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SECTION I
INTRODUCTION
A. OBJECTIVE

The objective of this project was to calculate the release Richardson
number for four field-scale releases of liquid anhydrous ammonia to determine
the importance of cloud density in the atmospheric dispersion of toxic clouds
regulting from these test spills. After calculating the release Richardson
number, the DEGADIS model was used to simulate the atmospheric dispersion of
the toxic clouds. The model results were compared to field measurements to
determine the suitability of DEGADIS to simulate these types of releases.

B. BACKGROUND

The U. S. Air Force (USAF) has been taking steps to improve the safety
procedures available during operations involving hazardous chemicals and
fuels. In support of this effort, the Air Force Engineering and Services
Laboratory (AFESC/RDV) has sponsored research on the dispersion of
denser-than-air gas clouds resulting from accidental releases of toxic
chemicals., This study examines four field-scale releases of liquid anhydrous
ammonia from the "Desert Tortoise” (DT) series (Reference 1).

Denser-than-air gases are of particular interest because current (passive)
dispersion models used to predict concentrations (and safety limits) may be
inappropriate. Models currently used for safety assessment assume that the
dispersing contaminant does not affect the atmospheric flow field. This may

not be true for denser-than-air gases; dispersion rates may be considerably

reduced for denser-than-air gases due to the stable stratification which may

be present. The release Richardson number has been used successfully as a




criterion for determining whether a particular release of material can be
adequately modeled using passive dispersion techniques or whether denser-than-
air gas effects must be considered. (The release Richardson number is a
dimensionless number relating the effects of the type of material released,
the ambient wind profile, and characteristics of the release itself.) This
study examines the applicability of the release Richardson number to the DT
tests. The liquid anhydrous ammonia was released as a pressurized liquid jet
in the DT tests; this study also attempts to quantify the effect of the jet
behavior on the relative importance of the denser-than-air gas effects present
in the releases,

C. SCOPE/APPROACH

Because the liquid anhydrous ammonia was released as a pressurized jet,
the ammonia formed a cold ammonia aeroscol as it moved downwind. Upon mixing
it with the ambient air, some of the ambient humidity condensed to form a
nonideal liquid phase composed of ammonia and water. This study examines the
influence on the dispersion processes by the aerosol formation, the nonideal
liquid solution behavior of the ammonia and vater, and the heat transfer to
the cold aerosol; potential simplifications are discussged.

Finally, this study examines the consistency of model predictions using
the Gaussian plume model and DEGADIS (a computer model designed to account for
the influences of denser-than-air gases) with the results of the DT tests.

The importance of such factors as the aerosol behavior, heat transfer to the
ammonia cloud, and initial jet behavior on the model predictions are
discussed. The sensitivity of DEGADIS to uncertainty in input parameters not

routinely available at operational USAF sites is also assessed.




SECTION II
METHODOLOGY

Four field-scale releases of liquid anhydrous ammonia (the "Desert
Tortoise” (DT) series) were performed in 1983 by Lawrence Livermore
National Laboratories (LLNL) for the U.S. Coast Guard, the Fertilizer
Institute, and Environment Canada (Reference l). The releases were
conducted on Frenchman Flat, a dry lake bed approximately 6 kilometers long
and 3 kilometers wide, at the Nevada Test Site. Although the area is
normally very dry, unusually heavy rains had occurred before the test
period. Water was standing on the test site during the first three tests,
but the lake bed was dry during Test 4. A summary of the release

conditions for the tests is presented in Table 1. A surface roughness of

0.003 meters was used for the site (Reference 1). Pressurized storage
resulted in rapid expansion of the ammonia as it exited through an orifice
at the end of the spill pipe. This section summarizes important aspects of
this type of release specifically dealing with the initial properties of
the ammonia aerosol which was formed. Also, the dispersion processes
downwind of the source are discussed. The succeeding sections address the

analysis of the DT test data to yield information suitable for model

TABLE 1. SUMMARY OF RELEASE CONDITIONS FOR THE DESERT TORTOISE SERIES

DT1 DT2 DT3 DT4
Spill rate (kg/s) 81. 117. 133. 108.
Windspeed at 5.83 m (m/s) 8.33 6.01 8.16 4.99
Friction velocity (m/s) 0.442 0.339 0.448 0.286 ]
Ambient temperature (°C) 28.7 30.9 33.8 33.2
Ambient pressure (bar) 0.909 0.910 0.907 0.903 i
Relative humidity (%) 13.2 17.5 14.8 21.3 :
Monin-Obukhov length (m) 92.7 94.7 570.7 45.2 :
Pasquill stability class D D D E 1




.r.

comparison, a method of determining the relative importance of the various
flow and dispersion processes present, and the comparison of the results

from the DT test data with a Gaussian plume model and DEGADIS.

A. AMMONIA AEROSOL FORMATION AND SUBSEQUENT MIXING WITH AIR

The release of anhydrous ammonia from storage at elevated pressure and
ambient temperature results in the formation of a denser-than-air ammonia
aerosol if the release is from the liquid phase; such releases are
typically violent jets. The DT release conditions represent this type of
release. (A general discussion of the behavior of the early phases of
ammonia releases is presented by Wheatley (References 2 and 3); for this
report, only the conditions of the DT releases are discussed.) The
behavior of the flashing liquid jet can be described (approximately) as
either isenthalpic or isentropic. (Isenthalpic behavior implies that all
of the energy of the liquid jet goes into the energy of the resulting
aerosol, ignoring any kinetic energy; isentropic behavior implies that the
flow is adiabatic, frictionless, and ignores other irreversibilities such
as shocks.) For storage temperatures below about 50°C, the mass fraction
of liquid ammonia in the resulting aerosol is approximately the same
regardless of whether the flow is assumed to be isenthalpic or isentropic.
Assuming isenthalpic flow, the aerosol was estimated to have (initially) a
temperature of -36°C with about 81 percent (by mass) of ammonia in the
liquid phase. For hazard assessment purposes, the distance required for
the flashing liquid jet to regain thermal equilibrium and form the aerosol
is insignificant (on the order of 1 meter).

Since dispersion depends on the density of the air/ammonia mixture, it
is necessary to estimate the mixture density as a function of ammonia mole
fraction. Some of the ambient humidity will condense when air is entrained
into the aerosol. Since ammonia and water form nonideal solutions in the
liquid phase, consideration of the nonideal behavior of the liquid phase
may be important under some circumstances. For the ammonia/water system, -
Wheatley (References 4 and 5) has investigated these interactions and
incorporated them into a computer code, TRAUMA, which was used to estimate
the ammonia/air/water mixture density as a function of ammonia concentra-

tion for the DT releases. Figure 1 shows the mixture density and mixture
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Figure 1. Ammonia/Air/Water Mixture Temperature and Density as
Functions of Ammonia Mole Fraction for DT4 Conditions
Calculated using TRAUMA.

temperature as functions of ammonia mole fraction for DT4 which is typical
of all of the releases calculated using TRAUMA version 1.0. (The equilib-
rium mixture temperature decreases with the addition of air.)

Three simplifying assumptions can be made to describe the ammonia/air/
water mixture density: (1) a pseudobinary mixture of ammonia and air/
water; (2) ideal ammonia/water liquid solution behavior; and (3) assumption
of a linear relationship between ammonia concentration (in kg/m3) and mix-
ture density. To determine whether these assumptions are appropriate, the
effect on DEGADIS predictions of the DT4 release conditions was examined.
TRAUMA was used to determine the mixture density of a pseudobinary mixture
of air/water and ammonia; water phase changes were ignored, greatly sim-
plifying the calculation procedure required (since the partial pressure of
ammonia is then equal to its vapor pressure). Ammonia phase changes were
taken into account. (For details of the capabilities of TRAUMA, see
Wheatley (Reference 6).) Comparing simulations made with this simplified
dehsity specification and the density specification of Figure 1, substan-

tial differences were noted in the DEGADIS dispersion calculation for




ammonia concentrations below on the order of 1 percent for the release
conditions of DT4. TRAUMA was also used to determine the ammonia/air/water
mixture density assuming ideal liquid solution behavior; this assumption
also simplifies the calculation procedure required (since the partial
pressure of ammonia is then equal to its vapor pressure times its liquid
phase mole fraction). Heat of mixing effects between the ammonia and water
in the liquid phase were ignored. The assumption of ideal liquid-phase
solution behavior adequately described the mixture density so that no
difference was noted in the DEGADIS dispersion calculations based on the
release conditions of DT4 (for relative humidities ranging from 0 to 100
percent). Finally, a linear relationship between ammonia concentration (in
kg/m3) and mixture density was used directly in DEGADIS; the endpoints were
represented by the released ammonia aerosol ahd the ambient air. Upon
comparison, the DEGADIS-predicted distances using this simplified scheme
were within about +20 percent of the DEGADIS-predicted distance to a given
concentration level using the density specification of Figure 1; this

agreement was checked to about 100 ppm for the conditions of DTé4.

B. JET AND NONJET FLOW PHASES

The initial growth of a turbulent jet is characterized by large-scale
turbulent motions which entrap air in the jet flow (Reference 7). This
initial near-jet region was estimated to persist on the order of 10 meters
for the DT series. As a result of air entrainment and expansion of the
jet, the momentum of the jet decreases, and the jet is well described by
self-similar velocity and concentration profiles in the absence of inter-
action with the ground (Reference 8). The jet velocity decreases (due to
air entrainment) and approaches the ambient wind velocity. For the DT
series, the ammonia was released 0.79 meters above ground level, and the
jet struck the ground within one meter or so. Therefore, the DT releases
would be expected to behave like a ground-level (jet) release due to the
interaction with the solid boundary. In contrast to nonaerosol jets, the
aerosol jets in the DT releases msy be subject to rainout (deposition of
some of the liquid phase on the ground). Wheatley (Reference 5) has
examined the possibilities of rainout for ammonia aerosols and found that
rainout is not expected for pressurized releases in the absence of solid

boundary interactions. For the DT series, Goldwire et al. (Reference 1)




reported that some of the ammonia was deposited on the ground and formed a
liquid pool, probably because the release was near ground level.

After the contsminant/air mixture jet velocity has diminished, nonjet
flow phases become important including: (1) negative buoyancy-dominated
flow; (2) stably stratified shear flow; and (3) passive dispersion due to
atmospheric flow. The theory underlying the dispersion prediction of trace
contaminants (passive dispersion) generally assumes that the dispersion is
the result of atmospheric turbulence. Although characterization of the
atmospheric flow suffers from the limits of understanding of turbulent
fluid motion, there is a fairly well-developed theoretical basis for pre-
diction of passive atmospheric dispersion, along with an extensive experi-
mental data base derived from atmospheric flow measurements (Reference 9).
In contrast to passive dispersion, the teleas§ of large quantities of a
denser-than-air gas (DTAG) into the atmosphere can significantly alter the
atmospheric flow in the vicinity of the release. For some releases, this
negative buoyancy-dominated (gravity-driven) flow and the resulting
interaction with the atmospheric flow can have an important effect on the
distance needed to reduce the concentration to a given level. Between
these two extremes, the stably stratified shear flow phase differs from
neutrally buoyant flow and is characterized by the following: (1) a
crosswind gravity-driven flow due to the negative buoyancy of the flow is

present; (2) because of this gravity-driven spreading, these plumes tend to

be wider and shallover than a neutrally buoyant plume under the same
conditions; and (3) because of stable vertical density stratification, the
vertical mixing rate is reduced. (A detailed discussion of each of these
nonjet flow phases is found in Havens and Spicer (Reference 10); see
Section III and Appendix A for a method to estimate the relative importance "
of the jet and nonjet flow phases.)




SECTION IIIX
EI ANALYSIS OF DESERT TORTOISE DATA FOR MODEL COMPARISON

For the DT releases, two sensor arrays were used to measure the down-

wind ammonia concentrations. The mass flux array consisted of a row of

: seven gas sensor masts located 100 meters downwind of the release area.
hl The primary gas concentration sensors in this array were Mine Safety

Appliance (MSA) nondispersive IR gas sensors which were heated to vaporize

the aerosol so that the total ammonia concentration could be determined.

(The velocity of gas through the 100-meter array was to be measured with
_l anemometers to determine the mass flux of gas through the array, but

corrosion caused by the ammonia made these instruments unreliable.) At 800

meters downwind of the release area, the instrument array consisted of five

sensor masts spaced 100 meters apart; each mast had three gas sensors and
three thermocouples. The sensors were located at 1.0, 3.5, and 8.5 meter
heights on each sensor mast. The primary gas sensors in this array were
International Sensor Technology (IST) solid-state gas sensors. In addition
to these sensor arrays, eight portable IST gas sensors were located at
l-meter elevations from 1.4 to 5.5 kilometers downwind.

