
RADCTRSW-188

._Phse Technical Rpoqrt

September 101

00

THE BBN KNOWLEDGE ACQUISITION-
<PROJECT

131N Laboratories, Inc.

Sponsored by
Defense Advanced Research Projects Agency

ARPA Order No. 5290 D I

7 -.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTIO UNLIMI TED.

4ThewsancocuincotieIntidouetaetsefth authors and should not be
a~epste ise of psnh-9teofca oiieet xrse or Implied, of the Defense

-Air Force Systems Command
- Grlfflis Air Force Base, MY 13441-5700

THE BBN KNOWLEDGE ACQUISITION PROJECT

Glenn Abrett
Mark H. Burstein
John Gunshenan
Livia Polany

Contractor: BBN Laboratories, Inc.
Contract Number: F30602-85-C-0005
Effective Date of Contract: March 1985
Contract Expiration Date: January 1989
Program Code Number: 8E29
Short Title of Work: The BBN Knowledge Acquisition Project
Period of Work Covered: Mar 85 - Jul 87

Principal Investigator: Albert Stevens
-' Phone: (617) 873-3802

RADC Project Engineer: Sharon M. Walter
Phone: (315) 330-3564

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced
Research Projects Agency of the Department of Defense
and was monitored by Sharon M. Walter, RADC (COES),
Griffiss AFB NY 13441-5700 under Contract F30602-85-C-0005.

UNCLASSIFIED
SEC4jRITY CLASSIFIC-ATION OF THIS PAGE

REPORT DOCUMENTATION PAGE ~OMBW00"8
I&. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNILASIIE~FCTO UhRT 3. DISTRIUTIN I AVAILABILITY OF REPORT

N/A Approved for public release;
2b. DECLASSIFICATIONI DOWNGRADING SCHEDUL.E distribution unlimited

N/A ____________________

A. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TL-88-188

68. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

BNLaboratories, Inc. (I *ikb Rome Air Development Center (COES)

6r- ADDRESS (01y', State, and ZIP Code) 7b. ADDRESS (01y, State, and ZIP Code)
10 Moulton Street Gifs F Y14150
Cambridge MA 02238 GrfisAENY14150

0&"EO UONJPNOIN b FIESMO 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION Defense Advanced 0I S1anplca P e)I~
ReeachProjectsg~ I F30602-85-C-0005

IL ADDRESS (01)', Stat, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd 'POGRAM PROjECT ITASK IWORK UNIT
Arigo A229EuEMENT NO. NO. E20 NO_ CESO NO.
ArlngonVA220962301E E90001

11. TITLE (kilude, Seamty Claniflcatan)

THE UN KNOUL.EDGE ACQUISITION PROJECT

12. PERSONAL AUTHOR(S)
Glenn Abrett, Mark!R. Burstein, John Gunshenan, Livia Polany

I3I& TYPE OF REPORT 1 3& TIME COVERED 14. DATE OF REPORT (Yea, Month, Day) 15S. PAGE COUNT
Final IFROM Har 85 To Jul 87 September 1988 134

16. SUPPLEMENTARY NOTATION
N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on ,vreif necesay and identify by bWac numberf)
FIELD GROUP SUB-GROUP -7 Knowledge Acquisition: Frame

noreseRepresentation Database Editor.

1.ABSTRACT (Contnuoreves fiay& dniyb A ~I6
Th olof the Expert Assistant for Knowledge Acquisition project was to create a usable

and extensible knowledge engineering environment that will be capable of handling very large
knowledge bases, support experiment* with knowledge eng Inerng techniques and Implement a
useable systemn for knowledge acquisition and maintenance. During Phase One, KREME (Know-
ledge Representation Editing and Modeling Environent) was created. [iElE is an extensible

*experimental environment for developing and editing large knmowledga- ases In a variety of
* representation styles. [iDE! is described in this report.

20. DESTI5TION IAVAILINUTY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION
1; unoAssIFiEasNim T0 C3 SAME As RPT- C3 oTI USERS IUNCL.ASSIFIED
a.NAME OF RESPOINSISLE INDIVIDUAL. 22b. TELEP"HE (kiduft Are Code) 22c. OFFICE SYMBOL

Sbaron M; Walter (315) 330-3564 1RADC (COES)

00Fr 43 JUN 96 Preiou d'W itl a&*, A SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Table of Contents

L Introduction 1

2. Overview of the BBN Knowledge Acquisition Project 3

3. The KREWE Knowledge Representation Editing and Modeling Environment 5

3.1 Functional Description 5
3.2 Basic Editing Environment 6
3.3 The Grapher 6

3.3.1 Pmnin the Grp 8
3.3.2 The Overview Graph,
3.3.3 The Graph Operaions Menu 8
3.3.4 The Grph Node CommandMean 10
3.3.5 Editing a Netwok fom a Graph 11

3.4 Editing in the State Window 11
3.5 Editing in the Table Edit Window 12

3.5.1 Adding ew Sims 13
- . 3.5.2 MOdifyin$ the Table Edit Window 13

3.5.3 Cbanging the Cosnts of the Table W'ndow 13
3.6 Files and Multiple Language Support 14

4. The KREME Frame Editor 15

4.1 The KREME Frame Language 15
4A. Frume Language Syntax 16

4.2 Using the Frame Editor 17
4.2.1 Editing in the Main Concept Editing View 17
4.2.2 Prme Editing Optation 17

S. Large-Scale Revisions of Knowledge Bases 19

5.1 The Macro and Structure Editor 19
5.2 Developing Macro Editing Procedre 20

5.2.1 Macro Example: Adding Pipes Beween Compoents 21

6. Knowledg Integration and Consistency Maintenance 23

6.1 Th. Frame Clasfier 23
6.1.1 Comdltim 24
6.1.2 Claicasion 24

6.2 An Exampe of a aon 26
6.3 Using tie Knowledge Integrator to Partition an Merge Knowledge Bases 28

6.3.1 L*oVMue 28

6.4 Saving and Partitioning Knowledge Bases 28

6.5 Using Merge and Partition to Build Larger Knowledge Bases 29

7. Editing Behavioral Knowledge 33

7.1 Editing Rules 33
7.2 The KREME Rule Editor 34
7.3 The Rule Editor View 34
7.4 Procedures in the KREME Environment 36

7.4.1 Pmcedual Abstactiou and Structre Mapping 38

8. Knowledge Extension 39

9. Conclusion 41

APPENDIX A. Loading KREME 43

A.1 I Ading KREME from Cassette Tape 43
A.1. Loading the FEP Files 43
A.1.2 Editing the FEP Files 44
A.1.3 Booting KREE 44

A.2 For Machines with No Tape Drive 45

APPENDIX B. A User's Introduction 47

B.0.1 Introduction 47
1.O.2 nluodecing KREME 47
B.O.3 Ovaview of this manual 49

B.1 The Knowledge Editor 49
B.1.1 WAndows and Views 49
B.1.2 Using the Mouse 56
B.1.3 Comand Menus 57
B.1.4 Buffers and the Editor Stack 58

B.2 Editing Frame Knowledge Bases 60
B.2.1 Definition of KREME Prmnes 60
B.2.2 Using the Frme Editor 64
B.2.3 Abkmmn Conce Viws 74
B2.4 Sizing Roles 74

B.3 The KREME Classifier 76
B.3.1 Jmrodcing the Clmihr 76

B.4 The Macrto and Structure Editor 83
B.4.1 Macro Editng oftKnowkdp Baues Background 83

.,42 Tie Macro md Sacemse Editor View 83
B.4.3 Devloping Macro Edo Proceduu 85
1.4. ainn fIatmes im coep: A Sample Macro 86

B.5 The Gemalizer 88
B.6 The KREME Rule Editor 90

B.6.1 hJ fuoction 90

i

92
B.6.2 Editing Rules in the KREME Enviomnett 92

B.6.3 Th.KRENE RulEditor 92
B.6. " Rule Editor View

APPENDIX C. A Session With KREME
98

Bibliography
109

4C

•
' - - -', •""--

V.\

i*

List of Figures

Figure 3-1: KREME, Functional Description 5
Figure 3-2: The Main Concept Editing View 7
Figure 3-3: The Overview Graph 9
Figure 3-4: The Graph Operations Men 10
Figure 5-1: The Macro Structure Editor View 20
Figure 5-2: Steps in PIPE Macro 22
Figure 6- 1: Two Examples of Slot Completion 25
Figure 6-2: An Example of Reclassification 27
Figure 6-3: Example One: Merging with Nonoverlapping Attributes 30
Figure 6-4: Example Two: Overlapping but Compatible Properties 31
Figure 6-5: Example Three: Unmergeable Concepts 32
Figure 7-1: The KREME Rule Editor 37
Figure B-1: KREME's Screen Editing Views 51
Figure B-2: Windows in the Main Concept Editing View 54
Figure B-3: A Simple Concept Taxonomy 61
Figure B-4: LISP form of a KREME frame definition 61
Figure B-S: A Simple Role Taxonomy 62
Figure B-6: A Slot Equivalence 63
Figure B-7: The Main Concept Editing View 65
Figure B4: Panning the Graph 66
Figure B-9: The Graph Operations meu 66
Figure B-10: Alternative Concept Editing Views 75
Figure B-11: The Role Editing View 77
Figure B-12: Inheriting Number and Value Restrictions 79
Figure B-13: Combining Value Restrictions 79
Figure B-14: Discovering a missing subsumer by a CMEET check. 81
Figure B-15: Altering STOP-VALVE to correct a CMEET error. 82
Figure B-16: After interaction with the classifier. 83
Figure B-17: The Macro Smcture Editor View 84
Figure B-18: Changing RED to RED-OBJECT 87
Figure B-19-. Rmning the macro COLOR-OBJECT 89
Figure B-20: Finding a new generalization. 91
Figure B-21: The KREME Rule Editor 95
Figure C-1: 98
Figure C-2: 99
Figure C-3: 100
Figure C-4: 101
Figure C-: 102
Figure C4: 103
Figure C-7: 104
F~gureC4k 105
Figure C-9- 106
FigureC-10: 107
Figure C-IL 108

1. Introduction

Thi is the Final Report for Phase One of the BBN aboratoies Knowledge Acquisition Project. This research

was supported by the Defnse Advanced Research Projects Agency of the Department of Defense and was

monitored by the Rome Air Development Center (RADC) under Comract number F30602-85-C-0005.

The goal of this project was to cream a useable and extensible knowledge engineering environment that will

be capable of handling very large knowledge bases, support experiments with knowledge engineering techniques

and implement a useable system for knowledge acquisition and maintenance. During Phase One of this project we

have created the KREME Knowledge Representation Editing and Modeling Environment. KREME is an extensible

experimental environment for developing and editing large knowledge bases in a variety of representation styles. It

provides tools for effective viewing and browsing in each kind of represenation. automatic consistency checking,

macto-editing facilities to reduce the burdens of large scale knowledge base revision and some experimental

automatic generalization and acquisition facilities.

Among the planned extensions to KREME are:

* The Procedure Editor

o A KEE Interface

e The Addition of Boolean Connectives to Slot Restrctions

9 Extension of the Macro Editor

We a e currently in the process of extending the value restriction language to permit more complex forms

containing conjunctions. disjunctions and negations, based on the restniction language for KEEf tI frames [6]. This

effort should result in an extenled classifier, as well, capable of maitaimng consistency among frames in the KEE

class of frame languages.

During Phase Two we will also be developing experimental kinds of automatic knowledge acquisition;

techniques for generaming comrolled acquisition dialogues, procedures to automatically transform previously

acquired knowledge for use in new tasks, and techniqes for leaming by analogy and froim examples.

The appeadxesm to s mmual provide the detailed infomom needed by those who will be installing and

uming REME at that sam. Appendix A provides instructiom in loading KREM from tape. Appendix B is a

User's Introduction to KIEMLE Appendix C presents a sample KEMEmo.

THIS KATERIAL MAY BE REPRODUCED BY OR FOR THE U.S. GOVERMM PURSUANT
TO THE COPYRIGHT LICENSE UNDER THE CLAUSE AT 52.227-7013 (MAY 1981).

2. Overview of the BBN Knowledge Acquisition Project

Or goal has been to develop an envimmuet in which the problems of knowledge acquisition faced by every

knowledge engineer attempting to build a large expert system a minmmized. We believe both knowledge engineers

and subject man eeqm with some knowledge of basic knowledge representation techniques will find it easy to
use KREME to acquine, edit, and view fom multiple perspectives knowledge bases that ae several times larger

(ie., 5-10,000 concepts) than those found in most current systems.

KREME attempts to deal with the inexticably related problems of knowledge representation and knowledge
acquisition ian a unified maner by organizng multiple representation languages and multiple knowledge editors
inside of a coherent global environmen A key design goal for KREME was to build an environment in which

existing knowledge representatio languages, appropriate to diverse types of knowledge, could be integrated and
organized as components of a coherent global representation system. The current KREME Knowledge Editor can
be thought of as an extensible set of globally coherent operations that apply across a cmnber of related knowledge
representation editors, each tailored to a specific type of knowledge. Our approach has been to integrate existing
frame and rule representation languages in an open ended architecture that allows the extension of each of these
languages. In addition we have provided for the incorporation of additional repxsntation languages to handle
additional types of knowledge.

Our approach to consistency maintenance has been to develop a knowledge integration subsystem that

includes an auromati frame ckwlr and facilites for inter-language consistency maintenance. The frame

lassifier automatically maintains logical conistency among all of the frames or conceptual class definition in a
DIM frame base. In addition, it can discover implicit class relationships, since it will determine when one
defirtn is logically subsumed by another, even when the knowledge engineer has not explicitly stated that

relationship. The inaer-language consistency matienance facility checks for inconsistencies in references to frames
in knowledge baIes specified using other representation languages (e.g., rules, procedures).

A second important area of invstigation in developing the KREME editing environment has been the attempt
to provide fcilities for lr-scae revisions of a knowledge base. Our experience indicates that the development of

an expert system invitably RequiMs sach syum atic revisions of the developed representation. This is often caused
by the addition or redefinition of a task the sysm is to perform. Those kinds of systematic changes to a knowledge
base sealny rmeuism psimk iecemeal revision of each affected element, one at a me. Our initial approach

has been to provid a mnar0ce.* facility, in which the reqpired editing operations can be demonstrated by
memple and appled to specified sm o(knowledge structn auomatically. A library of gneric macro-editing
Operations r the moat common a onmepiwaly simple (though potentially difficult to describe) operations will be

developed Odrig Phas Two of Onr projec

Flely, we ave begun to invesp ucimiques for aaamat generafzation of concepts defined in a
knowledge base. We will riefly timaib these expermets as well, in Section 8.

3

Underlying the enire KRBEM system is a strong notion of meta-level knowledge about knowledge
representaton and knowledge acquisition. The reTresewatio languages were implemented based on a careful
decomposition of existing knowledge repesentation techques and implemented as combinable objects using
FLAVORS 7]. By organizi"g us mewta-level knowledge base modularly. behavioral objects implementing such
notion as inheritance and subsumption could be "mixed in" to a vaiety of representational subsystems maling the
iorpro of new repraenmtions and their editors reasonably snaightforward. That is, each object in the
meta-knowledge base encodes some aspect of a t-aditional representational technique, and is responsible for its own
display, editing and internal form.

4

3. The KREME Knowledge Representation Editing and Modeling
Environment

3.1 Functional Description

The KREME family of knowledge editors currently consists of three major editor modules: a frane editor. a

rule editor, and a procedure editor.2 (See figure 3-1.) KRENM also includes a large toolbox of editing tecbniques

that am shared among the editor modules. This section will describe the global environment and toolbox, later

sections will describe the individual editors. Sections 3.3 through 3.5 provide a discussion of the user interface.

Readers who requite more detail should conult Appendix B.

Procedure Representation
System

Rule Representation . Frame Representation
Syjstem System

"* KRENIE Editin~ge~0
System

Enuironment

Figure 3-1: KRLEM Functical Descrpton

2n Pissed. rd, is Wm.. bdlY ad Mru. %I &W*p=O. .Eda A~m~ Idio wN OMW tmo. TWO,

S

3.2 Basic Editing Environment

Each type of representation included in the system has defined for it one or more editor views. A view is a
collection of windows appearing together on the screen. Each window displays some aspect of the patticular piece
of knowledge being edited and/or a set of editing operations on it. When the user desires to enter or edit a specific
piece of knowledge, the system opens the most appropriate view for the type of knowledge and the editing operation
requested. Typically, any aspect of the knowledge being edited can be changed or viewed in more detail simply by

pointing at it. This organization allows knowledge to be viewed by the user from multiple perspectives and at more

than one level of detail.

The editor maintains a level of indirection betwedn the knowledge being edited and the representation of that
piece of knowledge in the knowledge base. This is accomplished by a mechanism like that of text editor buffers.

Changes are always made to editor deftnition objects which are distinct from the corresponding objects in the actual
knowledge base. The stack or list of the active definition objects is always visible to the user. The top item in this
list is the definition curently being viewed and edited. The user is free to modify the current definition in any way

without directly affecting the knowledge base. Only when the modified definition is to be placed into the

knowledge base is a defining function appropriate to the type of knowledge (e.g., classification for concepts and
roles), executed and the knowledge base modified.

Since the editor stack is always visible, it provides one convenient method for browsing. The user may point
at any definition item currently in the stack. The object will then be displayed in the same editor view as when it was

last edited.

A number of window subsystems or tools have been developed and incorporated into the KREME editor to

make editing, viewing and browsing in knowledge bases easier and faster. They are described below.

3.3 The Grapher

KREME is equipped with a general aphing facility that rapidly draws lattices of nodes and links. Its main

use is to provide a dynamically updated display of a concept or role and its place in the specialization or inheritance
hierarchy. When editing a concept in the Main Concept Editing View or the Big Concept Graph View. or when
editing a role, KR automa cally displays ail of that object's abstractions and specializations. More abstract
objects an displayed to the left of the cunt editor object, and more specialized objects to the right

As shown in figue 3-2. the c-Rent editor object appears as a black node with white letters. All other objects
apear as nodes with a white baground. Objects that an defined as primitive are indicated by bold-edged boxes.

Nodes that have been nedifed (edited but not eclassiftied) ham a grey background.

.. . . I I6

Figiare 3-2: The Main Concept Editing View

.~a ~ a a. - -

Ii

*1C
2

C S S
- S C C*b) -

= C

ji

S
I S.

Sii' i
S.

p

S

S

o ~

C.

C

I -

a
Sn~

* ,-~'\~ -J
U , a

- U *4q

Or X - --H I
* U -

I., - - -
101 o W - --

£ 9 I
I

- I I*
u

* a ha

*;~
-A- 0 i

s2 j 1 ~

- 'a
£

- a--a * -

U S'*--'. 0-Se -.

~ I

7

3.3.1 Panning the Graph

The grapher can display a graph much larger than the window through which it is viewed. To see a pan of the
network that is off the sareen. the user points with the mouse at sone point on the graph window not containing a
node, holds the left button down and drags the mouse. To speed pan, the user holds down the middle mouse button.

3.3.2 The Overview Graph

Clicking the right button once over an empty part of the graph window will make the Graph Operations
Menu appear. If the user dicks overview, a miniature version of the full lattice will appear in a black region in the
upper left comer of the graph window (as in figure 3-3). This overview shows a miniature version of the full

netwodr. The visible region of the graph is indicated by a white rectangle. If the user pans with the mouse over the
main graph window, this white rectangle will follow the mouse movements. All of the mouse operations available

on nodes in the main %indow will also work on nodes in this window. The name of the node being pointed at is
indicated in the mouse documentation window. The overview window also can be used to pan the main graph
window. The overview is turned off by bringing up the Graph Operations Menu and clicking the command
ova-view.

3.3.3 The Graph Operations Menu

The other options in the Graph Operations menu shown in figure 3-4 are:

*, hardcopy -Sends a copy of the full graph of the lattice to the printer.
e style menu - Allows the user to choose the font style and size of characters used for nodes on the graph.

Smaller fonts are useful to see mote of large networks at once.

* find node - Prompts for the name of an object on the graph, and centers that node on the graph window.
It also draws a circle around the node so that the user can find it more easily. The circle disappears as
soon as the graph is pawmed.

* overview - Swkche the overview graph between visible and invisible.

* orientation - Switches the odentation of the graph. Normally, the lattice is drawn from left to right.
This command will cause the graph to be redrawn horn the top of the screen down, and vice versa.

* speed pan - This command pops up the speed panning box without having to bold down the mouse
button. In this mode, clidn any mouse bun= will make it go away.

* redraw graph - Redraws the ce graph.

ia

Figue 3-3: The Overview GraPh

0 V

C--

,

.3
0

'06. a ..

Aa-l

CS.

10a ! , - o

16

Grapph no--ptions
hardcopy
font menu
find node

ori entation
speed pan

red raw aoraoh

Fig%"e 3-4: The Graph Operations Menu

3.3.4 The Graph Node Command M~enu

Normally. the KREME Grapher displays only the abstractions and specializations of the current editor object.

because ICREME was designed to work with the very large lattices characteristic of very large bwowledge bases.
The Grapber provides a number of options to enable users to tailor the display to see more (or less) than KEEf
normally displays on such graphs.

Whenever the mouse is over a node on a graph. the mouse documentation window shows the name of the

node, followed by:

L:Zdit this no"e. YA:Gzaph Relative. R:Nanu of Zditinq Options

Clicking the left moms butto can= KREME to make the object pointed to the top editor stack itemn. This is
an extremely convenient way of browsing through larg co rept netwos quickly, ad focusing on different
portions of such a netwok It~ however, the use wishes to contiue editing the concept tha he is currently viewing,

but see more (or less) of the aztwock w 1und that conept or some other concept on the sowe graph, he can use the
Graph Relative Mm found by clicking the midle m anse button over any graph node.

7Ue Graph Relative Menu, exposed by clicking the middle button over a node, contains the following

- Graph Parets -causs all abstratons of the node clicked on to be added t0 4te displayed graph.

* Graph Clddrm - camns all specialintion of t node clicked on to be added to t displayed graph.
* RMd. Chdren - caem AU specialiwdoau of the node clicked on to be resnved ftm t graph, unless

they ar Ams chilkean of same other node.

*Hide Node and Children - causes the node clicked on and its children to be removed fom the graph.

3.3.5 Editing a Network from a Graph

Caikig the right buton over a graph node causes yet anocher menu of options to be exposed, the Concept

Graph Edit Options Menu 3

This menu contains the following options for concepts:

e Show Definition - Tis option causes the textual (LISP) form of the concept's definition to be
displayed over the Graph Window.

e KID Concept - This causes the concept pointed to to be removed from the knowledge base. It has the
same effect as the Kill Concept command in the local command menu window, except that it works
when the user is not currently editing the concept he wishes to kill

a Rename Concept - This command prompts for a new name for the concept pointed to, and immnediately
replaces all references to that name with the new name throughout the knowledge base.

e Delete Parent - This command pros for the name of a parent and then deletes that parent from the
Ist of defined parents of the concept initially pointed to. It also switches ICRENM to editing the
concept modified, so that it can then be reclassified.

e Add Parent - This command also prompts for a parent adds the concept named to the list of definied
patents of the concept and switches to editing the modified concept.

* Spice Out Parent - Tis command prompts for a parent, and removes that parent from the list of
defined parents of the concept. replacing it with that concept's parents. Again, the editor is switched to
a view of the modified concept.

3.4 Editing in the State Window

The stte window of the Main Concept Editing View displays basic information about the concept currtendy
being edited. The top line displays the naeof the concept, and ay rynonyms or alternate names for that concept.
The name of the concept can be changed by clicking on the word Concept: and entering a new name.

The second line of the dislay shows whether the concept is defined as primitve or not, and whether the

concept has beent dluuied or moddfed since classihicuio Clicking on the word Printlvo- causes the concept to
be -mdd primitive if it wus not, ad vice versa.

The tird. Ike displas both the direct and defined parents of the concept, after the word Specializes:.
Deftned parewt m concepts dw th user specifies a abutont of th concept. Direct parents ate concepts that

my ar may no hmv been definW a poem of the current one, but have been detemined by the classifier to

30a uqf of rob. dw Rob Geso Uf Ophew M appain. WA amm.adly da - cm== for Mba. Gzms M ON&

U1

subsume the class denoted by this concept and not have any speciali ons that also subsume this concept. On the
CAncept Graph. the direct parents of a concept are the ones with direct links to it.

This Specda lis should be read as follows: Concepts that are unmarked are both defined parents and

direct part. Concepts that ae deied parmts but not drect parents are prefixed by a "-". Concepts that are

direct parents but not defined parents are prefixed by a "+". The user can easily add a parent to the set of defined

parents of the Concept.

3.5 Editing in the Table Edit Window

Normally, the tabb edit window in Main Concept View displays the set of Local Slots of the concept, that

is, those slots which are defined locally by this concept and not inherited from above. The columns in the table are

labeled "Defined by", "Role", "Number Resricion", "Value Restriction", "Default", and "Description".

Cicking (with the left mouse button) on the command All Slots in the table edit command window causes

XREME to display both local and inherited slots. In this display, local slots are indicated by the word *LOCAL* in

the "Defined by" column of the table Slots inherited from a paent.show the name of that parent. Slots formed by

combining the value restictions md/or number restrictions of several parents are indicated by the word

CLASSWIER. When the table window is displaying all of the concept's slots, the user can retn to viewing just

the local ones by clicking the command Local Slots.

Wbenever the Table Edit Wimdow shows slots of the current concept, the user can edit those slots or add new
ones. To change the slot name, value resicion, number restriction, default, or description of a slot, the user simply

dicks the left mouse button over the thing to be changed, and will be prompted for a replacement. For all but
number restrictions, the right buon will pop up a menu indl d the commands: Change the part of the slot
pointed to, Show Definiton of the concept or role pointd to, Edit Definition of that concept or role, or pop up a

Graph of its abstrations and specializations. When pointing to the slot name, in the column labeled "Role", the

user can also Rename Role, that is, change the mie of the role, and all refetences to it in the knowledge base.

When the mouse is over a line in the slot table, and the eoda line is encircled by a box, the right mouse button

can be used to get a meon of Ddaet SIot, Copy Slot to maother concept, and Move Slot to another concept. For the

Int two, KIREME prompts for the name for the concept to move or copy the slot t.

12

3.5.1 Adding New Slots

Whenever t slots table window is vible, as in the Main Cocept Editing View, the er can add new local
sot defigiin. A new slot is added to the deficed slots of th concept with the Add Slot command. When this
command is issued, the sysain pom for a role nme, a value resriction, a number restriction and a default form.

Any of these items c be enered by typing or by poiming to the desired name or form if it is visible.

If a role or concept named in a role restrito or default does no exist. the system will offer to make one with

the name given, and proceed to pop up the defining form for that object. When the user is finished filling out the

form. he clicks Define, and KREME will contnue to ask for the tet of the new slot's features.

When the user has finished adding and modifying the slots of a concept, he should always make the changes

permanent with de MwUi Concep command.

3.5.2 Modifying the Table Edit Window

The appearance of Table Edit Widows can be modified in several ways. The tables ae scroilable in both the

up.down and left-riglt diecios.If the user does not wish to see some columns of the table, they can be selectively

removed.

3.5.3 Changing the Contents of the Table Window

Since there is not enough room in the Main Concept Editing View to display all of a concepts defining
feanmes at one time, the contems of the Table Edit Window can be changed to display those other features. To do

ts. the user must me e moue to find the table window contents menu. This menu is available wherever there
is nothing ele under the mouse while still inside the table window, the user will Imow he has found it becaue the
mouse documentation window will show the wort:

t: Change the contents of this table.

When the ume clicks th dt buonm, he will see the following menu options:

" Slots - Display e table o this ccepC' slos, as described above.

" laws. Reasbkds - Dispays a table, eumssnialy like the slot table. but of all of the slots displayed
ae slot of , ,n 1ts d e the m concept as their v u restriciou. This table is useful
when Uscing afamnces to a concept ia od comep . When this table is displayed, the tabl edit
oummaod wmldow will be empty. Sea of the editing optims desmibed for the slots table will not
work heft

" Mot E qsaimi - Tbis able displays dis, ot equivanaces of the editor pt This table
has only ftes COWtNm, *D.kmd bty", *ft* I" and "Path 2*. The two parhe we designated as
denoting *ase- object Sae slot eqalsom can be labented, tir sawce as also indicaed in dhe
tab n, d teolma "Dhed by". When his table is vsible, dw table eft carmad window will
shaw Ohe comsifa Luca 14qmhakme, AX Equivalsocs, and Add EquklvuLea The Amn two just

13

change which equivalences wre displayed. The last prompts for two slot paths that should be made

*DisJoint Concepts - This table is just a one column lUs of all of the concepts that are defined to be
disjoint frt the one currently bain edited. When this table is visibe the Table PdAU Command
Whbdw will display the czatiansh Add Disjoint Class. L ocal Disjoit Classes, and All Disjoint

3.6 Files and Multiple Language Support

AnA definitions manipulated by the edito are read and stoxel in lisp-readable tex files of defining fonms.
since these files contain formatted lisp founs. they ate user-readable, and can be edited offine, using an ordinary
text editor. Ln fact, KREME can as easily read files that were developed independently using a text editor or some

other frame editor.

Films we read in using the LOAD command. A file can be loaded into a blank KREME knowledge base or
can be loaded on top of an already existing knowledge base. This mechanism. which relics heavily on the the frame
classif!e to maintin consistency, enables RREME to organize information from multiple knowledge bases to create

a single unified whole.

KREME currently reads and writs definitions in either its own frame language syntax or NTKL syntax Thi
flexibility has made it possible for KREM4 to be used reguary to examine and update a knowledge base of
appioxzmately 1000 roles and concepts for the IRUS/JANUS naetural language interface that was built using NEKL.
KCREME can also read files of MSG (the frane, language of the STEAMER [22] system) defining forms, providing

access to the extensive STAMER knowledge base of concepts and procedures. We are currently building an

inierfice to files of KEE franc definitin.

Thi multiple language handing facility is a crucial feature of KREME. A library of input tranislation
program will enable a knowledge base baildr using XPREbW to draw upon previously existing knowledge bases to
crewt new knowledge boeom

14

4. The KREME Frame Editor

Thia section will describe the KXEMiE knowledge editor for a f&ame representation language.

4.1 The KREME Frame Language

A number of frame languages have been developed in recent years to support Al systems

[12,2,18,9,3,6, 8]. These languages have all been well researched and extensively tested. For KRME, our most

important criteria for a suitable frame representation language were that it:
1. Alowed mulipleinheritance
2. Was a logically worked out mature language.
3. Had some mechanism for internal consistency checking.
4. Was built on a modular object oriented base so that the language could be decomposed in such a way as to

make it easily extensible.

NULM (the definitional or frame language component of KL-TWO) [9, 15, 21] seemed an ideal candidate. It is

a fully worked out frame repesenmation language that allows multiple inheritance, is reasonably expressive and.

perhaps most importantly, was designed to work effectively witi an automatic classification algorithm that could be

easily adapted to provide a powerful mechanism for consistency checking and enforcement during knowledge base

developmeLl However. no object-onented implementation of NUM existed, and the NLI. classifier was not

desiped to allow mo&f cation and recawftcanion of previously defined concepts. A second frame language,

known as MSG, had been built as pan of BBN's STEAMER project and is object oriented in both of the above
senses.

To develop KREME, we elected to reimplement NIKL as an object oriented language using MSG as a guide.

The NIKL data snucmtrs were decomposed into a modular hierarchy of flavor definitions, and the KREME frame

language was then built out of these flavors. This enabled us to incorporate the sophisticated instantiation

mechanism of MS0 with minimal effort. In the process, we were also able to implement a modular version of the ..

NIKL classifir algoridh This provided the kind of reclassification capability required for a knowledge editing

tvirmne and uc d the extension of the classifier to deal with the richer semamics of languages like

Ismilicorp's KEE (61.

is

4.1.1 Framne Language Syntax

The remainder of this section will biefly describe th basic definitional synta of the KPLEME Frame

laiuge. As thi syn closely resemibles the formal syntax of NUML interested readers are referred to (91 for more

Following NIKL. a KREME frame: is called a concep. Collections of concepts are organzed into a rooted

inkeritane or subswnptlon lattie somoetimes referred to asa taxonomy of concepts. A single distinguished concept.

usually called TING, serves as the root or most general concep of the lattice. A concept has a name, a textual

descripton, a primitiveness flag. a list of concepts that it specializes or is subsumed by, a list of slots, a list of slot
equivalences, and a list of concepts that it is dijjoit rm.

The lists of slots. slot equivalences and disjoint concepts wre collectively referred to as the features of a

concept. If each concept ca be thought of as defining a unique category, then features of the concept define the

necessary conditions for inclusion in that category. If a concept is not marked as primitive, the feaue also

coostUMt the complet Set of sufficient Condlitions for incluSin in that category.' A concept inherits all features
fronm those concepts above i n the lattice (dhos concepts that subsume it. and, thues, are more general) and may

defin additional featues that serve to distinguish it from its parent or parents.

Slots (soinetimes called role restrictions) conss of a role ar slot name, a value restriction, a umrber

restziction and an (optional) default form. The value restriction specifies the class of concepts allowed as values for

that slot. As in NI, value restrictions usually specify a particular concept.

Skt Equivalences describe slots (and slots of slot) that by deffnion must always refer to the same entities.

The role time specified for each KRENM slot refers to an object called a role. Roles in KREME, as in NUML
and several other frtame lmaa lik KRYPTON [31, and KnowledgeCraft (8], are actually distinct first class

object tha fornm their own distnt taxonomny, rooted at the most general possible role, usuially called RELATION.

Robes describe two plac relations between concepts. A role restriction at a concept is thus a specification of the
ways a given role can be msed to relate that concept to other concepts.

ELEPANT m% by biiy e a IMMMAL i. -a .ahnwa, gou of d dum deph it ftm ob wwninh6 it mu
Wbe uwwi ap ~~W emespL.TM d=m atWIHIB E.HANT14g m d aw bind mish be -Cwq' -Imt doibui w a ELEHANT.
v4mb&esCDLR 6imu a WhMt!

4.2 Using the Frame Editor

The MM fiame editor has five vmws the Mawn Concept Editing View, the Altenate Concept Editing

View, the ftg Graph View, and the Macro Structure Editor View. Roles which are also part of the KREMvE

Frame language, are edited with do. Role Editing VIew. In this section we will cover the details of the editing

operations available an the first three of these views.

41.1 Editing in the Main Concept Editing View

Normally, when one creates a new concept or edits a concept for the first time, KREM makes that concept

the top concept on the Editor Stack. and switches to display the Man Concept Editing View. There, KREME

displays the concepe s it exists at that time.

Figure 3-2 shows how the graph window immediately displays all of the abstractions and specializations of

the concept being edited, the mtate window shows its name, whether it is primitive or not, its edit state (classified or
wot. mnodified or not), ia parents. and a teaunl description. The table window simultaneously displays all of the

concept's locally defined slots.

4.2.2 Frame Editing Operations

Space doies wot permit a full description of the functionality of the KREMIE framne editor so we will very

briefly touch upon a few of its more important operations.

Making new oncepts. The New Concept command in the global command menu initiates the definition of a
new concept that is (1) fuly specified by the user, (2) similar to some already defined concept, or (3) a

specialization of one or several other defined concepts. Wheni the initial form for the new concept has been
specified the syaw creates a new concept definition for it and shows this new definition in the main concept view.

The wer is then fiee to add details (slots, equivalences, additional parents, etc.) to the new concept definition,
clasif it. or edit other concepts.

Adding sad modifyn soL~ Whenever the window displaying slot is visible slots can be added or
modified. A new slot is added to the defined slots of the concept with the Add Slm command. Any portion of a
sdots definition cmn be ,eaer1ed by tying or by pointing to a visible reference to the desired item. When a role or

concept mu tdw is on defuied is specified, the syisem offere to mabe one with the name given.

Usets my odify mny locally defined slot or inherited slot. Siot shown in table windows are modified by
P00111 at the appropuille SWlAM and henm either typing in or pointing to a rPTiacement form. Modifying am

ionsied sdot cues t new defidri to be locally defined.

17

Adding and Deleting puaft The system displays the classifier determined parents of a concept in two

places 7he concept graph displays them a paut of th abstraction hierachy of the concept. and the state pane

indicames both lbs dood ad direct or computed parents of the cncep t after the word "Specializes:". Since the

classifier mnay have found that the concept being edlited specialiam aome concepts more specific than those given as

as defined parents, defined perem that we not direct pns wxe preceded by a "-", while classifier determined

parents that m dcefied parents wre preceded by a "+".

Adding nw defined parents to a concept's definition is done by clicking on the word "Specializes:" in the

aewindow and typing a concept name or pointing to any visible concept. Parents can be deleted by clicking on

thei names in the list of parents displayed in the state window.

Changing names and ktilling concepts and roles. KREME allows the user to change the names of concepts

and roles or to delete them completely. Name changing is accomplished simply by pointing at the concept or role's

nime in the state window and enrering a new name. The KWl command splices a concept out of the taxonomy by

connecting all of its childzen to all of its parents.

isI

5. Large-Scale Revisions of Knowledge Bases

As knowledge bass grow WaW.r and the sets of tasks that intelligent systems ate called upon to perform

expands. system developer will and atomatic methods for revising and reformulating accumulated knowledge

bums Toward this end. we feel tha it is importrm to Eind ways of expressinig refionmuloni of sets of frames and

otber representadow awl to begin developing facilities supporting the generation of new representaions from old

oeWe am taking two differr approaches to these problems. First, we have developed a maro facility for

reformulations that can be expressed as sequences of standard. low-level editing operations. This facility allows

uses to uae an example to define editing macros tha can be applied to sets of frame definitions. Second. we are

building a libry of fiactious providing standard editing operations that cannot be defined simply as sequences of

low level editing operations. Our main purpose in tis project is to collec and categorize a number of different

kinds of knowledge bas reformulations. Our hope is that a large fraction of these operations can be conveniently

descibed using the macro facility. as it is more accessible to an experimenal user community than any set of

"prepackaged utilities, and ca be more responsive to the, as yet, largely unktnown special needs of that community

5.1 The Macro and Structure Editor

One of t views avWilbl when editing coPNcet in KREME is the macro and astrctre editor. This view

(See figure 5- 1.) Provides display aid editing facilties for concept definitions basd loosely on the kcind of structure4
editr provided mn many LISP eravironmnms. The view provides two windows for the display of stylized defining

ft=r. for COncets TheD cwren A* widw displays the definiton of the curmy edited concep (the top item on
the editor stack). The dspiay wliow is available for the display of any number of other concepts. Any concept

whih as visible mn eith window cm be edited. ad femaue can be copied from one concept to anothe by pournung

Bodh windows as scollable to view additional definitions as required.

Than is a mm of couainuis for displaying and editing definition thinludes the commands Add
ftwtr% Chang ShuctuMe Ddeft Siructur Display Coacet and Cowr Disply. Arguments (if any) to

ts cOaMmi6 may be descibe by poninn or typing. Tbu& to delet a slot one simply clicks on Delete
Shuectm * and the dilplai ofd ft to be deleled. Adding a structmr is done by clickting on Add Structure, the

ky" r ofdw th bata s of thecon one wishes to add to (eg., Sloe). 7he new slot itself way be copied from
a dqAmp* caMomp by poitng. or a w owne a be , -tered from the keyboard C ng (tha is. replacing) a
Ium I = be dmn by pois in mncsmio at the Chang Structure command, the item to be replaced. and the

Ofto9 rephac i wIt Inrk INCMes ChNge Structure can also be involod simply by paiming at the structure to

be uplaew@C or the mmnt coaMmd.

19

Primitive* TIES
CT1tVdiWdlfd

3".104Imso PIPE

concoe PIPE@ Roneu 101:n

Ableroct,o.nU: iPIPE) Poe trictons (man*C Wailt

____________________r_= ______ COLOP-OF E..aCel I1, A -.ELLUM(A -ELLOW)
Eu_4..*.tl.~ OUT ~ w- Q~PUT E.,actl- I A VALVE- -A ':A E:..

'COLOR-OP LE.actl.' I (A COO' ACOLOP'' Disjoin't class 9:

(CurP(J E.,actle 1' I r~fjlG-(dIT"-Ill'JT

, A T141MG-4ZTN-IlUiT))P
t@.jvalances 3
Dis~o~nt Classes:

Run Macr

I ae&ne ocp unc gscializes PIPE, ,anod b'. 9a4s0t'" ume sf"~.Chenge the II"PUTY value resAtriction oe ,ten I to tam 0

Figure S.1: The Macro structure Editor View.

TIa last two commands in the stucture view's main menu provide the mean to chiange what is displayed in

the display window. Pointing at Display Structure and then at ay visible concept name places the definition of

htm concept in ti, display window. Clear Display removes all items from the display window. Individual concepts

ca be deleted from the display window by pointing at them and cliciing. The Edit Concept command is used to

change what is displayed in the crn edit window. Editing a new concept moves the old edit concept to the

bottom of the display window.

5.2 Developing Macro Editing Procedures

These opermdom togetbe wish ft globally available commands for defining new concepts and making

specialhados of old n oop esuentially by copying their definition, provide an exemely flexible environent in

w~hto define ad Rucify modticatios of coanpix with respect to other defined concepts. Virtually all

knwledge edit*n operations coi be done by a q 1 ce of po- inlig sep. ung the current edit window and the

display window. T~s tyle of editing is also used in the rule editor. Mie combination of editing features and

.uoan-bmd editor meraotion style provides an extremely versaile entionment for the description, by examtple. of

a]up clas of .diting macros.

20

In order to have mao, defined essentially by example, work on concepts other than those for which they

were defined, the operations recorded cannot refer directly to the concepts or objects which were being edited when

the macro was defined. This is handled by a kind of implicit variablizanon. where the objects named or pointed to

ae replaced by references to their relationship to the initially edited object. In most cases, these indirect references

can be thought of as references to the location of the object in the structure editor's display windows. In fact, each

new object that is displayed or edited in the course of defining a macro is placed on a stack called the macro items

list, together with a pointer to the command that caused the item to be displayed. The utility of this form of

reference will become clearer with an example.

5.2.1 Macro Example: Adding Pipes Between Components

When the STEAMER (22] system was developed, a structural model of a steam plant was created to represent

each component in the steam plant as a frame, with links to all functionally related components (e.g., inputs and

outputs) represented as slots pointing at those other objects. So, for example. a tank holding water to be fed into a

boiler tank through some pipe that was gazed by a valve was represented as a frame with an OUTPUT slot whose

value was a VALVE. The OUTPUT of that VALVE was a BOILER-TANK. The pipes through which the water

was conveyed were not represented since they had no functional value in the simulation model. If it had become

important to model the pipes, e.g. because they introduced friction or were susceptible to leaks or explosions, then

the representational model that STEAMER relied on would have required massive revision. Each component object

in the system would have needed editing to replace the objects in its INPUT and OUTPUT slots with new frames

representing pipes that were in tm connected by their OUTPUT slots to the next component in the system.

One of our goals in developing the KREME macro editor was to be able to make such changes easily. While

they we simple to describe,, they normally require many tedious editing operations to a large number of concepts.

Figure 5-2 shows a macro that can be applied to all objects in a system with INPUT and OUTPUT slots, in order to

generate and insert PIPEs into those slots. The macro also sets the OUTPUTs of those PIPEs to be the concept that

was the old value of the OUTPUT slot in the concept edited, and similarly redoes all INPUTs.

Figure 5-2 shows how the macro is defined, by editing a representation of a tank (TANKi) connected (by role

OUTPUT) to a valve (VALVE2). The sequence of steps required, defined only using the mouse. is shown in figure

5-2, a they would appear in the Macro Definion window of the editor.

In Phase One, work on mamo editing was only just begun. However, this technique already shows promise as

a method for accomplishing resrucucringp of knowledge. We see our investigation of macro editing as only the first

step in developing a ktowledge reformulation facility that will make use of the higher level structure of the

dknowledg.

21

Iae.-pt: Cz pt .7 . a] 1 - 1 P - • '

3.ritia filc e":?m

Conceot PIPEG Conicave TRWuI
Pr..n. tfv: Val Pittv1: rio
Abtractions: (PIPI) Abstrations: (TM)
All Pole PQSIlctt291 NMe Mp Ptfl] Pole fewtir,ction: (an M! VP e0D0ult]

1, 'l TW ((COLOR-OF E.-ctl .I (A 'ELLO . 'A V'ELLOUI(
E, act t 1(4[-1 T" ITr, T , /(OUTPUT E.,act I, I (A JALVEZ. A ')N.VE')

L Equiva.lences:
(COLOR-OF E.actlv I (A COLOPI A COLOPI) Disjoint Classes:
(OUTPUT Eactl., I (A 1IGUITH-IIPIUT

kA THI IG-9I1TH-WIUT o,

EQui valenc s:
Disjoint Classes:

..... ... m r .., Macro ...*

Macro PIPE 9. TA II [current coeotl
Insert a D00 between two coneCte devices 1. PIPU9 clgaretrio 1]

I. Mae.. a new Conceot whiCh 90ecial iles PIPE, ,4"ed bs' .Nersting a fsba suffi-~
. Cha" the TMPUT value reIstriction of item I to iten 0.

While Edng TANKI:
Click on Dliu Macro. (Makes Macro Item 0 - TANKI).

1. Make a new concept which specializes PIPE. (Creates PIPEO as item 1).
2. Chiage the INPUT value nsuiction of item I (PIPEO) to item 0 (TANK)).
3. Change the OUTPUT value tesaicdon of item I (PIPEO) to the OUTPUT value restiction of item 0

(OUTPUT of TANK - VALVE)).
4. Classify the i eit concept (Defines PIPE).
S. Chang the OUTPUT value zesuiction of item 0 (- VALVEI) to item I (PIPED).
6. Classify item 0 (TANK).
7. Edit the OUTPUT value testictio of item I (Creates item 2 - VALVE)).
8. Chane the INPUT value rniction of item 2 (IVPUTofVALVEI - TANKI) to item I (PIPEO).
9. Classify ll items.

qure 5-2: Steps in PIPE Macro

22

6. Knowledge Integration and Consistency Maintenance

One of the mottime consuming tasks in building large knowledge bases is maintaining internal consistency.
Modification. addition ot deletion of knowledge in one part of a knowledge base can have wide ranging
consequences to both the menig de structure of the knowledge stored in other parts of the knowledge base. A
central component of the KREME system design was that it incorporate tools for consistency mainteance both
within and across representation languages. These tools are collectively referred to as the knowledge integrator.
When new knowledge is emered, or existing knowledge modified it is the task of the knowledge integrator to

propagate, throughout the knowledge base, the changes that this new or modified knowledge entails, and to report

any inconsistencies that have been. caused by the change.

In essence, the knowledge integrator takes each new or changed chik of knowledge (e.g.. a framie, role, rule
or procedure) and determines, first how the new definition fits into the knowledge base and, second, which other
definitions depend on the crePm one for their meaning within the knowledge base. These dependencies are placed

on an agenda which, in tarn causes them to go through essentially the same process.

The knowledge integration subsystem for fr-ames is basically an extension of the clasmflcanon algorithm

developed for the NJKL representation language. The NIKM classifier correctly mumit new framnes into their proper

spot in a taonomy, by finding the most specific set of concepts whose definitions mubtwned the definition of the
new concept The KREME classifier was designed to addlitionally allow existing concepts and roles to be modified
and and then recklifed, so that the effects of redefinitions are automatically propagated throughout the entire
frn network. This wa accomplished by redesigning the original NlKL classifier to take advantage of the

meta-level descriptions of KUENE Frames and implementing the new classifier using the dependency directed
agenda mechanism of the overall knowledge integrator.

6.1 The Frame Classifier

The remainder of this section will give a brief description of the frame classification part of the knowledge
integrator, which is the most completely developed portion of the system For a formal description of the NL
clasifier algorIIm swe (15,141 For a morm complete description of a somewhat simpler classifier for an editing

-vra _m see [1].

The ftan dlasdier -a in esuidally two stages, stating from a coacepr or role definition, as supplied by
tdo efor or toad from a Mie. Mo Am stage, calld comledox, aimor to the basic inherinince mechanism used by
XUEM P~n to iratal Al khitd &armes of a concept or roe in ins internal desciptioL The completion
al1Gorn whom ffie. a sa of dehied parnt and a se of dInedI fenures for an object deltmines the full,

logically entailed at of kamne of that object The second stag is the actual classificanti or reclassification, of a

23

role or concept. That is, the determination of the complete. most specific set of parents of the object in its respective

subsumption hierarchy.

6.1.1 Completion

The completion algorithm is broken up into modular chunks that conespoad to the decomposition of the

frame language. These is a distinct component that deals with slot inheritance, mnother component that deals with

disjoint class inheritance, a third tha deals with slot equivlence inrtance and so on. This organization makes it

quite straightforward to extend the language with new features; that handle inheritance in different ways.

Figure 6.1 shows some of the complexities of slot inheritance. In 6- LA. the most specific value reiviction for

the slot LIMBS at 4-LIMBED-ANIMAL is inherited &=o one parent (ANIMAL) while the most specific number

restriction, EXACITLY 4, is inherited from 4-IBED-ThING. The completion algorithm deternes that the

restriction for the role LIMBS at the concept 4-LI1MBED-ANIMAL must be EXACTLY 4 LMS.

Figure 6-1B shows one cas for which the effective value restriction must logically be the conjunction of

several concepts. Since ANIMAL-WITH-LEGS is both an ANIMAL, and a THING-WITH-LEGS, ail of its

LIMBS must be both ORGANIC-LIMABs and LEGs. If the concept ORGANIC-LEG, specializing both ORGANIC.

LIMB and LEG, exists when ANIMAL-WITH-LEGS is being classified, the integrator will find it and make it the

value restriction of the slot LEGS at ANIMAL-WITH-LEGS. If it does not exist, the itegrato st" and asks if the

user would like to define it (that is, define a concept that is both an ORGANIC-LIMB and a LEG).

6.1.2 Classification

The second stage of the frame classification algorim finds all of the most specific subsumers of the concept
being defined of redefined. This is the actual clawificarion stage, and is essentially a special-purpose tree walking
algorithm.

The basic classifier algorithm takes a completed definition (that is. a definition plus all its effective, inherited

Atatares) and devtrmnes that definition's aingle appropriate spot in the lattie of previouly classified definitions.
Thm result of a clasafimuon as a unique set of the most specific objects tha subsume the definition and a unsque set

of the moat seneral objects dies = nbsmed by the definition. When the classified definition is intalled in the

latt0ce all the conceps sut bsu=* its harnes will be above a in the lattice and all the concepts tar e subsumed
by irts ems will be belowit.

The Classifier is buit -uIurna a moduiarl c-sazIu subsuupson seat that'compares the completed seat of
hatures of two objects The object being classified is repeatedly compared to odher, potentiay reaed, objects in
the Lad=c te we whethe ias completed defiiion suthmnes or is subumied by those odher objects. For one

definition to subsum the other, its fil set of flatires must be a subset of the batures of tie o .As with

F~gur 6-1: Two Exaples of Slm Compieuo

hritng difer n inm be andb vaue rstrico s

InhritngdiCornoindbe Valule ictions.

lim

completion subsumption tesang is pattioned by featur type (L~e slot, disjoint-class etc). One object subsumes the
other when anl of its individual kavuve-pe subsunapton diecks nounm EQUIVALENT or SUBSUMES, and ther is
at least one vot for SUBSUMES. The advantage of tis kind of modular organization ia exsemibility. If a new
featre type is added to the language one need only define a subsumption predicate for that feature, and objects
having that fieature will be approptiaely classified.

6.2 An Example of Reclassification

The power of franc reclassification in an editing environment can be illusttated with the following telatively
simple example. Suppose a knowledge base developer bad defined both GASOLINE-POWERED-CAR and
nTrERNAL-COMUSTION-POWERED-CAR as specializations of CAR. but had inadvertently defined
InERNAL-COMUSTION-ENGINE as a kind of GASOLINE-ENGINE. In this situation, the classifier would

deuethat IN'TERNAL-COMBUSTION-POWERED-CAR must be a specializaton of GASOLINE-POWERED-
CAR. as shown in figure 6-2.k., since the fannePr restricted the role ENGINE to a subclass: of the tatter's restriction of
the same role.

Redefining INTrERNAL-COM1BUSTION-ENGINE as a kind of ENGINE (rather than a GASOLIN4E-
ENGINE), and then reclassifyig. canes all of EMRNAL-COMBUS71ON-ENGINE's dependents to also be
reclassified, includting INTERNAL-CObUSTION-POWERED-CAR. Sanm GASOLINE-ENGINE no longer
subue IN IUNAL-COM1BUSTION-E?4GINE, the reunciows for GASOLINE-POWERED-CAR no longer
subsume those of INTERNAL-COBULSTION-POWERED-CAR, and the classifier thetefore finds that
GASOLIN4E-POWERE-CAR does not subsume INERNAL-COMBUSTION-POWAERED-CAR, ib is shown in
figure 6-23.

The combination of inconsistency detecdi durig the completion phase and the automatic propagation of
classification changes that ccurs duving nedasificabona makes KCREME a powerful and extremely usefull tool for
knowledge bas developnrein and refineinea. Sinow the efNec-1 of reciassification ate inunediately made apparent to
oewn via the dyniically updated graph of the subsomption lattice, they sometimes find that the definitions they

have provided have some amunm aicped logically ealle effects on their taxonomy. Sometimes these effects are
aurprunug although crre-t- Other tim they lead to dinae and additions which make the knowledge base more
comnplet and conct

.

FIgur 6.2. An ExaMple of Redassificanocn

parent

A.oer nie gels~~aoine

B. Aftr Reclasificatio

macin

6.3 Using the Knowledge Integrator to Partition and Merge Knowledge Bases

6.3.1 Load/Merge

Perhaps the single most importa use for the Knowledge Integrator is to enable orderly merging of

inlependently developed knowledge bases. The process of loading one knowledge base into another is made

somewhat involved by the need to merge and/or split and rename concepts that have the same name in both

networks.

There are a nuambe of complex cams to deal with. The simplest case occars when two definitions of the same

concept have dfrent but complementary atributes. The KREME merge logic simply foms the union of the

attributes of both concepts and edits all pointers to either concept so that they point to the new, enriched concept.

(See Figure 6-3.)

A somewhat more complex cue occurs when slots shared by both concepts are given different restrictions.

(See Figure 6-4.) The system chooses the most specific restutcon for the slot.

If concepts with the same name have properties that make it impossible to merge them - that is, the idencal

names rearly stand for dierent concepts in the two knowledge bases (6-5), then the system will inform the user of

this fact and ask the user for a nw same for one concept.

The user ha some control over this process an can set switches which cause the system to a

query when it finds two concepts with the same name, always merge concepts if it can, or never merge concepts,

keeping the knowledge bases distinc

6.4 Saving and Partitioning Knowledge Bases

Any time during the development of a knowledge base, the user can save the entire developing knowledge

base to a disk file. This is a used feasm when developing small knowledge bases or working on a piece of a

knowledge bm that will later be merged int a larger whole.

Anodiet uef fcility is KR4EM's ability to parition a knowledge base along usr-desgated lines and save

the partliom in distinct files. This is accomplished by allowing the umer to designase a set of seed concepts. KREME
will tebm a m n sve a pamiin of te coon kwkige base, bred on the seeds. In an oversimplifed sene, the

ponlom condats of t seed a special. -uom of the seeds. and . d- concepts that the seds eier diecdy or
ikedlm y dqxnd m T2 falfty cm be mod to break up a qgle knowledge bam iw sea ove1appirg

28

6.5 Using Merge and Partition to Build Larger Knowledge Bases

Takm togeth'. the mee and partiio facilities suggest an approac that we think will prove to be an

exumely pownM paradigm in the building of very large, very complex knowledge bases. When a knowledge base

grows to a san at which it becomes difficult to deal with in its entirety, the parution/save facility can be used to

divide it into seveal overdapping logical subcomponents, each of which is a full scale, consistent knowledge base in

its own rigbt.

These multiple, smaller knowledge bases can be worked on independently of each other with full confidence

that the loader/tmerge ca put the independently built subcomponents together in an orderly, consistent fashion.

In Figure 6-5, there are two networks. The "ball" in Network I stands for a concept that is a kind of round

object. In Network 2, the name "bail" stands for a kind of formal dance. These are differenct concepts with

unmegeable properes. In both networks, Event and Object would be defined to be disjoint. In this case, the Merger

would ask the user for a new name for one of the concepts and would keep them distinct.

29

Figre 6-3: Exapi One: Nieing wfth Nocovedapping Anributes

Machine Pro pe rty

30

Figure Exampe Two: Ovelpng but Compable Propert

Machine

Car EngineEngine

Machine Engine

Car E gn

Machine

L

31

FIgue 6-3: EFXample u: Unmergeahl. Caacepw

Network 1 object PropertUj

Event

Network 2

32

7. Editing Behavioral Knowledge

KR3E embodies a set of mechanisms for representing and editing behavioral knowledge. One mechaimm
involves associatng behaviors with frames. Since frames can also be associated with flavors, betiaviors have been

imnplementd so that they can be compiled into flavor methods.

A dick of a mouse button and the tabular features window in the main concept view is turned into the toplevel
behavior edtor. All behaviors curtently defined for the concept are shown. Each has a name and a type. There are

tre types of behaviors currently allowed. Rules, Procedures, and Methods. Existing behaviors can be edited or
new ones defined. A modified form of the Symbolis" flavor examiner can be accessed to show various useful -

information about method comrbination and derivation.

Meitbods are simply flavor methods. Editing a method throws up a text editor widow which can be interacted

with in normal editing style or in smucarre editing style. Editing or inputting a new rule packet accesses the Rule

Editor. EdiAig or inputting a new procedure accesses the Procedure Editor.

7.1 Editing Rules

The rule Language used by KREN{ is a languge called FME [171, based in large part on the LOOPS rule

lanpwiae. FLEX allows ruls to be defined in rule packets, which organize set of ruls that. are meant to be run

together. In doe KREMVE envfroauentZ rule packets can be attached to concepts, just as if they were functional
methods. In additon, they may be fimberied by more specialized concepts FLEX incorporates a mecianism for

dealing with uncertainty, boned on EfMYCM] 20. The FLEX runtime environment also provides an elementary

history a t~ag mechanism, and enxplanation system that produces pseudo-English explaniations from rule
traces. For efficency, FLEX also provides a meum for rule packets to be compild as LMS code, and run without
the rule interpreter pOSea

T111 UIEE rule edtor is buil on top of the KRLEME structure edtor. On defines and edts rules by
specifying ad filling out poio of rule templaes. The user refines these terlates either by using the mouse to

COpy puts Of Cin rules Or by poising at Slot to be Wiled and typing in the desired values. Once a rule-set has
bean developetLd, z ule edito provides commands to run packers - and debug them. It can also generate traices or
cule ble puapimud in pamado-&SHiA. ?4echuinu awe also provided for deleting and reordering rules, and
lomfg adf sving them from fi10es. The Wuekdio is shown in figre 7-1

Thnre dto is als tied to the IM's knwledge integatm subwystm. At presers, all references to

33

slots of frames made in rules are checked for validity by the knowledge integrator. if ivald the user is alerted and

may switch, if necessary, to editing the associated frame. If the problem was simply that he/she named a nion-

extistent slt, a valid one may be selected from aL menu. In the near future, the knowledge integrator will also check

such cross-rerences in the opposite direction, as when a slot refrred to by some rules is deleted or changed in the

flame editor.

KREME at present edits rules in the FLEX [(17] rule language. In FLEX, rules came in rule packets, and the

DEM Rule Editor edits an entire packet at one time. Rule packets provide a way to organize rules.

1'he forward chaining rule packets come in four varieties, indicating the type of control mechanism used for

rule firing.

*do-1-rule-psakets execute the first rule whose test succeeds.

*do-all-nale-packets execute all rules whose tests succeed.

*while-l-ruie-packets repeatedy test all rules, fluing one, until no tests succeed.

*while-all-rule-packets repeatedly fire all rules whose tests succeed. until none succeed.

Rule packets are connected to KREIME frame systems or other data contexts by specifying an access

enironens. An access environment is an object that receives messages dealing with the accessing of values for

reknences in the rules. It handle all messages to get or set the vae of variables and their confidences.

7.2 The KREME Rule Editor

Rules are defined and edited by specifyng aid filling out portions of rule templazes. To refine these templates

either use the mouse to copy parts of existing rules or point at slots to be filled and type in the desired values.

There are also commands to mas packets and debug them and to generate traces or rule histories paraphrased

in pseudo-English, and delet rules and reorder rules and load and save rules from files.

7.3 The Rule Editor View

MWn of the windows in the Rul ewl View should be fumia by now. Thie complet list is as follows.

L GkWu Cotrmn Wiiedow displays Slobsl commands tint can be selected by the urP In this
MipKs the amn has =ed the moms to select Zki Packet.Th fam se's selection is highlightd.

2. Staf Wbdw dsps themw of the packet, the networ it is associated with, and other usefil

3. Kilbr Slack Whiow dipsyu the ines of the himrns cenly edited and some informastion on their
usto Wm.lm in the editor stack window can be selected for editing with th mouse.

34

4. Behavior Command Window is a menu of commands that apply to Rules and Rule Packets.

(Behavior is another term for rule packets, or functional methods on instances of concepts.)

5. Current Edit Item Window displays the itm that has been selected for editing.

6. Dispay Lelated Item Window allows the user to view other rule packets and scroll through them.
Rules and parts of rules can be copied from the Scroll Window into the Current Edit Item Window.

7. Editor Inteaction Window displays screen prompts and user inpuL The user's edits are made in this
window and then displayed in the Current Edit Item Window.

8. Related Behaviors Window displays an index of other rule packets that are related to the one
corrently being edited. With the mouse, the user can rapidly scroll through this index and select a
related rule packet for viewing or ediung.

To get into the Rule editor use the New Packet or Edit Packet command in the global command window.

Thereafter, the structure editor can be used in much the same way the Macro Structure Editor is used to edit

concepts. The Rule Structure Command Menu contains the commands:

* Define Behavior is similar to Classify Concept. It makes the definition of the packet permanent, and
allows it to be run or attached to a concept.

e Similar Behavior. Creates a packet with the same rules, etc. but gives it a new name, and presents it to

be edited to make it diffrem.

* Kill Behavior- Kills the definition of this packet

e Display Packet - Displays the packet in the Display of Related Items Window.

When a whole rule packet is outlined, the user can choose to Edit Packet (L:), or (X:) choose from a menu of

Edit Packet. Edit Basis or Display Lisp Form.

Other editing commands are found on the keywords and component pieces of packets and rules. For instance,

clicking left on Rule: places a new (empty) rule in the packet, which can then be filled out by clicking on EF to add

a new condition (conditions are med as part of a conjunction) or THEN to add a new action. Clicking right gives

a menu of Add (Empty Rule), Copy One Rule from somewhere else into this packet, and Copy Rule Set which

copies all of the rules from another packet.

Clicking over Type: gives the user a choice of the standard types of rule packets, described above.

Packet Classes: allows the user to specify a flavor to be mixed into the packet. Arguments: and Return

Variables: each allow the user to add a new one (L:) or choose from a menu of Add One, Add Several, Edit and

Repla.

WheA a whole rule is outlined, clicking left will be replace the rule with another rule that the user points at.

Clicking right gives a menu of Replae Rule, Edit Attributes and Delete Rule.

Whenever expressons apper (afr the word Precondition:, or as par of conditions or actions), the user

may Reipace the expression (L), or choosing f-om a mean (R:) of

* Roplace the expression with mother one.

35

" Edit the expression astext.

" Deet theexrsin

" Add Before another expression (copied fromn somewhere by pointing).

" Add Afteir an2 e xrsin

" Exchang two expmwon postios

" Pareathesiz a set of expressions together.

" Depar enthesiz. an expression into pieces.

* Evaluate the expression in the current contxt.

7.4 Procedures in the KREME Environment

An obvious weakness of many knowledge representation languages is their inability to handle declaratively
expressed knowledge about procedures as partially ordered sequences of actions, particularly if that knowledge is
Iersne at multiple levels of abstraction. Although a number of systems have been developed that do various

* forms of plamring. (5, 13, 14, 19], most have not encoded their plans in an entirely declarative or ispectable
fasbion. Certainly the curent generation of expert system tools does not provide mechanisms geared to the
description of this kind of knowledge. Although it is clear that much of an expert's knowledge about a domain is
about procedures and theiw application. little work has been done: on devising ways to capture that information

The STEAMER project [22] began to address the iWoe of declarative representations for procedures in the
course of developing a mechanism to teach valid steam plant operating procedures. The representation system
developed for this task bad to be directly accessible to the students who were the system's users, and it Wa to serve
as a source of explanations when errors were made. STEAMvi a able to describe these procedues decompose
them show bow they were Meated to simila procedures and. in general deal with them at the "knowledge level"
[10] r-he than as pieces of programs or rule sets. Although, the syntax of the language was quite primitive, with

no provisions for breaching or iteration; the mechanisms for procedural abstraction, specializaton, and path or
rer norformulation that formed the hear of the language seemed to form the Iene of an extremely useful
- 111:~h.

The DMM rapesenaton language badly includes a descendant of the STEAMbM procedure language,
but sing DUlvff's libray of knowleidge represeation prumitives. Each DREM pocedure a aime, a
descriptie, an actim that the procedur is mean to anoompiab a list of sups, and a lis of ordering consui'anms that
domm the parild ern of the slepa. Stp have an ewonand an object which estu the conceptual class of
rhing the step acre up. Proceduresre attached to sp kfinmes and ca be *compildW into Mwaor methods.

Each S" in a procedure may eithe be a primitive action or another procedure. If the object of a step defines

36

Figur 7-1: The KR.ENM ERik Edfo

c to

.n

0 10

law-

- Li. I h. 4_ -l

M i I-N -- '

........ e..; +°
-ms . .S - , . -"

4 --- Q w

c I S C, +

Z;- ;;: a I am) ______

I:"-,*" --

-- '-.

9Lm at 0.a

U U

w+

La C

0.

.J.

Io,.

i Jai

37

a procedure for the action of that step then this procedurve is said to be a sub-procedure of the enclosing procedure.

For example. the ALIGN procedure attached to the concept SUCTION-LINE could have a sap ALIGN <PUMl~P>. if
the concept CENTREFUGAL-PUMP, which is the object of thos step for SUCTION-LINEs, defined a procedure for

the action ALIGN. then the step ALIGN <PUYMP> could be eqxpaned in t sweps of the procedure for aligning a

centrifusal pump.

7.4.1 Procedural Abstraction and Structure M4apping

For knowledge acquisition purposes, it would be very useWr if prcdrswere represented in an abstr-action

hierarchy like tha for frames. In a strong sews, it seems difficult to defin exactly what it mean for one abstract

procedure to subsume another. However, from an acquisition standpoint, much power can be gained by allowing

abstract procedures to form templates upon which more specific procedures can be built. and eventually providing

tools for automic plan refinement like those found in NOAH (141. For example, if you have some idea about how

to grow plants in general, and you want to grow tomatoes, you will use your knowledge about growing plants in

general as a starig point for learning about growing tomatoes. The final proceduve for growing tomatoes will

incld some (presumably more detailed) veniows of sop in the more genetal procedure, and may also include

steps tht wre analogous to thoe used in growing other plants fo which moar-e detailed knowledge exists.6

The KRE{E Proet eseio has a mechanism for building templates of new procedures out of more

abstract procedures. When a new procedure is being defined a a concept. the procedural abstraction fuinction

detnines whether mry of tha concept's parents have a procedure for accomplishing the sone action. If so, an

initial procedure template as buil by combining the sop and constraints of all the inheri, more abstract

procedures. The patbs (objects) of the step we adijusted. using the concept's slot equivalences, to use "local" slot

naes, an much an possible, As yet this facility does not have the ability to do detailed reasoning with constraints on

steps. as-NOAN does. We expect to smy expand this capabiliy dutring Phase Two of the project.

38.

8. Knowledge Extension

One task faced by knowledge engines is en expetSM to expM g9.ne znson about ter domains of

experuse. While much of the deailed iniftmation about particular problem can be accessed and mpresented by

looking at specific examples and problems. the expert's abstract classification of problem types and the abstact

eanus be uses to neonize thOse problem types ae less directly available, Experiencd knowledge engineers are

often able to discover and define useful generalizatios which experts perceve as relevant to their own reasoning

processes. The experts may then suaest improvements, related generalizatiow, or more abstact generalizations.

Our initial experiment in knowledge-base extesion in Phase I has been ft development of a frame

generalizadon aldgoithrL Our nu'e generalizer finds potentially useful generalizations by searching for sets of

concept features di ate arahed by several unrelated concepts.

When the generaliae flids a set of at least k features shared by at least m concepts, when k and m are

usr-settable parameters, the system forms the most specific concept definition that would enclose all of the features

but would still be moe general than any concept in the set. Since our simple algorithm has no other external notion

of Inteestingoess" it simply displays this potential new concept definition to the user. For example, given three

concepts that ae all AN/MALs and independently define the slot WINGS, the generalier would suggest forming a

specializMion of ANIMAL with the slot WINGS, that these comcept would all specialize. If the user wanted to
introduce this concept, he would respond by naming the new generalization (e.g., PLYING-ANIMAL), which would

then be classified and inegrated with the network. The features that me enclosed by this new, more general

concept, ae automatically removed from each of the more specific concepts being generalized.

31qV

9. Conclusion

The godl of the BBMf Labocawdues Knowledge Acquisition Project is to build a versatile experimental
compute euvuissnt for developing and maintaiin large knowledge bases. We are pursuing this goat along two
complementary palm. F=4g~ we have coutrucied a flexible, extensible, Knowledge Representation, Editing and
Modeling EnvroumeM in which diffeent kois of representons, (initially frame, rules, and procedures) can be
used. We awe now sing dois environment to investigate acquisition strategies for a variety of types and
combinations of knowledge repesentations. In building and equipping this "sandbox". we have been adapting and

experimenting with techniques which we think will make editing, browsing, and consistency checking foreach style
of representaton easier and mote efficient, so that knowledge engineers and subject matter expert s can work
together to build ugrilcamly larger and more detmiled knowledge bases than axe presently practical.

The second aspect of our reehplan is the development of mome automatic tools for lonowledge base
reformulation and extension. An important part of this endeavor is the discovery, categorization and use of explicit
knowledge about knowledge representanons methods for viewing different knowledge representations, techniques
for describing knowledge booe transfonauxoas an extrapolations, techniques for finding and suggesting useful

* generalizations in developing knowledge bases, semi-automatic procedures of eliciting knowledge from experts, and
extensions of consiscency checking techniques to provide a mechanism for generating candidate expansions of a
knowledge base.

We wre attempting to provide a laboratory for experimenting with new representation techniques and new
tools for developing browledge bases If we are socoessful many of die techniques developed in our laboratory will
be adopted by the comprehensive knowledge acqusiton arnd knowledge tepresentation systems required to support
th development an maintenance of fiur Al systems.

Appendix A
Loading KREME

A.1 Loading KREME from Cassette Tape

Each site can test KREME by loading KREME fom tape according to the diection in this Appendix and

then editing the snpWe netwodis provided on the tape. Once KREME has been loaded. Appendix B provides

ixu ciom on how to edit and cea knowledge bases using KREME.

KREM requires a Symbolics machi e with Genera-7.0 already installed and with at least 18000 blocks free

in its FEP. If your machine has no tape duive, you will have to read the tape on another machi that does have one

and then transmit the bants to yor machine. (See section A.2) We will use ft tenns destination machine and tape

drie machine to rfer to these two macbines Noe that you must have at least 18000 blocks free on the destination

machine's FEP = well as having at leat 18000 blocks free on the PEP of the machine with the tape drive.

A.1.1 Loading the FEP Files

Ther axe four Fles on the pe. Yourmac may already have inc-7-OGI-from-Genera.7-0Joad. If

so, do not ceame a FEP file fr that file and do not load it fom the tape.

Log in to the machin and cmee three (or four) PEP files in the following way:

Crfte in VU Me ine-7-OGI-ftcm-4.ner a-7-0. load 1290
Creae 31 VTtle n=-WN-fvm-inc-g e ra-7-OGl .od 5600
Czeate 13 1 Ue rma-fw=m-Boot7.load 9580
Ceate 31 rVle Kreme.boot 1

Log out and halt the machine.

Put the EP Me tape inthe tape drive.

Typ the 60owimg to the PEP-
sen V127-dAak

(TMu icha t PEP s dirk rmTo.) Then type

ft" 2"astoIe
noe m M WE 11M wk ifTu'w dare Set Dkk Type. Auwer Y7 The m e then asks if you warnto restore
the PaP on= do tre. In eah cm war Y and ptaro cuam n. (If you uztndy have the Em band on your

SySmMM, inwM N u besud.) hn eat cus, th sy will dn p map

lt adaisw Mdh ban hd~f ya wwa qum is=

43

91le to castors?

Accept the default Me nae by pressing caniaeturn.

The machine displays nbers as it mads from the tape. The machine then asks about the other files in tun.

Each tim, anwr Y t eswre the file and then paess carrage reurn to accept the defauft Mfe ne

A.1.2 Editing the FEP Files

Now you must edit the file Krene.boot to set the CHAOS address correctly. To do this, boot the machine

(using a boot file other then Kreme.boot) and edit Kuemboot. Change the line cotaining the CHAOS address to

set it to the address of the destination machine. You can get the correct CHAOS address for the destination machime

from the systemn manager or by looking at the address in another .boot file on the destinaton machine.

You must also edit the Load Microcode line in ra emeboot so diat it conainms the number of the miucrocode

version on the bostL To determine that number ask the system manager or look at a -boot file that boots a 7.0 world.

Now log out and halt the machine.

A.1.3 Booting KREME

Type the following to the FEP-.

Beot Kzain. boot

Because the band is being booted at a site other than the site at which it was btul, the machim will ask you if

the site is still BBN. Answer NO and the machine will name itself DIS.LOCAL-HOST.

If the machine has identity problems (It thinks it is still at BBN.), the simplest way to deal with them is to

unplug the ethernet before booting Kmmeboot. See your local system wizard if you wan a mome elegant solution.

Once the boot is complete, you 11 have a KREME wuIow with the

propt Now get to a Lisp Lisurner via

<select>L
Then log in with the commanmd

(.J. logia-t*o-sys-bost)
Logging in in die waty avoidin miacting with the BBN system accounting softwae Then load the carry-tape with
the cosw

(tape: mayn-Loa)
ThW caty-sp conasiss two ample DNEME neto as. mechaisp, and org-netiisp. You will have to chioos a

Ple an yw ausein sem tse SO

You are ow ready to use UREME with the bep of KREME: A User's Introduction. Try loading a sample

network hom one of the files you read off the ca-y-ape.

A.2 For Machines with No Tape Drive

First, load the U Piles ftom the tape onto the tape drive machine by following the insrucions in section

A.1.1. Mtnwa boot that machine, using a boot file other than KrenmebooL Then. uransmit the FEP Files to the

destnanon machin by typing the following to a Lisp Listener. (Answer Y when the system asks if you really want

to.)
(sl tzanmadt-bauz "fepO: >i c-7-OG-f=m-genea-7-O. load"

desinaton-machine)

(s£: tranmsit -band "fpO :>Lnc-bbn-i-om-ino-genera-7--0. load"
destinaon-*nchine)

(Sci:tanaut-band "fepO :>Krems-fra-boot7.load"
deWntion-machine)

Co"y rile epO: > me. boot destination-machine I fepO: >K me .boot

You ae now abhed using the machin with the tape drive. You may delete the KRENM fies on that

machine before going to the desiation host.

Now continue with the instruions in section A. 1.

Appendix B
A User's Introduction

Abstract

T1his appendix provides an introduction and preliminary user's manual for KREME. BBN's Knowledge
Repesetaton.diting and Modeling Environment. KREME has been engineered to enable users to represet

muhof their knowledge about a doman while minimzg the classic problem of knowledge acquisition when
building lag expert systems. The manual documents KPLEME's component editors for two distinct representation
languages; KREME Frames and KREMIE Rules. In order to maintain internal consistency in a Frame Knowledge
Due, a problem which becomes increasingly more complex astaxonomies get larger, KREME provides a classifier
to atomatically check: subsumption, relatons between frames. The KREME editing environiment provides a maco-
editing facility, for large-scale revisions of portions of a knowledge bane. The macro editor allows sets of operations
to be performed repeatedly over portions of a knowledge base. The required editing operations can be demonstrated
by example and applied to specified sets of knowledge structure automatically. The KREME Rule Editor provides
full support for important rule editing operations

B.O.1 Introduction

Thi repor provides a user's manual foDr KREME. BBN's Knowledge Representation. §iting and Modeling
Environment. KREbM wa designed to facilitate the process of developing and editing representations of

knowledge about a domain, while minunizmng the classic problems of knowledge acquisition that omie Up during

Mhe development of large expert systems. Knowledge engineers and subject matter experts with some knowledge of

basic knowledge representation techiniques will find it easy to use KREME to acquire, edit. and view from multiple

perspectives knowledge bases that are several times larger than those found in most current systems.

B.O.2 Introducing KREME

KREbM is perhb" best thought of as a family of related editors for differet. styles of knowledge
repesnta~os.The curent eon of KR.EM provides, witn a uniform enviromnm a r mbe of special

puSpoSe editing fadhtms that pantin knowledge to be represented and viewed in a variety of formalism prpit
to its tue 1rater thn forcing all knwbdge to be repnmsntd in a singl, unitary fomralism In addlition to a general
editing ewnviomem KREMS poovda took to do the kinds of validation and consistency dre~ng so essential
duaring the deveOPMen or Moifcion of knowledge basms As the sune of knowledge bmes Vrows, and more
peo*l becom involved in ther deveopment, das aspect of knowledge acquisition becomes incr~gy important.
In the hybtbd or mrli-ftmalism GrePmemafiml system that wre becoming prevalent (11, 3,21], techiques must
be provie for casasency c wcen o only within a single repiesentational systm, but betwPen reate ysn.

At PreNOM Ki3 d! coutain individal editor for three diut represenaton languages; one for Frae and

47

one for mile, and one for representations of ordiered sequences of steps in operating proceduress.

Frames, (also known as Concepts), ane the primary way of expressing declarative knowledge about classes or
kinds of dings. both physical objects and abstract concepts or terms. Each concept or frame defined by a user is

mean to stand for a dlass of things of a particular kind. Frames have, as part of their definitions, a set of slots,
dienoting fth diffierent alaioaap thaz-diiap of that kind may, in general, have with other objects or concepts.

The names of slots refer to roles, which ame independently defined.

Rules are the primary way of expressing knowledge about inferntial procedures. The basic form of a rule is

IF (condition) THEN (action). Rules are normally clumped together in rule packets. A packet is a set of rules
whose conditions are checked when trying to make a specific decision about something. In KREME. one edits a
whole packet ar one am, rather than individual, rules.

KREME has a mamber of useful features that enable it to make inferences about the knowledge it is given.
KREME Frames are represented in a hierarchical network of more and more abstract dlasses. Any concept below

another concept in the network inherits certain attributes from given information about concept(s) above it; these
superordinare concepts are called parents of the subordinate concept. KREME's graphic components help you to
construct networks quickly and easily. Editing 6-tue facilitate adding new concepts by taking advantage of

similarities among to-be-added concepts and existingons

One of the mosn time consuming task in building knowledge bases is maintaining internal consistency.

Adding, deleting and modifyin slots and parents in a frame taxonomay may affect the subsumption (parent/child)

relations between fraes and. perhaps mome importantly, may change seas of properties inrted. by more specific
frames. The possible consequences of a change in one part of a network grows rapidly as taxonomies get L--'er.

Consequently, the size and complexity of knowledge bases is limited by the extent to which automatic means are
provided for consistency checking.

The KREME classifier help the user maintain consistency between the defimutons of all concepts defined in a
KREME Frome knowledge base. It is invoked whenever a concept or role is defined or redefined. The classifier

first gathers all of the faarus to be Minbuid by a concept and then determines exactly where the concept should be

placed in the specialiaiou hierachy, by deduscinig what its motspecific parents and least specific children should
be. The classifier makes sore tha the paienm of a concept include not only those concepts that the use has specified
directly, but all concepts tdot describe more general dlasses that logically include the given concept as a subclass.

The EREM editng envaroment provides faciliie for Large-scale revisios; of portions of a frame
knowiadge bus, in the flares of a iiucre-eding &falt. This flaclity provides editing operations tha can be built up
into Hubs "sczua, and than applied aepeandly to many definitions. These "scriptg" or macos are demonstrated

own, by exml 4 and tm abe used o and overagain.

*rth.~ - Ip, md - k m hrdwXMThA11ICAI sun= (221 =sd r dmspi.= miw ~b dAmmwd

4

The development of die macro editor was inspired by our experiences developing other expert systems. we

found that over the life cycle of such systems, they inevitably require systematic. large scale revisionts of portions of

the developed representatiom. This kand of large-scale revision is caused by dhe addition or redefinition of a task,

the sysinm is to perfori. Previous to IMEM4B. such systematic changes to a knowledge base have only been

possible by painstaking piecemeal revision of each affcted elemen.

B.O3 Overview of this mianual

Our general stwy in this manual, will be to provide a brief introduction to important aspects of the system

being discussed at the begmang of a section and to provide detailed information about the KRENS facilities and

procedures for using those facilities later in t section.

We begin in section B.I with an overview of the ICREME environment, providing details of the basic featues

of the knowledge editing environment tat are common to both the KREM frame and rule editors.

Using KREME to edit Frame knowledge bases is discussed extensively in sections 3-5. Following a brief

discussion of KREME frames. section B.2 details of the XREM system for representing knowledge in frames and

editing those frames =m preed. Section 3.3 provides a brief discussion of the frame classifier and interactions

with it. The macro editor is describe in section B.4.

Section 3.5 gives a brief description of the ICREME mechanism for finding generalizations in KREME Frame

Knowledge Bases. The KIEME rule editor, and its relationsip to the frame editor is described in section B.6. In
Appendix C we have provided an example of how to crease new concepts using the KREME frame editor.

B.1 The Knowledge Editor

In ibis seaw,~i we describe due ovezall design of fth XREME environmt and give details of the features of
KRtEME that ane uivezaal. vi all of its component editors

B-1. Windowm and Vimw

We iost present som of the basic design 0,tue of KR EE and how it appears to the user. This section
will dedwith dwqp ~p mce otdiscenwhen uming iEbM.

At my given tine while vmg KROM you will be looking at one of a number of views wro a developing

heowldge bus. Each view as a collectio of rectangular wimiows that together fill up t Symbol=c acteen. We

ISM bud to seec Md sti the windows as ecb view so that you can edit a particular kind of knowledge

upeuion eftctively uwi ccwveeinaxy.

4,

8.1.1.1 Views

A new is a particular editing perspective on some aspect of a knowledge base or representation of an object.

In XREME, each view is a set Of windows appearing simultanieously On the Symbolics screen. Figure B-1 shows

the six views cutrenty available. They are:

1. Mwe Top Iare* View =s seen when you first enrer KRtEME, and whenever you are loading a
previously saved knowledge base.

2. The Main Concept Editing View is the standard view for editing indivdual. concepts.

3. The AltErna2t Concept Editing View contains windows available in the Main Concept Editing View
(Slots Inverse Restrictions, Equivalences Disjoint Concepts), but displays the tables of concept
features that are not notrally visible all at one arn. It does not show the Concept Graph.

4. The Big Concept Graph View uses most of the screen to show the Concept Graph, and does not
show any tables of concept fleatures.

S. The Macro Strutur Editor View provides an alternative method for viewing and editing individual
conceMM More importantly, it provides a convenient means of viewing a number of concepts at one
time, copying feues from one concept to another, and defining and runrn ikowledge editing
macros. This editing system is described in detail, in section BA4

6. The Role Editing View is used to edit roles, the relationships that name slots. It is much like the
Main Concept Editing View.

7. The Rule Editor View, which operates much Ike the macro structure editor, is used for editing the
rules in rule packets.

As You can See, Mny Of the windows that appear in these views are "shared" by several different views. This

Is Part Of t basic deSign of ICREMVE, to provide a uniform style of interaction while focusing on what is needed for
editing each type of representation. Neut we discuss what these widows are, and what they are for.

B.1.1.2 Component Windows

Figur B-2 shows t Maim Concept Editing View in more detail, broken down into its component windows.
As You will se, many Of these windows appear in othe views, as wel The Main Concept Editng View is the one
You will probabl = mast of t time when you awe editing flumes. It contains the following windows (numbers in
parenthese correspond to the labels in the figure):

The &Wba commad window (1) cot in nimands that may be invoked at any time while runn
IRBEF Them medescribed in detail in section B.l.3.

The M& sac window (2) shows the aum= of the tbanp being edited andi some information about their
00e edit O (e~g., wh tr the been modified). The top item in the editor stack as the current

alter object, thobject wicis te oot o te nnm -view.

The stat windw (3) aLways dsplys ptietinformation about the top itm on the editor suack. which is
called th current aditor object For concepts, the sm window cowntan the concept's name(s) a in
spedI~'i wheilur the L,- is psruiive and miethe the concept ba been, claswfed (defined) or amr
and whbier it bas be=n noWdjed in the ediorsne it was last classid. It also includes lines givng the
concept's psIuNand a etal descrpon. Variim of this windiow appea whenever you wre editing a
concept, arole, or a mi packcet.

so

Figum3-1: KEE's Saeen Editing Via"s

FiIw~o to tod fPt.: k .CWV.... 0009.
Doin Lad f i* if CMWAT-OESAOHET.4~llS 04/C2/07 29:56:351..

Doing road file (4/9/7 129:56:351..
Lood$'.9 KR8 CDWEjPr-OU3*o4C-ET.Lp.E~stz Into aciage KI.

1-m Top Level View

Nf Edit Conct

Abshaefem Aid 3069WIizalles of ?dACHINV

C.eg - (C~u) MACHIN

seem 1 ai i.,,emnioauzcm.-osac

Main Concept Editing view

-C: (C.) OsKite

Pyiuiti., yes C1mead 0ifti C CV)LtE
somi.iea TWIN C* CUjIS

0rpir thingl VIM"Mimg AS a f. NO attsontim1. dissmmI.. andfe a~im low,* C. lC:VI POatR-noUCK
& hise thWe 4We tM46gllP 41 Witted as ftoWW - Sgg5 4046 C: (C.01 SOMME
Tk"4%I A wopy qjubj~eegp pd4..%, 1 d..t - ImM ~w Meqttp ef it 0..

Legal e~uEditort Stark
W meM pro t. aw retaa,,ccqes re .. rictim Gaes ftrat...t

S WIT I-umty I (A orTT (a OMITY) -
qe.AK * Ot40 at (CR j Cft) (A MaIl~
-Low. amiTim AN Wleat I 8 C~) CUVI

"Lu. 9tart IT I AGE)4K
Mom:~ 259m glt"l ma (C Ii sow11

l.'o 0 1,U t .yamC) 14 Ann)
'Low.* LOCATIO fan~ I C JOTIth) (a LS@ATtt11
Lo. "aE 'mtyw (C (4E 31IZ91

IA oe a l I e s e e o c a O ~ e . C l a v e s

Almeinmm CAOacpt Edidng VjeW

si

Figure B-1. Coadiiued.

Bigf Can enGrv Ve

edit aw Liam
RC ils~ri...e C ri'tS f,7Turtse

Par~P Wifeu

Cone . O~im ~ota r~.qr...

p44,4 ~ ~ LMM tC..~~,~ de~I C C IL~A

Toie Para Ve

Ar- C Lead0- 52

Figure B-I,. continued.

New Concept

Prm TvsIS lthimleiried, Agedi~d .(liT
See ielwas PIPIE

Doper~o 1111aem

Concep~t tPIPEO Concept tr1l
Pit1tmipnyves PrinitiWe: tic
Ablrl tos (II Abstractions: 'TWig

llPole Postrictions: Clie iP VP Dlefault] Pole Pestrictions: (none MP VP Weau.lt]
t(IUT eaetlf. I AA tRV*z !A TAgI). i(C0O-OP0 E..sctl. I -R ELLOUI 'A YELLOW3'

MASS E.,ctl, 1 A llfr3s) (A IviSSi

I COLOP-OF E'aetih. I !A COLOPI 'A COLOPU I)vlncs
IOUTPUT E.,sctl-. I 'A TiiIrIG-wITii-lrijT) Disjoint Classes:

(a TIffeI-IITI4-IiPUT 3
Eoui..elences:
Disjoint Classes:

"IWO, Macror jw

Insert a 040e "C~ee t-0 conniected devicesaftJ" S. TAWI [current- concept]

1.- MOP* 0 Mu Concept hdieh specializes PIPE. nansa by generating e ubrsuff'i,..PE (prto
2. Change the IHPJI value restriction of Atan L to iten S.
3. Change the OUTPUT value restriction of iton I t~o the OUTPUT value restriction of ite" 9.

Mlacr &rucuue Ediw

c: (c:VJ MDWJC
-C: Jc;UJ TAM

Edtor RcA [o.&

Pcet C hEX-IU Wl Packet; YEPIFY*Ok SAu

P-tonditionz none Pescanditiont none

If REE111UP)AiL lTqTTS IS
(SECmlOfSSs - MAY VI.E3-OIL-PDI PEIRCUIA.I' LIM AqOD. POWYXALLi-ALLC1EHO.311
PPESWI - IN -- 30)) and then RSTA~tjS -* CO

B((SRMV FUM-OIL-PraiP RECIRCULATZIMS LINE PRESSMIp =
(20 -- 3011 If Il tARiI-SU.PPLY -LIME OJIRPEAI -StrlUSi IS 1iOT -qLIGEDI

thenS[SMEY-siSS~ WiS3then RCSTATUS - PAPIALT-A.AGIE91

If eCCIAAIIO PL-OIL-viJIP CHAM~P PPISSUIE If 6CCW1 V ILL ALGeT-srplUSs S OT-OLLI41u]
(- CSSU5D-wisS ~ UP vurIL-OLL-111f CIIAII PisaftI S5)] then ETAFUG - PVILL.*-aLLGWQ

then ISSTY-IfSGIN * WilfPEI NESAFTET-IAPOIII - U!,GRPE3

CSICGAU-'OSS - ~Ai 'L-OITL-Uf P'ECTPMtLTTMG LIMr
PoesIuffI (29 -- 361] aid

WC (U FUEL-OIL -PIMP P!CIRMILATMG 1.I1IESSME
(29 -- 38)]

Iromm: Select a rule to copy so*"e "pW!CV.VS
kriems:~ sm"Patgj

*oswat ot-92I at PAC-4

33

,hi

S

C *1I. .-J~i
J.

V a.

SV6- ii
® ® ®®®I®S®®

Sq r .: i , i ~ F.i i

Mie local command window (4) is a menu of commands specific to editing the kind of object displayed in
the state window (the curment editor object) It always appears directly above state window. When editing
a concept. the commands are IClassy Co t Kill Co Iept New Related Conct ard

,cha View the last of which allows you to change to one of the other views available for editing
mncepM. When editing objects other than conceptm a somewhat difteent command window appears
above the stae window, containing commands usel for the type of object displayed.

The VVI window (S) displays a dynamically updated graph of all of the abstractions and specializations
of the , eneP editor object This view provides a -oo am visual display of the relative position of the
object being edited in a hierk=cy. Graph windows often appear when you ae editing concepts or roles, or.
in general, objects that live in hierarches The commands that are available wthn the grapher ae
described in detail in section B.2.2.2.

The table edit window (6) displays one of a number of tables describing a set of features that are part of
the defindon of the cunent edit object. The one displayed in (7) is the slot edit window, which has one
line for each slot of the current concepL This is the normal table to see when editing a concept, although
there are several others, which wre described in section B.2.2.4. Coluinru in the slots table show the source
(where it was inherited from) of the slot. the mne of the slot (which is also the mne of the rle or relation
that the slot represents), the slot's value and number restrictios, default value, and a textual description of
the slot. General operations on table edit windows are described in secam B.2.2.4.

The table edt command window (7) is a menu containing commands for changing and adding to the list
of things displayed in the table edit window. The consents of this mean changes whenever the set of things
displayed in the table edit window changes. When editing slots, cmmands available to display the
locally defined slots display t fll set of iriezted slots, add a new slot, and kill ad redundant slots (slots
which ae the same a e inheid ones).

The Editor Interaction Window (S) is a Lisp Listener with a DIME command interpreter running, Both
normal LISP expressions and DEME commands (like the ones displayed in command menus) can be
issued here Tins window is also used when K DvME needs to ask the user, for information. This window
can be sroned backward and forward through a history of the curen session usig the scroll bar at the
le.

The Moum Documenttio Window (9) is always visible on Lisp machine screens. This is where you
look to see whet the mome will do if you dick one of its buttons. (See section B.L2.) IT IS VERY
USEFUL - ALWAYS GLANCE AT IT WHEN YOU MOVE THE MOUSE.

Five of these windows me common to all views (except the Top Level View); the global command window,
described above, appeacs everywh , including the Top Leve View. The editor stack window, the state window
and the local oummand window appear everywhere but in the Top Level View. The mouse documentation
window b Put Of t s=daWd Symbolics interface, mad so is ws prsen. The raph window is cmTently used
for displaying te a of conIepts and roles only, although., in e fmare, we expect it will be used for other
thngs as well.

Theur me a few of oer types of windows, which win be discussed where they ae mw relevantL Among
the e the S'uctwr editing windows that ae wed in the Macu Structure Edir, and in the Ruk Editor.

35

B.1.2 Using the Mouse

Poinaug with the mouse. and then clicking one of the butom on the top of the mouse is the way vutualy all

commands am Sven to EE This includes ad editng operations for browsing, adding, and modifying

definmiow. all commands to change what appeas on the screen, and commands for loading and saving knowledge

bases.

Wbevmer the momt appears on the saeen something will happen if a button is clicked. You can always

tell wha will happen by looking at the bottom of the screen. There you will find a short one-line window called the

mouse documnentation window (See (9) in figure B-2 above.) that says what each mouse button will do. L: is what

the left button will do. L2: tells you what will happen if the left button is clicked twice in succession. M:, M2:, R:

and R2: describe the operatios that will be performed by the mid and Eight buttons, respectively. Normally, you

want to click the left button once to ot the default behavior. The rght button is always a menu of other operations

that you may choose from inmed.

In general, all visible references to an objec cm be pointed at. in order to view the object in more detail. For

example, a concept or its name can appear as:

1. a node in a graph,

2. a value restriction or default in the slot desciption table,

3. the name of a paren in the state window,

4 as an item on the editor stack.

WlNOMW the mouse is ova a or the me of some oh~ect, a rectangle is drawn mound the

na and doe conen of the mse doomizulon window cbang. Commads ae always exoc"ezd using the left

-mo buttom. Cking the middle buaton displays some oalim documemation for that command. The right button

is mod to saet opional command pianmetm before ezacadg a commad.

Whatever the fim ofte display, the dWplayed item will rs n the sme set of opermia wen someone

pons at i3, and thoe rmio will be specified in the muse, documentaadon window. When the system require

te emy of a concept mwu as e the EdtC command is dickKd dte user may eihe type the maeOr

9-mo mdwp app a Uink whgd vA uwa boom Cm== is mm appm wA ee h mN-d *-. a *.

m 5'

poi at my visible concept nmm. 0

B.1.3 Command Menus

All Womas that~o be-erforme by-pointing diredy at a object appea in command menus which we
msociated with paricular windows in each editor view. For example, the giobal command menu, which appears at

the top of thescreen in every M.EME view, cains t Woowing commands: 11

- The ILoed Nwrkcommand is used to read a previously de-eloped knowledge base into KREMvE
After clcking On ds command, you will be swihed to be Top Level View, and prompted for a
fileumne.

a The (STe Ntwok command is used to save the knowledge base, or a portion of the knowledge base
d you have been ediing. It prompts you for a filename which defaults to he last file read. (The
default is used if you bit <Return>.) Clicking rigt on this command allows you to save branches of

- Creating new concepts, roles, and packets of rules d: e New Role and New Packet
commands, swich you to the default view for editing an object of the rp specified. sher asking you to
name the object, ad sgft a littl information about the object you wish to cream on a pop-up menu
fm. The an commands ae described in section 3.2 and an example of

their use appears in Appendix C.
* diting individual onrep w roles, and rule packets: the Edit C E R a Edit Packet

commands all ask for the nme of an existing object of the specified type, and then swuch to a view in
which ta object cam be presented for edimg.

* The [1 command is used to daed pgeealizations. (See section B.5.)

* Trhe omdEam i removes the lop itm homhe editor stack 2. (See section B.l.4.)

* h [comumd ca someimes be used to re the editor, when it is stuck for some eason. Use
dm diit bttom to ce t currently laded knowledg base.

* The c___ commad is ued to set some top-level pem eusms of the KREME eunmmomnt For
amml opetdiom, tbk ommand sould ONqLY be used to set the language sy x used to read concept

d@fidAt c. fAles. At Ppmin, the oly choices for thise a JM and NIKL. NIKL mode allows
!EII to md defimitim. fom ffies in NUL syntax.

WA hFPhmmfd mM - 'IOIJS EZO CZ', wa pm q m am e n vm & a dpmm btwm dme o wml (10OBM..
ORM lM eu , - tylpem--u ammmhbg W apmn - pul Imm b aemw ividwwd.

h 8 - Nim OO_- , &M • be man c d in t sp mioftd (w a WWdW. Wdom
b.a a d ye ky d=U bm6 &I it my. bpf m.5 . d - ist m+d m. r.t is j. . iidie idi of..
so= (NY". am's WU2 Jhj pm. f.)

57

Wben aswering a question like the "Concept Name:" quston that appears when you clic the
[!~di] command. yon may eithe type in a namre or poit at any concept name that appears on the screen. if

you m - n of the spefllin you may type put of the name and bit the <COMPLETE> key. which, willcas
KRE to try to W1 out the rest of the nunse. You can also bit <COMPLETE> after typng just the fit letters of
tbyjinmnmes. For aminpls M-O-COMaLETE> will expand to MOBILE-OBJECr in our example network.
Almo typing the beinng of' a u and then c-? will cuse all of the remaining possibilities at that point to be

pm.You ca then uimply point at the am you want, a shown below.

lam., or@ thi P044614~ CMDIGaat of t-t U~y havo tv46:

VA041I WAN6--.Or!M OW~uICM.-LE4 PECONCA.-PMT uMOCEDS NWTrAYV-CWs
"ae-MMa-OsIxCr vEAIM NEOMN1M-LDO POMMICAL-Y1N MNLEn-R404IE 140IVE -POW

'KauxF04W -*W ,Ows1tCN4Lmafv POY PMIWflI-OWSECT NOI -YE4TO.E
ODUt-SPUED ~lNc-s~Ta OIM-iJC ~Va

Coetnin: MILECSXCT

8.1.3.1 Local Comumand Menus

Anytime ICREM ais~laying a view of a particular kind of knowledge, the State Winsdow displays t most

basic commnands for t type of object displayed. For example. when editing concepms the following menu appears:

In dhes local command ins, ame will always find the command that makes permanent the definition that is
cunty being editd (a Clair command for concepts and roles), a Kill command (if applicable) to undeflue the
object a command to make Now Meated objects like the curnt one, by copying the current definition pertrmiog
you to edit it, plus some miscellaneous other commands.

B.1.4 Buffers and the Editor Stack

XREM4 muuain a stack or Uat of the objects that have beon edited, and constantly displays this list,
indicating which objects law been modifie and not reclassified. ERENM behaves much like the text editor
ENACS in this asspectince it maintain a distinction betwe thigs timt have been odited (bffers in EMACS)
and thlnp tha = dqlrvd (Mla for EMCS). Pcr DE~M dqlned means classified.

Tis ina of objects IM have been edited in t e KRMM session is displayed in t Editor Stack
MUinOW, an exmple ofwic is sonbelow-

so

.C: (C;Uj MACHINE
:C:U] MaO-oa&K-..T

F:[] NC"CCK-L I WuWrT
C: LC;U] RECHNAI.AL-OJECT

P: [u;N] VERItY-O

SEdilor Stack

Each line of the Editor Stack Window star with a charcter indicating the kind of edit object it is (C: for

concept, R: for role, F: for a rule packet, which becomes afunczon when run, an indication of the current edit state

of the object, and the object's mie. The top item in the stack (the line beginning with >) is the definition currently

being viewed and edited. The user is ie to modify this definition in any way without directly affecting the

knowledge bae. The edited definition is only made pemanem when a command like I s Concepti s issued.

When defining a new concept that has not yet been classified, the second line of the state window will show the
words

(Unl&sLf1.*d; Modifted]

and the corsponding (top) line of the Edito Stack will contain the symbols [UM]. This refers to the fact that

then is no pemanent venion of this definition yet (i.e., it is unclassified). Immediately after a definition has been

classified, the State Window will display

C(CMasolfted; U ioi.£ed]

AZ this point, the top line of the Editor Stack will contain the symbols [C;UI. If the object is then edited, the word

Unmodified wil change back to Modified.

The editor stack s always visible, providing a convenient method for browsing through a knowledge base. To

make any definition itm cunetly in the stack the top item, point at it and click the left moue button. The object

will be displayed in the me editor view as when it was last edited. Pointing at an item on the stack and clicking the

uight buto pops up a memn that allows you to:

MoeM to Te - make the object the current editor object, displaying it in the view in which it was last

edited.

• aw. Dfnith - display the (LISP form of the) object's definition.

display a pop-up gr of the object's abstractiom and specializations in a temporary window
No the muml 1rpher window.

*{tobject.

the object fAm the edit stack, without cassifying it. The top item on the editor sack can
abu be removed mung the []command in the globa commaind menu.

Tw Mow Stwit Window, lilm mast windows in KREME views, can be scrolled if more objects have been

edted thn will fit on lHs in this window. When there ae mom ms than will ft the words [More Abovel or

59

[More Selowl will appear to, dhe line with the words Editor Stack To scoll, move the moms into the window, and
move it across t ledt edge slowly. unti a double headed anow appean. and follow the directions in the muse

dscmuentation window. Alternatively, you can scroll. a line at a tam by moving to the bottom (or top) aear the
zigt side of the window and moving td mouse slowly downward (upwamd).

B.2 Editing Frame Knowledge Bases

This section deals with KEME Frames, and the KREIM From Editor. The KEME rame language is a
F ~close relative of the NMX! latiguage that is t definitional (=aonomic) component part of fl-TWO and a

descerudant of the fl-ONE frame language [9,15S, 21]. This language provides an effective way of defining
conceptual classs which live in a zaxonoatic hierarchy. 11he (runes or concepts you define using the KREME
Pr- P Editor serve as die termixoiogicai component of the imowledge based system being developed. That is.
concepts ame the terms to be refirred to an manipulated by amt imfrence process, perhaps defined by a set of
hference rules developed using the KME Rule Edtor.

11.2.1 Definition of KREME Frames

In XREME. a frame is called a concept. Collections of cn -ceptis ame organized into a rooted inheritance or
specjalkason hierarchy sometimes refined to a a rtaony of concepts. A aingle distinguished concept, usually
called THING, serves a the moot or most general concept of the hierarchy. Figure B-3 shows a simple

specialization hierach. A concept (eg.. ELEPHANT in figur B-3) in one of those hierArchies specializes another
Concept (e-g., OBJECT) whem the clas repreumnted by the concpt is subsumed by13 (is a subset of) the class
represented by the other concept. Gophiaily, this mum that the lattr (OBJECT) appiars an ancestor of the first

A concept ha a 'nw, a zeal descripdon. a primklvenest lg a list of defined parents (concepts that it is
defined, to *weialize), a ftn of SInt,4 I a lis of sloe quivalences ad a His'o concepts that it is disjoint from 15 . In
KR&(E, a concept may be sulwamed by moae than just the cam"t die are its defind parents. Thus. classified

COncepts a a EREM hiearchy as co distinct Ist of those concepts that directly subsume it. and those
which it directly suhamres or an its diect children.

The lim of slots equivalences and disjoint coan eptis we collectively referred to as the features of a concept.
If each cocpr cam be thoght of a defining a unique category, the fetatures of the concept define the necessary

t5M -amep jiu $umWP andw Wbvhi.e ism puabdis b% ind ad..

largeobject

Role Restrictio~n

= Figure B-3: A Simple Concept Taxonomy

(defconcept ROUSZ
:pwiuitlve t
:spec4 alizes (bil~ding)
:*lots

((residents (a person) nil (a person))
(front-door (a door) (1 1) (a door)))

eGquivalences
((main-etrance) (front-door))

-disJoi~nt (office-building aparcient-building))

FRem 1-4. LISP form of a KREM frame definilon

conifidons for inclusion in *t coaegr. If a concept is not mszked as primuive, the feazres also constitute Whe
conom es m of suificiem coduum fut mcsum in that categor. A concept inherit all feazuxes from those
concepts above it in the ladne (those - - I dot schsne it. and dws ane more general) and may define additional

6 -ures dt setw to dsdngu it h fom its jnum or pasm. igure B-4 show the LISP defining form for a
concept. Woank pufixd by colo eos ot i typ of hum. Mw :sls ue specified asa list of lists of the form
.wok-oww vwa-,wuvictim ou wa ,* dqI=Iv'. Nasm of concepts in value restrictions avA defmalts ame

peadby a or as. Nunbes suedons as a Us of <ndxuimuas iwmnuww, specifying bow many objects of the

typ specifed by fth value resmcdo. may be ihdto an inistance of this concpt. NIL. bere mns "any number".

AMI of the dlots defined foe a concept. when take utoghe, foga a descrition of dthe o eunbute-value pairs

dti an bmawt's most ban for it w be comdmed a member of toe darn definted by dta concept. A slot consists of

'@A WMa dm@@Wg as W O*Jin do aw sudL

61

a role ne, a value restrction. a nmber restriction and an (optional) default form~~

The role num whae to an object called a role. Roles in KREbCE. ane actually distinct, first clas objects.

Roles describe reiadoui hbl Pentwom apU A vahw restriction on a slot mumd by a role is a further specification or

resttiction of the range of de role, delineating the set of thing that the concpt that contains that slot can be related

to. It isnonnal dwaa of som other concept The domain of fth rok ii aperual dhacterzatioa of the set of

dinge that may use this wile to relat objects to other objects. Pt another way. it is the most general class of things

dtm can use this role asthe ame of a slot. As first-class objects, roles farim their own distinct taxonomy, rooted at

the most general possible role, usually called *RELATION* Figure B-5 shows a portion of a simple role

taxonomy.

Figure 3-5: A Simple Role Taxonomy

A role definition bw a name, a descripdon, a list of roles that itipedaliza. a domain an a range. In aformal

seme, a role is a two-place relation dtm maps instances of concepts in its domain onto sets of' um2 - s in its range.

The domsain of a role is the most gonra concept at which the role makes setwe. That is. it specifies the class of
dhings for which the roleca ame a slot. The range of a role specifies the geeral class of concepts that can serve

as values in slots defined using dot role, All concepts filling slots whose ame is a given role must be elements of

the range of that role.

acht slo at a concept hwas pot of its definition a isalue Fesclon, whicb is the class of allowed values for

do slot. 11w value sesumon men alwas be a sath-dass of the ramp of dt role, and a mub-das of thre value

restrictiam deined fo that rokl at all concepts subsumning the on restricted. Value testrictions must be defined

Concpts

Smalso include a mimber retiction that specifies the mumumn d maximum (if mny) on mIber of things

"bwtmwi wtatdwd a** f KL

that may be related by the role to instances of the concept. For example, if all elephants have four legs. then the

concept ELEPHANT might be defined to restrict the role LEGS to Exacy 4 ELEPHANT.LEGs s A number

rsricton must be at least as specific as all of the number estrictions for the same role. at any of the concept's

pnmue A namber restion of Exactly I (rain = max = 1) is more specific then a number restriction of At most 2

(e.g., ra 0. max - 2). 9

Equvaences describe slots that by deflnition refer to the same entities. They are defined as pans of paths

whose refrients are the same concept A path is a list of role names, the head (first) of which is the name of a slot at

the concept defining the equivalence. Each subsequent slot name in a path must be a valid slot in the concept that is

the value testriction of the previous slot in the path. The referent of a path is the value of the last slot in the chain.

Figure B-6 shows a simple example of an equivalence.

-o

o te SUCTIoN VALVE o PUP.

Figure .& ASlot Euivalence

Concepts makd mdaprnvkive (sometimes referred to as Natural Kind) have no complete set of sufficient

conaditions. For example, an ELEPHANT must, by necessity, be a MAMMAL. but without an exhaustive lis of dx

Sattrnutes that distinguisI it fran other munak. it must be represened as a primitive concept WHITE

ELEPHANT, on the other haned, night be completely described by stating that it is a speciliation of EL.EPHANT,
whee the role COLOR was resticted to WHrf

KRItIE Prunes permit slts to have defaUT valuea wel as value restrictio. If pem dx default must

bme d drptio of smem concept which satisfies the esmctiom on the role at that cocet The default is used as
a slo fllr for inmcet of a cone that do nrs specify a value for the sl) at intao comalet t Defaults am
ialmud fr m th mit specific p m at which tey are defmed.

W te. N COLORas rst m4,ice t Vak. R..uMui (E Af-LO).

. fAX. .6 im i4. m Va11 - t.m idw (0 MAX- JqiWa.

63

B.2.2 Using the Frame Editor

The KREME ftn editor has five views, as shown in figure B-I, the Main Concept Editing View, the
Altarnaft Coa diAg View, the Xig Graph View, and the Macro Structure Editor View. Role, which are
also part of the KREMS -Aune, language, ae edited with the Role Editing View.

In ti section, we will cover the details of the editing operations available in the first three of these views.
The Role Editing View is covered in Section B.2.4. The Macro Structure Editor is covered in section B.4.

B.2.2.1 Editing in the Main Concept Editing View

Normally, when one ceates a new concept or edits a concept for the first time, KREME makes that concept
the top concept on the Editor Stack, and switches to display the Main Concept Editing View. Them, KREME
displays the concept as it exists at that time.

Figure B-7 shows how the graph window immediately displays all of the abstractions and specializations of
the concept being edited, the state window shows its name, whether it is primitive or not, its edit state (classified or
not, modified or not), its parents, and a textual description. The table window simultaneously displays all of the
concept's locally defined slos.

In the remainder of this section, we will cover all of the operations available by pointing at all of the different
parts of thi frame editing view, as well as describing in detail the workings of the Grapher and Table Editing
Windows, which also appear in many oth conexts in the KREME environment. We begin with the Grapher.

B.2.2.2 The Grapher

KREMWE is equipped with a powerful, general graphing facility that rapidly draws lattices of nodes and links.
Its main ae is to provide a dynamically updated display of a concept or role and its place in the specialization or
intirnc hierrmchy. Whn editing a concept in the Main Concept Editing View or the Big Concept Graph
View, or when editing a tole, XRME automatically displays all of that object's abstractons and specializations,
with more absm objecia to the left. nd moe specialud objects to the rigl of the curent editor obc

As shown above in figure B-7, the graph is initially centered on the cre editor object, which appears as a
black node with white lem. All other objects appear as nodes with a white background. Objects that axe defined
as pabu e indicaed by t box edges. Nodes that have been modified (edited but not reclasified) appear
a nodes with a Sy bgul.

Pg the Graph

An impant tams of the grapher is that it can display graphs that are much larger than the window through
Wic they am viewd If ymu want m ue a paut of the netwaik that is off the screen, point with the mose at some
poim on Uhe paph wadkw ON con li a omde, aud iold the left button down. The mnuse cmm will chan

64

2 lb

- U, 4., -

B-7: he ooce U ESi8Ve

from an arrow to the shape of a hand. While still holding the left mouse button down, drag the mouse in the

direction you wish the graph to move, and it will move smoothly as though you were pushing a piece of paper that

was only partly visible in the space provided by the graph window.

Ob

P

Normal Panning Speed Panning

Figure 3-8: Panning the Graph

Another way to pan more quickly, called speed panning, is accomplished with the middle mouse button.

Again, place the mouse over an unoccupied spot on the graph window, and push the middle button. A small square

with a dot in it will appear. This is the "joy stick". While still holding the middle button down, move it a little bit

off from the center of the box. and the graph will begin to move slowly in the direction you have moved. The

further away from the center of the box you go, the faster the graph will move.

The Overview Graph

Now, click the right button once over an empty part of the graph window.

The Graph Operations menu, shown below, in figure B-9, will appear.

Graoh Ooerationz

hardcopy
font menu
find nodepveri ie.,

orientation
speed pan

redraw graph

FIgue -9: The Graph Operauions menu

We wil discusS the otber grapher optiom below, in section B.2.2.2. For now, dick o and a

midiatte version of the full lattice will appear on in a black region in the upper left carr of the graph window.

This shows the flnetwo displayed in the graph window, but with tiny nodes and links. The visible region

of the graph will be indicated by a white rectangle inside the black one. Now pan with the mouse over the main

graph window, and the white rectangle will follow your movements.

Now, move the mouse into the overview window. The nodes on the overview graph will be highlighted by a

box as you pass over them, just as they are in the main graph window. Al of the mouse operations available on

nodes in the main window will also wor on nodes in this window. CThese operations will be covered in section

B.2.2.2.) The name of the node is kidicated in the mouse documentation window.

The overview window also can be used to pan the main graph window. Pointing (left button) to a spot on the

overview that contains no node, cases the main graph to pan so that the upper left corner is at that spot. You can

also hold and drag the mouse, and the graph will follow you.

To turn the overview off, simply bring up the Graph Operations menu, and click the command

The Graph Operatiom Mem

The other options in the Graph Operation menu show in figure B-9 are:

* y - Sends a copy of the full graph of the lattice to the printer.

*jstjejes- Allows you to chose a change to the foot style and size of characters used for nodes on
the graph. Smaller fonts an mefil to see mom of lare networks at once.

*-find o7de- Prompts for the name of an object an the graph, aud centers that node on the graph
window. It also draws a de around the node so that you can find it mote easly. The circle
disappears as soon as the graph is pamed.

* ovrviw -Switches the overview graph between visible and invisible. The overview graph was
discussed aboe in secti o B.2.2..

* olentaio -Switches the omadon of the graPh. Normay, the 1a2Mc is drawn from left to right
Tho conmu will came the graph to be redrawn han the top of the screen down. and vice ve a.

, (pst - 7bas omimaid pop up the speed paining box without having to hold down the moune
bumon. In this mode, clickd my mo-e button will maim it go away.

67

o [-erawZrph- Redraws the cemgraph.

The Graph Node.Command Menu

Nmaythe Kam E Grapber only displays the abstractions and specializons of the cuent editor object.

rthr than trying to display all of what is potentially a very large lattice This was done intentionally, since

MU~e was designed to work with very large knowledge bases. Occasionally, however. one wishes to see more

(or ten) than IREME normally displays on such graphs. The Grapber provides a number of options to enable users

to tailor what is displayed to their needs.

Whenever the mouse is over a node on a graph. the mouse documentation window shows the name of the
node. followed by:.
L: Edit this nod". M:GGaiph RelatIves R.:MnU of Zditinq Options

Clicking the left mouse button causes KREME to make the object pointed to the top editor stack item. If you

awe looking at a concept graph, you will then be viewing the concept pointed to, a graph of its abstractions and

specializations and a table of is slots. This is an extremely convenient way of browsing through large concept

networks quickly, and focusing on different portions of such a network. If& however, you wish to continue editing

) the concept you are curenstly viewing, but see more (or less) of the network around that concept or some other

concept on the same graph, you can use the graph relatives menu found by clicking the middle mouse button over

I any graph node.

The graph relatives men, exposed by clicking the middle button over a node, contains the following

commands:

*]raph - causes all abstractions of the node clicked on to be added to the displayed graph.

Graph CfMj -- en- causes aln specializations of the node clicked on to be added to the displayed graph.

* [Hide Chiidren - caues all specializations of the. node cicked on to be removed from the graph, unless
they ae also children of some other node.

*IHide Node and Chiidren - causes the node clicked on and its children to be removed from the graph.

Editing a Network from a Graph

Cliking the right button over a gpph node causes yet amother meu of options to be exposed, the concept

graph edft option meMMI

S"T mm contains the following optiow for concepts:

* DSeow Dnim -This option causes the textual (LISP) forn of the concept's definition to be
displayed over the Graph Window.

300a sr oler.., tof.im rob t ewd.m - wpP wIAh mitly dim -- cOaMM frohm.&mm mon"

68

Ibis coom fh ot pointed to to be removed from the knowledge base. It has the
sa effct the Kill Concept command in the local onmmnd menu window, except that it workcs
when you -v no currently editing the conep you wish to kilL21

-11taiese, -Thas command prompts you for a new name for the concept pointed to, and
immediately replaces all reftrences to that tie with the new name throughout the knowledge base.
(See the Rosemm ocp commn in sectionB23.2

*9 - Thi comumand promps far the name of a parent (which you may give by pointing to
th giaph) and then deletes that paret from the liar of defined prnsof the concept initially pointed to.
It also switches 13EME to editing the concept modified, so that it can then be reclassified.

* Ad Pren -ma command als prompts for a parent. adds the concept named to the list of defined
parents of the concept, and switches to editing the modified concept.

0 Is lice Out ParenThis command prompts for a parent, and removes that parent from the list of
defined parents of the concept. replacing it with that concept's parents. Again, the editor is switched to
a view of the modified concept.

BI.2.3 Editing in the State Window

As described in section B.1.1.2, the state window of the Main Concept Editing View displays basic

information about the concept currently being editd.

tih4n,. that Oee tYPeIiS1Y clessif4.d Os nouns- - OGqS 4,09

The top line displays the time of the concept, and any synonyms or alternate names for that concept. The
name of the concept can be changed by cliciting on the word on .and entering a new name.

The second line of the display shoV~ whether the concept is defined as primitive or ot, and whether the
Concept has been classified of modified since classification. Clicking on the word Prmtv:causes the concept

to be marked primitive if it was not, and vice yena.

The thil line displays the both the 4irect oul dofnm(parencu of the conce-ptr after the word Specializes:.

Defined Parent: ae concePtPs that the usm specifies as abstractions of the cocept. Direct parents are concepts that
may or my ot have been deftned = parent of the, current mne, but have been determnd by the classifier to
subsme the dm dinooed by this concept and not hav'e an" specialzations tlua aw surbsr u a concept. On the
Concept Graph, the direct parents of a concept are the one with direct links to it.

"on Wa soV KU m U~ a n ondbi tab VUO wop dflpk memo.

69

This Specializes: list should be read as follow=. Concepts thot ane umarked wre both defined parents and

direct parents. Concepin tha arn idned parents but not direct parents ane prefixed by a "-". Concepts that are
dietparents but not defined parents mve prefixed by a '"

To add a peant to the set of definied parents of the conceMt simply click the left button over the word
f~~Jand typ (or point to) the name of a concpt that you wish to make a paren of this concept. To

othewis alser the set of defined parents , ciick the tight button, on t" wodl(j You will be presented

with a mer of th following opous

ON [Add Defned Parent - Prompts for the name of a concept to, make a defined parent.

NO Delete Parent which aren't direct - Allows you to point to defined parents that mre not direct parents
(iLe.. thos prefixed by a "-"), and have them removed from the list of this concept's defined parents.

* Make direct i;aMdefined parents! - Thi command causes all of the direct parent to become
defined a pae-s1 of the concept.

The fouth and subsequent Ines of the soan window display the user-specified textual description of the
concpt, wbich provide a means of dcmnain To enter a new description, click on t word ecr o.and

you will be prompted for lines of text until you enter a blank line by just hitting <RETURN2, or <END>.

B-2.2-4 Editing in the Table Edit Window

Normally, the table edit window in Main Concept View displays the set of LclSosof the concept, that

is, those salas which m defined locally by ts concept ad aom inhetited from above. The columns in the table are
labeled "Defned by", "Role', "Number Restricton",. "Value Restriction", "Default", and "Description".

aClking (with the left mouse button) on the command (~]in the table edit command window causs

XReME to display both local and inberited slots. In this display, local slots are indicated by the wont OLOCAL* in
thre 'Defined by" column of the table. Slots inhetited from a parent show the name of that parent Slots formed by
combining the value restrictions and/or number restrctions of several parents are indicated by the wont
OCLASSIZRO. When the table window is displaying all of the concept's slots, you can ma n to viewing just the

local ones by clicking the commandLoaSo.

1111 Mifte70

Wheaever do Table Edit Wudow shows slots of the curent concep. you ca edit those slots or add ouw

o=s To chne t slot nane value restrico , Imber ,utricuion default, or description of a dot, simply click

th left mouse b-mo over the thing to be changed, and you will be prompt for a sepLacement. For all but number
reuicons, he right butto will pp up a meret tha inchles te amuads ' ----Ithe part of the dt poine o,

lSram o f the concept or tole poimed to, t i ao of that concept or role, or pop up a of

i absractions and speciali ions. When pointing to the slot name, in the column labeled *R*le, you can also

Slesooe Ro thtl is, change the name of the role, and all reftezeoes to it in te knowledge base.

Wben the mouse is over a line in the slot table, and the entire line is encircled by a box, the right mouse button

can be used to ges a mew oflDele Slo, C Slot to another concept, andMove Slot to another concept. For

t Iast two, REM prompts for the name for the concept to move or copy the slot to.

At any time, when you have started to make a change and are being prompted for a replacement value, you

can hi the <ABORT> key to leave things as they were.

Adding New Slots

• Whenever the slom table window is visible, as in the Main Concept Editing View, you can add new local

slot definitions. A new slot is added to the defined slts of the concept with the dcommand. When this

command is issued the system prompts for a role name, a value restriction, a number restriction and a default form.I Any of these imems cm be ersered by typing orby pointing to the desired name or form if it is visible.

If a role or concept named in a role restriction or default does not exist the system will offer t make one with

the name given, and proceed to pop up the defining form for that object. (See section B.2.2..) When you are

finished filling out the form, dick [Dle, and KREME will contine to ask for the rest of the new slot's features.

When you have finished adding and modifying the slots of a concept, you should always make the changes

pemnmet with the I command. For an extended treatment of this command, see section B.3,

j below.

Modifm te Table Edit Window

The appearsme of Table Edit Windows can be modified in several ways. The tables are scrollable in both the

up-down and let-dil direction. Simply "bump" the mouse against the top or left sides of the window until the

double headed sntow appear and follow the directions in the mouse documentation window.

If you do not wish to ae some columns of the table, they can be selectlvey removed by clicking the middle

biMM in the lme displaying the column headings (when the double arrow is not showing). You will be presented

wih a menu on W~ you ca tick off the coluns th you wish to see and not. When you me satisfied click the4 ~ box muedfj@Do IL. If you do not wish to go through with the change, click g~]AorL

71

Changing the Contents of the Tabl Window

Since thereis not enough room in the Main Concept Editin View to display all of a concept's defining
fe ate one ame the conients of the Table Edit Window carn be clanged to display those other features. To do

tis, you mnt use the moose to find the taOl window comtmnts imi. This menu is available wherever there is

nothing else dnor h maine while sill inkle the table window. You wi know you have found it because the

mose &oF mnt1o window will show the wath

R: Chaae the contents of th~is tablea.

The best places to look are to the right of die "Description" column, and anywhere in the line of column

headinigs (when the double headed arow is not showing). Clicking the right button, you will see the following

meuoptions:

NW -. Displays the table of this concept's slotn, as described above.

* nvrs Rtrctou - Displays a table, esentially like the slots table but of all of cte slots displayed
ate slots of other concepts that an the cretconcept as thei valuea restriction Thi table is useful
when you aw tracing references to a concept in other concepts. When this table is displayed, the table
@ad commiand window will be empty. Some of the editing options described for the slots table will

_ not wok ben.

a ISlot ances - This table displays the slot equivalees of the creteditor concept. This table
ba only three coltim. -DeIned by-, -Path V" and -Path 2*. The two paths are designated as
denoting the saue object. Since slot equivalences cam be ibeiteed, dhir source is also indicated in the
table. in the column '"Delled by". Whom this table is visible, the table edit coniznand window will
show the commands [Lca Emai m Jes a l q lences andjAdd *'ryalence7 The first two
just chnge which equivalences mre dislayed. The last prompts for two slot paths thim should be made
equivalent .

0* WO - This table is just a one column list of all of the concepts that are defined to be
disjoint from the one currently being edited. When this table is visible, the Table Edit Command
Window will display the comnds IAdd Disoint Clss LoalDi Classes and

8.2.2.5 Operations on Concepts

Making now concepts and roles

Clicking on the [~]or No oecommand in the global command imealis the siplest way to

nake a new concept or role.

When staking a new concept. KR&IE will prompt for t name of the new concept sod then a pop-up form

will app an dt looks shdo

Descriti !n

Heme you may specify a description of the new concept. whether it is pnmidve or not. whether it is an
individual (a special kId of primitive class that has only one member, like the color RED), and a list of its direct
defined parents, wich must be a list enclosed in parentheses.

When you wxe done, click either the box labeled [j~efne or Deflne and further edit if you wish to make

the new concept the cuirePm editor objec in order to do things like adding new slams before classifying it.

Another way to make a new concept, one that is similar to another concept, is to use the
Now Relaed Co 6 command in the local command menu. This command allows you to choose from a

pop-up men whether you warnt to make a new concept that is similar to the currently visible concept or to some
other concept, a specialization of the current concept or some other concept. or a spiecialization of several concepts.

Similar to MIE
imilat- to som at erconcepq
Specialization of: MACHINE

Specialization of somne other concep

If you choose to make the concept similar to some existing concept. KP.NM makes up a concep definition

that is identical to the concept you specify, but with the new name, and then allows you to edit it to make it
soinewba different If you choose to make the concept a specialization of some existng concept, KREME

aomatically makes the parent of the new concept be the one you are specializing.

The command (New Reloaed Roei the local command window of the Role Editing View works

essentially the sane way.

Kai"~n ConcePts

Cbmwn the nae of a concept or role ditectly affects the netwogk. rhe name of the concept definition, as
well a the nam Of the convIPoftn clausified concept (if there is one), is changed. All poinvts to the concept (as
a PM90 Of OdW copw I M;t v AW rsMiCtOCu, a the domain or range of roles etc..) we automsticaily updated with
dou nw nme both in the clunied oetwock and in all edtor bumms

The (~]command splices a concept out of the taxonomy. Wiuth is command, the children of a

73

concept will be connected to all of its parents. Any concept that used to define the concept as a parent is
recdasified. If the concept was used a a value resticton. the editor rues to find an appropriate parent to substitute

for the killed connept. Becuase this attempt is not always successful. use interaction is sometimes required.

Deleting rd~n slobs

To delete any defined slots whose definitions ane the same as the inherited deflimori, click on the

JKil Redundant SlJots command in the idoe tabl coimand menu window, above the the isos table edit

window. This operation alter the definition of the concept. but not its classification or completed description.

(Classfcton will be discussed in detail in section B.3 below.)

B.2.3 Alternate Concept Views

Thee other views wre currently defined for concepts, and one view for roles. Two concept views display

windows not normally visible in the Main Concept Editing View (see figure B-10), while the third is the Macro

Strucure Editor to be discussed in section B.4 below.

To change to an alternate concept view, use the command in the local command menu

window above the state window. Clicking on ISlots and Equialences brings up the first window in figure B-l10.

This view shows an enlarged sos table edit window, the disjoint concepts window, and the slot equivalences

window together, agong with the editor stack window, the saewindow, ad amsociated command menu windows.

Clicking on I~reCocp Graph shows the second view of figure B-10. This view uses most of the

scren to display the specialization bierazchy, together with the State Window and Editor Stack Window.

B.2.4 Editing Roles

The Role Editing View (figure B-11) appears whenever the dtRoeor Ne oecommands are issued

from the glBW command smnu, when pointing at the name of a role appearing as the name of a slot, or pointing at

a previouily edited role appearin in the Editor Stack.

The Ro1b Kilig View contain a window showing a graph of the role specialization netwok highlighting

the currently visible role, another displayng a Int of the concpts that restrict the role, and the role saewindow.

Thu local commwand mbenuii window Er roles contains the commands:

-I* Cs iRl - Classifies or amks pemuemt a new or changed role deflnition.Anserting it
ain the robe hierarchy, sod checking that any conceps that use that role to ane a slot satisfy the
dmi moid rtip cointaint specified

OIOWRlaed - Comm a new role that is similar to ot a specialization of the cret(or some
othr) role. BZ opOWatIon is amalogotis to the INrew Related cormfmd

7'

-

S
4~ Sa

- S

.1 g~ U

4 4 a. 4

ug ~ U U U U -

--. 5- 5

~
.3,

.5 1
*

I ~

-I ;jI 1'
0

.5 Cu.-*

*p
* 444*44q~4444 K
- -i
U

'--4

C ~ I!
o 4 --

C
- u- = za5.-~c~

-~ C

3= - C~ 4 .,

WI WE
q44~44q~.4q4.

I U

4

C
S

- ... C a
0 -~~q"**- ~

W ~C~4hi4WC4CS~ a

.- ~ N* ~Ii ~
o

3 ~ 'U U

: ~ ~ *
159 ~ ~ 3

U - a
~ WI W -, 0.5

U - C.'
-.

1~
j £ 2

* 3 2~ -

.5 2 1~
U. ~.. 4.

-. 4. ________~1J 813a;i~ii~~.~ -3 .5 h~ c

Figure 3-1k AIUmgive Concept Edizkag Views

75

1;L;;i DR~e - Ganuges the window showing the list of concepts using this role as a slot
nam to include only ones tba Lcaily define those slots, as opposed to inheriting them.

o' I; :; Chas the sane window to display adl concepts that have a slot with this role
nate.

B.2.4.1 Editing in the Role State Window

A similar set of operstious cums for editing the basic ftatures; of wine in the role state window as exsts wn
t concept state wuidow.

* [;WJ invoksa command todig the role' nam, and all efernces to it in slots.

* Pimtlvertoggles dhe primitiveness of the role.

* Diffmdata allows you to aid a patent to t role. CickIng the rAgh button over the word
Diferenates:-. brings up the aewn of IAdd Defined Pa=ent _IDelete Parents which ar-en't direct
and Make dbirect sit defined all of which work as described for concepts in section
3.2.23.

of prompt& for a replacement value for t defined domain or range of the tole,
respectively. CickinX the riM button on one of these words gives you a menu of options including

the dmainof i p -'zol(s) (if any).

I Defned ii ggvalue which makes the defined rneb h aea h
classified range.

B.3 The KREME Classifier

B.3.1 Introducing the CLassifier

One of the most Um coining* tasks in building knowledge bases is maintaing internal consistency.
Adding, deleting and modifyin slots and pu-ma11 in a hlam taonomy may affect the subsumption relations
between 6=a0e and. IeIuI sincre imipartandy. may at the seo of properties igitetitad by more specific fraes.
ha Possible consequece of a chmg in one put of a network: grows rapdly at mames get larger.
Consequently. the sia and complexity of knowledge bases is limited by the cuetto which automatic means are
peovided for caiuney cdocking:

The KUME ckagljer helps the ammaintai consistency betwee the definitions of all concepis defined in a
KR.D(3 PAun knowledge base. I ussm be invoked (by the wae) whenever a concept or role is defned or
Mbdfiwed Thu ch"fW A prth al of the ~awsto be huInIed by a concept. and then deemnies exactly

weethe c ept P smid be placed in d specialization hiernhy,

76

- IL

W C

S;I

Figu B-1: MaMe EifmgV~w

- I - 77

The classiie should always be invoked once you are satisfied with a concept or role's definition. It is the

'mechanian by which K1IM makes the new definition permnn. and inserts it into the knowledge base. To
clasify a definition cdick on the J~asr command, in the local comamand menu window (the

[~~] command if you me editing a role) or usre the (~]command in the pop-up menw available by

clickig the right -bn - o on some object in the Editor Stack Window. KREME will determine the compiered

deftnidon (a definition plus all its effctive, inhrerited featurves) of the object and use that information to determine
the object's relative location in the aibsumption hierarchy of all previously classified definitions by deducing what
the new concept's most specific pan=s and least specific children ame The system also checks to see if other

concepts or roles reed to be reclassified because of the new definition. If so, KRENM will continue until it has
reclassified every object that mught have been affected.

After a concept has been classified or reclassified, KREME immediately displays the effects of classifying the
definition. VIsible a2trcion-specialization graphs are redrawn, showing how the arrngement of parent-child
relationship throughout the taxonomy has changed. On these graphs. links added or deleted by the classifier will
seem to appear or disappear instantanously. For example, the clamsfier makes sure that the direct parents of a
concept includes only defined paren with no childre that subsume the conceptz.

B.3.1.1 Completion

Compittln refers to the basic irieritance mechanism used by the KREAE classifier to install all inherited
feaure of a concept in itn itemnal description. Given a set of defined parents and a set of defined features, the
completion algorithm determines the fel, logically entailed set of features at a concept (or role). Completion always
occurs before classification or reclassification of a role or concept.

A concept inherits all the value and number restrictions on every slot from all of its parents. For each
uniquely rnamed slot at eachi concept, a singl number and value restriction is created that conjunctively combines al
restrictions for that slot from the local definition of the slot and the definitions at every parent. The effective value
restriction is either the single moat spcfcof all the value restrictions for that role at the concept, or a conjunction
of all of them if no single one is subsumed by all the others The effective aumber restriction for each slot is
similarly determined by intersecting the nmber ranges in all of that slot's inherited number restrictions.

Complications arise when more than one parent concept defines the same sloe, and no restriction on that slot is
am specialized than all of the others. Rgure B-12 illustrates one way this can occur. when the most specific value
NSUti~O is Zherid from on. paren (ANIMAL) and the moat specific number restriction is inherited from

mother Parent (4-LIMBED-THING) to form the restriction of LIMBS at 4-LIMBED-ANIMAL

Rpm 5-13 shows -othe- CUNe of completion in which the resulting value restriction 'must logically be
the conjunction of several conceps. Since ANIMAL-WITH-LEGS is an ANIMAL and a THRNG-wITH-LEGs al

nO* -w =ONis d-m O ddkW. P=M "ui Mi ft cammps - dkucs pmwl. m appew casd by dfrmt links

78

4 limbed

animal limbsorai
ay uoo

Figure B-12: Inheriting Number and Value Restrictions

of its LIMBS must be both ORGANIC-LIMABs and LEGs. If the concept ORGANIC-LEG, specializig both
ORGANIC-LIM and LEG, exits when ANIMAL-WITH-LEGS is classified for the first time, the classifier will
find it and make it the value iestrictim of the slot LEGS at ANIMAL-WITH-LEGS. If it does not exist the
ciameier sops and asks if the user would like to define iL

Figre3-1: om inig alu Re itbos orai

In psmi wheeve a vluereeictin cn ony b deinem sacbucto fsvrl ocps R
o~mto oama cncet mresndn th councion ad aks or nae fr te nw cace~ Teloge

concptscafed CE~r, mit bename bthe er

with 17,

B.3.1.2 Interactions with the Classifier

As indicated above, the KREME clasmier sometimes needs to form new concepts in order to satisfy some

logical relationship or determine the effective restriction on the range of a role. These classifier required

conjunctions ae called CMEZLs.

CMEETs ae formed when the classi er is trying to deteriine the effective value restriction for a slot, or the

efferve domain or range of a role. At such times, KREME enfores the restrictions that the concept or role ibents

from above, while incorporating the locally defined constraint. KREME requires that the value restriction of any

slot is at least as specific as all of the inherited value restrictions on that slot (and the range of the role naming the

slot). Technically, the effective restriction on a slot is always the conjunction of (e.g., the class denoting the

inersecton of) all inherited restrictions and the locally defined restriction on the slot. Thus, if one defined the

concept FROG as an ANIMAL-WITH-LEGS, and defined the slot LEGS to be restrcted to (a FROG-LEG) without

defining FROG-LEG as both a LIM and ORGANIC-LEG, KREME would ask to make a CMEET that combined

all of these classes. Since you probably would want to change the definition of FROG-LEG rather than create a new

term. KREME allows you to say this, rather than create the new concept.

The third major case in which CMEETs are formed is when a value restriction is not subsumed by the defined

range of the role that names the slot. Thus, if the role ENGINE-OF had range (AN ENGINE) and the slot ENGINE

on CAR was defined with value restriction (A CAR-MOTOR), which had (perhaps accidentally) not been defined as

a kind of ENGINJE, KREME would ask if you wanted to define the CE=T (AND* (A CAR-MOTOR) (AN

ENGINE)). Again. you probably want to must make CAR-MOTOR a kind of ENGINE.

Lastly, CMEETs are formed when determining the effective domains and ranges of roles that are children of

other roles. However, it only happens if you define a role to specialize another role, and are not careful to make sure

that te domain and range you specify ae subsumed by the domain and range of the parent, respectively. In any

case, KREME will let you know, and enable you to fix it, one way or another.

B.3.1.3 Options when asked to form CMEETs

While forming the appropriate conjunction is the logically correct thing to do to ensure consistency\ of the

knowledge base as then defined, it often turns out (as suggested in the preceding section) that the conjunction

suggested by the classifier is needed because one of the concepts to be conjoined has been improperly defined. In

particular, a CMEET condition most frequently arises because the concept used as the value restriction of a role in

the concept being classified is not subsumed by the restriction for the same role at a higher concept, and the

restriction must logically satisfy both constraints. This is illustrated in figure B- 14. The figure shows TWO-PORT-

TANK defined as both a TANK and a TWO-PORT-DEVICE. Each of those concepts restricts the role INLET-

VALVE. The classifer finds that the restri-ction for slot INLET-VALVE at TWO-PORT-TANK mat be both a

VALVE and a STOP-VALVE, given the restrictions of that slot at TWO-PORT-TANK's parents. Since STOP-

VALVE was not defined as a kind of VALVE, the conjunction is not the single concept STOP-VALVE, and so the

classifier asks if it should create a new concept, the CMEET of VALVE and STOP-VALVE.

8o

Youhavseera oponsrt thspin t -- p al of s bh cne ar dALEfie orcladtepooe M

cotiue. fdi pobetrally li wi a exsn de ndon as istecs hV L EadSTOP-VALVEyo

F19n &. Discoa ltrntveorieno aciosng subther bynitrdn a usE celes e ocp.Mstotn h oc

Wcba s o ler the subsu mpti reis etweeat nam e conce t sop and ofutemris used bylan the

situesah sdon resmpl y namin eo the concepts to be cformied frtecqtionsteand ofgngae neea nalernatour

eYap the seera toul sipl thipSOPLVE in reslls to the quareiey.oTeclassnerud then makeedC

Thsioercrn fectl eriwteeqiey rello a srpto orecte anaeh inr ah nreiulw e concept lsdfiition atl

COdIDS If he rroble detecedly Liwth aistneiitoaierh.aewthVLEad=PVL o

caIfOO fn ang tv d courTs te ofroit action. impl enrdcnte a naem os new concep ot loftetcorwecl

acini oatrtesubsumption relation between the nm concepts t ecnond so that one of them is subsumed by theote.

oter ISisdoesipl y -igon o hecocpt t e onone isea o ivngane nm.8n1u

ft Conceot TM ciT -Ti the V.1, Oeatrictiovi for role INtET-UM.W
.nuft be restricted to a .. t j.,vh is the conjtnof (IIVT) of (LftUE STOP-UALUE)
Ente eAthe the mnee of 4 IEW conceot thae w41? be become the MEET of the listed concesits, or,.
the mans, of 0lE OF THE LISTED CONIICPI which will ceame that coftest's
detfinition to be changed to inclode the other* as owrenta

COPICEPT IE:

KT

6 fttrectle., -ted SeI latlee, *f- 'TWU -TMi
eeC Y Cpt)C: CU40 IO

ts WU-~jK-j A1AC: (C:UI T
"'.3tiw Its Elleflaemifieds Nedifledi ll~vjla

aseeilon Ce TUS#OnTIEjc TAlE

AlSSolIEitrSsc
00io b ee R. sritSVl":tC

OGdfTo mn.ean ExctyI. (Aa) m

GOXC 1KO-O Exactl 1:S:S A~k COLOR I OLO

7 F4-Ig"IUre 3-15:T AlEact IV P-A IE to coomct a CMEETerror.

rmpp-:I N-v~tTOUPT xatl I (AT~lmWI1-11) (ATRNIVII82lw

2 port inletvae
device valve vle Add Parent

valve valve

Fgure &-16: After interaction with the classifier.

B.4 The Macro and Structure Editor

B.4. Macro Editing of Knowvledge Bases: Background

Quite frequently choices about representations made early on in the development of a Knowledge Base proves
to be inappropriate, and mnassrve editing is required to convert the accumnulated representation base. A macro facility
makes these decisions easier to reverse, and therefore, less disruptive and costly.

In order to exprms and package conceptually clear reformulations of concepts and other representations, as
vei as develop new concepts from old ones, KIEMEf provides a macro facility for reformulations. This dity can

be expressed as sequences of standard, low-level editing operations which define editing macros to be applied to sets

of concept definitions by giving a single example.

B.4.2 The Macro and Structure Editor View\

One of the voews available when editing concepts in KRENM is the Macro Structure Editor View. This
view (See figure B-17.) provides Pn alternative set of display and editing faciliie for concept definitions. The view

provides two windows tot the display of stylized defining forms for concepts. The current sucture edit window
displays th definition of the rue editor object concept (the top item on the editor stack). The display structure

window is available for the display of any nuember of other concepts. Any concept which is visible in either window
can be edited, aid feature can be copied from one con pt to another by pointing. Both windows can be scroffed to
view additional definitions or parts of definitions.

As in the normal KRMN concept editing views. bot inherited and defined features can be displayed.

83

z-.-

-- i-

S * 0

.. , , ,O-

.5 C

i - - a - - , . .5'

-- . 0-,

I l . -

C0

: C vo C0

I C 6C . 0

* ..- ,O S.;, +,,,.J
IL 00 ac) C

8~e -17.- The Macro Soum Editor View

84

Clicing the mouse over the keyword indicating each feature class in a concept's definition (e.g.. IAbstractions:

K *qvalences etc.) toggles the display of that component set of features between defined and all

inhanwtdfuanwes of diat type.

There is a mew of commands for displaying and editing definitions in these windows. It includes:

O Add Srcue- Clicing this command foilowed by one of the concept feamur keywords
Abuiracdons:, Slows, Equivalences:. Disjoint Classes: causes KREME to prompt for a new object of
that type. The new item can be typed in or copied from some other visible concept's definition by
pointing.

-I Chn Structure - Clicking this command and then the item to be replaced (a parent. slot name.
value: restriction. number restrction. defasult, an equivalence or component path, or a disjoit class)
causes KREME to ask for an appropriate replacement Again the new value may be typed in or poited
to.

*Delete Stutr- Clicking this command and then the item to be deleted removes it from the
concept's definition.

-I Dipay Structure - Pointing at this command and then any visible concept tame or definition places
the definition of the concept in the Display Structure Window.

. Clear is-pi Removes all definitions from the display window.

Arguments (if any) to these commands may be described by pointng or typing. For example, to delete a slot,

click on IDelete Stute and the display of the slot to be deleted. To change (that is, replace) a strucure, point in

succession at the I ehn Structure command, the item to be replaced, and the thing to replace it with.

In many cases, IDelete S aucdureCand ge Srute can also be invoked simply by pointing at the

structure to be replaced, and clicking the left mouse button. Delete Stiuicture is often available on the menu of ighit

button options (chec the mouse documentation window.

Individual concepts can be deleted from the display window by pointing at them and clicking the right button.

The Edit Con~ comuL~nd is used to change what is displayed in the current edit window. Editing a new -

concept moves the old edit concept to the bottom of the dslay window.

B.4.3 Developing Macro Editing Procedures

Globully available commands for defining new cocepts and specializing oi concepts by copying their

definitions together with the ommnwl; in. the Structure Editor's mnan menu provide an extremely flemble
mmviroument in which to define and speicfy modifications of concepts with respect to other defined concepts.
Virftually all knowledge editing operations can be done by a sequence of pointing steps mrng the -mren edit

wrindow and the display window. This combinaton of editing features and mouse-based editor intraon style

providies an extremely versatile environment for the description, by example. of a large class of editing ID WOS.

The windows on the bottom of the Macro and Structure Editor Scieen ame used for defining. editng, and

running macros composed of structure editing operation&

To define a macro first edit a concpt for which the macro will maim sense, and then click on the

IDefe. Macro command from the menus below the structure editing windows.

Until the macro definiton is terminated by clicking on [t again, all editing and concept display

operations performed will be recorded as steps in the macro, and displayed in. the lower left window of the sawen in

Enrglih Specifi objects mentioned as arguments will be replaced by references to macro items, wich are

numbered and appear in a list in the lower right window.

B.4.4 Changing features into concepts: A Sample Macro

It is easest to understand how to use the macro facility by looking at an example.

Ina developing frame representatioin. the choice must often be made between defining a slot to 4enote that the

concept has some attribute (eg., defining RED-CAR a a CAR with slot COLOR-OF resricted to (A RED)). and

* defining the concept by making it specializ another concept that stands for the class of objects with that attribute

(cg., deflning RED-CAR as a CAR and a RED-OBJECT.)

When this choice has been made in a way that later seems awkward or inappropriate, given the use that the

concept ha in the knowledge-based system une development, it can be very time consuming to change. With

KREBM however, macros can be defined that can make the change in either directio.

We illustrate this kind of restructuring operation with a macro that provides a way of forming a coniept

RED-OBJECT denoting the set of all objects with the role restriction COLOR-OF = RED. The macro makes us i of

- the classifier to find all such classes and make them children of RED-OBJECT, and then remove the COLOR.-OF

slots from all classes that wee found to denote red objects. This macro can be used on all coiors defined in the

knowledge base, to- copletely eliminat referenme to COLOR-OF slots.

The following sequence of steps, all of which were specified, by examrple. using operatow available in the

Macro Structure Editing View, accomplishes this task. Figure B- t8 shows this macro's steps.

Step I creamte he concept RED-OBJECT as fbflows. First, the command INew Related onetwas

invoked using the right mouse bwotn and specifying that the concept OBJECT was to be specialized. The use of

right button exposed a set of options on how the objec should be named that included adding a prefx to the aiwe of

the paen. OBJECr. Cficking on the cain editor object RED specifies that the namne should be RED-OBJIi-CT

and than sub~sequent uses of the macro on other colors, like GREEN, will crate concepts; like GREEK-OBJECT.

NeMt the COLOR-OF slot of RED-OBJECT wu changed to RED by pointing at I hag the old

valve restriction (A COLOR), and the concept RED.

36

Steps in COLOR-OBJECTS macro:

Ed~tCRED

Click on Dei Macro

(Makes Macro Itemi 0 - RED).

I. Make a new concept which specializes OBJECT, named by adding as prefix item O's name (Creates
RED-OBJECT as item]. puts it in the current edit item window).

2. Change the COLOR-OF value restriction of item I to item 0 (RED).

3. Change the primitiveness of item Ito No.

4. Classify item 1. (This finds all concepts with COLOR-OF slots restricted to RED, and makes them
specialiaons of RED-OBJECT.)
The remainng steps make these specialization links defined links, and remove the COLOR-OF slots
completely.

5. Do on SPECiALIZATIONS of item 1: Add item I to the parents of iteration item. (This makes each

red object have defined parent RED OBJECT.)

6. Do on SPECIAL1ZATIONS of item 1: Classify iteration item.

7. Change the primitiveness of item I to Yes.

8. Delete the COLOR-OF restriction of item 1.

9. Do on ALL SPECALIZATIONS of item I: Delete the COLOR-OF restriction of iteration item.

10. Classify item 1.

Figure B-18: Changing RED to RED-OBJECT

Step 3 was done by clicking on Primiie: and entering the new value NO. Step 4 was simply the command

[Clsy Conet So that ad red object classes could be found and made specializations of RED-OBJECT.

The remaining stps, requued to add defined parents to specializations of RED-OBJECT and to remove their
COLOR-OF restrictions, make use of the KREIM1E Structure Editor's [jE] command. This command is used

to per a single editing operation on a set of concets related to the one being edited (e.g., direct specializatiorr,

al specializaonos, abstramons, all abstraciow). For example, Step 5 was created by the mouse sequence
| [Mai: Ai I ; IRED-OBJECTAdd Structure the keyword Abstractions: of the specialization

do.t ea emrarily in the edit window, and finaly pointing to the concept definition RED-OBJECT

B.4.4.1 Running Macros

- To rn the macro am other objects, firm edit the concept you wish to start with, then click right on

Run[Macro[and select Crre Macro from the pop-up. If you want to do the macro one step at a time, also

dia When you emt this pop-up men, another will appear from you will be asked to select which

sea of relatives of that coellt (Specializatins, All Specializations. etc.) you wish to run the macro on.

87

ndividuals only means only apply the macro to concepts that are markced as individuals Include current concept

inks if you wish to rn the macro only on the relatives and amt the current concept itself.

If you use the single stepper, then you will interact with the Macro Stepper>m, which has the following

commands:

* Help - prin mhe lis of commands.

a Execute the next step in the macro.

o Proceed with the rest of the steps without stopping.

o Sip execution of the nxt step.

o Delete the current step from the macro.

* Inert a step into the macro at this poinL (which you specify)

* Quit the macro.

To load previously saved macros, use the Loa;dMacros command. A pop-up menu will display the files that

contain saved macron. (Te macro file for coloring objects is in the file COLOR-OBJECT.)

To display a loaded macro, use the Display Macr command. This command also makes a loaded macro the

current one.

To save a macro, use the SaeMcocommand from the menu on the name of the macro displayed in the

macro definition window.

B.5 The Generalizer

Experienced knowledge engineers are often able to discover and define useful generalizations that belp

organize the knowledge described by a human domain expert. The expert. although not previously aware of such a

gseneralization. will often immediately perceive its relevance to his own reasoning processes, going so far as to

suggeut improvements, related generalizations, more abstract generalizations and so forth.

As an initial experiment in automatic generalization within ftame taxonomies, KR.EME provides a relatively

simple generalime algorithm that relies on the user to select from a set of potential generalizations discovered

esseutmily by exhaustive search.

To we the jeueralizr. click on Geeaiein the mai menu. KREM(E will then start a background

Proces2 to search for Pairs or larger sets of concepts that share some number of featue (slots. eqluivalences,

1fte the gom-aliz algotidun is fa~iy Wow (talcig about I tomu. to go durougi a otwork of 500 conceps md 3W0 roha), at mum a
I-t PuiiY bskouud P-06, Woia far gaaliumoma only wo doa oclo in watu for input fromad wor3.

-u

- C

C~ i
a. -

a.. . aM
- C..
'S

Li

I
.5
S
- I

S
S

C

a 'a-

'a.
tJ~

-'S - 2 - c.

o .0
Q -

IL, o o
.~ .0

0 -
S

*

(.~ 1
LI

'Au " - - ~-
S'

~ -, 0' C.. C.~a'~Cs-
-0 UU

ug,*- ~ - -
w~. s~ .4

~ &
0 .MQO.ias

Ut US *~~0 -. .aU4a.~ 0..tbi *
CL ~S ~L...

e.za..n~' c.~ -

Figure 3-19-. Rumiing the macro COLOR-OBJECT

8,

parents. etc.) For Aach such set it finds, the generalizer win then form the most specific concept definition that
enc all of the features but is more gen than any concept in the set. T is concept definition, a potential new
abstraction of a rmber of concepts, will be displayed to you. If you find that the generalization is useful, specify a
name when prompted. The newly named concept is then classified and inserted into the network.

To n the Gtnerali=e

I' * Click on
* The e-a] Command will be highlighted and will remain highligated until it finds a

generalization. At that time the [G(t 'a17= will blink to alert you that it has found a generaization.

- Hit <SUPER> <REFRESH> to make KREME show you what it has found. You will see a menu of
choices prompting you to make and clatify the concept:

• Y to reject the concept.

* N to defer making your choice until you have more information. Deferring will pop you back to
the stare of the network before you typed <SUPER> <REFRESH>,.

will ask you to give the new concept a name.

* E to Edit the definition of the new generaliztion.

, Click on <SUPER> <ABORT> to end generalization.

B.6 The KREME Rule Editor

B.6.1 Introduction

In Expert Systems. rles ate often organized into packets and the requirements for altering ard inspecting the
* relationships between rules have analogs in the packet domain. KREME provides facilites to see displays of the

relationships between packets, and to inspect the internal structure of packets and rules.

KREME's Rule Editor is equipped with a number of features that facilitate building and maintaining
knowledge baes of res and rule packets. The Rule Editor uses the same basic operations as the Macro Structure
editor discussed earlier. It conaim facilities for creaing and editing rules and rule packets, copying rules, moving
them, compiling mules and displaying and modifying vawiable bindings. The system provides an elementary history
and tracing mechanism and an explanation system that produces pseudo-English explanations from rule traces.

90

4 2 0

2-w U

0I

O ~ ~ ~ - 0 U

N a

L. 4

00

ow0r

4 90
o 0

-u w

Cc CL 00.u
C a PIAa

pED &2* Suis nwSeA.ain

B.6.2 Editing Rules in the KREME Environment

KREME at present edits rules in the FLEX [171 nile language. In FLEX, rules come in rule packers, and the

KREME Rule Editor edits an eire packet at one time. Rule packets provide a way to orgamnze rules.

The forward chaining rule packets come in four varieties, indicating the type of control mechanism used for

rule firing.

" do-l-rule-packets execute the first rle whose test succeeds.

" do-a-rule-packets execute all rules whose tests succeed.

" while-l-rule-packets repeatedly test all rules, firing one, until no tests succeed.

" while-all-rale-packets repeatedly fiers all rules whose tests succeed, until none succeed.

Rule packets are connected to KREME frame systems or other data contexts by specifying an access
environment. An access environment is an object that receives messages dealing with the accessing of values for
references in the rules. It handles all messages to get or set the values of variables and their confidences.

B.6.3 The KREME Rule Editor

Rules are defined and edited by specifying and filling out prrtions of rule templates. To refine these templates
either use the mouse to copy parts of existing rules or point at slots to be filled and type in the desired values.

There are also commands to run packets and debug them and to generate traces or rule histories paraphrased

in pseudo-English, and delete rules and reorder rules, and load and save rules from files.

B.6.4 The Rule Editor View

Many of the windows in the Rule Editor View should be familiar by now. The complete list is as follows:

1. Global Command Window displays global commands that can be selected by the user. In this
example, the user has used the mouse to select Edit Packet The user's selection is bighliglted.

2. State Window displays the nme of the packet, the network it is associated with, and other useful
information.

3. Editor Stack Window displays the names of the items recently edited and some information on their
currem saw. Items in the editor stack window can be selected for editing with the mouse.

4. Behavior Command Window is a men of commands that apply to Rules and Rule Packets.
(Behavior is anoe amn for rule packets, or functional methods on inuances of concepts.)

5. Current Edit Item Window displays the item that has been selected for editing.

6. Dispay Related Ites Window allows the user to view other rule packets and scroll through them.
Rules and parts of rules can be copied from the Scroll Window into the Currenmt Edit Item Window.

7. Editor Intersctio Window displays screen prompts and user input. The user's edits are made =n this
window and then displayed in the Cment Edit Item Wimdow.

92

8. Related Behaviors Window displays an index of ocher rule packets that are related to the one
cunently being edited. With the mouse, the user can rapidly scroll through this index and select a
rdated rule packet for viewing or editng.

To get into the Rule editor use the New Packet or Edit Packet command in the global command window.

Thereaft., you can use the structure editor in much the same way the Macro Structure Editor is used to edit

concepts. Th Rule Structure Command Menu contains the commands:

* Deae Beavp-r is s-i1mar to Classi Conc t It makes the definition of the packet permanent, and
allows it to be run or attached to a concept.

* Similar Behavior - Creates a packet with the same rules, etc. but gives it a new name, and presents it
to be edited to make it different.

* KiU Behavior - Kills the definition of this packet.

ShDisplay Packet - Displays the packet in the Display of Related Items Window.

When a whole rule packet is outlined (such as when you are over the word Packet), you can choose to
Edit Packet (L:), or (R:) choose from a menu of Edit Packet Edit Basis orI Display Lisp Form

Other editing commands are found on the keywords and component pieces of packets and rules. For instance,
clicking left on FRule places a new (empty) rule in the packet, which can then be filled out by clicking on F1 to

add a new condition (conditions are treated as part of a conjunction) or FHEN to add a new action. Clicking right

gives a menu of Add (Empty Rule), C One Rule o f scmewhere else into this packet, and ICopy Rule Set

which copies all of the rules from another packet.

Clicking over [j'] gives you a choice of the standard types of rule packets, described above.

[Packet Cl : allows you to specify a flavor to be mixed into the packet. sj and

[Return Variables: each allow you to add a new one (L) or choose from a menu of Add Onel JAdd Several,

FEand R aac

When a whole rule is outlined, clicking left will be replace the rule with another rule that you point at.

Cliking right gives a menu ofRelac RuleI Edit Attributes and Delete Rule

Whenm expressions appear (after the word Precondition:, or as parts of conditions or actions), the user

may Relace the expression (L:), or choosing from a menu (R:) of

* 5 expression with another one.

* E-Wdit the expression as text.

o Delete the expression.

93

Add Bemee another expression (copied from somewbere by pointing).

* A~ ftermothier eqea

0 two expression postion.

a set of expessions together.

•an expression into piec s.

* I!viJ d expresuion in the cotet

49

Fokwad2C t NL.IG3U N- k-ncp Nfo H. IO~ Nt.-~Id IH ' . CeC'-o.IO

cvrra~ flee I"~o UJWWf_

P.~ CI..q1s,s p..t Clewovel, (CLOOPS04=1t I

Flhr~t., mePv.wt, (scrll-er.

tisCu'iWrOS3 - WM1 FUEL-GIL-FIEP IICROJUM111 UlET1 PART~6. PIIXSL,'*-OU09Mg. I I
PWESGMI ~~t~r. IN -31 ole (siormJ - AL.IEal.

IC(EPW F1JtL-OIL-pw UlO C&14*I .
(0-_ 61 If 11(CU.P.1"eSPOLY-1,X10 ALII1-SISl is 1111UGLWDT

to"" 11(sowtICT-MR01061" .OW 111"1111111 tlw ACTFI IIALY-44LSID
I? 10CE111 FUIAL-OIL0141l CIN*& SIUSI If 11CLIPWROMpyI45J1 It IIf-ORI~I611

((Sajcqo-ffsS - Imam FSWL-OI.-F'ul CH1011111 PRUSSW 56)) us. BsfoIAus - PoWI Iot.-KIC11I a"

tSl[CO1,8-01Ss - SOM1 FPI-9IL-19 10MM&OAI IHI .LifE
POSS1.111 . 1(29 - 30)] .d

4(CSR)UL-OLl-PUM tIMRA1411 UIIE PS

p~~rl to.,. 41C I 0Copy WR,. 4IFv-OR

S.. pac-eW
pa"" P"-27r 5.0". P.0-2l
Varic Poe-22

P..Mt4..
wita1111 tv.9-

P"-2

Fiur 9-21: The flEW4 RWIC MdtRW

AppendixC
A Session With KREME

Scewof an e=Moe ume sessioa

0.. f mm I ' .. r f~*!we- I t t.

'~ . 4.'fl.ft7 nj%. '. * -. jr f IiA~I . -.

R; -".q %; o44 ..q 1 ,.f - 1

Co. I. ti ats-. I . If. 10..10

-. Lw.~~~~. 44.. 04 J- * 9

16AMI of -Ml. 1- 1i

J.-3.

Ibis is *g kim stm of d. To teach this window. , =f logged on and Wyed 4ilect K_

Bm th mern clcld an Lmed ewark, and typed tom n--e atds M3fe couminng the mmowrkbe wi~3 to

liedaTh iefigmiffidisp derin - isowned KRBE:CONC F-DMMS .-lE ISP KREbMdispbM

W 'a~ abaw the loaded mGKWu&A uit ME&i it

--w -.i -'

Fir". C-L.

NexL dw amt dicked on1 i1 rWano d qTypdting" to the pronpL

Abstractions .md Speealizalm a ofTHNG ____________

}GA: c.ul THIG

Concepts~ THING hfl~ L

Netwrks MET.laftondo K-

Fwm C*3
Phaiita,1 (ie t h ntoeshwngte o fmites Unmodif Ti G.

Special

0.1460 t~ Clt

Urera voe~wo Ib ejc

Uv

S~~e&~f, Intocld es
Abanavilleft~r1.,. &a Sefafssess a MIG

Is1404ive C-4:ns~o

Dfd biy FoleAsercc r~r im bov estrmion ed cm i Dspi onkdsly ~ w tslce n ye b

Itonco once on .r4Oh..c- j M06010 pmmnpt31

hm5w~~~~u4~~.bpmw~pn , . ps .ppa qI~

~.b.4*' -"Nub ~j~V. Thu- ~ ha p wsv .~ha EWEN"npu

FWe C14-

CancuInc ItIN

Concetpti:HN

I Defned Slots Editor Stock
god by Ro mu *Ssf ~t'lhtI VS vaUS ,Slt'lettSS Ge t 00mr1*(IUS

Item to Ceniter an~ gaoh' mob1ile-objeet
Its" to Cwtar an' graph.- nobi)*-object

Editor Iftrfin Pam.

" qd (cJcn mad dad.s the node Md cOntes it (riUgbiY) On the &iVWa.

Edit C,"ctU

Abstraettems ad Speciallzationo of 'MOBILE-OWECr

if: tou THINGw

ILI

Netwrks ECH-ET. ompt": 103M

Absfw~eman Sp~atzahr ofdf iSL OUCI __________

II 'C (C.U UOBIE-O ED

M C.utaMOS.L -I4ECT

Editor Stawk
befiAM by (to I m~ restriction va).. r.eriction 0.0 a"ut Oetcr,ot,on
LO0CA4. NEAMF-.OCOUOTIN At Is",t I (A WAIE-o-LownTlCU) 'A SIAG-ULOCWT ION)

OBJECT malSty .is% I I (A OhEITI) (A KENIIT T)
MBMCT COLGA-OF as t0100 I (A Cain) (A mo~mlt
OBJECT COMBPITION At 10"t I (A IMORTANCE) (A. SMUINCE)
O&JECT AmE . ~ I (AM AN) IAn ANE)
OBJECT smogE It~t (A siE~) (A SMAP)
OBJCT mn 1.Setly (A OM) (A "aS)
OBJECT LOCATION 11-actly 1 (4, LOUATION) (A LOCAIION)
OBJCT SIZE 1,001ly IV1 (A SIZE) (A SIZE)

rggmeC.7:

lIfm tbeuw w dicked am AD1 ; nna DN E w displas all the inhritd Sim in addioceto the slots local to

tb*. conepe Thw table sbos wban die slot wo intwrmtd from in the fiest colun. "Dehmmd BY".

I '>C! [C;U3 WiLE-0JC
oaept s LOE0I-SE 7 C; (C;JJ ThIfS

Metwetegu Nae*4W1F *)PgugS 13115
Pram ttl., YE" C ECCIss lds Ummodiflodl

S0uwriptirnt

A"l So* Editor Stack

LOGM.~A 1hWLTU Il*@9 1 (A -OF-LOCOTlSS) (A M41-M-MMCTIDS)
COAJCT SASS?? exactly I (a OE10IIV) (A Semrty)
OAJCT CCLOA-OF ai oess1 £ (a COLOA) (A COLNS)

OSJgCT CMPOSIION A at st I (A SOBSTaSCE) (A NMSTMMI)
OBJCT Age ANyi 6 Aft) (U O01)ONJC I ld EeAstyIv 1 A 1 51 (A- suaf)
Omer mn secASiI I (a RM) (a. mss)
OBJECT 1.06*5INS 9.stiy I (A LOCATION) (A LOCATION)
OBJECT 8129 I-actIVy I (A SIZE) (A size)

S lots
Comecgt noe: floetng-ob,.cia

Mpm CA-

lis dA =wei aidfing a new coemepL After clickng New Coo the uet gave it the name "FLOATING-
OBJEcr".

Edit CFord

=0~r ____

.,~ HotC

Abstfactioms ad SpaCiaiiz&Uom ei'MOSILE-OIJECr ___________

ome.t 3oz Loac -8IEC C; (C;Ul Tutln
netwrk 'MC-41 langugs INIV

PrI..Itdws 78 [CU..,$4.id, themacifdl~

Goseri st ions

InfAll SlotsE~tv~tc
Offned ov Ro1 It ~ WA~'0trc1on vlue ,uztrnctlao. 00fast Dec~,of'".
ILOCAL. NtIIS.4P-OousTion at 101t 11 .6Au-ff.IOCUSTtrUI& ;RA U1-QP-OCOmaUo -nO)
011i? OM~lITY 1.1ett I (AKITY) (A mesily)
OS.Cl COLOR-OF At la" (A OLON) IA COLORI
0111iT CC.U*1TION at las L (. tSTICtf a I. Sa.
011iCT 465I"srettn
041EC mass

Object LOCATIO tsvoueY Va n
Q*JeCT size 0-eCt owei~ (NOSILE-09JICT)

km m*it OL:f 0 i,

Figure C-
CREM pops-up a mea comamim g fts be thip igtid to know about a me, concepL The 'NY chazi tbe

Dbred I'm field hem dom d&* CrlUN) to (MOBILEOBjECF r~fm tbc "ybm. Dkrsc Fmes as a ist
(in pamnfmbu) of the cocqp d the mw oew speciallms. NM. the amr dicks on the (g Ddin and ftrthw
eft box. -no popi um dlssppeam. nil ftm -w cocp becoms fts mm editor objci.

ad~ fDI t a~ee

Abstgv~tiess and S .etailateu .1 LOATING-OBJEC1"

Metworks MECM-WE Inniwam get KufMM C(EJ ~U
Primitive: YES [Unclasoifed; Unmodiid]
Sewelelizes: NOAILE-OUJCT
Owscription:

O.V~n~d Dv f tam Ikhs irrif,tio J&Iu. rvitric:,on Do.V.It O.,cript,.

Figure C-10h
Mal-ew 8 oooq&t FLOATING..OBJECr. is avilble at tins age for htrther definitio, and editin& Common
opentiona would be to look at irnted slots, add new ones, emra description. etc. Fnaly, the definition must be
dasaihd with the ICuf YC80cR commn bef m it becomes a perram part of the network.

107

"a- ~ ~ ~ Ei CoEwnc EdtRleC-P

rAbstractiems and So iai~zaIluas of *MOSILE-OSJECI _______________

S.~a1 Sm: OBJECT

11soriptilm:

O4fnA 1* o N~me restriction Volvo rstrition DeTAult s'1ta
*LOCAL. WEANI.LCOTO At lst I (A MEIS.-IF-OCOOTIOS) (A *eAms-O-LOCOANTION)
OBJCT MIhhIM Exact I (A SINOI??) (A 06563??Y)
OBJECT COLON-Of At least I (A COLON) (A COLOR)
OBJECT COO Irian At I*"%t I (a tmBTANC) (A Imm"ANCE)
mie I l antl 'A (ANl) (MANRE6)
OBJECT $"A1EV~te (A *059) (A am"9)
OBJECT vW8Ct IVt I (a 11AN1" (A RAme)
OBJECT LOCATION 1.0111Y 1 (A LOCATION) (A LOCATION)
OBJECT size Eti"Y t (A SIZE) (A SIZE)

Figure C-li:

By dckng theleftlbuto over mosILE-oDJEcT in the Editor Stack Window, or by uwing the Efdit C oa-~t

conumaix again. KRBME Pe-urneI to a view of the n Ppt "MOBILE-OBJEC1. The raph now shows the new
cbWl concept "FLOATIN OBJECF.

Bibliography

('1 Balzac StephenR]1
A System for the Ixteractve Clauilcatiox Of Knd"Wedft.
Teci Repot MLS. Them&, M.LT. Dept Of E.E. aid C.S., 1986.

(21 Bobxww, D., Winograd. T. and KRL Research Gfoup.
MVpenc with UL-0 O0 cycle of a knowledge epresenmaion language.
To Proceedngs of the Frth l11 Memadnal Joint Confrence on Arnzfcial Intelligence. UCAI-77, Cambndge,

MA, August, 1977.

[3] Bracmian. LI., Pikes LL and Levesqu, HJ.
Kzryptma A Fimcoi Approach to Knowledge Rapre=Dmm
IM Computer, Special Imee on znwwledge Representation . October, 1983.

(4] CarbonelL, Jaime G.
IDehvadoa Analogy- A duory of recoutctive Problem solving and eXPertise aqmuish
in bMiclalali. F- S.. Carboneul. L.0. ad Mitchiell. T. NE. (ediOr). Machine Learning: Volume II, pages

371-392. Moqga Kanfinann Publishems Inc., Los Altos CA. 1986.

(51 Einst, G.W. and Newell. A.
(3PS: A Case Study in Generality and Problen Solving.
Academic Psess. New Yodc, 1969.

(61 IMellCoKp.
ZEE Software Development System.
hinefficorp, 1984

M7 Keene, Sonya E and Moon. David.
Flavomw Object-orierned, Propazning on Symbolics Computers.
Symbolics, Inc.
1985

(8I Cazargie Group, L=
KnowledgeCraft.
Camegic Group, Inc, 198.

(9] Moser Mnargaet
An Overview ofANIEL
Tecluical Report Section of BDN Report No. 5421, Boll Beranek and Newamn Inc., 1983.

[101 Newed A. -

Tin Icnowledge level
At Magazine 2(2)-.1-20, 1981.

[III Rids,C.-
Knowledge hepmesom ILanguae and Piedicae Calcuus: How to Hav Your Calm and Eat It Too.
In Proc. AAA&, paps 192.196. 19112.

(121 Rovmi, B. an Golmn. L P.
The PRLMWW&
Al Lab. M1- 409, M.LT. 1977.

(131 Sunrdd IL
Plning in a iiachy of Abuacton Spaces
AM4i i lew.ae 5(2)15-135. 1974.

109

[14] Sacerdoi. E.
A scsure for plan and behavior.
Tedzicad Report 109, SRI Anificial Inelligence Center 1975.

(151 Scbsio .L and lsul, D.
KL-ONE, Semdos and CInsificatioa.
uIn Rnearch in fuowlege Representation for Natural Language Understanding, Annual Report: 1

September 1982 toJ1 August 1983. BBN Report No. 5421, 1983.

(161 Schmiol, LG.. LO*ia TA.-
In Proc. 8th UCAI. 1983.

(171 Sbapiro, Ricbad.
FLE: A Tool for Rule-based Progranoung.
Teclnical Repors 5643, BBN Lab, 198.

[18] Sidner, C.L.; Bats, K. Bobrow, R.1. Brachman, R.J. Cohen, P.R.; Isael, DJ.; Webber, B.L; and Woods,
W.A.
Research in Knowledge Represemadion for Natural Language Undersanding: Annual Report.
Tecdhical Report BBN Report No. 4785, Bolt Beranek and Newman Inc., November, 1981.

[19] Stefr M.
FoPint with Conminw. MOLGEN.
Arflial Inte/ence 16(2):111-169, 1981.

"[20) vanMoll W.
A doman independent prodot.inue sy nm r consutadon programs.
In Proceeding of LCA-6, pags 923-925. AugusL 1979.

["21) Vuain Mac.
"Th Restuicted Language Azcte of a Hybrid Represemnaioa System.

In Proce lngs, UCAI.85, pawa 547-55 1. semational Joint Coafmwnces on Artificial Intelligence, Inc-
Aug, 1965.

r22] Wifms, M., Hoa. 3., and Stevens. A.
An Overview of STEAMER: An Advanced Computer-Aisdted Instrucon System for Propulsion

Behavior Research Methodf and Ingtngemadon 14M.8-90, 19I8.L

11

DISTRIBUTION LIST

,-Icr es ses number
Of copies

Sharon N,. WaLter 70
RAOC/COES

RACC/COVL
GRIF FISS AFB NY 13441

RAOC/DAP
GRIF FISS AF8 NY 13441

ADMINISTRATOR
DEF TECH INF CTR
ATTN: DTIC-DDA
CAMEFCN STA eG 5
ALEXANDRIA "A ?2304-6145

RAOC/COTD

BLDG 3v ROOM 1'
GRIFFISS AF8 NY 13441-5700

Director
DMAAC (Attn: RE)
3200 S. Secord St.
St Lcuis tO 63112-3399

AFCSA/SAPI

At tn: Miss Griffin
1036! Pentagen
Wash DC 2C33C-!4.5

HQ USAF/SCTTPentag;on

Wash DC 2C33C-51;0

SAF/AGSC
Pentagon 40-267
Wash CC 2C33C-1000

DL-1

DIRECTOR
DMAHTC
ATTN: SCSIM
'.vaSh CC 20315 -0030

Director, Info Syste~s
CASO (C31)
Rim 3E187
Pent a~n
Wash DC 2C301-3040

FLeet Analysis Cqnter
Attn: GICEP Oceraticns Center
Code 30%-1 (E. Ficharcs)
Corona CA 9172C

HQ AFSC/CLAE
ANORE6S AFS fC 2C334-5000l

HQ AFSC/XRT
Andrew.s AFB !PD 2C334-500C

hQ AFSC/X(RK
AND)REWS AF9 vD 2C334-50C

HQ SAC/SCPT
OF FUT T AFe 4E 631 13- 5C (11

HQ ESC/DCOA
Attn: Fred Lacwig
Sat Artcrjo TX 71243-500C

* DOTESA/RQEE
AT T%.: LARRY G.lPCPMANLS
501 YALE STREET SE

Airpert Ptsza, Suite 102
AL8IAQUER46E K14 87106

DL-2

HQ TAC/ORIY
At tn: 4r. Westerman
LangLey AFS VA 23665-5001

NQ TAC/OCA
LANGLEY AFR VA 23665-50C1

HQ TaC/DRCC
LANGLEY AFS VA 23665-5001

HQ TAC/ORCA
LANGLEY AFO VA 21665-50C1

ASO/ EK54S
i ;Wright-Patterscn AF3 CH 45433-6503

ASD-AFALC/AXc
WRIGHT-PATTERSCN AFS CH 4543"

ASD/AFALC/AXAE
Attn: W. H. Ounsey
Wriight-catterson AF. ON 4543!-6533

ASD/ EhAlo
Wright-Patterscn AFB CH 4J5433-65C3

ASO/EKAMA
..r Wright-Pat terson AFO CH 45433

DL-3

AFIT/LDEE1
gUILDING 640v AREA 8
WRIGHT-PATTERSC~4 AFB CHI 45433-6583

A FWAL/'"LFO1

WRIGHT-PATTERSCNI AFB CH 45433-6533

AFWAL/NLTE1
WRIGHT-PATTEPSCN AFS CH 45431

AFWALI FIESISLRVIAC1
WRIGHT-PATTERSCN AFS OH 45433

AA'MRL/HE
WRIGHT-PATTERSCM AFB CH 45433-6573

Air Fcrce'uiar~ ReboLrees Laboratory1
Technical Docuwents Center
AFHRL/LRS-TDC
Wrigilt-Pat terscn AFt3 CH 4543 7

2750 A9W/SSLT1
BLdq 262
Post 1 s
Wright-Patterson AFS CH 454433

AFMRL/OTS1
WILLIAM'S AFB AZ M54C-5457

AUL/LSE
RAXWELL $qFS AL 301I2-5564

DL-4

HQ AFSPACECGP/XPYS
ATTN: DR. WILLIAM R. MATOUSH

PETERSON AFS CO F0914-5r 1

323OTTG/EIS S
At tn: TSgt Kirk
LackLand AF9 TX 7V36

HQ Air Training Co.mmand
T TOI
RandcLPh AFS TX 7SL5C-50C1

Defense Ccmmurications Engineering Ctr
Techricat Library
1860 6iehte Avenue
Restcn VA 22C90-5500

CO AND CONTROL AND CO'MUNICATIOS DIV
DEVELCPMEhT CENTER
M ARINE CCRS DEVELOPPENT & EDUCA7ION COMMAND

ATTN: CCCE DICA
QUANTICO VA 22134-50?0

A FLNC/LGY
ATTN: CH* SYS ENGR CIV
GUNTER AFS AL 16114

U.S. Army Strategic Oefense Ccmmand
At tn: DAS)-H-OPL
P.O. Sox 150C
HuntsviLle AL 35807-3801

COMMANDING OFFICER
NAVAL AVICNICS CENTER
LI9RPAY - D/765
INDIANAPCLIS IN 46?1;-719

COMMANOING OFFICER
NAVAL TRAIRIkG SYSTEPS CENTER

TECHIKICAL INFORmATION CENTER
BUILDIN6 26'
ORLA DO FL 32813-710C

DL-5

COMM .AND ER
NAVAL OCEAN SYSTEMS CENTSR

ATTN: TECHNICAL LIBFARY, CODE 9647B
SAN CIEGC CA 92152-5C000

COXMANDER (CCOF !433)
ATTN: TECHNICAL LIBFARY
NAVAL WEAPCNS CENTER
CHINA LAKE, CALIFORNIA 93555-6101

SUPERINTEDENT (CODE 1424)
NAVLA POST GRACUPTE SCHOCL
MCNTERFY CA 53943-5000

COMMANOING OFFICER
NAVAL RESEARCH LaBORATCRY
ATTN: CCDE 26'7
WASHINGTCK DC 20375-50OC

SPACE & NAVAL 6AFFARE SYSTEMS COMMAND
PMW 153-ID0

ATTN: R. SAVARESE
WASHINGTCN DC 20363-510C

CD.RP, L.S. AR'Y MISSILE CC M4AND
REDSTCNE SCIENTIFIC INFORMATICN CENTER
ATTN: AbSMI-RD-CS-R (DCCU*,ENTS)
RE')STCNE AlSENAL AL !5%90-5241

Adviscry Group on Stectron Devices
H ammcrd Jchn/Technicat Irfo Coordinatcr

201 Varick Street, Stite 1140
New Ycrk NY 1U'1-

UNIVERSITY OF CALIFCRNIA/LOS ALAMOS
NATIONAL LABORATORY
ATTN: DAN BACA/REPOPT LISRARIAN
P.O. BOX 166!. %S-P364
LOS ALAICS km 87545

RAq'4 CORPORATICN THE/LIGrARY

HELFER CORI$ S/PEAO TECH SVCS
P.O. BOX 213P
SANTA M4ONICA CA 90&06-7138

DL-6

AEDC LIBRARY (TECH REPORTS FILE)
MS-1OC
ARNOLC hAFS TN !738;-9998

US.4G
At tn ASH-PCA-CRT
Ft Htuachusca AZ q5613-6000

1839 EIGIEIET (KEN14eTh W. tRPY)
KEESLER hF8 NS 35534-634

J T FP PC
At tn Technicat Director
130 3 P Lan ri ng research Dr ive
McLean VA 2 2102

HO ESC/C'WPP

San~ Artorio TX 7U243-50OC

A FEiWC/ESRI
SAN ANTONIO TX 7 243-5OO'r

485 EIG/EI R COMC)
GR IFFISS APB NY 1 3441-6343

ES)/ AVS '
AT TN: ACV SYS DEV
HA4SCOW AFS PA 01731-500C

ES9IICp
HAN4SCO* AF9 NA 01731-500C

Mi-7

ESD/AsSE 2
SLOG 1704
HANSCOM, AFB WA 01731-500C

HQ ESO SYS-2
HANSCOM 4F9 WA 01731-500C

ESD/TCD-2
ATTN: CAPTAIN J. vEYEq

HANSCG O FB IA 01731-5000

The Software Ergineering Institute
At tn: Major Dan Burtcn, USAF
Jint Program Cffice
Carnegie PetLcr University
Pit tsburgh Ph L5213-3890

DIRECTOR
NSA/CS S
ATTN: T513/TDL (DAVID MARJARUP)
FORT CEORGE G PEAOE OtC 2C755-60 0

DI RECTOR
NS A/ CS S
AT TN: W16 6
FORT GEORGE G vEADE VC 20755-600C,

DIRECTOR
NSA/CSS
ATTN: R24
FORT GEORGE C PEAOE , C 2r755-6MOn

DIRECTOR
NS A/ CS S
ATTN: R21
9800 SAVAGE ROAD
FORT GEORGE C WEASDE FD 20755-601on

DIRECTOR
NSA/CSS
AT TN: DEFS14AC (JA4ES E. HILLMAN)
FORT GEORCE C iEADE PC 2C755-60M0

DT.-8

DIRECTOR
NSA/CS S
ATTN: R31
FORT GEORGE G MEAI)E IV I ?C755- OOO0

DIRECTOR
NSA/ CSS
ATTN: R5
FORT GEORES G PEADE PrC 2C755-600C

DIRECTOR
NSA/CSS
AT TN: RP
FORT GEORE _ G PEADE 'C 2C755-600C

DIRECTOR
NSA/CS S
AT TN: SC31
FORT GEORCE G VEADE WC 2C755-603C

DIRECTOR
KSA/CS S
AT-TN: S21
FORT GEORE G P EADE vC 2C755-600C

DIRECTOR
NS A/ CS S
ATTN: V33 (S. Friearich)
FORT GEORGE C YEADE PC 2C755-6YV-

DIRECTOR
NS A/ CS S
AT TN: WC?
FORT GEORCE G PEADE ID 2C755-600.

DIRECTOR
4S A/ CS S
AT TN: A
FORT GEORE . 6 NEAOE PC 2C755-60aC

UL-9

DIRECTOR
NS A/ CS S
ATTN: R 23
FORT GEORCE G READE vC 2C755-6,0C

DOD COMPUTER SECURITY CENTER
ATTN: C4/TIC

9800 SAVAGE RCPD
FORT GEORGE c 'EADE 'C 2C755-600C

Bo0to 9eraneko and Newman (aq-) 5
10 AIcuitcn Street
Cambridge., MA C2?3 ,

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DARPA) 2

1400 Wilson Blvd
Arlington VA 22209

D

DL-IO

