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Chapter 1

Introduction

Programmers are accustomed to programming languages supporting shared mem-

ory; that is, languages that provide global variables and global data structures.

However many recently developed or proposed parallel computers do not have a

direct hardware implementation of shared memory. The lack of hardware support

means that the support for shared memory must be provided in software. The

problem is trivially solvable - run the program on only one processing element -

unless the goal of high performance is also added. In this case, the problem reduces

to allocating data to the separate processors and scheduling the data motion so that

shared memory programs can be efficiently executed. Again there is a trivial solu-

tion - require that the programmer do the allocation and scheduling - unless the

compiler is forced to do the allocation and scheduling. With the latter condition,

we are confronted with a fairly challenging problem that has not yet been solved.

In this paper we focus on APL(121 as an existing, shared memory programming

language to be run on a nonshared memory machine. APL, like FORTRAN, has

a large user community, and thus there is some nrospect that the results may be

useful. Unlike FORTRAN and most other extaiic shared memory programming
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languages, APL has complex array operators that contain considerable inherent

parallelism. Thus opportunities for concurrent execution can be derived from the

semantics of the language, and therefore are directly applicable to all programs

using these operators. This is in contrast to the complex dependency analysis of

each individual program that must be done by systems like Parafrase[11] and PFC[2]

in order to support FORTRAN.

We present a comparative analysis of two methods of mapping the APL seman-

tics onto the CHiP (Configurable Highly Parallel) architecture[15]. Specifically, we

discuss four different strategies for allocating arrays, the principle objects of APL,

to the CHiP computer's processing elements. We then analyze the cost, in terms

of execution time, of a representative sample of the APL array operators relat-

ing to the four schemes. Different allocation-operator pairs usually favor different

interconnection structures and communication schedules, and hence yield differ-

ent performance. Although this activity exhibits the value of the CHiP machine's

configurability, it has several more fundamental benefits: First, because the CHiP

computer is configurable and thus does not presuppose any particular communica-

tion structure, the semantics of the language dictate the proper structures. This

means that the appropriateness of other host architectures can be easily deduced.

Second, because the invention of an effective new programming language for non-

shared memory parallel computers is such a difficult problem, the semantics of the

inherently parallel APL operators can serve to illus:trate constructs that may be

incorporated into a new language. Third, the APL operators could be used as an

intermediate representation for a dependency analysis for another language.

The work that has been done to date in implementations of APL have been for

two different types of machines. A large body of work exists on how to implement
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APL for sequential machines[5,8). Abrams first proposed using a specialized archi-

tecture for evaluating of APL in 1970[1]. Since that time several implementations

of APL have been done for vector processors, most notably by Budd[6].

This thesis will be divided into five chapters. In the first chapter an overview of

this thesis and introductory comments on APL and the CHiP architecture will be

presented. The second chapter will describe some of the problems with allocating

variables on nonshared memory architectures and some solutions to these problems.

Also the different allocation strategies considered for the APL system will be pre-

sented and the methodology for selecting an allocation strategy will be covered.

The third chapter will present a proposed implementation of an APL system for

the CHiP architecture. The fourth chapter will describe some simulations run in

an attempt to start evaluating the effectiveness of some of the design decisions for

the proposed APL system. The last chapter will present the conclusions, and make

suggestions for further work.

1.1 APL

APL was created by Kenneth E. Iverson[10] while at Harvard as a language for math-

ematics. it was subsequently iinplementcd for System 360 Computers at IBM[12].

APL was designed as a language with very powerful operators; often times one op-

erator can take the place of several lines of code in a language such as FORTRAN.

Thus the addition of two matrices may be represented in APL as A + B and matrix

multiplication is represented as A + . x B. It is this power of the operators that

makes APL ideal for this project: Many simple operations are contained within a
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single expression in the language.' Expressions in APL are evaluated from right-to-

left as opposed to the normal left-to-right order. In addition. there is no operator

precedence; all precedence is obtained from explicit parenthesization.

As seen above, APL operators work on the entire contents of a variable, inde-

pendent of either the number of or type of values referred to by the variable. In

this light the subscripting of an array can be considered as applying a function

to a variable.2 The number of dimensions and the values of the dimensions are

dynamically changeable at runtime. A scalar is simply an array of 0 dimensions

containing a single value, so the scalar value 1 has a different structure than the

vector (1-dimensional array) with the single element 1 even though they appear to

be the same for certain operations such as displaying.

The rest of this section will describe three common APL operators: dyadic

operators, shape and reduction. This discussion is by no means complete, a more

through introduction to APL may be found in other sources[7,12].

The single most commonly used operation in APL is the dyadic element-by-

element "operator". This is actually a group of several operators including matrix

1An additional benefit of representing multiple operations as a single expression is that the
operations are much easier to recognize. Consider the two code segments below that compute the
expression D = A(BC) where A, B and C are all NxN arrays.

APL FORTRAN
DO 10 I= 1,N
DO 10 J- 1,N
D(I, J) = 0
DO 20 K =1,N

D. -A+.xB+.xC T=0
DO 30 L = 1,N

30 T= T+B(K,L)*C(L,J)
20 D(I,J) = D(I, J) + A(I,K)* T
10 CONTINUE

2Abrams used this approach in designing his APL machine[l].



addition. The group is made up of all operators which perform an elementwise

combination of values in the same index positions. While the exact meaning of

the expression A + B depends on both the type of, and the dimensions of the

variables A and B, the same basic algorithm is followed in evaluating all possible

combinations. If the shapes (dimensions) are equal then the arrays are said to

conform and the elements of the arrays are added together. If one of the variables

is a scalar then its value is added to all elements of the other variable. If neither

of these conditions is met then the expression is said to be non-conforming and an

error condition is raised. Examples of some element-by-element operators may be

found in Figure 1.1c.

The shape operator, represented by pis a monadic operator which takes an

array and returns the dimensions of the array in a vector. One common use of

the shape operator is to get the number of dimensions of an array. To do this the

function is applied twice, i.e. ppA, and returns a scalar. One interesting result is

the application of shape to a scalar, the result will be a vector of length 0. Applying

shape again will result in the scalar number 0. Examples of the shape operator are

in Figure 1.lb.

The reduction operator / takes as its arguments a dyadic scalar function F

and an array A; it places the function F between all elements of the array along

the last dimension and evaluates the resulting expression. The application of the

reduction operator results in an array with one fewer dimensions than the source

array. Examples of the reduction operator appear in Figure 1.1d.
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B = (61359) pA = () ppA = 0
1 2 3 4 pB = (5) ppB = 1
1 3 5 7 pC = (3 4) ppC = 2
1 5 9 13

(a) (b)

(24 6 8 )

C+C = 2 6 10 14
(2 10 18 26 +/B = (6+(1±(3+(5+9)))) = 24

1 4 9 16 C (101628)
CxC -- 1 9 25 49

1 25 81 169 x/B =810

(6 7 8 9 x/C = (24105585)
A C =- 6 8 10 12

6 10 14 18 +/[l]C (310 1724)

(5 10 15 20 IC (0.375 0.238 0.138)
AxC = 5 15 25 35

5 25 45 65
(c) (d)

Figure 1.1: Examples of APL operators (a) The arrays to be used in the
examples. (b) Examples of the shape operator. (c) Examples of dyadic ele-
ment-by-element operators. (d) Examples of the reduction operator.
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Figure 1.2: Examples of CHiP Architectures Two examples of CHiP architec-
tures are presented above. The number of processors on a side and the number
of switches between processors are two parameters describing the computer. (a) A
CHiP computer with 4 processors per side and a corridor width of one. (b) A CHiP
computer with 4 processors per side and a corridor width of three.

1.2 The CHiP Computer

The CHiP computer[15] was proposed by Larry Snyder while at Purdue University.

It is a nonshared memory, MIMD parallel computer with a configurable communi-

cation structure. The system can rapidly switch between any of several user defined

interconnection structures under program control.

The internal structure of the CHiP architecture is formed by arranging the pro-

cessing elements (PEs) on the points of a grid to form a processor array. Switch

elements are placed between the processors in columns and rows as shown in Fig-

ure 1.2.

The number of switches between processors is called the corridor width and
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000000000 00 0

0 00
0 0 0 0 0 0 000) 0
0 00O0( 0 00 0

Ono 0 0 0

000000000 00- . 00

(a) (b)

Figure 1.3: Examples of Interconnection Structures on the CHiP Archi-
tecture: Two different interconnection structures on the same CHiP architecture
are shown here; (a) shows a simple two dimensional grid while (b) shows a binary
4-cube.

may be assumed for the purposes of this discussion to be large enough to hold any

communication scucture. When programmed, the switches provide point-to-point

communication paths between processors.' Examples of programmed paths are

shown in Figure 1.3.

For the purposes of this paper the skeleton or control structure of the CHiP

computer is just as important as the internal communication paths. A single exter-

nal processor is used to control the execution of the array by loading information

into the processor array either by a broadcast or by sending information to a single

processor. It is also used to load the interconnection structure(s) into the switches

and to control the order of phase execution.

The applications to be solved on parallel computers are usually very complex.

One way in which they can be made simpler is to decompose them into a series of

3This is as opposed to the packet switching of data as is done in the Cosmic Cube[14].
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smaller (and hopefully easier) sub-problems. In the CHiP philosophy, a phase is

the term used to describe the smalleft unit of parallel computation. A phase will

then correspond to one sub-problem, while a series of phases (possibly repeated)

will then correspond to the entire problem. Different interconnection structures

will often provide both different algorithms and running times to solve problems.

An interconnection structure that is optimal for one sub-problem may not be for a

second sub-problem. The concepts of phases and reconfigurability allow for the use

of multiple interconnection structures (one per phase or sub-problem). For example,

a simple relaxation problem may be decomposed into three different sub-problems

or phases.

1. The first phase is the point relaxation; the communication pattern is to ex-

change information with all nearest neighbors and therefore would use a grid

structure.