To facilitate the comparison of model simulations and reported concen-
tration and temperature measurements, the reported concentrations and
temperatures along with reported wind trajectories and mass rates at 800
meters were analyzed to determine the best representation of steady-state
concentrations and temperatures. (The reported wind trajectories did not
correspond exactly with the plume centerline due to the momentum of the
release.) The mass rate passing the 800-meter array was reported by LLNL

i on the basis of the observed concentration and temperature profiles at the
800-meter array and velocity profiles interpolated from other meteorologi-
cal tovers. The mass rate passing the 800-meter array for each of the
tests during the time period when the concentration and temperature pro-
files were examined are summarized in Table 2. Most of the released mass
is accounted for at the 800-meter array (67 percent to 89 percent) for all
tests except DT3 (42 percent). Ignoring the uncertainty in the estimated
ammonia mass rate at 800 meters, the unaccounted ammonia mass at the 800-

meter array could have been deposited on the ground by rainout or could

o




have been absorbed by the water on the ground in DTL1 - DT3. Tables 3-6
summarize the reported concentration and temperature for the time
'I , reflecting these (approximate) steady-state conditions.

TABLE 3.

TABLE 2.

REPORTED AMMONIA MASS RATES AT 800-METER

SENSOR ARRAY AT THE SPECIFIED TIMES

Integrated Contaminant Time from Start
Release Mass Rate at 800 m (kg/s)* of Release (s)

DT1
DT2
DT3
DT4

66.
104.
56.
72.

= O o wun

~240.

~270.

~200.
~340 to 390

*from Reference 1.

REPORTED CONCENTRATION AND
AND 240 SECONDS REFLECTING (APPROXIMATE) STEADY-STATE CONDITIONS

TEMPERATURE FOR DT1 AT 800 METERS

Sensor
Elevation

(m)

Concentration (%) / Temperature (°C)

Sensor Sensor
Station Station
G24 G23

Sensor Sensor Sensor
Station Station Station
G22 G21 G20

8.5
3.5
1.0

0.0/29.1 0.07/27
0.0/28.9 0.88/22

.4  0.02/28.6  0.0/29.6  0.0/29.6
.7 0.88/22.7  0.0/29.3  0.0/29.3

0.0/28.8 1.00/24.0 1.00/24.0 0.0/29.4 0.0/29.4

Note: The plume centerline was approximately midway between G22 and G23.




TABLE 4. REPORTED CONCENTRATION AND TEMPERATURE FOR DT2 AT 800 METERS
AND 270 SECONDS REFLECTING (APPROXIMATE) STEADY-STATE CONDITIONS
Concentration (%) / Temperature (°C)

Sensor Sensor Sensor Sensor Sensor Sensor
Elevation Station Station Station Station Station

(m) G24 G23 G22 G21 G20
8.5 0.0/30.3 0.14/28.0 0.23/26.7 0.0/30.4 0.0/30.4
;- 3.5 0.0/30.3 1.08/25.7 1.70/21.7 0.91/23.3 0.0/30.7
0.0/30.0 1.67/25.0 1.86/22.5 1.71/722.2 0.0/30.7

FII 1.0

Note: The plume centerline was approximately over G22.

TABLE 5. REPORTED CONCENTRATION AND TEMPERATURE FOR DT3 AT 800 METERS
AND 200 SECONDS REFLECTING (APPROXIMATE) STEADY-STATE CONDITIONS
Concentration (%) / Temperature (°C)

Sensor Sensor Sensor Sensor Sensor Sensor
Elevation Station Station Station Station Station
(m) G24 G23 G22 G21 G20
8.5 0.0/32.7 %* 0.0/33.4 0.0/33.3 0.0/33.1
3.5 0.58/29.2 * 0.78/29.2 0.0/33.3 0.0/33.3
1.0 0.87/28.1 Y 1.00/28.1 0.0/32.9 0.0/32.9

10

Note: The plume centerline was approximately over G23.

*G23 failed to record any data due to instrument failure.




TABLE 6. REPORTED CONCENTRATION AND TEMPERATURE FOR DT4 AT 800 METERS
AND 350 SECONDS REFLECTING (APPROXIMATE) STEADY-STATE CONDITIONS

Concentration (%) / Temperature (°C)

Sensor Sensor Sensor Sensor Sensor Sensor
Elevation Station Station Station Station Station
- (m) G24 G23 G22 G21 G20
8.5 0.0/32.9 0.0/32.0 0.0/32.0 0.0/32.2 0.0/32.2
3.5 0.0/32.2 0.77/25.9 1.26/23.9 0.80/24.8 0.47/27.4
1.0 0.0/31.4 1.29/26.3 1.94/23.9 1.90/23.3 0.83/27.3

Note: The plume centerlin: was approximately midway between G21 and G22.

For model comparison purposes, the measured concentrations were fitted

to two similarity profiles:

2 f 12
c=c,exp { - % [ g— ] - % ;— (L
y [ "z
and
( 2 11+a )
c=c_ exp { - g— - §- b 2)
. y z ) J

where c, represents the maximum centerline contaminant concentration, z
represents the height above ground, y represents the lateral distance from

the centerline, ay

coefficients, sy and S, are distribution coefficients used in the DEGADIS

and o, are Gaussian (Pasquill-Gifford) dispersion

model, and a is the power-law wind profile parameter. The concentration

pro“iles of Equations (1) and (2) were integrated, along with a (typical)

velocity profile of the form

2 Qa
u_ = ug = 3) *

11
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b
;

to give the mass rate passing a plane downwind:

m=- cuxdzdy (®)
- JQ

Using Equation (4) and the reported mass rates passing the 800-meter array,
Ty» Tg» sy, and S, were then determined by a weighted nonlinear least-
squares technique from the reported concentrations and temperatures of
Tables 3-6. The values of Oys Og» and c, for Equation (1) and Sy, S,, and
¢. for Equation (2) are summarized in Tables 7 and 8, respectively. Notice
that the maximum centerline concentration is different for the different

profiles. Furthermore, notice that oy = Sy//f and 0, = S, (to within about

10 percent).

-

TABLE 7. ESTIMATES OF o. AND TABLE 8. ESTIMATES OF S. AND
Oy FOR THE DESERT Sz FOR THE DESERT
TORTOISE SERIES TORTOISE SERIES
AT 800 METERS AT 800 METERS
o o c S S c
y z c z c
@  (m) (kg/md) @ @ (kg/md)
DT1 31.2 3.42 0.0267 DT1. | 43.8 3.78 0.0323
DT2 65.7 3.60 0.0241 DT2 105.0 4.80 0.0205
DT3 66.0 2.50 0.0155 DT3 106.2 2.66 0.0171

DT4 86.7 2.80 0.0218 DT4 143.5 3.11 0.0222




SECTION 1V
RELEASE RICHARDSON NUMBER

The purpose of this section is to examine one way of determining
whether the ground-level jet dominates a release or whether the other
nonjet phases of a ground-level release (including the negative buoyancy-
dominated dispersion phase, the stably stratified shear flow phase, and the
passive dispersion phase) are the only important dispersion phases. (The
derivation of these criteria is discussed in Appendix A.)

From Havens and Spicer (Reference 10) and Spicer and Havens (Reference
11), the previous criteria for determining which phase of the dispersion
process dominates a particular ground-level, low initial momentum (nonjet)
release was based on water tunnel experiments reported by Britter (Refer-
ence 12). In that set of experiments, a salt/water solution was released
at floor level, and the lateral and upwind extent of the plume- was
recorded. Analysis of Britter's releases showed the following criteria of

a release Richardson number were obtained for ground-level, nonjet

releases:

If Ri, 5 30 negative buoyancy-dominated phase
If 1 R Ri, 230 stably stratified shear flow phase
If Ri, 21 passive dispersion phase

where Ri, = g(pg - pa)H/(pau%). The vertical length scale H is approxi-
mated as H = Q/uD for these ground-level, nonjet releases. (For Britter’s
releases, the ground-level release was directed upward so that, in the
absence of entrainment and gravity spreading at the source, the depth of
material moving downstream (H) would just be Q/uD for a uniform approach
velocity u.) Ri, represents a ratio of the potential energy characteristic
of the release to a measure of the ambient turbulent kinetic energy. For
the DT series, this approximation for H is not appropriate. To best
approximate the potential energy characteristic of the release as used in
Ri,, the value of H used herein for the DT releases is 2.0 meters for all
the releases based on observation of the photographic records of the tests
as well as the height of the release pipe outlet (0.79 meters). Using this
value for H, the values of Ri, for the DT series are shown in Table 9.

(For estimation of Ric. values of u, were taken from Goldwire et al.

(Reference 1), and values of the initial aerosol density were estimated

i3

lamd,




TABLE 9. VALUES OF R, AND (V/u,)?
FOR THE DT SERIES

Test Ri, (V/uy)?
DTL 280 2300
DT2 490 5000
DT3 270 3700
DT4 630 6100

using TsAUMA as discussed in Section I.) As indicated by Ri., all of the
DT releases would be in the negative buoyancy-dominated flow phase at the
release in the absence of any jet effects.

After criteria of domination of a particular nonjet dispersion phase
have been established, it can be determined whether a particular release is
dominated by jet effects. Of course, jet effects would dominate a release
in the absence of wind for a horizontal release. Goldwire et al. (Refer-
ence 1) suggest that jet effects were important in the DT series to over
100 meters downwind of the release because agreement between the position
of the vapor cloud and wind trajectories was only fair. For this analysis,
a release will be considered dominated by jet effects associated with the
release if the rate of air entrainment due to the jet dominates the rate of
air entrainment due to the dominant nonjet dispersion phase of the release.
Based on the analysis in Appendix A, ground-level, horizontal jet effects

dominate the dominant nonjet flow phase when:

V/u 5 0.8 for passive dispersion phase
V/u $ 16/(19+R1 ;) for stably stratified shear flow phase
(V/u*)2 S 10 Ri, for negative buoyancy-dominated phase

where V {s the velocity of the material leaving the pipe. For the DT
series, the appropriate condition to check is (V/u*)2 s 10 Ri, since the
dominant nonjet flow phase is the negative buoyancy-dominated flow phase.

Ratios of (V/u*)2 are also shown in Table 9. Based on this criteria, the

oﬁly release which would be clearly dominated by jet effects is DT3, and




the remaining tests should be adequately predicted by a model which
properly takes into account the ground-level, nonjet flow phases discussed

above.

15 W




SECTION V
COMPARISON OF THE PASQUILL-HANNA GAUSSIAN PLUME MODEL
AND DEGADIS WITH THE DESERT TORTOISE DATA

The Pasquill-Hanna Gaussian plume model has proven to be applicable to

. atmospheric dispersion problems when the dispersion of the contaminant is
_ only a function of the atmospheric turbulence and the plume does not

perturb the ambient flow field (passive dispersion). The steady-state

Gaussian plume model for ground-level releases is given by

2 2
Q 11y 1] z
V¢ = %0 o u °XP [ "2 [ c ] ) [ g ] ] (3)
y z y z

vhere y, is the contaminant mole fraction, Q is the volumetric source

evolution rate, and oy and o, are the standard deviation of the lateral and
vertical concentration distributions, respectively. Values of oy were
taken from Hanna et al. (Reference 13), and values for o, wvhich take into
account surface roughness effects were taken from Pasquill and Smith
(Reference 9).

The DEGADIS (DEnse GAs DISpersion) model was developed for the U.S.
Coast Guard and the Gas Research Institute and was designed to model the
atmospheric dispersion of DTAG’'s (References 10, 11). DEGADIS is an
adaptation of the Shell HEGADAS model described by Colenbrander (Reference
14) and Colenbrander and Puttock (Reference 15); DEGADIS also incorporates
some techniques used by van Ulden (Reference 16). The model was developed
to predict the dispersion of gas from a ground-level area source (such as a
boiling liquid pool), and describes three phases of dispersion which
typically occur following nonjet, ground-level DTAG releases discussed in
Section II. The near-field, buoyancy-dominated dispersion phase is modeled
using a lumped parameter model of a denser-than-air "secondary source"
cloud which incorporates air entrainment at the gravity-spreading front
using a frontal entrainment velocity; this description is based on labora-
tory data reported in Havens and Spicer (Reference 10). The downwind
dispersion phase of the calculation assumes a powver law concentration
distribution in the vertical direction and a modified Gaussian profile in
the horizontal direction with a power law wind profile (Figure 2). The

16
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vertical mixing rate is based on laboratory-scale data for vertical mixing
in stably density-stratified fluids reported by Kantha et al. (Reference
17), Lofquist (Reference 18), and McQuaid (Reference 19). The vertical
dispersion parameters S, and the horizontal dispersion parameter S deter-

y
mine the vertical and horizontal profiles, respectively. It should be

noted that the rates of change of Sy and S, approach the rates of change of

o, and o,, respectively, as the density of the plume approaches the ambient

dZnsity. A complete description of DEGADIS is included in Appendix B; a
discussion of the sensitivity of DEGADIS to uncertainty in model input
parameters not routinely available at operational USAF sites is included in
Appendix C.

