] maCNINg

aon0an»

Editor Stack

Role Editing View

52

»

'

Figure B-1, continued.

Pleww Hlates Poag araeter s, Lenerajize
Pt Qate Heset

BE L htw Haiatedd Lonennt o Lhange View C (uin] FIPED
Bept . C: (Ciu] Two-sopT-OEVICE
Prinitive: YES [Unclassifiad; Medified] | (C:¥] Tami

Specializes: PIPE
Oescriptiom:

Ediror Seock
Letete Bheopiay Conoepnt iy Hoaplay:
~~Carrent Ldit [tcme= <= RIPiR YV of ReivliV (tims--

EYIT IS S FTVR RV Lhange Htiucture St tutes

Concepe PIPEQ Concepnt TAM L
Prinitive: Ves Prinitive: to
Abstractions: (PIPE) Abstractions: ¢ TRIW)
A1) Pole Pestrictions: (lane N VP Defsuit] Role Pestrictions: (Heme NP YR Default]
(CIMPUT Ecactl+ 1 (R TRIN]) (A TAM]) ! . C(COLOP-OF €. 3¢l 1 'R VELLOW) R VELLOW) ¢
(MASS Ensctlv 1 (R MR3S) (R MASS)) e B DALUEST)

(COLOP-OF Eractl. 1 'R COLOP) (A COLOPY) Equivalences:
{OUTPUT E.actl 1 (R THING-WITH-IIPUT) Disjoint Classes:
(A THING-NITH=-THPUT)))

€auivalences:
Disjoint Classes:

"o

Poad tMace o

Pretirise

Loy Macro Map b dst

== MO I SRS [SOBPCE [o-
Q. 1AL ([current conceot]
1. PIPE@ [operastion 1}

dere qdove

Insert a pipe betueen tvo comnected devices

1. Hare & new concept uhich specislizes PIPE, named bv ganersting a number suffis.
<. Change the INPUT vglue restriction of item 1 to item Q.
3. Change the OUTPUT value restriction of iten 1 to the OUTPUT value restriction of iten 9.

Macro Structure Editor

Foad Malwoik il Concapt

) Hoaw Holo low 23kt Lannnrcalize Paramatara
S Hetwaork tahit Concent Bt Rote it Packnt : . i Re et

CK-ALX ¢
llmruuu\x G: [C:V) RED-nBIECT

(c:v) ve0
€: {Ci0] Tanme

Editor 3teck More lvlow]
Simrlae dehavior Uetine Hehavior wolay Pachet

IRTRL APPAVERSY S

--Careene L1it iam. - “IIpley oF Releted Jtem;- -
Packet: CHECK-ALIGNMENT P PIFY
Tvoe: DO-1-PULE-PRCRET lzrm-ugmﬂ
Packet Classes: none Packee Clssses: (CLOOPS-PACKET!
3: none Argunents: (SECOND-FOSS)

Paturn Yarisbles: none Peturn Varisbles: (STATUS SAFTEV-mGTN)
Pracondition: none Precandition: nowe

TR "'x':':umn ALIGIWENT -STATUS] TS

- (]
(SECOMD-FOSS - BRAVO FUEL-OIL-PUN RECIRCULATING LING ALIGNEDSG. ¢ PARTIALLY -ALIGHEDSS. 51
PRESSURE] = (29 --)] and then l(smrus ALICNED)
l(%m gm}.-on.-m m:xkuuuns LIME PRESSURE] =
I s{TALPHA-SUPPLY -LINE ALIGIMENT -STATUS] 15 HOT-
then B(SAFTEY -NARGIN « UMSAFE) then 8(STATUS ~ PROTIALLT-ALIGNED] Aienen)
1r lttm FUEL-OIL-PUNP CHANGER PPESSLPE] - 17 s((DPAVD ALIGNMENT ~STATUS] IS NOT-ALIGNED
(SECOND-FOSS ~ BPWVD FURL-OIL-PUNP CHAMGER PRESSUNE] S)) then R(STATUS « PARTIALLV~ALICMED] eny !
then l(wvtvmm - UMGAFE] R(SAFTEY -MARGIN ~ UNGAFE]
1r s(
(sEcor-Foss -~ semun m-au-ﬂn PECTPCULATING LINE
PRESSURE] = (20 --)] »
l[{ma ;:-sg-on-un nscrmunnl: LINE PPESSURE] =
- N

CRrawe: Select 3 rule t0 copy
Areme:

he Y

w

[mopsq non | top;
{xmvisez v) tazis v) [FHTRH § Ayasery LT 9%
(n0L1vo0Y ¥} ¥ sest ww(mafgva01 v) ¢ Apaoeap no1ivI0Y (173 3
(sgvw v) {sevn v} t Agreq L] (1 ¥
(3evus v} (3avs v) ¥ Maoeny et 19%0
(30v wv) (2ov wv) 8 Agasecy v 1250
(zouvizens v} {zonvizens v) € 1eesg [IITE Y) 17
{vowd v} {va83 v} § sveq 9-0w) 1IN"
VArionde v)). B ' .
199 3~ 48 - §f 3! 8¢9

10295 s00p3

193r¢0-38%0m {n*a} :3¢

[Pet stbveag Tpo) pyenvyy)

tue) 30} 20508

13300y teswy vioady

L TR R I BT

WIS sebenbuel ‘13N-NIIM FWISAYSY

123 PR- 11T 8 ydaouen

) Ak

*
B .. IR R mzwv

- - .
B A s ot

Figure B-2: Windows in the Main Concept Editing View

PP

A a4

The local command window (4) is 2 mean of commands specific to editing the kind of object displayed in
the state window (the current editor object). It always appears directly above state window. When editing
a concept, the commands are [Classify Coaceptl [Kill Concept] [New Related Conceptl and
|Chan§Vi¢w!.thehaofwhichaﬂowsyontochangetooneoftheothuviewsavaﬂableforediﬁng
concepts. When editing objects other than concepts, 2 somewhat differear command window ppears
above the state window, containing commands useful for the type of object displayed.

The graph window (5) displays a dynamicaily updated graph of all of the abstractions and specializations
of the cuxrent editor object. This view provides a constant visual dispiay of the relarive position of the
object being edited in a hierarchy. Graph windows often appear whea you are editing concepts or roles, or,
in general, objects that live in hierarchies. The commands that are available within the grapher are
described in detail in section B.2.2.2,

The table edit window (6) displays one of a number of tables describing a set of features that are part of
the definition of the current edit object. The one displayed in (7) is the slot edit window, which has one
line for each slot of the current concept. This is the normal table to see when editing a concept, although
there are several others, which are described in section B2.2.4. Columns in the slots table show the source
(where it was inherited from) of the slot, the name of the slot (which is also the name of the role or reiation
that the siot represents), the slot’s value and qumber restrictions, default value, and a textual description of
the slot. General operations on table edit windows are described in section B.2.2.4.

The table edit command window (7) is 2 menu containing commands for changing and adding to the list
of things displayed in the table edit window. The contents of this menu changes whenever the set of things
displayed in the table edit window changes. When editing slots, commands are available to display the
locaily defined slots, display the full set of inherited slots, add a new slot, and kill all redundant slots (slots
which are the same as inberited ones).

The Editor Interaction Window (8) is a Lisp Listener with a KREME command interpreter running, Both
normal LISP expressions and KREME commands (like the ones displayed in command menus) can be
issued here. This window is also used when KREME needs to0 ask the user for information. This window
can be scrolled backward and forward through a history of the current session using the scroll bar at the

_The Mouse Documentation Window (9) is always visible on Lisp machine screens. This is where you

look to see what the mouse will do if you click one of its buttous. (See section B.12)) IT IS VERY
USEFUL - ALWAYS GLANCE AT IT WHEN YOU MOVE THE MOUSE.

Five of these windows are commoa to all views (except the Top Level View); the global command window,

described above, appears everywhere, including the Top Level View. The editor stack window, the state window
and the local command window appear everywhere but in the Top Level View. The mouse documentation
window is part of the standard Symbolics interface, and so is always present. The graph window is currently used
for displaying the hierarchies of concepts and roles only, although, in the future, we expect it will be used for other
things as well.

There are a few of other types of windows, which will be discussed where they are most relevant. Among
these are the structure editing windows that are used in the Macro Structare Editor, and in the Rule Editor.

55

B.1.2 Using the Mouse

Pointing with the mouse, and then clicking one of the burtons on the top of the mouse is the way virmally ail
commands are given to KREME. This includes ail editing operations for browsing, adding, and modifying
definitiouns, all commands to change what appears on the screen, and commands for loading and saving knowledge
bases.

Wherever the mouse appears on the screen, something will happen if a button is clicked. You can always
tell what will happen by looking at the bottom of the screen. There you will find a short ope-line window called the
mouse documentation window (See (9) in Ggure B-2 above.) that says what each mouse buttoa will do. L: is what
the left button will do. L2: teils you what will happen if the left button is clicked twice in snccession. M:, M2:, R:
and R2: describe the operations that will be performed by the middle and right buttons, respectively. Nommally, you
want 10 click the left button once to get the default behavior. The right button is always a menu of other operations
thar you may choose from instead.

Ingenenl,allvisiblemfuemst&mobjeambepo@n.ino:ﬂcrmviewtheobjectinmomdetail. For
example, a concept or its name can appear as:
1. a node in a graph,

2. a value restriction or default in the slot description table,

3. the name of a parent in the state window,

4. as an item on the editor stack.

Mmgmmhma.adnmeofmeob‘jea.amghisduwnmndme
name, and the content of the mouse documentation window changes. Commands are always executed using the left
mouse burton. Clicking the middle button displays some on-line documentation for that command. The right button
is used to set optional command parameters before executing a command.

~ Whaver the form of the display, the displayed item: will respond to the szme set of operations when someone
points at it, and those operstions will be specified in the mouse documentation window. When the system requires
the entry of a concept name, as when the [Edit Concept] command is clicked, the user may either type the aame or

#Coumnand menus alweys sppear s black windows with white leters. Commands in this memsel sppear wich bouss areund thes, 25 sbove.

B

Ay g Aoy

Sandt A

point at any visible concept name. 10

B.1.3 Command Menus

All comymands-that-cannot be performed by pointing directly at an object appear in command menus which-are
associated with particular windows in each editor view. For example, the global command menu, which appears at

the top of the screen in every KREME view, contains the following commands:!!

N 4 ~ y 3
el et wori ke Tiiawe orre varameters

. Hevo ot
Lt et work A

o The {Load Network| command is used to read a previously developed knowledge base into KREME.
After clicking on this command, you will be switched to the Top Level View, and prompted for a
filename.

» The (Save Network] command is used to save the knowiedge base, or a portion of the knowledge base
that you have been editing. It prompts you for a filename which defaults to the last file read. (The

defanit is used if you hit <Retum>.) Clicking right on this command allows you to save branches of
networks.)

New

o Creating new concepts, roles, and packets of rules: the | Concept [New Roile] and[NewPacketl
commands, switch you to the defanlt view for editing an object of the type specified, after asking you to
mhwﬁg_gmliyammmmnhijmw&mmwamupmmu
form. The {New Concept anlecanleleommnkmdacxibedinsecﬁonBZandmexample of
their use appears in Appendix C.

« Editing individual concepts, roles, and rule packets: the [Edit Concept), [Edit Role] and [Edit Packet]
commands all ask for the same of an existing object of the specified type, and then switch to a view in
which that object can be presented for editing.

* The [Generaiiza] command is used to find generalizations. (See section B.S.)

* The {Pop Stack] command removes the top item from the editor stack 2. (See section B.1.4.)

* The [Reset] command can sometimes be used to reset the editor, whea it is stck for some reason. Use
the right button to erase the currently loaded knowledge base.

* The (Parameters| command is used t0 set some top-level parameters of the KREME eavironment. For

noemal operations, this command shouid ONLY be used to set the language syntax used to read concept
definitious from files. At present, the only choices for this are KREME and NIKL.. NIKL mode allows
KREME to read definitions from files in NIKL syntax.

YA hyphonated sams suck ss "MOBILE-OBJECT", will ssmetimes appear on the acreen with & space betwesa the two words ("MOBILE

ORIECT"). However, when typing the name of something whick sppesr as maltipls words, put hyphens betwess the individes] words,

, i some versions of KREME, there will bs more commmands then will fit in the space allotted for s commend window. If there
s & command thet you kwow shesld be there, but can'’t find i, wry w bussp-ecroll the commaend window sad ses if is is jose hidden off of the

soveen. (If you den’t anderstand this, just igasre it.)
ﬂw-ammmu—u;m

N

]

When answering a question like the "Concept Name:" question that appears when you click the
[Edit Concept] command, you may either type in a name or point at any concept name that appears oa the screen. If
you are unsure of the speiling, you may type part of the name and hit the <COMPLETE> key, which will cause
KREME to try to fill out the rest of the name. You can also hit <COMPLETE> after typing just the first letters of
hyphensted names. For example M-O<COMPLETE> will expand to MOBILE-OBJECT in our example network.
Also, typing the beginning of a name and then c-? will canse all of the remaining possibilities at that point to be
printed. You can then simply point at the one you want, as shown below.

EESNEN - et P e

Vores Chetwo K G et e Rate

are the potsibie compietions of the text you have tvped:

MOINE NEANS-OF-LOCONOTTION MECHMMICAL-LES MECHANICAL -PART MERCEDES MONEYARY-COST
MAN-MADE-0BJECT MEASURE MECHANICAL -L 8 MECHANTCAL-VING MOBILE-MACHINE MOTIVE-POVER
MASS MECHANICAL -AR MECHANICAL -MEMORY MEMORY MOBIE-0BJECT MOTOR-VEMICLE

MAX DRM-SPEED MECHAMICAL ~CONDITION MECHANICAL-0BJECT MEMORY-CMIP
. Concept neme: MOBILE-OBJECT

B.1.3.1 Local Command Menus

Anytime KREME is displaying a view of a particular kind of knowledge, the State Window displays the most
basic facts about the object being edited. A command menu appears directly above the state window with some
basic commands for the type of object displayed. For example, when editing concepts, the following menu appears:

[__Liassity Concept _KIil Concept New Helatad Concept Change View ’

Concept: MA.

