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ABSTRACT

Computational analysis and results are reported for three problems.

(1) Development of a laminar boundary layer on both the windward and leeward
sides of a plate which is moved impulsively normal to its plane. The model of
inviscid flow outside the boundary layer includes a moving and intensifying line
vortex, which approximates the vortex spiral cast off from the edge of the

plate.

(2) Mutually-induced movement and interdiffusion of counter-rotéting viscous

line vortices, simulated by the random-vortex method.

(3) Development of flow separation on a slender elliptical cylinder, which is
impulsively set into rotation around its central axis, also simulated by the

random-vaortex method.




VORTICITY DISTRIBUTIONS IN UNSTEADY SEPARATING FLOWS

1. Introduction

On 15 May 1986, Grant No. AFQSR-86-0168 was issued to the University of
California at Berkeley, in response to a proposal for the "Development of
Systematic Criteria for the Prediction of Enhancement or Loss of Lift in
Unsteady Aerodynamics™. Funds were established at the University and work
started, at the beginning of August. A graduate research assistant, Michael
Dooley, was employed and assigned some warm-up tasks which would teach him the
Random-Vortex Method.

The initial guiding idea of the proposal was that one could hope to forsee
the conaitions under which large concentrations of vorticity, formed as the
result of a sudden pitching or heaving motion of a wing, would hold together and
stay close to the wing, or would be shredded apart and carried off downstream,
without doing an experimental test or detailed numerical simulation for each
case of interest. This idea is based on theoretical demonstrations of the
importance of the ratio of principal rate of deformation to vorticity in deter-
mining the outcome, and on the hope that one could acquire a feeling for the
factors which determine the size of this ratio, by studying a few well-selected
sample calculations. It was proposed to do these calculations with the
Random-Vortex Method, a scheme which automatically produces a vivid picture of
the evolving vorticity distribution, and which has a good record for realistic
simulations of separation on curved surfaces.

As a result of a long consultation with DOr. Larry Carr in the Spring of
1987, we decided to pay somewhat greater attention to the early development of
separation, for which boundary-layer analysis is relevant. I undertook some
sample calculations of unsteady boundary layers, while Mr. Dooley continued with

Random-Vortex calculations.




Because the numerical work for boundary-layer calculations is comparatively
easy and cheap, we already have a significant result, which was presented at the
Unsteady Separated Flow ﬂorkshop at the Air Force Academy last July, and which
is ready for publication. This is described in Section 1.

Mr. Dooley’s two warm-up problems have produced some intrinsically
interesting results, and have increased our familiarity with the Random Vortex
Method. These are described in Sections 3 and 4. The relevance of this initial
work to the objectives of the proposal, and our plans for future work, are
sketched in Section 5. An attempt is made there to relate our work to the other

activities reported at the Workshop.

2. Impulsively-started laminar flow around a sharp edge

A praliminary report of this study was given at the workshop; a substan-
tially complete account was sent in for publication in the workshop proceedings.
The version enclosed with this report has a few more references and a slightly
refinea discussion, resulting from consultations and correspondence with
Professors N. Rott at Stanford, H.K. Cheng at U.S.C., J.C. Williams III at
Auburn, J.D.A. Walker at Lehigh, and Dr. Dale Pullin of Queensland, Australia.

In the context of our proposal, this study was part of an effort to see
whether there may be some simple way to initialize a computational flow field at
a time just after a sudden change of airfeil incidence, knowing only the state
of the boundary layer (presumably attached) before the change, and the displace-
ment of the potential flow along the wall during the change. Such a procedure
was suggested many years ago by W.R. Sears, and is mentioned in the book on

unsteady viscous flow by D.P. Telionis.




I was soon convinced, especially by the calculation of H.J. Lugt and
S. Ohring (JFM 79 127-156 (1977)) that a typical potential flow history would
involve the casting-off ¢f a starting vortex from the trailing edge, and that
this vortex would grow to significant strength and move significantly away from
the edge by the time a certain angular displacement was reached, no matter how
rapid the angular displacement. The effect of such a vortex on the boundary
layer had, as far as I know, never been studied. My model problem was an
attempt to study it, wnich soon acquired a fascination of its own. I have not

yet made much of it, in the context that inspired it.

3) Mutually-propelling, interdiffusing line vortices

To familiarize Mr. Dooley with the Random-vortex Method in the simplest
possible context, we have undertaken to simulate the evolution of a viscous flow
which consists initially of two counter-rotating, infinitely concentrated
parallel line vortices in an infinite surrounding fluid. The initial vortices
are equally strong, having circulation + I, they are initially separated by a
distance H. From these parameters, we derive natural scales for velocity, IYH,
and for time, Hz/bﬂ If density and viscosity are constants, the flow will be
governed by the value of a single dimensionless parameter, IY v where v is the
kinematic viscosity.

If the flow is hydrodymamically stable, the vortices will diffuse, while
drifting along in a direction normal to the line connecting their original posi-
tions. The drift velocity will gradually fall away to zero, as the vortices
weaken each other by interdiffusion. This problem has been recently attacked by

Professors Rott and Cantwell at Stanford, by analysis of approximations

appropriate to either very small, of very large, dimensionless times.




In the Random-Vortex Method, the circulation of each initial vortex is
apportioned equally among a fairly large number, N, of computational elements
called vortex blobs. The vorticity assigned to each element is spread out in an
axially-symmetric distribution, designed to avoid the singularity associated
with a potential line vortex. For example, the vorticity may have uniform
strength within a circle of radius § and be zero elsewhere. As the simulation
evolves through a small discrete time step, At, each blob is given

1) a convective displacement, due to the velocity induced at its axis by

all the other blabs, and

2) a diffusive displacement, drawn at random from a Gaussian distribution

with zero mean and variance 2vAt.

The simulated flow field thus depends on the values of three computational
parameters, N, §/H, and vAt/HZ, besides that of the physical parameter IYv.
Because of the stochastic simulation of viscous diffusion, the outcome also
depends on the point of entry to the computer’s string of random numbers.
Finally, the simulated results depend on the choice of time-integrating scheme,
and on techniques which can be employed to reduce the number of operations
required for accurate evaluation of the velocity induced on each element.

Although much theoretical and computational study has been devoted to
issues of convergence of vortex-blob simulations of non-diffusive flows, one
cannot yet turn to the literature to discover what values of our computational
parameters would guarantee a certain level of accuracy in simulation of a flow
which involves, as this does, a strong interaction of convection and diffusion.
Neither can one be sure of the effects of various choices of integration scheme
or of schemes to economize on calculations. Mr. Dooley is exploring these

issues.




Actually, this warm-up problem has considerable intrinsic, if academic
interest. It may also be not so far afield from the main theme of our research
as might appear at first glance. The principal question of interest is whether
the two vortices merely blend together into a sort of decaying viscous vortex
doublet, which drifts as a decelerating, but compact unit; or whether, perhaps
for higher values of IYv, part of each vortex is expelled at some time, to trail
along behind the main vortex pair. If the latter scenario appears, we should
like to know whether we could have predicted it, at least somewhat in advance,
by observing locally increasing ratios of deformation rate to vorticity. Also,
nothing at all is known about the stability of this flow, even against entirely
two-dimensional disturbances. The traditional framework of instability analysis
seems to offer little hope of a result, but the Random-Vortex Method may offer
an interesting alternative approach.

If it is, as we hope, possible to show the existence of a range of com-
putational parameters within which further refinements of parameters (increase
of N, decrease of §/H and orzzAt/Hz) and/or changes of the point of entry to a
random-number string produce no significant changes in the trajectory of the
centroid of each collection of blobs, we should conclude that the flow is physi-
cally stable, at least against two-dimensional disturbances. We assume that,
since the Random-Vortex Method continually injects small accidental disturbances
of the vorticity pattern, which will be different for each choice of com-
putational parameters and for each sequence of random numbers, no demonstration
of computational convergence will be possible for a physically unstable flow.

what we have discovered so far was somewhat unexpected, but not too hard to
explain. At the very early times, when the vortex blobs from each initial point

form a compact cloud, the motion of the centroid of each cloud is significantly




affected by statistical fluctuations of the mean of the random displacements
drawn at each time step. Although these are drawn from a population with zero
mean, the experimental mean values, for samples of size N, from a population
with variance 2 At/N.

At these same early times, the convective displacement of the centroid of a
cloud equals about IAt/27H. The ratio of a likely statistical displacement of

the centroid, AXg, to this convective displacement, AX., is thus

AXc r NAT
where AT =1)At/H2 is the dimensionless time step. Thus, at least at early
times, the random-walk simulation of viscous diffusion will significantly
distort the trajectories of the centroids, especially for small values of IV,
unless NAT is kept suitably large.

The question that arises immediately is whether these distortions ars
significantly amplified by convection, i.e. is the flow hydrodynamically
unstable? Our tentative conclusion is that they are not amplified if IYv = 10,
they may be slightly amplified if IY'v = 100, and they are dramatically amplified
if I¥Yv = 1000. These conclusions came from a small collection of calculations,
in all of which NAT equalled either 1 or 1/4. It is interesting that the symp-
toms of amplification, mainly a growing lack of symmetry about the x - axis,
were strongest when AX./AX, was least.

We have taken one obvious step to investigate this phenomenon, by forcing
the mean random displacement of each vortex cloud to be zero at each time step.
This was done by subtracting the observed, non-zero, mean displacement from the
displacement of each blob. To our surprise, this had almost no effect on the

evolution of the flow field, including the gross asymmetries observed when




IYv = 1000. The next step will be to enforce symmetry about the x-axis, by
letting every blob below the axis move as a mirror image of a blob above it.

At the present time; these computations are in abeyance while the computer
programs are restructured to take better advantage of the parallel-processing
capability of the CRAY computer. By consultation with Dr. Scott Baden of
Lawrence Berkeley Laboratory, we have ascertained that we may expect to speed
the calculations up by a factor as much as ten.

The qualitative behavior of the vortex clouds seems the same at IYv = 10
and 1000, with the vorticity moving as a compact cloud. In all runs done for
IY. = 1000, a distinct tail of vorticity is left behind the main cloud.

Figure 1 shows a typical, nearly symmetric distribution of vortex blobs
when IY.= 100, and Vt/H? = 0.5. Figure 2 shows the x-progress of the centroid
of vorticity for five different runs at IYv = 100, and one run at IY v= 10. Two
runs for IY. = 100 used N = 1000; the other three used N = 250. The run at
IYy = 10 used N = 250, All used AT = 1/1000 and §/H = 1/10. Different results
for the same values of IV and N result from different points of entry to the
computer’s random-number string. Figure 3 shows the temporal evolution of the
blob pattern for IYv = 1000, N = 1000, AT = 1/1000.

Because of the intrinsic interest of this problem, both for an
understanding of the random-vortex method, and as a model of an unfamiliar kind
of hydrodynamic instability, it may be developed into a Master’s thesis for Mr.
Dooley. He will, however, continue toward the main objective of an investiga-
tion of unsteady separating flow.

A second warm-up problem, substantially closer to the real thing because it
involves the imposition of no-slip and no-penetration conditions on a non-

trivially moving solid wall, has been worked on in parallel with the vortex-pair




prablem. It was selected for its representative degree of difficulty, and
because it has been w~ell analyzed previously by finite-difference methods.*

We have chosen to meet the no-penetration condition by the use of image
vortex blobs in a conformally-transformed flow, in which the wall is a circle.
The alternative, of using singularity panels inside the ellipse in the physical
plane, is in many ways attractive, but was rejected because of our fear that it
would not work well for airfoils with sharp trailing edges.

Many new computational-design issues are raised by the need to meet the no-
slip condition on a surface with widely variable curvature. This condition is
satisfied by each time step, at a discrete number of test points on the surface,
by the introduction of sheet-like vorticity elements. These elements, like the
blobs, can be designed in various ways. They are used only in a thin layer next
to the surface, affect the convection of only those other sheets that lie bet-
ween them and the wall, and diffuse by random walk anly in the direction normal
to the wall. When a sheet moves far enough from the wall, so that the probabi-
lity of its moving back to it by a single random step is small, it undergoes a
metamorphosis into a blob. We have been distributing the zero-slip test points
uniformly around the circle in the transformed plane, Secause that brings them
close together near the separation points in the physical plane.

After a series of debugging runs, our application of the Random vortex
Method to this problem seems to be successful. Figure 4 shows the disposition
of vortex blobs and sheets when the ellipse has rotated through an angle of
three degrees. The points at which the no-slip condition is enforced are indi-

cated by filled circles on the surface of the ellipse. At the time of the pic-

*_ugt and Ohring (1973) op. cit.




ture, there are 1550 vortex elements. This number increases steadily with time
- the initial number of computational elements (all sheets) was 324. The number
of time steps used to reéch this state was 10, requiring 228 CRAY seconds.

4) Summary, and prospects for the original proposal.

I must admit that I think it unlikely that our line of investigation is
going to make an early contribution to the practical objectives of the program
that was reviewed at the 1987 Workshop on Unsteady Separated Flow. It is taking
us too long to attain a trustworthy computational capability, even for flows
which others have already simulated by other means.

Our idea, that we might be able to forsee the future evolution of a vor-
ticity pattern without detailed calculation, by watching the evolution of the
ratio of strain rate to vorticity, has not yet proved to be very helpful. It
did suggest, correctly, that éhe interdiffusing vortex pair of the first warmup
problem would develop a trailing wake of vorticity at seme value of IYy, but it
did not forewarn us of the dramatic instability of the trajectory of the vortex
pair.

On the other hand, the demonstration of the trajectory instability seems to
be of considerable intrinsic interest. It may be related to the observed mean-
dering of jets and plumes or to the onset of asymmetric vortex shedding behind a
suddenly accelerated, nominally symmetric aerodynamic body.

I believe that our work on boundary layers near an edge that is casting off
a vortex provides a nice supplement to the work of Professor Cebeci*, who has
been focusing on transient boundary layers near a rounded leading edge. Two-
dimensional, transient, laminar boundary layers can be faithfully described com-

putationally, up to the time of separation.

*Reference to his talk at the Colorado Springs Workshop.
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APPENDIX

Vectorization of Code for Random-Vortex Method

Introduction: When the Random-vVortex code that we had been using on an IBM 3091
was installed on the local CRAY XMP, initial results were disappointing.

Specifically, run times were longer than expected.

After consultation with Dr. Scott Baden, who has great experience with the
execution of discrete-vortex algorithms on parallel processors, and further con-
sultation with the local CRAY staff, we were able to rearrange the code so that
it could be more comprehensively vectorized, with a resulting five-to ten-

fold increase in speed.

Our implementation of the Random Vortex Method (RVM) includes, like most
modern RVM codes, a strategy for grouping vortex elements that occupy a given
spatial cell, so that their effect on elements in distant cells may be effi-
ciently computed. This has well-known advantages, but the necessafy sorting of
elements, to decide which cell they are in and which other cells are close or
distant neighbors, involves the use of many IF statements which inhibit vec-
torization. Also, at least on our local CRAY, a DO-loop in which there is more

than one cell for a random number cannot be vectorized.

When these difficulties are recognized, the code can be rearranged to avoid
as many of them as possible. For example, we calculate induced velocities for
all vortex elements in a DO-loop which cannot be vectorized, and then calculate

the resulting convective displacements in a second DO-loop, which can be

vectorized.
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We believe that our present code is vectorized to a nearly optimal degree,
with one conspicuous exception. Our choice of a ™core function™ for each vortex
element, which makes the mutual interaction of such elements non-singular as
their separation approaches zero, involves a discontinuous distribution of vor-
ticity: @ = IYﬂcz ifr<o,Q=01if r > g . This choice is implemented in the
code by another IF statement sending the calculation on to different formulas

depending on the magnitude of the separation.

This last IF statement can be avoided by use of one of several continuous
distributions of vorticity for an element. Several examples, by Krasny, and by
Beale and Majda, are in the literature. They require slightly ~ore calculation

per element, but allow a greater degree of vectorization.