At present, DEGADIS does not have provisions for describing jet
releases. However, it is characteristic of DEGADIS predictions that the
distance to a given concentration level is not a strong function of the
source area when the emission flux is greater than or equal to the maximum
atmospheric takeup flux (within an order of magnitude). Using the
arguments presented in Section IV, the diameter of the source used in the
simulations was given by D = Q/uH along with the assumed value of H = 2

meters for all releases. (Essentially identical values for c S,, and

c' sy' z'

b were predicted using these values for D and 10D.)

In addition, the thermodynamics treatment in DEGADIS does not presently
provide for phase-change heat effects (other than ambient humidity conden-
sation) in the gas/air mixture. Therefore, aerosol phase change effects on
the cloud density were accounted for by estimating the mixture density as a
function of contaminant concentration using TRAUMA as discussed in Section
II. This assumes that a given amount of pure released aerosol and ambient
humid air are mixed until they reach equilibrium (adiabatic mixing). Note
that because the mixture density as a function of concentration is approxi-
mated by adiabatic mixing, heat transfer is not included in the DEGADIS
simulations of the DT releases herein.

Table 10 shows a comparison between the reported temperature associated

with the maximum reported concentration and the adiabatic mixing tempera-

ture associated with the maximum reported concentration for the DT tests.
The assumption of no heat transfer (or adiabatic mixing of the released
aerosol with the ambient air) reproduces the reported temperature remark *

ably well. Furthermore, Table 10 shows the difference in the mixture
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density associated with the difference in temperature to be insignificant.
Therefore, the assumption of insignificant heat transfer is justifiable for
the DT series. The validity of this assumption for the release of a given
material is generally based on the competing effects of warming the con-
taminant mixture by mixing with (warm) air compared with warming by heat
transfer; both of these effects are related to the windspeed. For high
windspeeds, the rate of mixing is increased, thereby adding more energy to
the mixture. Also for high windspeeds, the mean cloud advection speed {is
higher, implying that the travel time to a given distance is decreased, and
shorter travel times provide less time for heat transfer to occur. It {is
straightforward to show that the mean advection time to a given distance
should be proportional to (Tggpg - Tpy) where Topg 1s the observed tempera-
ture and T,y 1s the adiabatic mixing temperature for the same concentration
level. For lower windspeeds such as DT2 and DT4, the heat transfer pro-
cesses were more important than for DT1 and DT3 which had higher wind-
speeds. Indeed, for calm conditions, heat transfer processes would be more

important than the heat transfer processes observed in the DT series.

TABLE 10. COMPARISON OF THE TEMPERATURE ASSOCIATED WITH THE OBSERVED
MAXIMUM CONCENTRATION AND THE ADIABATIC MIXING TEMPERATURE
ASSOCIATED WITH THE MAXIMUM CONCENTRATION AT 800 METERS

Measured Adlabatic Mixing
Temperature Temperature
at the at the Density Error
Maximum Reported Maximum Reported in Assuming No
Concentration (°C) Concentration (°C) Heat Transfer (%)
DT1 23.6 20.9 0.9
DT2 22.5 17.2 1.8
DT3 24.9 22.4 0.8
DT4 23.0 17.7 1.8

The exposure limits for ammonia (and other toxic materials) are

generally based on exposure to a given concentration over a specified time
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period; the short-term exposure limit (STEL, based on a 15-minute exposure)
for ammonia established by the 1979 American Conference of Governmental
Industrial Hygienists (ACGIH) is 35 parts per million (Reference 20).
Therefore, it i{s necessary to be able to predict not only the maximum
concentration, but also the average concentration over a period of time
(for example, 15 minutes). A discussion of the implications to DEGADIS of
the averaging time is included in Appendix D. 1In the DT series, the MSA
nondispersive IR gas sensor response time was about 2 seconds, and the
concentration data were smoothed using a 3-second sliding average (Refe-
rence 1). An averaging time of 3 seconds was used in the DEGADIS simula-
tions for comparison with the data.

The Pasquill-Hanna Gaussian model results for the DT series are shown
in Table 11 and compared with the concentration profile parameters at 800
meters as presented in Table 7. As indicated, the predicted values of o
are in reasonable agreement with the estimated values, but the predicted
values of o, are much larger (by an average factor of about 6) than the

estimated values. In Tables 12-15 and Figures 3-6, the model results are

y

compared with maximum reported concentrations (for all time). (All model
simulations were made for the ammonia release rate (Table 1) and the
estimated ammonia mass rate at 800 meters (Table 2).) In Tables 12-15, the
observed temperatures reported correspond in time with the maximum reported
concentrations. The values of Sy and S, are reported in Tables 12-15; the
approximations S, = o, and Sy = /7ay are used for comparison. As
indicated, the predicted values of the maximum concentration are much

smaller (by an average factor of about 6) than the maximum observed values.
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TABLE 11. COMPARISON OF OBSERVED AND PREDICTED GAUSSIAN
PROFILE PARAMETERS AT 800 METERS
_ Estimated Predicted® Estimated Predicted®
g g g (23
y z z
@ (h) (m) (m)
DTL 31.2 31.2 3.42 21.0
. DT2 65.7 31.2 3.60 21.0
] DT3 66.0 31.2 2.50 21.0
3 DT4 86.7 23.4 2.80 12.2

8From Hanna et al. (Reference 13) and corrected for
averaging time
From Pasquill and Smith (Reference 9)

TABLE 12. COMPARISON OF OBSERVED AND MODEL-PREDICTED CONCENTRATION
PROFILE PARAMETERS FOR DT1

at 800 m at 3.5 km at 5.5 km
Maximum Maximum Maximum
Concentra- Tempera- Concentra- Concentra-
tion ture S, Sy tion tion
(Vol. %) (°C) (m) (m) (Vol. ppm) (Vol. ppm)
Observed 1.12 23.6 3.78 43.8 670 150
Gaussian Plume Model
(66.5 kg/s) 0.10 - 213 44b 75 35
(81 kg/s) 0.12 - 218 4P 92 43
DEGADIS
(66.5 kg/s) 0.69 24.0 6.71 87.9 850 360
(81 kg/s) 0.83 23.0 6.06 90.5 1040 450
:For comparison, S, E o
For comparison, Sy - /%ay
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TABLE 13. COMPARISON OF OBSERVED AND MODEL-PREDICTED CONCENTRATION
PROFILE PARAMETERS FOR DT2
at 800 m at 1.4 km
Maximum Maximum
Concentra- Tempera- Concentra-
tion ture S, Sy tion
(Vol. %) (°C) (m) (m) (Vol. ppm}
Observed 1.86 22.5 4.80 105 4000
Gaussian Plume Model
(104.6 kg/s) 0.21 -- 218 440 780
(117 kg/s) 0.24 -- 218 44° 870
DEGADIS
(104.6 kg/s) 1.59 19.2 3.53 109 5600
(117 kg/s) 1.81 17.8 3.36 111 6200
8For comparison, S, =0
For comparison, S = /éa
y y
TABLE 14. COMPARISON OF OBSERVED AND MODEL-PREDICTED CONCENTRATION
PROFILE PARAMETERS FOR DT3
at 800 m at 2.8 km
Maximum Maximum
Concentra- Tempera- Concentra-
tion ture S, Sy tion
(Vol. %) °c (m) () (Vol. ppm)
Observed 1.62 24.9 2.66 106 1100
Gaussian Plume Model
(56.0 kg/s) 0.08 -- 218 44P 96
(133 kg/s) 0.20 -- 218 44° 230
DEGADIS
(56.0 kg/s) 0.61 29.5 7.30 84.7 1090
(133 kg/s) 1.37 24.2 4.82  97.3 2050
3For comparison, S, =0
For comparison, S, = /éa
y y
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TABLE 15. COMPARISON OF OBSERVED AND MODEL-PREDICTED CONCENTRATION
PROFILE PARAMETERS FOR DT4

at 800 m at 2.8 km
Maximum Maximum
Concentra- Tempera- Concentra-
tion ture s, sy tion
(Vol. %) (°c) (m) (m) (Vol. ppm)
Observed 2.1 23.0 3.11 143.5 5100
Gaussian Plume Model
(72.1 kg/s) 0.44 -- 128 33b 500
(108 kg/s) 0.65 -- 128 33b 750
DEGADIS
» (72.1 kg/s) 1.42 22.7 3.13 97.5 1900
ii: (108 kg/s) 2.30 17.0 2.60 102 2600

:For comparison, S,
For comparison, Sy j%ay

nn
Q

DEGADIS predictions (using the approximations and assumptions described
above) for the DT tests are shown in Tables 12-15 and Figures 3-6. The
DEGADIS-predicted maximum concentration and vertical dispersion parameter
S, are generally consistent with the observed values at 800 meters. It
should be noted that the maximum reported concentrations for the sensor
locations past 1.4 kilometers may be significantly lower than the maximum
concentration which occurred during the tests due to the wide spacing of
these sensors. (Furthermore, the wind field may not have been constant to
these long distances.)

The DEGADIS-predicted plume width (see Figure 2) is larger than the
observed width due to the presence of the horizontally homogeneous central

section even though the predicted and estimated values of S, are in good

y
agreement. For Test 4, the observed width to the 0.2 percent concentration
level was 440 meters (Reference 21), while the DEGADIS-predicted width was
800 meters and the Gaussian plume model prediction was 60 meters to the

same concentration level.
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Maximum Observed Concentration and Maximum Predicted
Concentrations using DEGADIS and the Pasquill-Hanna
Gaussian Plume Model for DT1l. (The upper line for

each model was made using the ammonia mass release rate
(Table 1), and the lower line for each model was made
using the estimated ammonia mass rate at 800 meters
(Table 2).)
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Maximum Observed Concentration and Maximum Predicted
Concentrations using DEGADIS and the Pasquill-Hanna
Gaussian Plume Model for DT2. (The upper line for

each model was made using the ammonia mass release rate
(Table 1), and the lower line for each model was made
using the estimated ammcnia mass rate at 800 meters
(Table 2).)
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Figure 5.
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Maximum Observed Concentration and Maximum Predicted
Concentrations using DEGADIS and the Pasquill-Hanna
Gaussian Plume Model for DT3. (The upper line for

each model was made using the ammonia mass release rate
(Table 1), and the lower line for each model was made
using the estimated ammonia mass rate at 800 meters
(Table 2).)
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SECTION VI
CONCLUSIONS AND RECOMMENDATIONS

Field-scale releases of pressurized liquid anhydrous ammonia (the
Desexrt Tortoise (DT) series) were performed by Lawrence Livermore National
Laboratories (LLNL) in 1983 for the U.S. Coast Guard, the Fertilizer
Institute, and Environment Canada. Release rates for the four experiments
ranged from 80 to 130 kilograms per second. Ammonia concentration measure-
ments were taken at sensor arrays located 100 and 800 meters downwind of
the release; in addition to these arrays, portable gas sensors were
deployed from 1.4 to 5.5 kilometers downwind of the release. The data from
these experiments were analyzed to determine the concentration profile
parameters at the 800-meter array. These concentration profile parameters
were compared with DEGADIS and the Pasquill-Hanna Gaussian plume model.

The Pasquill-Hanna Gaussian plume model-predicted maximum concentrations
were significantly lower (by an average factor of about 6) than the maximum
reported concentrations; this disagreement is due to the overprediction of
the vertical dispersion present during the tests. On the other hand,
DEGADIS-predicted maximum concentrations were in reasonable agreement with
the maximum reported concentrations. In contrast to the Gaussian plume
model, DEGADIS accounts for the reduced vertical dispersion due to the
stable density stratifications present in these releases.

A quantitative method of assessing the relative important of jet and
nonjet dispersion processes was developed. When applied to the DT
releases, the jet dispersion processes clearly dominated only one release
(DT3) according to the developed criteria.

The effects of different averaging times on the DEGADIS predictions
were discussed. For the DT series, a 3-second sliding average was used by
LLNL to remove noise in the raw data; an averaging time of 3 seconds was
used in the DEGADIS simulations.

Based on comparison of reported temperature corresponding to the
maximum reported concentration and the adiabatic mixing temperature
corresponding to the same maximum reported concentration, heat transfer was

found to be insignificant in the DT series.
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A computer code, TRAUMA, was used to determine the ammonia/air/water
mixture density as a function of ammonia mole fraction for input to
DEGADIS. Based on comparisons with TRAUMA and DEGADIS computations, it was
found that assuming ideal solution liquid phase beliavior adequately
describe the ammonia/air/water mixture density for the DT release condi-
tions. It was also found that assuming a pseudobinary of air/water and
ammonia does not adequately describe the ammonia/air/water mixture density
based on comparisons with DEGADIS.