In these local command menus, one will always find the command that makes permanent the definition that is
currently being edited (a Classify command for concepts and roles), a Kill command (if applicable) to undefine the
object, 2 command to make New Related objects like the current one, by copying the current definition permitting
you to edit it, plus some miscellaneous other commands.

B.1.4 Buffers and the Editor Stack

KREME maintains a stack or list of the objects that have been edited, and constantly displays this list,
indicating which objects have been modified and oot reclassified. KREME behaves much like the text editor
EMACS in this respect, since it maintaing a distinction between things that have been edited (buffers in EMACS)
and things that are defined (files for EMACS). Ecr KREME, defined means classified.

This list of objects that have been edited in the current KREME session is displayed in the Editor Stack
Window, an example of which is shown below:

-

: [CiV] WACHINE

: [CiU] man-saDE-08.0ECT

: [U:sM] CHECK=-AL IBNMENT

1 [C:U] WECHANICAL~0BJECT
1 [Usm] VERIFY-OK

zeredl

Editor Steck

Each line of the Editor Stack Window starts with a character indicating the kind of edit object it is (C: for
concept, R: for role, F: for a rule packet, which becomes a funcrion when run, an indication of the current edit state
of the object, and the object’s name. The top item in the stack (the line beginning with >) is the definition currently
being viewed and edited. The user is free to modify this definition in any way without directly affecting the
knowledge base. The edited definition is only made permanent when a command like [Classify Concept] is issued.
When defining a new concept that has not yet been classified, the second line of the state window will show the
words

[Unclassified; Modified]
and the corresponding (top) line of the Editor Stack will contain the symbols [U;M]. This refers to the fact that
there is no permanent version of this definition yet (i.e., it is unclassified). Immediately after a definition has been
classified, the State Window will display

{Classified; Unmodified]
At this point, the top line of the Editor Stack will contain the symbols [C;U]. If the object is then edited, the word
Unmodified will change back to Modified.

et

Theeditormckisalwaysvisible.pmvidingaconvenientmediodforbmwsingchmughakmwledgebase. To
make any definition item currently in the stack the top item, point at it and click the left mouse button. The object
villbedisplzyedinhameeditorviewaswhenit_ws[astediued.?oimingaani:emonthesuckandcﬁcﬁngthe
right button pops up a menu that allows you to:

'o-makednobjeathecunemeditorobjea,displayingitinthe\viewinwﬁchitwalm
edited.

o[Show Definitioa] - display the (LISP form of the) object’s definition.

o[Graph] - display a pop-up graph of the object’s abstractions and specializations in a temporary window
like the normal grapher window.
o{Classify] the object.
) o[Remove] the object from the editor stack, without classifying it. The top item on the editor stack can
, aleo be removed using the [Pop Stack] command in the global command menu.

¢ i

The Rditor Stack Window, like most windows in KREME views, can be scrolled if more objects have been
edited than will fit on lines in this window, When there are more items than will fit, the words [More Above] or

e

1

i

Ad

1™

\b

SR vy o R

AN

[More Below] will appear in the line with the words Editor Stack. To scroll, move the mouse into the window, and
move it across the left edge slowly, until 2 double beaded arrow appears, and follow the directions in the mouse
documentation window. Altematively, you can scyoll a line a a time by moving to the bottom (or top) oear the
righe side of the window and moving the mouse slowly downward (apward).

B.2 Editing Frame Knowledge Bases

This section deals with KREME Frames, and the KREME Frame Editor. The KREME Frame language is a
close relative of the NIKL language that is the definitional (taxomomic) compooent part of KL-TWO and a
descendant of the KL-ONE frame language [9, 15,21]. This language provides an effective way of defining
couceptual classes which live in a taxonomic hierarchy. The frames or concepts you define using the KREME
Frame Editor serve as the rerminological component of the knowledge based system being developed. That is,
conceptsmmetemutobexeﬁeuedtoandmmpuhtedbymuﬂrmeproces:.permpsdeﬁnedbyasetof
inference rules developed using the KREME Rule Editor.

B.2.1 Definition of KREME Frames

In KREME, a frame is called a concepe. Collections of concepts are organized into a rooted inkeritance or
Specialization hierarchy sometimes referred to as a taxonomry of concepts. A single distinguished concept, usually
called THING, serves as the root or most general concepe of the hierarchy. Figure B-3 shows a simple
specialization hierarchy. A concept (e.g., ELEPHANT in figure B-3) in one of these hierarchies specializes another
concept (e.g., OBJECT) when the class represented by the concept is subsumed by!® (is a subset of) the class
represented by the other concept. Graphically, this means that the latter (OBJECT) appears an ancestor of the first
(ELEPHANT).

A coucept has a name, a textual description, a primitiveness flag, a list of defined parents (concepts that it is
defined to specialize), a list of slots'4, 2 list of slos equivalences, and a list\of concepts that it is disjoint from'>. In
KREME, 2 concept may be subsumed by more than just the conceprs that are its defined parents. Thus, classified
Wuammmmmmammmmmmmmmmm
which it directly subsumes or ae its direct children.

The lists of siots, equivalences and disjoint concepts are collectively referred to as the features of a concept.
If each concept can be thought of as defining a unique category, then features of the concept define the necessary

SFor this renson, thess bisvarchiss ars sometimes called subnumption lottices.
Uta NIKL siow wees called role resrictions.
¥0us convept is disjoint from anether if being in oms class preciudes being in the other.

L3

| Role Restriction]

Figure B-3: A Simpic Concept Taxonomy

elephant

(dafconcept HOUSE

:primitive ¢t

:specializes (building)

islots
((residents (a person) nil (a pexrscn))
(fxont-door (a door) (1 1) (a door)))

:equivalences
((main-entrance) (front-doox))

idisjoint (office-building apartment-building))

Figure B-4: LISP form of 2 KREME frame definition
conditions for inclusion in that category. If a concept is not marked as primitive, the features also constitute the
complete set of sufficient conditions for inclusion in that category. A concept inherits all feamres from those
concepts above it in the lawtice (those concepes that subsume it, and thus are more general) and may define additional
features that serve to distinguish it from its parent or paremts. Figure B4 shows the LISP defining form for a
concept. Words prefixed by colons denoe the type of feature. The :slots are specified as a list of lists of the form
<role-name vaine-restriction number-restriction defaulc>. Names of concepts in value restrictions and defauits are
prefixed by a or an. Number restrictions are a list of <minimum maximum>, specifying how many objects of the
type specified by the value restriction may be reisted to an instance of this concept. NIL here means "any number”.

All of the siots defined for a concept, when taken together, form a description of the the attribute-value pairs
that an instance'® must have for it to be considered a member of the class defined by that concept. A slot consists of

102 wmien densting s specific object in the world,

61

e

a role name, a value restriction, a number restriction and an (optional) default form 7.

The role name refers to an object called a role. Roles in KREME, are actually distinct, first class objects.
Roles describe reiations between concepts. A value restriction on a slot named by a role is a further specification or
restriction of the range of the role, delineating the set of things that the concept that contains that siot can be related
to. It is normally the name of some other concept. The damain of the role is a general characterization of the set of
things that may use this role to relate objects to other objects. Put another way, it is the most geaeral class of things
that can use this role as the name of a slot. As first-class objects, roles form their owa distinct taxonomy, rooted at
the most general possible role, usuafly called *RELATION®. Figure B-5 shows a portion of 2 simple role
taxogomy.

(retation)

ﬁgnreiS: A Simple Role Taxonomy

Amledeﬁniﬁonhsam.adacﬁpﬁomaﬁstofmluthxit:pedaﬁza.adomainandarange. In a formal
sense, a role is a (wo-place relation thar maps instances of concapts in its domain onto sets of instances in its range.
The domain of a role is the most general concept at which the role makes sease. That is, it specifies the class of
things for which the role can name a slot. The range of a role specifies the general class of concepts that can serve
as values in siots defined using that role. All concepts filling siots whose name is a given role must be elements of
the range of that role.

Each slot at a concept has a8 part of its definition a value restriction, which is the class of allowed values for
that siot. The value restriction must always be a sub-class of the range of tha role, and a sub-class of the value
restrictions defined for that role at ail concepts subsuming the one restricted. Value restrictions must be defined

concepts.

Slots also inciude 2 number restriction that specifies the minimum and maximum (if any) number of things

Dofanits were oot past of the defimition of NEKL,

ot

that may be related by the role to instances of the concept. For example, if all elephants have four legs, then the
concept ELEPHANT might be defined to restrict the role LEGS to Exactly 4 ELEPHANT-LEGs'® A number
reswriction must be at least as specific as all of the number restrictions for the same role at any of the concept’s
pareats. A number restriction of Exactly I (min = max = 1) is more specific then a oumber restriction of Ar most 2
(e.g., min = 0, max =2).1?

Equivalences describe slots that by definition refer to the same entities. They are defined as pairs of parhs
whose referents are the same concept. A path is a list of role names, the head (first) of which is the name of a slot at
the concept defining the equivalence. Each subsequent slot name in a path must be a valid slot in the concept that is
the value restriction of the previous slot in the path. The referent of a path is the value of the last slot in the chain.
Figure B-6 shows a simple example of an equivalence. :

The SUCTION of the PUMP is equivalent to the
INLET of the SUCTION VALVE of the PUMP.

Figure B-6: A Slot Equivalence

Concepts marked as primitive (sometimes referred to as Narural Kinds) have no complete set of sufficient
conditions. For example, an ELEPHANT must, by necessity, be 2 MAMMAL, but without an exhaustive list of the
atributes that distinguish it from other mammals, it must be represemted as a primitive concept. WHITE
ELEPHANT, on the other hand, might be completely described by stating that it is a specialization of ELEPHANT,
where the role COLOR was restricted to WHITE.

KREME Frames permit siots to have defauit values as well as value restrictions. If present, the defauit must
be the description of some concept which satisfies the restrictions on the role at that concept. The default is used as
a slot filler for instances of a concept that do not specify a value for the slot at instantiation time. Defauits are
inherited from the most specific parent at which they are defined.

198 5. Nember reswiction: min = 4, 04k = 4& Valus Restriction: (an ELEPHANT-LEG).

MIN © NIL is the same 28 MIN = 0. MAX = NIL is the sams 38 MAX = infinicy. A nember restriction specified as a single number » has
MIN = MAX » n. No sumber restriction (NR = NIL) means MIN = 0, MAX = infinicy.

B.2.2 Using the Frame Editor

The KREME frame editor has five views, as shown in figure B-1, the Main Concept Editing View, the
Alternate Concept Editing View, the Big Graph View, and the Macro Structure Editor View. Roles, which are
also part of the KREME Frame language, are edited with the Role Editing View.

In this section, we will cover the details of the editing operations available in the first three of these views.
The Role Editing View is covered in Section B.2.4. The Macro Structure Editor is covered in section B.4.

B.2.2.1 Editing in the Main Concept Editing View

Normaily, when one creates a new concept or edits aconceptforﬂleﬁxstﬁnw.KREMEmakcsm'conoept
the top concept on the Editor Stack, and switches to display the Main Concept Editing View. There, KREME
displays the concept as it exists at that time.

Figure B-7 shows how the graph window immediately displays all of the abstractions and specializations of
the concept being edited, the state window shows its name, whethez it is primitive or not, its edit state (classified or
not, modified or not), its parents, and a textual description. The table window simultaneously displays all of the
concept’s locally defined slots.

In the remainder of this section, we will cover ail of the operations available by pointing at all of the different
parts of this frame editing view, as well as describing in detail the workings of the Grapber and Table Editing
Windows, which also appear in many other contexts in the KREME enviroament. We begin with the Grapher.

B.2.2.2 The Grapher

KREME is equipped with a powerful, general graphing facility that rapidly draws lattices of nodes and links.
Its main use is to provide a dynamically updated display of a concept or role and its place in the specializaton or
inheritance hierarchy. When editing a concept in the Main Concept Editing View or the Big Concept Graph
View, or when editing a role, KREME automatically displays all of that object’s abstractions and specializations,
with more abstrait objects to the left, and more specialized objects to the right of the current editor object.

As shown above in figure B-7, the graph is initially centered on the currenx editor object, which appears as a
black node with white letters. All other objects appear as nodes with a white background. Objects that are defined
a8 primitive are indicased by thicker box edges. Nodes that bave been modified (edited but not reclassified) appear
a8 nodes with a3 grey background.

Pamning the Graph
Mwmaémhmummmmammmhwmmmmw

which they are viewed. If you want to see 2 part of the network that is off the screen, point with the mouse at some
point on the graph window not containing a node, and bold the left button down. The mouse cursor will change

LLYvd-WILNVHIM V) (18V4-WILTNVHIIN v} Jeqenu Auy J0-14V4 nacmwao

TYILETIIEST
87 e
AV e ad

®taeq o

eN 0N
1]

NIy
TOUOTNPAND)

yovig 20003

33

sujudIeN Maont
oueiddy proyasnoy
euiug

IUQINN sdwIS
\,

OUIYq [PHTCGIIN
N
QU] (TRUCQION

g:«.:::,d: 1

MOLIA CT:@;A

uo\ .s— ..u:c

(P2t Jspovun fpo} jpsse|]]

e

1404 (eRueYlon

u:.Ccc) PEIR|OY MUty

(Wt |/

)

9AAS] 1PN NINT

UoL 1L 11884 sogany

IULIELIWEDL T
13380-IINUIBONT 133r80-30UN-NUY :Sezy|e)dadg

Yy S34 reniajuiig

~H*~,cn RIEAR

T_] _:: _ £y

«133r80- dco-acsuu-. 4o cusjirz||e|saeg pur cuo)ioeaItey

\ ELCPEI) D)
/
/
4
\
\
\
it wim v} —{SoRiv)
1d95u0) 1P

Figure B-7: The Main Coacept Editing View

Lg

from an amrow to the shape of a hand. While still holding the left mouse button down, drag the mouse in the
direction you wish the graph to move, and it will move smoothly as though you were pushing 2 piece of paper that
was only partly visible in the space provided by the graph window.

