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DIFFRACTION THEORY FOR POLYGONAL APERTURES

ABSTRACT

We explain and describe diffraction from polygonal apertures over a

wide range of sizes and observation distances. In the first case considered,

a small square aperture (2a x 2a, ka <, 1, where k = 2n/A is the

wavenumber) in a perfectly conducting plane screen of vanishing thickness

diffracts a normally incident, linear polarized, monochromatic plane wave.

Within the vector framework of Maxwell's equations, we hypothesize a

solution for the dominant component of the electric field. Subsequently, by

means of an integro-differential equation formulation of the diffraction

problem applied to small apertures, we substantiate the solution. The

solution represents the first three terms in a more general expansion for

the aperture field. Physical intuition and the solutions for circular

apertures and slits motivate us to propose this expansion. Numerical

calculations validate the solution over most of the aperture except in the

close vicinity of the corners of the aperture. This limited expansion does

not achieve an accurate description of the field near the corners.

In the remainder of the investigation we treat diffraction within the

realm of Fourier optics. We develop a Gaussian beam expansion and use it

to describe diffraction from a plane-screen corner of arbitrary angle. Two

intersecting, coplanar half-plane screens form this corner. For Gaussian

illumination of the corner, we consider several opening angles and explain

computer-generated plots of the diffracted intensities. In addition we

compute the optical transform of a uniformly illuminated triangular
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aperturo and a sector of a circular aperture. Both of these aperture are

plane-screen corners, but they have different bounding edges.

The triangular aperture transform solution constitutes a basis for

describing diffraction by a polygonal aperture. A suitable combination of

rotated, elemental triangular apertures can represent the polygon. Hence,

the diffraction pattern for the polygon comprises the diffraction patterns of

these elemental triangles. A similar decomposition procedure is the key to

writing a simple closed-form solution for diffraction by nested polygonal

apertures. We present results for the particular case of a regular

pentagon; here, the elemental building blocks are isosceles triangles with

a grating-like structure. The diffraction patterns of these nested apertures

contain interesting, low-intensity features: nested polygons are traced out

in the diffraction pattern. Numerical calculations and careful

measurements confirm them.
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CHAPTER ONE

INTRODUCTION

In this thesis we present diffraction solutions for polygonal apertures

in two size domains (small and large compared to the wavelength of light

X) and over a wide range of observation distances. For the purpose of

mathematical tractability, we assume the apertures to be holes in a

perfectly conducting, plane screen of vanishing thickness. In the case of

large apertures, we assume that the true electric field in the aperture is

approximated by the incident electric field. This assumption combined

with an approximation about the phase of the Green's function (Fresnel

approximation) places that analysis within the scope of Fourier optics. On

the other hand small apertures cannot be treated this way; the true

aperture electric field deviates significantly from the incident electric

field. A more complete analysis within the vector framework of Maxwell's

equations is necessary. We describe such an analysis.

1.1 Statement of the Problem

The investigation separates logically into two divisions: diffraction

theory for small apertures (Chapter 2) and diffraction theory for large

apertures (Chapters 3 and 4). The analysis in Chapter 2 relies on only the

idealizations of a perfectly conducting screen of vanishing thickness and an

aperture whose characteristic dimensions are much smaller than the

wavelength of light X. The problem can be stated as:

Determine the diffracted fields produced when a small,
polygonal aperture - square aperture (2 a x 2a, ka 4 1, where k

1
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= 2n/X is the wavenumber) - in a thin, perfectly conducting
plane screen obstructs a normally incident, linear polarized
plane wave.

We formulate this unsolved diffraction problem in terms of a

magnetic vector potential. This vector potential, which depends on the

tangential components of the true aperture electric field, determines the

electric and magnetic fields everywhere. Symmetry properties of the

electromagnetic field and continuity requirements lead to a set of three

coupled integro-differential equations for the aperture electric field. An

edge condition on the behavior of the electric field along the rim of the

aperture provides a physical framework for determining a solution.

Finally, we simplify these equations by restricting attention to apertures

much smaller than the wavelength of light.

It is then appropriate to review briefly the solution to a similar

fundamental diffraction problem - a small circular aperture of radius a -

within this framework. This provides a foundation for hypothesizing an

approximate solution for the small square aperture problem. First, we

present the solution as a general expansion for the aperture electric field.

Retention of the first three terms in the series for the dominant component

of the electric field constitutes the hypothesized solution. Then, we use

analytic and numeric means to determine the three unknown coefficients.

The integro-differential equation framework provides a means for

evaluating the validity of the hypothesized aperture field solution. The

solution is further compared to published numeric results for the effective

dipole moment of a small square aperture and to the precise aperture

electric field solution for a small circular aperture. Finally, a discussion of
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the far field diffraction pattern from small apertures makes clear the

applicability and usefulness of the results.

The formula developed in Chapter 2 is a concise and informative

mathematical description for the dominant component of the aperture field

of this unsolved electromagnetic diffraction problem. The formula

describing this aperture field has a simple structure, namely, a polynomial

times the square root of a rational function. Thus, we can easily evaluate

the field at any point within the aperture. Further, the nature of the

electric field behavior near sharp edges is displayed explicitly and

recognized readily in the formula. These two properties (mathematical

simplicity and physical origin) increase the usefulness of the hypothesized

solution for describing the diffracted fields in the-far field and closer than

the far field.

On the other hand, we recognize that there is a basic difficulty in

posing this problem in a precise fashion since the behavior of the electric

field in the near vicinity of the corners of the aperture is unknown. [Many

investigators have considered the corner behavior (Jones, 1952; Braunbek,

1956), and this behavior is still a subject of current interest (De Smedt and

Van Bladel, 1987).] Hence, we can only hypothesize tht t the solution in

Chapter 2 approximates the true aperture fields in a small square

aperture. Knowledge of this corner behavior and a statement of a corner

condition for the exact solution is required to analyze fully any proposed

solution. Nevertheless, on the basis of the integro-differential equation

formulation and subsequent analysis, we conclude that the behavior of the

electric field in the near vicinity of the corners of the aperture is not
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represented well. Possibly, inclusion of higher order terms could enable

one to describe more accurately the electric field near the corners.

The problem statement for the large aperture diffraction theory

reads:

Determine the optical transform of a set of nested regular
polygons with the special intent of explaining the low-intensity
features that have not been described or explained previously.

We achieve the solution in several steps. First, we study the

diffraction pattern produced when an incident light wave encounters a pair

of coplanar, intersecting half-plane screens, i.e., a corner of arbitrary

angle, in Chapter 3. We describe a Gaussian beam expansion approach

that is suitable for this diffraction problem. The expansion is based upon

Hermite-Gaussian and Laguerre-Gaussian functions, which constitute a

complete and orthogonal set of eigenfunctions for the paraxial scalar

Helmholtz equation. Since the Fresnel diffraction integral is a solution to

this equation, and each basis function retains its functional form under

Fresnel propagation, expansion of an aperture distribution in terms of

these eigenfunctions constitutes a solution of the diffraction problem as

well. We carry out the explicit calculation of the expansion coefficients,

and we explain computer calculations for plane-screen corners of various

opening angles under Gaussian illumination. The general features of the

calculation are confirmed by comparison to experimental photographs. In

addition careful analysis and examination of the Gaussian beam

expansion calculations for particular corners reveal previously unobserved

diffraction phenomena.
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We perform a direct calculation of the Fourier transform of a

uniformly illuminated but finite or bounded plane-screen corner also. We

consider two cases of interest: a slit boundary and a circular boundary.

The first case, which is also referred to as a triangular aperture or a

triangular section of a circular aperture, can be evaluated in a

straightforward manner; the resulting formula is graphically displayed as

a computer-generated diffraction pattern. We use this calculation as the

framework for studying polygonal apertures in Chapter 4. The circular

boundary problem, which can be considered diffraction from a sector of a

circular aperture, is solved by expanding the integrand in an infinite series

of Bessel functions. The solution is suitable for computer calculation and

completes the study of plane-screen corners.

In Chapter 4 we address the large polygonal aperture diffraction

problem directly. In a straightforward manner, we review how a polygon

diffraction pattern is composed of triangle diffraction patterns; these

triangles are the bounded corners studied in Chapter 3. Recognizing that a

similar decomposition procedure can be applied to the nested polygon

diffraction problem is the coup de maitre that enables us to write a simple

closed-form solution for the diffraction pattern. A triangular aperture

with a grating-like structure is the elemental building block. Each

elemental triangle generates intensity spikes that are replicated in a

regular array by the grating-like structure. The arrangement of these

spikes produces nested polygons in the diffraction pattern. These features

are demonstrated clearly by computer calculations and photographs for

nested pentagons. Experimental measurement of these features, which
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are many orders of magnitude lower in intensity than the central peak

intensity, verify the calculations.

1.2 Historical Overview

Extensive literature reviews of research on the general problem of

electromagnetic diffraction by apertures are contained in papers by

Bouwkarnp (1954), Eggimann (1961), and Butler, Rahmat-Samii, and

Mittra (1978). The following cited publications deal with diffraction from

apertures that are smaller than or equal to a wavelength of light in size.

Lord Rayleigh investigated the interaction of waves with plane

screens perforated by some kind of aperture. It is of particular relevance

that he considered one or both dimensions of the aperture to be infinitely

small in comparison with the wavelength of light X. Specifically, Rayleigh

(1897a) solved integral equations applicable to acoustic diffraction by

small circular holes and disks and narrow slits and blades. For example,

he showed that the amplitude of the wave diffracted by a small hole in a

fixed screen is approximately equal to the electrostatic capacity of a metal

disk of the sam- size and shape as the aperture. Subsequently, he

considered the specific electromagnetic problem of the normal incidence of

a plane wave upon an infinitely thin screen with perfect electrical

conductivity, perforated by a small circular aperture (1897b). His solution

at a distance great in comparison to the wavelength of light is in the form

of the far field radiation pattern of a magnetic dipole. Rayleigh expressed

concern in applying scalar results to these electromagnetic situations

because of the discontinuities which occur at the edge of the aperture.
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Bethe (1944) studied small hole electromagnetic diffraction problems

and the effect of a small hole in a cavity upon the oscillation of that cavity.

His method was based on the use of fictitious magnetic charges and

currents in the hole to satisfy the boundary conditions. Specifically, he

used the solution of an electrostatics potential problem to determine the

charge density in a small circular hole; the equation of continuity then

yielded the current density. Further, he showed that the diffracted field

can be considered as caused by a magnetic moment in the plane of the hole

and an electric moment perpendicular to it.

An integral equation method of solving plane diffraction problems

was presented by Copson (1946). He expressed the components of the field

as integrals over either the screen or the aperture; the components were

coupled through Maxwell's equations. Copson applied his method to

rederive Bethe's expressions for the field in a small circular aperture and

also obtained a solution for the case of a disk.

Although both of the two preceding works contributed valuable

insight and understanding, they are open to criticism and require

qualification. Bouwkamp perceived and explained the inconsistencies. In

his critique of Bethe's paper (Bouwkamp, 1950a), Bouwkamp pointed out

that in Bethe's solution the electric field is discontinuous in the hole

because the expression for the magnetic current density is in error. The

error does not, however, invalidate the usefulness of Bethe's effective

dipole moment concept in the distant field, although the field in and near

the hole is wrong. Bouwkamp (1950b) presented the correct fields up to the

sixth order.
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In a review of Copson's paper (1946), Bouwkamp (1947) showed that

Copson's proof of his theorem 4 was incomplete and required an extra

condition regarding the behavior of the electric field on the rim of the hole.

This inadequacy was described more fully later (Bouwkamp, 1953). In a

subsequent paper Copson (1950) objected to this point, but he later

withdrew the objection (1951). In any event, the simpler system of

differential-integral equations introduced in Copson's later paper (1950) is

sound when Bouwkamp's additional constraint is employed.

Meixner and Andrejewski (1950) derived a solution for the diffraction

of electromagnetic waves by perfectly conducting disks and circular

apertures in conducting plane screens. Using a Hertz potential

representation, they expressed the field in a suitable eigenfunction

expansion. Since the boundary conditions are specified easily in an oblate

spheroidal coordinate system, the oblate spheroidal wave functions are

appropriate. These functions were not tabulated to an extent sufficient to

allow numerical computations when the wavelength of light X exceeded

one tenth the circumference of the disk or aperture. Hence, Meixner and

Andrejewski gave only the first term of the power series (applicable to

small disks and apertures) for the case of normal incidence (1950);

Andrejewski (1953) presented tables permitting calculations for larger

disks (ka = 10, where k = 2n/, is the wavenumber and a is the radius of the

disk). Bouwkamp's remark regarding Meixner and Andrejewski's paper is

worth noting: 'This new solution is remarkably simple and is to be

considered as one of the most outstanding results of electromagnetic theory

of diffraction" (Bouwkamp, 1950b).
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Other rigorous treatments are by Flanmer (1953a, b), who defined

and utilized oblate spheroidal vector wave functions, and Nomura and

Katsura (1955), who employed an expansion of the hypergeometric

polynomial.

Noncircular aperture shapes have not been treated successfully in

such a rigorous, analytic manner. As a result various approaches have

been tried. When the aperture is small compared to the wavelength of

light and one is interested in the far zone behavior, one can use Bethe's

concept of associating an effective dipole moment with the aperture. With

this technique in mind, Cohn (1951, 1952) obtained values for the electric

and magnetic polarizabilities of small apertures of various shapes by

electrolytic tank measurements. More recently others have presented

numerical results for such polarizabilities (De Meulenaere and Van Bladel,

1977; Van Blade], 1979; De Smedt and Van Bladel, 1980; Okon and

Harrington, 1981; Arvas and Harrington, 1983). Jaggard and Papas

(1978) used the concept of symmetrization to define upper and lower

bounds on the polarizabilities. And Suzuki (1956) calculated a related

quantity, the transmission coefficient, for rectangular apertures assuming

different aperture fields.

If one is interested in the near field behavior of the aperture

diffraction problem, however, it is necessary to determine the aperture

fields. One approach is to solve integral equations for the diffracted

aperture field by numerical moment methods. The fundamentals of this

approach are described in a book by an early contributor to the field of

moment methods (Harrington, 1968). Rahmat-Samii and Mittra (1974)
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derived integral equations that are well suited to small apertures. They

presented results for the surface currents on a rectangular plate and for

the aperture fields in a one wavelength square aperture. In a subsequent

paper the same authors constructed numerical results for the aperture

field and the on-axis diffracted field of a subwavelength square aperture;

they compared their results with those for circular apertures (Rahmat-

Samii and Mittra, 1977). Other numerical calculations are available

(Mautz and Harrington, 1976; Rao, Wilton, and Glisson, 1982; Sarkar,

Arvas, and Rao, 1985).

The work by Kieburtz and Ishimaru (1962) and Kieburtz (1962) is

also noted. They computed values for the cross section and the aperture

fields in a plane screen containing a doubly periodic array of rectangular

apertures. Their variational method of analysis relied on choosing an

appropriate trial function for the aperture field components to solve three

coupled integral equations.

The behavior of the electric and magnetic fields near aperture corners

has attracted recent interest. De Smedt and Van Bladel applied their

study of the fields near a metallic cone of arbitrary cross section (1986) to

the special case of a flat sector (1987). Using low frequency techniques

they expressed the zero-order static potential for the electric field as the

product of a radial factor and a spherical harmonic function. Numerical

techniques were employed to solve the eigenfunction problem for the

spherical harmonics. They presented values for the singularity exponents

as a function of the half-maximum opening angle of the flat sector. Their
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results have particular relevance as a means for accelerating the accuracy

and convergence of numerical algorithms.

Diffraction by polygonal apertures has been of interest for many

years. Using the symmetry properties of Fraunhofer diffraction by

apertures possessing a symmetry, Komrska (1972) derived a function

describing Fraunhofer diffraction by apertures that are regular polygons.

He computed diffracted intensity maps for an equilateral triangle, a

square, a regular pentagon, a hexagon, and an octagon; he compared them

to photographs of the diffraction patterns (Komrska, 1973). A review of

earlier research on this topic is contained in part I of Komrska's

investigations (Komrska, 1972). Witmer's (1926) paper was overlooked in

Komrska's bibliography.

Smith and Marsh (1974) performed similar calculations for a general

polygonal aperture by first considering an isosceles triangle and a

trapezoid. They obtained the result for a general aperture by considering

the aperture to be composed of elemental trapezoids. Witz (1975)

presented a different, yet versatile method for obtaining the same result.

He evaluated the singularities of a secant-length function, which is

determined from the aperture function, and its derivatives. These

singularities completely determine the Fourier transform or diffraction

pattern.

Sillitto and Sillitto (1975) used a Fourier approach to derive an

expression for Fraunhofer diffraction by triangular apertures. The simple

expression involved only sinc functions of two nonorthogonal coordinates

related to the lengths and directions of two sides of the triangle. Later,
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Sillitto (1978) used this result to analyze an arbitrary aperture as the sum

of triangles. These formulas have been rederived by means of the Abbe

transform (Komrska, 1982) and the Maggi-Rubinowicz transformation

(Ganci, 1984).

A different triangular aperture diffraction problem was posed in the

book by Stone (1963). The reader is asked to describe the general

appearance of the Fraunhofer pattern formed by a narrow slit bent into an

equilateral triangle (problem 9-18, page 187). Such an aperture can be

viewed as a simple nested triangular aperture; hence, the problem is a

precursor to the nested polygon problem considered in this thesis.

Because decomposing a polygonal aperture into elemental triangular

apertures leads to a convenient description of the diffraction pattern of a

polygon, a detailed study of these elemental triangles is appropriate. One

can view these triangular apertures as bounded plane-screen corners of a

given angle. A plane-screen corner is formed by the coplanar intersection

of two perfectly conducting, vanishingly thick, half-plane screens oriented

at the given angle.

One method used in this thesis to evaluate diffraction by such a

structure is direct computation of the Fourier transform of a bounded

plane-screen corner. Livanos and George (1975) presented closed-form

solutions for the optical transform patterns of a semicircular aperture

illuminated by a unit amplitude convergent wave and of an edge

illuminated by a Gaussian amplitude convergent wave. The relevance to

the topics studied in Chapter 3 lies in realizing that an edge is a plane-
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screen corner of opening angle 1800. Also, a semicircular aperture is a 180'

sector of a circular aperture.

Another method used in this thesis is to expand the diffracted field in

Gaussian beam modes. The propagation of Gaussian beams and the

expansion of functions in Hermite-Gaussian and Laguerre-Gaussian

functions have been studied for many years. Hermite-Gaussian functions

are eigenfunctions of the harmonic oscillator Hamiltonian (Liboff, 1980).

In the context of optical resonators, Boyd and Gordon (1961) determined

the fields of a confocal resonator (rectangular aperture) to be Hermite-

Gaussian functions; Boyd and Kogelnik (1962) and Vainshtein (1963)

determined the fields of a generalized confocal resonator (circular

aperture) to be Laguerre-Gaussian functions. Goubau and Schwering

(1961) introduced the concept of electromagnetic wave beams in which the

cross-sectional amplitude distribution is repeated at a certain distance

from the origin of the beam. They showed that the mode patterns are

describable in terms of associated Laguerre-Gaussian functions.

Expanding the kernel of the resonator integral equation in a special set of

Schmidt functions (Schmidt expansion, see Smithies, 1958) is a method for

obtaining the field distributions of the resonator modes (Streifer and

Gamo, 1964; Heurtley, 1964; Streifer, 1965; Heurtley and Streifer, 1965);

again the Gaussian modes are important. In a comprehensive review

article Kogelnik and Li (1966) describe much of the early laser beam and

resonator theory. In particular, they sketched how the Gaussian modes

are solutions to the paraxial scalar Helmholtz equation and form a

complete and orthogonal set of functions.
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Gaussian beam expansions have been used for pattern synthesis.

Papas (1965) sketched an approximate method due to Bouwkarnp and de

Bruijn (1946). To solve the integral equation connecting a radiation

pattern with the necessary current distribution, first they expanded the

radiation pattern in a power series. Then they obtained the current

distribution by summing appropriate Hermite-Gaussian functions

multiplied by the radiation coefficients and determined factors.

Recently, Bogush and Elkins (1986) developed an approximate theory

of large aperture antennas using a Gaussian field expansion. For a

separable rectangular geometry, they expanded the aperture field, and

hence the diffraction field, in terms of Hermite-Gaussian functions. They

presented optimized scaling factors and series coefficients for a number of

aperture distributions. For a circular geometry, they introduced an

expansion using Laguerre-Gaussian functions that did not allow a polar

angular variation in the fields.

Gaussian modes without polar angular variation have also been used

to study diffraction of a Gaussian beam through a circular aperture.

Tanaka, Saga, and Mizokami (1985) used the first term in a Gaussian

beam expansion to investigate the angular divergence of a diffracted

Gaussian beam. In a subsequent paper, Tanaka, Yoshida, and Taguchi

(1988) used the same approach to approximate the diffraction field through

a sequence of three apertures.

We also note an important expansion scheme based on elementary

Gaussian beams. We elucidate neither the usefulness nor the difficulties of

this expansion, but it is mentioned here for completeness. The Gabor
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(1946) representation was introduced within the context of communication

theory. After proving that a signal's specificity simultaneously in time

and frequency is fundamentally limited by a lower bound on the product of

its bandwidth and duration (uncertainty relation for information), Gabor

found a general family of signals that achieve the theoretical lower limit of

joint uncertainty in time and frequency. These elementary signals, or

"logons," are characterized by a Gaussian envelope modulated by a sine

wave. The Gabor representation is based on Gabor's suggestion that an

expansion in terms of properly shifted elementary signals can represent

arbitrary signals. Recently investigators have concentrated on using

Gabor's ideas to describe information content (Bastiaans, 1982), aperture

theory (Einziger, Raz, and Shapira, 1986), and propagation through a

complicated environment (Maciel and Felsen, 1987).

Finally, we point out that an important connection can be made

between optical diffraction by apertures and X-ray diffraction by crystals.

The book by Harbum, Taylor, and Welberry (1975) states that studying

optical analogues of X-ray diffraction phenomena helps in the

interpretation of X-ray diffraction patterns by "stimulating thought and in

aiding the development of intuition." The book is a collection of optical

diffraction pattern photographs of objects ranging from simple apertures to

complex combinations of apertures. In particular, plate 23 shows

diffraction patterns from helices viewed from different pitches and

sampled at equal intervals. The photographs are striking, and one can

relate some similarities to the grating-like section patterns in §4.2.1.



16

1.3 Statement of Notations and Conventions

In this thesis we use the inks system of units. The electric

permittivity and magnetic permeability of the medium are c and P,

respectively; the speed of light is c. The time dependence of

electromagnetic field quantities is not shown explicitly; we assume it to be

exp(-iwt). In all cases monochromatic light with wavelength X is assumed,

and the wavenumber is k = 2n/X. We portray vector quantities as bold

face, e.g., E, and unit vectors as 1 (which specifies a unit vector in the x

direction). In Chapter 2 the E.1 notation means that the field component is

evaluated at z = 0 and (xy) E A, where A denotes the aperture, e.g.,

E.(x,y,O) = EA(x,y) for(x,y) E A

Throughout the thesis we represent the Fourier transform of a function by

the same letter but with a bar over it, e.g. f,

f(u) = f(x)exp(-i2nxulda

We use the following definition for the sinc function:
sin (ux)

sinc (x) = s
[Ix

We use the term optical intensity to mean the square modulus of the

electric field. The term optical transform is taken to mean the optical

intensity observed in the focal plane of a converging monochromatic light

wave; it is related directly to the square modulus of the Fourier transform

of the aperture distribution. In Chapters 3 and 4 we analyze diffraction

patterns in a plane perpendicular to the z axis. Sometimes we refer to

observation points in this plane by cartesian coordinates (x,y,z) and

sometimes by cylindrical coordinates (r,O,z).