Finally, a linear relationship between ammonia concentration and
mixture density was used in DEGADIS; the endpoints were represented by the
released ammonia aerosol and ambient air. Upon comparison, the DEGADIS-
predicted distances using this simplified scheme were within about +20
percent of the DEGADIS-predicted distance to.a given concentration level
using the density specification from TRAUMA (Figure 1). This last simpli-
fication would be expected to be less valid as heat transfer from the

ground to the cloud becomes more important. Where appropriate, this last

simplification may be useful as a screening technique for preliminary

hazard assessment.
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APPENDIX A
DERIVATION OF THE RELEASE RICHARDSON NUMBER CRITERIA

The purpose of this appendix is to show the method used to determine
whether a ground-level jet dominates a release or whether the other non-
jet phases of a ground-level release (including the negative buoyancy-
dominated dispersion phase, the stably stratified shear flow phase, and the
passive dispersion phase) are the only important dispersion phases.

From Havens and Spicer (Reference A-1) and Spicer and Havens (Reference
A-2), the criteria for determining which phase of the dispersion process
dominates a particular ground-level release was based on water tunnel
experiments reported by Britter (Reference A-3). In that set of experi-
ments, a salt/water solution was released at floor level, and the lateral
and upwind extent of the plume was recorded as a function of the buoyancy
length scale used by Britter (Lg = Qg(rg - pa)/(pxu3) where Q 4is the volu-
metric emission rate and u is the ambient velocity). Analysis of Britter's
releases showed that the release was passive from the source when Ly/D
0.005; the release was dominated by the negative buoyancy dispersion phase

when Lp/D 5 0.1. Based on these observations, the following criteria of a

release Richardson number were obtained:

If Ri, S 30 negative buoyancy-dominated phase
If 1 2 Ri, 30 stably stratified shear flow phase (A-1)
IfRi 1 passive dispersion phase

where Ri, = g(pg - p‘)H/(paui). These values were obtained using the
reported ratio (u/u,) = 16 for the water flume. Note that the length scale
corresponding to the depth of the layer is approximated by H = Q/uD for
these nonjet releases.

Vith the criteria of domination of a particular nonjet dispersion phase
established, the question of whether a particular release is dominated by
jet effects can now be determined. For this analysis, a release will be
considered dominated by jet effects associated with the release if the rate
of air entrainment due to the jet dominates the rate of air entrainment due
to the dominant nonjet phase of the release.

When the release Richardson number is less than 1, the release will be
dominated by the passive dispersion phase in the absence of jet effects.

Cude (Reference A-4) and Wheatley (Reference A-5) report that for a passive
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release, jet effects will dominate a particular release when (V/u) S1
where V is the velocity of the released material. This criterion can also
be obtained by examining the rate of air entrainment as presented by

Wheatley (Reference A-6)

dM
a 0.159 27R
ax—'[—i—][T]"jP. (4-2)

which has been written for a jet released near ground level without drag on
the bottom surface. The DEGADIS model’s vertical rate of air entrainment
per unit width for the stably stratified shear flow and passive dispersion
phases is given by

§.xu.(l + a)
d paL *
ax Py - PRI, (4-3)

where ¢(Ri,) = 0.88 + 0.099 Ri,. Using an effective width of 2#R, a
typical value of a = 0.2, §; = 2.1, k = 0.35, and (u/uy) = 30 (typical of
atmospheric boundary layers), the above equations can be combined to show

that jet effects dominate the rate of dispersion when

el

S 16/(19 + Ri) (A-4)

This criterion has the characteristic that as the density of the released
fluid increases, the release is more readily dominated by jet effects
(since the rate of air entrainment would decrease in the absence of the jet
effects). Note that when Ri, 21 (1.e. a passive release), this criterion
shows that the jet effects dominate the passive dispersion regime when
(V/u) $ 0.8, which is consistent with the previously reported criterion.

If the negative buoyancy-dominated dispersion phase is considered, the
ambient flow is no longer important in determining the rate of nonjet air
entrainment. For this case, the relative importance of jet effects were
evaluated using the criterion from Britter’'s data; the release velocity V
was used in place of the ambient velocity in the buoyancy length scale. It
can be shown that jet effects dominate the negative buoyancy-dominated

phase when
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This criterion has the characteristic that as the density of the released
fluid increases, the release is less readily dominated by jet effects

. (since the rate of air entrainment would increase in the absence of the jet
effects due to the entrainment associated with the gravity front).

The following procedure is then suggested for determining which disper-

sion phase is dominant from the start of a release:

‘ (1) Calculate Ri, = g(pg - pg)H/(paud).

‘ (2) Determine the dominant nonjet dispersion phase in the

absence of a jet using Equation (A-1).

(3) Determine if ground-level jet effects dominate the dominant

nonjet phase determined from (2) using the relationships
summarized in Table A-1.

TABLE A-1. CRITERIA FOR DETERMINING WHETHER JET EFFECTS DOMINATE
A GROUND-LEVEL RELEASE

Ground-level jet effects dominate:

2
Negative buoyancy-dominated phase when [ g— ] S 10 Ric
*
Stably stratified shear flow phase when V/u s 16/(19 + Ric)
Passive dispersion phase when V/u S 0.8
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APPENDIX B
DESCRIPTION OF THE
DEGADIS DENSE GAS DISPERSION MODEL

The DEGADIS (DEnse GAs DISpersion) model was developed from research
sponsored by the U.S. Coast Guard and the Gas Research Institute (Reference
B-1). DEGADIS is an adaptation of the Shell HEGADAS model described by
Colenbrander (Reference B-2) and Colenbrander and Puttock (Reference B-3).
DEGADIS also incorporates some techniques used by van Ulden (Reference
B-4).

If the primary source (gas) release rate exceeds the maximum atmo-
spheric takeup rate, a denser-than-air gas blanket is formed over the
primary source. This near-field, buoyancy-dominated regime is modeled
using a lumped parameter model of a denser-than-air gas "secondary source"
cloud which incorporates air entrainment at the gravity-spreading front
using a frontal entrainment velocity. If the primary source release rate
does not exceed the maximum atmospheric takeup rate, the released gas is
taken up directly by the atmosphere and dispersed downwind. For either
source condition, the downwind dispersion phase of the calculation assumes
a power law concentration distribution in the vertical direction and a
modified Gaussian profile in the horizontal direction with a power law
specification for the wind profile (Figure B-1). The source model repre-
sents a spatially averaged concentration of gas present over the primary
source, while the downwind dispersion phase of the calculation models an

ensemble average of the concentration downwind of the source.

A. DENSER-THAN-AIR GAS SOURCE CLOUD FORMATION

A lumped parameter model of the formation of the denser-than-air gas
source cloud or blanket, which may be formed from a primary source such as
an evaporating liquid pool or otherwise specified ground-level emission
source, or by an initlally specified gas volume of prescribed dimensions
for an instantaneous release, is illustrated in Figure B-1. The gas
blanket is represented as a cylindrical gas volume which spreads laterally
as a density-driven flow with entrainment from the top of the source
blanket by wind shear and air entrainment into the advancing front edge.

The source blanket will continue to grow over the primary source until
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the atmospheric takeup rate from the top is matched by the air entrainment
rate from the side and, if applicable, by the rate of gas addition from
under the blanket. Of course, the blanket is not formed if the atmospheric
takeup rate 1s greater than the evolution rate of the primary source. For
application of the downwind calculation procedure, the blanket is modeled

as being stationary over the center of the source (x = 0).

1. Secondary Source Blanket Extent for Ground-Level Releases
If a denser-than-alr gas blanket is present, the (downwind) emis-
sion rate from the blanket is equal to the maximum atmospheric takeup rate.
That is, for E(t)/wR%(t) > Qapax+ & source blanket is formed over the
primary source. The blanket frontal (spreading) velocity is modeled as

P - P,
u; = Co g o H ’ (B-1)

where p is the average density of the source blanket. This gravity

intrusion relationship is applicable only for o > pg; the value of Cp used
is 1.15 based on laboratory measurements of cloud spreading velocity
(Reference B-1).

The blanket radius R as a function of time is determined by
integrating dR/dt = ug. When the total mass of the cloud is decreasing
with time, the radius is assumed to decrease according to (dR/dt)/R
= (dH/dt)/H for ground-level sources. The radius of the blanket is
constrained to be greater than or equal to the radius Rp of any primary

(l1iquid) source present.

2. Secondary Source Blanket Extent for Instantaneous Releases
The gravity intrusion relationship (Equation (B-1)) will
overpredict initial velocities for instantaneous, aboveground releases of a
denser-than-air gas since no initial acceleration phase is included. In
this case, the following procedure adapted from van Ulden (Reference B-4)

is recommended.
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For instantaneous gas releases, the radially symmetric cloud is
considered to be composed of a tail section with height Hy and radius Ry
and a head section with height Hy, (Figure B-2). A momentum balance is used
to account for the acceleration of the cloud from rest; the effect of
ambient (wind) momentum is ignored. Although the following equations are
derived assuming the primary source emission rate is zero, the resulting
equations are assumed to model the secondary source cloud development when
the primary source rate is nonzero. When the frontal velocity from the
momentum balance is the same as Equation (B-1), the momentum balance is no

longer applied and the frontal velocity is given by Equation (B-1).
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Figure B-2. Schematic Diagram of a Radially Spreading Cloud.
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Three main forces act on the cloud: (1) a static pressure force

(Fp), (2) a dynamic drag force (F4), and (3) a force which accounts for the
acceleration reaction of the amblent fluid, represented as a rate of
virtual momentum change with respect to time (-dP,/dt). Denoting the
momentum of the head and tail as P, and P, respectively, the momentum

balance is

dP

dpP d v

d&t "at P tER)-FFy - (B-2)
or

4 (P, +P_+P )=F +F (B-3)

dt *'h t v P d

The terms in the momentum balance are evaluated differently for
early times before a gravity current head has developed (H,, < H.) and for
times after the head has developed but the cloud is still accelerating
(Figure B-2). Because the gravity current head develops so rapidly, the
model equations describing the times after the gravity current head forms
(Hy, 2 Ht) are derived first. The model equations describing earlier times
(Hp < Hy) use simplification of the equations for Hy, = H,.

a. Unsteady Gravity Current
When the cloud accelerates to the point that Hh > Ht (Figures
B-2, B-3), the frontal velocity is determined from the momentum balance

(Equation (B-2)) as follows.

The static pressure force, obtained by integrating the static

pressure over the boundary of the current, {is
F o= | L gapm 27RH_ | = rgapRHZ (B-4)
) ngt t 8pt

Neglecting the shear stress at the bottom, the dynamic force on the current
is the sum of the drag force on the head of the current and the lift
forcethat arises due to asymmetry in the ambient flow around the head. The

drag force is represented by

d

v

2 2
Fp = - 7= Paug [ 27R, 8 H ] - -a d ~RH, p ug (B-5)
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Figure B-3. The Unsteady Gravity Current (Reference B-4).

3 where d, is an effective drag coefficient and the constant a, is an

empirical ratio of the average head depth H; to Hy (a, = Hy/Hy).

The horizontal acceleration reaction (-dP,/dt) is approximated
by the reaction to an accelerating elliptical cylinder with an aspect ratio
H/R (Reference B-5):

de d 2
& [ 7 [“1%"“‘ ug ] (8-

and the vertical acceleration reaction is represented as

e, d 2 |
Tl [“z”a"““ “f] (B-7) |

vhere k) and k) are coefficients of order one. Using a single constant,

Equations (B-6) and (B-7) give
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dp d(RH2u,)
Y e ey — L (B-8)
dt L at

Using Equations (B-4), (B-5), and (B-8), the momentum balance (Equation
B-2)) becomes
d(RH%u,)

& (B-9)

g% = ngApRHi - avdv"paRHhui T &"Pa
Following van Ulden (Reference B-4, Reference B-6), it is

assumed that the potential energy decrease due to slumping of the cloud is
offset by the production of kinetic energy, which through the action of
shear, is partly transformed to turbulent kinetic energy. Part of the
turbulent kinetic energy is transformed back into potential energy due to
entrainment of air by the cloud. This "buoyant destruction" of kinetic
energy is assumed to be proportional to the rate of production of turbulent
kinetic energy, and following Simpson and Britter (Reference B-7) it is
assumed that the turbulent kinetic energy production rate scales as

ﬂpaHRu%. Then,

1 dv 3
3 gApH Tt - enpaHRuf (B-10)

which can be written

e(ZNRH)uf e(ZRRH)uf

dav

T~ - (B-11)
gApg Rif
pauf

where ¢ is an empirically determined coefficient. Noting dV/dt represents

the air entrainment rate,

Ha ApH

-2 o c(27RH)u 820> (B-12)
p £ 2

a PaUs

where ﬁa represents the air entrainment mass rate.
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The volume integral

V= 2n IR h(r,t)rdr (B-13)
0

where h(r,t) is to be expressed in terms of Hh and Ht' and the

momentum integral

P=2r JR pu(r,t)h(r,t)rdr = P + P (B-14)
0 t h

are then approximated with separate analyses of the head and tail of the

current.

