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ABSTRACT

Computational analysis and results are reported for three problems.

(1) Development of a laminar bounoary layer on both the windward and leeward

sides of a plate which is moved impulsively normal to its plane. The model of

inviscid flow outside the boundary layer includes a moving and intensifying line

vortex, which approximates the vortex spiral cast off from the edge of the

plate.

(2) Mutually-inauced movement and interdiffusion of counter-rotating viscous

line vortices, simulated by the random-vortex method.

(3) Development of flow separation on a slender elliptical cylinder, which is

impulsively set into rotation around its central axis, also simulated by the

random-vortex method.



VORTICITY DISTRIBUTIONS IN UNSTEADY SEPARATING FLOWS

1. Introduction

On 15 May 1986, Grant No. AFOSR-86-0l68 was issued to the University of

California at Berkeley, in response to a proposal for the "Development of

Systematic Criteria for the Prediction of Enhancement or Loss of Lift in

Unsteady Aerodynamics". Funds were established at the University and work

started, at the beginning of August. A graduate research assistant, Michael

Dooley, was employed and assigned some warm-up tasks which would teach him the

Random-Vortex Method.

The initial guiding idea of the proposal was that one could hope to forsee

the conoitions under which large concentrations of vorticity, formed as the

result of a sudden pitching or heaving motion of a wing, would hold together and

stay close to the wing, or would be shredded apart and carried off downstream,

without doing an experimental test or detailed numerical simulation for each

case of interest. This idea is based on theoretical demonstrations of the

importance of the ratio of principal rate of deformation to vorticity in deter-

mining the outcome, and on the hope that one could acquire a feeling for the

factors which determine the size of this ratio, by studying a few well-selected

sample calculations. It was proposed to do these calculations with the

Random-Vortex Method, a scheme which automatically produces a vivid picture of

the evolving vorticity distribution, and which has a good record for realistic

simulations of separation on curved surfaces.

As a result of a long consultation with Dr. Larry Carr in the Spring of

1987, we decided to pay somewhat greater attention to the early development of

separation, for which boundary-layer analysis is relevant. I undertook some

sample calculations of unsteady boundary layers, while Mr. Dooley continued with

Random-Vortex calculations.
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Because the numerical work for boundary-layer calculations is comparatively

easy and cheap, we already have a significant result, which was presented at the

Unsteady Separated Flow Workshop at the Air Force Academy last July, and which

is ready for publication. This is described in Section 1.

Mr. Dooley's two warm-up problems have produced some intrinsically

interesting results, and have increased our familiarity with the Random Vortex

Method. These are described in Sections 3 and 4. The relevance of this initial

work to the objectives of the proposal, and our plans for future work, are

sketched in Section 5. An attempt is made there to relate our work to the other

activities reported at the Workshop.

2. Impulsively-started laminar flow around a sharp edge

A preliminary report of this study was given at the workshop; a substan-

tially complete account was sent in for publication in the workshop proceedings.

The version enclosed with this report has a few more references and a slightly

refinea discussion, resulting from consultations and correspondence with

Professors N. Rott at Stanford, H.K. Cheng at U.S.C., J.C. Williams III at

Auburn, J.D.A. Walker at Lehigh, and Dr. Dale Pullin of Queensland, Australia.

In the context of our proposal, this study was part of an effort to see

whether there may be some simple way to initialize a computational flow field at

a time just after a sudden change of airfoil incidence, knowing only the state

of the boundary layer (presumably attached) before the change, and the displace-

ment of the potential flow along the wall during the change. Such a procedure

was suggested many years ago by W.R. Sears, and is mentioned in the book on

unsteady viscous flow by D.P. Telionis.
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I was soon convinced, especially by the calculation of H.J. Lugt and

S. Ohring ( YM 79 127-156 (1977)) that a typical potential flow history would

involve the casting-off Qf a starting vortex from the trailing edge, and that

this vortex would grow to significant strength and move significantly away from

the edge by the time a certain angular displacement was reached, no matter how

rapid the angular displacement. The effect of such a vortex on the boundary

layer had, as far as I know, never been studied. My model problem was an

attempt to study it, which soon acquired a fascination of its own. I have not

yet made much of it, in the context that inspired it.

3) Mutually-propelling, interdiffusing line vortices

To familiarize Mr. Dooley with the Random-Vortex Method in the simplest

possible context, we have undertaken to simulate the evolution of a viscous flow

which consists initially of two counter-rotating, infinitely concentrated

parallel line vortices in an infinite surrounding fluid. The initial vortices

are equally strong, having circulation ± P, they are initially separated by a

distance H. From these parameters, we derive natural scales for velocity, WYH,

and for time, H2/2;. If density and viscosity are constants, the flow will be

governed by the value of a single dimensionless parameter, /v where v is the

kinematic viscosity.

If the flow is hydrodynamically stable, the vortices will diffuse, while

drifting along in a direction normal to the line connecting their original posi-

tions. The drift velocity will gradually fall away to zero, as the vortices

weaken each other by interdiffusion. This problem has been recently attacked by

Professors Rott and Cantwell at Stanford, by analysis of approximations

appropriate to either very small, of very large, dimensionless times.
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In the Random-Vortex Method, the circulation of each initial vortex is

apportioned equally among a fairly large number, N, of computational elements

called vortex blobs. The vorticity assigned to each element is spread out in an

axially-symmetric distribution, designed to avoid the singularity associated

with a potential line vortex. For example, the vorticity may have uniform

strength within a circle of radius 6 and be zero elsewhere. As the simulation

evolves through a small discrete time step, At, each blob is given

1) a convective displacement, due to the velocity induced at its axis by

all the other blobs, and

2) a diffusive displacement, drawn at random from a Gaussian distribution

with zero mean and variance 2vAt.

The simulated flow field thus depends on tne values of three computational

parameters, N, 6/H, and vAt/H2 , besides that of the physical parameter rYv.

Because of the stochastic simulation of viscous diffusion, the outcome also

depends on the point of entry to the computer's string of random numbers.

Finally, the simulated results depend on the choice of time-integrating scheme,

and on techniques which can be employed to reduce the number of operations

required for accurate evaluation of the velocity induced on each element.

Although much theoretical and computational study has been devoted to

issues of convergence of vortex-blob simulations of non-diffusive flows, one

cannot yet turn to the literature to discover what values of our computational

parameters would guarantee a certain level of accuracy in simulation of a flow

which involves, as this does, a strong interaction of convection and diffusion.

Neither can one be sure of the effects of various choices of integration scheme

or of schemes to economize on calculations. Mr. Dooley is exploring these

issues.
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Actually, this warm-up problem has considerable intrinsic, if academic

interest. It may also be not so far afield from the main theme of our research

as might appear at first.glance. The principal question of interest is whether

the two vortices merely blend together into a sort of decaying viscous vortex

doublet, which drifts as a decelerating, but compact unit; or whether, perhaps

for higher values of IYv, part of each vortex is expelled at some time, to trail

along behind the main vortex pair. If the latter scenario appears, we should

like to know whether we could have predicted it, at least somewhat in advance,

by observing locally increasing ratios of deformation rate to vorticity. Also,

nothing at all is known about the stability of this flow, even against entirely

two-dimensional disturbances. The traditional framework of instability analysis

seems to offer little hope of a result, but the Random-Vortex Method may offer

an interesting alternative approach.

If it is, as we hope, possible to show the existence of a range of com-

putational parameters within which further refinements of parameters (increase

of N, decrease of S/H and orv At/H 2 ) and/or changes of the point of entry to a

random-number string produce no significant changes in the trajectory of the

centroid of each collection of blobs, we should conclude that the flow is physi-

cally stable, at least against two-dimensional disturbances. We assume that,

since the Random-Vortex Method continually injects small accidental disturbances

of the vorticity pattern, which will be different for each choice of com-

putational parameters and for each sequence of random numbers, no demonstration

of computational convergence will be possible for a physically unstable flow.

What we have discovered so far was somewhat unexpected, but not too hard to

explain. At the very early times, when the vortex blobs from each initial point

form a compact cloud, the motion of the centroid of each cloud is significantly
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affected by statistical fluctuations of the mean of the random displacements

drawn at each time step. Although these are drawn from a population with zero

mean, the experimental mean values, for samples of size N, from a population

with variance 2 At/N.

At these same early times, the convective displacement of the centroid of a

cloud equals about rt/2irH. The ratio of a likely statistical displacement of

the centroid, AXs, to this convective displacement, AXc, is thus

Xs ='(-)
AXc
AX P NAT

where AT = At/H2 is the dimensionless time step. Thus, at least at early

times, the random-walk simulation of viscous diffusion will significantly

distort the trajectories of the centroids, especially for small values of Iv,

unless NAT is kept suitably large.

The question that arises immediately is whether these distortions are

significantly amplified by convection, i.e. is the flow hydrodynamically

unstable? Our tentative conclusion is that they are not amplified if !Yv = 10,

they may be slightly amplified if IYv = 100, and they are dramatically amplified

if Vv = 1000. These conclusions came from a small collection of calculations,

in all of which NAT equalled either I or 1/4. It is interesting that the symp-

toms of amplification, mainly a growing lack of symmetry about the x - axis,

were strongest when AXs/AXC was least.

We have taken one obvious step to investigate this phenomenon, by forcing

the mean random displacement of each vortex cloud to be zero at each time step.

This was done by subtracting the observed, non-zero, mean displacement from the

displacement of each blob. To our surprise, this had almost no effect on the

evolution of the flow field, including the gross asymmetries observed when
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l"/v 1000. The next step will be to enforce symmetry about the x-axis, by

letting every blob below the axis move as a mirror image of a blob above it.

At the present time, these computations are in abeyance while the computer

programs are restructured to take better advantage of the parallel-processing

capability of the CRAY computer. By consultation with Dr. Scott Baden of

Lawrence Berkeley Laboratory, we have ascertained that we may expect to speed

the calculations up by a factor as much as ten.

The qualitative behavior of the vortex clouds seems the same at 1'/v = 10

and 1000, with the vorticity moving as a compact cloud. In all runs done for

= 000, a distinct tail of vorticity is left behind the main cloud.

Figure I shows a typical, nearly symmetric distribution of vortex blobs

when I'/,,= 100, and -t/H2 = 0.5. Figure 2 shows the x-progress of the centroid

of vorticity for five different runs at lYv = 100, and one run at l v= 10. Two

runs for IY = 100 used N = 1000; the other three used N = 250. The run at

ly, = 10 used N = 250. All used AT = 1/1000 and 6/H = 1/10. Different results

for the same values of I'/v and N result from different points of entry to the

computer's random-number string. Figure 3 shows the temporal evolution of the

blob pattern for 11/v = 1000, N = 1000, AT = 1/1000.

Because of the intrinsic interest of this problem, both for an

understanding of the random-vortex method, and as a model of an unfamiliar kind

of hydrodynamic instability, it may be developed into a Master's thesis for Mr.

Dooley. He will, however, continue toward the main objective of an investiga-

tion of unsteady separating flow.

A second warm-up problem, substantially closer to the real thing because it

involves the imposition of no-slip and no-penetration conditions on a non-

trivially moving solid wall, has been worked on in parallel with the vortex-pair
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problem. It was selected for its representative degree of difficulty, and

because it has been well analyzed previously by finite-difference methods.*

We have chosen to meet the no-penetration condition by the use of image

vortex blobs in a conformally-transformed flow, in which the wall is a circle.

The alternative, of using singularity panels inside the ellipse in the physical

plane, is in many ways attractive, but was rejected because of our fear that it

would not work well for airfoils with sharp trailing edges.

Many new computational-design issues are raised by the need to meet the no-

slip condition on a surface with widely variable curvature. This condition is

satisfied by each time step, at a discrete number of test points on the surface,

by the introduction of sheet-like vorticity elements. These elements, like the

blobs, can be designed in various ways. They are used only in a thin layer next

to the surface, affect the convection of only those other sheets that lie bet-

ween then and the wall, and diffuse by random walk only in the direction normal

to the wall. When a sheet moves far enough from the wall, so that the probabi-

lity of its moving back to it by a single random step is small, it undergoes a

metamorphosis into a blob. We have been distributing the zero-slip test points

uniformly around the circle in the transformed plane, because that brings them

close together near the separation points in the physical plane.

After a series of debugging runs, our application of the Random Vortex

Method to this problem seems to be successful. Figure 4 shows the disposition

of vortex blobs and sheets when the ellipse has rotated through an angle of

three degrees. The points at which the no-slip condition is enforced are indi-

cated by filled circles on the surface of the ellipse. At the time of the pic-

*Lugt and Ohring (1973) op. cit.



9.

ture, there are 1550 vortex elements. This number increases steadily with time

- the initial number of computational elements (all sheets) was 324. The number

of time steps used to reach this state was 10, requiring 228 CRAY seconds.

4) Summary, and prospects for the original proposal.

I must admit that I think it unlikely that our line of investigation is

going to make an early contribution to the practical objectives of the program

that was reviewed at the 1987 Workshop on Unsteady Separated Flow. It is taking

us too long to attain a trustworthy computational capability, even for flows

which others have already simulated by other means.

Our idea, that we might be able to forsee the future evolution of a vor-

ticity pattern without detailed calculation, by watching the evolution of the

ratio of strain rate to vorticity, has not yet proved to be very helpful. It

did suggest, correctly, that the interdiffusing vortex pair of the first warmup

problem would develop a trailing wake of vorticity at same value of l/v , but it

did not forewarn us of the dramatic instability of the trajectory of the vortex

pair.

On the other hand, the demonstration of the trajectory instability seems to

be of considerable intrinsic interest. It may be related to the observed mean-

dering of jets and plumes or to the onset of asymmetric vortex shedding behind a

suddenly accelerated, nominally symmetric aerodynamic body.

I believe that our work on boundary layers near an edge that is casting off

a vortex provides a nice supplement to the work of Professor Cebeci*, who has

been focusing on transient boundary layers near a rounded leading edge. Two-

dimensional, transient, laminar boundary layers can be faithfully described com-

putationally, up to the time of separation.

*Reference to his talk at the Colorado Springs Workshop.
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APPENDIX

Vectorization of Code for Random-Vortex Method

Introduction: When the Random-Vortex code that we had been using on an IBM 3091

was installed on the local CRAY XMP, initial results were disappointing.

Specifically, run times were longer than expected.

After consultation with Dr. Scott Baden, who has great experience with the

execution of discrete-vortex algorithms on parallel processors, and further con-

sultation with the local CRAY staff, we were able to rearrange the code so that

it could be more comprehensively vectorized, with a resulting five-to ten-

fold increase in speed.

Our implementation of the Random Vortex Method (RVM) includes, like most

modern RVM codes, a strategy for grouping vortex elements that occupy a given

spatial cell, so that their effect on elements in distant cells may be effi-

ciently computed. This has well-known advantages, but the necessary sorting of

elements, to decide which cell they are in and which other cells are close or

distant neighbors, involves the use of many IF statements which inhibit vec-

torization. Also, at least on our local CRAY, a DO-loop in which there is more

than one cell for a random number cannot be vectorized.

When these difficulties are recognized, the code can be rearranged to avoid

as many of them as possible. For example, we calculate induced velocities for

all vortex elements in a DO-loop which cannot be vectorized, and then calculate

the resulting convective displacements in a second DO-loop, which can be

vectorized.

I
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We believe that our present code is vectorized to a nearly optimal degree,

with one conspicuous exception. Our choice of a :core function" for each vortex

element, which makes the mutual interaction of such elements non-singular as

their separation approaches zero, involves a discontinuous distribution of vor-

ticity: a = /M 2  if r : a, 0 = 0 if r > a . This choice is implemented in the

code by another IF statement sending the calculation on to different formulas

depending on the magnitude of the separation.

This last IF statement can be avoided by use of one of several continuous

distributions of vorticity for an element. Several examples, by Krasny, and by

Beale and Majda, are in the literature. They require slightly more calculation

per element, but allow a greater degree of vectorization.