CHAPTER TWO

SMALL APERTURES

In this chapter we present a hypothesized solution for the aperture

electric field in a small square aperture (2a x 2a, ka < 1, where k = 2n/X is

the wavenumber) in a thin, perfectly conducting plane screen illuminated

by a normally incident, linear polarized plane wave of wavelength X. We

outline an integro-differential equation framework and restrict it to small

apertures. After hypothesizing the square aperture solution, we

substantiate it within the integro-differential equation framework,

compare it with the circular aperture solution, and compare it with

published numeric results. A final discussion of the far field diffraction

pattern makes the usefulness of the results clear.

2.1 Integro-Differential Equation Formulation

Consider a perfectly conducting plane screen of vanishing thickness

with aperture A at the plane z = 0 as in Fig. 2.1. An electromagnetic field

is incident from the left, z < 0. We assume an exp(-iwt) time dependence.

We write the electric field in the presence of the screen as

E + Ed z<O (1)
E = d  Z_>sa0 '

where EO represents the short-circuit field or the field that would exist if

the screen had no aperture, i.e., incident field plus reflected field, and Ed

represents the diffracted field. A similar expression can be written for H.

We write the diffracted field as the curl of a vector potential F:

17



18

inc
E

H z2a

Fig. 2.1. Thin plane screen diffraction geometry. In general an
electromagnetic wave is incident from the left z < 0. If the screen has an
aperture A, then the problem is to find the diffracted field Ed for z 2t 0.
Shown here is the specific case of a normally incident plane wave linearly
polarized along x. The inset shows the 2a x 2a square aperture considered
in the text.

E dr) V X F(r) (2a)

where F is defined by

F(r) = c 1 X EA(r ' ) dx'dy' (2b)
2n A R

R = _(xx)2 + _v-y') 2 + z 2

W 2n

C A
In Eq. (2a) we choose the plus sign if z ; 0 and the minus sign if z < 0. c is

the permittivity of the medium. In Eq. (2b) 1, is a unit vector normal to the

screen pointing in the +z direction, EA(r °) is a notation to emphasize that
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the value of the electric field in the aperture, (x',y') E A, z = 0, is used, and

the integration is over the aperture only. This notation to denote (x',y') E

A, z = 0 will be used throughout this chapter, e.g., E(x',y',O) = EA(x ,y').

The scattered magnetic field, Hd, can be obtained from Eq. (2a) by means of

the appropriate Maxwell curl equation.

It is instructive to pause and consider some of the properties and

results of Eqs. (2a) and (2b). First, the tangential components of the

electric field in the aperture determine completely the vector potential.

Hence, F has only an x and a y component. The uniqueness theorem for

electromagnetic waves in steady state contends that the electromagnetic

field within an empty bounded region is determined uniquely by the

tangential components of the electric field (or magnetic field) on the

boundary surfaces of the region. The right half-space in the diffraction

problem is bounded by the infinite screen plus the aperture and an

infinitely large hemisphere. The tangential electric field values on the

screen and the hemisphere are zero; thus, only the aperture fields are

needed to determine the electromagnetic field in the right half-space.

The symmetries of the equations are important, too. It is evident that

F is an even function of z. Consequently (Jackson, 1975, pp. 435-438),

E ad, EYd, Hz d are even functions ofz

H, Hd, E2a are odd functions ofz (3)

For example, ifz0 > 0,
d II ± F(Xy,z) I

E d(x,y, -z 0 ) = - _ X--azEX 0 CzI)Z Y z = -z 0

E d Uxy,-z 0 1 = -- + -- F l,,z}
X 0Z C I a1Z = +Z 0
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Ed(x,y, -z) Ed(xy, + z) QED

Finally, if F is rewritten as

M(r') e dx' dy' (4a)F(r) = 4n A R

where

Mr') = 2 X E A (r') (4b)

then we recognize F as an magnetic vector potential (analogous to A, the

electric vector potential, i.e., B = v x A), and M is the effective magnetic

current density in the hole.

Smythe (1947) used a similar physical insight to derive the

expression for Ed. He considered a thin plane, double current sheet in

which the distance between layers is very small and the current densities

in the two layers at any point of the sheet are equal and opposite. He

showed that a double current sheet giving any desired electric field could

be built up out of infinitesimal solenoids. The radiation from these small

oscillating current loops can be added up to yield the previous equations.

Digressing a bit further, a step-by-step procedure for obtaining Eqs.

(1) and (2) is shown in Fig. 2.2. The figure and the succeeding remarks are

attributable to Butler et al. (1978). "The original problem is depicted in

Fig. 2(a), while in Fig. 2(b) the aperture is short-circuited, i.e., the

conducting screen is made continuous, and the electric field is restored to

its original value EA at z = 0- [z = 0- means the limit as z --o 0 from the

left] by the equivale:t surface magnetic current M, (= 1, x EA) placed

over the region A on the short-circuited screen. From Fig. 2(b) one obtains

Fig. 2(c) directly by use of image theory." The fields in the left half-space



21

1 x I x ix
41 

1, 1T T T
SCREEN

, E,nc SCREEN E,°c (SHORTED): . 'C (IMAGE)

H IflH

PERTURE k

itx~A Et

(IMAGE)

-z-- I. z

z=0 z=0 z=0
(a) (b) (c)

VALID VALIDz < 0 VALIDz < 0EVERYWHERE lxx

I Xi xT T
SCREEN I

(SHORTEDI

* M s oio

(IMAGE)

I

z=0 z=0

(d) (e)

VALID z > 0 VALID z > 0

Fig. 2.2. Half-space equivalences. The original problem is depicted in (a).

The left half-space problem is depicted in (b) and (c); the right half-space

problem is depicted in (d) and (e).
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can now be written down since the currents, incident field, and image

fields reside in a homogeneous space of infinite extent. The short-circuit

field Eo is the sum of the incident field and its image; the diffracted field

arises from the equivalent magnetic current plus its image. The vector

potential for this latter contribution is F as defined in Eq. (2b). Figures

2(d) and 2(e) illustrate the right half-space problem. In this case the short-

circuit field is zero, and the entire radiated field is determined by the

equivalent current and its image.

Continuity of the electric field in the hole implies that

E(O- E(=E ) ,

EO(O+- ) Ed(O -  ) (5)
Z 2 2

where E(0 + ) denotes the value of E. for small values of ±Iz and (x,y) E A.

In consequence, from the symmetry properties (3)

e(0-)= 2P (o +) (6)

From image theory, the normal component of the short-circuit electric field

is twice the normal component of the incident electric field. Therefore,

E (0) = E mc(o) (7)
2 2

The distinction between 0 + and 0 is no longer necessary. Similarly,

H1(0) = 1;"r(0) (8)

where H, denotes tangential components of H. That is, in the aperture the

normal component of E and the tangential componentb of Ii are unaffected

by the presence of the screen. The physical origin of this statement is

rooted in the assumption about an infinitesimally thick screen. The

surface current density that is necessarily produced in the screen to satisfy

the boundary conditions can have no z component. As a result the
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scattered electric (magnetic) field in the aperture arising from this current

has no component normal (tangential) to the screen.

Finally, these continuity requirements and symmetry properties

combined with suitable manipulation of the relations describing E and H

in terms of F yield the following set of three differential equations that

hold in the aperture:

()+( +k-] FA c a E '
fC , (9a)

a + 2+41FA= Ev- (9b)
Y az X

jlpA -- r-E (9c)
1 xY aY

where

V2  Or a-

xy ax2 O,2

Note that the components of the vector potential are evaluated at (xy) E A,

z = 0. These differential equations together with the integral relation Eq.

(2b) constitute Copson's formulation of the boundary value problem

(Copson, 1950, Theorem A).

To obtain a unique and physically important solution, a further

condition is required: the behavior at the rim of the aperture must be

specified. The edge condition formulated by Meixner (1949, 1972; also Van

Bladel, 1964) asserts that the energy density be integrable at the edge.

This condition leads to certain conclusions about the behavior of

electromagnetic fields near sharp edges. The component of the electric
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field perpendicular to the edge becomes infinitely large at the edge as

d- I/2, where d is the distance from the edge. The component of the electric

field parallel to the edge vanishes at the edge as d 1/2 . The behavior of the

current density, M, can be deduced from these properties. The component

of the current density parallel to the edge becomes infinite as d- 1/2; the

component perpendicular to the edge vanishes as dI /2 . This edge behavior

is displayed in Sommerfeld's half-plane diffraction problem (Bouwkamp,

1946) and in all known solutions.

A necessary condition for the integro-diferential equations, stated by

Bouwkamp (1953), is that

E = 0 on therim ofA (10)

where E. denotes the projection of E upon the tangent to the rim.

According to Bouwkamp, the addition of this condition "does not weaken

the value of Copson's theorem. On the contrary, it was meant to be and is

in fact a further step towards the practical application of the theorem,

especially in the construction of approximate solutions." The condition is

satisfied explicitly in the solution for a small circular aperture (to be

reviewed later) and in the hypothesized solution for a small square

aperture (to be presented later).

2.2 ApI lication to Small Apertures (ka < 1)

Now we restrict attention to apertures whose characteristic

dimension, a, is small such that ka 4 1. Also, the incident field is

considered to be linearly polarized and normally incident, i.e.,

Efnc = 1 exp(ikz) H"nC = I exp(ikz)/W 0 (11)
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where I and ly are unit vectors in the x and y directions, respectively, and

W0 is the impedance of the medium (see Fig. 2.1).

Expand all of the factors in Eq. (2b) in a power series in ik

(Bouwkamp, 1950; Stevenson, 1953; Kleinman, 1978), substitute into Eqs.

(9a)-(9c), and retain terms up to first order. The expansions are

F" =F +ik F +.
0 1

1 xE' =A o +ikA 1 +.

exp(ikR) 1 + ikR +

The zero-order potential is

Fl°(xv)= 2n AO(r') -dx'dv' (12)
0'- 2n J A R

The three differential equations for Fo are

2 = 0 (13a)Vxy 0

V2. o , (13b)

P- - - = 0 (13c)
ax O)y 0 G

By requiring that the charge density be integrable over the aperture,

Bouwkamp (1954, p. 77, esp. Eq. 9.12) has shown that for electromagnetic

radiation normally incident on a circular aperture

Ao =0 *hence, F'O=0
0

It is reasonable to believe that this is true for any shaped aperture. In

other words, no energy gets through the small hole in the zero order.

Thus, to a first-order approximation in ik, the diffraction problem is

described by the following differential equations and integral definition:
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2  = o, (14a)Vzy L

2 F, = A (14b)
zy Iy

a F- a , = 0 (14c)
ar 1) I

FA(X')- A1(r) L&d'(15)wher 2n ~A R-x'y
where

R = _(x x)2 + _, 2 1 (16)

Condition (10) becomes

A,. = 0 ontherimofA (17)

where Ain denotes the projection ofAl upon the normal to the rim.

2.3 Review of Circular Aperture Solution

The small circular aperture diffraction problem has been solved

within the integro-differential equation framework just described.

Bouwkamp (1950) presented the details of that derivation (also Van

Bladel, 1964, pp. 404-409); we review the main points here.

The basic procedure is to use knowledge about the edge behavior and

symmetry properties of the aperture fields to write a qualitative formula

for the current density A I. The exact form of AI is achieved when the set of

three differential equations, Eqs. (14a)-(14c), are employed.

Consider a small circular aperture with radius a centered at (x,y) =

(0,0) in a perfectly conducting plane screen of vanishing thickness. The

aperture is illuminated by the incident field of Eq. (11). Simple symmetry
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shows that E.A is an even functions of x' and y'. From Eqs. (14c) and (15)

one can then deduce that EyA is an odd function of x' and y'. Hence, A. is

odd and Ay is even. The edge behavior of the current density implies that

AP must be proportional to (a2 - p, 2)112 at the edge, and A. must be

proportional to (a 2 - p,2)-11 2 at the edge. As previously stated, the zero-

order term is F0A = Ao = 0. For the first-order term, the qualitative

behavior of the current density is

A x' y' (18a)
a 2(_ 2 _ y 2)/

A Wx'y B + Cx'2 + Dy' 2  (18b)
ly a 2 _ X2_ y'2)1/

The constant A in Eq. (18a) should not be confused with the notation

denoting the region of the aperture.

The following integrals are needed for the determination of F, A

dx'dy' 2

A (a2 _ 2 ,21 /21 (xx,) 2 + (Y_)2 1/2

x'y'dx'd.v' 32
I IA (a2- -2 v'2) 1 (x-x')

2 + (yy )2 1/2

x dx'dv' 1 4a 2 +5x 2 y2)

IIA ( a 2 _ X12 - ~2) 121(x- x,)2 + (yy,)2 1/2 16

Straightforward computation shows
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3n

FA (x,y) = e - xy A
Lz ' 16

FY~y= L B+ -(4a 2 +5x 2 - 2 )C+ -(4a 2 +y 2 -x2)D

ly 12 32 32

Substitution into Eq. (14b) reveals that
4

C + D = - (19a)
n

Equation (14c) provides an additional constraint:

5C - D = 3 A (19b)

Because there are four unknowns, two more relations are needed.

These are provided by applying the edge condition (17). The radial

component, AtP, which must vanish proportional to (a2 _ p' 2)1"2 at the

edge, is

Alp= A cos ' + Ay sin i'

Ap sin , B + Dp 2) + p,2cos2 4 '(A + C - D)

(a,2 _ P,2)

For the correct edge behavior,
B + D a2 = 0 (19c)

A +C-D=0 (19d)

The solution of Eqs. (19a)-(19d) is

4
311

ABC-= -

B =-a 2 8

3n

8
D= 3n
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Using the definition of A in the first order, we can write

I n X E A(x',y') = ikA1 (x',y')

XE'A 4ik Xy -2a2 + X'2 + 2y2 1 (20)1 xA~'y) = Y.- 2 ! -- '-a - - 1/' (20

n nI(a 2 _- / (a2 _ X12Y'2  /2 A

The desired solution for EA is

EA (x, y) 4ikj 2a 2 -x' 2 -2y 2 '+ ' /2 (21)
(.2 _ X 2 _ .2)1/2 x (a2 _ 2 ,2)(2 )

2.4 Synthesis of Square Aperture Solution

We use a similar approach for the small square aperture diffraction

problem. A first-order solution for the tangential components of the

electric field in a square aperture will be written based on physical

reasoning and intuition. This gives A. The solution to be analyzed

contains three undetermined coefficients. The next step is to calculate F 1A

using this solution. Finally, the undetermined coefficients are computed

by requiring that the calculated F 1A satisfy the differential equation.

The hypothesized solution for the aperture field in a square aperture

is synthesized from the solution for an infinite slit in a conducting screen.

According to other authors (Sommerfeld, 1954, pp. 273-289; Millar, 1960;

Kieburtz and Ishimaru, 1962, pp. 668-669) the series

E (x) = N" p. a2_x,21 (22a)
n=O

is sufficiently complete to describe the field within a slit of width 2a and

infinite in the y direction assuming that the slit is illuminated by a

normally incident plane wave polarized along x. Likewise, if the slit is
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oriented so that it is infinite in the x direction, then, under the same

illumination

EA = -" , a2 _Y 2  (22b)

We notice that Eqs. (22a) and (22b) are alike in form, the only

difference arising in the limits of the summation. The term n = 0 in Eq.

(22a) accounts for the allowed singularity of E A. The term n - 1 in Eq.

(22b) properly describes the vanishing behavior of the electric field at the

edge for this polarization.

The hypothesized solution for E,, the dominant component of the

electric field, for a 2a x 2a square aperture is the product of Eqs. (22a) and

(22b), namely,
a_- - x _y2 (23)

QDIn- 1/2 J m - 1/2E (X,y,) = N' 7 a 23 _ - 2 1a2 _Y 1m(3
n=O m=1

We retain only the first three terms in Eq. (23).

EA x',y') 13o 2 x21 - 2 a2 y
,21

+ oilI a 2 _X, 21/ Ia2 ye21 /

+ 2 1a21 12l a 2 Y,213/ (24a)

We rewrite this as

A (a 2 -Y 2 )/2B C(2/2)+ D(,2J(k) (24b)
X a 2-x2

where

B = 00 + a2 311 + a21302) I(ika)
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C = -a2 Pi / (ika)

D = -a 2 002/(ika)

The explicit factor of ika is in anticipation of the pending analysis. Note

that the factors of a2 make the constants B, C, and D dimensionless.

Equation (24b) constitutes the hypothesized aperture field solution for the

dominant component of the electric field.

As was the case with the circular aperture problem, even though the

incident field is polarized along the x axis, the y component of the aperture

electric field is nonzero. Nevertheless, it turns out that EyA is appreciable

only near the edge of the aperture in both cases. To complete the

description of the aperture field, a solution for Ey' is required. Such a

solution will not be presented because one can deduce that E A does not

contribute to the leading term in the far field diffraction pattern. This

statement will be validated in §2.6 by virtue of the following property. For

any aperture shape symmetric in x' and y', e.g., circle or square, E A will be

an odd function.

2.5 Evaluation of Hypothesized Solution

2.5.1 Computation of F1A and V2FA

The first step in evaluating the validity of the synthesized solution

for E.A, Eq. (24b), is to calculate F, A as defined in Eq. (15). Since only the x

component of EA is being considered, only the y component of A, and hence

of FIA need be computed. From Eq. (24b) and the power series expansion of

1 xEAnl
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A,(x'') = (a) 1/2 B +C(x'2/a2)+ D(y' 2 1a2 (25)

Now we write Eq. (25) in normalized coordinates, namely,
1,' x'l a ; rl' m y'/ a ,

Aly(x',y') = (a)( I
2 ) 1/2 B+CE,2 + DrI2 (26)

Rewriting Eq. (15) in normalized coordinates gives
FAEr)=w ff' ( 1)'/ 2 f2D ]2

- 1 E,' 2  B+C"+Dr'2

dk'dr' (27)
[ _ ,2 + (r l q ,2 ] /2

+C l) I
where

- x/a ; M -y/a

The differential equation (14b) becomes
v2 .4 2 (8

Sly = a(28)

At this point we desire to evaluate analytically Fy A, Eq. (27), for

points (,,j) in the aperture, and then to substitute that analytic expression

into Eq. (28). We have not accomplished this. One recourse is to evaluate

the integral expression and differential equation numerically. Before

proceeding in this way, though, we transform the k' integration into

elliptic integrals by standard techniques (see Appendix A: Transformation

of Elliptic Integrals into Standard Form). This greatly reduces the

numerical computation required to evaluate F,,A at a point (kr) within the

aperture. Equation (27) becomes

Fl(k,l) = La 2 _0 11 - .'2)1/ 2  B1 +CI + Drj'2 12  dr' , (29)
il I n 2 3 2
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where

12= 2 K(k (30a)
2 X2- ) 1/ 2  -

- _ -P(nk)+ - IE(k) 42(30b)
3 + 1 2 A1/2 +

:'2=' lie+02_11±[(e+02_1)2 + 4021'/
1 .2 2

0 2 ( nr) 2  k 2= 2 1 + A2

2-A 1 ' 2- A1

We have used the following definitions for the complete elliptic integrals of

the first, second, and third kind (Gradshteyn and Ryzhik, 1980, pp.

904-905):
in/2

n d4
K(k) = F(-,k) = o

2 0 (1 -k 2sin 2 4)) /2

n n /2 2 2 1//22
E(k) = E(-,k) = (1-k 2 sin4) d4,

n n2d
P(n,k) = 17 ,n,k) =

2 0 (I-nsin'4)(1-k 2sin 2 7)I/2

Since the constants B, C, and D are not yet known, we must compute

each term in Eq. (29) individually. Thus, define

F'-(L'ro= I -I (1 _r1,2)1 /  2 drj' (31a)
B 1 12
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FA(Ei) 0 r ) ( 2 12 13 dr ' (31b)

I 3 /

F = -1 (= 1)1 / 2 1 2 di' (31c)

such that

Ica (B + C A_ + D-) = C D (31d)

As a result Eq. (28) becomes

V 2 DA (32)
kn BCD 1

We evaluated the three terms, Eqs. (31a)-(31c), numerically at

10,000 sample points in the aperture. Owing to the symmetry of the

problem it was necessary to consider points in one quadrant only. The

sample points were equally spaced on a grid such that 0 s kr s 0.99; thus,

the sample spacing was 0.01. We discuss some details of the numerical

calculations in Appendix B: Numerical Integration and Differentiation.

Equations (31a)-(31c) are plctted as functions of(kr) in Fig. 2.3. For

clarity of presentation, only sample points on a 0.05 grid spacing are

shown. In other words, 0 - E,ri !s 0.95 with a sample spacing of 0.05.

We then used the numerical results to calculate the left-hand side of

Eq. (32) for each term, i.e., v,, 2 (F 8 A, FcA, or FDA). Values were computed

for each term at 400 sample points on the same grid spacing as in Fig. 2.3.

Great caution must be exercised in doing these calculations because

numerical differentiation is inherently unstable (see Appendix B). The

results for each of the three terms are presented in Fig. 2.4.

One might attempt to perform the differentiation indicated in Eq.

(32) before carrying out the integrations in Eqs. (31a)-(31c). This makes

the integral divergent, however, since points within the aperture are being
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0.95
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V2F B A

00

-1.0

0 a

1.0'

-2 O,20

0 A

,2 0 20

-- 30,

-0

-300

Fig. 2.4. Plots of (a) vk,,2 FBA (b) v 2 Fc and (c) v~2F A over the first
quadrant of the aperture. These tIree surfaces are derived from the
corresponding surfaces in Fig. 2.3.
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evaluated. This change in the nature of the integral can be seen by

computing the contribution from a small circle or radius 5 about the field

point ( ,rl). The contribution is finite for the integrals in Eqs. (31a)-(31c).

But the contribution is infinite with vanishingly small 8 if the transverse

Laplacian operator in Eq. (32) is moved inside the integral.

2.5.2 Determination of the Unknown Coefficients

The final step in the numerical analysis is to determine the constants

B, C, and D such that Eq. (32) is satisfied. There are 400 data points for

each of the three curves in Fig. 2.4. These data in conjunction with Eqs.

(31d) and (32) can be used to write an overdetermined system of equations

for the three unknowns. We solved for these constants by a linear least-

squares method and obtained the result

B = -0.854

C = 0.543 , (33)

D = -0.004

These results agree with what one might suspect by simply looking at

Fig. 2.4. The goal is to obtain a planar surface by adding the three surfaces

together, i.e., vk 2 FBCDA = 1. One can see that the B and C terms (which

are generally planar, except in the corners where they are both peaked)

will offset each other overall; on the other hand the D term does not seem to

have any characteristics that will aid in obtaining a planar surface. A

physical argument justifying D - 0 is presented in the next section.
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2.5.3 Discussion of Hypothesized Solution

Using Eq. (24b) and the numerical values for the coefficients (33), we

can write a concise mathematical description for the dominant component

of the diffracted electric field in a small square aperture.