In the tail of the current, the shallow water equations are
assumed applicable. It is assumed that the shape of the current is quasi-
stationary in time, and the layer-averaged density difference is assumed

horizontally uniform. It follows that the volume and momentum of the tail
are given by

v, - 1\'3121 [ H+ B ] / 2. (B-15)

2 2 3 Y%
Pt-gp[-a-ﬂti-l{h]x&hi— (B-16)

A momentum balance for the head region, Figure B-4, assuming
quasi-steady state, indicates that the static and dynamic pressure forces
on the head should be balanced by the net flux of momentum due to flow into

and out of the head. The static pressure and drag are, respectively

FP - [ % gAth ] [ 2ﬂRhHh ] = "8ApRhH§ (B-17)

2

1
Fp=-d [ 7 P2 ] [ 7Ry, (a Hy) ]
2
= - avdvpaufRRhHh (B-18)

Near the surface, the inward flow (u, in Figure B-4) carries momentum into

the head, while the return flow (uj in Figure B-4) carries momentum out of

45




QQ
——
H1---
)
_-Hh-
H - ems = en o ==
4 u 01

Figure B-4. The Head of a Steady Gravity Current
(Reference B-4, Reference B-7).

the head. Assuming ug = u,, Hy = 1/2 Hy,, and u, = f,ug, the momentum flux
into the head is approximately

Qh = 6‘2’pau§ [ ZNRhHh ] (B-19)

Upon rearranging, the momentum balance on the head gives

pu

af 2 2

gAth - 1./[ avdv - 28v ] = cE (B-20)
when 6, = 0.2 and d, = 0.64; Equation (B-20) then specifies the head
velocity boundary condition. The volume of the head is determined by
assuming that the head length scales with H;. It follows that

R - Rh - bvﬂl (B-21)
where bv is an empirical constant, and the volume of the head becomes

V., =7ra b (R + ) 2 (B-22)

h vv Rh Hh

If the layer-averaged velocity is assumed to increase linearly with r, it
follows that
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u = U [ ;E ] (B-23)
and
NP« Y (B-24)
Along with the definition of ug,
o - (B-25)

Equations (B-9), (B-11), (B-20), (B-21), (B-23), and (B-25) are solved to
determine p, He, Hy, V, Py, and P, when Hy > Hy.

The constants a,, b,, d,, ey, ana ¢ are assigned values 1.3,
1.2, 0.64, 20., and 0.59, respectively, based on analysis of the still-air
denser-than-air gas release experiments of Havens and Spicer (Reference
B-1).

b. Initial Gravity Current Development
To model the initial cloud shape, the tail and head height are
considered constant with respect to radius. The momentum balance on the

cloud is then given by

d 2 3
T [ Ph + Pt ] = ngAp [ Rh Ht + avbv Hh ]

dP
v

2
- R&vdvpaRH.huf - E— (8-26)

where the first term on the right-hand side represents the static pressure
force on the head and the second term represents the drag force on the
bottom surface of the cloud. The third force is the acceleration reaction
by the ambient fluid, represented by Equation (B-8).

The dimensions of the head are again given by

Rh = R - avbvuh (B-27)

and
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ug 2
Hh =l c [SAP/Pa] (B-28)

When the height of the tail H, is assumed uniform with respect to radius,
it follows that

H, = [ g - nalb (R + R (xe2) (B-29)

where M is the total mass of the cloud. The momentum of the head P, and

tail P, are then

3 3
pH, (R” - R.)
Ph - % LU Hh Rh ug (B-30)
R
and
3
pH
Pr - % n ;Rh uf (B-31)

Equations (B-26) through (B-31) determine the momentum of the blanket as a
function of time, and thus the frontal velocity ugy. The cloud accelerates

from rest because Hy = 0 initially.

3. Material and Energy Balances

The balance on the total mass of gas in the source blanket
(M = R%Hp) is

Q

M4 [ ~R2Hp ] SR e B+ R, - [ —max ] [ 2 ] (B-32)
' c

where E(t) is the gas evolution rate from the primary (liquid) source.
For spills over water, the water entrainment term (ﬁw s) is included in
the source blanket description and is calculated from Equation (B-46),

and the (humid) air entrainment rate (Equation (B-12)) is

ﬁa - ZRRH(euf)pa/////[ gApH/(paui) ] (B-33)
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The balance on the mass of contaminant in the source blanket
92 .
(Hc - wch Hp) is

dM
c

=% [vc«RZHp ] - E(0) - Q,  (rRD) (B-34)

and the mass balance on the air in the source blanket (Ha - wawRZHp) is

dM M Q
a d 2 a m 2
F-E[waxRﬂp1-1+H - | == v, (%) (B-35)
a c
where the ambient humidity is H, and the mass fraction of contaminant and
air are w, = M /M and w, = M, /M, respectively.

The energy balance on the source blanket (thZHp) gives

d 2 o .
EE [ hnR"Hp ] b hEE(t) + haHa + thw’s
| max | a2y (B-36
v n Q )

where hp is the enthalpy of the emitted gas, h, is the enthalpy of the
ambient humid air, and h, is the enthalpy of any water vapor
entrained by the blanket if over water. There are three alternate

submodels included for the heat transfer (65) from the surface to the

cloud.

The simplest method for calculating the heat transfer between the
substrate and the gas cloud is to specify a constant heat transfer

coefficient for the heat transfer relation

H 2 2 2 2

Qs - q [ " [ R™ - Rp ] ] - hoAT [ ” [ R” - Rp ] ] (B-37)
where 63 is the rate of heat transfer to the cloud, qs is the heat flux,
and AT is the temperature difference. For the calculation of heat transfer

over the source, the temperature difference is based on the average tem-

perature of the blanket.
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In the evaluation of the Burro and Coyote series of experiments,
Koopman et al. (Reference B-8) proposed the following empirical heat trans-
fer coefficient relationship for heat transfer between a cold LNG cloud and

the ground

h0 - VHpCp (B-38)

where the value of Vy was estimated to be 0.0125 m/s. This constant can be
varied in the model.

From the heat transfer coefficient descriptions for heat transfer
from a flat plate, the following relationships can be applied. For natural
convection, the heat transfer coefficilent is estimated using the Nusselt

(Nu), Grashoff (Gr), and Schmidt (Sc) numbers (Reference B-9) from

Nu = 0.14 (Gr Sc)]'/3 (B-39)
Or
2.3 1/3
gr C_u
h = 0.14 | —E— AT (B-40)
n 2
T Pr

where hn i{s the heat transfer coefficient due to natural convection and Pr

is the Prandtl number. To simplify the calculations, the parameter group

(o) () |

is estimated to be 60 in mks units. The actual value of the group is
47.25, 58.5, and 73.4 for air, methane, and propane, respectively.
Equation (B-40) becomes

o]

where the density p, molecular weight MW, and temperature difference AT are

ar

9 1/3
] AT (B-42)

based on the average composition of the gas blanket.
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For forced convection, the Colburn analogy (Reference B-10) is
applied to a.flat plate using the Stanton number for heat transfer Sty and

the Prandtl number as

2

[ u
se, pr/P e fa | 2 (B-43)

u

Or
. 12
he = (apC) pr?/3 | X (B-44)
P u

where hf is the heat transfer coefficient due to forced convection. If the

velocity is evaluated at z = H/2 and Pr is estimated to be 0.741,

h, = | 1.22 gt [ 329 ]G pC (B-45)
£ u, H P
If H/2 < zp, then the velocity is evaluated at z = zp.

The overall heat transfer coefficient is then the maximum of the
forced and natural coefficients, i.e. ho = max(hf,hn). The heat flux and
transfer rate are then estimated by Equation (B-37).

If the gas blanket is formed over water, water will be transferred
from the surface to the cloud by a partial pressure driving force
associated with the temperature difference between the surface and the gas

blanket. The rate of mass transfer of water is

F
. 0 * 2 2
“w,s'fs‘[l’w.s‘?w.c] ["[R ‘Rp” (B-48)

where Fp is the overall mass transfer coefficient. The driving force is
the difference of the vapor pressure of water at the surface temperature
p:'s and the partial pressure of water in the cloud, Py,c- (The water
partial pressure in the cloud is the minimum of: (1) the water mole frac-
tion times the ambient pressure; or (2) the water vapor pressure at the
cloud temperature (p:,c).) The natural convection coefficient is based on

the heat transfer coefficient and the analogy between the Sherwood number
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(Sh) and the Nusselt number (Nu) suggested by Bird et al. (Reference B-11)
F L
Sh = Nu = 0.14 (6r se)t/3 = = [ g! ] (B-47)

If the Schmidt number is taken as 0.6, and ( Tﬁﬁﬁ ] is estimated to be
2.2 x 10'9 in mks units,

1/3
-3 P 2
reso it | ()] (348

For forced convection, Treybal (Reference B-10) suggests that the Stanton

number for mass transfer Sty and the Stanton number for heat transfer Sty

are related by

Pr 2/3
StH - StH [ §E ] =1.15 St:H (B-49)
Or, 20.7 ny
Fe = W (B-50)

The overall mass transfer coefficient Fog is calculated as the larger of the
natural and forced convection coefficients.

For the case when the primary (liquid) source emission rate E(t) is
larger than the atmospheric takeup rate Q*max”R%' Equations (B-32),

(B-34), (B-35), and (B-36) are integrated for the mass, concentration, and
enthalpy of the gas blanket along with an appropriate equation of state
(i.e. relationship between enthalpy and temperature and between temperature
and density).

For the case when the emission rate is not sufficient to form a gas
blanket, the flux of contaminant is not determined by the maximum atmo-
spheric takeup rate. Consider the boundary layer formed by the emission of
gas into the atmosphere above the primary source. If the source is modeled
to have a uniform width 2b and entrain no air along the sides of the layer,
the balance on the total material (pLuLHL) in a differential slice of the
layer is

Q*
gi [ pL“LHL ] = Pa¥e M [ v ] (B-51)
c
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vhere w, is the vertical rate of of alr entrainment into the layer given by
Equation (B-83), p; is the average density of the slice, and Qu/w. is the
total flux of gas from the primary (liquid) source. The balance on the
mass flow rate of contaminant (w.ppurH;) at any (x - xup) is

cc,LuLHL - Q*(x - xup) (B-52)

With an equation of state to relate c. j and p;, Equation (B-51) is inte-
grated from the upwind edge of the source (x = xup) to the downwind edge
(x =1L + xup)'

In order to generate the initial conditions for the downwind dis-

persion calculations, the maximum concentration c, and the vertical dis-

c
persion parameter S, are needed. Since Equations (B-51) and (B-52) are

written for a vertically averaged layer, consider the vertical average of
the power law distribution. The height of the layer H; is the height to

some concentration level, say 10 percent of the maximum. Although strictly

a function of a, this value is modeled by

HL - 5L HEFF (B-53)

where Hppp is the effective height defined by Equation (B-79) and § is

2.15. The vertically averaged concentration €¢,L can be defined by

cc,LHL - I: cdz (B-54)

And similarly, the effective transport velocity u is defined by
cc,L“LHL - I: cuxdz (B-55)

With Equation (B-53) and defining relations for Hgpp and ugpp
(Equations (B-79) and (B-93), respectively), it follows that

(B-56)

(B-57)

53




51¥e = Yo (B-58)
where w; is given by Equation (B-83).

4. Maximum Atmospheric Takeup Rate
The maximum atmospheric takeup rate will be the largest takeup rate
which satisfies Equations (B-51) and (B-52). As well, the maximum concen-
tration of contaminant in the power law profile at the downwind edge of the
source will be the source contaminant concentration (cc)g- If Equations
(B-51) and (B-52) are combined along with tlie assumption of adiabatic
mixing of ideal gases with the same constant molal heat

P - P,

capacity (i.e. [ ] = 7y = constant), the maximum takeup flux {is

[

modeled by

ku, (1 + a) 5,
‘L

Q*max - (cc)s R —1 (B-59)
¢
where
L
1 1 dx
STi), sy (8-60)
¢

where ¢(R1*) is given in Equation (B-76) for p > Py

An upper bound of the atmospheric takeup flux can be characterized
by the condition where the source begins to spread as a gravity intrusion
against the approach flow. In water flume experiments, Britter (Reference
B-12) measured the upstream and lateral extent of a steady-state plume from
a circular source as a function of Ri,. A significant upstream spread was
obtained for Ri, > 32, and lateral spreading at the center of the source
was insignificant for Ri, < 8. The presence of any significant lateral
spreading represents a lower bound on the conditions of the maximum takeup
flux.