Nomal Panning
Figure B-8: Panning the Graph

Another way to pan more quickly, called speed panning, is accomplished with the middle mouse button.
Agan, place the mouse over an unoccupied spot on the graph window, and push the middle button. A small square
with a dot in it will appear. This is the "joy stick”. While stll hoiding the middle batton down, move it a little bit
off from the center of the box, and the graph will begin to move slowly in the direction you have moved. The
farther away from the center of the box you go, the faster the graph will move.

The Overview Graph
Now, click the right button once over an empsy part of the graph window.

The Graph Operations menu, shown below, in figure B-9, will appear.

Graph Operations]
hardcopy
font menu
find node
J
orientation
speed pan

redraw araph

Figure B-9: The Graph Operations menu

We will discuss the other grapher options below, in section B.2.2.2. For now, click [overview| and a
miniature version of the full lattice will appear on in a black region in the upper left corner of the graph window.

LY

»
e
Ag S g

mame oo

] Absiractions and S&ldluuou of ‘OBJECT

This shows the full network displayed in the graph window, but with tiny nodes and links. The visible region
of the graph will be indicated by a white rectangle inside the black one. Now pan with the mouse over the main
graph window, and the white rectangle will follow your movements.

Now, move the mouse into the overview window. The nodes on the overview graph will be highlighted by a
box as you pass over them, just as they are in the main graph window. All of the mouse operations available on
nodes in the main window will also work on nodes in this window. (These operations will be covered in section
B.22.2.) The name of the node is indicated in the mouse documentation window.

The overview window also can be used to pan the main graph window. Pointing (left button) to a spot on the
overview that contains no node, causes the main graph to pan so that the upper left corner is at that spot. You can
also hold and drag the mouse, and the graph will follow you.

To tum the overview off, simply bring up the Graph Operations menu, and click the command [overview|
again.
The Graph Operations Mena

The other options in the Graph Operations menu show in figure B-9 are:
O-Semkaeopyofﬂnfnllmhofthelamoetomepﬁnm.

«[style menu] - Allows you to chose a change to the font style and size of characters used for nodes on
the graph. Smaller fonts are useful to see more of large networks at once.

o{find node] - Prompts for the aame of an object on the graph, aud centers that node on the graph
window. It also draws a circle around the node so that you can find it more easily. The circle
disappears as soon as the graph is panned.

o[overview] - Switches the overview graph berween visible and invisible. The overview graph was
discussed above in section B.2.2.2,

o [orientation] - Switches the orientation of the graph. Nomnally, the lattice is drawn from left to right
This command will cause the graph to be redrawn from the top of the screen down, and vice versa.
«{speed pan] - This command pops up the speed panning box without having to hoid down the mouse
buzzon. In this mode, clicking any mouse button will make it go away.

-

B i

——m——— -y

-

o[redraw graph|- Redraws the current graph.
The Graph Node Command Menu

Normmally, the KREME Grapher oaly displays the abstractions and specializations of the cutrent editor object,
rather than trying to display all of what is potentially a very large lattice. This was done intentionally, since
KREME was designed to work with very large knowiedge bases. Occasionally, however, one wishes to see more
(or less) than KREME nosmally displays on soch grapits. The Grapber provides a sumber of options to enable users
to tailor what is displayed to their needs.

Whenever the mouse is over a node on a graph, the mouse documentation window shows the name of the
node, followed by:
L:Edit this node. MX:Graph Relatives R:Menu of Editing Options

Clicking the left mouse button canses KREME to make the object pointed to the top editor stack item. If you
are looking at a concept graph, you wili then be viewing the concept pointed to, a graph of its abstractions and
specializations, and a table of its slots. This is an extremely convenient way of browsing through large concept
networks quickly, and focusing oa different portions of such a network. If, however, you wish to continue editing
the concept you are currently viewing, but see more (or less) of the network around that concept or some other
concept on the same graph, you can use the graph relatives menu found by clicking the middle mouse button over

any graph node.
The graph relatives menu, exposed by clicking the middle button over a node, contains the following
commands: .
«[Graph Parents] - causes all abstractions of the node clicked on to be added to the displayed graph.
«[Graph Children] - causes all specializations of the node clicked o to be added to the displayed graph.

o |Hide Children| - causes all specializations of the node clicked on to be removed from the graph, unless
they are aiso children of some other node.

«[Hide Node and Children| - causes the node clicked on and its children to be removed from the graph.

Editing a Network from a Graph

Clicking the right button over a graph node caunses yet another menu of options to be exposed, the concept
graph edit options mene. ®

This memu contains the (ollowing options for concepts:

«[Show Definition] - This option causes the wxmal (LISP) form of the concepe’s definition to be
displayed over the Graph Window.

30Ou graphs of roles, the rele graph it optious wews sppears, with esentially the sams commands for roles, except a8 nossd.

«[Kill Concept] - This causes the concept pointed to to be removed from the knowledge base. It has the
me&asmmmtmmndmhhalmmndwmmmmanwom
when you are not carrently editing the concept you wish to iill. 2!

o[Rename Concept] - This command prompts you for a new name for the concept pointed to, and
immediately replaces all references to that name with the new name throughout the knowledge base.
(See the Rename Concept command in section B.2.2.3.)2

o [Delate Parent] - This command prompts for the name of a parent (which you may give by pointing to
the graph) and then deletes that parent from the list of defined parents of the concept initially pointed to.
It also switches KREME to editing the concept modified, so that it can then be reclassified.

o[Add Parent] - This command also prompts for a parent, adds the concept named to the list of defined
pumofthecowept.andswixchestoediﬁngmemodiﬁedcomept.

o[Spiice Out Parent] - This command prompts for a parent, and removes that parent from the list of

deﬁnedpnmoftheconcept.rephungumththaxconcept s paremts. Again, the editor is switched to
a view of the modified concept.

B.2.2.3 Editing in the State Window

As described in section B.1.1.2, the state window of the Main Concept Editing View displays basic
information about the concept currently being edited.

iew nMelatod Loncept Chinge View “C: [Ciu] 0MJECT

Netvork: NECH-NET, languege: KRENE
Prinitive: YES
Specisl tzew: THING

Description: A thing serving as & focus of attention, discussion and/or sction- Those

fClassified; Unnodified]

. things that are typicelly clessified a3 nouns- - OonS 486

The top line displays the name of the concept, and any synoryms or alternate names for that concept. The
name of the concept can be changed by clicking on the word [Concept:] and entering a new name.

The second line of the display shows whether the concept is defined as primitive or not, and whether the
concept has been classified or modified since classification. Clickingontheword causes the concept -
to be marked primitive if it was not, and vice versa.

The thind line displays the both the direct and defined parents of the concept, after the word Specializes:.
Defined parents are concepts that the user specifies as abstractions of the conuept. Direct parents are concepts that
may or may oot have been defined 23 parents of the current ome, but have been determined by the classifier to
subsume the class denoted by this concept and not have any specializations that aiso subsume this concept. On the
Concept Graph, the direct parenots of a concept are the ones with direct links to it.

B'There is no Kill commend svailsbls on the rele graph ofit options menn.
”ﬂi-e—-di-ald@mhnb'nﬂ‘*-_.

L St 2

- —

|

This Specializes: list should be read as follows: Concepts that are unmarked are both defined parents and
direct pareats. Concepts that are defined parents but not direct parents are prefixed by a "-". Concepts that are
direct parents but not defined parents are prefixed by a "+".

To add a parent to the set of defined parents of the concept, simply click the left button over the word
[Specializes:] and type (or point to) the name of a concept that you wish to make a parent of this concept. To
otherwise alter the set of defined parents , click the right button oo the word [Speciatizes:|. You will be presented
with 2 menu of the following options:

o[Add Defined Parent] - Prompts for the name of a concept to make a defined parent.

o[Delete Parents which aren’t direct] - Allows you to point to defined parents that are not direct parents
(i.e., those prefixed by a "-"), and have them removed from the list of this concept’s defined parents. -

O[Mm&mmmpmﬂ-mmcmwofuummbemm
defined as parents of the coacept.

The fourth and subsequent lines of the state window display the user-specified textual description of the
concept, which provide a means of documentation. To enter a new description, click on the word { Description: | and
you will be prompted for lines of text until you enter a blank line by just hitting <RETURN> or <END>.

B.2.2.4 Editing in the Table Edit Window

Normally, the table edit window in Main Concept View displays the set of | Local Slots| of the concept, that

is, those siots which are defined locally by this concept and not inherited from above. The columns in the table are
labeled "Defined by", "Role"”, "Number Restriction”, "Value Restriction”, "Default", and * Description”.

Clicking (with the left mouse button) on the command [All Slots] in the tabie edit command window causes

KREME to display both local and inberited slots. In this display, local siots are indicated by the word *LOCAL® in
the “Defined by” column of the table. Slots inberited from a parent show the name of that parent. Slots formed by
combining the value restrictions and/or number reswictions of several parents are indicated by the word
*CLASSIFIER®. When the table window is displaying all of the concept’s slots, you can retum to viewing just the
local ones by clicking the command [Locil Stots]

Rk rtevtandant ot Editar ack

" Descr iption

LOCALS CONPOSITION At Teest & (s soestamct

woca ase Gactly 1 B vl

L0Ca * Snasg Exactly ¢ (A SHae)

noca caearioe bl {n mats) (s mags)

N . actly & (& LOCATION) a

L0CaL stz Cxactly 1 i» s128) :‘ :?;::mm

Jiors

Editor interscrron Fane

70

Lt i

Whenever the Table Edit Window shows slots of the cument concept, you can edit those siots or add new
ones. To change the siot name, value restriction, aumber restriction, default, or description of a siot, simply click
the left mouse button over the thing to be changed, and you will be prompted for a replacement. For all but sumber
restrictions, the right button will pop up a menu that inchudes the commands [Change] the part of the slot pointed to,
Show Definition ofﬂnconceptormlepoimdmofthatcomeptormle.orpopupaot
its abstractions and specializations. When pointing to the slot name, in the column labeled "Role”, you can also
[Rename Role], that is, change the name of the role, and all references to it in the knowledge base.

When the mouse is over a line in the slot table, and the eptire line is encircled by a box, the right mouse button
can be used to get a meou of [Delete Slot), [Copy Slot] to another concept, and [Move Slot] to another concept. For
the last two, KREME prompts for the name for the concept to move or copy the slot to.

At any time, when you have started to make a change and are being prompted for a replacement value, you
can hit the <ABORT> key to leave things as they were.

Adding New Slots

Whenever the slots table window is visible, as in the Main Concept Editing View, you can add new local
slot definitions. A new siot is added to the defined slots of the concept with the | Add Slot| command. When this
command is issued, the system prompts for a role name, a value restriction, a number restriction and a defauit form.
Anyofthseiwmcmbeemdbytypingorbypohﬁngwthedﬁimdnameor-fonnifitisvisible.

Ifamhormptmmdinamleusnicﬁonordefaukdounoteﬁs&tbesys&emwiﬂoffuwmkeoﬁewith

the name given, and proceed to pop up the defining form for that object. (See section B.2.2.5.) When you are
finished filling out the form, click [x}Define, and KREME will contimme to ask for the rest of the new slot’s features.

When you have finished adding and modifying the slots of a concept, you should always make the changes
permanent with the [Classify Concept] command. For an extended treatment of this command, see section B.3,
below.

Modifying the Table Edit Window

The appearance of Table Edit Windows can be modified in several ways. The tables are scrollable in both the
up-down and left-cight directions. Simply "bump” the mouse against the top or left sides of the window until the
double headed arrow appears and follow the directions in the mouse documentation window.

If you do not wish to see some columns of the table, they can be selectively removed by clicking the middle
button in the line displaying the column headings (when the double arrow is not showing). You will be presented
with 2 mem: on which you can tick off the columns that you wish to see and not. When you are satisfied click the
box marked (x]Do It. If you do ot wish to go through with the change, click [xJAbort.

7

o}

i

Changing the Contents of the Table Window

Since there is not enough room in the Main Concept Editing View to display all of a concept’s defining
featres at one time, the contents of the Table Edit Window can be changed to display those other features. To do
this, you must use the mouse to find the table window contents menn. This menu is available wherever there is
nothing else under the mouse while still inside the table window. You will know you have found it because the
mouse docamentation window will show the words:

R: Change tha contents of this tablae.

The best places to look are to the right of the "Description” column, and anywhere in the line of column
headings (when the double headed arrow is nor showing). Clicking the right button, you will see the following
meng options:

o [Slots] - Displays the table of this concept’s slots, as described above.

o[Inverse Restrictious] - Displays a table, essentially like the slots table, but of all of the slots displayed

are slots of other concepts that use the current concept as their walue restricrion. This table is useful
when you are tracing references to a concept in other concepts. When this table is displayed, the table
edit command window will be empty. Some of the editing options described for the slots table will
not work here.

o[Slot Equivalences| - This table displays the slot equivalences of the current editor concept. This table
has only three columns, "Defined by”, "Path 1" and "Path 2". The two paths are designated as
denoting the same object. Since slot equivalences can be inherited, their source is also indicated in the
table, in the column "Deflned by". When this table is visible, the table edit command window will
show the commands [Local Equivalences], [All Equivalences] and [Add Equivalence] The first two
just change which equivalences are displayed. The last prompts for two slot paths that should be made
equivalent.

olmmcml-mmbijuamwmﬁndmofmemmmdeﬁnedtobe
disjoint from the one curently being edited When this table is visible, the Table Edit Command
Window will display the commands [Add Disjoint Class| [Local Disjoint Classes], and

B.2.2.5 Operations on Concepts

Making new concepts and roles

Clicking on the [New Concept] or[New Role] command in the global command menu is the simplest way to
make 2 pew concept or role.

When making 2 new concept, KREME will prompt for the name of the new coacept, and thea a pop-up form
will appear that looks as foflows:

lew_concapt AIPUPRET-CARRIEP
Descriprtion:

Primitive?: Yes No
Individual®: ves Ne

Direct parents: (YESSEL)

Def ine n

72

Here, you may specify a description of the new concept, whether it is primitive or not, whetber it is an
individoal (a special kind of primitive class that has only one member, like the color RED), and a list of its direct
defined parents, which must be 2 list enclosed in parentheses.