E (x',y') = (ika) a2 - ) 2  -. 854) + (.543)(x' 2 /a 2) + ( .004)(y 2/a2) (34)
X (a 2-X,

This function, normalized by a factor of ika, is plotted in Fig. 2.5. Notice

that Eq. (34) allows one to evaluate easily the field at any point within the

aperture. Further, the nature of the edge behavior of the electric field is

displayed explicitly and recognized readily in the formula and in Fig. 2.5.

For a fixed value ofy, the electric field has a singular behavior near the

edges at x = +a. This singular behavioris precisely the behavior required

1A

Fig. 2.5. Plot of synthesized solution for E " over the entire aperture. The
plot is normalized by ika and is computed from Eq. (34). Outside the
aperture, EA = 0.



39

by Meixner's edge condition [see Eq. (10)]. For a fixed value of x, the

electric field approaches zero near the edges aty = ± a. The behavior ofE A

is consisistent with the known behavior of the electric field near asharp

edge.

It is appropriate to make a few comments about the behavior of the

electric field in the near vicinity of the corners of the aperture. The exact

corner behavior of the electric field is not well understood. In order to

evaluate fully any proposed solution to this diffraction problem, we must

know this behavior and express it as a necessary condition on the validity

of the solution as we have done for the edge condition [see Eq. (10)].

V
2
FBL.,).

0,0,

0I 0

Fig. 2.6. Plot ofv, 2 FBCDA. The plot is computed by the linear combination2 rA v2 A 2 A
ofv~ 2 FB, V9 Fc , and Vk, FD indicated in Eq. (31d) using Fig. 2.4 and
the values for the constants given in (33). This surface shows how well the
least-squares fit of the data to Eq. (32) worked. Note that the surface is
planar over most of the quadrant; the only deviation is in the close vicinity
of the corner, i.e., ( ,r) = (1,1).
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Table 2.1. Numerical Histogram of Analysis of
Hypothesized Solution.

Range of Vt 2 FBCDA # values (out of 400)

(0.90,0.95) 40

(0.95,1.05) 353

(1.05,1.10) 5

(1.10,1.37) 2

Nevertheless, using Eq. (32), we can deduce that the behavior of the

electric field in the near vicinity of the corners of the aperture is not

represented well by the hypothesized solution. In Fig. 2.6 is plotted the

linear combination of V, 2 F BA, v 2 FcA, and V 2 FDA indicated in Eq. (31d)

using Fig. 2.4 and the values for the coefficients given in (33). Note that,

the vertical axis is labeled vk,2 FBCI/ . These results represent the left-

hand side of Eq. (32). This differential equation is satisfied if a value of

1.000 is obtained at every point in the aperture. The values plotted in Fig.

2.6 have an average of 0.998 and a standard deviation of 0.039. The

agreement is very good, hence Eq. (34) is validated, except in the close

vicinity of the corner, i.e., (,rl) = (1,1). Table 2.1 shows a breakdown of

how many values are in the ranges indicated.

A comparison of Eq. (34) with the solution for a circular aperture of

radius a presented earlier is appropriate. The x component of EA from Eq.

(21) can be written

EA: circle (xY.) =(ika) (_ 4 )a[2-(x 2 /a )-2 V 2 a)1 (35)3n (a 2 _ X 2 _ y21/2

The symmetry of both geometries leads one to expect that Eqs. (34) and

(35) should have similar behavior along the principal axes, i.e., x' = 0 and
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y'= 0. This is indeed the case.

EA: square(oY) (-0.854) + (-0.004 )y,/ a (36a)

EA: circle(oy) (-0.849)
X

EA: square('', O ) (-0.854) + (0.543)x'2 / a 2- (36b)

EA : cicle(x0) (-0.849) + (0.424)x'2/a 2

X

Equation (36a) is "iery nearly equal to unity for y'" < a. In addition the

single term in the denominator confirms the numerical value for D in (33),

i.e., D = -0.004 - 0. The variance of Eq. (36b) from unity is greater, but

the agreement is still relatively good. Such similarity is also apparent in

the numerical solutions constructed by Rahmat-Samii and Mittra (1977).

2.6 The Far Field Diffraction Pattern

When the aperture is small compared to a wavelength of light and the

observation point is far from the aperture, a multipole expansion of the

field is useful. One substitutes Eq. (2b) into Eq. (2a) and approximates R

by its power series expansion. We understand the practicality of this

expansion when the terms are grouped in a physically meaningful way,

i.e., in terms of dipoles, quadrupoles, and so on. The result due to Van

Bladel (1977, 1979) is

Ed(r) I exp(ikr) -k 2 cl xm1 + k21 r Xp + I rlrQM
4n r r 2 r

+ik3 1 r (36)

+wk3 1rxm 2 + rX eQe+4

where
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m, 7- Mds' (first- order magnetic dipole), (37a)

P 1 f f M X r° d '  (electric dipole), (3b

m2 = 6 JA MXr'Xr'ds' (second-ordermagneticdipole), (37c)

Q. = (Mr' + r'M) ds' (magnetic quadrupole), (37d)

Q' = 3 A (MXr'r' + r'MXr')ds' (electricquadrupole), (37e)

M = M(x',y') = 2 1 ? EA x','Y

1 = rrr

(The definitions of the magnetic multipoles used above are formally

analogous with the traditional definitions of the electric multipoles.)

The utility of this expansion in treating far field radiation from small

apertures is its simplicity. Once the multipole moments are known, we can

calculate easily the radiated field. In the treatment here, we will assume

that the aperture is small enough so that only the first-order dipole terms

need to be considered. Careful examination of these two terms, Eqs. (37a)

and (37b), reveal that the equivalent magnetic dipole moment for the small

aperture is in the plane of the aperture; the equivalent electric dipole

moment is directed normal to the aperture. The far field radiation pattern

is given simply by the fields attributable to these equivalent dipoles.



43

The physical origin of these dipole terms is the short-circuit fields in

the aperture. In other words we assume that the aperture is so small that

the fields far from the aperture are determined by the fields that would

exist if the aperture were absent, namely E ° and HO. Hence, for a perfectly

conducting surface, the normal electric field E ° induces the electric dipole

moment, and the tangential magnetic field HO induces the magnetic dipole

moment. In the problems under consideration, the exciting field is

normally incident. Therefore, E ° = 0, and there is no effective electric

dipole moment. For the remainder of this section, we consider only the

magnetic dipole moment.

It is now appropriate to validate an earlier claim: EYA does not

contribute to the leading term in the far field pattern. To see this we

rewrite Eq. (27a) so tbat the contribution from E A is clearly seen.

m = . l~~ 1-EAx',y') dx' dy' + I EA~(x',y') dx' dy' J(38)
When considering symmetric apertures, E A is an odd function of x' and y'.

Integration of an odd function over symmetric limits gives zero; hence, the

contribution of EYA to Eq. (38) is zero.

m=-I  I LA x',y')dx'dy' (39)iW Y I A

It is now straightforwarL o compute the effective magnetic dipole

moment for the small circular aperture and the small square aperture.

m= -m I

mcrcle 1 6a 3  (40)
3c
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msquare _[B + C/2 + D/4]n2a 3  5.759a 3 (41)
C C

where c is the speed of light.

Cohn (1951, 1952) measured the polarizabilities of small apertures

using electrolytic tank measurements. From his values, we can ascertain

the strength of the effective magnetic dipole moment. His value for the

square is

- 8.2880 a3  (42)
COHN - C

The value obtained in Eq. (41) is about 30% low. This is another way that

the inadequacy of Eq. (34) in representing the field in the corners is

evident. The value in Eq. (41) is very close to the value in Eq. (40)

corresponding to a circle inscribed within the square. If we retain the next

higher order term in Eq. (23) [n = 1, m = 2, so that a fourth term arises in

Eq. (24b), namely, (x' 2y' 2 / a4)], then the result is mlqlre = 7.264 a3 / c,

which is only about 12% low. Alternately, if we acknowledges the corner

discrepancy problem before performing the previously described least

squares fit to obtain the unknown coefficients (in other words we use only

the numerical data from the central region of the aperture), then we obtain

a value of m q ua re = 8.320 a3 / c.

It is clear from this analysis that restricting the general expansion to

only the first three terms does not describe accurately the dominant

component of the electric field in the close vicinity of the corners. Higher

order terms from the general expansion for the aperture field may improve

the result. The procedure for doing this is the same as previously

described: 1) using the required number of terms from Eq. (23), integrate
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analytically one dimension of FA, [Eq. (31a)]; 2) integrate numerically the

other dimension of F 1A, [Fig. 2.3(a)]; 3) compute V, 2 FA, [Fig. 2.4(a)]; and

4) determine the associated coefficients by least squares.

2.7 Extensions and Generalizations

Rewriting the general hypothesized solution for E.A, Eq. (23), in

another form offers notable insight and understanding of the expansion.

When we factor out the edge behavior from Eq. (23), the resulting

summation is over polynomials of x' and y', i.e.,

2 y,2 1/2 . c
EA'x'")= a 2 -y_ 1,2_ p,(a 2 _x,2)" a2_Y,2)'M-1 (43)

~~x)(a _-ya -x ,=O m=I

These polynomials are describable as linear combinations of Chebyshev

polynomials of the First (Tn) and Second (U,,) kind. In terms of these

polynomials, Eq. (43) becomes
EA( ~a 2_ ,2 1/2 T ®xl) Y/)(4

{x',y ) -= 'ikal 2 x2 - - n xl ) m.'a

an= rn=O

The factor of ika is in keeping with the order of the expansion used in the

earlier analysis. The modified coefficients, ynn.LX,, are linear combinations

of the Onm and are dimensionless. Table 2.2 gives the first few Chebyshev

polynomials. Owing to the symmetry of EX' (even in x' and y'), the

summation in Eq. (44) is effectively over only the even values of n and m,

i.e.,
(xL 45

y( = 0 for n=odd orm=odd (45)
The choice of Chebyshev polynomials of the First and Second kind to

describe Eq. (43) instead of a different complete set of polynomials is

motivated by the leading factor that reflects the edge behavior of E A. This
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Table 2.2. Chebyshev Polynomials of the First and
Second Kind.

n T() U{)

0 1 1

1 E 2k

2 21 2 - 1 4, 2 - 1

3 4k3 - 3k 8 3 - 4

factor relates directly to the orthogonality relations for the Chebyshev

polynomials given below.

I T(Q TieQdk,=n2v=} (46a)
e ), ( 2 v- 1A n /2 v 0

01 a o :;1- 1

k'-2)112 U [d { / 2 l_  Uv, ) U k= n/ v = (46b)

We gain an understanding of the hypothesized expansion if Eq. (44) is

used to compute the multipole moments described in §2.6. Because of the

orthogonality relations (44), the computation of these multipoles is

straightforward. An especially simple, yet important, case is the first

order magnetic dipole moment. Inserting Eq. (44) into Eq. (39) and using

the orthogonality relations (44) yield

3
- (X) (47)

C 0

We need only the first term in the Chebyshev expansion for E.A to

produce the correct far field, i.e., a dipole field. Such a description has a

significant advantage over the description of the far field in terms of a

point dipole moment: the near field behavior of the electric field expansion



47

is nonsingular. In contrast, when we attribute the radiation pattern of a

small aperture to an effective point dipole at the aperture, we must be

careful in applying the approximation close to the aperture. The dipole

moment method predicts an infinite field at the aperture. The present

expansion does not; yet, the expansion, Eq. (44), is computationally simple

and physically significant.

Further, we can make a hypothesis for E A

• a2_,2 1/2 D
E- .Y -' T(k(y'/a)U(x'/a)

-- n=O "t=0

The representation is similar to Eq. (44) except that the role of the

variables x' and y' have switched. Once again, symmetry will reduce the

number of terms in the expansion. Because EyA is odd symmetric,

¥(Y) =0 for n -- even or m = even (49)
nm

To summarize the hypothesized solution for the electric field in a

small square aperture can be used to describe accurately the far field

pattern radiated by the aperture. The expansion improves on the simple

dipole model for this diffraction problem by permitting evaluation of the

diffracted fields at distances closer to the aperture without exhibiting the

singular behavior of the dipole method. An additional benefit results from

the expansion's explicit description of the edge behavior for the electric

field components in the aperture without introducing computational

complexity.



CHAPTER THREE

OPTICAL TRANSFORM OF A PLANE-SCREEN CORNER OF

ARBITRARY ANGLE

A plane-screen corner is illustrated in Fig. 3.1. We assume that the

diffracting screen, positioned at z = 0, is perfectly conducting. The opening

angle of the corner 00 is symmetric about the x axis. In this chapter we

treat this infinite area corner aperture bounded in the following ways:

Gaussian illumination (§3.1.2.2), uniform illumination with a slit

boundary (§3.2.1), and uniform illumination with a circular boundary

(§3.2.2).

The solutions derived in this chapter are achieved within the scope of

the Fresnel approximation. We begin with the exact vector integral

representation for the diffraction problem, and we describe subsequently a

boundary value problem for one component of the electric field. We make

familiar approximations to arrive at the Fresnel diffraction integral. A

slight modification reveals a second underlying boundary value problem.

The Gaussian beam expansion (GBE) arises naturally from this boundary

value problem and is a suitable technique for solving the Gaussian

illuminated plane-screen corner diffraction problem. After a

demonstration and discussion of the GBE solution for the uniform circular

aperture diffraction problem, we present Fourier plane diffraction

calculations and computer plots for corners of various angles.

We treat the finite corner of §3.2.1 by determining the Fourier

transform of the transmission function. The solution is examined carefully

48
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y

Fig. 3.1. Plane-screen corner of arbitrary angle. The thin, perfectly
conducting diffracting screen is positioned at z = 0. The opening angle Oo is
symmetric about the x axis so that the corner can be described
mathematically by rect(O/0 0 ). The depicted aperture has infinite area. In
the chapter the aperture is bounded by a Gaussian (§3.1.2.2), a slit (§3.2.1),
and a circle (§3.2.2).

to ensure proper behavior at all points in the Fourier plane. The analysis

is straightforward and forms the framework for studying polygonal and

nested polygonal apertures in Chapter 4.

Finally, we investigate a plane-screen corner bounded by a circular

aperture. The Fourier transform is obtained by explicit integration with

respect to one dimension and then expanding the integral in terms of

Bessel functions; term-by-term integration of this expansion yields a result

that is suitable fo: computer calculation.
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3.1 Gaussian Beam Expansion Analysis

3.1.1 Mathematical Development and Physical Basis

The diffraction geometry is illustrated in Fig. 3.2. The x',y' plane at z

= 0 contains a perfectly conducting plane screen with an aperture A. The

tangential components of the exact electric field in the aperture specify

uniquely the electric field in the right half-space, i.e., z -> 0 [Eqs. (2.2a) and

(2.2b)I:

E(r) VX 1 x Er') p() dx'dy' (1)E~)=2n f IA R'

where

R -Ir - r'I = (x-x')2 + ( -y') 2  + z21 1/2

exp(ikR)/R is the free-space Green's function, 1,, is a unit normal pointing

X' X

converging
beam

A
z

Y' y
Fig. 3.2. Geometry for diffraction problems. The x',y' plane, i.e., z = 0,
contains a thin, perfectly conducting plane screen with an aperture A. One
seeks to determine the diffraction pattern in the x,y plane at a distance z
from the aperture. The figure shows a converging beam illuminating the
aperture and observation of the diffraction pattern in the focal plane, but
this is illustrative and not restrictive.
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in the +z direction, and E(r') is the exact electric field in the aperture. The

integration extends over only the aperture because the screen is a perfect

conductor.

As an approximation to the exact electric field in the aperture,

assume that E(r) may be replaced by Ezn(r'). This substitution in Eq. (1)

yields

E(r) V X I x E'nc(r ') exp(ikR) dx'dy' (2)
2n IA '1 R

This approximation is reasonable for apertures that are much larger than

a wavelength.

It is useful to write out explicitly the expression for all three

components of the electric field, noting that the del operator in Eq. (2) acts

on the coordinates of the observation point (x,y,z):
I sn( fYO exp(ikR}(k

E (xyv,z) = - E i~iR ik -2 -i)dx',6l'(3

y 2n I1AR R R
E-x'y.z) = - exp(ikf?) (ik - z -~dx'dv' (4)

E V x,y,z) = 2' J A ( R R' R)(~)~n~~~

x p R ) i -- I )d 'dy' (5)

In Eqs. (3)-(5) we see that the electric field at any point in the right half-

space is specified completely by the tangential components of the electric

field in the aperture. Since we have required implicitly the fulfillment of

Sommerfeld's radiation condition, this follows from the uniqueness

theorem for Maxwell's equations in the harmonic time-dependent case, too.
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Now consider the incident electric field to be a normally incident

electric field polarized along the x axis. Equation (3) remains the sam ,

Eq. (4) is zero, and Eq. (5) becomes

E (y~z =I I E'"j'O) xp ik -1 - 1 dx'dy' (6)

In common situations we can neglect E. in comparison with Ex.

Hence, we assert the following statement: Eq. (3) represents the diffracted

field in the right half-space from an aperture in a perfectly conducting

plane screen. Determination of this cartesian component entails an

evaluation of an integral expression. Additionally, we note that Eq. (3) is

an exact solution to a specific boundary value problem.

(V2 + k 2)E,(xv,z) = 0 (7)

(E c(tx,O) Ix,y) E A
E(xy,O) = F(x,Y) m (8)

VI" 0 otherwise

Additionally, we require that E satisfy the Sommerfeld radiation

condition:

lim R ( - ikE) 0
R-+ ( z Z

In other words E. must vanish at least as fast as a diverging spherical

wave for large R. ThatE. satisfies Eqs. (7)-(9) can be verified by direct

substitution, but it is not hard to understand in light of the origins of the

derivation of Eq. (3). From Maxwell's equations for a homogeneous

medium, each component of the electric field must satisfy the free-space

scalar Helmholtz equation. The assumption that the value of the incident

field in the aperture approximates sufficiently accurately the true

aperture electric field establishes the boundary value described in Eq. (8).
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Some simplification increases greatly the utility of Eq. (3). The

factors 1/R in Eq. (3) will not differ significantly from 11z under the

assumption that the distance z between the aperture and the observation

plane is much larger than the maximum dimension of the aperture and the

observation region. (Hence, the obliquity factor zIR is nearly unity.) In

practice ik > 1/R so that

(ik - ik (10)

A further simplification suggested by Fresnel involves a binomial

expansion of the factor R in the exponent of Eq. (3). This factor must be

handled with greater care than the previous ones because of the highly

oscillatory nature of exp(ikR).

R = 1(xx')2 + + z21

R (z + X- ) 2 + y- )2 (11)
2z 

2

Although it is an overly restrictive assumption, we can be sure this

approximation is valid if

3 ( ,-X')2 +  YY'12 (12)

4 A 'MAX

Substitution of the preceding simplifications and assumptions into

Eq. (3) yields

E (x,y,z) = &p(ikz) J __ F(:',y')exp i IX-X)2 + aYy,2J d ,x'dy' (13)ihz I...

The limits of integration are +o because the aperture is accounted for by

F(x',y'). Equation (13) is the Fresnel diffraction formula for diffraction of a
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normally incident, linear x polarized wave by an aperture in an infinitely

thin, perfectly conducting plane screen.

[Using the angular spectrum representation, we can obtain the

Fresnel diffraction formula also. In his published notes Dainty (1983,

§3.13-3.15) presents the pertinent steps. The angular spectrum

representation follows from Eq. (3) using the Weyl formula or directly from

the boundary value problem Eqs. (7)-(9). Restricting the angular

spectrum to low frequency components leads to Eq. (13).]

As a result of the approximations employed in deriving Eq. (13),

E,(x,y,z) no longer satisfies Eq. (7) exactly; a different differential equation

is associated with Eq. (13). The first step in discovering this differential

equation is to divide out the rapidly varying complex exponential factor,

exp(ikz), yielding a modified Fresnel integral.

ex(x,y,z) = E X(x,y,z) / expikz) (14)

e(x,y,z) = F(x',y' erp I , (X-x,)2 + (yy,)2 dx'dy' (15)

Now by direct substitution one can show that Eq. (15) is a solution to the

following parabolic equation (Feiock, 1978):

(V + 2ik -)e (x,v,z) = 0 (16)

subject to the boundary condition

e (x,y,O) = Fx,y) (17)

Equation (16) is a slowly-varying envelope approximation to the

Helmholtz equation. In other words, Eq. (16) is a simplification of Eq. (7)

that is obtained by substituting Eq. (14) into Eq. (7) and assuming e,(x,y,z)
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is a slowly varying function of z compared with exp(ikz) (Kogelnik and Li,

1965). Specifically, we assume
82 8

I - e (xy,z)l < k I a e(xy,z)l (18)

i.e., the change in ae./az in a distance X is small compared to lae,/az itself.

Evaluating Eq. (15) in the limit z -* 0 yields the boundary condition, Eq.

(17). This can be shown in a straightforward manner if the following

substitutions are made:

X -x = p (iX1i) (19)

y -y s(iz/n)'' 2

Before continuing, we note that Eq. (16) has the same structure as the

two-dimensional heat conduction equation (HCE) and the time-dependent

Schr6dinger equation. The one-dimensional HCE subject to an initial

condition is solved by means of the Poisson-Weierstrass integral in the

book by Pogorzelski (1966). The solution for the two-dimensional HCE is

analogous. Likewise, the modified Fresnel diffraction integral, Eq. (15),

has the same structure as the two-dimensional Poisson-Weierstrass

integral.

Equation (14) and the succeeding assumption, Eq. (18), constitute the

familiar definition of a beam field. In this definition we state the E is

similar to a plane wave; however, the amplitude distribution is not

uniform, but is concentrated near the axis of propagation, and the phase

front is curved slightly. Equation (14) shows that the function e, is the

ratio of a beam and a plane wave.

Typically, in performing diffraction calculations, we are interested in

evaluating Eq. (13) or equivalently Eq. (15). The relation of Eq. (15) to the
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boundary value problem described by Eqs. (16) and (17) suggests an

alternate method for obtaining a solution for the diffraction problem:

expansion of the solution in the eigenfunctions of the differential equation

with the expansion coefficients determined by the boundary condition.

The eigenfunctions of Eq. (16) have been studied for many years; they

are the well known Gaussian beam modes. For systems with rectangular

(x,y,z) geometry, the appropriate functions are Hermite-Gaussian (HG)

functions, and for systems with cylindrical (r,O,z) geometry, the

appropriate functions are Laguerre-Gaussian (LG) functions. Because the

corner of arbitrary angle considered in this chapter is described

conveniently in a cylindrical geometry, the ensuing discussion utilizes LG

functions. The derivation for a rectangular geometry follows in a similar

fashion.

The notation for an LG function at z = 0, not necessarily the beam

waist, is

2r'2  2 exp - + +iO' (20)
4'V(r"0"2) = (,2 1 w ' 2  w AR'

p = 0,1,2, , ; I = - co ,-2,-1,0,1,2,. o

where 2w' is the 1/e width or beam diameter of the Gaussian profile and R

is the radius of curvature of the wavefront. LpI is an associated Laguerre

polynomial. The eigenfunction is commonly designated TEMP, where p

and I are the radial and angular quantum numbers, respectively. (The

presence of absolute value symbols around the angular number, 1li, is

necessary because I can be negative. Other authors choose to denote the

LG functions as a Fourier series in cos(10') and sin(IO'), and thus, they

restrict I such that I a 0. Of course, a Fourier series in exp(LlO') is an
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equivalent representation.) The observation plane is perpendicular to the

z axis; the coordinates (r',O') specify a point in this transverse plane.