The integral of Equation (B-60) is calculated using a local

Richardson number of




1

RL(x) = ((x - x“p)“" (B-61)
vhere
1
1 l+a
p - Pal 2o F[ﬂ&] A+ fy 4 a] [
¢ =g -3 p; §. -1 (B-62)
a u, l+a c “0%o0 L

and ¢c is 3.1 (corresponding to Ri* = 20(8 < Ri_ < 32)). Using this
Ri, (x), Equation (B-60) is

0 1.04

;-zf‘ dx
¢ 1.04 x1+a

0.88 + 0.099 ¢

To simplify the numerical problem, the integral is approximated as

[1.04]

l+a

1 1 0.88 + 0.099 (104 L

- 104 1® 0.88 (B-63)
5 0.099 L :

which then specifies the maximum atmospheric takeup flux.

5. Transient Denser-than-Air Gas Release Simulation
If a steady-state spill is being simulated, the transient source
calculation is carried out until the source characteristics are no longer
varying significantly with time. The maximum centerline concentration Ce»
y and Sz, the half width
b, and if necessary, the enthalpy h are used as initial conditions for the

the horizontal and vertical dispersion parameters S

downwind calculation specified in a transient spill.

If a transient spill is being simulated, the spill is modeled as a
series of pseudo-steady-state releases. Consider a series of observers
traveling with the wind over the transient gas source described above; each
observer originates from the point which corresponds with the maximum

upwind extent of the gas blanket (x = -Rp;,.). The desired observer
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velocity is the average transport velocity of the gas ugpp from Equation

(B-93); however, the value of ugpp will differ from observer to observer
with the consequence that some observers may be overtaken by others. For a
neutrally buoyant cloud, URpR becomes a function of downwind distance alone
which circumvents this problem. With this functionality, Colenbrander
(Reference B-2) models the observer velocity as

s o a/(l+a)

Om x + Rmax

0
1
l +a 0 i

] R +R
2 'm max

(B-64)

u,(x) = r[

where Sz is the value of Sz wvhen the averaged source rate (nRZQ*) is
Om 0

a maximum and the subscript i denotes observer i. Noting that
ui(x) - dxi/dt, observer position and velocity as functions of time are
determined.

A pseudo-steady-state approximation of the transient source is

obtained as each observer passes over the source. If t and t

up, dn1
denote the times when observer i encounters the upwind and downwind
edges of the source, respectively, then the source fetch seen by observer

1 is:

L - - X (3'65)
i up, dn1
The width of the source 23;(c) is defined by
Biz(t) - Rz(t) - xi(t) (B-66)
Then the gas source area seen by observer i is
tdn1
2L1b1 =2 It Biuidt (B-67)
up,

where 2b1 is the average width,

The takeup rate of contaminant 2(Q*Lb)1 is calculated as




tdn1
2(Q;Lb)i -2 I Q*Biuidt (B-68)
t .
up,

The total mass flux rate from the source is

t
dni Q*
2(pLuLHLb)1 = 2 I Pa¥e * ;: Biuidt (B-69)

up,
With these equations, the average composition of the layer can

be determined at each x - xup over the source. With the enthalpy

of the layer given by

t
dn1 Q,

Z(thLuLHLb)1 =2 It h ;: B!u dt (B-70)
up,

(due to the choice of the reference temperature as the ambient temperature)
and with a suitable equation of state relating enthalpy, temperature, and
density, the source can be averaged for each observer. After the average
composition of the layer 1s determined at the downwind edge, an adiabatic
mixing calculation is performed between this gas and the ambient air. This
calculation represents the function between density and concentration for
the remainder of the calculation if the calculation is adiabatic; it repre-
sents the adiabatic mixing condition if heat transfer is included in the
downwind calculation.

For each of several observers released successively from x = -R, ...,
the observed dimensions L and b, the downwind edge of the source Xdn the
average vertical dispersion coefficient S,, the average takeup flux Q4, the
centerline concentration c., and 1if applicable, the average enthalpy hp can
be determined for each observer. With these input values, a steady-state
calculation is made for each observer. The distribution parameters for any
specified time t; are determined by locating the position of the series of
observers at time tg, i.e. xi(ts)' The corresponding concentration distri-

bution is then computed from the assumed profiles.
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B. STEADY-STATE DOWNWIND DISPERSION

The model treats dispersion of gas entrained into the wind field from
an idealized, rectangularly shaped source of width 2b and length L. The
circular source cloud is represented as an equivalent area rectangle
(sz = 2bL) with equivalent fetch (L = 2R). Similarity forms for the con-
centration profiles are assumed which represent the plume as being composed

of a horizontally homogeneous section with Gaussian concentration profile

edges as follows:

2 l+a
c(x,y,z) = cc(x) exp | - [ lzl_;.ﬁi!l ] _ [ 5 zx) ]
z

S (x
y( )
for |y| > b
z l+a
= c (x) exp | - 52?;3 for |y| < b
(B-71)
A power law wind velocity profile is assumed
a
u =4 zZ_ (B-72)
x 0 z,

wvhere the value of a is determined by a weighted least-squares fit
of the logarithmic profile

u zZ + 2
ux-k—* ln[ z“]-w[%] (B-73)

Functional forms for ¥ and typical values of a are given in Table B-1 for

different Pasquill stability categories. With these profiles, the

parameters of Equation (B-71) are constrained by ordinary differential
equations.

1. Vertical Dispersion

The vertical dispersion parameter S, is determined by requiring
that 1t satisfy the diffusion equation
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a .9 g ¢€ (B-74)

with the vertical turbulent diffusivity given by
ku,z

Xz = 5@y

(B-75)
The function ¢(Ri,) 1is a curve fit of laboratory-scale data for
vertical mixing in stably density-stratified fluid flows reported by Kantha
et al. (Reference B-2), Lofquist (Reference B-14), and McQuaid (Reference
B-15) for Ri, > 0. For Riy < 0, the function ¢(Ri,) 1Is taken from Colen-
brander and Puttock (Reference B-3) and has been modified so the passive

limit of the two functions agree as follows:

(R1,) = 0.88 + 0.099 Rl RL> 0

0.6 (B-76)
= 0.88/(1 + 0.65 |Ri [ ") Ri, <O

The friction velocity is calculated using Equation (B-73) from a
known velocity ug at a specific height z;. Combining the assumed simi-
larity forms for concentration and velocity, Equations (B-71), (B-72),
(B-74), and (B-75) give

q uyZ, s, l4a ku, (1 + a)
|l || = T T (B-77)

0

where the Richardson number Ri_ is computed as

p u

p - P H

a EFF

Ri =g [ ] 3 (B-78)
a *

and the effective cloud depth is defined as

n,w

l 1 sz
cdz = T l T ] 1+ a (B-79)
c 0
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Equation (B-77) can be viewed as a volumetric balance on a differ-
ential slice of material downwind of the source. For a mass balance over

the same sli&e,

d
ax [ PLoHL ] = Pa¥e (B-80)

which is the same result as Equation (B-51) without the source term.
With Equations (B-57) and (B-58), this becomes

d

d_ pouH - ' -
ax [ L EFF EFF ] ¥ (B-81)

Using the assumption of adiabatis giging of ideal gases with the
same constant molal heat capacity (i.e.

= constant) along with the

contaminant material balance, the mass balaﬁce becomes

d
ax [ “EFFUEFF ] = Ve (B-82)

which leads to

Ve ku*(l + a)

Wom S (B-83)
e 5, F(RL,)

Equations (B-81) and (B-83) are combined to give

d paku*(l + a)
ax [ PLYEFFEFF ] = $(RL,) (B-84)

Furthermore, Equation (B-84) is assumed to apply when (p - Pa )/cc is not

constant.

When heat transfer from the surface is present, vertical mixing
will be enhanced by the convection turbulence due to heat transfer. Zeman
and Tennekes (Reference B-16) model the resulting vertical turbulent

velocity as

1/2

(B-85)

Clt
]
—
+
i
prm——
L‘.I*t
———
N

where Vo is the convective scale velocity described as
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2/3
v 2 T -T
HE e
* u.u c,L
If u is is evaluated at HEFF’
E- - [ 1+ % Ri%/3 ]1/2 (B-87)
*
wvhere
RL = T - Te.r | Yerr 20 | (5-88)
T~ 8 T wu |
c,L * 0 EFF

and Tc,L is the temperature obtained from thé energy balance of Equations
(B-102) and (B-103). Equation (B-84) is modified to account for this
enhanced mixing by

. plw(l + a)
ix [ PLUEFFUEFF ] " TR (B-89)

u, 2
wvhere Ri; - Ri* b .

Although derived for two-dimensional dispersion, this is extended
for application to a denser-than-air gas plume which spreads laterally as a
density intrusion:

d

pakv(l + a)
& [ PLUEFFTEFF B (B-90)

Berr ] = TRLD EFF

where the plume effective half width is defined by

EFF 3 S (B-91)

B p - p
EFF a .
3t - CE g [ ———:—— ] HEFF (B-92)
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The average transport velocity in the plume is defined by

N

1
Uppr T e T r [ T+a ] (B-93)

cdz
0

J: cuxdz s a
Yo

0

and the lateral spread of the cloud is modeled by

Begr 1 Berr
dx uEFF de
1/2 [1 ]
3 1 Za
gzoI‘ m p - pa 1/2 Sz 2
{ ug(l + @) Pa 0

2. Horizontal Dispersion

The crosswind similarity parameter Sy(x) is also determined by

requiring that it satisfy the diffusion equation

ac a ac
w5555 (B2
with the horizontal turbulent diffusivity given by

71
Ky = KouxBEFF (B-96)
When b = 0, Sy =- /2 ay, where ay is the similarity parameter correlated
by Pasquill (Reference B-16) in the form ay - éxﬁ. Furthermore, Equations

(B-95) and (B-96) require that

- -
oy @ = Ko Berr (B-97)

where v, = 2 - 1/8 and K = f—ré 5/772)/2.  Then,

0

- B (B-98)

s By w2 | sfz VP
y dx x EFF EFF
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where Equation (B-98) is also assumed applicable for determining S_ when b

y
is not zero.

At the downwind distance x, where b = 0, the crosswind concentra-

tion profile 1s assumed Gaussian with S, given by

y
s, = /7 6(x+ x )7 (B-99)
where xv is a virtual source distance determined as

s, (x,) = JZ6(x, + xv)ﬂ (B-100)

The gravity spreading calculation is terminated for x > X, -

For a steady plume, the centerline concentration . is determined

from the material balance

ugz, Sz l+o
E = J: J"Tm cuxdydz - 2Cc 1—+—a z—- BEFF . (B-101)

where E is the plume source strength.

o

3. Energy Balance
For some simulations of cryogenic gas releases, heat transfer to
the plume in the downwind dispersion calculation may be important, particu-
larly in low wind conditions. The source calculation determines a gas/air
mixture initial condition for the downwind dispersion problem. Air
entrained into the plume is assumed to mix adiabatically. Heat transfer to
the plume downwind of the source adds additional heat. This added heat per

unit mass D), is determined by an energy balance on a uniform cross section

as

d
ax [ Dy L erFlEFF ] = q./6 (B-102)

where 9, is determined by Equatiorn (B-37) along with the desired method of
calculating ho. Equation (B-102) is applied when b = 0 and is extended to

d
ax [ PnP L EFF EFFCEFF ] = 9sBgrr/SL (B-103)
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when b > 0. Since the average density of the layer p1, cannot be determined
until the temperature (i.e. Dh) is known, a trial and error procedure is
required.

Equations (B-77), (B-78), (B-79), (B-87)-(B-91), (B-94), and
(B-98)-(B-103) are combined with an equation of state relating cloud den-
sity to gas concentration and temperature and are solved simultaneously to

predict S,, Sy, c., and b as functions of downwind distance beginning at

the downwind edge of the gas source.