When you are done, click either the box labeled (x]Define or [x;Define and furtber edit if you wish to make
the new concept the current editor object in order to do things like adding new slots before classifying it.

- Another way to make a new coucept, one that is similar to another coocept, is to use the
[New Related Concept] command in the local command menu. This command allows you to choose from a
pop-up menu whether you want to make a new concept that is similar to the currendy visible concept or to some
other concept, a specialization of the current concept or some other concept, or a specialization of several concepts.

_Similar to M E
Bimilar to somg: other concepy
pecialization of MA

Specialization of some other concept

If you choose to make the concept similar to some existing concept, KREME makes up a concept definition
that is identical to the concept you specify, but with the new name, and then allows you to edit it to make it
somewhat different. If you choose to make the concept a specialization of some existing concept, KREME
automatically makes the parent of the new concept be the one you are specializing,

The mmM|NnReluedRolel in the local command window of the Role Editing View works
essentiall y the same way.

Killing Concepts

Changing the name of a concept or role directly affects the network. The name of the concept definition, as
well ag the name of the comresponding classified concepe (if there is one), is changed. All pointers to the concept (as
a parent of other concepts, in vaive restrictions, as the domain or range of roles etc.,) are automatically updated with
the new name both in the classified network and in all editor buffers.

The (Kill Concept] command splices a concept out of the taxonomy. With this command, the children of a

concept will be connected to all of its paremes. Any concept that used to define the coocept as a parent is
reclassified. If the concept was used as a value restriction, the editor tries to find an appropriate parent to substitute
for the killed concept. Because this attempt is not always successful, user interaction is sometimes required.

Deleting redundant slots

To delete any defined slots whose definitions are the same as the inherited definitions, click on the
Kill Redundant Slots| command in the slots table command menu window, above the the slots table edit

window. This operation alters the definition of the concept, but not its classification or completed description.
(Qlassification will be discussed in detail in section B.3 below.)

B.2.3 Alternate Concept Views

Three other views are currently defined for concepts, and one view for roles. Two concept views display
windows not normally visible in the Main Concept Editing View (see figure B-10), while the third is the Macro
Structure Editor to be discussed in section B.4 below.

To change to an alternate concept view, use the [Change View] command in the local command menu

. window above the state window. Clicking on [Slots and Equivalences| brings up the first window in figure B-10.

This view shows an enlarged slots table edit window, the disjoint concepts window, and the slot cquivalences
window together, along with the editor stack window, the state window, and associated command menu windows.

Clicking on |Large Concept Graph| shows the second view of figure B-10. This view uses most of the
screen to display the specialization hierarchy, together with the State Window and Editor Stack Window.

B.2.4 Editing Roles

The Role Editing View (fignre B-11) appears whenever the [Edit Role] or [New Role] commands are issued
from the giobal command menu, when pointing at the name of a role appearing as the name of a slot, or pointing at

" apreviously edited role appearing in the Editor Stack.

The Role Editing View containg 3 window showing a graph of the role specialization network, highlighting
the currently visible role, another displaying a list of the concepts that restrict the role, and the role state window.

“The local command menu window for roles contains the commands:

o[Classify leokl-duﬁﬁuwmahspemwamadnngedmhdeﬁmmm;it
into the role hierarchy, and checking that any concepts that use that role to pame a siot satisfy the

olﬁmml-Cmamnicdmhdmihrmaaspedaﬁnﬁonofthem(mme
other) role. [ts operztion is analogous to the [New Related Concept] command.

74

r——

Wvg W11IVIBIU] 1031pF

B

- :amd 1{
sasuapoanby jors

¥YI-N81 Tdo 4
#v3-nmyIs
¥V~ I Mvav: EEE«. uL Wi~ ScaL B_
sidoyw 3y juols . i _ _ _ N _Aa v!

canty) Iy RIS A) o ¥ T ‘, AR T} .__ s T~ : o
. B9OUs)eAIND Y 18507

sty
ouou (NOI110W0D- WOINVHIIN ¥) 1 AL13023 NOS 1 EONGD- V3 INVHD I EMAITE TRV T
(N0310%0001-20-Swvan v} (NOTLOMOD07- J0-SHVIM v) T 1891 WY HOT10W0D07- 40-SNYIM 193090 - 311900
(yzen13vinvn v) {uzun19vionvn v) 1 Apaexy AS-G3¥N1 IV NN . IO
(309n08-u3A0d v) (20un0s-y3r0d v) T aseey W 22¥N03- WINOY ’ MiINOWN
(NOT1VINOdSNVYL V) (N011v1390d8NVYL ¥) [RLIRELSS | OLLONN S 101HIA
(20Mv180n8-01NVEYONT NY) (20MVLISONS-DINVEYONT W) t ey w #0111804w00 2I3CQ0-DINVOYONI
(3218 v) (3218 v) L RELLS) as 123090

{n011vo01 V) (%011v201 v) 1 Aradexy NO11¥201 133090

(ssvm v) {sswm v) ¥ Atadex) ssvn 19090

(3ov wv) (30v wv) 1 Aradexy Y 193090

Gig109 ¥! (901090 v) § asee| v 10-%0103 13090

(ALign3g v} (a11s830 v) t Agudery ALISNIO 133090

(13vd- WIINVHI N ¥) (1uve-Watnwwam_v) Joumn Auy

Uo4 394 13 u... L.

(IR CIWELD U0} 131 230 ONLUA

13018 d01)p3
153090- 20VH-NVY _:.o_ 9

132090- Wl

Milove ?..: :
anvanos {n2) :3
v amve [n?

tuny 3dyJoseg
BYD tsezyje)sedy
(P21 s1PON tpo)jysse(]) o nta_h.l.st
) 3 3dau0

1C) Pagbyay Moy

75

Figure B-10: Alemative Concept Editing Views

«[Coacepts Defining Slots] - Changes the window showing the list of concepts using this role as a slot
name to include ooly ones that locaily define those siots, as opposed to inheriting them.

[Concepts With Slots] - Changes the same window to display al concepts that have a slot with this role
name.

B.2.4.1 Editing in the Role State Window

A similar set of operations exists for editing the basic features of roles in the role state window as exists in
the concept state window.
o [Role:] invokes a command to change the role’s name, and all references to it in slots.

o (Primitive:] toggles the primitiveness of the role.

oaﬂmyoutoaddapnmtountole. Clicking the right button over the word
brings up the menn of [Add Defined Parent] [Delete Parents which aren’t direct]
and [Make direct parents defined parents), all of which work as described for concepts in section
B223.

o [Domain:] or (Range:] prompts for a replacement value for the defined domain or range of the role,
respectively. Clicking the right button on one of these words gives you a menu of options including
those discussed above and, when appropriae:

*[Defined domain equal computed value] which makes the defined domain be the same as the
classified domain, which is intersection (really the conjunction) of the role’s defined domain and
the domain of its parent role(s) (if any).

+ [Defined range equal computed value] which makes the defined range be the same a8 the
classified range.

B.3 The KREME Classifier

B.3.1 Introducing the Classifier

One of the most time consaming tasks in building knowledge bases is maintaining intemal consistency.
Adding, deleting and modifying slots and parents in a frame taxomomy may affect the subsumption relations
between frames and, perhaps more iniportantly, may alter the sets of properties inherited by more specific frames.
The possible consequences of a change in one part of a network grows rapidly as taxonomies get larger.
Consequently, the size and complexity of knowledge bdases is limited by the extent to which antomatic means are

The KREME classifier heips the user maintain consistency between the definitions of all concepes defined in a
KREME Frame knowledge base. R must be invoked (by the user) whenever a concept or role is defined or
. redefined. The clussifier first gahers all of the features to be inherited by a concept, and then determines exactly
where the concept should be piaced in the specialization hierarchy,

76

6u) 1499

ndu] JashH

AU 0INAS Ty nunud

o tund poaoda cproy pur | curd cppoy pun
anng W) WU 101103

B

cowary
; B Y|

yo018 100193

wtove (ned)
1o9n0s-y3m04 (n22) ¢
mivnd {i2o)
wotivsod Lata)
ontnn [ntu) ¢
123090 [wa)

0-whwy futs)

CER R

19390
193ty 03¢

1y seys wf spps Rurpeudiao spdeswey

(P21 sipovun pa) issei])

B

1015 1M
Qo pajrie

tuog3dyaoe3g

MINL :pauy jag :aBuey
GNLNHL pauy jag sujeuwoq
MOLIY IS s IUILe)10
uu» .o:.o-:_...-

aN1NgL :pajnduo)
ORINL :PIinduoy

:.?.9??% I T

uonesi,

The Role Editing View

Figure B-11:

The classifier should always be invoked once you are satisfied with a concept or role’s definition. It is the
mechanism by which KREME makes the new definition permanent, and inserts it into the knowledge base. To
classify a definition, click on the [Classify Concept] command, in the local command menu window (the
[Classify Role] command if you are editing a roie) or use the [Classify] command in the pop-up menu available by
clicking the right button on some object in the Editor Stack Window. KREME will determine the complered
definition (a definition plus all its effective, inherited features) of the object and use that information to determine
the object’s relative location in the subsumption hierarchy of all previously classified definitions by deducing what
the new concept’s most specific parents and least specific children are. The system aiso checks to see if other
concepts or roles need to be reclassified because of the new definition. If so, KREME will continue until it has
reclassified every object that might have been affected.

After a concept has been classified or reclassified, KREME immediately displays the effects of classifying the
definition. Visible abstraction-specialization graphs are redrawn, showing how the arrangement of parent-child
relationships throughout the taxonomy has changed. On these graphs. links added or deleted by the classifier will
seem to appear or disappear instantaneousiy. For example, the classifier makes sure that the direct parents of a
concept includes only defined parents with no children that subsume the concept®.

B.3.1.1 Completion

Completion refers to the basic inberitance mechanism used by the KREME classifier to install all inherited
features of a concept in its intemnal description. Given a set of defined parents and a set of defined features, the
completion algorithm determines the full, logically entailed set of feamures at a concept (or role). Completion always
occurs before classification or reclassification of a role or concept.

A concept inherits all the value and number restrictions on every slot from all of its paremts. For each
uniquely named slot at each concept, a single number and value restriction is created that conjunctively combines ail
restrictions for that slot from the local definition of the siot and the definitions at every parent. The effective value
restriction is either the single most specific of all the value restrictions for that role at the concept, or a conjunction
of all of them, if no single one is subsumed by all the others. The effective number restriction for each slot is
similarly determined by intersecting the number ranges in all of that siot’s inberited pumber restrictions.

Complications arise when more than one parent concept defines the same siot, and no restriction on that siot is
more specialized thaa ail of the otbers. Figure B-12 illustrates one way this can occur; when the most specific value
restriction is inherited from one parent (ANIMAL) aod the most specific oumber restriction is inherited from
another parent (4-LIMBED-THING) to form the restriction of LIMBS at 4-LIMBED-ANIMAL.

Figure B-13 shows another example of completion in which the resulting value restriction must logicaily be
the conjunction of several concepts. Since ANIMAL-WITH-LEGS is an ANIMAL, and a THING-WITH-LEGS ail

%ﬁmw&hﬂ.d&ummﬂmuwmmmdwmw&utﬁm
it on the graph.

~———————x

organic
limb

4 limbed
animal

~ Figure B-12: Inheriting Number and Value Restrictions
of its LIMBS must be both ORGANIC-LIMBs and LEGs. If the concept ORGANIC-LEG, specializing both
ORGANIC-LIMB and LEG, exists when ANIMAL-WITH-LEGS is classified for the first time, the classifier will

find it and make it the value resuiction of the slot LEGS at ANIMAL-WITH-LEGS. If it does not exist, the
classifier stops and asks if the user would like to define it.

with legs

~ Figure B-13: Combining Vaive Restrictions
In general, whenever a value restriction can only be defined as a conjunction of several concepts, KREME

offers to form a concept representing the conjunction, and asks for a name for the new concept. These new
coacepts, called CMEETs, must be naned by the user.

79

[T

Ty

B.3.1.2 Interactions with the Classifier

As indicated above, the KREME classifier sometimes needs to form new concepts in order to satisfy some
logical relationship or determine the effective resmriction on the range of a role. These classifier required
conjunctions are called CMEETs.

CMEETs? are formed when the classifier is orying to determine the effective value restriction for a slot, or the
effective domain or range of a role. At such times, KREME enforces the restrictions that the concept or role inberits
from above, while incorporating the locally defined constraint. KREME requires that the value restriction of any
slot is at least as specific as all of the inherited value restrictions on that slot (and the range of the role naming the
siot). Technically, the effective restriction on a slot is always the conjunction of (e.g., the class denoting the
intersection of) all inherited restrictions and the locally defined restriction on the slot. Thus, if one defined the
concept FROG as an ANIMAL-WITH-LEGS, and defined the slot LEGS to be restricted to (a FROG-LEG) without
defining FROG-LEG as both a LIMB and ORGANIC-LEG, KREME would ask to make 2 CMEET that combined
all of these classes. Since you probably would want to change the definition of FROG-LEG rather than create a new
term, KREME allows you to say this, rather than create the new concept.

The third major case in which CMEETS are formed is when a value restriction is not subsumed by the defined
range of the role that names the slot. Thus, if the role ENGINE-OF had range (AN ENGINE) and the slor ENGINE
on CAR was defined with value restriction (A CAR-MOTOR), which had (perhaps accidentally) not been defined as
a kind of ENGINE, KREME would ask if you wanted to define the CMEET (AND* (A CAR-MOTOR) (AN
ENGINE)). Again, you probably want to must make CAR-MQTOR a kind of ENGINE.

Lastly, CMEETS are formed when determining the effective domains and ranges of roles that are children of
other roles. However, it only happens if you define a role to specialize another role, and are not careful to make sure
that the domain and range you specify are subsumed by the domain and range of the parent, respectively. In any
case, KREME will let you know, and enable you to fix it, one way or another.

B.3.1.3 Options when asked to form CMEETs

While forming the appropriate conjunction is the logically correct thing to do to ensure consistency! of the
knowledge base as then defined, it often turns out (as suggested in the preceding section) that the conjunction
suggested by the classifier is needed because one of the concepts to be conjoined has beea improperly defined. In
particular, a CMEET condition most frequently arises because the concept used as the value restriction of a role in
the concept being classified is not subsumed by the restriction for the same role at a higher concept, and the
restriction must logically satisfy both constraints. This is illustrated in figure B-14. The figure shows TWO-PORT-
TANK defined as both a TANK and a TWO-PORT-DEVICE. Each of those concepts restricts the role INLET-
VALVE. The classifier finds that the restriction for siot INLET-VALVE at TWO-PORT-TANK must be both a
VALVE and a STOP-VALVE, given the restrictions of that slot at TWO-PORT-TANK's parents. Since STOP-
VALVE was not defined as a kind of VALVE, the conjunction is not the single concept STOP-VALVE, and so the
classifier asks if it should create a new concept, the CMEET of VALVE and STOP-VALVE.

valve

inlet stop
valve valve
M NN\ \JA\L}/E\ N
ustbe a
SNONNNNNNNNNN

Figure B-14: Discovering a missing subsumer by a CMEET check.

2 port
device

Whenever the KREME classifier requires that a CMEET be formed, it stops and queries the user, explains the
sitzation and requests a name for the concept to be formed for the conjunction, and enumerates several alternative
optioas, as shown below.

You have several options at this point. If all of the conceps are defined correctly, and the proposed CMEET
correcily describes the required restriction, simply enter a name for the oew concept and classification will
continues. If the problem really lies with an existing definition, as is the case with VALVE and STOP-VALVE, you
can choose an alternative course of action. rather than introducing a useless new concept. Most often, the correct
action is to alter the subsumption relations between the naméd concepts so that one of them is subsumed by the
others. This is done simply by aaming one of the concepts to be conjoined instead of giving a new name. In our
example, the user would simply type STOP-VALVE, in response to the query. The classifier would then make
STOP-VALVE a kind of VALVE and continue classifying TWO-PORT-TANK, resulting in the relations shown in
figure B-16.

This interaction effectively allows a user to correct an oversight in a previously defined concept's definition at
the point the ervor is detected by the classifier.

If forming the CMEET is the appropriate action, simply enter a name for (he new concept; classification will

continue. If you do oot intend to form this new concept, name the more specific concept. This alters the
subsumption relations between the concepts to be conjoined, so that one of them is subsumed by the others.

81

Aebe ol

st

*s

Lodd Matwark | New Concept New Hole Faw Packat Generaliza rarametars
Save Metwork Pt oncept Fdait Role it Packet Pop Stack Reset

At Conceot TUO=PORT-TAMK, the Value Pestriction for role INLET-UALVE,
nust be restricted to 8 concept vhich is 2he conjunction (MEET) of (VALVE STOP-VALVE)
Enter either the nane of & NEW concept thet wil! be becone the MEET of the 1isted concepts, or,
the name of OME OF THE LISTED COMCEPTS uhich will ceuse that concept’s
daf inition tg be changad to include the athers as parents
COMCEPT NAWE:

T / S

Mestractions ond Seeciel izations of "THE-PORT-TANK®
) il i.oncapt - law Helatad Loncept Chanage View

Concept: KT-1 AN

Prinitive: YES (Ungleesified;

Nadif led]

Specializes: TUO-PORT-DEVICE TANK [c:u] TaNK1
Osscription: C: [C:U] STOP-vaLVE
+ {Giu] vauve R
Lol Hiate,) [All Slots | mdd Llot Kl Hedundant wiots [gl

— Wwsber re1triction Value restriction

et iy (ALY ~VALYE) none
Exastly (A YOLURE) (A voLUNE)
Exsct 1y (A BASEY (A "A3S)
Exactly (h COLORY (& COLORY
Exsetly (& THING-VITH-0UTPYT) (& THING-WETH-OUTPYT)
THING-¥1TH-QUTPUT OUTPUT Exactly (A THING-¥ITH-1NPUT) (A TRING-9TTN-(NPYT)

Clansity the current .

oncept defimbion. {(Libxecute; tt:0ocument;, Hibat parameters, then oxcoute)

User Imput Here 1ng

Figure B-15: Altering STOP-VALVE to correct a CMEET error.

2 port
device

. iniet
| valve @ Add Parent

| inlet stop
valve valve
inlet /

valve

“Figure B-16: After interaction with the classifier.

B.4 The Macro and Structure Editor

B.4.1 Macro Editing of Knowledge Bases: Background

Quite frequently choices about representations made early on in the development of a Knowledge Base proves
to be inappropriate, and massive editing is required to convert the accumuiated representation base. A macro facility
makes these decisions easier to reverse, and therefore, less disruptive and costly.

In order to express and package conceptually clear reformulations of concepts and other representatioas, as
well as develop new concepts from old ones, KREME provides a macro facility for reformulations. This facility can
be expressed as sequences of standard, low-level editing operations which define editing macros to be applied to sets
of concept definitions by giving a single example.

B.4.2 The Macro and Structure Editor View \

One of the views available when editing concepts in KREME is the Macro Structure Editor View. This
view (See figure B-17.) provides »n alternative set of display and editing facilities for concept definitions. The view
provides two windows tor the display of stylized defining forms for concepts. The current structure edit window
displays the definition of the current editor object concept (the top item on the editor stack). The display structure
window is available for the display of any nomber of other concepts. Any concept which is visible in either window
can be edited, and features can be copied from one conzept to another by pointing. Both windows can be scroiled to
view additional definitions or parts of definitions.

As in the oormal KREME concept editing views, both inherited and defined features can be displayed.

“Na

dug wopgNINN) I0h g

¢ 2044223 o1>enk

TG UBYL JO UOEIZI SIS INIEA INJING BYI O3 [UBY} JO UCEIDL ISR Inen INJING PY) busyy ¢
‘O WIY| O3 [WIY} JO UCKIDYLISBI INEA {NdH] Py dCusy) "

I Ins Jaqunu € Bu I IBUNE AQ PIUSU ‘JJId SITLLELSICE YOpYn JFITIUOD NBU ¢ B ey T

[t voyaerade) 93dld 1
{99du0d Judand) T NN 'O

ERABP PAITBUUOD O] UBSNIBG BT & JUdSU]

EERINC RN Ot)

Voo gy

oy Aoy

. _ £
15esse g Jupofsig >
185U &1)NDY “
CCCINAMT-HIIH-DIHL ¥) R
HE I TR VI ETT | CINGI-HIIN-HE W) T <1353 JIN4IN0}
1895Ud e NbY ({40700 H) (40703 H1 T <1323 40-40700)
WA W) (LN Y) - WUrins. . (LSSHI M) (35U W) T 13363 SSuu)
(O3 ¥) (0713 ¥ 1 :-uwo '3 40-40702)) COERmL U) (tameyg o) 8 (3203 (ngilyy
(2109380 Jn il Busy) 18U0H I NI8RG B0y (3100530 40 M) dueyy) 15U0J I IIERY I(O4 (Y
{ #M]) 18UopIdeNISqY (3d1d) suoy ety
oy 18n) 34U} A9 19), 1903wy 34
1 a1 Adadv0) 03d1d 31395un)

aany o

RIS RUNETH

RTINS

1201 400193

The Macro Structure

tuo} 1dy 408 ag
3d1d ez} v} o0dg
1pag jysse|oun) aur LI R ILIEY]

-
.

P31 31000

e |
1DIAN-104-0L .

DAy M)

f g

oy

Moy by

FRERNE Y H
Py o o] n

|
l
Figure B-1'

Clicking the mouse over the keyword indicating each feamre class in a concept’s definition (e.g.. [Absmctions:}.
[Siots:] [Equivalences:} e1c.) toggles the display of that component set of features between defined and all
inherited features of that type.

There is a menu of commands for displaying and editing definitions in these windows. It includes:

o[Add Structure] - Clicking this command followed by one of the concept feature keywords
Abstractions:, Slots:, Equivalences:, Disjoint Classes: canses KREME to prompt for a new object of
that type. The new item can be typed in or copied from some other visible concept’s definition by

inting,

OIChngiSmam] - Qlicking this command and then the item to be replaced (a parent, slot name,
value restriction, number restriction, defauit, an equivalence or component path, or a disjoint class)
canses KREME to ask for an appropriate replacement. Again the new value may be typed in or pointed
to.

- - Clicking this command and then the item to be deleted removes it from the
councept’s definition.

«{Display Structure] - Pointing at this command and then any visible concept name or definition places
the definition of the concept in the Display Structure Window.

«[Clear Display]- Removes all definitions from the display window.

Arguments (if any) to these commands may be described by pointing or typing. For example, to delete a slot.-
click on [Delete Structure] and the display of the slot to be deleted. To change (that is, replace) a structure, point in

successionatthhangeStrucmre]command.tbeim t0 be reblaced.andtbethingto replace it with.

In many cases, [Delete Structure] and [Change Structure] can also be invoked simply by pointing at the

structure to be replaced, and clicking the left mouse button. Delete Stiucture is often available on the menu of right
button options (check the mouse documentation window.

Individual concepts can be deleted from the display window by pointing at them and clicking the right button.

The |Edit Concept| comn.and is used to change what is displayed in the current edit window. Editing a new
concept moves the old edit concept to the bottom of the display window.

B.4.3 Developing Macro Editing Procedures

Globally available commands for defining new concepts and specializing old concepts by copying their
definitions together with the command: in the Strocture Editor’s main menu provide an extremely flexible
environmeat in which to define and specify modifications of concepts with respect to other defined concepts.
Virtuaily all knowiedge editing operations can be dooe by a sequence of pointing steps using the current edit
window and the display window. This combination of editing features and mouse-based editor interaction style
provides an extremely versatile environment for the description, by example, of a large class of editing macros.

o~

LM

The windows on the bottom of the Macro and Structure Editor Screen are used for defining, editing, and
running macros composed of structure editing operations.

To define 2 macro, first edit a concept for which the macro will make sense, and then click on the
command&omthemembelowdnsnumueediﬁngwindows.

Until the macro definition is terminated by clicking on [Define Macro| again, all editing and concept display
operatioas performed will be recorded as steps in the macro, and displayed in the lower left window of the screen in
English. Specific objects mentioned as arguments will be replaced by references to macro items, which are
numbered and appear in a list in the lower right window.

B.4.4 Changing features into concepts: A Sample Macro

. It is easiest to understand how to use the macro facility by looking at an example.

In developing frame representations, the choice must often be made between defining a slot to uenote that the
concept has some attribute (e.g., defining RED-CAR as 2 CAR with slot COLOR-OF restricted to (A RED)), and
defining the concept by making it specialize another concept that stands for the class of objects with that attribute
(e.8., defining RED-CAR as a CAR and a RED-OBJECT.) '

When this choice has been made in a way that later seems awkward or inappropriate, given the use that the
concept has in the knowledge-based system under development, it can be very time cousuming to change. With
KREME, however, macros can be defined that can make the change in either direction.

We illustrate this kind of restructuring operation with a macro that provides a way of forming a concept
RED-OBJECT denoting the set of all cbjects with the role restriction COLOR-OF = RED. The macro makes usz of
the classifier to find all such classes and make them chikiren of RED-OBJECT, and then remove the COLOR--OF
slots from all classes that were found to denote red objects. This macro can be used on all colors defined in the
knowledge base, to completely eliminate references to COLOR-OF slots.

The following sequence of steps, all of which were specified, by exampie, using operations available in the
Macro Structure Editing View, accomplishes this task. Figure B-18 shows this macro’s steps.

Step 1 creates the concept RED-OBJECT as follows: First, the command {New Related Concept| was

invoked using the right mouse button and specifying that the concept OBJECT was to be specialized. The use of
right button exposed a set of options on how the object should be named that included adding 2 prefix to the pare of
the parent, OBJECT. Clicking on the cumremnt editor object RED specifies that the name should be RED-OBJI:CT
and thae subsequent uses of the macro on other colors, like GREEN, will create concepts like GREEN-OBJECT.

Next, the COLOR-OF slot of RED-OBJECT was changed to RED by pointing almml the old
value restrictioa (A COLOR), and the coacept RED.

Steps in COLOR-OBJECTS macro:

[Edi Comeept] RED
Click on|[Define Macro

(Makes Macro Item 0 = RED).

1. Make a new concept which specializes OBJECT, named by adding as prefix item 0's name (Creates
RED-OBJECT as item 1, puts it in the current edit item window).

2, Change the COLOR-OF value restriction of item 1 to item 0 (RED).
3. Change the primitiveness of item 1 to No.

4. Classify item 1. (This finds ail concepts with COLOR-OF slots restricted to RED, and makes them
specializations of RED-OBJECT.)
The remaining steps make these specialization links defined links, and remove the COLOR-OF slots

completely.

5. Do on SPECIALIZATIONS of item 1: Add item 1 to the parents of iteration item. (This makes each
red object have defined parent RED-QBJECT.)

6. Do on SPECIALIZATIONS of item 1: Classify iteration item.

7. Change the primitiveness of item 1 to Yes.

8. Delete the COLOR-OF restriction of item 1.

9. Do on ALL SPECIALIZATIONS of item 1: Delete the COLOR-OF restriction of iteration item.

10. Classify item 1.

“Figure B-18: Changing RED to RED-OBJECT

S&ep3wasdonebyclickingonandemeringthenewvalue NO. Step 4 was simply the command
So that ail red object classes could be found and made specializations of RED-OBJECT.

The remaining steps, required to add defined parents to specializations of RED-OBJECT and to remove their
COLOR-OF restrictions, make use of the KREME Structure Editor’s [Map Edit] command. This command is used
u}pufonnamg!zediﬁngopeaﬁoncuasetofmpsmhndtodnonebeingedited(e.g.,dixectspedaﬁudom.
all specializations, abstractions, all abstractions). For example, Step 5 was created by the mouse sequence
[Map Edit| [Specializations] [RED-OBJECT][Add Structure], the keyword of the specialization

that appears temorarily in the edit window, and finally pointing to the concept definition | RED-OBJECT

B.4.4.1 Running Macros

To run the macro on other objects, first edit the concept you wish to start with, then click right on
[Run Macro] and select [Current Macro] from the pop-up. If you want o do the macro one step a a time, also
click (Single Step] When you exit this pop-up menu, another will appear from you will be asked to select which
sets of relatives of that concept (Specializations, All Specializations, etc.) you wish to run the macro on

L asmanmn s 0

. e

ot

Individuals only means only apply the macro to concepts that are marked as individuals. Include current concept
asks if yoa wish to run the macro only on the relatives, and not the current concept itseif.

If you use the single stepper, then you will interact with the Macro Stepper>, which has the following

commands:

o Help - print the list of commands.

o Execute the next step in the macro.

o Proceed with the rest of the steps without stopping.

o Skip execution of the next step.

o Delete the current step from the macro.

o Insert a step into the macro at this point. (which you specify)

© Quit the macro.

To load previously saved macros, use the command. A pop-up menu will display the files that
contain saved macros. (The macro file for coloring objects is in the file COLOR-OBJECT.)

To display a loaded macro, use the [Dispiay Macro] command. This command also makes a loaded macro the

current one.

Tosaveamacro.usemecommandfmmtbemenuonmenameofd:emamdisplayedinthe
macro definition window.

B.5 The Generalizer

Experienced knowledge engineers are often able to discover and define useful generalizations that help
organize the knowledge described by a buman domain expert. The expert, although not previously aware of such a
generalization, will often immediately perceive its relevance to his own reasoning processes, going so far as to
suggest improvements, related generalizations, more abstract generalizations and so forth.

As an initial experiment in automatic generalization within frame taxonomies, KREME provides a relatively
simpie geoeralizer algorithm that relies on the user to select from a set of potential generalizatioas discovered
essentially by exhaustive search,

To use the geperalizer, click on [Generalize| in the main menu. KREME will then start a background
mas“mm@&rpﬁnmhmmofcwdmdmemmberoffem(slots.equivalcocs.

UBecame the generalizer algorithms is fairly siow (taking sbout § minutes to go through a network of 500 concepts and 300 roles), it runs a8 &

nduy 4380

g WOIOVISIN] 40fipg

\ B (spiomiay) JPANIKY < saddayy o.uasm
. 1435N8
S1ME VM
1ah UNOMY
’ 9330044 W

.31qeijene ase spuewanod Buymoyio; adyg)

199(Q0. 00> 03 $1QLJ23E JO(0d IbuURY>
(1d23u03 WRsINI] Q34 0 SEIIG0 4010 o100y
- fanos [swasyp viropy--
1y degy

- ORI BT 0JO0IY -~
) oJaup uny

R TEE: TTN EQ

0.0y 533»,0

5O ER{ PPOT

tg2650|] ugolerg

tsasuajenginby

telo(sg

(40703} $suofIdeJisqy

off ((epiagpul ‘s tanpiupag
834 jd3du0)

--Ewdgy poIIY Jo Aopdsiq-- --333f JHBF MR- -
Aepdsi) aeagrny oy Arjdsig
S N90ig o103 S
tuoyydyaaceay

VU W seziqeydadg
SIX Ny IIUII4

(p3 J1powun fpaggisseig]

muapa abueyy wdasuo} g

13594 10424 1P 3 |10y 1ip3 5
ERLSITL LN 12110 r 16MO By Mar} F10H mat]) L) MINMY 01

Figure B-19: Running the macro COLOR-OBJECT

L VPN ™™
— {

il 5 D

™,

parents, etc.) For =ach such set it finds, the generalizer will then form the most specific concept definition that
encloses all of the features but is more general than any coocept in the set. ’i‘hisconoeptdeﬁniﬁon.apotemialnew
abstraction of a2 mumber of concepts, will be displayed to you. If you find that the generalization is useful, specify a
name when prompted. The newly named concept is then classified and inserted into the network.

To run the Generalizer:
» Click on{Generalize|
o The [Generalize] Command will be highlighted and will remain highlighted until it finds a
generalization. At that time the (Generalize] will blink to alert you that it has found a generalization.

o Hit <SUPER> <REFRESH> 10 make KREME show you what it has found. You will see a menu of
choices prompting you to make and clarify the concept:

* Y to reject the concept.
* N to defer making your choice until you have more information. Deferring will pop you back to
the state of the network before you typed <SUPER> <REFRESH>,

* D to form the concept without assifying it, making it the top item on the Edit stack. KREME
will ask you to give the new concept 2 name.

* E to Edit the definition of the new generalization.
¢ Click on <SUPER> <ABORT> t0 end generalization.

- B.6 The KREME Rule Editor

B.6.1 Introduction

In Expert Systems, rules are often organized into packets and the requirements for altering and inspecting the
relationships between rules have analogs in the packet domain. KREME provides facilities to see displays of the
relationships between packets, and to inspect the intemal structure of packets and rules.

KREME’s Rule Editor is equipped with a number of features that facilitate building and maintaining
knowledge bases of rules and rule packets. The Rule Editor uses the same basic operations as the Macro Structure
editor discussed earlier. It contains facilities for creating and editing rules and rule packets, copying rules, moving
them, compiling rules and displaying and modifying variable bindings. The system provides an elemeatary history
and tracing mechanism, and an explanation system that produces pseudo-English explanations from rule traces.

——— — - —

«...QCn Jasfy

{1uounaog:t fa1naox3:1) S1dosuos sigy IR S101% BANIDYYD JO 199 a1a|diod oy Arpdsig

dung WL UL 401 PT

B

-]
TAuR SN

i

(IAISNIINI-ANIA V) (IAI1ENIdXI-AHIA V) 15UT- A4V L INOR « 001,

(A11119v-NOT1VYI13)IV-01dvd ¥) (A1211QV-NOIIVYIIIIOV-0LdVE V) T _AL12 u ALLVISV-NOTLY¥31300Y s30T

uo) 1d4 43839 \M:w- -\u\.(sm‘uou_ ,.Ovs—c> I _ :o—-qumnwu\.lelsx ‘ - ‘. o Py »._

{ mofsq s104y | voolg +01rs SRR ::.“::_?v: ::x 1000 PPy [eaeys 1y
1 (nta) o i T j Ny T =
193090-WwolINvia e [n:a} 9
]
e {3
. X YUD-S YOS YYD -HUNYID :tezy|widodg

ANvawod Lnto)
$3an19vnnvn {n'3)
ava-wealgany {wio}

Masyod [ata)

0
‘g
k]
9

mw» tan) vy iy

fpoysysee]]
: 3daaucy

(P2t g1povun

ua;y:cﬂ POIB[BY Mmal)

Mo obuey) u:w,ccu

1Ay
sdaa310un :- *

.U—-“UCQS. b. ﬁ‘ﬂ-d‘l-—'.ﬂﬂ‘w pue ﬂCQ-dUden‘G

(3 20 ' ‘) ‘)) JuDIIBTY|EIBUIG NIU Sy 31€3J)

COCUT 1) (IMIIONYH- IM3T1130KT U) ALTNIGU-SHIGMUH)Y (LT 1) (IAISHIANI-A4IN U) 1S03- ANEINON))
S1015?
(¥UI- LN @u)-NUHEIT)

S371 WIJ3dS: ,¥092U00 mau Joy auey, (43IN0III)

189 Pau) 4ap 3g PINOn 3] ‘PUND) UIQ SEY {IHTSHOD SITIVAIM) JO UOLIER|(RIUIE (ejuarod y

A10Y 1P [1desuod 11p3 | . Ofiomaajy anrg

BI1OH_MOT] 1d9u0) MU H1omiar pro |

n

Figure B-20: Finding a new

21

B.6.2 Editing Rules in the KREME Environment

KREME at present edits rules in the FLEX [17] rule language. In FLEX, rules come in rule packets, and the
KREME Rule Editor edits an eatire packet at one time. Rule packets provide a way to organize rules.

The forward chaining rule packets come in four varieties, indicating the type of control mechanism used for
rule firing.
o do-1-rule-packets execute the first rule whose test succeeds.
o do-all-rule-packets execute all rules whose tests succeed.
o while-1-rule-packets repeatedly test all rules, firing one, until no tests succeed.
o while-all-rule-packets repeatedly fires all rules whose tests succeed, until nooe succeed.

Rule packets are connected to KREME frame systems or other data contexts by specifying an access
environment. An access environment is an object that receives messages dealing with the accessing of values for
references in the rules. It handles all messages to get or set the values of variables and their confidences.

B.6.3 The KREME Rule Editor

Rules are defined and edited by specifying and filling out p-ttions of rule templates. To refine these templates
cither use the mouse to copy parts of existing rules or point at slots to be filled and type in the desired values.

There are also commands to run packets and debug them and to generate traces or rule histories paraphrased
in pseudo-English, and delete rules and reorder rules, and load and save rules from files.

B.6.4 The Rule Editor View

Many of the windows in the Rule Editor View should be familiar by now. The complete list is as follows:

1. Global Command Window displays global commands that can be selected by the user. In this
example, the user has used the mouse to selectiEdit Packetl, The user’s selection is highlighted.

2. State Window displays the name of the packet, the network it is associated with, and other useful
information.

3. Editor Stack Window displays the names of the items recently edited and some information on their
current state. [tems in the editor stack window can be selected for editing with the mouse.

4. Behavior Command Window is a menu of commands that apply to Rules and Rule Packets.
(Behavior is another term for rule packets, or functional methods on instances of concepts.)

5. Current Edit Item Window displays the item that has been selected for editing.

6. Dispay Related Items Window allows the user to view other rule packets and scroll through them.
Rules and parts of rules can be copied from the Scroil Window into the Current Edit [tem Window.

7. Editor Interaction Window displays screen prompts and user input. The user’s edits are made ia this
wim‘lowam‘lt!nnd’splayedindn&meuﬁdiﬂtem Window.

92

8. Related Behaviors Window displays an index of other rule packets that are related to the one
currently being edited. With the mouse, the user can rapidly scroll through this index and select a
related rule packet for viewing or editing.

To get into the Rule editor use the [New Packet| or [Edit Packet] command in the global command window.

Thereafter, you can use the structure editor in much the same way the Macro Structure Editor is used to edit
concepts. The Rule Structure Command Menu contains the commands:

o [Define Behavior] is similar to [Classify Concept] It makes the definition of the packet permanent, and
allows it to be run or attached to a concept.

o [Similar Behavior] - Creates a packet with the same rules, etc. but gives it a new name, and presents it
to be edited to make it different. ,

« {Kill Behavior] - Kills the definition of this packet.
. - Displays the packet in the Display of Related Items Window.

When a whole rule packet is outlined (such as when you are over the word Packet), you can choose to
(L:). or (R:) choose from a meau of Edit Packet| | Edit Basis]or{Display Lisp Form]

Other editing commands are found on the keywords and component pieces of packets and rules. For instance,
clicking left on places a new (empty) rule in the packet, which can then be filled out by clicking on @ o
add a new conn{iﬁm (conditions are treated as part of a conjunction) orto add a new action. Clicking right
gives a menu of |Add (Empty| Rule), [Copy One Rule] from somewhere else into this packet, and
which copies all of the rules from another packet.

Clicking over gives you a choice of the standard types of rule packets, described above.

allows you to specify a flavor to be mixed into the packet [Arguments:| and
[Return Variabies:] each allow you to add a new one (L:) or choose from 2 menu of {Add One}, (Add Several},

[Edit]and | Replace]

When a whole rule is outlined, clicking left will be replace the rule with another rule that you point at.
Clicking right gives a menu of | Replace Ruie] [Edit Attributes] and [Delete Rule]

Whenever expressions appear (after the word Precondition:, or as parts of conditions or actions), the user
may [Replace]the expression (L:), or choosing from a menu (R:) of

o [Replace] the expression with another one.
«[Edit] the expression as text.
OI elete[theexptusion.

«[Add Before] another expression (copied from somewhere by pointing).
*{Add'After] another expression.
o[Exchange] two expressioas positions.

o [Parenthesiza]a set of expressions together.

o [Evaluate] the expression in the current context.

tiaw Hoi®

Load Natwaors

fiaw Laoncapt

law Packat " Ganaralize

" Parameters

Save Natwork Edit Concent Fdlt Role

Edit Packet Pop Stack

feant

L:Rapiaco thia tlemant, R:Menu of Replaceo, Ldit.

Fochet: CHECK NLICHMMENT oo (Mot Defined; Medified)|-F: [$:n] CHICK-aLiCmEnT
Ueseription: C: [Cin] PEO-80JECH
C: (Gi9] ramm
C: [rin) veR
£: (e30) TAmse
Editor 3teck [More bekw]
Kilt ttehavior himrlare tehavior iJotino Hehavior Display Packet
- Corrent Lait item D1splay of Reloted ifums-
Packet: CHECY -AL [GINENT Poskat: WFIFY-0K
* fvoe: 00=1-RULE-PRCKET Tvee: W=1-MAE-PACKE]
Packet Clesses: nore Packet Clogves: (CLOOPS-PACYET)
Arqunent s1 rove Argunentsy ()
= Paturn Uarisbles: none Retwrn Vorisblee: (SIATUS SARTEV-MPCIN)
. Pracnenjition: wwe Pracondit ion none
1 Prilaay olews
1 o 17 e (OO M IGENT -5TNTIS) 15
(SECOND- FOSS - GRWVD FUEL -0IL-PUIP RECIRCULATING LIMNE (MLIGIEDE0. ¢« PARTIALLY -ALIGEDES. 5))
. PRESSURE] » 120 -~ 28] then S(STATUS » ALIGIED)
. 9((B9V0 FUEL -OIL-PUYP LINE PRASSURE] =
20 -- W . I7 S((MPHA-SUPPLY-LINE ALIGITENT -STATUS) IS MOT-ALIGIED)
then BISAFTET -MARGIN + UNSAFL] then E(STATUE « FAPTIALLY-ALIGIED]
17 s((0PM0 FUEL-OLIL-SUNP CHAMER PRESSURE] > 17 s((PWU0 ALIGIMENT -5TATUS] IS MOT-ALICHED]
: (* [SECOND-FOGS - GRAVO FUEL-OIL-PUMP CHAFER PRESSUME] 50)) then B{SIATUG = PARI TALL'-ALICIED) ond
- then S{SAETE7-RGLN » UNGAFE] B(SAFTEY-IARDIN « UHERFE]
1 ({14
Kk (SECONE-FNSS « BIAUN FLEL-DIL~MINP PECIRCULATING LINE
PRESSURE] = (20 — 30)] and
(%Y JU(BAMIO FUEL -0IL-PUNP RECIRCULATING LINE PRESSINE) »
- (20 -- 39})
7 Movy dolow ' |
H [Oireme: Selact 3 rule to copy et VR
: Kiowe: . Pagtet PAC-OL]
gl Packer Fac-ST
} Pacrer PaC-08
i Packec Pae-27
r Ll Packet PaC-21
Packet Poc.22
[- ' Pacrer TS L-EXP
—- Packee Pag-23
. Pacver FIEC-SUT- TP
3 Pactes Pac-20
E . Poctot PAC-31-4
. Pacher PAE-VI-0
A Editor Interactive Fone - Related Behervioes [More beiow !

LT 16 Por L1:13147) nerxb [

-

Figure B-21: The KREME Rule Editor

R A et LB L T

Herdoepv: ywrvivn poge butfers

-

LA

-

-
o’

o
Appendix C
A Sessicn With KREME

This appendix shows screen hanicopies of a0 exampie user Ses$ion.

ledge Editor

Filonme 13 Juset trewm:)i ame : cow qpt ~oinl e mariv-net
[[Iirm Lot 1410 SREME CINPERT P sl 1 LISP (4/1°°07 J9:58 W)
 [(wing soad file 1 LATR] 270 W
Lnscteng LIREME - M0 EPT-1CF . MEs W-ET |12 NEVEST inv0 nach sae PL
i towt file finjaiwart 17 coveornt
Hwmirwy @t up 4. OCAT 0N ST o,
[eviewy trdwer 1t 2w (A0 R0 ST A inhpr 1torw e fime-laed o fo e imal o
i marge <3/ A7 04T N e tintehod (N sqramt)
W ing Ml ld anersiae 13,00 87 N ST, gt Vel arypvwing 1 intched (@ secanrs)
iney clvetity L 4/NT AT SNAT O, riveerty finiched ¢ | mtrorte)

ot e finighart ¢ | ooty

ST NETWWR LTATLLTICT tsee

Mamher nf Roles o
Meter Al Corwapnte

,:“ k

Ramhor nt W trae) ion Vied: e

Svovage wemher nl Herty s b Lhuve (W9 ovw opt I Na

Meber af r1aarfier hied 1inkse 3

Mmihge nf dolivmet sine s (hrd

Mmber of crapletinng jrdmi 4inte ?

fotal mmber of st inct alore 134 .
Averige mwaier nf 2tate pee ranrept Lt)

, k Load f1le 1 RERE COMEPT-LEPT MEH RET.LISP fintsheg (| mimite S5 saromte)

Editoe [aperatonm [oa.

[I TY I [HRL con-reen M LMIS
- ==

Figere C-1:

smrinralice

< A

initial i is wi and typed <select> K.
° initi of the KREME interface. Tommm.mewlogedm ‘
g?ﬂ?ﬂh?ﬁiﬂdﬂnﬂqﬂhmdmﬂcmgumm@m
load. mmhummammcomr-mm-mm. KREME dispiays
information about the loaded ostwork as it reads it.

7[qg

KREME. Knowledge Editor

Tree e CHE ME
o .

Tl h et e 3 T e et —T farameters
v JinTwark - >) tehit Role Reant

Editor Interaction Pone

YRR v v Higuite

Figure C.2:
Next. the user clicked on(Edit Concept] and typed "thing” to the prompt.

rom

-

Tooadh Mlartwar s Tartws ConreCept

v Metworte

Metuwork: RECH-NET, language: KRENE
Prinitive: YES

Soecialtazes:

Description:

atl it

018 NumNer rettr 1CTLION Value reftriction

Hlew ttelated Concent CLhanage View G BLI]

Add ot

Def au it

!Kf pron

e Hotsy Farameters
cohit Hode

[Classified; Unmodified]

Rt Hedundaat Hlotss

Sdrenr teock

iner

Sd:tae Inscrn trn Bome

Figure C.3:

muu%hCmpr'dm”omwgmmp&mhhmahﬂﬂNG

100

Hisuwrre

S

v

-

Vhad e twork R P o (leyws 11O1> Darameters
i E o I M It Role

s Helated toncopt

Editor Stack

Slots
i‘tcﬂ to canter on grsoh: mobl)e-object

Sditor Interaction Pane

e e anan b Merw; Lhaogse Miagire

Figere C-4:
Here the user clicked the right mouse button while pointing t an empty spot in the graph window. This memu
displays operations that can be performed on the network display. The user selected {find node| and typed the

concept came "mobile-object” to the prompt. 2

Abstractions and &

lew Hole Parametaers

Load Hetwark e loncent
3 Cdir ol

Saver Neatwaork

| Properey |

—
1 st tooaneopnt Pinw Hedgtod Concept Change View +€: (Civ] MIne

" &
Netwvork: MECH-NEY,
Prinitive: YES {Classified;
Soecializes:
Gescription:

Unnodif i ed)

Editor Stack

e IEXSIE I

114 Kl Hedundant Hlots
Jescription -

yr restriceion V. restriction |

Slots

tem to center on graoh: rabile-object
Iren to center on graph: mobile-object

Editor Interaction Pane

Figure C.S:
mmmdldudnnodemdoenmit(mguy)omhedkphy.

102

™

A

AR A

POy

lew Hoje farameters

Load Metwork
it Hole Heset

Save Metwork

| Hoep]

1C;U] WOBILE-0BJECT
[;u) ™ine

Chanqe View

Kili Loncept Ttow Hojated Concept C:
c:

J{¥ -
Netvork: NECH-MNET,
Prinitive: YES
Specializes: O0BJECY
Description:

(Classified; Unnodiftied]

Add Slot Kilt Hedondant LHlots

Editor Stack

Oef \ned by Pole ~ Nusber et 0n Value restriction Default Descr int ton
LOCAL® WEANE-OF -LOCONOTION A¢ Teast 1 {& L Y (M -+)

Figure C-6:

Haednmhscﬁcheddnleﬁmmdnmdefmthecmam;mawbemem

editor object. mmphmvdiqﬂaysomymcompnmamamm(pmpmofpmmm)w
specializations (children, children of children, etc.) of MOBILE- . iti i
o ot MO { o) of OBJECT. In the table editing window, the locally

103

e o

heabin

Lo 1letwork Tlew Holta Hirameters

Gave Hetwork [Edit Concept fINE Edit Hote Reser

e Rentated Concent Chanas View

L
fetverk: NECH-NET,
Prinitive: YES (Classif ied;
Seoecializes: OBJECT
Oescripttion:

Unnodif ted]

Kl Hodundant tiots [IRIEN S

Dezcr at 1on

adi) Star

restrictien Value reserictien

At ivest § [} -4 } (A -4)
Exactly 1 (A OEMBLTY) (& DENBITY)

0eJecT COLOR-OF At lesst 1 (& COLOR) (A COLOR)

osJecT comPOS1TION At least 1 (A sussTANCE) (& SUBSTANCE)

osJecT € - Exactly 3 (a8 AtE) (AN A0E)

oBECT SNAPE Exactly 1 (A sase) (A SHaPE)

oeJect s Exsctly L (A NASS) (& WASS)

osJECT LOCATZo% Eraetly 1 (& LOGATION) (A LOCATION)

osJecy s1z¢ Laactly L (A SIZE) (& S126)

o v - B Himerre

Figure C.7:
Here the user has clicked on [All Slots] KREME now displays all the inherited slots in additioa to the slots local to
the concept. The table shows where the slot was inherited from in the first column, "Defined By".

104

>
—e
rye¥

L

4-5‘\-@“—4-

aasts o B,

Coad {(Intwark
Taue Metwark

Prinitive: YES
Soecializes: OBJECT
Oescription:

At least
fzactly L

at lesec 3
At least 3
€xectly ¢
e Cxactly 3
BASS Cxattly 3
LoCaTIOn tractly 1
$12¢ Erectly ¢

Fhesse Hover
bt Hole

T Heolated Concept

(Classified;

g

" Oefeuit

-t
(A OEWBLTY)
(A COLOR)

(A SUBSTANCE)
(AN a8E)

(» art) (A Swarg)

(A nass) (& Nags)
(& LOCAT1OW) (& LOCATIOW)
(a 8120) (s s1ze)

Chvanage Yieww

Unnedified]

BORIIIRNAN Editor Stack

Descr gt \on

Loncept nane: ﬂ“giw,.cv.l

Editor inkcraction Prme

Here the user is adding a new coocept. After clicking

OBJECT™.

108

HMlaurt s

(New Concept] the user gave it the name "FLOATING-

"B

tuad NHetwork low foneent New Roie
e Tletwork [Edit Concept | £t Hote

Parameters
Reset

Shrvsier

Kl i anc et Plerwe Hiclalodd oncept Change View
v .
Netwerk: Mﬂ-l“l. lenguage: KRENE
Prinitives: YES

Special tzes: OBJECY

Oescription:

" [ClaswiPied; Unmodified])

Liestanedt Slot-, add ot Full Ht <l|nu||n[Lloty

ned bv ote MeNDOr OTLPICTION Value restriction

TLOCAL S WARE-OF -LOCORTION at Jesst L [- Yy (&

U] WOBILE-UBJELT
| ™ING

0o
e o
ﬂﬂ
CC

Edipar Ak

= E o)
oseet oEnsITY Eiactly o (A OENSITY) (A DENSITY)
osJgc? COLOR-0F at lesst & (A COLOR) (» coLom)
oaJEcT ComPoSITION At least L (A sussTANCE) (& SUBSTaNCE,
hogradd . Bau conceat FLUATIIG OAELY
ae I B
osJect LOCAT 1oW fnictva?: ves No
BIECT size Indtviduei?: “as e
¢ Direct perents: (MOBILE-OBJECT)
Siors Desine wad forrher egit [

e IS jQunsheran 'Y Lhaote Mlaurta

Figure C.9:

KREME pops-up a menu containing the basic things it needs to know about a new concept. The user changes the

Direct Parents field from the default (THING) to (MOBILE-OBJECT). Note the typhen.
(in parentheses) of the concepts that the new one specializes. Next, the user clicks on the

Direct Pareuts is a list
[x] Define and further

odit box. The pop-up menu disappears, and the new concept becomes the current editor object.

106

"™

Py .
-l

t ad fletwork m New Hote) e Farameters

Save Metwork Lait Concept Edit Hole) .) Reset

Abstraciions and Specializations of ‘FLOATING-OBJECT

Clasaify Concept Kall CLaoncept
Caoncepc: FLOATING-OBJECT

Netverk: NECH-NET, \anguage: KRENE

Prinitive: YES {Unclassified; Unmnodified)
Specializes: MOBILE-OBJECT
fescription:s

(V1] FLOATING-UBIELT
£ {C.U] OBILE-IBIECT
C. {C.] THING

ttew Helated Concept Chanqge View

Lot TAadd Giot Kiil Hedundant

Stats

(Y
fo

Seag |
SO) |

Yalue rettriction Oefauit Description

Algurra

Figure C-10:

The oew concept, FLOATING-OBJECT, is available at this sta iti iti

ge for further definition and editing. Common
opmomwouldbetolookatmhrmedsloc.addnewm.madsaipﬁon.em. Finally, the definition must be
classified with the command before it becomes 2 permanent part of the network.

107 .

Load fletwork Mlew (oncent Mew Hole Parameters
Save PMetwork | Edit Concept gl . Edit Role Reset

Abstractions and Specializations of '"MOBILE-ORJECT]

oLtassity oncept Kilf Concept How Helated Concept Chiange View : ;U] WOBILE-OBJECT
Concept: MOBILE-OBJECT : ::} iy 1e-o8ecT
Netweric: NECH-NEY, language: KREMNE H

Prinitive: YES [Classified;
Specializes: OBJECY

Description:

Unnod{f1ed]

Uetined ot wdddd Slot Editor Stack
I e restriction Velus restriction — I
[CoCaLs WARS-OF -LOCOROTION at Teast 1 Ta WEARE-OF -LOCOROTION) (A WEARS-OF -LOCONOTION)
DENSTY fxactly 3 (A DENSLTY) (A DENSITY)
COLOR-0F At Teast 1 (4 COLOR) (A coLOR)

osJECT CONPOSITION At teast 1 (A SUSSTANCE) (A SUBSTANCE)
osJecT ot Exactly 2 (a0 a8E) (AN asE)
oRJECT NAPE Exactly 1 (s SHare) (A SHAPE)
JsecT s : Cxaetly 1 (A nag®) (8 NASE)

08JECT LOCATION Eractly § (A LOCATION) (A LOCATION)
08JECT (1% 3 Exactly 1 (& $120) (8 312¢)

Etitae Interoction Pone

) IS

Figure C-11:
By clicking the left button over MOBILE-OBJECT in the Editor Stack Window, or by using the (Edit Concept]

command again, KREME retumed to a view of the concept "MOBILE-OBJECT". The graph now shows the new
child concept "FLOATING OBJECT".

\g i

DAt AR el st ,.T,...,

(1l

21

Bl

[4)

51

(61

(81

(9

[10]

(1]

(12}

13]

Bibliography

Balzac, Stephen R.
A System for the Interactive Classification of Knowledge.
Technical Report M.S. Thesis, MLT. Dept of EE. and C.S., 1986.

Bobrow, D., Winograd, T. and KRL Research Group.
wnh KRL.-0: One cycle of a knowledge representation language
In Procudings of the Fifth International Joint Coqference on Amﬁczal Intelhgence UCAI-77, Cambridge,

MA., August, 1977.