Two properties of these functions will be important. First, these

eigenfunctions form a complete and orthogonal set of functions. At least

formally, any arbitrary distribution can be expanded in terms of these

functions. Second, the functional form of each eigenfunction is the same

for any value of z. In other words, an LG function retains its LG shape

after propagation through some distance z.

These two properties are the foundation of and motivation for the

Gaussian beam expansion approach. The first property implies the

following expression

F(x',y') Fr',0') = _ \' (7,(r'rO',O) (21)
p=Ol= -,

(Although not mathematically precise, the notation in Eq. (21) is

convenient. When a function depends on (x',y'), those variables will be

specified; when the dependence is more logically on (r',0'), those variables

will be specified.) The CP, are defined by

I i

J (r',O',O) V (r',O',O) r'dr'dO'

Using Eq. (15) written in cylindrical coordinates and Eq. (21), ex(r,e.z) can

be expressed as

e Xr,O,z) Cxpt -,, o' 'os"- +(

X ex p " r' 2_-2rr'cos (0- 0')+ r 21 r'dr'dO' (23)

I~~~ Xz I
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Reversing the order of the summation and the integration yields

e (r,O,z) C" 4- ) C (r,z) ,(24)

p=OI= -0

where
1 fnI p r 0, } [inf r,2lrd'O (25)

P(r,O,z} n I OD V (r ,)exp I r 2-2rr'cos(O-0')+r21 r'dr'd'PI ihz F_ A

Equation (25) is encountered when computing the Fresnel propagation of

an LG function through a distance z. Thus, the second property is useful:

4)P1(r,6,z) has the same functional form as 4pt,(r,O,O). The beam radius, w',

and the wavefront curvature, R', change as a function of z and a complex

factor needs to be included. Straightforward evaluation of Eq. (25) yields

w 2r2 \Ill/2 L 2r 2

(P(r'Oz) _ )I L11 -

x + i +/U0- (2p + +1 (26)
1 w 2 XR

where

U = 2 + ( 2 1 (27)
t/.' 2+ Z

2 z 2 2,

11W (-"t i
R~~z R' : Xz R'+ ! (8

ta(8)/= ( /.2 -I) (29)
A\z R'

Note that the variation of w, R, and 8 as a function of z is the same for all of

the eigenfunctions, but that the phase shift, -i8(2p + 1 + I, is dependent on

the quantum number. Equation (24) with coefficients (22) and LG

functions (26) constitute the Gaussian beam expansion approach.



59

The validity of term-by-term integration of Eq. (23) is an important

point to consider. We must investigate the convergence of the series, Eq.

(21). Uniform convergence of Eq. (21) is a sufficient condition to permit the

step from Eq. (23) to Eq. (24). If the function F(r',O') is a continuous

function on r' = (0,") and 0' = (-n,n) with a piecewise continuous first

derivative on that interval, then, indeed, the convergence is absolute and

uniform. If, however, F(r',O') is not continuous, then the series in Eq. (23)

cannot converge uniformly because a uniformly convergent series of

continuous functions, e.g., Pl, always converges to a continuous function.

Nevertheless, uniform convergence is only sufficient, not necessary. There

are relaxed conditions under which term-by-term integration is

permissible. For example, switching the integration and the summation is

valid if the series is uniformly convergent almost everywhere, i.e., except

on a set of measure zero, and is boundedly convergent over the whole

interval (Titchmarsh, 1932). In any event, because the approximations

employed in deriving the paraxial scalar wave equation exclude very high

order modes, the summations cannot be extended over infinite limits. In

other words, at some very high mode number, the previously stated

conditions are violated. Also, practical use of this Gaussian beam

expansion for computer calculations will require the summations to be

finite. In that case, the reversal of the sum and the integral is valid.

To denote the finite limits of the summation in Eq. (24), we rewrite it

so that0 -p <Pand-L sL:

P L

e (r,Oz) = ' V C4 P1 I(r,O,z) (30)
p=O1 = -L
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3.1.2 Calculation of the Expansion Coefficients

and Computational Results

3.1.2.1 Uniform Circular Aperture

Before considering the diffraction from a corner of arbitrary angle

problem, it is helpful to understand some of the operating characteristics of

the Gaussian beam expansion. Analysis of a simpler diffraction problem

will provide some of these insights. Hence, we consider diffraction by a

circular aperture first.

Assume that a converging spherical wave of radius zo > 0 illumina'es

a circular aperture of radius a. The incident field, written in the paraxial

approximation and scaled by zo, is

E'nC(r'O'z) = z° expinr fAz-zO1i = z plik(z-z°)1 , (31)
0pIik z-z 0) 0tl~,Oze

where zo is the radius of curvature of the phase front atz = 0. The GBE

does not require that the illumination be a converging beam (zo > 0); the

assumption introduced here is illustrative. The appropriate boundary

value function is

F(r',O') = cir = c -r -r' expi -nr /X z 1 (32)

where

64- = -co < r'< oo

Ia 0 r'>a

We evaluate the expansion coefficients Cp, in a straightforward

manner. Inserting Eqs. (20) and (32) into Eq. (22) gives
10r 2ra 2)11 2 r'2  r2

,1 -tap - ilO' r'dr'dO'
- n 0 w ,2 P to,2 ,2 ( 3

where' (33)

where
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_- n I=4p('0 0 ' l+ )

2 w (14+0_ (34)N In I 4, (r',G',OA r'dr'dO' = 2n I
-1 n 0 p.

and we have chosen the value R' = -zo. It is logical to choose the phase

front curvatures to be the same. Since the boundary value function does

not depend on 0', only coefficients for I = 0 are nonzero. In other words,

4 a 2! r 2 I e r 2

C~ =801 JLI I~~- r'dr' (35)

801 is a Kronecker delta function, which equals 1 when 1 = 0 and equals 0

when I : 0. A simple variable substitution, , 2r'2/w' 2, in Eq. (35) yields
'21 w

2

22
= C 01 2 LOE~ex(-E/)dk(36)

pIl 0  p
We can evaluate Eq. (36) analytically by expanding LpO() in a finite

power series and integrating term-by-term, but numerical integration of

Eq. (36) is straightforward, accurate, and relatively easy. If we consider

the coefficients to have been evaluated, then the GBE solution for this

diffraction problem is a single sum over the index p

P
ePBE (r,O,z) V - CO4PO(r,O,z) , (37)

p=O

with

1yo(rOz) = W L 012 ep r - 1 + in -/(2p+1) (38)

The parameters w, R, and 8 are dependent on their values at z = 0 (w' and

R') and the distance z [see Eqs. (27)-(29)].

Before comparing this result to the closed-form circular aperture

solution obtained directly from the modified Fresnel diffraction integral

Eq. (15), we investigate how well the GBE reproduces the boundary value

function. At z = 0
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P=0

The complex factor exp(-inr'2/Xz0 ) is present in Eqs. (32) and (39); hence, we

compare the square modulus of both equations.

The computational behavior of this expansion will depend on the

number of terms retained, P -r 1, and on the value chosen for the beam

width w'. Determination of an optimal w' is a complex subject to address.

Bogush and Elkins (1986) established one optimization criterion. The

beam width or equivalently the scale can be optimized such that the

radiated power of the approximated distribution best matches the radiated

power of the actual distribution. This criterion is especially important

when one is trying to use a very limited number of terms in the expansion,

say, less than ten. Since choosing an optimal w' will not be greatly

relevant to the calculations for the corner diffraction problem, we do not

discuss this topic here. For the problem at hand, we choose

u, = (2)1/2a (40)

The dependence of the GBE on the number of terms P + 1 is compared

in Fig. 3.3. Also shown is the true boundary value function. The square

modulus of ex is plotted versus the radial coordinate lormalized to the

radius of the aperture, i.e., r'/a. Increasing the number of terms from 20 to

50 improves the approximation somewhat, i.e., the amplitude of the

oscillations about the true boundary value function decreases. In contrast,

however, increasing the number of terms to 100 does not decrease the

amplitude of these oscillations although they increase in number and the

drop-off at the edge of the aperture is steeper. The convergence behavior is

reminiscent of a Fourier series approximation to a square pulse function:
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* 1.5

z
LUJz 0.5 .

0 5

0 1 2
r'/a

Fig. 3.3. GBE representation of uniform circular aperture, circ(r'/a). The
solid line (-) represents the intensity of the input function plotted vs a
normalized radial coordinate. The dashed curves depict the GBE
approximation for P = 20 ( ---- ), P = 50 (- -- -), and P = 100 (- ---- ).

the GBE value of the field at the edge is 0.5 (the intensity is 0.25), and the

oscillations do not decrease at the discontinuous step. On the other hand

the Gibb's phenomenon at the edge is less pronounced for the GBE than for

a Fourier series because of the Gaussian dependence of the eigenfunctions.

Although we might question the quality of the representation of the

aperture distribution by the GBE, we should bear in mind that the desire

here is to approximate accurately the diffraction pattern. Obviously, the

discontinuity in the boundary value function in the aperture plane makes

it difficult for the expansion to converge quickly to the precise distribution,

but the diffraction pattern has a smoother behavior. That the GBE closely
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approximates the diffraction pattern will be apparent in the following

discussion.

The focal plane of the incident converging wavefront, z = z o, also

known as the Fourier plane, is an important place to compare the

diffraction patterns (see Fig. 3.2). The field in this plane represents,

essentially, the Fourier transform of the aperture function. For the case of

the uniformly illuminated circular aperture, we obtain the field by

substituting the boundary value function, Eq. (32), into the modified

Fresnel diffraction integral Eq. (15) and computing the analytic result.

The result is the well known Airy disk pattern:

( na2 r2 12 dJ(2nar/ 1)
AJ Y( Z 0 7Z XZ I II (2nar/Xz 0 ) I

Before comparing the precise result to the GBE, we evaluate Eq. (37)

at z = zo. Primarily, we have to compute w, R, and 5 by evaluating Eqs.

(27)-(29) at the distance z = z0. (R' = -z 0 from before.) At this position the

results are easy to obtain:

Xz0
nW

R =z (42)

8 =in/2

Noting that the choice of w' in Eq. (40) gives

- 2 -

w AZO  Xz0

and defining a normalized radial coordinate

(2) 1/2r kar (43)

w Z0
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where k = 2n/X, Eqs. (37) and (38) become

eGBE (xzO'zo)= ( na )2 expI j-h2j 12 P= COL°(x2p(-X 2/2 ) ( - 1w} (44)

Rewriting Eq. (41) in terms of the normalized radial coordinate yields
n a X 2i1z( X2AY(X,,Z 12- (45)

X 0 \iXZ 0 l 4na2  I

The square modulus of the bracketed factors {} in Eqs. (44) and (45) is

prL -jortional to the observed optical intensity in the Fourier plane. We will

examine the optical intensity of the diffraction pattern normalized to unity

at the center of the pattern. Figure 3.4 compares the normalized intensity

of Eq. (44) for P = 20, 50, and 100 to the normalized intensity in Eq. (45).

0

-3

Lo0-4 "

0 2 4 6 8 i0
x = kar/z.

Fig. 3.4. GBE representation for diffraction pattern of uniform circular
aperture. The logarithm of intensity is plotted vs a normalized radial
coordinate. The solid line (-) represents the precise solution, i.e., the
Airy disk function. The dashed curves depict the GBE approximation for P
=20( ---- ),P = 50(----),andP= 100(-----).
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The vertical axis is log(intensity) in order to bring out the low intensity

differences between the curves. With P = 20, the GBE is virtually

indistinguishable from the precise calculation over the central bright spot,

but the deviations are discernible in the first ring. The second zero of the

pattern is visibly wrong. Increasing to P = 50 improves the

representation; deviations are apparent in the second bright ring. P = 100

is an accurate representation over the entire range shown.

As we stated earlier, the convergence of the GBE to the precise

analytic result for the diffraction pattern is much more acceptable than the

convergence to the aperture distribution. The following theorem provides

some insight into this differing convergence behavior (Goldberg, 1965,

page 6, Theorem 3B).

"If f, fl, f2, "' are in L' and ifilf,1-f 1 --* 0 as n - , then

lim fn(x) = f (x) uniformly (-o < x < w)

[The function fon ( is said to be ofclass L' (fE LI) if

If(x) dx <c

If fE L', then

1011I  If Wl dx,

i.e., the L' norm of f. The Fourier transform ftoffE L' is

defined by

fx W f(t) exp(ixt) dt

forf( L' and(- < x <o).]"
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In the case of the finite circular aperture, and indeed for the corner

aperture considered next, the boundary value function F is certainly a

member of L'. The LG functions are Ll as well. That the GBE converges in

the mean of order 1 is not as obvious but follows from another theorem

(Goldberg, 1965, page 4, Theorem 2H).

"Let f, f, f2, - be in L'. If

lim f,(x) = Px) almost everywhere (-- < x < o)
n .-.

and

"iM 1tfn11 = [1V1 1

then

lim JV,1-4Il = 0

The CBE is pointwise convergent almost everywhere; the only points of

nonconvergence are the discontinuities. The second condition of the

Theorem 2H is satisfied as well. Hence, the convergence of the Fourier

transform of the GBE for the aperture distribution, i.e., the GBE evaluated

at the Fourier plane, is uniform. Figure 3.4 is consistent with this kind of

convergence.

3.1.2.2 Gaussian Illuminated Corner

In the sample calculation just discussed we discovered some of the

basic characteristics of the GBE. In this chapter, however, we desire to

solve a new problem: diffraction of an incident light wave by a corner of

arbitrary angle. The specific problem geometry was illustrated in Fig. 3.1.

The corner has an opening angle (o cut in a thin, perfectly conducting

screen. Allow an LG beam Fqm to illuminate the corner. In particular the
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boundary value function is

F(r',O') = re( 0' (r',O',O , (46)
00

where
r Of'  1 e"<-eOO/2

= 0 [0 , > 0 /2 - n <I 
°  < n (4 7 )

and 4pqm(r',O',O) is defined in Eq.(20).

As was seen in the circular aperture problem, computation of the

expansion coefficients solves the diffraction problem. In this problem the

expansion coefficients are expressible in closed-form. Proceeding as

before,

W 0' 'r' 2

2p 111 / 2 r 2 1 M p re c 2o - d o 2 rd'2

For this diffraction problem we set equal the beam widths and phase

fronts, i.e., W'GB = w',, = w' and R'GBE = R',,, = R'.

We can evaluate the 0' integration in Eq. (48) easily.

) /2 sini (m - l)O 421
g1 (00) = J pli(m-,lO'ldO'= 0 A (49)

_0 0 /2 -9 /2

The r' -itegration is somewhat more difficult. First, write Eq. (48) as

C;' Ng (00) K (50)

where

K m j 2r: j .2 )Inil/2 L n1 r 2 ep r
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X 2r'2 1112 2r'21 e, 2

L" -I ( 'r 51)
w ,12 P 1 W 2  2

Make the substitution

_ 2r'2 / w 2  (52)

in Eq. (51) to give

K fln' j E,'1 ' 2LI'() exp(- ) d (53)
qmpI 4 " 0  Q P

We expand the associated Laguerre polynomial, Lq m(), as a finite series in

E, (Gradshteyn and Ryzhik, 1980, 8.970.1), i.e.,

q

LI= - (Q-I)( + (54)
q'=O

Equation (53) becomes

K = I) q  + Iml/2+t1/2+q"LI'p(Qexp(_Qdk (55)
qmpi 4 q' p

=0-

The integral can be evaluated (Gradshteyn and Ryzhik, 1980, 7.414.11).

,2 q yqjm M+-+q +1~ + L+-

K - = 4 .__-- q-q' q! 2 2 1 2 2 / (56)
- -- q

. ( 2  2 /

Putting all the pieces together, Eqs. (34), (49), and (56) into Eq. (50),

we obtain a closed-form solution for the coefficients Cpr:

0 sinl(m - )0 /21 1 q~ 'q+In

CP - 2 n (r, -T0o/2 (14 +p0! q - q')

2 2 2 2(57)

r( L' -M q')2 2

Formally, computation of these coefficients compl tes the solution to the

boundary value problem described by Eq. (46).



70

Now consider a simplification: the corner is illuminated by the

elementary LG function, Poo. Setting q = m = 0 in Eq. (57) yields

0 siUO 21 r( L 1 )r(p JL'

o = 2n 100/2 ( ++)! r T (58)

The recurrence formula for the Gamma function (Abramowitz and Stegun,

1972, 6.1.15) simplifies Lhe equation.
C sinlO /21 _____9

C1 2n 100/2 ( () 2 2

If we write out the GBE solution at z = 0 in detail and rearrange factors

intuitively, we find

e (r',O',O) = F(r',0') = rec( i- exp(-r'2/w2)ep(inr'21AR) '(60)
00

P L O0. sin l lO0 /21

e,(r',O',O) N. IS, 2 00 e0 p(io')
p0 -L12 100/2

_ ___ ._ )r(p +1,) L '2 exp _r,2/W,2) exp(inr,2/XR ,)  (61)

The arrangement of factors in Eq. (61) makes clear how the LG

functions combine to represent the boundary value function. The first

bracketed factor describes the angular dependence of the boundary value

func.tion. In Eq. (60) replace rect(O'/O 'y its Fourier series expansion, i.e.,

0' = 00 sinl1O0 /21
- 10/ xp(ilO') (62)re4 o " 2 n  10o/2

so that Eq. (60) becomes

F(r',o) = 0 sin 0 /21 exp(8l') exp(- r'2/w 2 ) exp(inr'2 /AR') (63)
I=-.2n 100 /2
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Now replace exp(iLO')exp(-r'2/w'2) by its GBE. Straightforward evaluation

* and use of integral tables (Gradshteyn and Ryzhik, 1980, 7.414.11) show

that

,- 04+p)! 2- 2
ezp~lO~xp(- lw 2 r '2)l/L 2r'2 +

X( 2 '2 Li 2'2&p(- r'2 lw' 2) p(ll6') (64)

Putting Eqs. (63) and (64) together gives Eq. (61). A summation over p of

the second bracketed term in Eq. (61) is an expansion of exp(-r'21w' 2) in

terms of LG modes of a given index 1. The separability of the r' and 0'

dependence in the boundary value function is preserved in the GBE.

By virtue of the preceding discussion, we can understand the GBE

solution at z = 0 by studying the two parts separately. Figure 3.5 shows

the representation of rect(O'10o) for 00 = n/2 by its Fourier series exp.,nsion

Eq. (62). The familiar ringing, especially near the points of discontinuity,

is indicative of the mean-square convergence behavior of Fourier series.

The representation of the square pulse distribution improves as the

number of terms L is increased from 10 to 25 and finally to 100.

Figure 3.6 illustrates the behavior of Eq. (64) for ! = 1, 3, and 5 and P

= 25, 100, and 1000. [Appendix C: Calculations for Gaussian Beam

Expansion discusses the accurate computation of the expansion coefficients

in Eq. (64).] The amplitude of Eq. (64) is plotted vs a normalized radial

argument, x' -- (2)1 2r'/w' as in Eq. (43). For I = 0, there is only one term in

the expansion: the elementary Gaussian mode exp(-r 9 /w' 2 ). Hence, the

representation is exact. For I > 0, the LG modes are zero at X' = 0;
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therefore, it is difficult to approximate well the exact function, which

equals one near that point. As X' increases, however, the GBE aproaches

the Gaussian profile. For larger values of P, i.e., more terms included in

the summation, the approximation is much improved for smaller values of

X'"

We turn our attention now to the primary intent of this GBE

analysis: evaluation of diffraction patterns from corners. We carry out

this evaluation in the focal or Fourier plane. In other words, R' = -z o and z

= z as for the uniform circular aperture problem. The LG function

parameters w, R, and 8 are given by Eq. (42). The GBE gives

uLJ

"0.5

00

__ _ .IIIII I

-3.14 -1.57 0 1.57 3.14
e' (RADIANS)

Fig. 3.5. GBE representation of plane-screen corner, rect(O/e0). The
opening angle is 00 = n/2, and the amplitude of the input function vs angle
is represented by the solid line (-). The dashed curves depict the GBE
approximation for L = 10 L( ),L=25 ( ),and L = 50 ( ------ ).
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% ,(a)

0.5

,, I,.,, (b

0

0 1 2 3

0.5 a

00 1 2 3
Vq r" /W'

Fig. 3.6. GBE representation of radial dependence o; a Gaussian
illuminated corner. The opening angle is 00 = n/2, and the amplitude of
the input function vs a normalized radial coordinate is represented by the
solid line (--). The dashed curves depict the GBE approximation for I =
1 ( ---- ), I = 3 (- -...-), and lI = 5 (- -.....). The three sets of graphs w ere
calculated for (a) P = 25, (b) P = 100, and (c) P = 1000.

• n |(c)
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2  
iZo 2

1 P L 0 sin[IOO/2 1 )(p+

o {2nw' pf01=-L 0

X X11 L111(X2) ep(il8) exp(- X2 /2) (- i)2 P+ Ill , (65)

where x a (2)1 12 r/ w as in Eq. (43).

In Fig. 3.7 we present three-dimensional plots of some computational

results from Eq. (65). The vertical direction is log(le,(x,O,zo)12/le.(O,O,Zo)12),

i.e., the logarithm of the optical intensity normalized to unity at the center

of the pattern. The values plotted are clipped at 40 dB down from this

central peak intensity. The pattern is sampled on a cartesian grid; the

cartesian coordinates are normalized in the same way as the radial

coordinate in Eq. (43), that is,

(x,X)) = ((2) 1 / 2(x/w),(2)1 / 2(y/w))

The values range from XEY (-10,10) on a 41 x 41 grid.

Shown are results for different opening angles: n/3 (a), n/2 (b), 3n/4

(c), n (d), and 3n/2 (e). With the exception of Fig. 3.7(d), which is the

pattern from an edge, all of the patterns display two spikes or ridges of

high intensity; Fig. 3.7(d) displays only one spike. These spikes are

oriented at angles such that each spike is perpendicular to one of the edges

in the aperture. In the n/3 corner pattern, for example, one spike runs

along 8 = 2n/3 (and -n/3) and is perpendicular to the edge at 0 = n/6. The

other spike runs along 0 = -2n/3 (and n/3) and is perpendicular to the edge

at e = -a/6.

The figures were computed using the limits P = 100 and L = 25.

These values were high enough to produce satisfactory results; more

accurate results are possible, but the increase in computer time was
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(a)
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-20 lB Scale
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(b)

£

Fig. 3.7. Three-dimensional representations of the corner diffraction
patterns. Shown are GBE calculations for the logarithm of the normalized
optical intensity of the diffraction pattern produced by the following
corners: 0O = n/3 (a), n/2 (b). The corner apertures are shown at left.
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(c)

0
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-20 dB Scale

-30

L -40

(d)

Fig. 3.7. Three-dimensional representations of the corner diffraction
patterns. Shown are GBE calculations for the logarithm of the normalized
optical intensity of the diffraction pattern produced by the following
corners: eo = 3n/4 (c), n (d). The corner apertures are shown at left.
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(e)

0

-- 10

-20 dBScale

-30

-40

Fig. 3.7. Three-dimensional representation of the corner diffraction
pattern. Shown is GBE calculation for the logarithm of the normalized
optical intensity of the diffraction pattern produced by the following
corner: Oo = 3n/2 (e). The corner aperture is shown at left.
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deemed unwarranted. As one might expect, increasing L improved the

angular accuracy of the diffraction pattern representation; increasing P

improved the radial accuracy.