C. CORRECTION FOR ALONG-WIND DISPERSION

Following Colenbrander (Reference B-2), an adjustment to c. is applied
to account for dispersion parallel to the wind direction. The calculated
centerline concentration cc(x) is considered to have resulted from the
release of successive planar puffs of gas (e (x)Ax) without any dispersion
in the x-direction. 1If it {s assumed that each puff diffuses in the
x-direction as the puff moves downwind independently of any other puff and
that the dispersion is one-dimensional and Gaussian, the x-direction con-

centration dependence is given by

cc(xp )Axi X

¢! (x;x_ ) = L exp -
P /27 o x

- x 2
Py
. (B-104)

T

where x_ denotes the position of the puff center due to observer {i.
i

After Beals (Reference B-18), the x-direction dispersion coefficient o

x
is assumed to be a function of distance from the downwind edge of the gas
source (X = x - x3) and atmospheric stability given by
ax(X) = (.02 X1'22 unstable, x > 130 m
= 0.04 Xl'la neutral, x = 100 m (B-105)
= 0.17 Xo'97 stable, x> 50m

where (X = x - xo) and . are in meters. The concentration at x is then
determined by superpnsition, i.e., the contribution to c, at a given x

from neighboring puffs is added to give an x-direction corrected value of

cé. For N observers,




- % _ Ax (B-106)

and for large N,

1 r ¢ (§) 1 2
c'(X) = —— ————————= exp - = — dé (B-107)
c iz o ax(E - Eo) 2

NE
]

;
o (& - €

The corrected centerline concentration cé is used in the assumed

profiles in place of c., along with the distribution parameters Sy, S,,
and b.

D. DEGADIS MODEL INPUTS AND OUTPUTS

As implemented under VAX/VMS*, DEGADIS requires three areas of input
information:

. simulation definition

. numerical parameters

. VAX/VMS command procedure for execution
DEGADISIN is the interactive input module which generates the simulation
definition from user responses. An example input session is included in
Section D.3. The numerical parameters (convergence criteria, initial
increments, etc.) are supplied to DEGADIS through a series of input files.
Although these numerical parameters are easily changed, the user should
need to change these only rarely with the exception of the time sort
parameters. The VAX/VMS command procedure used to execute DEGADIS is
generated in DEGADISIN by default. Additional information can be found in
Havens and Spicer (Reference B-1).

1. VAX/VMS Command Procedure
The VAX/VMS command procedure generated by DEGADISIN controls the
execution of images for the simulation. Image execution follows one of two

paths, either for a transient release or for a steady-state release.

*VAX and VMS are registered trademarks of Digital Equipment Corporation.
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DEGADISIN will automatically generate the appropriate command procedure.
DECADISIN requires a simulation name be specified. The simulation name
must be a valid VAX/VMS file name without a file extension and is desig-
nated herein as RUNNAME. DEGADIS will use this file name with standard

— W —

extensions for input, interprocess communication, and output.

. 2. Simulation Definition
DEGADISIN is an interactive method of simulation definition where
the user specifies information about the ambient wind field, the properties

of the released gas, and some details of the release. A summary of

required input information is included in Figure B-5.

The ambient wind field is characterized by a known velocity u, at a
given height z, a surface roughness zp, and the Pasquill stability class.
The Pasquill stability class along with the desired averaging time are used
to estimate values of the lateral similarity parameter coefficients § and 8
(References B-17 and B-19 and Appendix D), values of the along-wind simi-
larity coefficients (Reference B-18), and the Monin-Obukhov length )\ used
by Businger et al. (Reference B-20) in their logarithmic velocity profile
function. The Monin-Obukhov length is then used to calculate the friction
velocity u,. Once these parameters have been estimated using the Pasquill
stability class, the user has the option of interactively changing any of
these to better describe the simulation. In addition to these specifica-
tions, the ambient temperature, pressure, and humidity must be specified.

The properties of air and the released gas are used to evaluate the
mixture density as a function of temperature and composition. The desired
released gas properties include the molecular weight MW_., the storage tem-
perature (normal boiling point for cryogenic gases) T, the vapor phase
density at the storage temperature and ambient pressure p,, and two con-

stants q; and p; which describe the heat capacity according to the equation

T - T
— (B-108)

c. (m =)t 333 x 10* + q
Pe T-T

wvhere Cp (T) is the mean heat capacity (J/kg K) at temperature T. Note

c
that a constant heat capacity with respect to temperature can be
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obtained by setting p; = 1.0 and choosing the appropriate value for q;.
Representative gas properties for liquefied natural gas (LNG) as methane,
liquefied petroleum gas (LPG) as propane, pure unreacted NO,, pure
unreacted NjO,, and ammonia (NH3) are included in DEGADISIN. Also included
are the lower and upper flammability limits (LFL and UFL, respectively),
for LNG and LPG.

The user may also choose to calculate the mixture density as a
function of composition using some other method. This mixture density is
entered in the program as if the release were isothermal; for each com-
position, the program requests the contaminant mole fraction, the contami-
nant concentration, and the mixture density. For ease of input, these
values may be entered from a file made available to DEGALISIN.

In specifying the details of the release, the user must choose to
simulate the release as transient or steady-state. For both release types,
the area source is assumed circular. The source radius and emission rate
must be specified for a steady-state release only once, while these must be
specified as a function of time for transient releases (either inter-
actively or by file). For transient releases, the user must specify the
initial amount of gas present over the source (in order to simulate, for
example, instantaneous releases such as the Thorney Island Trials).

Figure B-5 summarizes the simulation information gathered by
DEGADISIN contained in the RUNNAME file with extension INP. The structure
of RUNNAME.INP is illustrated in Figure B-6. At this point, RUNNAME.INP
may be edited to correct any misinformation entered during the input
session. Note that care must be exercised when editing RUNNAME.INP due to
the fact that information contained in the file can be different depending

on the answered questions (e.g. steady-state versus transient simulation).
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Desert Tortoise 4.

Released mass rate of 108 kg/s;

5
0

NH3

VOO0 O0OO0OOO0ODOCOOQOOOONIHd WO [ 8

3

0.0000000E+00
0.0000000E+00

F

4.990000

5
.3000000E-02
.1700000
306.3800

1 306.3800

5

Pressurized ammonia release by LLNL.

.830000

0.8940000
0.8700000
0.8910000

0 0.0000000E+00
0 0.0000000E+0O0

17.00000
3930.000
.0000000E-02
20
.0000000E+00
.1000000E-02
.2000000E-02
.1000000E-02
.9000000E-02
.1400000
.1290000
.1730000
.1850000
.1980000
.2150000
.4260000
.5400000
.6400000
.7270000
.8020000
.8660000
.9200000
.9640000
1.000000
.7000000E-03

4

6023.000
6024.000
6025.000
FFFTF

COO0OO0OOOOOCOUEdNO [ 8

3
1

06.3800
.000000

.0000000E-C2

.0000000E+00
.0116368E-02
.7710385E-02
.1382639E-02
.5295185E-02
.1126337
.1339750
.1503675
.1644708
.1785058
.1988646
.4822183
.6960659
.9445107

W WK

1
1

. 235210
.577622
.983670
.468807
.038278
.722663

08.0000
08.0000

0.0000000E+00
0.0000000E+00

22-SEP-1987 17:07:11.02

108.0000

2

.900000

Figure B-6.

source radius from assumed H.

3.000CC0CE-03

45.20000
50.00000
B8.1456132E-03

3.722660
0.5000000

. 025059
.089491
.102633
.124741
.151617
.289311
.339125
.372819
.396704
-416039
.433694
.587227
. 704466
. 848052
.024047
. 240009
.505674
.833904
.231240
.722663

WWEARINR R 2 0 e

1.450000

1.450000
0.0000000E+00
0.0000000E+00

1.138827
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COO0OO0OQOOODOODODOOCOOODOOO

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
. 2000000E+00
.CO00000E+CO
.G000000E+00
.0000000E+00
.C000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.000000CE+00
.0000000E+00
.0000000E+00

DT4.INP Listing.

(The reverse of this page is blank.)

___—“%J

306.
306.
306.
306.
306.
306.
306.
306.
306.
306.
306.
306.
306.
306.
306.
306.
306.
306.
306.
306.

3800
3800
3800
3800
3800
3800
3800
3800
5800
3800
3800
3800
3800
3800
3800
3800
3800
3800
3800
3800




3. Example Input Sessions

The input procedures for simulation of the transient release and

the steady-state release are very similar. Therefore, only the

specification of a steady-state release (DT4) has been included. In the

point by-point discussion of the input procedure, note the following:

(*)

(*)

(*)

%

(*)

The file name specification RUNNAME must satisfy system
restrictions.

A line terminator (normally a carriage return) must end every
line entered by the user.

When DEGADISIN requests the user to choose an option, all
acceptable responses are a single character (capital or lower
case). The default responses are denoted by a capital letter
inside angle brackets (e.g. <N>). When applicable, a menu of
acceptable responses is included inside parentheses.

For numerical responses, a comma, space, tab, or line
terminator (carriage return) may separate the numbers.

When a file is used as input (i.e., for the density or
transient source input), DEGADISIN reads the same information
from the file which would be encered at the terminal in the

same order and in the same format.
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The generated INP file for DT4 is shown in Figure B-6. If necessary,
the user may edit the INP file before beginning the simulation.

4. Example Simulation Output
After proper completion of the model, DT4.LIS contains the output
_ listing for the steady-state release. A point-by-point discussion of the
h output follows.
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. 5. Model Limitations and Cautions
.. DEGADIS model application should be limited to the description of
hl atmospheric dispersion of denser-than-air gas releases at ground level onto
flat, unobstructed terrain or water. Application to releases from sources
above ground level (e.g. overflow from dikes) would be expected to give
: conservative predictions of the downwind hazard zones, but this has not
? been verified.

The dispersion of a denser-than-air gas by the action of the wind

assumes the maintenance of a wind velocity profile in the gas cloud or

plume whose characteristics are determined by the approach wind flow
(upwind of the release). The treatment of vertical momentum transfer
invokes the assumption of of a logarithmic vertical velocity profile, which
is in turn curve-fitted to a power law vertical velocity profile. DEGADIS
also uses similarity forms for the vertical profile of gas concentration in
the cloud, and the vertical profile is dependent on the powver ilaw exponent
a used in the representation of the velocity profile. The vertical
velocity profile, which is directly related to the air entrainment velocity
into the cloud, is dependent on the factors which determine the structure
of the atmospheric boundary surface layer, wind speed, surface roughness,
and atmospheric stability. Consequently, the representations of the
vertical velocity and concentration profiles in DEGADIS are subject to
similar limitations as in other descriptions of the surface layer. Table
B-2 indicates typical recommended surface roughness values. Table B-1
indicates logarithmic wind velocity profile corrections for different
atmospheric stabilities, along with typical values of the wind profile
power law exponent a determined in DEGADIS.

Demonstration of the model has been primarily directed to the
prediction of hazard extent defined by gas concentrations in the
hydrocarbon flammable limit range (~1 to 20 percent). Based on the
simulations of field experiments presented in Havens and Spicer (Reference
B-1), the ratio of observed distance to calculated distance for a given
time-averaged concentration level (0BS/PRE) ranged from 0.73 to 0.96 for
the 5 percent level 9 out of 10 times (i.e., 90 percent confidence
interval). For the 2.5 percent level, (OBS/PRE) ranged from 0.82 tec 1.03
for a 90 percent confidence interval. For the 1 percent level, (OBS/PRE)

ranged from 0.95 to 1.24 for a 90 percent confidence interval. If for a
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TABLE B-2. REPRESENTATIVE VALUES OF SURFACE ROUGHNESS FOR A UNIFORM
DISTRIBUTION OF THESE TYPES OF GROUND COVER (REFERENCE B-21)

Surface Roughness Height of
(m) Ground Cover (m)

Ice 0.00001
Smooth mud flats 0.00001
Smooth snow on short grass 0.00005
Snow 0.00005 to 0.0001
Sand 0.0003
Smooth desert 0.0003
Snow surface, natural

prairie 0.001
Soils 0.001 to 0.01
Short grass 0.003 to 0.01 0.02 to 0.1
Mown grass 0.002 0.015

0.007 0.03

Long grass 0.04 to 0.10 0.25 to 1.
Agricultural crops 0.04 to 0.20 ~0.40 to 2.
Orchards 0.50 to 1. ~5. to 10.
Deciduous forests 1. to 6. ~10. to 60.
Coniferous forests l. to 6. ~10. to 60.

glven release scenario the calculated distance to the 2.5 percent average
concentration level was 120 meters, the distance to the 2.5 percent average
concentration for 9 out of 10 realizations of the same release would be

expected to range between 98 meters and 124 meters.
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APPENDIX C
DISCUSSION OF THE SENSITIVITY OF DEGADIS TO UNCERTAINTY IN
INPUT PARAMETERS NOT ROUTINELY AVAILABLE AT
OPERATIONAL USAF SITES

The purpose of this.appendix is to point out the effect of uncertain-
ties in DEGADIS input parameters on the output of DEGADIS. The scope of
this investigation is aimed at input parameters which are not normally
available at operational USAF sites. For this analysis, the following data
are assumed to be available:

¢ windspeed at a given elevation (assumed to be near 10 meters)

e ambient temperature, pressure, and humidity
(The ambient humidity is assumed to be avail@ble from the dewpoint
temperature.) In addition to the above information, DEGADIS requires
further information to define a simulation as follows:

e Pasquill stability category

e surface roughness

¢ initial contaminant density

e contaminant release rate
The release conditions of Desert Tortoise 4 (DT4) will be used to
illustrate the effect of uncertainties in each of these. For comparison
purposes, the DT4 conditions are the same as those in the body of this
report with two exceptions. The first is the Monin-Obukhov length.