Brachman, R.J., Fikes, R.E., and Levesque, H.J.
Krypton: A Functional Approach to Knowledge i
IEEE Computer, Special Issue on Knowledge Representation , October, 1983.

Carbonell, Jaime G.

Derivational Analogy: A theory of reconstructive problem solving and expertise acquisition.

In Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (editor), Machine Learning: Volume II, pages
371-392. Morgan Kanfmann Publishers, Inc., Los Altos, CA, 1986.

Emst, G.W. and Newell, A.
GPS: A Case Study in Generality and Problem Solvmg
Academic Press, New York, 1969.

IntelliCorp.
KEE Software Development System.
IntefliCorp, 1984.

Keene, Sonya E. and Mooa, David.

Flavors: Object-oriented Programming on Symbolics Computers.
Symbolics, Inc.

1985

Camegie Group, Inc.
KnowledgeCraft.
Camegie Group, Inc., 1985.

Moser, Margaret, . :
An Overview of NIKL. ’
Technical Report Section of BBN Report No. 5421, Boit Beranek and Newman Inc., 1983, -

Newell) A. -~
The knmowledge level.

Al Magazine 2(2):1-20, 1981.

Rich, C.

Knowiedge Representation Languages
In Proc. AAAL pages 192-196. 1982.
Roberts, B. snd Goldstein, 1. P.

The FRL Manxal..
AL Lab. Memo 409, M.LT., 1977.

Sacerdoti, E.
Planning in a Hierarchy of Abstraction Spaces.
Artificial Inseiligence 5(2):113-135, 1974.

FrY RNy

and Predicate Calcuius: How to Have Your Cake and Eat It Too.

oV

109

e

&

3

- .»——4-\-—'#.—._"* —— M‘@&W&,—» gt s, it

.

Sy vageet o

oy

P

——

[14]

[13]

(16]

an -

(18]

(19

[20]

1)

[22}

Sacerdoti, E.
A structure for plans and behavior.
Tecbnical Report 109, SRI Artificial Intelligence Center, 1975.

In Research in Knowlege Representation for Natural Language Understanding, Annual Report: 1
September 1982 to 31 August 1983. BBN Report No. 5421, 1983.

Schmoize,].G., Lipkis, T.A.
Classification ip the KIL-ONE Knowledge Representation System.
In Proc. 8th JCAL 1983.

Shapiro, Richard. .
FLEX: A Tool for Rule-based Programming.
Technical Report 5643, BBN Labe., 1984,

Sidner, C.L.; Bates, M_; Bobrow, R.J.; Brachman, R.J.; Coben, P.R.; Israel, D.J.; Webber, B.L.; and Woods,

WA
Research in Knowledge Represemtation for Natural Language Understanding: Annual Report.
Technical Report BBN Report No. 4785, Bolt Beranek and Newman Inc., November, 1981.

Stefik, Mark.

" Plaoning with Constraints: MOLGEN.

Artificial Inteiligence 16(2):111-169, 1981.

van Melle, W.

A domain independent production-rule system for consultation programs.

In Proceedings of UCAI-6, pages 923-925. August, 1979.

Vilain, Marc.

The Restricted Language Architecture of a Hybrid Representation System.

In Proceedings, LICAI-8S, pages 547-551. International Joint Conferences on Artificial Intelligence, Inc.,
Aungust, 198S.

Williams, M., Hollan, J., and Stevens, A
An Qverview of STEAMER: AnAdvneedComputer-AmsdemmonSyﬂemﬁoerwlnon

Engineering.
Behavior Research Methods and Instrumerzation 14:85-90, 1981.

110

———

DISTRIBUTION LIST

cdcresses number
of copies

Sharon ~, Walter 70
RADC/COES
RACC/COVL 1

GRIFFISS AFB NY 13441

RADC/BAP 2
GRIFFISS AFB NY 13441

ADMINISTRATOR 5
DEF TECH INF CTR

ATTN: DTIC-DDA

CAMERCN STA 86 5

ALEXANDRIA VA 22304-£145

" RADC/COTD 1
8LOG 3, ROOM 14
GRIFFISS AFB NY 13441-5700

Director 1
DMAALC (Attn: RE)

3200 ¢. Secord St.

St Leuis MO £3118-3396

AFCSA/SANI : 1
Attn: Miss Criffin

10362 Pentagen

Wash DC £(C330-5425

HQ USAF/SCTT 1
Pentagon
Wwash 5C 2C33C-51%Q

SAF/RGCSC 1
Pentagon 40-267
Wash £C 2€337-1000

DL-1

[

b a4

P———y

i

i

14

DIRECTOR

DMAHTC

AT TN: SCSIM

wash CC 20315-0020

Directors, Info Systerns
CASD (C3I)

Rm 3E187

Pentagn

Wash BC 2C301-2040

Fleet Analysis Center

Attn: GICEP Oceraticns Center
Code 39531 (E, Richarcs)

Corona C» 9172C

HQ AFSC/CLAE
ANDREWS AFB ©C 2C334-5000

HQ AFSC/XRT
Andrews AFB M0 2(C334-500C

HQ AFSC/XRK
ANODREWS AF3 D 2C334-500

HQ SAC/SCFT .
CFFUTT AFB NE €8113-50nNn1

HQ ESC/0CQR
Attn: Fred Lacwig
Sanm Artcrio TX 78243-500C

DTESA/RQEE

ATTNS LARRY G.FCMANLS
2501 YALE STREET SE
Airpcrt Flaza, Suite 102
ALBLAUERCUE A™ 87106

o

HQ TAC/ORIY
Attn: "“r, Westerman
Langley AFS VA 23665-5001

HQ TAC/DCA
LANGLEY AFB VA 23665-50C1

H@ TAaC/DRCC

-LANGLEY AFB VA 23665-~5001

HQ TAC/ORCA
LANGLEY AFB VA 23665-50C1

ASD/ ENEMS
Wright-Patterscn AFB CH 45433~4503

ASD~EAFALC/AXS
WRIGHT-PAT TERSCN AFS CH 454373

ASD/AFALC/AXAE
At tn? We He Dhﬂgey -
Wriight=~Fat terson AFE OH 45432~-6533

ASD/ENAML
Wright=-Patterscn AF3 CH 4563 3-45C3

ASD/ENAMA
Wright=-Patterson AF8 CH 45433

)

. W

1

.AFIT/LOEE

BUILCING 640, AREA B
WRIGHT=-PAT TERSCN AFB

AFWAL/MLFO
WRISHT-PATTERSCN AFB

AFWAL/MLTE
WRIGHT=PAT TERSCN AFS

AFWAL/FIES/SLRVIAC
WRIGHT-PATTERSCN AFB

A AMRL/HE
WRIGHT~PATTERSCN AFB

Air Fcrce Hurar ResoLrces Laboratory

CH

CH

CH

CH

CH

4543 3-65¢E3

45433-46533

45433

45433

4543 3-4573

Technical Docuwents Center

AFHRL/LRS=-TDC

Wright-Pat terscn AF3 CH 45437

2750 A3W/SSLT
Bldy 262
Post 118§

Wright=-Patterscn AFB CH 456433

AFHRL/OTS

WILLIAMS AFB AZ 8524C-46457

AUL/LSE

MAXWELL AFB 8L 34112-5564

DL-4

-

I Y

HQ AFSPACECCMP/XPYS
ATTN: OR, WILLIAM R, MATOUSH
PETERSON AF3 CO £0914-S071

3230TTG/EISS
Attn: TSgt Kirk
Lackland AF3 TX 78736

HQ Air Traininc Command
TTOI
Randclph AF8 Tx 7815C-50C1

Deferse Ccmmunications Engineering Ctr
Techrical Litrary

1350 Wwiehle Avenue

Restcn VA 22(090-5500

CoOMMAND CONTROL AND COMMUNICATIONS DIV
DEVELCPMENT CEANTER

MARINE CCRO®S DEVELCPMENT 8 ECUCATION COMMAND
ATTN: CCCE DICA

QUANTICO vA 22134-50¢%f0

AFLMC/LGY
ATTN: CH, SYS ENGR CLIV
GUNTER AFS AL 26114

UeS. Army Strategic Lefense Ccmmand
At tn: DASD=H=NPL .
P.0. 8Box 150C

Huntsvil le AL 25807-238M1

COMMANDING OFFICER

NAVAL AVICNICS CEMTER
LISRARY ~ D/765
INDIANAPCLIS IN 46216-21%9

COMMANDING OFFICER

NAVAL TRAINING SYSTEMS CENTER
TECHNICAL INFORMATION CENTER
BUILDING 2960

QRLANCO FL 32813-710C

B e At 4 b < e

~ :

&

. COMMANDER

NAVAL OCEAN SYSTEMS CENTER
ATTN: TECHNICAL LIBFAQY, COCE 94478
SAN CISGC CA 9¢152=-5C00

COMMANDER (CCDE 2433)

ATTN: TECHNICAL LIBFARY

NAVAL WEEAPCNS CEMTER

CHINZ? LAKE, CALIFORNIA 93555-6101

SUPERINTENDEANT (CODE 1424)
NAVLA POST GRACUATE S(CHOCL
MCNTERFY CA $3543-5000

COMMANDING OFFICER

NAVAL RESEARCH LABORATCRY
ATTN: CCDE 2627
WASHINGTCN DC 20375-5C0NC

SPACE & MNAVAL WARFARE SYSTEMS COMMAND
PMw 153=%p°

ATTN: R. SAVARESE

WASHINGTCN DC 20263-510C

CDR»s» LoSe ARNMY MISSILE CCMMAND
REDSTCNE SCIENTIFIC INFORMATICN CENTER
ATTN: ANSMI-RE=-CS=R (DCCU%ENTS)
REDSTCNE ARSENAL AL I5°6R-5241

Adviscry Group on Slectrcn Devices
Hammcrd Jchn/Teckhknical Irfo Coordinatcr
201 Varick Street, Suite 1140

New Ycrk NY W %14

UNIVERSITY QF CALIFCRNIA/LOS ALAMOS
NATIONAL LABORATORY

ATTN: DAN BACA/REPORT LIBRARIAN
P.0. EOX 1662, WS=-P3&4

LCS ZLAMCS NM 87545

RAMD CORPORATICN THE/LIEFARY
HELFER CORIS S/MEAD TECK SVCS
.0, EOX 2132

SANTA MONICA CA SQ406~-2138

DL-6

AEDC LIBRARY (TECH REPORTS FILE)
Ms=10C
ARNOLC AFS TN 17186-6963

USAG
Attn: ASH-PCA-CRT
Ft Huachuca AZ 35613=-4000

183% EIG/EIET (KENNETh W. IREY)
KEESLER AFS M3 36534~£347

JTFPFC

Attn: Technical Director
1500 FPlanring Sesearch Drive
MclLean ve 22102

HQ ESC/CwPP
San Artorio TX 78243-50(0C

AFEWC/ESKI
SAN ANTONIO TX 7£243-50Q0°C

485 EIG/ELIRR (CMC)
GRIFFISS AF3 NY 13441-6343

ESD/AVS
AT TN: ADV SYS DEV
HANSCO® AF3 MA 01731-500C

_ESD/ICP
HANSCO™ AF3 ®a 01731-500C

DL-7

e

ESD/ AVSE
BLDG 1704 :
HANSCOM AF8 A 01731-500C

HQ ESD SYS§=2
HAMSCOM AF8 »A 0D1731-500C

ESD/TCO-2
ATTN: CAFTAIN J. YEYER
HANSCGCM™ AF3 YA 01731-500C

The Software Ergineering Instityte
Attn: Major Dan Burtcn, USAF
Jint FProgram Cffice

Carnegie Vellcr University
Pittsturgh P2 15212-38¢0

DIRECTOR

NSA/CSS

ATTN: TS13/70L (DAVID MARJARUM)
FORT GCEOQORCGE G FEADE ML 20755-6200

DIRECTOR
NSA/CSS
ATTN: W166
FORT GEOQRCE

()

YEADE YL 20755-400C

DIRECTOR
NSA/CSS

AT TN: R24
FORT GEOQRCE

(]

FEADE MC 27755-6M 0

DIRECTIOR

NSA/CSS

ATTN: R21

(9800 SAVAGE ROAD

FORT EGEQRGE € YEASDE PD 20755-40N0

DIRECTOR

NSA/CSS

ATTN: DEFSMAC (JAMES £, HILLMAN)
FORT GEOREE € MEADE FD 2C755-6000

DL-8

| R Y

DIRECTAR
NSA/CSS

AT TN: R21
FORT GEORGE

DIRECTOR
NSA/CSS

AT TN: RS
FORT GEOREE

DIRECTOR
NSA/CSS
ATTN: R?
FORT GEORCGE

DIRECTOR
NSA/CSS
ATTN: SC31
FORT GEORGE

OIRECTOR
NSA/CSS
AT-TN: Sé1
FORT GEORGE

DIRECTOR
NSA/CSS

ATTN: V33 (s,

G MEADE MO 2C?755-4000

C NEADE

G FEADE

G WEADE

C MEADE

¥e 2C755-600C

¥¢ 2C755-600C

¥C 2C755-¢03C

¥t 2C755-600C

Friegrich)

FORT GEOQREGE € ¥EADE ML 2(755-6M)0

DIRECTOR
NSA/CSS
AT TN: WC7

FORT GEORGE G FEADE MDD 20755-6000

DIRECTOR
NSA/CSS
ATTN: W2

FORT GSORGE € ¥EADE MC 20755-6400C

DL-9

DIRECTOR

NSAa/CSS

ATTN: RE23

FORT GEORCE € MEADE ¥C 2C755-67017

DOoD COMPUTER SECURITY CENTER
ATTN: C4/TIC

9800 SAVAGE RCAD

FORT GEORGE € YEADE ~C 2r755-600C

Bolt, Beraneks, and Newman (329N)
10 Mcultecn Street
Cambridge, MA C2238%8

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DARPA)
1400 Wilson Blvd
Arlington VA 22209

DL-10

oot