To supplement the three-dimensional plots and to see easily the

positions of the spikes, we plotted the logarithm of the normalized

intensity vs theta for a fixed value of the radial coordinate in Fig. 3.8 (X =

10). A relative maximum (at least one to two orders of magnitude above

the background) corresponds to a bright or intensity spike in the

diffraction pattern. The angular locations of these spikes agree with the

description presented in connection with the three-dimensional plots; their

profiles are illustrated clearly.

The intensity values plotted in Fig. 3.8 are normalized so that the

intensity at the center of the diffraction pattern is unity. Such

normalization is useful when we are examining the individual patterns.

On the other hand, it is also beneficial to compare the relative strengths of

the central diffraction peaks for different opening angles 00. In Table 3.1

we show how this peak changes as the opening angle varies. A clear

aperture (00 = 2n) has been assigned a central diffraction peak intensity of

1.0000. The variation as a function of 00 is due to the differing areas of the

apertures. If we assume that the amplitude of the illuminating electric

field is the same for each aperture (hence, the same total optical power is

incident on each aperture), then an aperture with two times the area

transmits four times the optical power. Thus, the central diffraction peak

of the n edge is four times greater than the peak of the n/2 corner and the

peak of the 3n/2 corner is nine times greater than the peak of the n/2
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0 (a)

-- 1 -
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-1.57 0 1.57 3.14
e (RADIANS)
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0

14 -1.57 0 1.57 3.14
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Fig 3.8. Variation of log(intensity) with theta for the corner diffraction
pattern. Shown are GBE calculations for the logarithm of the normalized
optical intensity of the diffraction pattern produced by the following
corners: Oo = n/3 (a), n/2 (b). The calculations were performed at a fixed
radial coordinate, i.e., X = 10.
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0 (c)
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.14 -1.57 0 1. 57 3. 14
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0._. 0 F--- (d)
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N-3
cm. -4
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-. 14 -1.57 0 1.57 3.14

e (RADIANS)
Fig. 3.8. Variation of log(intensity) with theta for the corner diffraction
pattern. Shown are GBE calculations for the logarithm of the normalized
optical intensity of the diffraction pattern produced by the following
corners: 8o = 3n/4 (c), n (d). The calculations were performed at a fixed
radial coordinate, i.e., x = 10.
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0(e)

CO
z-2
Z-3

14 -1.57 0 1.57 3.14
8 (RADIANS)

Fig. 3.8. Variation of log(intensity) with theta for the corner diffraction
pattern. Shown is GBE calculation for the logarithm of the normalized
optical intensity of the diffraction pattern produced by the following
corner: 0o = 3n/2 (e). The calculation was performed at a fixed radial
coordinate, i.e., X = 10.
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Table 3.1. Relative Corner Diffraction PeakIntensities vs 00.

0o Relative Diffraction Peak Intensity

n/3 0.0278

n/2 0.0625

3n/4 0.1406

n 0.2500

3n/2 0.5625

corner. For example, in Figs. 3.8(b) and (e), which are for the

complementary apertures n/2 and 3n/2, the only difference in the curves is

a normalization factor of nine. We examine in greater detail later the

similarities and differences of these two diffraction problems.

To check qualitatively the validity of the preceding results,

photographs were taken of each of the corners. We present the

photographs in Fig. 3.9. The photographs were recorded in the focal plane

of a converging Gaussian beam: w' - 5rm, -R' = zo - 1000mm. The

diffracting corners were masks of chrome on glass. The photographs were

overexposed somewhat to enhance the appearance of the spikes. The

orientation of the spikes agrees with the GBE predictions. Figure 3.9(a)

shows approximately the distance corresponding to X = 10.

In Fig. 3.7(e) we observe a curious feature that is not found in the

other four patterns: a hole or null in the intensity pattern. There are two

nulls occurring at (Xx,') - (0, ± 2.12). The nulls are not numerical

artifacts. If one solves precisely the Fresnel diffraction integral for a

plane-screen corner with opening angle 00 = 3n/2, then the location of the
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(a)

C

(b)

Fig. 3.9. Photographs of corner diffraction patterns for converging
Gaussian illumination. The diffracting corners are represented at left;
experimentally, they were chrome on glass masks. Shown are the patterns
for 0) - n/3 (a), n/2 (b). In (a) the distance x 10 is shown.
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(c)

(d)

41

Fig. 3.9. Photographs of corner diffraction patterns for converging
Gaussian illumination. The diffracting corners are represented at left;
experimentally, they were chrome on glass masks. Shown are the patterns
for Oo - 3n/4 (c), n (d).
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(e)

Fig. 3.9. Photograph of corner diffraction pattern for converging Gaussian

illumination. The diffracting corner is represented at left; experimnentally,

it was a chrofm on glass mask. Shown is the pattern for 01, 31j/2 (e).
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nulls can be determined. The details of that calculation are not presented

here, but the formula predicts that sharp nulls occur at (X.,Xy) =

(0, ± 2.0518). These points are located on the y axis in the observation

plane aty = ± 1.4509 w.

Further, these nulls are present for any plane-screen corner such that

00 > n. Although we have not been able to write a closed-form expression

for the diffraction integral arising from an opening angle not divisible by

n/2, examination of GBE calculations for other large angles reveals similar

intensity nulls. For example, in Fig. 3.10 we present a plot of the

logarithm of the normalized intensity vs radial coordinate X for a plane-

screen corner with opening angle 60 = 5n/6. The figure is log(intensity) vs

radial coordinate X for fixed 0 (0 = n/2), i.e., along the y axis. This corner

result contains a strong null at x 2.07.

To illustrate the dependence of this null position on opening angle 00,

we present Fig. 3.11. Using the GBE solution, we determined the positions

of the nulls for n < 00 < 2n. Those positions are plotted vs 0o in the figure.

We see that the null positions reach a minimum for 00 3n/2. The nulls

move out from the center as the opening angle approaches n (edge) or 2n

(clear aperture).

We can gain some understanding of this phenomenon by comparing

the diffraction patterns produced by a n/2 corner [Figs. 3.7(b) and 3.8(b)]

and a 3n/2 corner [Figs. 3.7(e) and 3.8(e)]. These two apertures are

complements of each other, and we expect similar features to be present in

both patterns. Indeed far enough from the center of the diffraction pattern

(large X), the patterns are the same. (In Figs. 3.7(b) and (e), the
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X F2 r/w (8e=7r12)

Fig. 3.10. Plot of log(intensity) alongy axis for 0o = 5n/6. The logarithm of
the normalized intensity is plotted vs radial coordinate X for fixed angular
coordinate 0 = n/2. A sharp intensity null is seen at X 2.07.

_3.2
S3

z
,2.8

z2.6
-2.4
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.'80 225 270 315 360
&o (DEGREES)

Fig. 3.11. Position of intensity nulls as a function of opening angle. The
positions were determined from the GBE solution for a plane-screen corner
of opening angle 00. Nulls occur for n < 0 o < 2n.
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normalization factors for the patterns are different. We discussed these

factors previously.) But, near the center of the diffraction pattern, the

3n/2 pattern more :losely resembles the pattern due to a clear aperture.

By Babinet's principle the 3n/2 pattern is the clear aperture pattern

(unobstructed Gaussian beam) minus the n/2 pattern. One must combine

these two patterns coherently. For small X the clear aperture pattern

dominates the nature of the 3n/2 pattern; for large X the n/2 contribution

dominates. The intensity nulls appear in a transition region where the

coherent subtraction of the n/2 corner pattern from the clear aperture

pattern yields zero. Such a subtraction occurs for any opening angle such

that 00 > n.

Further validation of the GBE results is provided by comparison with

a precise calculation of the modified Fresnel diffraction integral, Eq. (15),

for an edge, 00 = n. The published result (Livanos and George, 1975) is

eprecisero) = n inr1 y i (66)
I AZz l~ 0 '2 W li i]

(This is Eq. (27) of their paper rewritten to reflect an exp(-iwt) time

dependence and the notation of this chapter. Equation (66) is not written

in the normalized radial coordinate.)

In Fig. 3.12 we compare a calculation from Eq. (66) with a calculation

from Eq. (65), 60 = n. The graph is a plot of log(e,(x,O,z0 )j2/e.(0,O,z 0 ) 2) vs 0

(x = 10). In other words, the plot is a scan over theta of the normalized

intensity of the diffraction pattern at a fixed radial coordinate. The precise

calculation (-) displays the single spike in intensity along 0 = 0 (and n).

The GBE ( .. ) shows good agreement; especially near the spike, the two
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Fig. 3.12. Comparison of GBE representation of diffraction pattern of a
corner of opening angle 0o = n (an edge) to precise published result. The
logarithm of the normalized intensity is plotted vs theta for normalized
radial coordinate X = 10. The solid line (-) represents the precise
published result; the dashed curve ( ---- ), is the GBE approximation.

curves are indistinguishable. In the dark region between the spikes, the

precise formula is nearly zero (< 10-10), but the GBE is not. We note,

however, that the GBE calculation shown was computed for a finite

number of terms (P = 100, L = 25). Increasing the angular resultion, i.e.,

increasing L, will improve the agreement between the GBE calculation

and the precise formula, Eq. (66). For example, when L = 35, the ringing

between the diffraction spikes is depressed to < 10- 9.

3.1.2.3 Gaussian Illuminated Double Corner

A small adjustment to the plane-screen corner GBE solution yields

the solution to a related diffraction problem. Let the boundary value
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function be
/ \j 8-n I 22 2

F(r',8') 1  ) )+ rect ex )p(- r/U) )exp(inr'2fAR') (67)
1M00 00

This aperture is a double corner: an opening of angle 00 centered at 0' = 0

and an opening of angle 00 centered at 0 = n. The effect of the second term

in the square brackets in Eq. (67) is to eliminate terms such that I is odd in

Eq. (65); the contribution of even terms is doubled. The GBE solution to

the boundary value problem described in Eq. (67) is

DC.( w2 A 2 P L 8 sintG /21

X o=L=I 0x 2)i z0  2nw'2  = . 2n 100/2 ( 4+p)! 2 2

even

X tl LI'I(X 2 e p(ilO)exp(-X2/2)(-i)2P+I'I (68)

A three-dimensional representation of a GBE calculation for this

double corner is presented in Fig. 3.13 (00 = n/2). The plot is similar to Fig.

3.7(b), which is the result for a single corner (00 = n/2); there are two

intensity spikes. There is, however, an interesting difference. Down the

center of each spike runs an intensity null. This corresponds to a dark line

along the spikes. This phenomenon is clearly evident in Fig. 3.14 where we

have plotted the logarithm of the normalized intensity vs theta at a fixed

radial coordinate (x = 10). This result should be compared to the single

corner result, Fig. 3.8(b). The intensity null down the center of each spike

is obvious. The second symmetrically placed corner serves to change an

intensity maximum into an intensity minimum.

For the Gaussian illuminated a,)erture, this phenomenon has not

been mentioned in the literature. Hence, we felt it worthwhile to confirm

this diffraction pattern feature experimentally. In Fig. 3.15 we show a



91

-_10

-- 20 dB Scale

-30
--- 40 

° €'

Fig. 3.13. Three-dimensional representation of the double corner
diffraction pattern. Shown is GBE calculation for the logarithm of the
normalized optical intensity of the diffraction pattern produced by a double
corner (0o = n/2). The double corner aperture is shown at left.
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Fig. 3.14. Variation of log(intensity) with theta for the double corner
diffraction pattern. Shown is GBE calculation for the logarithm of the
normalized optical intensity of the diffraction pattern produced by a double
corner (0o = n/2). The calculation was performed at a fixed radial
coordinate, i.e., X = 10.
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photograph of the pattern produced by a n/ 2 double corner. The pattern is

characterized by two intensity spikes, which are perpendicular to the

corresponding edge in the aperture. The intensity nulls down the center of

the spikes are evident; thus, the GBE prediction is confirmed.

Fig. 3.15. Photograph of double corner diffraction pattern for converging
Gaussian illumination. The diffracting corner is represented at left;
experimentally, it was a chrome on glass mask. Shown is the pattern for a
double corner with 0, - n/2. The presence of an intensity null down the
center of each spike is confirmed by the photograph.
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3.2 Fourier Transform Analysis

Although the GBE has great flexibility in treating the corner

diffraction problem, direct computation of the optical transform provides

some additional insights and an interesting comparison to the GBE

calculations. In addition, we use the calculations in the following section

(§3.2.1) in Chapter 4 to describe diffraction from polygonal and nested

polygonal apertures.

As a brief statement of how the Fourier transform arises in optical

diffraction pattern analysis, we begin with Eq. (15), the modified Fresnel

diffraction integral. If we assume the boundary value function F(x',y°) to

have a quadratic phase factor corresponding to a converging wave, i.e.,

F(x',y') = f(x',y') exp - + y,2 (69)

then the field in the focal plane z = zo is [using Eqs. (15) and (69)]
1e,(XY iz _ o I X . _x in ( . + 2 1e(x,y,z 0 ) = - -- C yI

0 ixz 0 z 0 /

0 0z

X I X,, x n(X +YY')J dx'dy' (70)

Except for the complex phase factor in front of the integral, the field in the

focal plane, e,(x,y,Zo), is a Fourier transform of fx',y') evaluated at spatial

frequencies u = x/Xz o and v y/Xz 0. The Fourier transform definition,

f (u,v) = f(x',y') exp(- i2n(ux' + uy')] dx'dy' (71)

substituted into Eq. (70) gives

e(XYez) = .t eL Fur2i+ 2)1 ,fo) (72)z0 A X0 0Z X0
The use of the bar here denotes Fourier transform. Hence, determination
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of the Fourier transform of the modified boundary value function f(x',y')

solves the diffraction problem.

3.2.1 Corner Bounded by a Slit Aperture

Consider a plane-screen corner of bounded extent, namely, a plane-

screen corner bounded by the function rect(x'/2C); this aperture is also

identified as a triangular aperture, a triangular section of a circular

aperture, or simply a section (see Fig. 3.16). For this aperture

fsecto.( = I -ax' S y' ; ax' and 0S x'5 C (73)
Y') = 0 otherwise

This aperture is related to the original description of the plane-screen

corner, i.e., rect(O'10) in Fig. 3.1, by setting Q = tan(Oo/2).

I w

Fig. 3.16. Corner bounded by a slit aperture (also known as a triangular or
section aperture). The opening angle is 00, and the corner is bounded by
edge 3 at x = C, i.e., the corner is an isosceles triangle with height or
altitude = C. The three edges are labeled 1, 2, and 3.
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The calculation of the Fourier transform follows.

seto (ueU) = d dx' J y' exp[ - i2n(ux' + vy')l
0 -ax'

f (uuV) = dx'( - ) exp(-i2niw+x ) - exp(-i2nw x')] , (74)

where

w+ =u±av (75)

The final result is

fs (u,u) - ) [exp(-i2nCw )sinc(Cw+)-exp(-i2nCw )sinc(Cw)1 (76)
i2nu + +

Equation (76) agrees with published results (see, for example, Sillitto and

Sillitto, 1975).

Before understanding the characteristics and features of this

transform, we investigate the behavior of f ection near u = 0 and v = 0.

Consider first the limiting case u , 0, v - 0:

scion (C\ n
lim f (u,v) = - exp(-inCu)

U x \i2nI
v-. 0

x lrn exp(- i2nCau) sincIC(u + av)I - erp( + i2nCav) sinclC(u -av)I
x lir

u-0

Since the numerator and denominator both give zero for v = 0, L'Hospital's

rule for determining the limit is an appropriate technique to employ. We

take the derivative with respect to v in both the numerator and

denominator and tries to evaluate at v = 0. Proceeding in such a manner,

lim f n(u,v) = (oC2) exp(-inCu) sirdCu) + n--Icos(nCu) - sirw(CuI (77)

u x 0

U -0
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Hence, the leading factor in Eq. (76), which contains l/v, does not pose any

difficulty; the result near the u axis is finite.

Now consider u -* 0, v ; 0:

lim f secton(u, 0 = (aC 2) sin2 (Ca v) (78)

V --- 0
v =0

Again this limit is finite.

Finally, using either Eq. (77) or Eq. (78), we evaluate the center

value, i.e., (u,v) = (0,0):

lim f (u, V) = (aC2) (

U- 0

Now we can write the transform normalized to unity at the origin as

fo (U'V) = v ) [ exp(-i2nCu, )sine(Cw +) - exp(-i2nCw )sinclCw )I (80)
02nCav I+ + - -

To understand the features of this Fourier transform or the related

diffraction pattern, examine Fig. 3.17. The logarithm of the square

modulus of Eq. (80) is computed and displayed as an 8-bit gray-scale

image. White is high intensity; black is low intensity. We scaled the

computed data so that the image represents seven orders of magnitude; the

scaling is described by the following formula:

0 et- Oc n ,

-2 10-7 < -sectif l un 10

pixel va lue = 7 ) + X 255 1o 2 7

"section "2 70 1to  (u, 01 < 10o-

Table 3.2 shows some sample mappings of intensity to pixel value. The

parameter values used to compute Fig. 3.17 were C = 2.24 mum, 0o = 720 (a

= 0.7265), A = 0.6328 pm, and z, = 444 mn. Each pixel corresponds to a 50

pm x 50 pm area in the optical transform plane. Since the image is 512 x

512 pixels, the observation plane coordinates (xy) fall in the range (-12.8
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mm, 12.8 mn). The frequency variables (u,v) = (x/Azo,y/Xz o) fall in the

range (-45.56 mm- 1,45 .56 mm-1).

Clearly the three intensity spikes dominate the pattern in Fig. 3.17.

The spike along 0 = 0* is perpendicular to edge 3 in Fig. 3.16. The other

two spikes are perpendicular to edge 1 (along 0 = 36' + 900) and edge 2

(along 0 = -36' + 90'). Edges cause spikes in the optical transform. The

half-width of a spike, i.e., the distance from the relative maximum along

the spike to the first minimum measured perpendicular to the spike, is

equal to the reciprocal of the length of the edge that caused it. These

Fig. 3.17. Gray-scale representation of section diffraction pattern. The
logarithm of the square modulus of Eq. (80), Ifosechun(u,v)12 is displayed as an
8-bit gray-scale image. The mapping of the logarithm of the intensity to
pixel value is linear such that an intensity of unity yields pixel value 255
and an intensity below 10 - 7 yields pixel value 0. Details of the intensity
mapping are presented in the text. The results shown here are for a section
with height C = 2.24 mm, 6o = 720. The transform configuration is A, =
0.6328 pm and zo = 444 mm. The image is 512 x 512 pixels with each pixel
representing an area of 50 pm x 50 pm.
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Table 3.2. Sample Intensity to Pixel Value
Mappings.

Normalized Intensity Value, e.g., Pel Value
ifoU n(U'V)V

1.0000 255

10-1 219

5.6 x 10-2 209

10- 3  146

10-5 73

3.24 x 10- 6  55
10-7  0

< 10- .7  0

widths are given by the following relations:

edge 1: width ofspike = C(1 +a21 /

edge2: width ofspike= CO +a2)I

edge 3 width of spike= 2aC

An examination of the behavior of the transform along the center of

the spikes reveals that the field drops off like 1/r where r is the distance

from the center of the transform; the drop-off is monotonic. The drop-off of

the field along a radial line not coincident with a spike is 11r 2 .

To understand better the section diffraction pattern, we present Fig.

3.18. In these plots we show the dependence of the section diffraction

pattern intensity in a plane perpendicular to the z axis at a fixed radial

coordinate in that plane, r = (u2 + v2)1 12 = 1.5 mm. The logarithm of the
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Fig. 3.18. Angular scans of log(intensity) for various section apertures.
The radial coordinate is fixed at r = 1.5 am, and the log(intensity) is
plotted vs 0 for (a) 0o = 600 and (b) Oo = 72. The plots show how the
position of the spikes and their widths depend on the opening angle.
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Fig. 3.18. Angular scans of log(intensity) for various section apertures.
The radial coordinate is fixed at r = 1.5 ram, and the log(intensity) is
plotted vs 6 for (c) 60 = 90* and (d) 0o = 120*. The plots show how the
position of the spikes and their widths depend on the opening angle.
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normalized intensity vs the angle 0 plots show the spikes, which are visible

in Fig. 3.17, as local maxima. The spikes occur at the angular locations

specified previously. Four opening angles, 00 = 600, 72', 900, and 120 °, are

displayed to illustrate the phenomenon. Notice that for 00 = 600, all of the

spikes are of equal width and all of the subsidiary maxima are of the same

height. This aperture is an equilateral triangle. Thus, the spikes are equi-

spaced in the transform plane, and the symmetry of the aperture is

preserved. For the case of 00 = 1200, edge 3 is 1.73 times longer that edges

1 and 2; as a result, this spike is narrower by the same factor.

3.2.2 Corner Bounded by a Circular Aperture

Finally, we consider a sector of angle 00 as shown in Fig. 3.19. This

aperture is described by rect(O'/0o)circ(r'/a) or

fsectr(x'..) =I -ax' S Y' S ax' and 0 S (x2 +y'2 ) /2 S ao i (81)

0 otherwise
where a = tan(Oo/2).

The calculation of the Fourier transform follows.

Crf (u,v) = 0dx' dy' exp[-i2n(ux' + vy')]

+ fCdx' 02 .2dy'expl-i2n(ux' + vy')) (82)

where

C = a cos(Oo/2) a /2 (83)
(1 + a2

We recognize the first term in Eq. (82) as the Fourier transform of a

section; this calculation was performed in §3.2.1. Hence, we can write
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Fig. 3.19. Corner bounded by a circular aperture or sector of a circular
aperture. The opening angle is 00, and the corner is bounded by a circle of
radius a and edges 1 and 2.

f secto -UV) = f (u,v) + g (u,v) (84)
where

a ,2- 2/2

g (u,v) = dy'dx'j_122)/2dy exp[-i2n(ux' + vy')] (85)

Equation (76) is the expression for tsectw,, with C given by Eq. (83). The

term g requires calculation.

First, we integrateg witi respect toy'. Then we expand the

integrand in Bessel functions that can be integrated term-by-term. The

general result obtained, Eqs. (88) and (89), is well suited to numerical

calculations.

Integration with respect toy' gives

g (u'V) a Jd'exp(- i2nzl( usinI 2sa2_X2)1/2J (86)
C no
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Substitution of x' = a cos(O') in Eq. (86) gives

0

Using the Bessel identities from Abramowitz and Stegun (1970,

9.1.43-45) and integrating gives the following result.

g(u,u) = (na2) n(2nav)

'' (1-L (-iYn (211au)J (2nav)g (m,2n+I) ,(88)

m2 n =0

where

sin[(1 +p-v) 0 /21 sin((I +p+V)0o/21
gI(P(v) (I +p-v) (1+P+v)

sin[(1 - -v)8 / 21 sin[(1 - p + v)0/21]89
+

(1 -P-v) (1 -p+v)

We can compute the Fourier transform of a sector of opening angle 0o, Eq.

(84), via Eqs. (75), (76), (83), (88), and (89).

Figure 3.20 contains angular scans of the sector diffraction pattern.

In these plots we show the dependence of the sector diffraction pattern

intensity in a plane perpendicular to the z axis at a fixed radial coordinate

in that plane, r = (u 2 + V2)112 = 1.5 mm. The figure should be compared

with Fig. 3.18 for the section diffraction patterns. The curves are

normalized so that the intensity at (u,v) = (0,0) is unity. There are two

intensity spikes apparent. The spikes are produced by edges 1 and 2. Since

edge 3 was replaced by a circular arc, there is no strong spike along the

direction 0 = 0; however, the intensity is non-zero along this direction.

Four opening angles, 0 = 600, 72', 900, and 1200, are displayed to illustrate
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Fig. 3.20. Angular scans of log(intensity) for various sector apertures. The
radius is fixed at r = 1.5 mm, and the log(intensity) is plotted vs 0 for (a) 6o
= 60' and (b) 0o = 72 °. The following parameters were used: a = 2.77 mm,
X = 0.6328 pm, and zo = 444 nam.
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Fig. 3.20. Angular scans of log(intensity) for various sector apertures. The
radius is fixed at r = 1.5 mm, and the log(intensity) is plotted vs 0 for (c) 0o
= 900 and (d) Oo = 1200. The following parameters were used: a = 2.77
mm, X = 0.6328 pm, and zo = 444 mm.
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the phenomenon. The parameters for the aperture and transform

configuration are: a = 2.77 mm, X = 0.6328 pm, and z0 = 444 mm. Notice

that for all opening angles, the spikes are of the same height and width

because the edges producing them are equal.

Figures 3.21-3.24 are radial scans of transform patterns along 0 = 0°

(a) and along one of the spikes (b). The solid line (-) is the result for a

circular aperture, i.e., the transform pattern is the Airy disk pattern. The

first dashed curve ( . ) is the result for the sector using Eq. (87). The

second dashed curve ( ....- ) is the result for a section using Eq. (76). All of

the curves are normalized so that the intensity of each diffraction pattern

is unity at r = 0. Notice that along 0 = 00 (a), the section curve exhibits a

stronger spike character than the sector curve. But the spike character is

approximately the same along one of the spikes produced by edge 1 or 2. In

addition, one observes that the sector curve is not monotonic as is the

section curve.

With Fig. 3.25 we conclude the discussion of the sector transform

pattern. The opening angle here is 00 = 1800; the aperture is a semi-circle

of radius a. The scan is along 60 = 0*, which corresponds to the intensity

spike in the pattern. The intensity along the spike oscillates in contrast to

the intensity along the spike from a Gaussian illuminated edge [see Fig.

3.7(d)].

This semi-circular aperture calculation was performed by Livanos

and George (1975). To see that the formulas presented here agree with

their result, we must separate Eq. (87) into real and imaginary parts.

Evaluating Eq. (88) for 00 = n and using Gradshteyn and Ryzhik (1980,
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Fig. 3.21. Radial scans of log(intensity) for three apertures. The opening
angle is O = 600. The scan is along (a) 0 = 0* and (b) 0 = 60 °. The three
curves in each plot are for a circular aperture (-), a sector ( ....-), and a
section (- - -).
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- Fig. 3.22. Radial scans of log(intensity) for three apertures. The opening
angle is Oo = 72*. The scan is along (a) 6 = 0* and (b) 6 = 54*. The three
curves in each plot are for a circular aperture (-), a sector (..)and a
section(. ..)
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Fig. 3.23. Radial scans of log(intensity) for three apertures. The opening
angle is 0o = 900. The scan is along (a) 0 = 0' and (b) 0 = 45* . The three
curves in each plot are for a circular aperture (- ), a sector ( ....-), and a
section ( . )
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Fig. 3.24. Radial scans of log(intensity) for three apertures. The openingangle is o = 1200. The scan is along (a) 0 = 08 and (b) 0 = 300. The three

curves in each plot are for a circular aperture (- ), a sector ( .), and a

section(-..).
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n 2
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27Tar/Xz,

Fig. 3.25. Radial scans of log(intensity) for two apertures. The opening
angle is Oo = 180*. The scan is along O = 0*, i.e., along the intensity spike.
Th e two curves are for a circular aperture (-) and a sector (..).The
sector aperture is a semi-circle.

8.53), one can show that the real part of Eq. (87) equals one-half times the

Airy disk function, i.e., Eq. (9) of their paper, and the imaginary part

equals Eq. (13) of their paper. In other words, the two formulas are

identical. Figure 3.25 is the same as Livanos and George's Fig. 3 except for

normalization.

3.3 Summary

In this chapter we studied diffraction by plane-screen corners. A

general plane-screen corner or opening of arbitrary angle Oo was

illustrated in Fig. 3.1. We performed all of the diffraction calculations

within the Fresnel approximation.

z
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To treat the specific problem of a plane-screen corner illuminated by

a Gaussian beam, we followed a familiar path in deriving the Fresnel

diffraction integral, Eq. (13). A slight modification to this diffraction

integral revealed an underlying boundary value problem [Eqs. (16) and

(17)]. As an alternative to evaluating explicitly the diffraction integral, we

described an eigenfunction approach: the Gaussian beam expansion [Eqs.

(22), (24), and (26)]. In this approach one must solve for the expansion

coefficients; for an arbitrary Gaussian beam illuminating a plane-screen

corner of arbitrary angle, we presented the coefficients [Eq. (57)].

Computer calculations for the optical intensity pattern in the focal

plane of a converging elementary Gaussian beam illuminating a plane-

screen corner were performed for several opening angles. We showed

three-dimensional plots of the normalized intensity (Fig. ^.7), plots of the

logarithm of the normalized intensity vs angular coordinate (Fig. 3.8), and

slightly overexposed photographs of the diffraction patterns (Fig. 3.9). The

photographs confirmed the existence of features predicted by the computed

results: intensity ridges or spikes that are produced by the edges in the

aperture.

The accuracy of these results was established by a comparison to the

published precise evaluation of the Fresnel diffraction integral for the case

of an edge (see Fig. 3.12 and discussion). As one would expect, the accuracy

of the expansion in approximating the precise solution depends on how

many terms in the infinite summation are retained. On the other hand,

the Gaussian beam expansion solution to this diffraction problem can be

used for any opening angle 0 < 0o < 2n; we have not been able to evaluate
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precisely the diffraction integral unless the opening angle is divisible by

n/2.

The utility of the Gaussian beam expansion was demonstrated in

diffraction pattern calculations for opening angles greater than n. The

expansion predicts intriguing intensity nulls in the diffraction pattern.

Since the Gaussian beam expansion solution is valid for arbitrary opening

angle, we were able to determine the positions of these nulls as a function

of opening angle (Fig. 3.11).

By means of a slight modification to the general solution, we obtained

a solution to a different problem: diffraction of a Gaussian beam by a

double corner. We described the aperture transmission function in Eq.

(61), and we presented the solution in Eq. (68). The diffraction pattern for

this aperture contains two perpendicular intensity spikes that have an

intensity null down the center. The Gaussian beam expansion predicted

this phenomenon (Figs. 3.13 and 3.14), and experimental observation

confirmed it (Fig. 3.15).

To conclude our study of diffraction by plane-screen corners, we

computed directly corner diffraction patterns produced in the focal plane of

a uniform, converging beam. Straightforward evaluation of the Fourier

transform of the aperture transmission function permitted us to compute

these optical transform patterns.

In one case the corner was bounded by a vertical edge, thereby

creating a triangular aperture; we usually referred to this aperture as a

triangular section of a circular aperture or simply a section aperture (Fig.

3.16). Diffraction by this aperture will be a fundamental part of the
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derivations presented in Chapter 4. We presented the diffraction solution

in Eq. (76).

The predicted optical transform pattern (Fig. 3.17), computed from

this formula, contains three intensity spikes; each edge in the section

aperture produces a spike. We represented the transform pattern as an 8-

bit gray-scale image in which the intensity data were scaled so that seven

orders of magnitude could be seen. Plots of the logarithm of the normalized

intensity vs angular coordinate at a fixed radius showed how the positions

and heights of the spikes change as a function of the opening angle (Fig.

3.18).

The second case considered was a corner bounded by a circular arc,

i.e., a sector of a circular aperture (Fig. 3.19). We recognized that the

Fourier transform consists of two terms: the section transform result and a

second term resulting from the remainder of the aperture. We derived a

closed-form result for this second term [Eqs. (88) and (89)]. For comparison

to the section results, we plotted the logarithm of the normalized intensity

vs angular coordinate at a fixed radius (Fig. 3.20). The sector pattern

contains two dominant spikes; the third spike is obscured because the

vertical edge of the section aperture was replaced by a circular arc.

Finally, we showed results for the normalized intensity along a radial

line in the transform plane (Figs. 3.21-3.24). We compared three

apertures: a circle, a sector, and a section. We examined the results along

a line corresponding to the obscured sector spike and along a line down the

center of a spike. The section aperture produces spikes whose intensity

drops off morotonically; the sector spikes have a small ripple.



CHAPTER FOUR

DIFFRACTION BY LARGE POLYGONS AND NESTED

POLYGONS

We derive and discuss the diffraction pattern of a nested polygonal

aperture in this chapter. The results are new and describe accurately the

low-intensity features observed in actual diffraction patterns. A

photograph of the aperture for which experimental measurements of the

diffraction pattern were made is shown in Fig. 4.1. The transmissive parts

of the aperture are pentagon shaped. There are 31 pentagons in the

aperture, and the overall size of the actual aperture is 5 mm.

The derivations presented here are based on the result of §3.2.1 (Eq.

(3.76)] for a plane-screen corner bounded by a slit aperture. That aperture

is an isosceles triangle, and we refer to it as a triangular section of a

circular aperture or simply a section. A general polygonal aperture can be

broken up into elemental triangles for the purpose of computing its

diffraction pattern; if the polygon is regular, then the elemental triangles

are sections. Such an analysis has been applied to diffraction by polygonal

apertures (Sillitto, 1979), but it is advantageous to review the main points.

The similar decomposition of a nested polygonal aperture into

elemental grating-like sections is the key insight that enables us to write a

simple closed-form solution for the diffraction pattern of a nested polygonal

aperture. First, we derive an expression for the diffraction pattern of a

grating-like section and discuss the dominant features. Second, we show

how the patterns from grating-like sections are combined to form the

115
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Fig. 4.1. Nested pentagonal aperture used for experimental observations.
The transmissive parts of the aperture are white. There are 31 pentagons
in the aperture, and the center pentagon is opaque. The overall size of the
actual aperture is P = 5.0 mm. The other design parameters that
characterize the aperture are the altitude or height of a section (C = 2.24
mm), the width of the transmissive part (2a = 0.048 mm), and the period of
the lines (d = 0.072 mm).

nested polygon pattern. In order to examine this result in detail, we study

a particular case: a nested pentagonal aperture. Computer calculations

from our analysis and photographs of actual diffraction patterns reveal

low-intensity features and other details. Experimental measurements of

the recorded film grain density agree well with the analytic predictions.

4.1 Decomposition of Polygons into Elemental Triangles

In Fig. 4.2 we illustrate the general principle of decomposing the

transmission function for an arbitrary aperture, i.e., a polygon, into a sum

of transmission functions due to elemental triangles. An interior point of
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the polygon, the origin of the xy axes, serves as a common vertex for every

triangle. A triangle is traced from the origin to a vertex of the polygon,

then to an adjacent vertex, and finally back to the origin. This tracing

procedure continues until the entire polygon is described. There will be as

many triangles as vertices (or sides) of the polygon. If f.trmngle(X',y' )

describes the transmission function of the mth triangle and there are n

sides, then the transmission function of the polygon fPo~gon(x',y') is

n-I
fPlYg°of(x y') - N. frtangie(X ,y') (1)

- n
M=0

Determining the Fourier transform is straightforward. Taking

Fourier transforms on both sides of Eq. (1) gives

Fig. 4.2. General polygonal aperture. A polygon can be considered as
comprised of elemental triangles (dashed lines). An elemental triangle is
formed by tracing a closed path from an interior point of the polygon to a
vertex, then to an adjacent vertex, and finally back to the interior point.
This procedure continues until the entire polygon is described.
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po'Ygvjn(u,o)  qv -irwngie~uo (2)

m=0

where f trwnge(UV) can be determined directly. The form of .trwnle(u,V) for

a general triangle is not presented here but can be obtained by

generalizing the isosceles triangle result from Chapter 3. This technique

for polygonal aperture diffraction calculations is due to Sillitto (1979).

An important special case that simplifies the notation occurs when

the aperture is an n-sided regular polygon (see Fig. 4.3). In this case all of

the elemental triangles are congruent; specifically, they are isosceles

triangles with equal opening angles and corresponding sides have equal

length. The opening angle 0o is given by

0

Fig. 4.3. Regular n-sided polygor. In a regular polygon, all of the
elemental triangles are isosceles triangles with equal opening angle 00 =
2n / = 3600 / n; they are also called sections. Pictured is an octagon with

o= 45*. The sections are indicated by the dashed lines.
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00=2n/n=360'/n (3)

The elemental triangles are precisely the section apertures studied in

§3.2.1. In other words

fP Lrzangletxy) ='. V," )= .., (4)

where

x' = r'cos(O' -m0

Y = r' sin(O' - mO ()
,2 1 1/2(5)

r' = (x'2 + yV2)1 2

6' = t - Q' /x')

and fsect'U1"(x',y') is given by Eq. (3.73) with a = tan (0, /2).

With the transmission function of a regular polygon given by Eqs. (1),

(4), and (5), we can write the Fourier transform easily:
t- I

fregular -lygu,, f uou (6)
(u~~~v) = 0' unun

u = rcosl 0 - me0)

Um = rsinlO - tO o)

r = ( + 1/2

0 = tan-I(V/U)

and fpec='on(u,v) is [Eq. (3.76)]

feglu'v) =- i eop(-i2nCw+)sincdCw ) - exp(-i2nCw )sinc(Cw 1, (8)

where

Up+ = u t Ov (9)

To illustrate this decomposition approach to aperture diffraction

problems, we present Fig. 4.4. In this figure we display the computed

Fourier transform modulus squared or predicted optical transform pattern

of an n-sided regular polygon, an octagon, as an 8-bit gray-scale image.
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The logarithm of the square modulus of Eq. (6) normalized to unity at the

center was computed and mapped to an 8-bit value, i.e., in the range 0 to

255. The mapping is linear in the logarithm such that an intensity of unity

yields value 255 (white) and an intensity less than 10 - 7 yields value 0

(black). Hence, we scaled the computed data so that the image represents

seven orders of magnitude; this mapping was described in detail in

Chapter 3 (see Table 3.2). The parameters used to compute Fig. 4.4 were C

= 2.24 mm (the height of a section), 0 o = 45' , X = 0.6328 pm, and z o = 444

mm. Each pixel corresponds to a 50 pm x 50 pm area in the optical

Fig. 4.4. Predicted optical transforin pattern of an octagon. The logarithm
of the square modulus of Eq. (6) If -1g,,(u,v)1 2 normalized to unity at the
center is displayed as an 8-bit gray-scale image. The mapping of intensity
to pixel value is such that an intensity of unity yields pixel value 255 and
an intensity below 10 - 7 yields pixel value 0. Details of the intensity
mapping (LL7) are presented in the text. The results shown here are for
sections with height C = 2.24 mm and Oo = 45'. The transform
configuration is X = 0.6328 pm and zo = 444 mm. The image is 512 x 512
pixels with each pixel representing an area of 50 pm x 50 pm.
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transform plane. Since the image is 512 x 512 pixels, the observation

plane coordinates (xy) fall in the range (-12.8 rm, 12.8 mm). The

frequency variables (u,v) = (x / Azo, y / Az0) fall in the range (-45.56 mm-',

45.56 mm-1). The representation of the diffraction pattern intensity as an

8-bit gray-level image in Fig. 4.4 is similar to the representation in Fig.

3.15. This way of mapping normalized intensity values into pixel values

will be referred to as LL7 (linear in the logarithm with range 7).

Clearly, the four intensity spikes dominate the pattern in Fig. 4.4.

These are the "light fans" described by Sommerfeld (1954, pp. 233-237).

Each edge bounding the octagon produces a spike perpendicular to the

edge. Because the number of sides in the polygon is even, the sections are

arranged symmetrically about the origin. Hence, each bounding edge can

be paired with a parallel edge. The spikes produced by these parallel edges

interfere and give rise to the modulation along the spikes. The spatial

period of the oscillations is inversely proportional to the separation of the

edges (2C = 4.48 mm).

It is interesting to note that the spikes produced by edges 1 and 2 of

the individual sections (the edges were defined in Fig. 3.14) are not present

in the transform pattern. The spike produced by edge 1 of section m = 0 is

exactly cancelled by the spike produced by edge 2 of section m = 1. This is

true for the edge 1 and 2 spikes of every section. Only the spikes due to

edge 3 of the sections are present in the transform pattern.
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4.2 Analysis of Nested Polygons

Now we turn our attention to nested polygonal apertures. In

particular, the discussions, derivations, and calculations will be centered

on regular polygons, but the generalization to arbitrary polygons is

straightforward. In Fig. 4.5 we illustrate the nested polygon to be studied

in detail: a pentagon. The dashed lines in (a) denote the sectioning of the

aperture. The transform pattern of an individual section (b) will be studied

in the following discussion; then this grating-like section pattern will be

used to represent the diffraction pattern for the entire nested pentagonal

aperture. Finally, we compare experimental measurements obtained from

a series of photographs of the diffraction pattern to the computed pattern.

4.2.1 Diffraction by Section of Nested Polygon

The grating-like section shown in Fig. 4.5(b) can be described as a

grating function times the section function:

f s(x, y) = f granzg(,,,) f secton(XJ,) (10)

The grating function and its transform are discussed below.

The model for the grating is shown in Fig. 4.6. We assume that the

grating is infinite along the y axis and periodic along the x axis. The period

of the grating lines is d, and the transmissive openings have unity

transmission and width 2a. Further, we assume that the number of

grating lines is infinite. The grating is represented as

f grating(X"Y')= reC X' 1 - 8x -d (11)

w h e e d n ot s a o n-d e) 0 8o c(x '-o ndv)(1 
1)

where 0, denotes a one-dimensional convolution.
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Fig. 4.5. Nested pentagonal aperture studied. In (a) is shown the aperture
which consists of nested transmissive pentagons. The dashed lines are notgresent in the aperture. They are shown to illustrfite the elemental

uilding block of the aperture: the grating-like section shown in (b).
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y'

X'

~-2a -

Fig. 4.6. Model for square grating. The grating is infinite in the y
direction and has openings of width 2a along the x axis. The period of the
grating is d. Only a few lines of the grating are shown, but the model
assumes that the lines are positioned along the entire x axis.

The Fourier transform can be written in many ways; the following

form will be useful for the pending analysis:

-gredang (2a\'( IN
f (u,u)= - )sind2au) ( 6 - d )6(u) (12)

1 = - Qo

where 8(u) is a one-dimensional Dirac delta function. The characteristics

of this transform pattern are well known. The grating produces diffracted

orders along the u axis spaced by 11d. The strength of these orders is

controlled by the ratio 2a/d. Having an infinite number of lines of infinite

length in the grating produces diffracted orders that are two-dimensional

Dirac delta functions, i.e., 8(u)8(v).

The point of this analysis is to determine the Fourier transform of Eq.

(10); concluding the analysis requires straightforward application of the
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sifting property of delta functions to the two-dimensional convolution

integral that results from the Fourier transform of a product of two

functions. In other words, taking the Fourier transform of Eq. (10)

involves the following steps.

-gs ,V grating -u V)( section(U,

f (usv 2 a uv® uv

f (u,U) = I-) I sin.. 2aw-uLl

x ' 8 (u-u')-- " 8(-v')f ( ,v')du' dv'

1=n - U ')(3

Equation (13) is the Fourier transform of the grating-like section of

Fig. 4.5(b). The structure of the equation reveals that the transform of the

section is replicated at the position of each of the diffracted orders of the

grating. The contributions from each order are added coherently with a

weighting governed by the ratio 2a/d.

Figure 4.7 is an LL7 representation of the transform pattern of the

grating-like section. The parameter values used to compute the figure

were C =2.24 mm, (0 = 72*, d = 0.072 mm, 2a = 0.048 mim, A = 0.6328 pm,

and zo = 444 m. At each order of the grating is centered the section

transform pattern (albeit modified somewhat by the interference from

other orders). Interestingly, the third diffracted order is missing. This is

due to the value ofthe ratio 2a/d = 2/3. At every third order ( 1 = ±3, 6, 9,

.) the sinc factor in the summation is zero; hence, there is no
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Fig. 4.7. Optical transform pattern of grating-like section. The logarithm
of the square modulus of Eq. (13) Ijf 9( u,v)) 2 normalized to unity at the
center is displayed as an 8-bit gray-scale image (LL7 representation). The
result shown here is for a section with height C = 2.24 mm and 00 = 72.
The grating parameters are d = 0.072 mn and 2a = 0.048 mm. The
transform configuration is X = 0.6328 pn and z0 = 444 mm.

contribution to the transform from these orders. Further, the figure shows

that there is significant diffracted intensity in regions away from the

center. In other words, the diffraction features produced by the

combination of the grating and the triangular shape are not restricted to

the central region of the pattern. This effect contributes greatly to the

nested polygon diffraction pattern.

4.2.2 Nested Pentagons: Computer Calculations

All of the subsidiary analytic results are in hand to perform the

desired calculation of the Fourier transform of a nested pentagonal
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aperture, such as the one shown in Fig. 4.1. Such a computation relates

directly to predicting the observed intensity distribution in an optical

transform configuration. The construction of the solution is analogous to

the construction of the solution for a simple polygon, Eqs. (6) and (7): the

elemental grating-like sections are summed. The solution for the nested

pentagon is

4
fnested pe nagonUU) ' ?8 S(,VM) - (14)

'm=O

where

u m =rcos(O- mO)

vm = rsin(O - mO) (15)

2 u2 1/2

0 = tan-i(v/u)

and

0= 3600/5 = 72 (16)

f'g(u,v) is given by Eq. (13), and fl"'ct1a(u,v) is given by Eqs.(8) and (9) with

a = tan(0o/2) = 0.7265 (17)

From a computational standpoint the solution is especially

straightforward. First one creates a module that computes f"actiw(u,V)

according to Eqs. (8) and (9). A second module computes f'e(u,v) according

to Eq. (13) using the first module. A final module computes the transform

of the nested pentagonal aperture acording to Eqs. (14) and (15) by means

of the other two modules.

We show an LL7 representation of the computed transform pattern in

Fig. 4.8. The aperture and transform parameters are C = 2.24 mm, d =

0.072 mm, 2a = 0.048 mm, X = 0.6328 pm, and zo = 444 m. There are 31

transmissive pentagons in the aperture and the overall size of the aperture
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is 5.0 mm. These parameters were the design parameters specified for

manufacturing the nested pentagonal aperture shown in Fig. 4.1.

Examination of Fig. 4.8 reveals the presence of some rather striking

features. First, the five grating-like sections have produced rings of

diffracted orders; there are ten orders in a ring. Emanating from each

order are three spikes. (These spikes are the replication of the section

transform pattern at each diffracted order.) The radial spikes in the

overall pattern are attributable to the bounding edges of the pentagon

(referred to as edge 3 in the discussion of the section pattern). The other

two spikes (due to edges 1 and 2) trace out pentagons! At each ring there

Fig. 4.8. Predicted optical transform pattern of nested pentagonal
aperture computed from Eq. (14). The logarithm of the square modulus of
Eq. (14) If n peflU2on(UV)12 normalized to unity at the center is displayed as
an 8-bit gray-scale image (LL7 representation). The result shown here is
for a section with height C = 2.24 mm and Oo = 720. The grating
parameters are d = 0.072 mm and 2a = 0.048 mm. The transform
configuration is X = 0.6328 pm and zo = 444 ram.
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are two discernible pentagons. In the following discussion we elucidate

and explain this feature.

Suppose that instead of the square grating described by Eq. (11), the

grating is cosinusoidal, i.e.,

fcozn (Xera Y). ,y)= Co 2 )d (18)

Then, the grating transform has only two orders, i.e.,

cost= g 18 U-- +8(u+-) 8(V) (19)

Retracing the steps leading up to Eq. (13) gives, for a cosine grating-

like section,

p ksectioni etoi 1N
f'(u, V) =iI U- - ,U + ?sctonU+ -' ,18Mv (20)

2 d ) d )I

To construct a simplified picture of the modulus of feg(u,v), we

represent fsechwn(u,v) by three lines drawn at angles corresponding to the

spikes in the transform pattern. We represent Eq. (20) by drawing two sets

of spikes at u = + ld. Fig. 4.9(a) shows this. (Only the spikes due to edges

I and 2 are drawn. We omit the third spike for clarity in the figure.) We

show the set of spikes at u = + ld with dashed lines and the set of spikes at

u = -1d with solid lines.

A cosine grating-like section rotated by 720 produces the same

transform pattern as (a) but rotated 720 [see Fig. 4.9(b)]. Each section of

the cosine nested aperture contributes similarly [see Figs. 4.9(c)-(e)]. The

sum of these five patterns is shown in Fig. 4.9(f). Although we obtained (M

by adding incoherently the five section patterns, we can see that some

features of the computed diffracted pattern in Fig. 4.8 are displayed.
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Fig. 4.9. Graphi'cal representation of cosine grating-like section transform
patterns used toexplain nested pentagon transform features.
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The reason for representing the section pattern at u = + ld with

dashed lines is apparent, especially considering Figs. 4.9(g) and (h). The

contribution from the right-hand side set of spikes yields a pentagon; the

left-hand set of spikes yields a pentagon reflected about the v axis. A

similar graphical construction can be conducted at each ring of diffracted

orders to discover that the transform of a nested pentagonal aperture

contains double nested pentagons traced out by the intensity spikes.

Of course, the graphical construction ignores interference between

the orders and says nothing about the relative magnitude of the intensities

along the spikes, but it provides a simple way to understand what parts of

the aperture transmission function produce identifiable features in the

transform pattern. The precise solution for the transform pattern, Eq. (14)

and related equations, predicts the relative intensities and includes

interference effects.

To investigate the relative magnitude of the intensity along the

spikes and to investigate how the diffraction pattern depends on the

aperture parameters, we consider single line scans throtgh the predicted

or computer-generated diffraction pattern. In other words, we sample the

transform pattern along a line of interest. Consider a horizontal scan

through the pattern aty = 0 mm (-12.775 mm s x S 12.775 mm). Figure

4.10 is a duplication of Fig. 4.8 except that the lines to be sampled are

indicated. This first scan line of interest connects points P1 and P2.

In Fig. 4.11 we show a horizontal scan through the predicted

transform pattern for two values of d, the grating spacing. The logarithm

of the normalized intensity along the P1-P2 line for the pattern shown in
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Fig. 4.10. Predicted optical transform pattern of nested pentagonal
aperture showing lines along which the pattern is sampled. The figure is a
duplication of Fig. 4.8. Three scans are examined: P1-P2, P3-P4, and
P5-P6.

Fig. 4.8, i.e., d = 0.072 nun, is contrasted with the result for a larger value

of d (= 0.075 nun). In this second curve we see how the diffracted orders

shift towards the central peak as d increases. The intensity between the

first orders is about 50 dB down from the central peak intensity for both

cases. In the calculations, the ratio 2a/d remained constant (2a/d = 2/3).

In Fig. 4.12 we see the effect of varying the ratio 2a/d. Both curves

are for d = 0.072 m, but in one case 2a = 0.048 mm and in the other case

2a = 0.047 mn. The ratio controls the relative magnitude of the diffracted

orders. The first two orders are very nearly equal for the different ratios,

but varying 2a/d even slightly from 2/3 produces a third diffracted order.
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Fig. 4.11. PI-P2 scan through the predicted nested pentagon diffraction
pattern for d = 0.072 mm (- ) and d = 0.075 mm ). The ratio 2a/d is
the same for both curves (= 2/3).
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Fig. 4.12. P1-P2 scan through the predicted nested pentagon diffraction
pattern for 2a = 0.048 mm (- ) and 2a = 0.047 mm ... ). The grating
spacing d is the same for both curves (= 0.072 mm).
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The height of a nested section, C, influences the pattern as well.

Figure 4.13 contains the design criteria plot (C = 2.24 mm) and a plot for C

= 2.254 m. The diffracted orders are not affected by this variation, but

the region between the orders is. At the larger value of C, the intensity

level between the zero and first order increases to less than 50 dB down,

but the intensity level between the first and second order decreases to

about 70 dB down. The influence of the value of C on the intensity at one

point, e.g., (x, y) = (-6.525 mm,O nun), in the diffraction pattern is seen in

Fig. 4.14. The logarithm of the normalized intensity is plotted vs C for

2.14 mm s C s 2.34 mm. The plot shows that the intensity at a single

point can vary over two orders of magnitude with a change in C of 0.02

hum.

It is also interesting to see how the pattern changes with a small shift

in observation coordinates. In Fig. 4.15 we compare the result of moving

the scan line up to y = 0.05 mm to the original scan line plot. The curve is

shifted down approximately 5 dB, but retains the same general features.

It is clear that the details of the predicted intensity along this scan

line are very sensitive to small changes in the aperture parameters and

observation coordinates. Calculations through lines not including the

center of the pattern are not as sensitive. A scan following P3-P4 in Fig.

4.10 (x = -3.20 mm, 0 mm 5 y s 12.775 mm) is shown in Fig. 4.16. The

plot has a maximum at the location of a first diffracted order; subsidiary

maxima are encountered as different spikes are crossed. Figure 4.17 shows

a scan along P5-P6 (x = -6.35 m, 0 mm s y s 12.775 m). The major

peak of the scan occurs at a second diffracted order; the crossing of other
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Fig. 4.13. P1-P2 scan through the predicted nested pentagon diffraction
pattern for C = 2.24 mm (-) and C = 2.254mm (n un
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Fig. 4.14. Logarithm of normalized intensity at a single point, (x,y) =
(-6.525 mm,O mm), vs the height of the section C.
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Fig. 4.15. PI-P2 scan through the predicted nested pentagon diffraction
pattern (- ) contrasted with a similar scan with y = 0.05 mm ( . .
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Fig. 4.16. P3-P4 scan through the predicted nested pentagon diffraction
pattern for C = 2.1814 mm, d = 0.072 mn, and 2a = 0.0475 mm.
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Fig. 4.17. P5-P6 scan through the predicted nested pentagon diffraction
pattern for C = 2.1814 mm, d = 0.072 mm, and 2a = 0.0475 mm.

spike lines is not as noticeable because of the decreased overall intensity

level. We computed the two preceding figures for an aperture in a

transform system with the following parameters: C = 2.1814 mam, d =

0.072 mm, 2a = 0.0475 m, X = 0.6328 pm, and z0 = 444 mam.

4.2.3 Nested Pentagons: Photographs and Diffraction Features

As a first step in confirming the validity of the computational results,

we photographed the diffraction pattern of a nested pentagonal aperture in

a converging, monochromatic beam. The setup used to record the optical

transform pattern is shown in Fig. 4.18. A HeNe laser (L) was attenuated

by neutral density filters (NDF). The beam was expanded from -3 mm

diameter to -25 mm diameter by the spatial filter (SF) - collimating lens
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NDF 0 F

SF CL TL *- Zo -.

Fig. 4.18. Experimental arrangement for photographically recording
diffraction patterns. Monochromatic light from the laser (L) was
attenuated by the neutral density filters (NDF) and was expanded by the
spatial filter (SF) - collimating lens (CL) combination. The transform lens
(TL) created a converging spherical beam of unit amplitude that
illuminated the object (0) and formed the transform or diffraction pattern
on the film (F). The distance z0 determined the scaling of the transform.

(CL) combination. The collimated beam was brought to a focus by the

transform lens (TL). The converging beam illuminated the object (0) and

the transform or diffraction pattern was recorded on film (F). The HeNe

laser used was a Spectra-Physics model 102-3; the output was -5 mW,

linearly polarized with X = 0.6328 pm. The neutral density filters were

2" x 2' glass slides; the optical density of a slide was either 0.3 or 1.0;

several slides were stacked if necessary to achieve the desired attenuation.

The spatial filter was a standard microscope objective (40 x, NA = 0.65) -

pinhole (10 pm) arrangement. The collimating lens was a piano-convex

lens with a focal length of -500 mm. The plano-convex lens is a typical lens
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used in collimators and beam expanders because spherical aberration is

* •minimized for a singlet at infinite conjugate ratio. To ensure uniform

amplitude of the collimated beam produced, we centered an aperture of

diameter -25 mm on the collimating lens. Hence, only the central portion of

the greatly overexpanded laser beam was used. Collimation of the beam

was checked by means of a lateral shearing plate.

A long focal length transform lens (f - 750 mm) allowed wide latitude

in selecting the scale of the optical transform, i.e., z0. The transform lens

was a cemented telescope doublet. This choice was made because such a

doublet is well corrected for spherical aberration. If the optical system is

properly aligned, this is the predominant aberration. (The optics were

carefully aligned by examining the back reflections from their surfaces.)

Hence, the converging wave illuminating the object was spherical to high

accuracy.

Various transform configurations and the performance of various

types of lenses as transform elements have been discussed (Kane, 1984;

Joyeux and Lowenthal, 1982; Casasent and Luu, 1978a, b). In the most

general case Joyeux and Lowenthal showed that the converging beam

transform (see Fig. 4.10) is preferable when off-the-shelf lenses are used.

A Nikon F3 camera body with data back and motor drive was

positioned in the focal plane. This camera featured accurate metering with

the lens removed and shutter speeds from 1/2000 second to 8 seconds,

stepping by a factor of two. Thus, photographs over a wide range of

exposures or dynamic range were possible. The motor drive permitted

successive frames to be recorded with little or no intermittent camera
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movement, and the data back imprinted a date stamp useful for image

registration. The standard technique of placing an edge in the object plane

to locate the focal plane was used. KODAK T-MAX 100 film was loaded

into camera. The development of the film is discusssed in detail in

Appendix D, but it was such that intensities over -3 orders of magnitude

could be recorded. This film characteristic plus the dynamic range of the

shutter speeds enabled us to observe and measure intensities over -7 orders

of magnitude.

The nested pentagonal aperture used was a 2' x 2' chrome on glass

mask (see Fig. 4.1). The specifications for fabrication were overall size P =

5.0 mm (hence, C = 2.24 nun), d = 0.072 nm, and 2a = 0.048 ram.

Measurements of the aperture under a microscope yielded the following

results: C = 2.17 ± .02 mm, d = 0.070 ± .002 mm, and 2a = 0.045 + .002

nun. The optical density of the chrome was -3.0, and the chrome side of the

mask was oriented toward the illuminating beam.

Neutral density filters were inserted so that a somewhat overexposed

pattern on the film was obtained for - 1/8 second shutter speed; a neutral

density of 2.0 achieved this. Thus, the bracketing of exposures from 1/2000

to 8 seconds provided a useful range of observation. It was desired that no

saturation of the film occur at the shortest shutter exposure time (1/2000

second achieved this) and that stray light be minimal at the longest

exposure time. The 8 second exposure displayed noticeable stray light;

hence, it was not used. The 4 second exposure was the longest exposure

used.

Figure 4.19 shows a sample of the photographs taken. Photograph (a)
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Fig. 4.19. Experimental photographs of optical transform of nested
pentagonal aperture. The aperture of Fig. 4.1 is transformed and the
intensity pattern is recorded on film. Shown are various exposure times:
(a) 1/1000 second and (b) 1/60 second. The scaling distance is zo = 444 mm.
See text for discussion of diffraction pattern features.
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Fig. 4.19. Experimental photographs of optical transform of nested
pentagonal aperture. The aperture of Fig. 4.1 is transformed and the
intensity pattern is recorded on film. Shown are various exposure times:
(c) 1/4 second and (d) 4 seconds. The scaling distance is zo = 444 nun. See
text for discussion of diffraction pattern features.
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is 1/1000 second, (b) is 1/60 second, (c) is 1/4 second, and (d) is 4 seconds.

The numbers 88 3 18 in the lower right-hand corner are the date stamp

supplied by the data back. We used them for image registration and

reference in the quantitative analysis to follow.

At the shortest exposure, we can discern only the diffracted orders;

none of the intensity spikes connecting the orders is yet manifest. These

spikes become apparent.with increasing exposure time and are especially

pronounced in the 4 second exposure. We can trace out the pentagons in

the transform pattern at the first and second diffracted orders. The third

diffracted order is visible, but noticeably lower in intensity. The ratio 2a/d

is only approximately equal to 2/3. We chose zo = 444 mm so that ± 3

orders fit vertically in the 35 mm frame. This scale was advantageous in

performing the detailed analysis of the features of the diffraction pattern

in the following section.

From a qualitative standpoint, the photographs in Fig. 4.19 confirm

the existence of the features discussed in §4.2.2, Fig. 4.8. The transform

pattern displays rings of diffracted orders, each order having three spikes.

At high exposure times, the intensity spikes trace out the nested pentagon

shapes explained in Fig. 4.9. The quantitative agreement is investigated

in the following section.

4.2.4 Nested Pentagons: Experimental Measurements

and Comparison to Calculations

The data to be analyzed were recorded in raw form as the film grain

density in each of the exposed frames. We used photographic film to record
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the transform data because of its high spatial resolution and wide dynamic

range over a two-dimensional sampling space. These attributes were

especially advantageous in view of the characteristics of the pattern to be

analyzed.

Determining quantitatively how film grain density relates to

intensity was one of the difficulties in comparing the experimental data to

the theoretical calculations. A sensible model for this determination is the

Hurter-Driffield curve or D-log-e curve of the film; such a curve quantifies

and relates optical density of the film to the logarithm of exposure. Here,

exposure, e, means

e =EELt (21)

where EE* is the intensity of the field (the square modulus of the electric

field), and t is the duration of the exposure. The details are explained in

Appendix D, but the main point is that measurement of the film grain

density over an area large compared with the size of a film grain, but small

compared with an area within which the density changes significantly,

combined with a plot of optical density vs the logarithm of exposure

indicated the local average of the intensity over that area.

A block diagram of the experiment is displayed in Fig. 4.20. The

intensity (EE*) in the transform plane was recorded on film for an exposure

time t. After development, the film was scanned and digitized on a

Photomation P-1700 (Optronics International, Inc.) high-speed digital

scanner. The scanned information was transferred to the host computer

via computer tape. We performed various software manipulations using a

commercial image processing system (International Imaging Systems,
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L~m ------------

DIFFRACTIONII

I
Fig. 4.20. Block diagram of experimental steps used to analyze diffraction
pattern photographs. The diffraction pattern was recorded by exposing a
piece of film. The optical density of the film was scanned, and the 8-bit
data was analyzed using computer software.

Inc.) and specialized user programs; these manipulations enabled display

and analysis of the experimental data. We describe in Appendix D some of

the elements of Fig. 4.20.

Figure 4.21 shows a simplified block diagram of the experimental

steps. The net effect of the film-scanner step was to apply a D-log-e curve

to the diffraction pattern intensity. The output of the scanner was a pixel

value (PV) from 0-255, however, not optical density (although there is a

direct relationship). More appropriately, then, the film-scanner step

applied a PV-log-e curve to the diffraction pattern intensity.

The data obtained by scanning and digitizing the photographs in Fig.

4.19 were sampled along a scan line corresponding to the P1-P2 scan line
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Fig. 4.21. Simplified block diagram of experimental steps used to analyze
diffraction pattern photographs. Effectively, the film-scanner step applied
a PV-log-e curve to the diffraction pattern intensity.

of Fig. 4.10 (-12.775 mm ! x s 12.775 mm, y = 0 mm). Applying Eqs.

(D.2)-(D.4) and the value for the exposure time, the pixel data were

converted into normalized intensity data (logarithm of intensity). The

experimental results are shown in Fig. 4.22 for (a) 1/1000 second, (b)

1/60 second, (c) 1/4 second, and (d) 4 second exposures. A single frame had

a response over about two and one-half orders of magnitude of intensity;

the upper and lower clipping limits of (c) and (d) make this obvious. The

high intensity features were recorded by the short exposures, and the low

intensity features were observed in the long exposures.

We produced a composite figure by averaging the nonclipped data

from each curve [see Fig. 4.23(a)]. As a result the diffraction pattern was

sampled over roughly six orders of magnitude. We show in Fig. 4.23(b) the
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Fig. 4.22. Logarithm of normalized intensity vs position extracted from
experimental photographs of optical transform of nested pentagonal
aperture. The sampled data is along scan line P1-P2. Shown are various
exposure times: (a) 1/1000 second and (b) 1/60 second.
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Fig. 4.22. Logarithm of normalized intensity vs position extracted from
experimental photographs of optical transform of nested pentagonal
aperture. The sampled data is along scan line P1-P2. Shown are various
exposure times: (c) 1/4 second and (d) 4 seconds.
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Fig. 4.23. Comparison of experimental data and theoretical calculations
along scan line P1-P2. A composite curve derived from Fig. 4.22 is shown
in (a). The theoretical prediction is plotted in (b). When the experimental
data is superimposed as points (0) in (c), the agreement is seen to be very
good.
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Fig. 4.23. Comparison of experimental data and theoretical calculations
along scan line P1-P2. A composite curve derived from Fig. 4.22 is shown
in (a). The theoretical prediction is plotted in (b). When the experimental
data is superimposed as points (@) in (c), the agreement is seen to be very
good.

computational result for an aperture with parameters C = 2.1814 mm, d =

0.072 mm, and 2a = 0.0475 mm along the scan line -12.775 mm ! x <

12.775 mm, y = 0.05 rmm. The selected parameters are close to the

measured parameters of the aperture (within the uncertainty of the

measurement). Owing to the parameter sensitivity of the computational

result along this scan line, we adjusted the parameters to the above values

so that the correspondence in Fig. 4.23(c), which shows the experimental

data as points (0), was satisfactory.

We can see that the theoretical curve closely approximates the

experimental data. The height of the peaks (diffracted orders) corresponds

well, and the tracking of the intensity between the zero, first, and second
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orders is very good. There is, however, a deviation of the data from the

theory between the second and third orders. The source of this discrepancy

is unclear, but it is likely due to a mismatch of the parameters specified for

the computations from their acutal values. The demonstrated sensitivity

of the computational results to small changes in the parameter values

makes this explanation plausible.

We extracted experimental data along paths P3-P4 and P5-P6 from

the photographs in a similar manner. Composites of the data over the wide

dynamic range are plotted in Fig. 4.24 (P3-P4) and Fig. 4.25 (P5-P6). The

theoretical calculations fit the experimental data points (0) very well. The

theory predicts the diffracted order peak intensity in both figures, and the

spike line crossings in Fig. 4.25 are represented well. The slight shifts of

the the computed maxima locations from the experimentally observed

subsidiary maxima are due to errors in image registration and parameter

specification.

Finally, we applied the PV-log-e curve, the precise form of which is

given in Eq. (D.1), to the nested pentagon computational result, Eq. (14).

The resulting theoretically predicted photographs can be compared

visually with the experimental photographs. The procedure is equivalent

to a piecewise linear mapping of the LL7 representation. We need only

determine how to map pixel values in that representation (corresponding

to normalized intensity of the pattern over seven orders of magnitude) to

pixel values corresponding to a particular exposure time. Essentially, we

want to simulate the effects of the film and exposure time.
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Fig. 4.24. Comparison of experimental data and theoretical calculations
along scan line P3-P4. The theoretical prediction (-) agrees well with
the composite curve derived from the experimental data (0).
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Fig. 4.25. Comparison of experimental data and theoretical calculations
along scan line P5-P6. The theoretical prediction (-) agrees well with
the composite curve derived from the experimental data (0).
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A sample calculation will help explain the procedure. The PV-log-e

curve of Fig. D.1 and Eq. (D.1) has a breakpoint in the curve at (log e,PV) =

(-3.166,13). For a 1/1000 second exposure, this log e value was due to

log EoEo* = -3.486. In the LL7 representation, this is pixel value 128

[= 255((-3.486/7)+ 1)]. Therefore, all LL7 pixel values less than or equal to

128 must be mapped to output pixel value 13. The next breakpoint is at

(log e,PV) = (-1.602,126). The same steps yield log EOE0 * = -1.922 or an

LL7 pixel value of 185. Hence, LL7 pixel value 185 must be mapped to

output pizel value 126.

In Table 4.1 we give the set of five breakpoint pairs necessary to

transform an LL7 representation into a photograph for each exposure

indicated. The first value in each pair corresponds to the original value of

the LL7 input image. The second value corresponds to the output value

into which the first value will be mapped. Intermediate input values are

mapped linearly into output values.

We show the results in Figs. 4.26-4.29 for 1/1000 second, 1/60 second,

1/4 second, and 4 second exposure times. Shown in the figures are (a) the

theoretically predicted photographs and (b) the scanned and digitized

experimental photographs. The visual agreement is excellent. The high-

Table 4.1. Breakpoint Pairs for Piecewise Linear Mapping of LL7

Representation to T-MAX 100 (High Contrast) Photographs.

Exposure Time Breakpoint Pairs

1/1000 second (0,13) (128,13) (185,126) (226,255) (255,255)

1/60 second (0,13) (83,13) (140,126)(181,255)(255,255)

1/4 second (0,13) (41,13) (98,126) (139,255)(255,255)

4 seconds (0,13) (-3,13) (54,126) (95,255)(255,255)
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Fig. 4.26. Visual comparison of theoretically predicted photograph to
scanned experimental photograph. The exposure time is 1/1000 second: (a)
theory and (b) experiment.

Fig. 4.27. Visual comparison of theoretically predicted photograph to
scanned experimental photograph. The exposure time is 1/60 second: (a)
theory and (b) experiment.
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Fig. 4.28. Visual comparison of theoretically predicted photograph to
scanned experimental photograph. The exposure time is 1/4 second: (a)
theory and (b) experiment.

(a)(

Fig. 4.29. Visual comparison of theoretically predicted photograph to
scanned experimental photograph. The exposure time is 4 seconds: (a)
theory and (b) experiment.
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intensity features correspond well in the short exposure frames; the low-

intensity details are represented accurately in the long exposure frames.

4.3 Summary

In this chapter we derived a closed-form solution for the nested

polygonal aperture diffraction pattern produced in the focal plane of a

converging beam. The solution predicts accurately the optical intensity

measured and explains clearly the interesting low-intensity features

observed in the diffraction pattern of a nested pentagonal aperture.

We began by reviewing a procedure for computing the diffraction

pattern of a polygonal aperture. In that procedure one decomposes the

aperture into triangular apertures [Eq. (1) and Fig. 4.2]. The diffraction

patterns from these elemental triangles are added coherently to yield the

solution. We illustrated the procedure by presenting computational

results for a regular polygon, an octagon [Eqs. (6)-(9) and Fig. 4.41. In this

case the elemental triangles were isosceles triangles. These triangles are

precisely the apertures studied in §3.2.1; we referred to them as triangular

sections of a circular aperLure.

In Fig. 4.5 we showed how a nested pentagonal aperture is sectioned.

The elemental building blocks for nested apertures are grating-like

sections. By representing a grating-like section as the product of a grating

function and the section function [Eq. (10)], we were able to write a simple

formula for its Fourier transform [Eq. (13)]. In Fig. 4.7 we showed how the

spiked pattern of the section is replicated at the diffracted orders produced

by the grating.
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Then we wrote the general result for a nested polygonal aperture.

The solution is a coherent sum of suitably rotated grating-like sections; we

presented Eqs. (14)-(17), which constituted the result for nested

pentagons. Careful analysis of the predicted optical transform pattern

revealed the presence of some curious features. The most striking is that

one can trace out double nested pentagons in the diffraction pattern. This

feature is clearly seen in Fig. 4.8. We also showed a simple graphical

representation that predicts this feature (Fig. 4.9).

In §4.2.3 we presented high-contrast photographs of the diffraction

pattern recorded for a wide range of exposure times (Fig. 4.19). The

photographs confirmed qualitatively the presence of the striking features

predicted by our analytic solution. An additional qualitative confirmation

of the analytic results was presented at the end of §4.2.4. We simulated the

effect of film in recording the optical intensity and compared theoretically

predicted photographs with scanned and digitized photographs.

As a quantitative test of the validity of our calculations, we measured

the optical density of the film, deduced the optical intensity, and compared

single line scans to theoretical calculations. The line scans were along

several spikes in the diffraction pattern (see Fig. 4.10). The agreement

between theory and experiment was very good over more than six orders of

magnitude [Figs. 4.23(c), 4.24, and 4.25]. Thus, the representation of a

nested pentagonal aperture by grating-like sections is valid and accurate.

The high- and low-intensity features are accounted for by the theoretical

calculations. Further, the mathematical construction of the solutions
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permits us to explain the origin and behavior of these features in terms of

the Fourier transform of simple elements and structures.

The treatment of different nested regular polygons, e.g., equilateral

triangle, square, and hexagon, and so on, is similar. One simply uses the

correct opening angle in the section transform and sums the appropriate

number of sections, rotated to the corresponding positions. And the

extension to nested arbitrary polygons is straightforward. The nested

polygon is decomposed into elemental grating-like triangles. The

transform of each elemental triangle is slightly more complicated than the

section transform, but still quite manageable.
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APPENDIX A

TRANSFORMATION OF ELLIPTIC INTEGRALS INTO

STANDARD FORM

A general procedure for transforming an elliptic integral into

standard form is described in the book by Whittaker and Watson (1927,

Chapter 22). An elliptic integral is

J r(x,y)d , (1)

where r is any rational function of x and y, and y2 is a cubic or quartic

polynomial ofx. (It is assumed that r contains an odd power of y and thaty2

has no repeated factors.) We used elliptic integrals to evaluate Eq. (2.27);

the results are Eqs. (2.29) and (2.30). We demonstrate here the

transformation procedure by the step-by-step derivation of Eq. (2.30a).

Evaluate the following integral:

S 1 d&' (2)

U 0 ,) 1 / 2  1/2

where 1 [ < 1 and Jill < 1.

First introduce some simplifying notation.

t2  = -- (3)
-l W

where

2 ' = I 82 (4)

S,= k,2 2f4+' + + 0 2  (5)

2 ,2 (6)
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2 ,2 (7)0 4(q-fl')

The initial goal is to express w as the product of sums of squares, i.e.,

S, =A a)2 + B p)2 (8)

2 p2(9
$2 A 2 (k'-_Q) + B2

We achieve this by finding the root A such that S, - XS2 is a perfect square.

S - AS 2= '2(i +) + k'(-2f) + (e +o 2 -A) (10)

There are two roots:

A =I2 +02 1± i2 + 02 -1) + 4021 / (11)

The perfect squares are

S 1- AIS2= 0 + )( a)2  (12)

where

Q(13)

and

S1  X 2 S2 = (I+X( , _p) 2  (14)

where

=s (15)
1+,

Solving Eqs. (12) and (14) for S, and S 2 gives Eqs. (8) and (9) where

A X2 0 +A 1 (16)
A 2= X

B I(I +X 2) (17)
A 2 -A X

A (18)
2 2 -AI
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B X 2 
(19)B 2 1 \> 'l

Using Eqs. (3), (8), and (9), we write w2 in terms of a new variable.

An intermediate step is

2SIS. ( )' 1 +B )(At2+B ) (20)

where

a -(21)

One can easily show that

(22)

Thus, Eq. (3) becomes

- td= 1 dt (23)

12 = !t 1), =~l(A 2 I+ )(A 2t+B2 )

with the limits to be determined.

It is helpful to see that

( + +X - (24)

and

[3 = 1 (25)

Therefore, using Eq. (21),

±1- T - =(26)

thus the limits in Eq. (23).are determined.

The final steps require another variable substitution. Some

simplifying notation helps.

122 1/212 A 2 A221/2

q = [(A A+ = +B+B2)/2I(1 + I )(I + )(27)S I B 2

Noting that X > 0 and X2 < 0, one can see that A > 0 and A 2 < 0. Further,
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1+X2 > 0fork 0 and 1+X.2 = 0for = 0. Therefore, B1 > 0andB 2 > 0.

Define

2 A> (28)
* 'I =  B1

and

2 A 2  (29)
Y2 B2

Thus, Eq. (27) becomes
1(1 2 2  22 1/2

(BIB2) [(1 + ItIUl -2t2 (30)

The needed variable substitution is

cos€ P Y 2 t (31)

Some algebraic manipulation yields

= tV= -0) 1_I / Y_2 d_ _ (32)
2(tf0)1/2a ( 2 112 D - k 2 sin 2 1/2

(BIBN /(a -O( +--

¥2

where

2 2
k _ = 2/Y - . - (33)

I+ ¥21/y 2  y 2+ y2 2 - A,2 I

Equation (32) is in the standard form for an elliptic integral of the first

kind.

Tedious algebra completes the derivation and shows that 12 is

expressible in terms of a complete elliptic integral of the first kind.

I n I d 2 n/2  d4, (34)

12 " 0  ( A_ !2 [1  2  /2 - 2 1 '2
0('1 [1ksin2)j (Vl-A 2 ) 1 0 - k2 sin24]

2
I =K'h) (35)

2 (l A2)1/2



171

where

K(k) = J2 (36)
0 (1 -k 2sin 24)

Equation (35) is Eq. (2.30a).



APPENDIX B

NUMERICAL INTEGRATION AND DIFFERENTIATION

We performed the numerical calculations of Chapter 2 in double

precision on a DEC VAX 11/750 minicomputer. The integration of Eqs.

(2.31a)-(2.31c) used the cautious adaptive Romberg extrapolation routine

(DCADRE) from the IMSL Library (1982). The numerical rsults

presented in Fig. 2.3 are accurate to seven or eight decimal places. The

initial calculation of Eqs. (2.31a)-(2.31c) at some sample points were only

accurate to five or six decimal places. This degradation of accuracy

introduced noticeable numerical noise in the subsequent derivative

calculations. This degradation resulted from the manner in which the

integration routine handled the integrable singularity at the point rl' =rl

in Eqs. (2.31a)-(2.31c). Note that o2 = 0 at this point. This type of

singularity is commonly encountered when evaluating diffraction

integrals at points within the aperture, i.e., (xy) E A, z = 0.

A small adjustment to the value of u2 greatly stabilized the

integration algorithm. For example, if we shifted the sample point by All

10- (il is shifted to rl + Al), we sometimes obtained an acceptably

accurate value. A second adjustment technique involved rewriting o2 as

2 = 2  2

This permitted us to evaluate FhYA for z = 0. A shift from z = 0 to z = 10 -

also helped to stabilize the results. If seven or eight decimal places of

accuracy were not obtained initially, one of these two adjustments usually

made it possible to do so such that the new result agreed with the initial
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result to the same level of accuracy. These adjustments can be viewed as

evaluating FyA at the sample point (,ril,0) by a limiting procedure. The

shifts given above are the smallest shifts that yielded the desired

stabilization.

The calculation of the derivatives in Eq. (2.31d) required some care in

order to obtain accurate results. Numerical differentiation is inherently

unstable as the sample spacing decreases because subtraction of nearly

equal function values results in a loss of significance. During the course of

performing these calculations, we discovered that a sample spacing of 0.01

was large enough to prevent the occurrence of such numerical instabilities

and still yield a sufficiently accurate result for the derivatives.

Nevertheless, a2/ak2 and 82/ari 2 were computed by a five-point finite

difference scheme (Abramowitz and Stegun, 1972, 25.3.31) using both 0.01

and 0.02 spacings. We averaged the values from these two calculations. If

the two values were different by more than 0.001, a note was made in the

data file. As a check on the loss of significance, the number of significant

digits was also noted. As an example, the calculation of V 2 FBA exceeded

the error tolerance 25 out of 400 times and at least four significant digits

were obtained.



APPENDIX C

CALCULATIONS FOR GAUSSIAN BEAM EXPANSION

The Gaussian beam expansion described in Chapter 3 can involve

high order Laguerre-Gaussian (LG) modes. Accurate computation of these

functions and the associated expansion coefficients for high order is

necessary to ensure the success of the method. In this appendix we

describe some techniques that achieved the needed accuracy.

Consider the expansion coefficients in Eq. (3.64):

i (1) 2

Evaluating these coefficients directly for large values of p (I fixed) is

computationally difficult because of the factor (111 +p)! in the denominator

and the Gamma function in the numerator. These two factors get large

very quickly, but the coefficient Dp, is dependent on the ratio. In addition,

all the coefficients from p = 0 top = P are needed. We addresse these

concerns in the recurrence relations described below.

First consider I = even integer. Then the Gamma function can be

replaced by a factorial,

S 1A P+ 1A(2)D = 4+ p)! 2 2. ) 2

We can rew-ite Eq. (2) as

DPI 14 (3)

(p+14) (p+14-I). (P+ +I)(P+ L)
2 2

The first coefficient, Dol, is

D= (4)D0/ 2 (lA4- 1) (j4 -2) .• (L"4+1)

2 2
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This denominator does not reach an unmanageably high value. The higher

order coefficients are found by the following recurrence relation:

D ID (p-(P+)/ 21 (5)D = Dp~l~t(P +I1

Equations (4) and (5) are implemented easily on a computer.

For I = odd integer a similar process yields the relations

D n'/2 -21-'11'12
- ( 1 (6)

(=IP + 2p- 2)/2 (7)

p =p_1 (p + 1)

where

(1)(3)(5)" . (s-2)(s) s= 1,3,5,(s!! =(8)
(2)(4)(6). (s-2)(s) s = 2 , 4 , 6 ,•

We computed the LG modes by means of the standard recursion

relation for the associated Laguerre polynomials (Gradshteyn and Ryzhik,

1980, 8.971.b, 8.973.1 and 8.973.2):

Lo( = I , (9a)
0

Lt(Q = 1 +1 - , (9b)

(p + 1) LI +I(E)=(2p + I+ I- QL (f)+ (p +1) L (E) p = 1, 2,3,- (90)

The complete LG mode was defined in Eq. (3.20); the part dependent on the

normalized radial coordinate is written here in the form

WPI(Q = Xa IIIL 1 1X2) exp(- X2 /2) (10)

Notice that in addition to the associated Laguerre polynomial, there are

two other factors. One of them is large as X - -o and the other is small as X

--. The Gaussian factor dominates for sufficiently large values of X.

Nevertheless, straightforward computation of these factors separately
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before they are multiplied together is ill-advised. The algorithm used to

compute the LG modes involved multiplying a part of the factors XI"' and

exp(-X 2 / 2) at every step of the recursive evaluation of L III(X2).

To understand this, we write these two factors in the following form:

XII exp(-x2 /2) = exp[-X2/2 + 1/ln(x) I

X III exp(-X2 / 2) =exp (P+ [ 2/2+ 4l(P+ ) I

It (P 1

XIIexp(-x 2/ 2) =(x _ 2/2+1 n() +

-- \p (P+ 1)

Xl~ erp(_X2/ 2) = 59 +  (1

where

SI-X'/2+1An(x)l} (12)

S p (P + I)
In Fig. C.1 we outline the algorithm. At each step the next highest

LG mode is computed using Eq. (9). (In Eq. (9) LPI is replaced with the

current value of qip,.) Then that mode and all the preceding modes are

multiplied by the factor 31. There are P + 1 step overall (modes p = 0, 1, 2,

..., P). Thus, the factor 31 is multiplied into each mode P + 1 times and

the computational limit on X for calculating the modes is extended.

We checked the numerical stability and accuracy in a number of

ways. To supplement test calculations comparing computed results to

tabulated results (agreement was obtained to the accuracy of the tabulated

results), a finite sum test was used. The summation relation for associated

Laguerre functions (Gradshteyn and Ryzhik, 1980, 8.974.3),
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Ix) q

w0(x) = WL,(x)

TP()= [Eq. (901 -H

=l(X 'v11(X).

To I(X) = p0 (X). H

Fig. C.1. Algorithm for computation of LG modes.
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P

Llf=L~ (13)p pp=O
was generalized for LG modes, i.e.,

P

"X11 L (x 2 )exp(-x 2/2) = X111 11 +(x 2 &p(-x 2/2) (14)
p--O

Equation (14) was satisfied to seven decimal places for large values of p, 1,

and X. In addition, since computation of the LG modes in double precision

agreed with their computation in single precision, we deduced that the

recursion algorithm is stable over the parameter ranges of interest.



APPENDIX D

QUANTITATIVE DETERMINATION OF OPTICAL INTENSITY

FROM PHOTOGRAPHIC FILM

In this appendix we describe in detail some of the equipment used in

making the experimental measurements of Chapter 4. Figure 4.20

contained a block diagram of the experimental steps followed. Also, we

explain how quantitative measurements of the optical intensity were

deduced from measurements of the film grain density.

We recorded the diffraction patterns on KODAK T-MAX 100 film. T-

MAX 100 "is a continuous-tone panchromatic black-and-white negative

film for general outdoor and indoor photography; it is especially useful for

detailed subjects when you need maximum image quality." (Eastman

Kodak Co., pamphlet F-25) The film offered medium speed (EI 100), fine

grain, improved reciprocity, and an expanded exposure latitude. This last

characteristic was particularly advantageous in recording a wide range of

intensity data on a single frame.

In order to achieve a film grain density a 3 and to compress some of

the broad exposure latitude into this density range, we developed the film

for a 40% increase in contrast above normal. With KODAK HC-110

developer (Dil B), an increase in development time of 80% at 200C was

necessary. As a result the density range of the film was well matched to

the density sensitivity of the P-1700 scanner. The processing details are

listed in Table D.1.
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Table D.1. KODAK T-MAX 100 Process Times
at 20°C.

Process Step Time

KODAK HC-lI0 (DiI B) 12.5 min.
(agitate every 30 sec.)

KODAK Indicator Stop Bath 30 sec.

KODAK Rapid Fixer 3 min.
(agitate every 30 sec.)

Wash in running water 5-10 min.

KODAK PHOTO-FLO 30 sec.

Dry ---

We scanned and digitized the recorded diffraction patterns using

image processing instrumentation by Optronics International, Inc. (model

Photomation P-1700 scanner/plotter). Only the scanning capabilities of

the device were used. The P-1700 is described in the Operation and

Maintenance Manual (Optronics, 1984). The following description is taken

from that source (pp. 1-1 and 1-2):

(The Photomation P-1700] is a high-speed digital scanner that
utilizes electronic control and mechanical operation to optically scan
an image mounted on a rotating drum. Photometric data from the
scanned image is rapidly converted to digital form for computer
processing and storage. A scan medium (film transparency or opaque
material) is clamped onto the drum so that the scan medium conforms
to the drum's machined cylindrical surface. A Koehler illumination
system ensures uniform illumination and the focusing of turret-
mounted apertures on the medium surface. Light transmitted
through the film (or reflected from the opaque material) is measured
by a photodetector.

The effective spot size for the illuminating light is selectable from the
following sizes: 15, 30, 60, 120, 240, and 480 microns square. The
receiving (imaging) optical apertures are selectable at 12.5, 25, 50,
100, 200 or 400 microns square.

The illuminating and imaging optics are mounted on opposite arms of
a C-shaped carriage, through which the drum rotates. Optical
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density of the film along the circumference of the drum (y direction) is
measured every 12.5, 25, 50, 100, 200 or 400 microns. After each
rotation, the optical carriage is stepped in the axial direction by the
selected raster size, and the process is repeated until the total area of
interest is scanned. Therefore, any rectangular area of a film, the
limits of which are selectable by the operator, can be scanned with a
line separation of 12.5, 25, 50, 100, 200 or 400 microns - depending
upon the aperture selected. An opening in the drum provides for the
measurement of light transmission through air. The densitometer
photodetctor (sic) system is recalibrated by this measurement once
each drum rotation.

The detector current, resulting from the light transmitted through or
reflected from the scan medium, is amplified logarithmically and
digitized. A word length of eight bits is used, allowing for a possible
28 = 256 unique words. The words represent the densities of the
picture elements (pixels) scanned relative to the density range
selected; thus, a number of 255 would be equivalent to an optical
density of 2 for a sensitivity range of 0 to 2D, or to an optical density
of 3 for a sensitivity range of 0 to 3D.

Each of the fourteen frames (1/2000, 1/1000, -, 2, 4 seconds) of

the diffraction pattern was scannea. We selected raster size 50 pm; thus, a

512 x 512 scan covered 25.6 mm x 25.6 m. This scan area was large

enough to include the first three diffracted orders and small enough to

yield a manageable number of digitized data points. The 512 x 512 format

was appropriate for most of the subsequent processing.

Because we developed the film to high contrast, a sensitivity range of

0 to 3D was chosen. Thus, pixel value 255 corresponds to an optical density

of 3. As a result a single frame mapped intensity in the diffraction pattern

over three orders of magnitude into pixel values 0-255. Varying the

exposure time from 1/2000 second to 4 seconds added almost four more

orders of magnitude to the dynamic range of the intensities recorded.

The resources of the International Imaging Systems, Inc. image

processing system (IS) made many of the data manipulations,

registrations, and displays easy. The image processing system consisted of
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the Model 75 Image Processor and the System 600 Programming

Environment. "The Model 75 Image Processor is an advanced, general

purpose image array processor with unique computation features which

enhance the performance of the digital image processing system. In

addition to the color display of imagery, the Model 75 provides the

architecture to implement a wide variety of complex image processing

algorithms." (International Imaging Systems, Inc., Model 75 Image

Processor Product Description, 1983). The Model 75 was hosted by a

MASSCOMIP 5700 computer (68020 processor based, 4 Mb, Unix AT&T

SYS V.2 operating system). The System 600 Programming Environment

controlled the Model 75 and included a large number of image processing

functions. Image display, statistical computation, registration, and

piecewise linear mapping of pixel values were among the most used

procedures.

In Fig. 4.21 we showed a simplified block diagram of the

experimental steps. The net effect of the film-scanner step was to apply a

D-log-e curve to the diffraction pattern intensity (D is optical density and e

is exposure). The output of the scanner was a pixel value (PV) from 0-255,

however, not optical density (although there is a direct relationship). More

appropriately, then, the film-scanner step applied a PV-Iog-e curve to the

diffraction pattern intensity. The output from the scanner was displayed

and analyzed by the image processing software and hardware.

Thus, it was necessary to determine the PV-log-e curve for the film

used. The following procedure achieved this. The camera with a 50 mm,

f/1.2 lens was mounted above a copy stand light table upon which were
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placed neutral density filters of various values (0.0, 0.3, 0.6, 1.0, 1.3, 1.6,

and 2.0). We recorded photographs of the test scene at every shutter speed

(1/2000, 1/1000, ..., 2, 4, 8 seconds); the camera metered correct

exposure at 1/125 second. (Note: to eliminate variations in development

from affecting results, we used the first half of a roll of film to take the PV-

log-e test scene photographs and the second half of the roll to take the

experimental diffraction pattern photographs.)

After development, we scanned every test scene on the P-1700 and

analyzed the data using the IlS software. The analysis consisted of

performing a statistical average and standard deviation of the pixel values

over the regions of interest, i.e., the images of the neutral density filters.
These values were recorded and plotted versus the logarithm of exposure.

Arbitrarily, a neutral density of 0.0 was assigned unit intensity (EE* =

1.0), and other neutral densities corresponded to lower intensities

[EE*(0.3) = --0.3, EE*(0.6) = -0.6, and so on]. The exposure time of the

frame was used to compute e.

The data are shown in Fig. D.1. The range of exposure times and

neutral density values was sufficient to cover the film from fog (PV = 13)

to saturation (PV = 255). In addition, data from adjacent frames

overlapped greatly, thereby showing internal consistency among the data.

We decided to fit a piecewise linear curve to approximate the PV-log-e

curve of the film and the data of Fig. D.1. The curve would have zero slope

to the toe of the data, a positive slope along the first linear part of the data,

a positive slope alont the second linear part of the data, and zero slope from

the shoulder of the data. This curve, determined by a specialized least-
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squares procedure, is

13 loges -3.166

PV 72.525loge+24 2.650 -3.166 <Loge! -1.602 (1)
114.327loge+309.616 -1.602 S loges -0.478

255 -0.478 S loge

The mean square error of Eq. (1) from the actual data is ± 5.070; hence, the

uncertainty in determining the pixel value (or the optical density) given

the logarithm of exposure is about 2%.

Using Eq. (1) as a model for the PV-log-e curve of the film, we made

an analysis of the experimental photographs of §4.2.3. The analysis

involved using the PV-log-e curve to deduce intensity values from the

C,
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Fig. D.1. PV-log-e (pixel value vs logarithm of exposure) curve for T-MAX
100 film (high contrast). The experimental data points are indicated by
stars (,) and span the pixel range from fog (PV = 13) to saturation (PV =
255). A piecewise linear fit to the data is shown as a solid line (-). The
corresponding optical density is shown on the right-hand vertical axis.
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experimental photographs. Several photographs were sampled along a

line and compared with the theoretical computations along that same line.

To deduce the normalized intensity, EoEo*, from Eq. (1), we find the

inverse function. Expressing this inverse functions first in terms of log e

gives

-- -3.166 " S PV !5 13

(PV - 242.650)/ 72.525 14 s PV !s 126 (2)
(PV - 309.616)/114.327 127 PV !5254

? "-0.478 255 s PV

Note that the zero slope sections of the PV-log-e curve mean that log e is

indeterminate from PV there. We assigned the breakpoint values of

-3.166 (corresponding to PV s 13) and -0.478 (corresponding to PV = 255)

for these regions.

We wanted to deduce the logarithm of the intensity normalized in the

same way as the computational results, i.e., normalized to the central peak

value. Calling this normalizing value 10, the logarithm of the normalized

intensity, EoEo*, is

EE
log EE= log - = loge-log-log .o  (3)

The value for log e can be determined by Eq. (2), and log t is a number

dependent on the shutter speed. We determined 10 in the following way.

Examination of the 1/500 second photograph revealed that the PV of

the first order peak was 129 and the PV of the second order peak was 73.

The computational result predicted that these peaks would have

normalized intensities of 10- 225' and 10 - 2910, respectively. The value of

log 1 that approximately produced these normalized intensities given the

observed PV in the experimental photographs is
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/ogI0 =3.320 (4)
The computational model for the film-scanner step is complete. The

pixel values measured from the scanning step were converted to
normalized intensity values by the following two steps: 1) determine log e

from Eq. (2) and 2) compute log E#Eo* using Eq. (3), the value for exposure

time, and the value from Eq. (4).