Because LLNL measured the on-site velocity and temperature profiles, an
estimate of the Monin-Obukhov length was available. This estimate was used
in the simulations for comparison with the available data. Since the
Monin-Obukhov length is not a parameter which is normally available and
since DEGADIS can estimate the Monin-Obukhov length from the Pasquill
stability category and the surface roughness, the Monin-Obukhov length will
be estimated by DEGADIS (as outlined in Table B-1). The second is the
mixture density specification as a function of contaminant concentration.
For releases where heat transfer is not important, assuming a linear
relationship between contaminant concentration (in kg/m3) and mixture
density may be adequate for hazard assessment as shown by comparison of
DEGADIS predictions using the conditions of DT4 (Section III). (If heat

transfer is important, the effect of heat transfer would be expected to
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enhance dispersion so that a simulation which ignores heat transfer would
be expected to be conservative.) For all comparisons, a linear
!I relationship is assumed between contaminant concentration and mixture
density.

The Pasquill stability category and site surface roughness are needed
‘. in addition to the normally available information outlined above to

i complete the description of the ambient meteorological conditions of the
release. The Pasquill stability and surface roughness are used to estimate

the power law wind profile parameters (a), the Monin-Obukhov length (1),

and the coefficients for the lateral and along-wind dispersion parameters
(ay and o,). The parameter )\ determines the shape of the ambient velocity
profile (Equation B-73) and is used to estimate u, and a. The parameter a
is used in the vertical concentration profile and the vertical velocity

profile. The oy coefficients are used in the determination of S_; the ¢

y x

coefficlents are only used in transient simulations for the x-direction
dispersion correction.

There are several methods which can be used to estimate the Pasquill
stability category. An estimate of the Pasquill stability category from
the cloud cover and wind speed can be obtained as shown in Table C-1
(Reference C-1 or C-2). If information on the horizontal wind direction is
available, oy can be estimated from the maximum deviation in the horizontal
wind direction (300 = maximum deviation); the corresponding stability
categories are shown in Table C-2 (Reference C-1 or C-2).

A comparison of DT4 simulations using D, E, and F stabilities is shown
in Figure C-1. A shown, the DEGADIS-predicted concentrations at a given
distance for each stability class are within a factor of two for concen-
trations greater than about 1000 ppm.

The site surface roughness is normally determined by analysis of the
velocity profile measured under a given set of circumstances for a specific
site. Estimates of the surface roughness for a site are normally con-
sidered to be only a function of the ground cover; representative values
for homogeneous surfaces are shown in Table C-3. As a first approximation,
the surface roughness can be estimated as one-fifth to one-tenth of the
terrain height for homogeneous terrain. For urban and suburban areas,
Lettau (Reference C-3) suggests zp = hA*/ZA' for a uniform distribution of
buildings where h is the building height, A* is the area normal to the mean
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. TABLE C-1. PASQUILL STABILITY CATEGORY AS A FUNCTION OF WINDSPEED AND
) CLOUD COVER (REFERENCE C-1 AND REFERENCE C-2)

Daytime Insolation Night
. Surface Thin Overcast
[ Windspeed Strong® Moderate®  Slight© or <3/8
(m/s) >4/8 Low Cloud Cloud
<2 A A-B B
2-3 A-B B C E F
3-5 B B-C c D E
5-6 c c-D D D D
>6 c D D D D
85600 W/m?
Y600 to 300 w/m?
<300 W/m?

TABLE C-2. PASQUILL STABILITY CATEGORY AS
A FUNCTION OF HORIZONTAL WIND
DIRECTION FLUCTUATION (FROM
REFERENCE C-1 AND REFERENCE C-2)

Pasquill Stability Category og (at 10 m)
A 25
B 20
c 15
D 10
E 5
F 2.5
10¢




TABLE C-3. REPRESENTATIVE VALUES OF SURFACE ROUGHNESS FOR A UNIFORM
DISTRIBUTION OF THESE TYPES OF GROUND COVER (REFERENCE C-4)

Surface Roughness Height of
(m) Ground Cover (m)

Ice 0.00001
Smooth mud flats 0.00001
Smooth snow on short grass 0.00005
Snow 0.00005 to 0.0001
Sand 0.0003
Smooth desert 0.0003
Snow surface, natural

prairie 0.001
Soils 0.001 to 0.01
Short grass 0.003 to 0.01 0.02 to 0.1
Mown grass 0.002 0.015

0.007 0.03

Long grass 0.04 to 0.10 0.25 to 1.
Agricultural crops 0.04 to 0.20 ~0.40 to 2.
Orchards 0.50 to 1. ~5. to 10.
Deciduous forests 1. to 6. ~10. to 60.
Coniferous forests 1. to 6. ~10. to 60.

wind direction, and A’ s the building lot area. Of course, the area
downwind of the source may be characterized by distinct terrain types
having different surface roughnesses; for such conditions, separate calcu-
lations using the minimum and maximum roughnesses will act as upper and
lower bounds for the simulation. It should be noted that DEGADIS is based
on the assumption of dispersion on unobstructed, flat terrain. When the
surface roughness used in DEGADIS becomes a significant fraction of the
depth of the dispersing layer, the underlying assumptions in DEGADIS may no
longer be satisfied.
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A comparison of DT4 simulations using surface roughnesses of 0.3, 0.03,
and 0.003 meters is shown in Figure C-2. As shown the DEGADIS-predicted
concentrations at a given distance are reduced by a factor of about two for
each order of magnitude increase In surface roughness.

For releases of materials which are not significantly colder than the
ambient temperature (say, greater than about 200 K), the most important
property of the released gas is the initial gas density and the density of
the contaminant/air mixture as a function of contaminant concentration.

For releases where heat transfer is not important, assuming a linear
relationship between contaminant concentration (in kg/m3) and mixture
density may be adequate for hazard assessment. (If heat transfer is
important, the effect of heat transfer would be expected to enhance
dispersion so that a simulation which ignores.heat transfer would be
expected to be conservative.)

A comparison of DT4 simulations using different initial contaminant
densities ranging from 20 percent below (2.98 kg/ma) to 20 percent above
(4.47 kg/m3) the original initial contaminant density (3.72 kg/m>) showed
that the DEGADIS-predicted concentration as a function of distance was
essentially unchanged. A DT4 simulation using an initial contaminant
density of 1.86 kg/m3 showed a variation of about 20 percent in the
DEGADIS-predicted maximum concentration at a given distance. Note that
this density is still much greater than the ambient air density (1.02
kg/m3).

The last category to be examined is the release method of the material.
For ground-level releases, two considerations are important including the
rate of release and the diameter of release. As pointed out herein, the DT
simulations were found to be insensitive to the choice of the source
diameter. Furthermore, the effect of the source rate can be seen by
comparing the simulations for each test for the two mass rates simulated
(the released mass rate and the mass rate passing the 800-meter sensor
array). As shown in these steady-state simulations, the concentration at a
given distance for a given set of release conditions is proportional to the
contaminant evolution rate. This is the same behavior shown by the steady-

state Gaussian plume model.
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From the above analysis, the inputs which have the largest effect on
the DEGADIS-predicted distance to a given concentration level are the
source evolution rate, surface roughness, and the Pasquill stability class
for steady-state simulations. In addition, the initial contaminant density

appears to be insignificant as long as it is above some threshold value.
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c-2.

c-3.

C-4.
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APPENDIX D
USING DIFFERENT TIME-AVERAGING PERIODS IN DEGADIS

Because of the nature of the exposure of individuals to airborne toxic
materials, it is necessary to be able to predict the exposure to a given
compound over a specified time period. Estimation of the maximum downwind
concentration for a given averaging time using DEGADIS has been addressed
by Spicer (Reference D-1); the following is a summary of that work.
Although the effect of averaging time on the maximum downwind concentration
for steady releases is still open to some question, the most important
effect will be assumed to be the result of plume meander for modeling
purposes. For transient releases, the most important effect will be
assumed to be the duration of the release in addition to the mechanism of
plume meander. (If, for example, the duration of the release is much
shorter than the averaging time, then the time-averaged concentration will
be reduced.) In the following, the implications of the averaging time on
the Gaussian plume model are discussed, and a way of using different
averaging times in DEGADIS for risk assessment purposes 1s presented.

The effect of averaging time on the maximum downwind concentration for
steady releases is generally recognized as being a result of plume meander.
The plume from a steady release of a passive gas would be expected to move
downwind and meander with the ambient wind. At any point in time, the
centerline of the plume would not necessarily correspond with the mean wind
direction. After averaging the plume boundaries over some time period, the
centerline of the plume should more closely correspond with the mean wind
direction. This behavior is reflected in the values of the dispersion
parameters used in the Gaussian plume model; Turner (Reference D-2) and
Beals (Reference D-3) report different dispersion parameters for 10-minute
average plume behavior and instantaneous or puff behavior. (It should be
noted that estimates of puff coefficients are usually derived from obser-
vations of continuous releases which are analyzed as though the plume is a
continuous train of superimposed puffs (Reference D-4).) Because of plume
meander, the lateral Gaussian dispersion parameter Oy depends on the
averaging time, while the value of o, is essentially unaffected by the

averaging time (Reference D-2). Several investigators have also looked at

110




the effect of averaging time by examining the ratio of maximum
concentrations for different averaging times for continuous releases; the

usual form of the function specified is
. .+ YPa )
cmx(x.tl)/cm,(x.cz) (t,/t)) (D-1)

where cmax(x;tl) is the maximum concentration associated with averaging
time t;, cm‘x(x;tz) is the maximum concentration associated with averaging
time t,, and p is some power. Turner (Reference D-2) proposed that 0.17 <
P < 0.20 based on reports by Stewart, Gale, and Crooks (Reference D-5) and
Cramer (Reference D-6) (among others) for averaging times from about 3
seconds to about half an hour. Herman (Reference D-7) estimated p to be
0.5 + 0.2 for averaging times from 1 hour to 1 year. These findings are in
essential agreement with Hino (Reference D-ai who found that p = 0.2 for
averaging times less than 10 minutes, and p = 0.5 for times greater than 10
minutes (with some dependence on the atmospheric stability). Of course, if
the value of o, is independent of averaging time as proposed by Beals
(Reference D-3), Equation (D-1) can be restated as

o (xit))/o (xity) = (e, /t,)P (D-2)

wvhere ay(x;tl) and ay(x;tz) are the values of o, associated with the

averaging times t) and t,, respectively. Obviozsly, Equation (D-2) will
not be appropriate if the averaging time is taken to be zero (i.e., for a
puff). However, Equation (D-2) can be solved for an effective averaging
time associated with a puff value of Iy- Using the values reported by
Turner (Reference D-2), if the puff and 10-minute plume values for 9y for D
stability are used in Equation (D-2), the effective averaging time for the
puff coefficient is about 20 seconds. This result indicates that the width
of a steady-state plume would not be expected to vary significantly due to
meander over any given ~20 second period. (Note that the last statement
would not be approporiate if made about the maximum concentration.)

Puff values of oy reported by Turner (Reference D-2) and Beals
(Reference D-3) are given for the general stability categories stable,
neutral, and unstable. If all of the puff Iy values are assigned the same
minimum averaging time of 20 seconds, the puff oy values for the stable

category approximately correspond to F stability, and the puff Iy values
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for the unstable category approximately correspond to B stability. If the
value of oy is parameterized as

ay - 6xﬂ (D-3)

where oy and x are in meters, then the value of S can be approximated as
being the same for the plume and puff values. (Seinfeld (Reference D-4)
used 8 = 0.894 for the plume oy values.) Using the same power 8, the

parameterizations for plume and puff 9y values are shown in Table D-1.

TABLE D-1. COEFFICIENT § IN GAUSSIAN DISPERSION MODEL FOR USE IN

oy = §xP WITH g = 0.894 AND oy AND x IN METERS

Stability Class

Averaging
Time A B c D E F
10 min 0.443 0.324 0.216 0.141 0.105 0.071
20 s or less 0.224 0.164 0.109 0.071 0.053 0.036

In the steady downwind dispersion phase of DEGADIS, