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SUMMARY

This report describes the development of a computerized pilot decision-
making simulator/trainer known as MIDIS, and its utilization as a research
tool in the validation of an information-processing model of pilot decision
making. Efforts in this project followed two parallel but interacting tracks:
development of decision scenarios for the MIDIS program, following the
sequence of a realistic IFR flight, and compilaticn of a cognitive test
batterv, based on an information processing model of decision making, and
designed to assess individual differences in those cognitive attributes
determined to be important in effective decision making.

Subjects consisted of thirty eighi instrument rated pilots subdivided
into two groups on the basis of reported hours of flight experience. The
experiment consisted of four parts: administration of the cognitive test
battery, pre-flight planning, a practice flight, and the actual MIDIS run.
Subjects were scored as to the optimality and latency of their choices, and
their rated confidence.

The results indicated that low and high experienced pilots did not differ
{rom each other in terms of their judgment performance, but that high
experienced pilots expressed slightly greater confidence in their decisions
Both proups became equally overconfident on their responses to more difficult
decision problems. The two groups however did differ in terms of what problem
variables degraded decision performance, and what individual abilities
affected that performance. In particular, novice decision performance wis
partially predicted by information processing tests related to spatial
abiliticvs, working memory capacity, mathematical ability and by tests of
diclarative knowledge. However, these tests had little predictive abilities
for :he.more experienced pilots. The implications for future research that

fccuses on capturing this source of prediction of experienced pilot judgment

are discussed. | © BEST AVAILABLE COPY
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1. INTRODUCTION

1.1 Qverview

Engineering Psychology has provided a number of useful and sophisticated
models of human performance in certain aviation-relevant areas. Most
prominent among these concerns is the extensive work fhat has been done on
modeling manual control. The programmatic efforts to develop the quasi-linear
Crossover Model undertaken by McRuer, Jex, and their colleagues (McRuer, 1980;
McRuer & Jex, 1967), and the efforts of Levison (1982) tec develop the Optimal
Control Model have both achieved a great deal of success in predicting
quantitatively how human manual control performance can be modeled, will
degrade under stress, and will improve with training. While it is anticipated
that manual control will continue to be a critical component in aviation, with
increasing aircraft sophistication the pilot is now called upon to become more
and more a systems manager and executive decision maker, Certainly a pilot'’s
judgment and decision making abilities are critical to air safety. Analysis
of FAA aircraft reports by Jensen and Benel (1977) suggested that errors in
pilot judgment accounted for over 50X of pilot fatalities during the period
from 1970-74. Yet despite this importance, pilot decision making has received
only a minimum degree of research interest (for exceptions see Buch & de
Bagheera, 1985; Buch & Diehl, 1984; Jensen, 198l; Lester, Diehl, & Buch,
1985). Nor has pilot judgment benefited from the sophisticated modeling
approaches characteristic of the manual control field. This neglect is even
more surprising in light of the growing amount of solid theory-based research
in the psychology of decision and choice (see Einhorn & Hogarth, 1981;
Kahneman, Slovic, & Tversky, 1982, Pitz & Sachs, 1984; for recent reviews),
and the limited understanding of decision making on the flight deck (Stone,

Babcock, & Edmunds, 1985).
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The first section of this report will focus upon conclusions regarding
human strengths and limitations in decision making that have been drawn from
general research. Where possible these factors will be illustrated in the
framework of aviation-related tasks, but for the most part their actual
investigation in an aviation context has not been carried out. The second
section describes a pilot decision making simulation system known as MIDIS
used for validating an information processing model of pilot judgment, and a
cognitive test battery developed for the purposes of testing individual
differences in that model. The third section describes an experiment in which
the relation between the model, the battery, and the simulation is validated.
1.2 Pilot Decision Making

There are three general characteristics that define the decision-making
paradigm. First, the pilot must evaluate several sources of information in
assessing the situation, or understanding the current state of the "world."
This assessment forms the basis for choosing an appropriate action. Second,
the information the pilot deals with is probabilistic. The cues used for
situation assessment may be unreliable (e.g., a weather forecast predicts a
20% chance of thunderstorms), and the projected consequences of an action into
the future are uncertain. This probabilistic element means that the right
decision can often produce an unfortunate outcome ("bad luck") and the wrong
decision can often "luck out." Third, the elements of value and cost underlie
most decisions. For example, the pilot may have to balance the benefit of
continuing a flight through bad weather and satisfying the passengers’ need to
reach their destination on time, against the potential greater cost of an
accident,

Figure 1 presents a general model of human decision making that
highlights the information processing components which are relevant to

decision-making. To the left of the figure, environmental cues are sampled to



Perception

and - <«
Attention e | e s o o s en” o et ot ————
Working Criterion |
Memory Setting |
l I
|
]

Situation

. (Diagnosis)

= ||

e

Hypothesis ‘Action |
Generation Generation /|
~— ~ I

L e e e e o o o v o e o o]

Risk Assessment

Long Term Memory

[
.
L}
.
(]
[
.
[]
.
[}
[
.
..
.
]
L)
.
*
.
.
.
[
[}
L)
.
.

[s] saltence Availability

@ Representativeness Confirmation Bias

"Ag IE" 4 Framing
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obtain a "situation assessment" or diagnosis of the state-of-the-world that
calls for a decislion. An accurate assessment often requires perception of a
large number of cues--radar pictures, weather forecasts, visual topographic
features, fuel consumption, engine status, alrport capabilities and so forth.
These cues in turn must be interpreted against a knowledge base in long-term
memory to accurately construct a mental model or diagnosis of the situation,
Possible alternative hypotheses that describe the situation are generated from
long term-memory, held in working memory, and compared against the cues. As
we shall see, this construction process is hampered both by limits of
attention (are relevant cues processed?), and by biases in long term memory.

Assuming that the assessed situation is identified as a problem that
requires some action, the pilot must then generate plausible alternative
courses of action to take. For example, the pilot may ask, "Do I continue my
approach, fly around while seeking more information, or turn back to an
alternate airgprt?" Each proposed course of action may have a different
anticipated set of possible outcomes, depending upon the diagnosed state-of-
the-world. Furthermore, all of these outcomes will have potential values
associated with them (or costs, which may be defined as negative wvalues). The
expected value of an outcome is its true value multiplied by the probability
that it might occur. When values cannot be expressed in monetary terms they
are called utilities. The pilot’s choice or decision should be that which
produces the most positive, or least negative expected utility. As indicated
in the figure, this critical choice point involves the process of risk
assessment--the subjective evaluation of the protability of different
outcomes--and the assessment of the utilities of these outcomes, as this
information is retrieved from long term memory.

Finally, the figure indicates that at any stage these operations may

trigger the decision to seek more information in order to better assess the
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gituation and/or evaluate the consequences of an action. In the following
pages, we shall outline some of the behavioral findings with regard to human
strengths and limitations in this interactive process. The squared letters
within the figure indicate particular sources of bias or "heuristics" that
will be identified and discussed as the elements of the decision process aiec
described in more detail below.

1.2.1 Situation agsessment. In setting the stage for our discussion of
cue perception and situation assessment, it is appropriate to consider two
different aviation scenarios. In the first, a pilot flying IFR has become
completely disoriented. Not only are glimpses of the now unfamiliar terrain
below intermittent and cloud obscured, but the navigational information itself
may be unreliable because of a suspected instrument malfunction. The
situation to be assessed is "Where am I?" In the second scenario, the pilot
senses, through a series of warning indicators and gauge readings, that one of
the engines may be malfunctioning, but the nature of the malfunction iz not an
obvious one with which he is familiar. The situation to be assessed here is
the diagnosis of what is wrong with the engine.

In situation assessments such as these, psychologists have found that
problem solvers and trouble shnoters often engage in "heuristics" or mental
rules of thumb that are intended to reach a diagnosis without expending too
much mental effort (Kahneman, Slovic, & Tversky, 1982; Rasmussen, 1981).

While such heuriscics often work adequately, the fact that they are shortcuts
may prevent the decision-maker from obtaining the most accurate information.
They may, therefore, sometimes lead the decision-maker to a false
understanding. These sources of bias and error in situation assessment will

be the focus of the following discussion.




1.2.1.1 Cue seeking. Searching the environment for critical cues in the
first stage of situation assessment is limited by characteristice of huwuan
attention, It is epparent, for example, that: decision makers do not
necessarily process all of the information that is available to them (Wickens,
1984), particularly under time stress (Wright, 1974). Given that stress often
causes a "tunneling of attention" when monitoring multi-element displays
(Hockey, 1970), it is reasonable to assume that this tunneling would have the
same restricting influence on the processing of multiple cues to assess the
situation., For example, in attempting to diagnose a faulty engine, a pilot
may focus on only a small number of physically salient symptoms, ignoring
critical cues that might provide even more diagnostic information concerning
the nature of the fault (such perceptual tunneling has been considered
responsible, in part, for the disaster of Three Mile Island). This bias
toward salience, at the expense of information content ls indicated by the S
in Figure 1.

Research has also found that the decision maker’s cue seeking behavior is
heavily guided by the hypothesis that may already have been tentatively
chosen. This tendency, known as the confirmation bias (C in Figure 1),
describes the bias to seek (and therefore find) those sources of information
that confirm what we already believe to be true (Mynatt, Doherty, & Tweney,
1977, Wason & Johnson-Laird, 1972). Thus, the disoriented pilot who is trying
to establish his location over the ground may first positc that he is in a
certain location and then focus attention on ground features that are
consistent with that location, while ignoring (or discounting) those that are
inconsistent, As Wason and Johnson-Laird have noted, the best way to
establish that a hypothesis is true is to seek information which, if found,

will falsify the hypothesis rather than confirm it.
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While, in general, people process only a limited number of sources of
independent information when testing or confirming a hypothesis, these
limications are removed (or at lrast are greatly lessened) to the extent that
the information sources are correlated. Thus, the skilled pilot can rapidly
diagnose the current state of an aircraft from the six crucial instrument
readings becauss of the typical pattern of correlation that is observed
between these readings. For example, a positive rate-of-climb is correlated
with an increase in altimeter reading; a change in attitude predicts a change
in heading and so forth. In the same way, extensive familiarity with the
patterns of symptoms produced by particular aircraft malfunctions will allow
the pilot to interpret rapidly the potentially large number of cues indicating
their status. For example, the failure of the suction pump will cause a
failure of gyro instruments (altitude and heading indicator), resulting in a
correlated change in these two instrument readings.

One general characteristic of cue seeking and information integration is
its apparent dependence upon facilities of selective and divided atteptjon,
particularly to the visual environment (Moray, 1986). This will represent an
important component of our experimental approach.

1.2.1.2 Hypothesis formulation and testing. People typically try to
understand a situation by matching in working memory the pattern of cues seen
in the environment with a mental representation of the typical or
representative pattern for a particular situation as recalled from long-term
memory (R in Figure 1). We may think of this memorized pattern as a
hypothesis of the proposed state. If the hypothesis matches the data, then
the situation is diagnosed (Tversky & Kahneman, 1974). A limitation of this
heuristic results from the fact that a particular pattern of cues may not be a
perfectly diagnostic indicator of the true state of the world. For example,

to the lost pilot, the 60° intersection of a freewav with a road below may be
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consistent with several different ground locations, just as a pattern of low
oil pressure and high engine temperature could ba symptomatic of any number of
diffarent engine failures.

To cnsure an accurate diagnosis, the decision-maker should first think of

a reasonable number of possible hypotheses, in order to make sure that as many
situations are covered as possible. An extensive program of research by
Gettys and his colleagues (summarized in Gettys, 1983) suggests however that
faced with problem-solving situations, people generate only a small fraction
of possible hypotheses (relative to the number of plausible ones) even as they
remain overly confident that their list is exhaustive.

In the second place, those hypotheses that people do generate should be
the most probable or likely ones. For example, suppose a pilot has formed two
alternative hypotheses concerning the diagnosis of an electronic system
failure, one of which occurs ten times more frequently than the other. 1In
such a case, the pilot’s initial hypothesis concerning the cause of the
malfunction should indicate the more frequently occurring failure. Yet,
people do not accurately use the probability or "base rate" frequency
information to guide their choice in this way (Kahneman, Slovic, & Tversky,
1982). Instead, when generating the few hypotheses from memory, they use what
is described as the avajlability heuristic (Tversky & Kahneman, 1974). A
hypothesis is considered most likely if it is most available in memory.
However, the most available hypothesis in memory may not be the most probable,
but rather the one that was most recently experienced, or the simplest one,
since simple hypotheses are easier to remember than complex ones (Fontenella,
1983; Tversky & Kahneman, 1974).

There is a second sense in which people fail to use probability

information appropriately in diagnosis, and this relates to cue reliability.




Clearly some cues are quite reliable: the visual sighting c¢f a disti.ict
ground landmark, or the smell of smoke in the cockpit. For others the
reliability may be somewhat less: instrument readings, or views of the same
landmarks thfough the haze. Still other cues may have a reliability that is
at best marginal--a message spoken by another pilot heard through static, an
instrument reading that is notoriously unstable, or the sense of vertical
obtained through vescibular cues. Yet, when integrating a number of
information sources that vary in their reliability, people follow what is
sometimes referred to as the "as 1f" heuristic ("As" in Figure 1, Wickens,
1984). 1In the extreme, this amounts to treating all information sources ags if
they were of equal reliability or, to a lesser degree, failing to "devalue"
those information sources of lower reliability to an extent that is optimal
(Johnson, Cavanagh, Spooner, & Samet, 1973; Kahneman & Tversky, 1973; Schum,
1875).

Instead of using cue reliability as a basis for choosing their hypothesis
people more often focus attention most heavily on those cues that are
physically galient (loud, bright, recent, centrally visible and easy to
interpret; Wallsten & Barton, 1982), and those that are likely to confirm the
hypothesis that was already tentatively formed (S8 and C respectively in Figure
1). If those cues, by chance or by design, also happen to be quite reliable,
then the assessment of the situation will likewise be accurate, but if not,
and their indicated diagnosis is wrong, then even the best-intended decision
of what action to take may lead to disaster because it will be based on a
faulty assessment of the world.’

An important characteristic of all human information processing deeling
with hypothesis entertainment and selection is the heavy dependence on the

mental "workbench" of working memory (Baddeley & Hitch, 1974; Wickens, 1984).
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The assessment and prediction of working memory strength represants another

important component of our experimental validation.

1.2.2 Decision formulation. Once an assessment of the situation is

made, a decision must then follow as to what action to take. Of course, the
decision may simply involve the choice to seek still more information, as
indicated by the top loop in Figure 1. In all cases, the decision maker
should choose the course of action with the most favorable expected outcome--
the highest expected utility. Sometimes this course of action is simple, if
the situation is diagnosed with certainty (I’'m sure that my fuel is about
gone), and there is no question about the best action (land in the nearest
field below rather than going further). However, at other times the choice of
possible actions 1is far less clear cut. This may either be because the
situation assessment leaves some uncertainty to be resolved in the pilot’s
mind (There is a 80X chance that my fuel is gone, but because I haven't flown
very far since I refueled, there is a 20X chance that my fuel gauge may be in
error), or because the consequence of one’s choice of actions cannot be
predicated with certainty (If I try an emergency landing here, I believe my
chances of survival are high but I am not certain).

Formally, this state of affairs may be represented in terms of the
decisjon tree shown in Figure 2. In this example, two states of the world,
with different subjective probabilities are shown across the top and two
potential courses of action are shown down the sides. (Of course, in a real
world decision problem, there may be a greater number of both states of the
world and of potential actions.) The decision-maker should optimally assign
probabilities to each state of the world as we have seen above. Each action
then, when taken in the presence of one or the other states of the world, can
generate one or more potential outcomes. In the case of the example here, the

possible outcomes of a decision to land might be a safe landing in the nearby
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field with the unpleasant aspects cf getting it out again, or a disastrous
landing in the same place; a decisicn to continue might result in a safe
flight to the firal destination, or the potential disaster of running out of
fuel, short of the field with a less feasible landing place. Each of these
outcomes has a utility, a positive or negative consequence to the decision
maker that can be assigned some relative value, and a probgbility, or expected
frequency of occurrence. Together, the utility and the probability serve to
define the rigk, and the human shiould optimally choose that action with the
lowest expected risk. Formally, the expected risk of an action is computed as
the expected risk of each outcome--its utility times its probability--summed
across actions. These calculations are shown to the right of Figure 2, in
which it is clear that the emergency landing has the lowest expected risk, and
hence is the decision that should be made. Here again, human performance has
been found to be adversely affected by certain biases and limitations.

To begin with, even the basic rows and columns in the decision matrix may
not be set up »ptimally. As we have noted, the diagnosis estimating the
possibility of the possible system states may be in error. Because of the
confirmation bias, the diagnosis will probably show a far greater confidence
or estimated probability of the most likely hypothesis than is warranted.
Secondly, Gettys (1983) has found that, as in hypothesis generation, people
generate only a small fraction of the feasible problem-solving actions that
may be appropriate in a given situation.

Even assuming that an adequate matrix is set up, arriving at an optimal
decision still requires that thé risks (probability x value) of the different
outcomes be accurately assessed. Here again, experiments show that people are
not skilled at assessing the probability of different outcomes and their
resulting risks (Fischoff, 1977; Kahneman, Slovic, & Tversky, 1982; Slovic,

1984), although it is not entirely clear what kind of biases these problems
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will demonstrate. On the one hand, people clearly overestimate the frequency
of very rare positive events (Pitz, 1965). This bias explains why gambling
and lotteries are pursued--because the low probability payoffs are perceived
as occurring more frequently than they do. On the other hand, peoples’
estimates of the frequency of different kinds of unpleasant or negative events
appear to be influenced very much by the availgbility heuristic described
above (Tversky & Kahnewsu, 1974). Highly available events, because they are
salient and well publicized are overestimated (fatal aircraft accidents fall
into this category), while less salient ones are greatly underestimated (near
misses, or non-fatal accidents; Slovic, 1984). Collectively, the effect of
these biusses on the decision matrix such as that shown in Figure 2 cannot be
entirely predicted.

To this snzlysis, two further important findings should be added. The
first is based on a general theory of choice, put forward by Tversky and
Kahneman (1981) which describes the influence of problem framing. While the
entire theory is relevant *c the concept of risky decision-making, its most
critical aspect for this discussion ic the assertion that the choice between
two actinnsg, one a risk and the other a *“sure thing," will depend very much
upon whether the problem is framed as a chnicze between galns or between
losses. Of course, in our critical analysis of pilot decision-making, the
choice is often between losses. Here Tversky and Kahneman observe that people
are biased to choose the risky loss rather than the certain loss even when the
expected loss resulting from the former is greater. For example, consider the
pilot who must choose between turning back in the face of potentially bad
weather (with the certainty of missing a critical appointment and
disappointing his passengers), and continuing on (with a chance of getting

through safely and on time, but also a small chance of suffering a major

A A

B A .

A S




disaster). The choice is clearly one between negatives: a sure loss versus
an uncartain probability of disaster, and Tversky and Kahneman have shown that
people have a bias to favor the risky choice. This risk-seeking tendency is
reversed however when the choice is framed as one between gains, and here the
“sure thing" alternative is favored. In the previous example, we might
suppose that if tho pilot could frame the same decision as one between
ensuring that lives are saved (the option to turn back) and probably keeping
aui appointment (the option of going ahead), the bias would swing toward the
"sure thing" turn-back option.

The second bias that is relevant in choosing actions is a well-documented
tendency toward overconfidence in forecasting. In a general sense, people
ovarestimate the likelihood that their predictions of the future will be
correct. Here again, one may account for the "can do," or "it won't happen to
me" bias of a pilot, choosing to undertake a risky option. Studied repeatedly
by Fischoff (1977), this bias is accounted for by peoples’ inherent dislike of
uncertainty.

A general conclusion emerging from the previous section is the strong
dependence of good judgment on the accurate, calibrated assessment of risk and
probability. Hence, another major component of the experimental approach will
focus on risk and probability assessment.

The previous section has focused on generic limitations that would be
applicable across a wide variety of decision tasks. 1In addition, the flight
environment highlights two specific characteristics that must be present for
effective decisions: well developed spatial abilities, and a strong knowledge
base of facts and information., Both of these will enter into our evaluation

and prediction of pilot judgment.
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2. METHODOLOGICAL APPROACH: THE MIDIS TASK

2.1 Logic of the Approach

Given the general background reviewed above, we propose to validate the

model presented in Figure 1 as a tool for examining pilot judgment using the
following logic. If effective pilot judgment in fact depends upon avoiding
the biases and pitfalls encountered in Figure 1, then those individuals who
possess processing characteristics that minimize those biases and limitations
should make good declsions. Correspondingly, those individuals who are
deficient in relevant attributes should perform poorly. But different
decisions may place greater or lesser demands on different attributes. The
decision to abort a takeoff following engine failure, for example, may involve
processing just two cues of information, one’'s airspeed and position on the
runway, but will require processing those cues in a rapid manner. But
diagnosing an instrument failure may require integration of a large number of
cues with less time pressure, but heavy reliance on working memory.

Hence each decision can be characterized by a "profile" of demanded
attributes as shown in Figure 3; those decisions that have high demands on an
attribute that is relevant to decision making should be performed poorly,
Finally, each pilot will generate a corresponding "profile" of available
attributes. We hypothesize that to the extent that a pilot profile of
attribute strength matches (or exceeds) the decision profile, the decision
will be fast and accurate. To the extent that a mismatch occurs, performance
will be less optimal. An incorrect decision may be reached, or the correct
decision may be made only after a long time. Hence, an interaction between
pilot abilities and decision type is predicted. Given this characterization
of pilot abilities and demand attributes, a second thrust of the study
examines how decision performance differs as a level of pilot experience.

Does performance simply improve? Or does it change in a qualitative fashion?
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Figure 3.

Profile of pilot's cognitive attributes, along with two
representative scenario profiles. To the extent that the demands of

the scenario match the pilot's profile, good performance is predicted.
To the extent that a mismatch occurs, poorer performance 1s expected.
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Our approach integrates three sources of data. (1) Decision performance
data are collected using the MIDIS flight decision simulator incorporated on
an IBM PC/AT, which will be described in section 2.2, (2) A test battery
provides a psychological "profile" of cognitive abilities for each subject
pilot described in section 2.3, (3) The decision situations used in MIDIS are
content analyzed in terms of our hypotheses about the psychological demands
made by each situation or "scenario." In the following pages, we shall first
discuss the MIDIS system, then the cognitive test battery, and finally the
analytical approach used to connect the two.

2.2 The MIDIS Decision Simulator

The project that we describe has followed two parallel but interacting
tracks, as shown in Figure 4. On the left of the track, a team of flight
instructors collaborating closely with cognitive psychologisté have designed a
series of flight decision problems or "scenarios" that incorporate the

heterogeneous set of information processing demands that may be imposed upon

Flight Instructors Cognitive Psychologists

Decision Scenarios . Identical 5 Cognitive Test Battery
Development Attributes Development

+ {
MIDIS Progrm\ r’/cgﬁnitive Battery
Data Collecf{Ton

Instrument Rated Pilots
(1) Contrasting Experts and Novices
(2) Prediction of Good Decision Makers
(3) Matching of Attribute Profiles

Figure 4. The MIDIS Project.
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the pilot. Generation of these scenarios has depended both upon an
understanding of the model in Figure 1, and years of expertise in instrument
flying. Certain decision problems will require a breadth of attention, others
will require that hypotheses be revised in light of new data, and still others
may require an accurate assessment of risk. While incorporating these
attributes, an effort has also been made to present the series of decision-
situations as discrete events in a single coherently flowing flight from an
origin to a destination. To enhance experimental validity, MIDIS has a number
of simulator-like qualities (it provides a continuous "engine" sound cue, for
example, and permits route deviations or reversals).

The MIDIS system itself consists of two programs, SETSCENE 2 and MIDIS 2,

written in PASCAL and running on the IBM AT. The first program, SETSCENE, is
an editor that facilitates the preparation of "flights" by the
experimenter/flight-instructor. SETSCENE provides input to MIDIS, which
controls a text and instrument panel display. The general structure of the
MIDIS system places it in a class of programs referred to as "Graph
Traversers" (Doran & Mitchie, 1966). Graph traversers are applicable to
situations where a number of states are connected by a set of transformations
or "operators." This can be represented as a branching tree-structure graph
in which the nodes represent the states and the operators linking them are
transitional probabilities. The states in MIDIS take the form of descriptions
of realistic in-flight situations referred to as "scenarios." These are
similar in concept to the SET (Situational Emergency Training) scenarios
developed at Luke AFB for F15 pilot training, i.e., simulations of real
situations requiring decision-making skills. Unlike SET, however, a MIDIS
situation may involve any potential in-flight situation, emergency or

otherwise, Each scenario requires that a decision be made among several
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alternatives presented. The decision influences the occurrence of subsequent
scenarios since it selects the transitional probabilities that will operate.

Two considerations determined the scenario sequencing structure used in
SETSCENE. First, there is the problem of devising a scenario structure that
gives the appearance of being unbounded to the user while in fact having a
congtrained formal structure, The second consideration concerns the need for
this structure to represent the pattern of deteriorating circumstances that
often characterizes alrcraft mishaps. These misfortunes do not usually occur
as a result of one poor decision or one technical malfunction, but rather as a
result of several concatenated events opening successive "gates" to an
accident. Figure 5 represents a structure designed to keep the progress of
the simulated flight "on track," while at each stage allowing digressions into
successively less optimal scenarios. (For clarity the figure shows just three
branches from any one scenarfo. In fact there are ten.) This structure is
built around "core" scenarios that represent situvations at points along a
cross-country flight-track. Core scenarios are to some extent independent of
each other, for although they must make chronological sense they do not form a
tight causal chain. Other scenarios, generally less favorable to the success
of the flight (here labeled “side" scenarios for convenience) become more
probable as decisions become less optimal. The further down the chain of side
scenarios the subject proceeds, the less probable is his return to a core
scenario.

2.2.1 SETSCENE 2. SETSCENE permits access to up to ten scenarios from
any starting point scenario and up to six decision options per scenario.
Along with each scenario a comprehensive range of instrument panel readings is
also stored plus rate of change information. These data are accessed by MIDIS
2 as a subject progresses through a "flight." A realistic time limit is

incorporated with each set of decision options in SETSCENE. This is because
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Figure 5. Branching structure illustrating the possible paths of a simulated

MIDIS flight.
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some problems are very circumscribed in the amount of time that can be allowed

for the decision process (engine failure, for example), whereas others are
more open-ended (e.g., radio failure)., If no decision is made within the time
allowed, SETSCENE ensures that MIDIS defaults to the situation most likely to
occur should the pilot fail to intervene.

SETSCENE incoxporates two further sets of algorithms: one set uses
Boolean logic to permit any decision to have a delayed effect upon any
subsequent scenaric as desired. Another set automatically counts syllables in
scenarios and decision options., This was developed to provide accurate counts
on both normal teit and radiocommunication language, permitting MIDIS to
factor out reading speed variance in problem study and decision selection
times,

In addition to its "MIDIS driving" functions, SETSCENE also performs a
number of important "housekeaping" operations. As discussed earlier, SETSCENE
2 has a structure capable of modeling event sequences with considerable
realism and flexibility. How far this potential is realized, however, still
depends heavily upon the quality of the "flight information" in the database.
An "item bank* of scenarios has been prepared by flight instructors on the
project team, and this database is continually being expanded. The program
has been designed to assist in keeping track of the scenarios and options in
the database. This facilitates the construction of different flights as well
as the post-hoc analysis of those flights. Therefore each scenario may be
identified according to a set of biblicgraphic descriptors (such as "cruise,"
"approach," "weather problem," "system malfunction,® etc.), and cross-indexed
searches can be carried out on these descriptors.

We also perform a content analysis of the situations themselves in terms
of their psychological attributes. As discussed in more detail below, each

situation is rated on each of 11 cognitive attributes. These ratings indicate
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our hypotheses concerning the extent to which reaching an optimum solution on
the problem depends upon the strength of the attribute. SETSCENE stores these
ratings, and its search and retrieval capability permits scenarios to be
identified or selected on the basis of similar problem structure. This is
important to our componential study of decision-making detailed below.

2.2.2 MIDIS 2. MIDIS has a full, high-fidelity instrument panel based
on a Beech Sport 180, the type of aircraft used for training at the University
of Illinois Institute of Aviation. This display, implemented via the HALO
graphics package and 16 color Enhanced Graphics Adaptor, represents a full IFR
“blind flying" panel with operating attitude, navigational and engine
instruments. MIDIS accesses SETSCENE files to change the readings on the
instrument panel throughout the course of the "flight" in synchrony with the
prevailing scenario. MIDIS does not attempt to simulate the flight dynamics
of an aircraft from control inputs - the province of flight simulators - but
it does provide for a flight-relevant concurrent psychomotor task, not used in
the pres:nt experiment. Figure 6 gives a screen print of a MIDIS 2 display.

Seven performance variables are monitored, most of them unobtrusively.
Four of these relate to response selection: decision choice, optimality,
decision time (latency), and decision confidence. The last three of these are
combined to form a decision quality hierarchy, witl. accurate, fast, confident
decisions at the top and inaccurate, fast and confident decisions at the
bottom. Slow responses made with low confidence have intermediate scores,
with correct choices obviously receiving higher scores than incorrect ones.

Other variables monitored are problem detection, problem study time, and
mean reading speed (text inspection time). A scenario can be defined by
either the particular normal or abnormal configuration of the instrument panel

alone, or by the instrument panel together with a text description of
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Figure 6. A representative MIDIS display panel.
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are stable - showing no rate of change. The scenario represents a situation
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in which the gircrafc is in steady flight.
N _ The scenario may represent a problem or it may not. A problem scenario
'f; | | is one in which the circumstances have clear and present implications for the
o efficiency or safety of the flight, reqﬁiring dlagnostic and corrective action
to be taken.

When the panel appears alone, the subject’s visual attention is not split
between a reading task and a panel monitoring task. In these conditions the
instruments can show a rate of change. This allows us to study an important
class of decisions - those involviﬁg the detection of changes and the
integration of decision cues in real time.

Finally, each subject’s mean reading speed is unobtrusively calculated in
syllables per second during the reading of the program run instructions.

Since SETSCENE analyzes scenarios and options for word and syllable counts, as
described above, individual differences in reading speed can then be factored
out of the data.

2.2.3 Attribute and option coding. After creating each MIDIS scenario,
the flight instructors on the design team proceeded to generate two kinds of
codes, which were applied to and characterized the scenario in question.

First, each option in a decision scenario was assigned an optimality rating,
on a scale from 5-1, in which the correct (best) option was arbitrarily
assigned a value of 5. The less optimal options were assigned values ranging
from 1-4, depending upon how close they were to being plausible alternatives.
Second, the correct option in each scenario was assigned an attribute value
code for each of the 11 critical cognitive attributes listed in Table 1.
These attributes were selected based upon our content analysis of the flight

scenarios in MIDIS, guided by our expert analysis of pilot judgment. A value
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Table 1. Scenario Demands of Cognitive Attributes.

1. Flexibility of Closure - the ability to find a given configuration in a
distracting perceptual field.

2. Simultaneous Mental Integrative Processes - the ability to keep in mind
simultaneously or to combine several premises or rules in orxder to
produce a correct response.

3. Simultaneous Visual Integrative Processes - the ability to sample a
select number of items from a complex visual display, and to combine this
information in order to produce a correct response.

4. Sequential Memory Span - the ability to recall a number of distinct,
sequential items from working memory.

5. Arithmetic Load - the ability to perform basic arithmetic operations with
speed and accuracy.

6. Logical Reasoning - the ability to reason from premise to conclusion, or
to evaluate the correctness of a conclusion.

7. Visualization of Position - the ability to perceive or maintain
orientation with respect to objects in space, and to manipulate this
image into other arrangements.

8. Risk Assessment and Risk Utilization - the ability to accurately assess
the probability or riskiness of a situation, and to utilize this
assessment in effectively carrying out decisions.

9. CGonfirmation Bias - the tendency to seek confirmatory, rather than the
more appropriate disconfirmatory evidence, when testing a given
hypothesis.

10. Impulsivity-Reflectivity - a measure of cognitive style differentiating
those who tend to be fast and inaccurate (impulsive) or slow and accurate
(reflective).

11. Declarative Knowledge - the ability to answer correctly a number of
"textbook" questions covering a broad range of general aviation issues.
This measure specifically excludes procedural or experience-based issues,
focusing only on declarative facts and guidelines.

of zero indicated that the attribute was not relevant to the decision. Values

trom 1-J indicated how critical it was for_the subject to possess strength in

the attribure in question, in order to choose the optimum option. In the casc
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of the confirmation bias, this coding was reversed (i.e., high values
indicated how critical it was to avoid the confirmation bias).
2.3 Cognitive Battery Development

As shown schematically in Figure 4, the goal of cognitive psychologists
in the project was to develop a set of cognitive tests that would match, as
closely as possible, attributes that were identified in the scenarios. Our
efforts to identify existing cognitive tests that assessed these attributes,
parallel an analogous effort performed by Irizarry and Knapp (1986) in their
study of individual differences in Army Intelligence Analysts. Based in part
upon their study, and upon our own review of the literature on individual
differeﬁces and cognitive attributes in decision and judgment, the development
of the test battery proceeded as follows.

Our initial goal was to locate any existing standardized tests that
provide measures on each of the relevant attributes. In some instances, more
than one standardized test exists for a single attribute. In that case. onc
was selected based upon the criteria of administration time, face validity and
reliability. For those attributes for which we were unable to locate a
standardized measure, specific tests were developed within our laboratory.
Thus, the compiled test battery consists of a one-to-one mapping between
cognitive attributes relevant to pilot judgment and cognitive tests
specifically designed to measure each individual attribute. Table 2 provides
a list of the specific tests comprising the cognitive test bhattery.

A number of cognitive measures were taken directly from the Educational
Testing Service (ETS) kit of Factor-Referenced Cognitive Tests. The specitic
cognitive factors and tests selected from this kit included measures of

lexibility of closure (hidden figures), simultaneous integrative proccsses

(folloﬁing directions), sequential memory span (visual number span),

h BEST AVAILABLE copY
526



e - e

v ) 2ot \othies b B e e i PR
s i e i Aob i e i i Al It Se s y e T
L1400 -t . a . B T T T I R L - o e A T R 3 - .

Table 2. Cognitive Test Battery.

Hidden Figures Test

Following Directions Te<t

Cue Sampling - Visual Integration Test

Visual Number Span Test

Subtraction and Multiplication Test

Nonsense Syllogisms Teat

Surface Development Test (Spatial Visualization)
Card Rotations Test (Spatial Orientation)

8. Risk Assessment and Utilization

9. Wason's 2-4-6 Rule Discovery Task

10, MFF Test and Impulsivity Self-Report Inventory
11. Aviation Declarative Knowledge Test

~NoNun P wWN

arithmetic load (subtraction and multiplication), logical reasoning (nonsense
syllogisms), spatial orientation (card rotations), and spatial visualization
(surface development). For each of the cognitive factors listed, the ETS kit
contained two or more specific tests. We selected one based upon the criteria
described above. The remaining portion of this section describes the tests
that were developed within our laboratory, or were modified in some way.

2.3.1 Rule discovery task (Jtem 9). The extent to which subjects
adopted a confirmatory bias, or the more optimal disconfirmatory strategy, was
measured using an adapfation of Wason’s (1960) "2-4-6 rule discovery" task.
Previous research by Irizarry and Knapp (1986) suggests that this task is a
valid measure of individual differences in hypotheses testing strategies.

For each trial, subjects were presented with a set of 3 numbers (e.g., 2-
4-6), and asked CO.generate an hypothesis about the set membership rule (e.g.,
numbers increasing by two). Subjects were then asked to generate another set
of three numbers to test the accuracy of their hypothesis. This response was

then scored as adhering to.a confirmatory or disconfirmatory strategy.
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Subjects adopting a confirmation strategy would test the hypothesis by
genarating a series of numbers consistent with the hypothesis, while those
adopting a disconfirmation strategy should generate a set of numbers
inconsistent with the hypothesis. Five trials in total were given, so that
each subject’s score was the proportion of the total trials that a
disconfirming strategy was used.

2.3.2 Reflectivity-impulsivity (Item 10). This test measures cognitive
style differences in information processing. Subjects are typically
categorized as "impulsive" if their performance on a task is rapid and
inaccurate, and categorized as "reflective" if performance is slow and
accurate. The primary index of reflectivity-impulsivity is the Matching
Familiar Figures (MFF) test (Kagan, 1966; Kagan, Rosman, Day, Albert, &
Phillips, 1964). The test requires subjects to select one exact match to a
prototype from a set of exemplars. For purposes of the test battery, the
adolescent/adult version of the MFF was used.

While pilot data for this test displayed large variances in response
times, little variance in accuracy was observed. Thus, to aid in
discriminating reflective and impulsive subjects, four items from the
impulsivity scale of the Eysenck personality inventory were added (Eysenck &
Eysenck, 1963). Previous research by Dickman (1985) and by Dickman and iieyer
(in press) suggests that these items predict reflective-impulsive performance
on a speed-accuracy tradeoff function., These items are shown in Table 3.

2.3.3 Bigg_ggggggmgn;4yuiAgg;l;;;ign_ilggm_él. These critical
characteristics were measured by a test developed within our laboratory (see
Appenidix A). The test consisted of four parts: proportion estimation, cause
of death estimation, probability estimation of aircraft accidents, and
utilization of gambles. The first part, proportion estimation, required

subjects to estimate percentages or proportions various figures (e.g.,

28




Table 3. Eysenck Personality Inventory - Impulsivity Scale Items.
1. Do you stop and think things over before doing anything?

2. Do you generally do and say things without stopping to think?
3. Do you like doing things in which you have to act quickly?

4, Are you slow and unhurried in the way you move?

estimate the percentage of the circle that is shaded, or estimate the degree
of an angle).

In Part II, in keeping with the tradition of Slovie, Fischoff, and
Lichtenstein and colleagues (Lichtenstein, Slovic, Fischoff, Layman, & Coombs,
1978; Slovic, Fischoff, & Lichtenstein, 1976), subjects were asked to estimate
the number of people killed each year by such factors as electrocution,
automobile accidents, cancer, or tornadoes. Similarly, Part III dealt with
estimating frequencies of different types of aircraft accidents, thus
providing én aviation context.

In Part IV, risk utilization was assessed by presenting the subject with
a series of choices between a risky gamble and a sure bet. In each case, the
expected utilities (EU) were equal (in some questions, the EU was negative,
and others, positive). For each of the four parts, it was hypothesized that
well-calibrated subjects would be fairly accurate in their estimations and
utilization, while "risky" or "conservative" behavior should fall at the two
extremes.

Separate scores were derived for each of the four parts, and thus could
be treated separately as individual measures of different types of risk

estimation and utilization, or combined to represent a single measure of
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"riskiness performance." Pilot data revealed that subjects’ performance often
was Inconsistent across the different parts (for example, those who were
conservative in risk estimation were often not conservative in risk
utilization). Thus, for purposes of the final data analysis, each of the four
parts was treated individuslly.

2.3.4 Simultaneous visual integration (Item 3). This visual cue
sampling test was developed in our laboratory and is a computer-based visual
integration task. Each trial consisted of twelve lines presented
simultaneously on a CRT screen for a brief exposure duration. The lines were
of 3 different lengths: short, medium, and long. Above each line was a
random distribution of X’s. An example of a typlcal trial screen is presented
in Figure 7. The subject’s task was to find the four long lines on the screen
and total the X's on only those lines. The position of the lines did not vary
from trial to trial, only the number of X'’'s presented each time. Thus, this
test determines how accurately an individual is able to integrate only the
relevant information from known spatial locations in a "cluttered" display.

2.3.5 Declarative knowledge (Item 11). In order to account for variance
attributable to declarative flight knowledge, an aviation general knowledge
test was developed by our flight instructors. This test was composed of a
number of items selected from the FAA instrument exam. These items were
carefully selected to comprise a representative sample of meteorological,
navigational and systems questions. This test consisted of 25 multiple choice
items and is contained in Appendix B.

Analysis of data from pilot studies for those tests developed and refined
within our laboratory resulted in a range of individual differences for each
independent measure, as well as for specific items within a measure. The one
exception was the "2-4-6" Rule Discovery task as a measure of individual

differences in hypothesis testing. Despite several revisions, the test failed
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Figure 7. A representative display screen for the visual cue sampling
test. For successive trials, the number of X's per line varied, while

the position of lines on the screen did not.
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to reveal any individual differences. Since it was not clear to us whether
all subjects adopted a confirmation strategy or merely did not understand the

task at hand, the test was dropped from the final battery.

3. METHOD

The subject pool consisted of flight instructors from the University of
Illinois Institute of Aviation, experienced Instrument/Commercial pilots with
diverse backgrounds (e.g., Air National Guard, professional airline and
private business flying), and Instrument Rated student pilots from both the
Institute and local flight schools.

The main experiment is based upon a sample of thirty eight subjects
divided into two cohorts, twenty pilots from the experienced group and
eighteen from the "novice" group.

Data collection was conducted in two sessions for each subject. In the
first session, lasting approximately two hours, the battery of psychological
tests was administered. The second session (in most cases taking place on a
subsequent day) involved the MIDIS simulation itself. Subjects were
instructed to plan an IFR flight from Mountain View, Missouri, to St. Louis
Regional (Alton) in Illinois. Sectional charts, L-charts, Approach Plates,
Airport Facility Directories and a Flight Service Station weather briefing
were provided. Although no "stick-and-rudder" flying is involved in a MIDIS
simulation pilots unfamiliar with the aircraft simulated by MIDIS, the Beech
Sport 180, were given a briefing on the performance characteristics of the
aircraft for flight planning purposes. Subjects were also provided an
opportunity to review a screen-print of the instrument panel. No time limit
was imposed for flight planning and different subjects took between 20 minutes
and one hour to complete this phase. " Pilots were instructed to plan the

flight in their customary fashion with due regard to both the safety and
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efficiency of the trip. Subjects were informed that these two factors would

be evaluated by the MIDIS simulator.

Following the flight planning, subjects performed the MIDIS simulation.
The simulation was presented on an IBM AT computer system which was enclosed
in a sound attenuating, dimly illuminated subject station. Subjects were
ingstructed to treat the simulation like an actual aircraft flight., They were
informed that the entire simulation sequence was under computer control and
after it wag started would automatically sequence. They were asked to remain
in the subject booth until the simulated eﬁgine noise stopped indicating an
end to the simulation session.

The screen presentation displayed first an overview and general
description of the MIDIS system during which reading rate was measured five
times. This was accomplished by timing the intervals between the subject’s
successive key press requests to bring up the next display. The general
description was followed by a practice flight designed to train subjects in
the use of the color-coded keyboard and MIDIS conventions. The practice
flight was not time-limited andAcould be re-entered and repeated until the
subject felt comfortable with the system. The practice sequence was "flown"
for an average of 15-20 minutes. After the practice flight a sample
"feedback" screen was provided to indicate the form of the safety and
efficiency evaluation which would terminate the run. After a reminder weather

briefing, the flight from Mountain View to St. Louls was started.

4, ANALYSIS
Each possible decision choice was rated for optimality on a five point
scale. The decision quality (DQ) algorithm combines the optimality of the
option chosen with the confidence rating and response latency in the following

manner:
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DQ = O+[0-ABS(0-C)] + or - (zL*W)

where 0 is the optimality rating 1 to 5, C is confidence rating 1 to 5, zL is
the z-score value of the latency of the decision, and W is a weighting which
varies with optimality rating. The firat expression in the algorithm
invelving optimality and confidence gives a point score from -2 up tc 10.
Subtracting the absolute value (ABS) of the difference in optimality and
confidence from the optimality rating gives credit for being "well-
calibrated," i.e., for rating level 5 decisions at confidence 53, and level 4
decisions at confidence 4, etc. By the same token it penalizes
overconfidence. The second expression introduces latency into the overall DQ
score, Lz is derived by computing the standardized score of all pooled
responses (across subjects AND scenarios). How latency affects DQ score,
however, is conditional upon whether the optimality of the decision choice is
above or below 3. Above 3, rapid response time increments the point score.
Below 3, rapid response time is penalized. The value of Lz is doubled to give
a range approximately equal to that of other components of the DQ score. The
final value of DQ ranges over approximately 20 points. The DQ metric chosen
is significant in that it acknowledges that options chosen in a decision are
not categorically right or wrong, but may vary in their degree of correctness.

Data files from MIDIS runs were merged with the psychometric data files

and z-gcored using LOTUS, and subsequently analyzed using SPSS-PC on the IBM

PC/AT.

5. RESULTS

5.1 Factor Apalysis of Psychometrjc Data

The psychometric test battery data for all 38 subjects was factor
analyzed to determine the pattern of abilities defined by the tests. Fifteen

psychometric measures were considered in this analysis, including two measures
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of reflectivity/impulsivity (MFF and self-report items), three measures of
visualization of position (hidden patternms test and surface development test),
four individual sub-tests within the risk assessment and utilization battery,
and seven other measures corresponding in a one-to-one fashion with the
remaining seven cognitive attributes presented earlier (see Tables 1 and 2).
The factors were initially extracted using a principal-components
analysis. The seven factors obtained in this analysis were then subjected to
varimax rotation procedure. The data presented in Table 4 are the results of
nine iterations of the varimax procedure. Given the small number of subjects
relative to predictor variables however, caution is advised in interpreting
each of these factors. Therefore, the following discussion will focus on only

the first three factors (those with the highest factor-loadings). For sake of

Table 4. Factor Matrix for Psychometric Test Data.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

Hidden Pattns. .826 -.114 .056 .058 .202 -.059 .149
Card Rotations .779 .185 .105 -.062 -.310 .076 -.079
Surface Devlp. .706 .229 .186 -.063 .191 -.139 .336
Following Dirs. -.003 .895 -.109 .082 .010 .014 .060
Nonsense Syllog. L2472 .688 .168 -.209 .199 .238 -.085
Risk IV (Gambles) -.130 .171 -.789 -.065 -.054 -.061 -.011
Risk II (Deaths) .123 .287 .665 -.105 -.085 -.351 -.010
Risk III (Avrisk) -.087 -.177 .047 .858 .039 -.064 .066
Math .010 .251 -.361 .533 .054 448 .223
FAA Quiz .252 .321 .467 .529 -.121 .285 -.014
Vis. {# Span .074 .216 -,057 .148 .830 -,084 -.140
Vis. Scanning .006 .138" -.069 422 -.602 -,331 -,075
MFF Test -.044 .119 -.052 -.005 .028 .737 -.123
Risk I (Probest) .011 .011 -.121 .086 -.003 -.212 .764
Self Report -.116 -.033 .315 .294 -.236 .369 .573
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clarity, Factors 1, 2, and 3 will be referred to hereafter as the spatial
factor, the logicsl reasoning and integration factor, and the risk factor
respactively.

This factor is comprised of three psychometric measures: the hidden
patterns test (flexibility of closure), the card rotations, and surface
development tests (both measures of visualization of position). Factor
loadings for the three measures were 0.826, 0.779, and 0.706 respectively.
Given that all three tests involve a degree of complex spatial reasoning, this
strong interrelationship is to be expected.

Logical Reasoning Factor

Two psychometric measures, the nonsense syllogisms test (logical
reasoning) and the following directions test (simultaneous mental integrative
processes), have loadings with values of 0.895 and 0.688 respectively on this
mental reasoning and integration factor. It was mentioned previously that the
first factor combined measures involving complex gpatial reasoning.

Similarly, the second is comprised of those tests requiring a degree of
complex Jlogical reasoning.
Risk Factor

Of the four subtests comprising the risk assessment and utilization
factor, two loaded highly on this third "risk" factor. The two tests, Risk II
(estimation of causes of death) and Risk IV (utilization of gambles) had
loadings of 0.789 and 0.665 respectively. Of particular importance is the
inverse relationship between these two variables, which may be interpreted as
defining a "dangerous world" syndrome. Individuals who perceive fatal risks

to be high (estimating the probability of death as great) are conservative in

-
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their choice among gambles (most often preferring the "sure bet" over the
risky option).

These three groups represent the strongest factor relationships of the
seven presented in Table 4. Therefore, for purposes of further analyses,
three grouped factor scores (spatial, logical reasoning and risk) were
computed for each subject. The factor scora is comprised of the weighted
total of those psychometric variables that load on a given factor. These
factor scores, along with the individual psychometric scores that did not load
strongly on a particular factor, reflect the profile of individual differences
in cognitive abilities that were taken into consideration throughout the
remainder of the data analysis.

Finally, a few other interesting results of this factor analysis should
be noted. As may be observed in Table 4, a fourth factor groups the
declarative knowledge FAA quiz with mathematical ability and Risk III
(aviation-specific accident estimation). It is reasonable to assume that both
the FAA quiz and the domain-specific risk test reflect measures of declarative
aviation knowledge. The final measure of risk assessment, Risk I (probability
estimation), appears to be gquite different from any of the other risk
subtests.

Important for its nonsignificance is the finding that our two measures of
impulsivity/reflectivity did not load on a common factor. This finding
implies that these two measures proposed in the literature as determinants of
the impulsivity/reflectivity trait (MFF-Kagen, 1966; self-report items-Dickman
& Meyer, in press) were not in fact tapping the same aspect of cognitive style
in the population that was tested here. Such interpretations are extremely

limited, however, given the low power of the factor analysis.

37

ek Smine ) Brtate S S b AL ot Euns AcEER RN A L A R S
. . [ ol



b

e

TS TTTEE T LT

T T

i 7 Rbialh 0 TIPSV T TRy ey e e T
memiwm-‘.‘“*,C":sa_\s..x-. RISt AL St e PO IELLS AL PORIES PSSP P

5.2 MID7S_Data Processing and Analysis

Data from MIDIS, the Test-Battery and the Attribute Ratings were
integrated into three field data files. The first field contained subject
identity, biographical information and MIDIS performance data. The second
field held the eleven attribute ratings for the individual flight scenarios,
and the third field contained the psychometric data from the fifteen measures
in the test-battery along with the three factors scores described in the
previous section. Three additional variables were also computed.

The first of these, Calibration, was a points score consisting of the
optimality rating on the selected action alternative plus an increment for the
extent to which an individual was "well calibrated," that is, the extent to
which his confidence rating accurately reflected his decision performance in
terms of optimality. One further calculation yielded the global "decision
quality" variable DQ. This was computed from Calibration and standardized (z)
scores of Latency, and thus incorporated all three primary dependent measures
- decision optimality, confidence and decision latency.

Analysis of these data was carried out using SPSS/PC+ (Norusis, 1986),
the microcomputer version of the Statistical Package for the Social Sciences
(Nie, Hull, Jenkins, Steinbrenner, & Brent, 1978). Three procedures were
used: Pearson Product Moment correlation, Forward Stepwise Multiple
Regression, and Discriminant Analysis. All statistical procedures were
implemented for both type 1, static scenarios, and for type 2, dynamic
scenarios. As noted, all latency measures were corrected for reading rate, on
the basis of a covert assessment of this variable made during the presentation
of instructions. The three primary dependent variables in the regression
procedure were Decision Optimality, Confidence Rating, and Decision Response
Latency. Decision Quality, Problem Study Time and (in dynamic scenarios)

Problem Detection Time were also explored as dependent measures.
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In a preliminary analysis, visual inspection of the scatter plots between
performance and abilities suggested that the relation between the predicton
and criterion variables was inconsistent between subjects of low and high
experience, A different pattern was manifest for the flight students than for
the flight instructors for example, and performance of the third group of
local pilots outside the Institute of Aviation, also varied as a function of
experience. As a consequence, a decision was made to divide the total sample
into two groups on the basis of flight experience and to apply the analyses in
turn to each group. A cutoff was chosen at 400 hours because this was a
figure that: (a) divided the group approximately into equal groups (a sample
of 18 "novices" and 20 "experts"), (b) on a log plot of flight hours, formed
the mean point on a roughly normal distribution, and (c) provided a grouping
that included all students in one group and all flight instructors in the
other.

The several aspects of the data, and the multidimensional characteristics
of the experiment (i.e., with attributes, abilities, subjects, and problems)
allow for a large number of different approaches to data analysis. Figure 8
provides a framework for describing these different approaches.

Shown at the top of the figure are hypothetical scatter plots relating
the assessed level of six subjects on two cognitive attributes, to the
decision performance vector. The term "performance vector" is used to
acknowledge the existence of 5 or 6 different performance measures (e.g.,
optimality, latency). The six subjects are shown as belonging to the two
cohorts labeled "novice" and "expert."

The two panels at the top of Figure 8 illustrate the differences in the
predictive power of the two hypothetical attributes for this set of

hypothetical data. Attribute 1 shown in the left panel provides a reasonably
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The lower panel represents the three dimensional expansion of the
data in the upper left.
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good prediction of derision quality for the group as a whole, Furthermore it
nicely discriminates the performance of novices from those of experts. But
when prediction is examined within each of the twe cohorts, the attribute
predicts expert performance but fails to do so for the novice. Attribute 2 on
the other hand does not discriminate the two cohorts, nor provide an effective
predictor for the total subject pool. However, in contrast to attribute 1,
the second attribute does predict performance of the novice, but not of the
expert., Hence in a multiple regression analysis of these data, very different
beta weights would be applied to the two attributes when analyzing novice vs.
expert performance.

In the top two panels of Figure 8, each performance vector may be
considered as the mean value for a subject across all problems encountered.
But the development of scenarios in MIDIS allowed different scenarios to be
coded differently on a given attribute. This-was done to test the hypothesis
that only problems which demanded a given attribute would show performance
that depends upon the relevant subject’s ability. This incorporation of
attribute levels is shown in the bottom panel, in which a third dimension is
added to define the demand level on attribute 1, for each of two problems of
differing demand, encountered by all six subjects. Thus, each subject’s data
now represents a "slice" in the cube along the perspective depth dimension of
the figure. Three features may be highlighted with these hypothetical data.
First, for both novice and expert subjects the attribute measured on the test
battery is not a predictor of decision performance when the decision problem
demands little of the attribute in question (near the back of the cube). This
is in contrast to expert performance when the demand level is high (toward the
front of the cube). Second, the attribute fails te discriminate expert from
novice decision performance on problems when the demand level for that

attribute is low, but does so when demand is high. Third, projected along the
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left side "wall" of the cube is the gradient of decision performance against
demand level for the mean performance of the two groups., Here we see that
increasing the demand level on the attribute has a strong effect on novice,
but not expert performance.

The hypothetical data presented in Figure 8 thus reveal two intrinsically
different styles of analysis: correlational analysis, and analysis of
differences between groups. Each of these styles in turn may be carried out
across all problems, or only on thﬁt subget of problems that are rated high on
the different attributes, and each of these may also focus on the effects of
ability differences or problem demand differences.

5.3 Between Groups Means Analysis

Analysis of the psychometric test battery scores for the two cohorts
revealed that there were no significant differemces between the two groups on
any of the test measures, including the FAA-based test of declarative
knowledge. Therefore, all attributes appear to show the pattern of attribute
2 on the top of Fig:'re 8. Table 5 presents a comprehensive list of the
differences in decision performance between the novice and expert groups for
static and dynamic scenarios., The table highlights those differences that
appeared significant with a two tailed t-test in the decision performance
measures. Shown on the top row of the table are differences between groups on
all problems, pooled across the differences in attribute scores. Shown in the
nine rows below are differences observed specifically on problems that were
rated high on the attribute listed. Only those performance measures that
significantly differentiated the two groups are shown. Two tailed tests were

employed because there were no a prior hypotheses about which group would

perform "best."
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Relative to the total number of measures assessed, the table reveals few
differences between groups. For example, the groups did not differ in
decision optimality or decision quality for any subset of the problems. The
most salient difference is the greater confidence shown by experts in the
static decision problems, This variable discriminated the groups on the total
pool of problems, as well as on those problems that were high on most of the
specific attributes. Only on problems that possessed high demands for
arithmetic and risk assessment was confidence equal for the two groups.

Subsequent analysis revealed that a major source of difference in
confidence between the two groups may have been related to differences in the
subset of problems selected by each. Given the branching nature of the MIDIS
program, it was possible for any two people to take quite different "paths"
through the flight. In a subsequent analysis a similar comparison of
confidence was carried out only on that subset of scenarios to which a
majority of subjects responded. This analysis removed data points from more
subjects in the expert group. The analysis, now carried out on roughly 80% of
the total data set, revealed no significant difference in confidence between
the two groups (Novice: 4.00; Expert: 4.17). From this analysis, it was
concluded that some experts had a tendency to choose options which led them to
follow-on scenarios about which they were more confident than the rest of the
sample.

The differences between groups on the dynamic problems were somewhat less
consistent. Here experts responded more rapidly on problems that demanded
simultaneous integrative processing, while novices made more rapid decisions
on those problems with high demands for field independence and visual cue
sampling (i.e., the two attributes that defined the perceptual aspects of the
task). Novices were also slightly more confident on problems with high

sequential memory demand. Once again, for dynamic as well as static
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scenarios, the two groups did not differ in terms of the optimality of their
response,

The relation between confidence and optimality scores for both groups
provides an index of "calibration": to what extent is greater confidence
rated to .noices that are more likely to be optimal. To assess calibration,
the mean confidence rating for the two groups was computed separately for
problems on which optimality score of 1, 2, and 3 was obtained (i.e., more
"{incorrect" problems), and for problems on which an optimality score of 4 and
5 was obtained. These data are shown in Figure 9. It is evident from the
figure that both groups are somewhat calibrated, in that their confidence
grows on choices which are "easier" (i.e., which they are more likely to
answer correctly), and does so at the same rate for both groups (Fl,35 =
21.77; p < 0,01). However, since both confidence and optimality variables
wére rated on the same 5 point scale, it is easy to see that the change in
confidence is not nearly as steep as the change in optimality would dictate.
The difference in mean optimality between low and high problems is around 1.5
units. The difference in confidence is only 0.25 units.

The data thus suggest that both experts and novices are reasonably well
calibrated for choices which they make optimally (and novices slightly
underconfident); but both groups fail to down weight their confidence
appropriately as problem difficulty increases, a classic pattern observed in
other decision making fields (i.e., Fischoff & MacGregor, 1981; Fischoff,
Slovic, & Lichtenstein, 1977; Kahneman, Slovic, & Tversky, 1982).

5.4 Effect of Problem Demand
As we have described above, each problem was coded on the 9-attribute 4

point scale as to the demand for particular attributes. It was anticipated
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Figure 9. Confidence ratings assigned to "incorrect" (optimality 1, 2, and 3)
versus "corract" (optimality 4 and 5) decisions. The figure presents novice
and expert performance. The positive diagonal line represents the line of
"calibrated" confidence assignment. The abscissa values of 2 and 4.5
represent the mean optimality values of "incorrect" and "correct" judgments
respectively. '
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that to the extent that a problem was rated high on these scales, its level of
decision performance would be reduced. To establish if this was the case, a
total difficulty score for each problem was computed by summing the ratings
across all attributes. This variable was then correlated with the various
performance measures, and revealed that, for the "novice" pilot group,
difficulty influenced problem study time for the static scenarios (r = 0.46; p
< 0.03) and response latency for the dynamic scenaries (r = 0.59; p < 0.,01),
However, none of the performance measures of the expert appeared to be
affected by the aggregate problem demand.

Subsequently the data were broken down attribute-by-attribute, to examine
the sensitivity of performance measures to the demand of each attribute. This
demand is indicated by the projected slopes on the left "wall" of the cube at
the bottom of Figure 8. The significant (p < 0.05) correlations between the
attribute demand variables and performance for the two cohorts, for both
static and dynamic scenarios, are shown in Table 6. The correlations that are
underlined are those that run in the unexpected direction of poorer
performance (lower optimality or high latency) associated with lower attribute
levels. The table suggests some substantial differences in the variables that
make problems difficult for the two groups. For example, the expert suffers
when static problems require field dependence (the correlation with optimality
is negative) while the novice does not, and the expert's decision performance
1s slowed when static problems demand more simultaneous integrative processes
while the novice'’s performance 1s not. For dvnamic scenarios, the novice
becomes less optimal when there is a greater demand for simultaneous
integrative processing, while the expert actually becomes more optimal, The
table also reveals a relatively large number of correlations that run in

unexpected directions, indicating better performance with greater demand.
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Table 6. Correlations of Problem Demand with Performance Measures, All
correlations reported are p < 0.05, (*) indicates p < 0.01.

0.9) () 4% CONFIDENCE ST LATENCY
STATIC

Novice
VISPOS 2482
VISCUE
RISKNEED .41
Expert
FIELD - .42 -.40
SIMINT L53% .48
ARITH - 48%
VISCUE - 42% -, 45%

EYNAMIC

Novice
SIMINT -.53% -,53%
FIELD 242 ,62%
LOGIC -, 64%
VISPOS .56%
DECLKNOW 248

Expert
SIMINT 43 43 =39
VISPOS 242 248
FIELD - .41

ARITH . 22%
LOGIGC .51%

This by itself is not altogether too surprising since increasing levels on one
particular attribute may have been correlated (across problems) with
decreasing levels of other attributes. It is also possible that problems
which provide mere of a particular kind of attribute may in fact capitalize
upon the strength of a cohort. Thus, for example experts seem to benefit more
to the extent that visualization of position is required., This hvpothesis
will be addressed in the discusgion.
5.5 Prediction of Overall Decision Quality

The previous sections have focused on the differences between the two

cohorts, in their overall performance, and on how their performance is
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affected by problem demand. In this section we now address how their
performance is affected by differences in cognitive ability within each group.

Based upon the output of the factor analysis, the first three factors
discussed Iin section 5.1 (spatial abilities, reasoning and risk assessment)
were extracted as relatively stable estimates of those cognitive abilities.
Factor scores on these three were calculated for each subject, and these
values, along with the FAA test score, and scores on the tests that did not
lecad on th2 three primary factors were included in a stepwise multiple
regression analysis to predict decision performance. The predictor variables
then included the Spatial Ability, Reasoning, and Risk Factors, Visual Number
Span, Mathematical Ability, Visual Scanning, Probability Estimation and two
indices of impulsivity. These were included along with three domain-specific
predictor variables: Total Flight Hours and two measures of declarative
knowledge, the FAA Instrument Flight Written Test, and Risk III Test -
knowledge of aviation accident risks.

Table 7 presents the results of this regression analysis for static (left
column) and dynamic (right column) scenarios. Listed down the left margin are
the criterion variables. Beneath each criterion variable is listed the order
of predictor variables selected, along with the =otal variance accounted for.
This variance (and the assoclated significance levcls) has been corrected
downward to guard against the potential capltalization on chance associated
with the multiple regression analyéis (Tatsuoka, 1976).

The left side of the table which presents the prediction of performance
in the static scenarios, reveals that few if any variables are effective
predictors. Confidence ratings were predicted by scores on the risk tests and
by the total flight hours (high domain specific risk estimates and more hours

producing greater confidence), while latency and problem-study time were both
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Table 7. Multiple Regression Analysis (N = 38).

Ivpa 1 (Static) Iypoe II (Dynamic)
DQ: RISKFACT .07 (NS) DQ: VISNMSPN .088 (.05)
- FAA 144 (,05)
. TOTHRS 224 (.01)
OPT: FAA .05 (NS) OPT: VISNMSPN .152 (.01l)
- FAA 212 (.01)
- TOTHRS .282 (.01)
CONF: TOTHOURS .12 (.05) CONF: RISK .147 (.01)
PROBEST .22 (.01) TOTHRS .229 (,01)
AVRISK .28 (.01) AVRISK .287 (.01)
PST: MFFTEST .25 (.001) PDT1: SPATIAL .113 (.05)
REASON .39 (¢.001) AVRISK .173 (.01)

LATENCY: MFFTEST .12 (.05)
REASON .23 (.N1)

predicted in te expected direction by the MFF test of impulsivity-
reflrctivity. More "impulsive" responders tended to respond faster, and study
the prublem for a shorter time on the MIDIS task.

Somewhat more variance was accounted for by predictions in the dynamic
scenarios shown on the right. Predictors of decision quality and optimality
included the working memory test of visual number span and scores on the FAA
questionnaire (both in the expected direction of better test scores leading to
higher quality decisions). Measures of confidence in the dynamic scenarios,
as was true in the static scenarios, were predicted by scores on the risk
tests, along with the total flight hours.

Even though the predictions from the analysis depicted in Table 7 are
statistically significant, they are in a sense disappointingly small. The
proportion of variance accounted for in this analysis ranged from the high

teens to the low 30s percent. Hence, as in previous analyses, the multiple
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regression analysis was repeated on each of the two cohorts separately, to

determine whether the pattern of predictors was different. However, because
the two cohorts did not entirely proceed through the same set of scenarios,
this analysis was carried out on the "restricted set" of scenarios discussed
in section 5.3, This refers to the path through the flight that was common to
most subjects. Tables 8 and 9 present squivalent regression data for the
static and dynamic scenarios respectively, with the novice groups data shown
on the left and the expert groups data shown on the right of each table.

Considering first the static scenarios in Table 8, the data reveal an
interesting and important contrast between the two groups. For the novice
group, the optimality of performance is predicted reasonably well by two
measures of declarative knowledge: the FAA test and the "Avrisk" measure of
aviation risks. Here we see that those novices who tend to be.more
conservative (or estimate higher dangers) scored more optimally. In contrast,
the optimality of the experts’ decision performance is simply not explained.
This drop in the predictive power of declarative knowledge from novices to
experts has important implications that are discussed below.

Confidence ratings, in the static scenarios, llke optimality, are also
predicted differently for novices and experts. For novices, greater
mathematical ability leads to lower confidence ratings. Given the general
trend for overconfidence seen in Figure 9, this finding would suggest that
better mathematical ability leads to better "calibration."” As with
optimality, the battery measures are not at all predictive of expert
confidence ratings. Finally, the speed of problem study (PST) and response
(Latency) are also predicted differently for the two groups. Spatial ability
helps novices to perform more rapidly (a negative correlation with latency),

while for the experts a large portiorn of the variance is accounted for by the
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Table B, Static Scenarios Multiple Regression Analysis, R? Values Adjusted
for Capitalization on Chance.

Novice Expert
N = 18 N = 20

OPTIMALITY: AVIAT RISK .181 (-)1! OPTIMALITY:
FAA QUIZ .42

CONFRAT: MATH 21 () CONFRAT: .-

PST: SPATIAL .304 (-) PST: MFFT 427
VISNUMSPN .571

LATENCY: SPATIAL .307 (-) LATENCY: VISNUMSPN 205

1a minus sign indicates a negative correlation baetween the predictor and
criterion variable.

Table 9. Dynamic Scenarios Multiple Regression Analysis. R? Values Adjusted
for Capitalization on Chance.

Novice Expert
N =18 N = 20
OPTIMALITY: VISNUMSPN .316 OPTIMALITY: ---
CONFRAT: RISK1 291 (-) CONFRAT: ---
MATH .512 (-)
PDT: SPATIAL .175 (-) PDT: FAA QUIZ  .528 (-)
RISK FACT .591 (-)
MATH .618 (-)

impulsivity-reflectivity measure of cognitive style (again in the expected
direction with those having more impulsive styles responding more rapidly).
An interesting finding here is that those experts who have greater working
memory capacity, as measured by the visual number span test, take longer to
respond.

A similar pattern of greater predictive power for novices than experts
reappears in the dynamic scenarios shown in Table 9. For the novices,

optimality is predicted by the capacity of their visual working memory.
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ﬁ% Confidence ratings are predicted, as with the static scenarios, by

v

g} mathematical abilities. In addition, confidence is tied to the risk test of

probability estimation., Those who estimate probabilities higher tend to be

less confident. Finally, for the novices the speed of problem solving was

again related to spatial abilities. For the experts, as with the static
scenarios, neither optimality nor confidence were wsll predicted. The speed
of expert problem detection was reasonably well predicted by three variables.

Faster detections were made by: (a) those who scored lower on the FAA quiz,

{b) those who saw the world as "safer" (low scores on the risk faster), and

(c) those with higher mathematical ability.

T; In summary, the pattern of data reveals a few general trends. Frediction
is different between the two groups than across groups, which suggests that
the pattern of skills predicting pilot judgment may evolve with experience.
The usefulness of declarative knowledge declines as experience increases, and
is replaced by ability factors that are not apparently assessed in the current
battery. Also, confidence is better predicted for novices than for experts,
and different variables influence decision speed for the two groups. Spatial
abilities facilitated rapid responses for novices, but not for experts.
Finally, where variables do predict, they do so in an orderly fashion and
generally in the expected direction. For example, subjects with higher
estimates of risk tend to perform more optimally. Impulsive experts tended to
respond (on MIDIS) more rapidly than did reflective ones (although they were
not necessarily more likely to be accurate). Greater mathematical ability
produced better calibrated confidence for novices, and novice subjects who had
greater working memory capacity were more optimal at diagnosing the dynamic

instrument-based problems.
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5.6 Regresaion on High Attxibute Problems

Paralieling the procedures employed to discriminate groups in section 5.3
and depicted in Teble 5, the correlational analysis between abilities and
performance discussed in the previous section was repeated on a restricted
subset of problems that were coded high on the attributes. That is, the
regression analysis focused on the "front face" of the cube shown at the
bottom of Figure 8. In general, the results of this analysis were
disappointing. The cognitive abilities did not predict performance
substantially better for high attribute scenarios than for the scenarios as a
whole. Hence, the detalls of these results will not be reported.

5.7 Discriminate Analysis

In the previous discussion, all analyses focused on differences between
novice and expert groups, defined on the basis of experience. Yet from the
outset it was clear that the two groups did not differ substantially in their
levels of decision quality. A different approach was taken to try to
determine what cognitive attributes discriminated "good" from "poor" decision
makers, without reference to the cohort to which they belong. To accomplish
this, discriminate analysis was performed on the decision optimality scores
obtained from the top and bottom quartile performers. For static scenarios,
the two groups were discriminated quite well (Wilks’ Lambda = 0.0052; p <
0.001) on the basis of all of the variables collectively. However, no
particular subset of abilities stood out above others as being the most
important discriminator. For dynamic scenarios, the overall discriminant
function was less successful in'differentiating the two groups on the basis of
the cognitive attributes (Wilks’ Lambda =~ 0.078; p = 0.11). However, the
discriminate function revealed that three variables had significantly higher
weightings than others. These were total flight hours, visual number span,

and performance on the FAA quiz. Furthermore, the Wilks' Lambda statistic for
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each of these three variables in isolation produced significance levels of

0.07, 0.04, and 0.05 respectively.

6. DISCUSSION

The results of the present study are complex, and in some places slightly
contradictory. Nevertheless, there are a number of general trends that show
how problem difficulty measures and individual abilities affect decision
performance of low and high 2xperienced pilots on both static and dynamic
scenarios. In certain respects the two groups responded alike. 1In the first
place, both groups tended to lose confidence as problems became more demanding
(as demand was defined by those problems that were more likely to be responded
to incorrectly), although the experts possessed more confidence in general
than did the novices. Secondly, neither group "down weighted" their
confidence as much as they should, and hence both groups became increasingly
overconfident as the problem difficulty increased. This fallure to accurately
calibrate confidence has been often reported in the literature (e.g., Fischoff
& MacGregor, 1981; Fischoff, Sloviec, & Lichtenstein, 1977). Finally, both
groups failed to show appreciable effects of problem difficulty as this
variable was explicitly manipulated in the experiment. That is, problems that
had been coded high on scaled attributes were not generally responded to with
less accuracy, «lthough rated difficulty did have some effect on the latency
with whi :h novices made decisions.

One particularly striking aspect of the results was the absence of any
difference in -he overall quality of decision performance between the "novice"
and "exnert" g s s. Only in terms of the confidence of their decisions did
experts show a "nigher" level of performance and this difference was the
result in part of differences in the subset of problems that the two groups

faced. The absemce of group differences might possibly have been attributable
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to an addad factor, favoring the novice group. That is, it is possible that
the novices might have achieved some intangible benefits in this cross-
soctional study because they were a younger group and therefore, presumably
more familiar with the computerized characteristics of the MIDIS program,

Differences between the groups ware not extremely large but the
correlational analyses did reveal that more extensive qualitative differences
exist in terms of how each group was affected by problem difficulty (as shown
in Table 6), Likewise each group was affected by differences in ability
within a group, as discussed in section 5.5. These latter sources of
differences are of particular importance because they demonstrate the
relevance of the domain-independent battery items to the domain specific
measures of aviation judgment. Hence the main conclusions of this analysis
are worth reiterating. Declarative knowledge as assessed by the FAA quiz and
the aviation-specific risk test predicted novice but not expert performance,
and confidence ratings were predicted by mathematical and probability
estimation skills for novices but not for experts. Spatial abilities were
good predictors of response speed for novices, but not for experts. Finally,
the optimality of decisions for dynamic problems was predicted by the capacity
of visual working memory for ncvices, but not for experts. In fact, response
speed was the only aspect of expert performance that was well predicted, and
this variable was predicted by a relatively large number of variables.

A second issue concerns how the two aspects of differences, between
problems and between individuals, relate tc each other. The answer, in
general, is that they do not, although there is no logical reason why they
should. That is, to say that novices as a group are influenced by problems
that demand a lot of visual cue sampling does not necessarily suggest that cue

sampling ability will predict novice decision performance. Expressed in other
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terms, the covariance between the two axes at the base of the cube on Figure 4
and the vertical performance axis may be low,

Indeed the only region in which there is some consistency between the
dimensions of problem difficulty and individual ability is in the relevance ot
working memory, as assessed by the abilities test of visual number span, and
as coded by the attribute of simultaneous integrative processing., Here novice
performance is influenced by this attribute demand, and is predicted by
differences among the cohort in this ability.

Thus, overall the data cannot be interpreted to reveal a fully conclusive
picture of how pilots differ in their decision making capabilities. It is
possible to offer four hypotheses as to why substantial variance in MIDIS
performance was not accounted for by either group membership or ability
differences.

In the first place, it is possible that the test was sufficiently
unrealistic that it did not elicit credible decision behavior. Some evidence
that this may not represent a real concern however is provided by the
assessments of the rubiect pilots, many of whom commented on the realism of
both the instrument panel and the flight scenarios. Nevertheless it is
important to realize that MIDIS does depart from real flight judgments in four
important respects: (1) The obvious risk factor of being airborne is missing
from MIDIS; (2) MIDIS contains no closed loop perceptual-motor flight control;
(3) Much of the information regarding the flight that a pilot would nornally
discern from environmental cues and views outside the cockpit is here
presented in a less compatible textual format; (4) The structured
characteristics of MIDIS require that a multiple choice format be offered, in
which the most optimal response is presented for recognition. Clearly in
actual pilot judgment, the pilot must often recall the correct diagnosis or

action,
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Secondly, it is certainly likely that two of the critical measures that
form the basis for the model testing, optimality rating and problem coding,
were perturbed by measurement error that led to a reduction in the power of
our statistical tests. This is a result of the fact that both of these
variables were subjectively generated by expert opinions. To some extent
these noise sources were reduced in the ratings of optimality of each
alternative, because this rating was carried out independently by the two
flight instructors, and substantial agreement between them was observed (an
interrater reliability of +0.75). Measurement error however was probably a
greater contributor to the coding of attributes, since this was only performed
by one flight instructor. This greater level of error variance was quite
possibly responsible for the lack of success in obtaining attribute-specific
predictions of the ability tests (see section 5.6).

Thirdly, there was a moderate lack of structure in the MIDIS task.
Throughout the entire experimental program we have tried to strike a balance
between imposing sufficient experimental control to make the data remain
fairly structured, and sufficient freedom to make the MIDIS task unconstrained
and realistic from the pilot’s standpoint. The former criterion ideally
dictates a linear decision path whereby all subjects receive the same
scenarios in the same order, independent of what their choices may have been.
The latter dictates a highly response-dependent, closed-loop branching
structure in which each subject may go through a totally unique sequence of
scenarios depending on the particular choices that he or she has made. 1In
hindsight it may be that the current program has been biased too strongly in
the latter direction, with a consequence being that similarly coded attribute
levels may have been derived (for different subjects) from performance on very

different scenarios. This lack of structure meant, for example, that only
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three dynamic scenarios were encountered by all thirty eight subjects, and led
to a situation whereby the novice group encountered more problems of greater
difficulty on certain key attributes, specifically visualization of position
and simultaneous visual cue sampling. The reduced data analysis which focused
on common scenarios addressed this issue to some extent, but with the
consequence of eliminating several data points (particularly of the novice
group) from the analysis.

A final concern in the present study is the poss{bflzt that our results
might have been overinterpreted, with an inc:'.a.:d ]ikelinoca »i type I
errors. To guard against this possibility, twu pxcfautionary step” were
taken. The multiple regression analyses, expli:. ily ~srtained co}rections for

capitalization on chance, and two tailed rathe~ than one *ailed . -tcats were

used in the between-groups comparison. However, . 1e other Lest: «&iz not
adjusted for the increase in type I error resuiting from the mulciple

!! comparisons (across dependent variables, attributes, or scenario types). This
riskiness was intentional as we viewed the current data as more exploratory
than confirmatory, and the experiment was intended to identify hypotheses that
P. should be pursued in future research. As a result we did not want to commit
type II errors and ignore effects that might have been present, even at low
levels of reliability.

The four problem areas listed above are not trivial, and all are being

addressed in ongoing and future research with the MIDIS program.
Nevertheless, in spite of the problems, the major trends of the present data
r‘ encourage continuation of this line of approach, with suitable modifications
to both the task and the tests. These trends included the emergence of a
reasonable level of MIDIS variance accounted for by the tests of fragile

*E> information processing components, such as working :uemory (visual number

- span), and spatial abilities, and by tests of more crystallized knowledge such
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as risk estimation and declarative knowledge. Furthermore, the variance that
i{s accounted for is consistent with other decision making analyses that
identify both risk utilization, and the more fragile, resource limited
information processing components as important components in decision
performance, thus, tying the results back to the initial model presented in
Figure 1 (e.g., Einhorn & Hogarth, 1981; Slovic, Fischoff, & Lichtenstein,
1977).

Finally, two intriguing characteristics of the expert cohort suggests an
important direction in which the approach should be extended. These refer to
(1) the lack of expert variance accounted for in the multiple regression
analyses by the declarative knowledge measures of the FAA quiz and the
aviation-specific risk factors (see Table 8), and (2) the positive influence
on expert judgment performance of the demands imposed by simultaneous
integrative processing and visualization of position (see Table 6). The first
of these phenomena suggests that important components of the knowledge base
underlying expert pilot decision processes have not been captured. It is
reasonable to hypothesize that these components may relate to procedural
rather than declarative knowledge and be manifest in concepts of scripts
(Schank & Abelson, 1977) and mental models (Gentner & Stevens, 1983; Rouse &
Morris, 1986) that help to sustain the expert's situation awareness.
Decisions or diagnoses may be made by matching mental models, scripts or
previous experiences to the environmental circumstances (Stone et al., 1985),
rather than by integrating facts of declarative knowledge with sampled
environmental cues through computational mechanisms in working memory. Indeed
the richer the source of environmental cues, if these are correlated with a
pilot’s experience, the more information will be available to make such a

pattern match unambiguous and the better a pilot’s judgment should be. A
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procedure like this would explain the initially surprising positive relation
between the demand of a decision problem for simultaneous integrative
processes and positional awareness, and the quality of the expert pilot’s
decision as shown in Table 6. This hypothesis is intriguing, and its test
will depend upon a different methodolegy for examining pilot expertise (e.g.,
Schvaneveldt et al., 1985). Such methodology will be pursued in our future
work as we try to unravel the mysteries of plilot judgment.

In conclusion, it should be noted that the current study is unique in its
efforts to apply theoretical modeling, cognitive theory, and the methods of
both experimental and differential psychology to the collection of expert
decision making data. While a large amount of work still needs to be done in
order to improve and perfect the approach, we feel confident that the current
data are leading toward the acquisitior. of important information in this

critical area of pilot judgment.
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APPENDIX A: Risk Assessment and Utilization Test

Name

Subject Number

Risk Assessment and Utilization Test

The following test is designed to measure how accurately you assess the
riskiness of a situation, and how you use this information in selecting your
preference between alternative courses of action.

Ans@er the following questions as quickly and accurately as possible. Do
not try to do any actual mathematical calculatibns. Rather, make your
responses based upon your genera} impression and situation assessment. Please
note that there are no "right" or "wrong" answers, and that your test score
will. be maintained in complete anonymity.

You will have 10 minutes in which to complete this test. When you finish
eaéh part, move on to the next, until you have 6dmpleted all 4 parté of the

test. Are there any questions?
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PART I

ESTIMATE the following answers after a brief glance at the test picture. Do
not try to do any actual counting or mathematiocal calculations.
1. " . . s. ®
R
] v o & ¢ ¢
[} : L ° l.
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° P ) [ ] [ 4
What percent of the dots are above the line?
2.
What percent of the circle is shaded?
3. 14/250 is equivalent to x/75. X =
69
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What degree angle is this?

5.

The second square is

What percent of the figures in the box are squares?

times larger than the first.
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What degree angle is this?

What percent of the circle is shaded?
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Based upon the fraquency of death per 100,000 U.S. residents (It may help to

think of 100,000 residents as the population of a town like Champaign-Urbana),

how many do you think will die in one year from each of the following causes?

Mark an "X" on the response scale to indicate your estimate.

3.

5.

7.

10.

motor vehicle accident

cancer (any type)

drowning

aelectrocution

accidental fall

firearm accident

vehicle-train collision

homicide

fire

tornado

.01 .1 10" 100 1000
| | | | |
.01 .1 107 100 1000
| | I I |
07 1 707 100 1000
I | | | I
.01 .1 70" 100 1000
| | | | |
.01 .1 10 100 1000
| I | | I
0T .1 707 100 1000
| | I | |
.01 .1 10" 100 1000
I | | | |
07 .1 10" 100 1000
| | | I |
.01 .1 10100 1000
| | I I {
.01 .1 10~ 100 1000
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PART III

Respond with your best estimate to the following questions pertaining to

aviation-related accidents. To aid you in these estimations, the following

statistics may serve as benchmarks: In an average school year, the University

of Illinois pilot training fleet logs approximately 10,506 hours. In one

year, the total number of flight hours logged by all major commercial airlines

is 7.4 million.

1.

2.

5.

For all aircraft, how many accidents (both fatal and non-fatal) ocour per

100,000 aircraft hours?

For all aircraft (general aviation pilots), how many fatal crashes occur

per 100,000 aircraft hours?

For the normal pilot population, what percentage of accidents may be
attributed to continuing flight into deteriorating weather without an JFR

flight plan?

What percentage of accidents are attributed to fuel exhaustion?

Out of all fuel exhaustion accidents, what percentage occurred within 0

to 1 mile of the pilot's destination?

During instructional flight, how many accidents (both fatal and non-

fatal) occur per 100,000 aircraft hours?
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For the normal pilot population, what percentage of accidents were

attributed to stalls?

Eﬁ 8. During instruotional flight, how many fatal accidents occur per 100,000

alrgraft hourb?

9. What percentage of all normal pilot population accidents were collisions

(taxiway, runway, or mid-air)?

10. How many total aircraft accidents occur per 100,000 hours for personal

and business flights (excluding corporate/executive, instructional and

aerial application flights)?

s -Vr
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In each of the following cases, youwill be given 2 alternative courses of
action. Mark an "X" on the response ssale indicating the degree of preference
for 1 option over the other. The neutral point indicates no preference for

either option.

1. A) Buy a random card from a standard deck of 52 for $2.00. If the card

drawn is a heart, you win $10. If not, you lose your $2.00.
B) I will give you $1.00.

Which would you prefer?

A No Prelerence B

2. A) Roll a die. If a 1, 2, or 3 is rolled, I will pay you $3.00. If a
4, 5, or 6 is rolled, you pay me $2.00.
B) Roll a die. If a 3 is rolled, I will pay you $3.00.

Which would you prefer?

A No Preference B

3. A) I uill pay you $1.50.
B) 'Flip a coin. If it's a head, you win $5.00. If it's a tail, you
lose $2.00.
Which would ycu prefer?

| | | [
A No Preference B
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A) You pay me $2.50.
B) Flip a coin. Heads you win $5.00. Tails you pay me $10.

Which would you prefer?

A No Preference B

A) Buy a lottery ticket for $10 with a 1/100 chance of winning $1,000.
B) - Keep your $10 and buy no ticket at all.
Which would you prefer?

A No Preference B

A) Draw a card from a atandard deck of 52 cards. If a card is a spade,
you win $10. If it is a heart, you pay me $5.00. If it is a club,
;o poy me $1,00, If it 48 a diamond, you gain or lose nothing.

B) I will give you $1.00.

Which would you prefer?

I | | [ I
A No Preference B

You make a $100 investment in the stock market. Unfortunately, shortly

after purchasing the stock, its value dropped substantially. Would you:

A) S21il the stock for a net loss of $40.

B) Wait for a 10% chance of gaining a $500 profit, but a 90% chance of
losing the total $100 investment.

Which would you prefer?

A - No Preference B
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A) Pay me $20 for a 1/10 chance of winning $100.
B) Pay me $10 with no chance of winning.

Which would you prefer?

A No Preference B

A) Roll adie. Ifa 1, 2, or 31is rolled, you win $10. If a 4, 5, or
6 is rolled, you pay me $10.
B) Flip a coin. If it's a head, you win $1.00, If it's a tail, you
pay me $1.00.

Which would you prefer?

A No Pref'erence B

A) Do not gamble with a die at all.

B) Roll a die. 1°it'sa 5o0r 6, . v.i. $10. Anything else, you lose
$5.00.

Which would you prefe~?

A "~ No Preference B
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APPENDIX B: Aviation Declarative Knowledge Test

AVIATION RESEARCH LABORATORY MIDIS PROJECT
April 1987
University of Illinois

This test has no official standing and is solely for the research
purposes of ARL. Individual scores on the test constitute research data, and
as such will be treated as confidential to the individual and the research
staff of the MID.S project.
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(1] 7453, What responsibility does the pilot in command of an IFR flight
assume upon entering VFR conditions?

(1) Advise ATC when entering VFR conditions.

(2) HReport VFR conditions to ARTCC so that an amended clearance may be
issued.

(3) Use VFR operating pro:edure:.

(4) To see and avoid other traffic.

(2] 7“53. If you are departing from an airport where you cannot obtain an
altimeter setting, you should set your altimeter

(1) on 29.92" Hg.

(2) on zero ft.

(3) on the current airport barometric pressure, if known.

(4) to the airport elevation.

{3] 7049. When departing from an airport located outside controlled airspace

during IFR conditions, you must file an IFR flight plan and receive a
clearance before

(1) takeoff.

‘(2) entering IFR conditions.

(3) entering controlled airspace.

(4) arriving at the en route portion of the flight.

[4] 7024, Before beginning any flight under IFR, the pilot in command must
become familiar with all available information concerning that flight. In
addition, the pilot must

1) 1list an alternate airport on the flight plan and become familiar with the
instrument approaches to that airport.

(2) 1list an alterrate airport on the flight plan and confirm adequate takeoff
and landing performance at the destination airport.

(3) be familiar with all instrument approaches at the destination airport.

(4) be familiar with the runway lengths at airports of intended use, and the
alternatives available if the flight cannot be compl:ied.
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[5] 7039. You check the flight instruments while taxiing and find that the
VSI (vertical speed indicator) indicates a descent of 100 ft./min. In this
case, you

(1) must return to the parking area and have the instrument corrected by an
authorized instrument repairman.

(2) may take off and use 100 ft. descent as the zero indication.

(3) may not take off until the instrument is corrected by either the pilot or
a mechanic.

(4) may take off without any correction because this instrument is used very
little during instrument flight. '

[6] 7070. Which sources of aeronautical information, when used collectively,
provide the latest status of airport conditions (e.g., runway closures, runway
lighting, snow conditions)?

(1) Airman's Information Manual, Aeronautical Charts, and Distant (D) NOTAMS.
(2) Airport Faeility Directory, FDC NOTAMS, and Local (L) NOTAMS.

(3) Airport Facility Directory, Distant (D) NOTAMS, and Local (L) NOTAMS.

(4) standard Instrument Approach Procedures, FDC NOTAMS, and Airman's

Information Manual.

{71 T7077. . What are the minimum weather conditions that must be forecast to
1ist an airport as an alternate when the airport has no approved instrument
approach procedure?

(1) The ceiling and visibility at ETA, 2,000 ft. and 3 miles, respectively.

(2) The ceiling and visibility from 2 hours before until 2 hours after ETA,
2,000 ft. and 3 miles, respectively.

(3) The ceiling and visibility from 2 hours before until 2 hours after ETA,
1,000 ft. above the highest obstacle, and 3 miles, respectively.

(4) The ceiling and visibility at ETA must allow descent from MEA, approach,
and landing, under basic VFR.
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(8)

(1)
(2)
(3)
(4)

(1)

(2)

(3)
(4)

(10}

7166, The absence of a visibility entry in a Terminal Forecast

specifically implies that the surface visibility

exceeds basic VFR minimums.
exceeds 10 miles.
exveeds 6 miles,

is at least 15 miles in all directions from the center of the runway
complex.

[9) 7192. What is the significance of the "F2" in the remarks portion of this
Surface Aviation Weather Report for CLE?

CLE SP 1350 - X E80 BKN 150 OVC 1GF
169/67/67/2105/003/R23LVV11/2 F2

The restriction to visibility is caused by fog and the prevailing
visibility is 2 statute miles.

The partial obscuration is caused by fog and the visibility valus 1is
variable, 1-1/2 to 2 statute miles.

Tog is obscuring 2/10 of the sky.

The surface based obscuration is caused by fog and is 200 ft. thick.

7449.  What does the symbol in the minimums section for a

particular airport indicate?

(1)
(2)

(3)
(4)

[11]

Takeoff minimums are 800 ft. and 2 miles.

Takeoff wminimums are 1 mile for airceraft having two engines or less and
1/2 mile for those with more than two engines.

Instrument takeoffs are not authorized.
Takeoff minimums are not standard and/or departure procedures are

published.

7249. To which maximum service volume distance from the MFR VORTAC

should you expect to receive adequate signal coverage for navigation at the
I'light planned altitude?

(n
(2)
(3)
(%)

130 NM.
100 NM.
80 NM.

40 NM.
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(12] 7345. What is the significance of the following symbol at Grice
intersection?  oerEET T T G v oo SER MAP ATTACHED

(1) It signifies a localizer only approach is available at Harry P. Williams
Memorial.

(2) The localizer has an ATC funation in addition to course guidance.

(3) GRICE intersection also serves as the FAF for the ILS approach procedure
to Harry P, Williams Memorial.

(4) It signifies that the 2360 course is a back course approach procedure.
{13) 7373. When departing from an airport not served by a control tower, the
issuance of a clearance containing a void time indicates that

(1) ATC will assume the pilot has not departed if no transmission is received
before the void time.

(2) the pilot must advise ATC as soon as possible, but no later than 30
minutes, of their intentions if not off by the void time.

(3) ATC will protect the airspace only to the void time.

(4) the pilot must contact FSS and file a flight plan not later than the void
time specified in the clearance.

[14] 7376. Which distance is displayed by the DME indicator?

(1) Slant range distzauce in nautical miles.

(2) Slant range distance in statute miles.

(3) The distance from the aircraft to a point at the same altitude directly
above the VORTAC.

(4) Line of sight direct distance from aircraft to VORTaC ia statute miles.
(15]) 7388. What service is provided by departure control to an IFR flight
when operating from an airport with a terminal radar service area (Stage III)?
{1) Separation from all aircraft operating in the TRSA.

(2) Position and altitude of all traffic within 2 miles of the IFR pilot's
line of flight and altitude.

(3) Position of 211 participating VFR aircraft within the airport traffic
area.

(4) Separation from all IFR aircraft and participating VFR aircraft.

82



ﬁw
w.
:
:
f

wranw IILAYIVY
” 03-NOSWIJdar

IONR .4
e,

Sl4iviL INVidvS
= == B ¥11500113K Jo 3nnloa
sem = L

INNOQINYIL-YNNOY

e s

1
xnopoquyy)

O .

W o !-.i WO & Auoy

e s NUd
¥ NOS¥31ivd .
o 00 3377 3m

ONV_OL 1MOINé WéA OL SHOUIUIEIM
SHYIIN0 MIN W VNV

3y
0r g
" ~ < TL ==
X R A T - s
2

N
@, QDH m00
avauy :

NN

M yig
; . %58.5::

Wx:unu
(123
r@cy

Y110g Lpuey i

:

L1Lze v Ny
& amsdojey §

S \§\io
224153y »Onoy uoog

WTs0i == nwH
ONONNWYX

JdYNY

/4

N
.w ~N®

2

. .- V> SR B U o F—.

83



[16] 7402. W¥hat does the ATC term "Radar Contact" signify?

(1) Your aircraft has been identified and you will receive separation from
all aircraft while in contact with this radar facility.

(2) Your aircraft has been identified on the radar display and radar flight
following will be provided until radar identification is terminated.

(3) You will be given traffic advisories until advised the service has been
terminated or that radar contact has been lost.

(4) ATC is receiving your transponder and will furnish vectors and traffic
advisories until you are advised that contact has been lost.

[17]) 7408. What is the definition of MEA (Minimum En Route Altitude)?

(1) An altitude which meets obstacle clearance requirements, assures
accsptable navigation signals from more than one VORTAC, and assures
accurate DME mileage.

(2) The lowest published altitude which  nmeets obstacle clearance
requirements, assures acceptable navigational signal coverage, and two-
way radio communications.

(3) The lowest published altitude which meets obstacle requirements, assures
acceptable navigational signal coverage, two-wWay radio communications,
and provides adequate radar coverage. '

(4) An altitude which meets obstacle clearance requirements, assures
acceptable navigation signal coverage, two-way radio communications,
adequate radar coverage, and accurate DME mileage.

(18] 17414. Reception of signals from an off-airway radio facility may be
inadequate to identify the fix at the designated MEA. In this case, which
altitude is designated for the fix?

(1) MRA.
(2) Maa.
(5) MCA.
(4) Moca.
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[19] 7441. You enter a holding pattern at a fix, not the same as the approach
tix, and receive an EFC time of 1530. At 1520 you experience complete two-way
communications failure. Which procedure should you follow to execute the
approach to a landing?

(1) Depart the holding fix to arrive at the approach fix as close as possible
to the EFC time and complete the approach.

(2) Depart the holding fix at the EFC time, and complete the approach.

(3) Depart the holding fix at the EFC time or earlier if your flight planned
ETA is before the EFC.

(4) Depart the holding t'ix to arrive about 2 minutes ahead of the EFC and

then enter a holding pattern at the final fix and adjust pattern to leave
the fix inbound at the EFC.

{20] 7041. When making an airborne VOR check, what is the maximum allowable
tolerance between the two indicators of a dual VOR system (units indepedent of
each other except the antenna)?

(1) U9 between the two indicated bearings to a VOR.

(2) Plus or minus 40 when set to identical radials of a VOR.

(3) €° between the two indicated radials of a VOR.

(4) 40 when set to identical radials of 2 VOR.

[21] TO042. What is the oxygen requirement for an unpressurized airplane at
15,000 ft.?

(1) All occupants must use oxygen for the entire time at this altitude.

(2) Crew must ztart using oxygen at 12,000 ft. and passengers at 15,000 ft.

(3) Crew must use oxygen for the entire time above 14,000 ft. and passengers
must be provided supplemental oxygen only above 15,000 ft.

(4) Crew must start using oxygen at 12,500 ft. and passengers must be
provided supplemental oxygen at 14,000 ft.

{22) 17071, Where are the compulsory reporting pointe; 1if any, on a direct

flight not flown on radials or courses of establishad airways 35 routes?

(1) Fixes selected to define tne route.

(2) The points where the direct course crosses an airway.

(3) There are no compulsory reporting points unless advised by ATC.

(%) A% the COP (changeover points).
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[23) T7104. Unsaturated air flowing upslope will cool at the rate of
approximately

(1) 39C per 1,000 ft.

(2) 20°C per 1,000 ft.

(3) 2.50C per 1,000 ft.

(4) U.40C per 1,000 ft.

[24) 7125. Which is a characteristic of low-levél wind shear as it relates to
frontal activity?

éf; (1) The amount of wind shear in cold fronts is much greater than found in
. warm fronts.

ﬁﬁ (2) With a warm front, the most critical period is before the front passes
H the airport.

(3) With a cold front, the most critical period is just before the front
passes the airport.

. (4) With a cold front, the problem ceases to exist after the front passes the
airport.
b

[25]) T7197. "A Surface Analysis Chart depicts

(1) actual pressure systems, frontal locations, cloud tops, and precipitation
at the time shown on the chart.

(2) frontal 1locations and expected movement, pressure centers, cloud
coverage, and obstructions to vision at the time of chart transm;ssion.

(3) actual frontal positions; pressure patterns, temperature, dew point,
wind, weather, and obstructions to vision at the valid time of the chart.

(4) actual pressure distribution, frontal systems, cloud heights and
coverage, temperature, dew point, and wind at the time shown on the
chart.
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