2. The second phase computes a global relaxation value; this would be done

using a tree structure.

3. The last phase distributes the global value to all processors; this may also be

done on the same tree structure.

Thus a simple problem is solved more efficiently by using two different communi-

cation patterns than by using just one. The algorithms presented in this thesis are

composed of multiple steps, each having its own, possibly unique, communication

structure.



Chapter 2

Allocation Problems

Allocation and accessing of data in memory is a mechanical process for sequential

machines. For arrays of data, this is done by mapping the elements of an array into

successive locations of memory and constructing a function that can compute the

physical address of the data element in memory given the dimensions of the array

and the indices for an element to be accessed.

The first parallel machines that were introduced were vector machines and

MIMD machines with shared memory. In both of these cases the problem of ini-

tially allocating the data became slightly more complicated. For example, in a

vector machine best results are obtained if adjacent elements are not in the same

bank of memory, but the access function could remain the same since all proces-

sors could address all data elements. The differences between the simple sequential

machine and these machines could generally be hidden by the hardware.

With the advent of MIMD nonshared memory computers the problem of data

allocation has become much more complicated than it was for the sequential com-

puter. A new approach to allocation and accessing both scalars and array variables

must be designed for MIMD nonshared memory architectures such as the CHiP



11

computer.

This chapter will deal first with the allocation problem for a general shared mem-

ory programming language and then with the allocation problems for the specific

case of implementing the APL language.

2.1 Allocations for MIMD Nonshared Comput-
ers

Due to the lack of a single monolithic address space, no address in memory is acces-

sible from all processors. In fact, each address in memory is generally addressable

from only a single processor. This partitioning of memory requires that the access

algorithm be rewritten to include protocols for reading from and writing to memory

locations attached to other processors.

A new read algorithm allowing for the protocols necessary for accessing data

elements from other processors may go something like the following.

1. Determine if data element D is contained in the local memory. If so then the

data is read and the value is returned.

2. Otherwise, broadcast a request to all processors in the processor array to

obtain the correct value of the data element D.

3. Receive zero, one or more responses. If no responses are received then repeat

step 2. If more than one response is received then select the correct value

based on timestamp information.

This algorithm is incomplete in two ways. It is possible it may never terminate

if no responses are ever received in step three. Also the algorithm does not know
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how to determine when more than one value should be expected. Additionally

each processor must expend some of its i aning time to service read and write

requests from other processors; moreover either the processor or the switch must

do forwarding of request and data packets.

The read algorithm as presented above will work in the general case. The broad-

cast is necessary to ensure finding the data although it is extremely inefficient. The

efficiency of the read algorithm can be improved substantially. There are several

places in the algorithm where this may be done. These modifications fall into two

major categories. First, the number of request messages sent in step two may be

decreased by predicting the location of the data. Second, the distance the data

travels may be decreased initially allocating the data near the processors which use

it. Third, if the predictive function allows data to be moved, how does it keep the

data close to the processors which will use it. This will not be covered in this thesis.

2.1.1 Predictive Functions

The use of a predictive function in step two increases the efficiency of the algorithm

by avoiding a full broadcast. Instead the requesting processor sends a single message

or a small broadcast just to those processors in which the data is expected to reside.

This will reduce both the number of read requests that are in the system and the

number of local memory searches which will fail due to the element not being

present.

Two classes of predictive functions are available: static functions and dynamic

functions. Static predictive functions are pre-programmed with the locations of

each data value. Static predictive functions must therefore be tailored to both the

specific program, and the specific system on which it is run. Dynamic predictive
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functions are able to learn the locations of the data values while the program is

running, and adapt to new access patterns while the program is running. Dynamic

access functions have three components:

1. A means to construct local tables to improve the "best guess" of which pro-

cessor(s) contains a data element.

2. A means to allow data elements to be moved between processors and a method

of either forwarding requests to the new processor or informing other proces-

sors that the data has been moved.

3. A means to allow for either replication or cacheing of frequently used data

values in local memories. This component is often not implemented as it can

consume more resources than it frees.

2.1.2 Initial Allocation of Variables to Processors

The second class of improvement deals with the initial allocation of data to proces-

sors. The closer a data value is to the processors that use it, the less time the data

value will spend in transit. This is reduced to zero time if the data value is actually

in the processor's memory.

Replicating a variable in every processor will provide the most drastic speed-up

for the read algorithm. In this case the local search will always succeed in finding

the data value and no read requests will need to be made to other processors.

However this simplification of the read algorithm causes the write algorithm to

become correspondingly more complicated. The write algorithm must now update

the value in every processor rather than in a single processor. Still, this is an

extremely useful strategy for those variables which are read frequently by every
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processor and updated only infrequently.

If variables (or array elements) are generally used only by a single processor

then much of the same improvement as is provided by replication may be made

by placing that variable in the local memory of that processor; without the added

complexity of updating a replicated variable. This can be a difficult problem since

it involves predicting which processors will access the data. A simple predictive

function leads to poor execution times due either to a large number of messages in

the system or to a mismatch between the usage of variables and their locations. Thus

the predictive function must take into account the usage patterns of the program,

which are generally difficult to obtain except in the simplest cases.

Grid Relaxation Problem

One type of program where the system actually could do the data flow analysis is

for an n-dimensional grid relaxation problem. In these programs there are a few

scalar values which are used globally and many arrays of data (or scalars which are

used locally only). The global scalars can be replicated in every processor since the

rate of updates is generally low when compared to the rate of reads, and the arrays

of data can be spread out over the processors.

Each data point in the problem interacts only with the data points immediately

adjacent to it in each dimension, so the processors only need to obtain data points

from the immediately adjacent processors. The interconnection structure used with

these programs reflects this data flow pattern, that of an n-dimensional grid. The

program can therefore allocate the array data onto the interconnection structure in

a logical manner, that is, map each point in the problem space onto a point in the

interconnection structure such that adjacent points in the problem space remain
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adjacent.

A programmer could also make a second optimization to the program which the

system would not see. Since every processor in the array is executing approximately

the same code, every processor can predict exactly when each piece of data in its

local memory will be needed by adjacent processors and anticipate their needs and

supply the data value without the need for a request. This means that steps one

and two of the read algorithm as presented could be eliminated.

2.1.3 Avoiding Program Analysis

In the case of an arbitrary program it is not possible to do a mechanical analysis of

the usage patterns of the program in reasonable time. At this point there are two

options to consider: First, the programmer may be required to supply either hints

or complete information about how the data assignment should be done. Second,

the language can be re-implemented to provide operator primitives which may be

analyzed for data flow independent of any actual program.

Maximum Flow Problem

The maximum flow problem in a directed graph illustrates how the second approach

may work, that is, to provide a program or primitive which may be analyzed inde-

pendent of the data. The maximum flow problem takes as input a labeled directed

graph. The label represents a measure of flow along the edge. The maximum

possible flow from the sources to the sinks is then computed.

One parallel solution of the maximum flow problem would be to map the nodes

of the graph onto the processors, one node per processor. The edges of the graph

would then be embedded in the interconnection structure of the parallel computer.
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On the CHiP computer this could be done by embedding the problem graph in the

switch structure. Each node of the graph would then total the incoming flow on its

edges and send out messages on the input edges and output edges either limiting the

input flow or the specifying output flow. This would continue until all processors

agree that a solution has been reached.

The problems with this solution are: First, each problem graph needs to be em-

bedded into the communication graph provided by the architecture. An analysis of

the graph would be needed to be done in the embedding which would be comparable

to the data flow analysis done normally. Second, the termination condition is not

well defined.

A second approach to the maximum flow problem is similar in that the algorithm

still sends messages up and down the graph to compute the maximum flow of the

graph. However it differs in two distinct ways. First, the solution is now a general

solution, the code and interconnection structure are independent of the problem

graph. Second, there is now global control of the flow of information on the edges of

the problem graph. All data motion is cycled first down from the sources to the sinks

and then back up from the sinks to the sources. This allows a first approximation of

the data flow of the program to be made independent of the actual problem graph.

For a dynamic prediction function this allows one to make a "good enough" first

guess in allocating the data that it will generally not need to move far. This can be

done on a global basis without analyzing a specific graph structure.

This concept of doing the data flow analysis independent of the data will be

exploited even more with the APL operators. Each operator can be broken down

into a set of cases depending on the input data and each case can be completely

analyzed independent of the actual data.
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2.2 Dataflow for APL Operators

As previously shown, in order to run an arbitrary program efficiently on an MIMD

nonshared memory machine, predictions must be made in order to allocate the

data to the processor memories. APL provides some interesting insights in how

to avoid a general case analysis of data flow patterns on a program specific basis.

Instead of doing an analysis for every program, data flow analysis is done for each

APL operator. This can be done since the APL operators incorporate a much

larger view of the program's activities than is provided either by a set of codes to

be executed in different processors or even a single code to be executed in every

processor. Operators such as drop, inner product, and outer product include, as

part of their definitions, information describing how different elements of the arrays

are to be combined and thus can be used to predict the expected data flow of

the program independent of either the specific data values used or the program

containing the operator. This allows the system implementor to do a complete

analysis of all possible data flow patterns for all APL programs without running a

program or even writing the program. Therefore one can predict all possible ways

that the data will interact without having to look at the specific program under

consideration.

It is expected that two different operators may have different optimal allocations

in the processor array. When this occurs we must look at the expected frequency of

use for the operators and the cost of using an operator in a non-optimal allocation

scheme to choose a mapping algorithm that will be optimal when considering all

operators.
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2.2.1 APL Operators Classified by Data Flow Patterns

Below is a description of the data flow patterns found in APL and the operators

which cause them. 1

1. The first set of operators have no data motion associated with them; the

values are simply produced from thin air and magically show up in the correct

locations. These operators are shape and iota. For example, once the operator

iota knows its parameter, each processor can independently produce those

data elements which the mapping algorithm would have assigned to its local

memory.

2. The monadic element-by-element operators have no data motion either as the

operator uses a single data point, reading the parameter and writing the result

to the local memory. An example of this is unary minus, each data element

can be independently negated.

3. The dyadic element-by-element operators have no data motion associated with

the evaluation of the operator. However the operator does require that both

arrays involved in the operation be laid out using the same allocation scheme

so that the pairs of values reside in the same processors. Examples of these

operators are dyadic plus, minus, divide and times.

4. The fourth set of operators restrict the data motion to be within a single

dimension of an array. These are the axis operator group. The data values

participating in the operation lie along lines in the array parallel to a speci-

fied axis. Which axis is to be paralleled is a parameter to the function. Each

I We will omit consideration of all special cases of operators as many of these are uninteresting

data flow patterns. Most of the special cases have no data motion associated with them.
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axis may be specified, although it is usually the first or the last. These op-

erators are: decode, encode, concatenate, reduction, scan, compression, and

expansion.

5. The fifth set of operators require a possible matching of every data point in

both parameters. The data motion of this group of operators would require a

method for every pair of data points to be combined. This may be done inde-

pendent of any specific mapping algorithm. These operators are: membership,

index of, and outer product.

6. The sixth set of operators is used to modify the arrangement of or the indices

of the elements. To bring the data back into the allocation scheme may require

a complete permutation of the data. The first argument, usually a small APL

array, is used to modify the index set of the second argument. These operators

are: take, drop, rotate, reversal, reshape, transpose, ravel, laminate, and array

indexing.

7. Inner Product is a special operator in its own class. It combines two different

dimensions of two variables. It can be programmed in a similar style to the

systolic matrix multiplication algorithm. The data motion in this case is in

the last dimension of the first array and in the first dimension of the second

array.

8. The last set of APL operators uses unknown data flow patterns. These oper-

ators are: format, matrix inverse, and matrix divide.

i I I I II I I
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Figure 2.1: Ravel Order Allocation - This figure shows a 3x3 array allocated
on a 4x4 processor array. The solid line shows the data flow for the element A3,1
doing a scan in the second dimension. The dotted line shows the data flow for the

element A 1,3 doing a scan in the first dimension.

2.3 Candidate Allocation Models

We consider three possible allocation schemes: ravel (row-major) order, n-dimensional

grid and projected dimensions. An a modification applicable to all the allocation

schemes. In selecting which allocation scheme(s) to use the data flow patterns of

the APL operators piesented above must be considered.

2.3.1 Ravel Allocation

The ravel allocation conceptually arranges all the processors in a line and places

the data elements into the processors. This scheme works well for the reshape

operator where the order of the elements is maintained, but is definitely hampered

by such operators as scan or rotate which may be done in the second or higher

dimension of the array. In thes,- rases it requires that every processor be able t,

communicate with processors distance i away from it, where i is a function of the
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Figure 2.2: N-Dimensional Grid Allocation - This figure shows a 3x3 array
allocated on a 4x4 processor array. The solid line shows the data flow for the
element A 3 ,1 doing a scan in the second dimension. The dotted line shows the data
flow for the element A 1 ,3 doing a scan in the first dimension.

array size and can not be determined until run time. For example, if a scan is done

in the second dimension on the array in Figure 2.1 then the element A1,, must be

sent to A 2,1 and then to A3 ,1 following the solid line. If the scan were done in the

first dimension then the data flow for element A1,3 would follow the dotted line.

Communication in dimensions other than the first is especially important for the

axis operator group, the default case for these operators is to use the last dimension

of the array. For matrices the second dimension (the solid line) is the default. This

leads to the need for message forwarding systems to support these operators in the

ravel order allocation scheme since the correct distance to send a value can not be

known until runtime.

2.3.2 N-Dimensional Grid

The ability of the APL operators to work in any dimension makes it desirable to

have an allocation scheme which will not favor any one dimension. One such scheme

would directly implement the structure of an APL variable as an n-dimensional ar-
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ray. This scheme allows the implementor to ignore the problem caused by evaluation

of the same operator on different dimensions. The same algorithm can be used in

every dimension. The only thing that will need to be altered is interconnection

structure, one for each of the possible dimensions.

Using the same example as above, Figure 2.2 shows as a solid line the data

flow needed to compute the element A3,1 while the dotted line shows the data flow

needed to compute the element A1 ,3 .

The n-dimensional allocation scheme does however have its drawbacks. The

operator reshape which alters the length and number of dimensions without rear-

ranging the order of the data elements can causes a large amount of reshuffling of

the data values.

2.3.3 K-Dimensional Projection

The k-dimensional projection is almost dimension independent. It has two dif-

ferent types of dimensions that must be dealt with. An operation that occurs along

a dimension may be contained entirely within a processor if that dimension has

been projected out. Or dimensions may go across multiple processors as in the

n-dimensional grid case. This scheme is equivalent to the n-dimensional case for

array dimensions of k or smaller.

Figure 2.3 shows an example of a 3-dimensional array mapped using a 2-dimensional

projected allocation scheme. This projection ignores the second dimensions of the

array but could just have easily ignored either the first or the third dimension.

Looking at how the data flow for a scan would work in this allocation scheme, the

dotted line shows the data flow to compute the scan for the element A1,1,3 (the

first dimension), the solid line shows the data flow to compute the element A 3,1,1
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Figure 2.3: K-Dimensional Projection Allocation - This figure shows a 3x3x3
array allocated on a 4x4 processor array. The solid line shows the data flow for the
element A3,1,1 doing a scan in the third dimension. The dotted line shows the data
flow for the element A1 ,1 ,3 doing a scan in the first dimension. For the scan in the
second dimension no data movement is needed since all the elements are already in
the same processor.
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(the third dimension). For each of these cases three values must be sent over each

communication channel used. No data flow would need to occur for evaluating a

scan in the second dimension (element A 1,3,1) since all of the data values which are

needed are already present in the same processor.

This allocation scheme has many of the same characteristics as the n-dimensional

grid scheme. As previously noted they are actually identical for any array with

dimension less than or equal to k. It should perform better for reshape if the

dimension is greater than k since much of the data motion will be contained with-in

a single processor. This allocation scheme however has the disadvantage of not being

completely uniform. Two different methods of evaluating many of the operators are

required due to the two different mappings of a single dimension (in a processor

and across processors).

2.3.4 Stay-Put Variation

Allocation schemes such as the n-dimensional grid have a large amount of interpro-

cessor communication when evaluating such operators as reshape. When a series of

these operators is strung together an element may pass through several processors

(and the path may either return to or pass through the original processor). The

APL operators in the sixth group (section 2.2.1) modify the indices of the array.

This can be done independent of the actual location of the element. If a data ele-

ment were to consist of the index set of the element as well its value, these operators

could modify the index set without changing which processor contained the data

element. Operators such as the dyadic element-by-element operators which require

that two arrays use the identical allocation must then move the elements of the

arrays to match the allocation scheme. This is done based on the indices in the
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410 cycles pure n-dimensional 3 10 cycles

11,1 21,2 31,3 41,4 11,1 51,2 91,3 21,4
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93,1 103,2 113,3 123,4 113,1 43,2 83,3 123,4
04,1 C3 4,2 C]04,3 04,4 04,1 C-04,2 04,3 C-14,4

with stay-put modification / 2 0O cycles
0 10 cycles

11,1 22,1 33,1 44,1 (4 3)p 11,1 21,4 32,3 43,2

51,2 62,2 73,2 84,2 0 10 cycles 51,2 62,1 72,4 83,3

91,3 102,3 113,3 124,3 91,3 102,2 113,1 123,4
0 0 0 03 03 03 01 0

Figure 2.4: Example of Stay-Put Modification - This figure shows the data
movement of the elements of an array both omitting the stay-put modification (the
upper arc) and using the stay-put modification (the lower arc). In both cases the
underlying allocation scheme is the n-dimensional grid. A transpose (0 ) followed
by a reshape ((4 3)p) is evaluated. The top arc uses seven 10 cycles in computing
the result. The bottom arc, with the stay put modification, takes one more step in
evaluating the expression. However only two 10 cycles are needed to evaluate the
same expression. In both examples all communication is done on a binary n-cube.

data elements.

The Stay-Put modification to an allocation scheme is also applicable to APL

operators not in group six. The operators in group two are applied to a single

array, and therefore can be done independent of the allocation scheme. The APL

operators in group five match up all elements from both arrays. This may be

programmed to be done independently of any allocation scheme.

An example of how the stay-put modification can reduce the amount of inter-
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processor communication can be found in Figure 2.4. In this example the same

operators are applied to an array using the n-dimensional allocation scheme. The

lower arc uses the stay-put modification to reduce the number of 10 cycles from

seven to two. This is the type of savings we would hope for but it can not be

guaranteed as it is dependent on both the data and the program.

This modification to an allocation scheme represents a potential savings in com-

munication costs. Three factors will decrease the potential savings: First, since a

data element now consists of a set of indices as well as the value, each communication

is more costly as a larger number of bits must be transferred between processors.

Second, the savings in commlunication costs assumes that the operators which may

be done independent of the allacation scheme will occur together in APL programs.

Third, the cost takes into account only the number of communications, if all the

data elements are in a single processor the number of communications is reduced

to zero but with a loss of all parallelism during execution of the program. It should

be noted that the last two restrictions may be in conflict, that is the longer the

sequence of operators, the more likely that fewer processors will be involved in the

evaluation (or that a processor will have a correspondingly larger percentage of the

data elements).

2.3.5 Decision Criteria

In order to make a selection between the different allocation schemes, a set of deci-

sion criterion must be established. The objective is to choose the allocation structure

which will have the fewest overall 10 cycles, while at the same time providing the

maximum amount of parallelism, during the evaluation of an APL program. For

any given program it seems possible that any of the above allocation schemes may
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be best. For example a program consisting of only reshape operators will favor the

ravel-order allocation scheme, but a program consisting only of scan operators will

favor the n-dimensional grid allocation.

The analysis of the APL operators by data flow patterns done in Section 2.2.1

is useful in deciding upon the allocation scheme. A data flow pattern will gener-

ally favor one of the allocation schemes, or be independent of all of the allocation

schemes.

The operators from groups one, two and three require no data movement to be

made. These operators will therefore not favor or disfavor any of the allocation

schemes. The only requirement put on the allocation scheme is by group three.

These operators need the allocation for both variables to be consistent.

The data flow for the group four operators is along one axis of the array. If the

first axis is used then no preference is seen. However for the higher axes a preference

for the n-dimensional grid or the k-dimensional projection is found.

The APL operators in group five do not exhibit a preference for any of the

allocation schemes. The need to match up all elements from both arrays will take

an equivalent amount of time independent of the allocation scheme.

The operators in group six will perform best if the stay-put modification is used.

If the stay-put modification is used, then no preference for the underlying allocation

scheme will be found. It will be most effective if multiple operators may be applied

without reorganizing the data array to the underlying allocation scheme. If the

stay-put modification is not used then two different sets of preference are found.

The operators take, drop, rotate, and reversal will prefer the n-dimensional grid or

the k-dimensional projection allocation schemes. The operators ravel and reshape

will prefer the ravel order allocation scheme to be used. Array indexing by vectors
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Table 2.1: APL Usage Patterns - Table taken from [13]

Operation Percentage of use
Scalar primitives 73
Subscripting 18
User function calls 3.6
Reduction 2.6
Mixed output 1.0
Explicit axis specification 0.6
Inner product 0.4
Outer product 0.4
Scan 0.1

will prefer the n-dimensional grid or the k-dimensional projection. Indexing by

either scalars or arrays does not show a preference for any allocation scheme; this

is a problem no matter which scheme is used.

The inner product operators can be divided into three cases. If one operand

is a scalar or both are vectors then the data flow pattern for the inner product is

equivalent to that for a reduction operator. If both operators are 2-dimensional

arrays or smaller then the n-dimensional grid or k-dimensional projection will be

preferred as the systolic matrix multiply can be directly implemented. If either

argument is greater than a 2-dimensional array then it will need to be reshaped

into a 2-dimensional array before the operation can proceed. This will not favor

any allocation scheme.

The last group of APL operators, those in group eight, have no known preference

for an allocation scheme. In part the reason is because the data flow patterns for

these operators is unknown.

In order to make any assumptions about how a general APL program will ex-

ecute the overall usage of the different APL operators must be known. Several
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studies have looked at the occurrence of APL operators both statically[13,3,9] and

dynamically[4. The results of one such study are presented in Table 2.1. At a first

glance, this seems to be a rather discouraging picture for choosing an allocation

scheme. Scalar primitives can be computed in the same amount of time (zero 10

cycles) for all allocation schemes and subscripting is difficult to do in any of the

allocation schemes.

The overall preference of the operators is for either the n-dimensional grid or

the k-dimensional projection allocation schemes. As an implementor a preference

is found for the n-dimensional allocation scheme. Only a single algorithn for eval-

uating each operator netds to be designed and implemented. Among other things,

this will lead to a smaller set of support code in the processor arrays.

2.4 The Proposed Allocation Model

2.4.1 Description of Model

The proposed allocation scheme can be broken into two portions. The first is the ba-

sic underlying allocation scheme and the second is a generalization of the scheme to

decrease the number of communications needed. The underlying allocation scheme

is based on an n-dimensional grid mapped onto tLe processors that reflects the

structure of an array directly in the allocation scheme. The n-dimensional grid was

chosen since it neither favored nor disfavored any dimension. Since the allocation

scheme was developed with the CHiP computer in mind, it should be noted that

the use of the n-dimensional grid allocation scheme does not enforce the use of an n-

dimensional interconnection structure. The use of other interconnection structures

that may have better evaluation algorithms, such as a tree structure for reduction,

may be used freely as long as the basic data point to processor assignment for the



30

A1,1 A 1,2  A1 ,3  A,

B1  B2  B3  B4

5A2 ,1  A2 ,2  A2 ,3  A2 ,4

FA3 ,1  A3 ,2  A 3 .3  A 3 .4

A4 , A, 2  A 4,3  A 4,4

Figure 2.5: Mismatch of Allocation Scheme and Interconnection Struc-
ture: This figure shows how a reduction can be computed along the second dimen-
sion of the array A. The array A is laid out in the array using an n-dimensional
allocation scheme. The reduction in the second dimension uses a set of tree inter-
connection structures to compute the resulting array B.

n-dimensional grid is observed. An example of how this works can be found in

Figure 2.5. This figure shows how a reduction in the second dimension could be

done using a set of tree interconnection structures on an n-dimensional allocation

scheme. The result will be a vector across the processors in the top of the processor

array, each element in the result is computed by adding the four values from the

column below it using the tree to combine the values in log time.

The proposed allocation scheme will also use the stay-put modification to de-

crease the number of communications needed. This relaxes the normally strict

allocation scheme so that data values may be in processors other than those which

the allocation scheme would require. This allows for functions such as transpose or

reshape (which wculd be implemented as modifications to the access function for

the array[6] in a serial machine) to be evaluated by modifying the coordinates of

the data value rather than actually moving the data value between processors. The
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strict underlying data allocation model will then be enforced only when evaluating

those operations such as the dyadic element-by-element operators which require it.

2.4.2 Restrictions of the Model

In attempting to implement our ideal allocation scheme on real hardware two re-

strictions must be imposed. Both of these restrictions arise from the mapping of the

model, which allows for an infinite number of processors, onto the real hardware,

which has only a finite (and fixed) number of processors. The two different methods

of getting an infinite number of processors in the model are: First, there may be an

infinite number of dimensions in the data array. Second, there may be an infinite

number of data elements along one or more dimensions. A modification must be

made to the model to deal with each of these restrictions.

The language definition of APL actually restricts the number of dimensions of

an array to 63 rather than the infinite number proposed in the model. Even this

limit is too large for today's hardware; an array with just two elements in each

dimension would require 263 (or about 1019) processors. To deal with this problem

we modify the allocation scheme to use the k-dimensional projection rather than

the n-dimensional grid. When the number of dimensions of an array exceeds a

set limit k, then the excess dimensions of the array will be projected onto a single

processor. Experimentation will be needed to determine the value of this limit and

which dimensions should be projected.2

A second restriction on the model is that it assumes that there are sufficient

processors available for each data value to be mapped to a single processor. This
21t is expected that the value of k should be between 4 and 8. A value of 4 would allow for an

outer product to be executed with two 2-dimensional arrays without having to project the result.
The value of 8 the maximum value which can provide a matrix of reasonable size under today's
hardware restrictions, and is probably larger than is required for all but a few APL programs.
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Figure 2.6: Sub-array Coalescing - This figure shows a sub-array coalescing
of a 2-dimensional array. In this example two communication channels between
processors must be multiplexed onto a single hardware channel.

would require an infinite number of processors in each dimension of the grid. In

reality there are a fixed number of processors in each dimension and the allocation

scheme must deal with arrays that are larger than this size. The model is modified

to allow for the assignment of multiple data elements to a single processor. Each

dimension in the array is treated independently for the purposes of coalescing data

values. Two different modifications may be made to the model: First, adjacent

values along the dimension may be placed into a single processor. This is the sub-

array coalescing method. Second, if there are k processors in the current dimension,

then every k-th data element may be placed in the same processor. This is the

modulo coalescing method.

An example of how the sub-array coalescing method works can be seen in Fig-

ure 2.6. One advantage of this method can be seen in the figure, the total number of

interprocessor connections has been decreased. Some of the channels in the original

model are now contained in a single processor. The disadvantage of this method

of coalescing is that the process of determining which processor a data element is

mapped to requires knowing the indices of the data element, the dimensions of the
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Figure 2.7: Modulo Coalescing - This figure shows a modulo coalescing scheme
of a 2-dimensional array. In this example s:x communication channels need to be
multiplexed onto a single hardware channel.

hardware and the dimensions of the array. The dimensions of the hardware may be

hardcoded into the processors and the data element indices are associated with the

data element but the dimensions of the array must be broadcast from the controller

processor.

An example of the modulo coalescing method may be found in Figure 2.7. The

advantage of this method is that the mapping function requires only the indices of

the element and the dimensions of the hardware, both known values. The broadcast

of the dimensions of the array can be avoided. The disadvantage of this method

is that all of the interprocessor connections present in the original model are still

present. However since there are now multiple data elements per processor, there are

also multiple communication channels for every hardware communication channel.

The use of the sub-array coalescing method in the first dimension does not

imply that it need also be used in the rest of the dimensions. The two methods

of coalescing may be intermixed freely. One possible way te take advantage of this

would be to use the sub-array coalescing in the first and last dimensions of the array

and the modulo coalescing method in the rest of the dimensions. This allows the

• . , , • ! I II II
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system to use the decrease in the number of communication channels for the two

dimensions in which most of the operators occur. At the same time the amount of

information needed to be broadcast to compute the new mapping of an array would

be minimized to two values.

2.4.3 Other Questions

There are other unanswered questions about the model which will require experi-

mentation: (1) How evenly distributed are the elements of an array over the proces-

sor array if one uses the stay-put modification? (2) In mapping an array variable

onto the processor array should all the dimensions of the hardware be the same

length? Should the dimensions even be fixed values or should they vary as the size

of the array varies? (3) Are there other more efficient algorithms for evaluating the

APL operators and how would they affect the selection criteria presented above.

Load balancing or the evenness of the distribution of the array elements in the

processor array is extremely important. The more even the distribution, the higher

the degree of parallelism that is realized in the system. A processor with data does

useful work while a processor without data is idle. The introduction of the stay-put

modification to an allocation scheme decreases the likelihood that an array will be

evenly distributed over the array.

Since the stay-put modification to an allocation scheme does not force data

elements to move between processors, as time passes a large number of data elements

may build up in a single processor. The build up will be decreased by frequent

execution of the operators which do a strict enforcement of the underlying allocation

scheme. If the data balance becomes a problem, then how is it to be remedied?

One possibility is to make some of the operators (such as assignment) enforce the
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underlying allocation scheme when they are executed. A second possibility is to

introduce a new operators into the code which does nothing but to enforce the

underlying allocation scheme.

The dimensions of the logical hardware may change with the dimensions of

a variable. This can lead to an improved load balance and therefore to a faster

system. An example of how the logical hardware dimensions affect the load balance

can be seen in 2-dimensional simulation system. The major data array will consist

of perhaps several thousand pairs of data (x and y values). On an 8x8 hardware

array this leads to using only 25% of the available processors. If, instead of an 8x8

logical hardware array, a 32x2 logical hardware array is used all processors will be

used in computing the results.

A second interesting possibility is to use non-uniform lengths for the hardware

array. The first and last dimensions may be increased at the expense of the middle

dimensions. Since many operators occur along these axes it maybe that the overall

execution time may decrease.

It is my belief that any new algorithm to implement an operator will not affect

the final choice of allocation schemes. The choice of the k-dimensional projection

with the stay-put modification allocation scheme was based on the data flow pat-

terns rather than on the specific implementations of the operators. When a new

method of implementing the reduction operator was found, this operator became

independent of the allocation schemes and did not change is preference between two

different allocation schemes.
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APL System

This chapter will present a proposed implementation of an APL system for the

CHiP architecture. This description is not complete in that most of the evaluation

algorithms for the operators will not be presented.

3.1 Language Modifications

Our proposed system is based on using a compiled version of APL rather than an

interpreted version. The reason behind this is simply one of efficiency. A compiled

version, along with modifications to the language such as declarations of the type

of variables, will allow the system to avoid the normal type checking requirements

found in an interpreted system. It will also allow the system to make more efficient

use of the symbol table since both the number and names of the variables for a

function will be known at compile time. This allows the system to make use of

standard runtime stack routines.

In the final analysis we are willing to make changes to APL. These changes

however should improve both the runtime efficiently of the system and still not

alter any of the basic properties of APL.
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3.2 Compiler Technology

The compiler technology used in implementing this system can be very simple. The

major job of the compiler will be to produce the intermediate code used in executing

the system, Very little optimization can be done at compile time. The two different

types of optimization which can be done at compile time deal with idioms in of

APL.

The first type of idioms that are to be examined are those that may be im-

plemented as APL meta-operators. One example of this is the idiom A[4 A], this

can be converted into the meta-operator sort A. The meta-operator sort can be

implemented more efficiently than A[$ A]. 4 implies that the sort be done and

then converted into an index set to be used in subscripting the array. Rather than

converting the final result back to an index set while computing the 4 operator,

sort will produce the correct final array.

The second type of idioms that are to be examined are those which are equiva-

lent. In a scalar system the expression NTA+B will be converted into (NTA)+NTB

either by a compiler or during execution. In this implementation which is more ef-

ficient will depend on what the current allocations of A and B are. If A and B are

in a strict allocation scheme then the expression NTA + B should be evaluated as

A + B take zero 10 cycles. If however either A or B is not in the strict allocation

scheme then the expression (NTA)+NTB should be evaluated as this will generally

reduce the number of elements to moved in the system. (Note that with a good

implementation of take that the number of elements to be moved can not increase

even if N is greater than the size of the array A.)
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3.3 Variable Allocation

There are three different variable entities for which allocation schemes must be

given. These are scalar variables, array variables, and constants. It should be

noted that a variable can be either a scalar variable or an array variable, depending

on the data structure which was last assigned to it.

The value of a scalar variable will be maintained in the controller processor

as part of its symbol table entry for the variable. All computations that will use

just scalar variables are to be done in the controller without involving the array

processors. When an operation returns a scalar value, the value will be transferred

from the processor array to the controller. Conversely when a scalar value is involved

in an array operation, then the controller will broadcast its value to the processor

array.

Array variables will be laid out in the processor according to the allocation

scheme presented in the previous chapter. The allocation will be a k-dimensional

projection onto the processor array, with the stay-put modification of tagging values

with their indices, and delaying transfer of values to the correct processors.

Constants come in two flavors in APL. They may be either scalar constants

or arrayed constants. Scalar constants will be maintained in both the controller

processors and each processor in the processor array. Placing scalar constants in

the processor array is an optimization step, and may be omitted if desired; in this

case they would be treated the same as scalar variables. Arrayed constants can come

about in two ways. First, through implicit operations in the APL code such as (1 2 3)

which is a three element vector. Second, through constant folding operations such

as evaluation of the expressions t1O or 20p3 at compile time. Arrayed constants are
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stored in the same allocation structure as if they were variables: a k-dimensional

projection.

3.4 Run Time Symbol Table

Two types of run time symbol tables will be maintained in the system, one for the

controller and one for each element in the processor array. Not all elements of the

symbol table will be associated with variables. Some will be intermediate results,

the equivalent of registers in a scalar machine.

The controller symbol table will contain the value of the variable if the variable

is currently a scalar, the number of dimensions of the variable and the shape of the

variable. If the variables were not typed, then the type of the variable would be

kept here as well. The entry for a variable may be directly accessed by the program,

since a constant offset for the current procedure can be compiled into the system.

The symbol table for an array processor has associated with it the data elements

contained in the processor. The program will be able to add new data elements,

delete old data elements, sequentially access all data elements for a variable, access

data elements for a variable using an index search pattern. Each data element will

contain the actual value and the indices of a single array element.

The symbol table will be placed on the runtime stack of the processor. Constant

offsets, either in the global or local symbol table areas, can be computed by the

compiler since all variables are declared in the program. Additional space will be

placed on the symbol table area to hold temporary results for by the compiler.

A special notation in both the controller and the processor symbol tables will

provide for another optimization. When a scalar variable is broadcast to the array

then it can be placed into the symbol table for the processors. The next time that
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the variable is to be used, if the value has not been changed then the broadcast step

may be skipped.

3.5 Code Allocation

The code will be kept in all processors. Each processor will keep a separate program

counter that will generally contain the same value at all times. The exception to

this is that if a series of scalar operations are encountered in the controller, then

the program counter in the array processors need not be updated until it is again

required for evaluation of an operation.

The code would be compiled and stored as five-tuples consisting of the operation

code, the result variable, and up to three source variables. The third source variable

comes into play for those operations in which the dimension of the operation can

be specified.

3.6 Execution Cycle

The same general execution cycle will be followed by all operations.

1. Look up the dimensions of the source variables in the symbol table.

2. Using the operand decide if the operation may be executed in the controller

processor. If it can be then the operation is executed in the controller and

the value stored in the controller symbol table. All program counters are

increased and the next operation is started.

3. Inform the processor array of any special considerations about the source

and result variables. Depending on the operation code this may include the
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number of dimensions of a variable (scalar or array), the value of a variable

(scalars) and the shape of the variable (arrays).

4. Set-up and start the processor array. This includes setting the phase (or

phases) to be executed and, as needed, the interconnection structures. For

some operations the controller will be passive while for others t6c controller

will take an active part in evaluating the operation.

5. Obtain the result value if it is a scalar.

6. Increase the program counters in both the array and the controller.

3.7 Example Algorithms

To show how the execution model works, two example algorithms are presented

here. Enough of the algorithm is presented to get the flavor of how it will work

without doing a full implementation. More on the algorithms used in the simulation

system may be found in Appendix A.

3.7.1 iota
Step Controller Array Processor

1 Read value of source variable from Delete all data values for the result.
symbol table.

2 Broadcast source value to proces- Read broadcast value.
sor array.

3 Compute range of values to be mapped to
this processor.

4 Update number of dimensions and Create a data element for each value

the shape for the result variable mapped to the processor and place in the
symbol table.
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3.7.2 Tree Reduction

Step Controller Array Processor

1 Broadcast the dimension to be re- Read dimension to be reduced.
duced.

2 Compute the shape of the result, Read the shape of the result.
broadcast it to the array and store
it in the symbol table.

3 Delete the data elements of the result

from the processor.
4 Set interconnection structure to Combine all data elements in the proces-

the binary n-cube. sor with the same result indices. The
destination processor and the distance to
the processor are packaged into the packet
with the element.

Repeat steps 5 and 6 log(Num. Processors) times.
5 If current distance of packet equals maxi-

mum distance left then forward the packet
to the next processor.

6 Read any forwarded packets combining
the data elements with any internal ele-
ments having the same result indices.

7 Store the result data elements in the sym-
bol table.
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Experimental Description

In the previous sections we have shown that it is indeed possible to implement a

system that will evaluate APL programs in a nonshared memory model. At this

point it is not possible to compare the proposed system to either existing systems

or to a theoretical sequential system. A complete system has not yet been written.

This section will instead describe a series of experiments run to examine some of

the design decisions made in the proposed APL system.

The procedure for doing an experiment can be seen in Figure 4.1. APL programs

were hand modified to produce an execution trace file when they were run on the

PortaAPL system. A simulation program was written that takes as input the exe-

cution trace file. The trace is in the form of quadruples and is used as input to the

simulation program. The simulation program then "executes" the APL program

as if it were in a parallel environment. The simulation allows the data elements

to move throughout the processor array and the controller in order to measure the

amount of time taken in transmissions.

In this experiment we explored two different axes of the design space. The first

axis looked at four different allocation strategies. The second axis of the design
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Figure 4.1: Experimental Process - This figure gives a flow chart of the experi-
mental process. APL programs where hand modified to produce an execution trace
file when run. The execution trace file was then used as input by the simulation
program to find the total time. The simulation program is affected by the choice of
Algorithms, Interconnection Structures, 10 Protocals and Allocation Strategies.
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space that was explored dealt with three 10 strategies. These will be described

after discussing the test programs and the machine model.

4.1 Program Set

A selection of seven APL programs was used to test the different options in the

model. The programs ranged from character manipulation programs such as PRET-

TYPRINT, which reformats function definitions, to numeric simulation programs

such as SORRB, which approximates a solution to AX = Y. The programs were

either written by the author or taken from APL Quote Quad. The programs used

are presented in Appendix C.

Each program was modified to output the quadruple code, along with any an-

notation needed for the specific operator, to a trace file during the execution of

the program. The programs were run on an Apple Macintosh using the PortaAPL

system.

4.2 Machine Model

For the purposes of this experiment we modeled an 8x8 CHiP coi., nuter, modified so

that a fixed interconnection structure was used. The interconnection structure was

restricted to the binary n-cube network.1 The controller processor is also included

in the model.

Each processor has the following 10 characteristics. In a unit time the processor

is allowed to do a read cycle, a write cycle and an infinite amount of computation.

The reasoning behind allowing an infinite amount of computation is that the amount

'This differs from the Cosmic Cube architecture in that an outside controller is available with
the ability to do unit time broadcasts to the processor array and to control which code is currently
executing in the processors.

i II I I I I I
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of computation that can be done in the same amount of time as one read or write is

large. There are sufficient ports to support the binary n-cube network on the CHiP.

The processor has the ability to do simultaneous reads and/or writes on all ports.

This allows us to do up to six reads and/or writes in a unit time. A read and write

port are also provided to the controller processor and again one read and/or write

is allowed in unit time. The ports contain an infinite number of write buffers with

the ports doing the writes in first-in first-out order. The read buffers are only one

unit in length and will be overwritten if not read.

The controller has the same characteristics as an array processor, i.e. in unit

time it may perform a read, a write, and an infinite amount of computation. The

controller, however, only has a single port pair to use. This port pair reads from and

writes to a global bus. Each processor can also write on the global bus in a priority

fashion (starvation prevention is up to the programmer). When a broadcast is done

by the controller each array processor will decide under program control whether

or not to read the value.

4.3 Allocation Space

Four different allocation schemes were examined during the experiment. These

allocation schemes were:

* Ravel Order Allocation - The size of the array was computed and buckets

are created to hold the elements of the array. Each element in the array then

-omputes its ravel order index and, based on that, the bucket (or processor)

in which it should be placed.
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o Gray Coded Ravel Order Allocation - The same method of computing

the bucket that a data value is in is used. The buckets do not however cor-

respond directly to the processors, instead the buckets are mapped into the

processors using the Gray code numbering of the processors.

o Partial Gray Coded Ravel Order Allocation - This allocation scheme

uses an even more convoluted mapping scheme between the buckets and the

processors. The processor array is numbered according to a 2-dimensional

grid, the bucket associated with a processor is then the GrayCode(y)* Num-

berProcessorPerSize+GrayCode(x).

o 2-dimensional Projection Allocation - Vectors are laid according to the

same allocation structure as the Ravel Order Allocation using all processors.

Matrices and arrays of higher dimension are laid out on a 2-dimensional grid

by examining only the first and last dimensions of the array. Bucketing is

performed independently in each dimension of the array to allow for the fixed

number of processors.

All allocations: (1) Store scalar values in the controller, (2) bucket data values

by collecting adjacent values in the array into a single bucket, and (3) use the same

evaluation algorithms.

4.4 10 Protocol Space

Three different 10 Protocols were examined during the experiment. These protocols

were:

o Single Data Value Packets - Under this 10 protocol each packet was

individually sent between processors. This meant that only six data items
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could be written in one time unit.

e Multiple Data Value Packets - Under this 10 protocol all data values

that were to be written on a single port were packaged together and written

as a single unit. The data values were then unpackaged after a read and either

used locally or rerouted.

e Broadcast Data Value Packets - Under this 10 protocol all data values

that originated from a single processor were packaged together into a single

packet. The reading processor then unpackaged every data item and, after

using the ones needed locally, repackaged the data values according to the

port on which they were to be written. This protocol was to take advantage

of the broadcasts there were often done by a single processor during the course

of evaluation.

4.5 Results

A total of twelve different points in the design space were tested. A summary of

these points may be found in Table 4.1. The raw data in terms of total number of 10

cycles may be found in Appendix B. A table was constructed in which the data was

normalized by dividing the actual time for each entry in the table by the minimum

execution time for a test program-data set pair across all experimental set-ups. The

graphs in Figures 4.5-4.5 presented in this section are of the normalized data.

Figure 4.5 shows most of the interesting trends in the data. This graph shows the

relative timings for the program PRIMTO, a program which computes the prime

numbers using sieve of Eratoshenes. The data points for the multi-value 10 protocol

are approximately the same for the different allocation strategies. For the Single
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Table 4.1: Table of Experiment Numbers

Experiment Number Allocation Scheme 10 Protocol
1 Gray Coded Ravel Order Single Data Item
2 Ravel Order Single Data Item
3 Partial Gray Coded Order Single Data Item
4 2-dimensional Projection Single Data Item
5 Gray Coded Ravel Order Multi-value Data Items
6 Ravel Order Multi-value Data Items
7 Partial Gray Coded Order Multi-value Data Items
8 2-dimensional Projection Multi-value Data Items
9 Gray Coded Ravel Order Broadcast Data Items

10 Ravel Order Broadcast Data Items
11 Partial Gray Coded Order Broadcast Data Items
12 2-dimensional Projection Broadcast Data Items

Value 10 protocol however the total times may be rather different for the different

strategies. This is especially prevalent for the case of comparing the ravel order

allocation with the 2-dimensional projection. The other graphs in Figures 4.5-4.5

show similar trends.

4.5.1 Allocation Discussion

One of the surprising pieces of data found in this experiment was the lack of de-

pendency of the execution time on the allocation scheme used. In most cases a

difference of less than ten percent was observed. There are three possible rea-

sons why the data is so close together. First, the fixed interconnection structure

may have affected the operator algorithm selection and may not have been the

optimal interconnection structure for those algorithms used. Second, non-optimal

algorithms may have been used in evaluating the interconnection structures due to

simplifications or substitutions. An example of this is the operator E which takes

time in proportion to the size of the first variable rather than the minimum of the
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Figure 4.2: SORRB Timings - Relative timings for the SORRB program using
three different data set sizes: an 8x8, a 16x16 and a 32x32 array. The SORRB
program does a red-black SOR. It is an approximate method of solving AX = Y.
The times are relative to the minimum for each data set size. The raw data is in
Appendix B.
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Figure 4.3: SOR Timings - Relative timings for the SOR program using three
different data set sizes: an 8x8, a 16x16 and a 32x32 array. The SORRB program is
an approximate method of solving AX = Y. The times are relative to the minimum
for each data set size. The raw data is in Appendix B.
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Figure 4.4: GAUSS Timings - Relative timings for the GAUSS program using
three different data set sizes: an 8x8, a 16x16 and a 32x32 array. The GAUSS
program solves AX = Y by gaussian elimination. The times are relative to the

minimum for each data set size. The raw data is in Appendix B.
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Figure 4.5: PRIMTO Timings - Relative timings for the PRIMTO program using
four diLerent inputs: 64, 256, 1024 and 4225. The PRIMTO program computes all
prime numbers less than the input values using the sieve of Eratoshenes. The times
are relative to the minimum for each data set size. The raw data is in Appendix B.

two variables. And third, the operators used may not have occurred in the expected

distribution.

No allocation scheme can be said to have been the best. The Partial Gray Coded

scheme was the worst of the allocation schemes. It was never better than one of the

other three schemes and was generally worse than at least two of them.

Two things may have affected the results obtained from the experiment. First

the programs used in the experiments tended to be numerical programs. These

have a high usage of inner products which may tend to favor the 2-dimensional

projection. Data set sizes used in these programs tended to be multiples of the

number of processors which may have tilt the balance back. If the data set sizes

for this numerical programs were to cover the range of possible values then a larger

trend to the 2-dimensional projection allocation scheme would be expected to be
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Figure 4.6: PRETTYPRINT Timings - Relative timings for the PRET-
TYPRINT program using four different display widths: 32, 60, 64 and 72 characters.
The PRETT-, PRINT program reformats an APL function to improve readability.
The program FIB was the program to be reformatted for all data sets. The times
are relative to the minimum for each data set size. The raw data is in Appendix B.
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observed for these numerical programs.

The second thing that may have affected the results was the use of the binary

n-cube as the interconnection structure. This was to the detriment of 2-dimensional

projection as well. Operators such as scan can be more efficiently implemented if

an explicit tree structure along each dimension is used rather than attempting to

use any implicit tree structures found in the binary n-cube graph.

4.5.2 10 Protocol Discussion

Again as with the allocation data, most of the results were surprisingly close. The

expected ordering was always maintained; that is the fastest protocol was Multi-

value packets followed by Broadcast Packets and lastly Single-value Packets. A large

difference between Multi-value packets and Single-value packets was expected due

to the multiplicity of data elements in a processor. Many times, however, there was

less difference than expected between the Multi-value packets and the Single-value

packets. One possible conclusion from this is that altering the forwarding strategy

will improve the single-value packets to the point that the difference may be minimal

especially after one takes into account the time needed to pack and unpack the

items. Two things can be done to improve the simple forwarding strategy used by

the experimental system. The first would be to prioritize the order in which items

are sent out the port; that is remove the simple FIFO ordering. Items would then

be sent out in order of those that needed to travel the farthest rather than in the

order generated. (These orders are often the opposite; those items sent out first are

those which have the shortest distance to go.)

The biggest difference between any of the 10 protocols occurred for the program

PRIMTO. In analyzing the time spent on each operator it was found in the range of
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70-90% of the time was spent doing subscripting for the lefthand side. Most of this

time is spent in sending out the vector that is being subscripted, and this can be

shortened considerably by packing together the values. A second way in which to

reduce the difference is to improve the method of distributing the subscript values.
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Conclusions

The first conclusion that can be made is that an APL system can be written for

a MIMD, nonshared memory machine. In addition it seems possible that such a

system could be implemented in a reasonably efficient fashion. This system would

greatly enhance the programmers view of MIMD nonshared memory systems. Pro-

gramming MIMD machines through the use of systems such as the Cosmic Cube

programming environment[17] is extremely difficult. The procedure is simplified

somewhat by the Poker Parallel Programming environment[16], but it is still much

more complicated both to understand what a program is doing and to program the

code when one must write multiple interlocking programs. Thus we must be willing

to pay some cost for the simplicity of using a shared memory model language.

The second conclusion is that bigger is better. A major reason why APL can

be efficiently implemented on a nonshared memory computer is that there is no

need to look for a global data flow pattern in the program. The data flo'- pattern

is done once for each operator and the power of the operators is such that many

operations may be done simultaneously. One place where this can be applied even

more is to link together multiple APL operators and define meta-APL operators.
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For instance the expression used to sort a vector of numbers is V[4 V]. 4S produces

a vector of indices based on the sorted sequence of the values, thus the sort and a

permutation must be done to evaluate the expression. If one combines this into a

single meta-operator then the value can be sorted along with the indices, the result

of the operator has been computed without the need of the subscripting operation.

The final conclusion that we make is that the exact allocation scheme used by

the data may not be as important as was originally believed. Given the use of the

different operators in APL, those operators which favor a Ravel Order allocation

may be almost balanced by those operators which favor the N-Dimensional Grid

allocation.
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Appendix A

Algorithm Summary

This appendix presents a short description of the APL operators as they are imple-

mented in the simulation program. Some of these algorithms may not be optimal

due to the fixed interconnection structure or implementation of a simpler version

of the algorithm for an operator. Further elaboration on these algorithms may be

found in the simulation program.

The most complete discussion of the implementation of the operators, includ-

ing preliminary complexity analyses may currently be found only in the author's

working notes.

In the description of the operators A will be used as the first variable for an

operator and B will be used as the second variable for an operator.

A.1 Monadic Operators

Each processor execute the monadic function on the data elements contained within

it.
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A.2 Dyadic Operators

Each processor applies the function to combine the values with the same indices.

If either variable is not in the strict allocation scheme then it is rearranged before

invoking the dyadic operator.

A.3 Shape

The shape vector is broadcast to the processor array by the controller. Each pro-

cessor keeps only those elements of the vector which are mapped to that processor

A.4 Index

The index variable is broadcast by the controller to the processor array. Each

processor computes the range of elements that are mapped to that processor. The

processor will then create the data elements mapped to it.

A.5 Reshape

The shape of the source variable is broadcast to the processor array. Each processor

computes the ravel order index of the local elements. The reshape vector is then

broadcast to the processor array and to the controller. Each processor uses the

reshape vector to compute the new indices of each data element.

A.6 Take

Each processor modifies the index vector for the local elements according to the

broadcast take vector. If additional elements need to be created each processor will

create those elements which are mapped to it by the allocation scheme.
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A.7 Drop

Each processor modifies the index vector for the local elements according to the

broadcast take vector.

A.8 Assign

Each processor locally copies elements from the source variable to the destination

variable.

A.9 Ravel

The shape of the source variable is broadcast to the processor array by the controller.

Each processor computes the ravel order index of each local element.

A.10 Transpose

Each processor inverts the order of the indices associated with local elements.

A.11 Rotate

Each processor modifies the indices for the local elements according to the broadcast

rotate vector and the shape of the source element.

A.12 Membership

The second variable is rotated through all processors using a ring. Each processor

will then compare the values from the first argument and locally compute the result.
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A.13 Outer Product

Using two rings each variable is passed around the array. When a processor reads

in a data element that is to be used in a local computation then it is copied and

saved. Only those result elements which are to be stored in the local processor are

computed in that processor.

A.14 Catinate

Each processor modifies the indices of the second variable's local elements to directly

follow the elements of the first variable. The offset is computed from the broadcast

shape of the first variable.

A.15 Reduction

Linear

The linear arrangement of elements is induced from the indices of the data elements

and the values are sent over the interconnection network and forwarded as needed

to combine the data elements.

Tree

A binary tree is rooted at each node in the array. Those data elements which are

used in computing the result(s) for the i-th processor are then sent up the i-th tree.

As data elements meet at nodes of the tree they are combined and a single value is

sent to the parent.
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A.16 Compress

Using a binary tree the expression Ax+\A where A is the first argument is com-

puted. Each element of the expansion is then broadcast to the processors in the

array which need it. When an element of the expression is received the local indices

of data elements are modified if necessary.

A.17 Left Subscripting

As each index variable is broadcast to the array the local data value indices are

modified accordingly. The index variables are broadcast starting with the left index

and moving right.

A.18 Right Subscripting

As each index variable is broadcast to the array the local data value indices are

modified accordingly. The index variables are broadcast starting with the right

index and moving left.

A.19 Inner Product

Both variables are reshaped into matrices and laid out in a grid allocation scheme.

A modified version of the systolic matrix multiplication algorithm is then executed

and the result is reshaped to its correct final form.

A.20 Grade Up and Grad,-- Down

Grading is done by using a bitonic sorting algorithm. At each exchange step all

elements (or a subset of elements) are exchanged and the top (bottom) i elements
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are kept, where i is the number of elements in the processor which the exchange

was started.



Appendix B

Experiment Data

Two tables are presented in this appendix. The first table gives the raw data

obtained from the simulations. The numbers represent the total count of 10 cycles

during the evaluation of the program. One 10 cycle is a read, write, and execute

cycle used as the basic unit of time in the simulation program.
Gray Coded Ravel Order Partial Gray Coded 2-d Projection

One All Source One All Source One All Source One All Source

SORRB-8 2798 2798 2798 2992 2992 2992 3000 3000 3000 2588 2588 2588
SORRB-16 4002 4000 4000 4790 4788 4788 3602 3600 3600 4790 4788 4788
SORRB-32 8980 8558 8756 8978 8556 8556 8978 8556 8754 8976 8356 8356
GAUSS-8 287 228 233 260 215 222 302 241 256 304 238 278
GAUSS-16 843 611 671 821 589 649 1035 645 743 964 663 758
GAUSS-32 3212 1428 2147 3662 1475 2194 3466 1421 2140 2876 1488 1742
SOR-8 8780 8780 8780 8383 8383 8383 8383 8383 8383 8383 8383 8383
SOR-16 17989 17989 17989 17692 17692 17692 17889 17889 17889 17592 17592 17592
SOR-32 36601 36601 36601 36501 36501 36501 36501 36501 36501 37987 36501 36501
DESIGN 1614 1171 1563 1649 1199 1600 1617 1175 1567 1763 1246 1652
PRIM.64 4178 4178 4178 4176 4176 4176 4177 4177 4177 4176 4176 4176
PRIM.257 65812 65812 65814 65814 65814 65812 65812 65812 65814 65814 65814
Pm2.64 145 91 144 167 112 167 151 96 132 178 115 174
Pm2.256 442 128 347 497 181 402 453 138 357 560 186 411
Pm2.1024 1826 227 761 1924 326 863 1847 248 783 2248 333 878
Pm2.4225 7664 359 1386 7802 517 1543 7687 393 1419 9721 519 1561
FIB.32 640 476 516 643 484 520 633 476 514 653 470 489
FIB.60 687 476 517 692 486 526 689 479 518 )5 470 489
FIB.64 691 476 518 694 486 525 693 479 518 707 470 490
FIB.75 707 474 515 703 485 523 708 476 515 729 470 490
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This table gives the normalized data for the experiments run. The execution

times for each data set were divided by the minimum execution tim( for the data

set. This table has the same data that is presented in Figures 4.5-4.5.
Gray Coded Ravel Order Partial Gray Coded 2-d Projection

One All Source One All Source One All Source One All Source
SORRB-8 1.08 1.08 1.08 1.16 1.16 1.16 1.16 1.16 1.16 1.00 1.00 1.00
SORRB-16 1.1 1.11 1.11 1.33 1.33 1.33 1.00 1.00 1.00 1.33 1.33 1.33

SORRB-32 1.07 1.02 1.05 1.07 1.02 1.02 1.07 1.02 1.05 1.07 1.00 1.00
GAUSS-8 1.33 1.06 1.08 1.21 1.00 1.03 1.40 1.12 1.19 1.41 1.11 1.29
GAUSS-16 1.43 1.04 1.14 1.39 1.00 1.10 1.76 1.10 1.26 1.64 1.13 1.29
GAUSS-32 2.26 1.00 1.51 2.58 1.04 1.54 2.44 1.00 1.51 2.02 1.05 1.23
SOR-8 1.05 1.05 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SOR-16 1.02 1.02 1.02 1.01 1.01 1.01 1.02 1.02 1.02 1.00 1.00 1.00
SOR-32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.00
PRIM.64 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00
PRIM.257 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pm2.64 1.59 1.00 1.58 1.84 1.23 1.84 1.66 1.05 1.45 1.96 1.26 1.91
Prn2.256 3.45 1.00 2.71 3.88 1.41 3.14 3.54 1.08 2.79 4.38 1.45 3.21
Pm2.1024 8.04 1.00 3.35 8.48 1.44 3.80 8.14 1.09 3.45 9.90 1.47 3.87
Pm2.4225 21.32 1.00 3.86 21.73 1.44 4.30 21.41 1.09 3.95 27.08 1.45 4.35
FIB.32 1.36 1.01 1.10 1.37 1.03 1.11 1.35 1.01 1.09 1.39 1.00 1.04
FIB.60 1.46 1.01 1.10 1.47 1.03 1.12 1.47 1.02 1.10 1.48 1.00 1.04
FIB.64 1.47 1.01 1.10 1.48 1.03 1.12 1.47 1.02 1.10 1.50 1.00 1.04
FIB.75 1.50 1.01 1.10 1.50 1.03 1.11 1.51 1.01 1.10 1.55 1.00 1.04



Appendix C

APL Program Listings

C.1 SOR

The program SOR was written by the author. The program computes an approxi-

mate solution for AX = Y. The technique uses the partial solution for this iteration

in solving for the rest of the current iteration.

X+-A SOR Y;I;J;XOLD;XC;DIAG;N;NA

X+ (N+- pY) p3
DIAG- 1 1 0 A
NA4-AX(N)o .O tN
J3-1
LO :XOLD4-X
I -

LI:XC4- (Y[I] -NAI ;] +. x X) +DIAG [I]
X[I],-- (XCx W) +XOLD [I] x I-W
-(N>I,-I+I)/Li

-- ( (TOL< [/X-XDLD) A (MAXITER>J--J+ I) )/LO

C.2 SORRB

The program SORRB was written by the author. The program computes an ap-

proximate solution for AX = Y. The technique used is similar to the SOR program.
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However the results points are labeled red and black such that no two red points or

black points affect each other. This allows the system to solve each iteration in two

steps. The amount of parallelism in the system is greater than for the straight SOR

program with a corresponding restriction on the problems which can be solved.

X*--A SORRB Y;RDIAG;BDIAG;RA;BA;RX;BX;RY;BY;XOLD;XC;N
N -(pY) +2

RDIAG'-(1 00 (N,N)TA
RA+-(N,-N)TA
BDIAG--(I 1)0 (N,N)JA
BA.-(N,-N)IA
RY'-NTY
BY--NIY
RX+-Np3
BX+-Np3
J*--A
LO:
XOLD4-RX,BX
XC -(RY-RA+. xBX)+RDIAG
RX -(XC xW) +RXx I-W
XC- (BY-BA+. x RX) +BDIAG
BX*-- (XC x W) +BXx I-W
'J= ';J;' ';[/IXOLD-RX,BX
- ( (TOL< [/ IXOLD-RX, BX) A (MAXITER> J -J+ ))/LO

X--RX,BX

C.3 GAUSS

The program GAUSS was written by the author. The program computes an exact

solution for AX = Y, using gaussian elimination.

X4-A GAUSS Y, I;N;J;V;B

N+- pY
A--A,Y

LI:--(l"J-(<\O# (I-1)A[;I)/(I- 1)tN)/COMPUTE
-(O=pJ)/ERRORS
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V+-AI;]
A[I; I -A[J;I
A[J;I+-V
COMPUTE: B-(N, N+ i)pA EI;]
B[I;J+-0
A+-A-BX (0 (( pA)pAE;I) AEI;I]
-(NI--I+1)/Ll
X-A[;I]-(i,1) A

ERRORS:

C.4 PRIM

This program to compute prime numbers is taken from a lecture by. The lecture

may be found in APL Quote Quad Vol. 16, No. 2, December 1985.

A Prime number is one that is not found in the multiplication table of integers,

starting with 2. The program PRIM is a direct implementation of this statement.

Z --PRIM N;Q
Z 4-(-QEQo.xQ)/Q-1tN

C.5 PRIMTO

This program to compute prime numbers is taken from a lecture by . The lecture

may be found in APL Quote Quad Vol. 16, No. 2, December 1985.

The function PRIMTO finds all prime numbers up to some given number. It

uses successive reshapings to efficiently implement the sieve of Eratosthenes.

Z -PRIMTO N;S;M;NP;R
S+-N *0.5
M+- (N, )p ~NT1

NP -I
Li:
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NP--NP + M[2;]tl
S(NP>S) /L2
M+--((R4--[N-NP), NP)pM
MEl1tR; NP] -0
-LI

L2:
Z-(NpM)/tN

C.6 PRETTYPRINT

The PRETTYPRINT program was taken from APL Quote Quad Vol. 16, No. 2,

December 1985. The program was written by Ross Bettinger.

The program reformats a function definition exdenting the labels and separating

the comments from the code. It does this without the use of any loops making a

perfect example of what APL programs can do.

X*-PW PRETTYPRINT FCN;COLON; LABCOL;COMLIN; LABROW; LABMAT; LINE;WRAP; Z

a PURPOSE: FORMAT CR OF FCN INTO CHAR MATRIX FOR PRINTTING

" ACKNOWLEDGEMENT: THE IDEA FOR FORMATTING APL FCNS IN THIS MANNER IS

" DUE TO ADRIAN SMITH, AS PRESENTED IN HIS EXCELLENT BOOK,

" apl-a design handbook for commerical systems
" PUBLISHED BY JOHN WILEY AND SONS, 1982.

o FCN +-- NAME OF FCN TO BE FORMATTED
0 PW +---+ PRINT WIDTH OF FORMATTED FNC (_ 40 COLS)
010-1
FCN.- CR FCN
PW.-40 [PW
a ADD 'VI TO HEADER, BELOW FCN
FCN+-(1 2+pFCN)TFCN
FCN[I;tlIpFCN] -- 21'V ',FCN[1;]
FCNC1TpFCN; 1].-'V'
0 CREATE LINE NUMBERS
LINE+-(To (Z,1)ptZ--2 1TpFCN),']'

LINE--' [',[2] ( /' '=LINE)( LINE

LINE4-' ',[1]LINE,[1]' I

o ADJUST PW TO REFLECT LINE NO'S SPACE REQMTS
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PW*-PW- 1]pLINE
0 FIND COMMENT LINES TO BE ROTATED LEFT 1 COL
COMLIN.- '0'=FCN[; 1]

0 INSERT '-t' TO SET APART COMMANDS
Z,-. .5+((COMLINO, - 1COMLIN), COMLIN<O, -I COMLIN)/ (2xpCOMLIN) ptpCOMLIN
Z*-(((pCOMLIN)pi) , (pZ)pO) 1 (tpCOMLIN) ,Z]

FCNi--Z\[l]FCN
FCNEV' '=FCN[;1])/tITpFCN;1>+-'
COMLIN.- Ia'=FCNE; 1]
0 EXPAND LINE NO'S TO MATCH EXPANDED FCN

a FIND ROTATIONS FOR LABEL EXDENTATION

LABCOL-(9OMLIN)X+/Z,-V\0D<\':'=FCN
a SET UP MATRIX CONTAINING LINE LABELS ONLY

LABMAT'- (O<LABCOL) /[1]FCN E; t [/LABCOL]
LABMAT- (pLABMAT) pZ\ (Z,-, (pLABMAT) T (O<LABCOL) /[l](1)Q Z)/ ,LABMA
0 GET INDICES OF LINE LABELS

LABMAT-LABMATE' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkmnopzO2346789A'I
LABBJW- (LABCOL [Z] =+/LABMAT) /Z+-- (O<LABCOL) /tPLABCOL
a EXDENT LIKE LABELS ONLY
Z*- (TpFCN)pO
z [LABROW] '-1
a IF NO LINE LABELS, USE COMENT COLUMN
COLON-1+[F/LABCOL -LABCOLx Z
a RESHAPE FCN SO THAT 0~---* PWI 1jpFCN
WRAP- [( 1IpFCN) +:-PW
FCN.- ((WRAPx 1IpFCN) , PW) p((l TpFCN) , PWX WRAP) TFCN
0 CREATE EXPANSION VECTO TO MATCH WRAPPED FCN

Z<-- (I TpFCN) pWRLAPTI
0 EXDENT COMMENTS, LABELS IN RESHAPED FCN

FCN.--((Z\LABCOL).Z\COMLIN)O ((1TpFCN) ,-COLONIpFCN)TFCN
a PUT LINE NUMBERS ONTO FCN

a SAVE COL NO. OF LABEL COLONS, ' ft CHARS

COLON*-' 'pCOLON+1]lpLINE
a OMIT BLANK ROWS IN FCN
FCN<--(FCNV.54' ')/[1]FCN
a SKIP ONLY ONE LINE BTWN COMMENTS
X.-(:'AI(DZ-a '=FCN[;COLON+1])/[1]FCN
a REPLACE 'a' COMMENT LINE SEPARATOR WITH BLANK

Z4-'a'=X[;COLON+1]
XCZ/t1ipZ;COLON+1J1-'
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C.7 DESIGN

From APL Quote Quad Vol. 15, No. 3, March 1985. The program was written by

Carina Heiselbetz.

The program produces a tower chart (skyscraper diagram) for contingency ta-

bles.

Z4-DESIGN X;XY;N;M;Zl;Z2;Z3;Y;I;J
Z-(N--AjpX) FIELD M-1jpX
XX+4-iOOxx+[--/,x

Zi4--O[Z14---+r.IX [/,XX
Z-((ZI,IjpZ)p' 1),[13Z
J4-14-i
LOOP:
-*(XXCI;J]<O)/Ll
Z2-Z+A+7xI
Z3-(7xN-I+1)+17xJ

Y-Xi+ [Jix5+XEI L J

Z EZ2; Z3+3]-'/'
Z [Z2-tY; Z3+4J -' 1
ZEZ2-tY-i;Z3+3]*--
Z[Z2+i-tY;Z3+-2+A4J4-(Y,4)pJ I**I,
Li:

-(M J-J+i) /LOOP
-(N 1-I+J'-I) /LOOP

-END
L2:

Z4-Z21;Z3+tS]-'/- /

END:

Z[-ijpZ;9+ti7xM]-(i7xM)I,(0 1 6p'ABCDEF'),6 16p'I
I4-1
LS:

- (N> I -I +1) /LS
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A4-N FIELD M;I;J
At'-((7XN)+1,17XM)P'
J+-il+I-
Li:

A[1+7xN-I; (IX7)+tMXiT>4--'-)

L2:

A[(7xN)+2-J;J,J+7xtM]4--'/'


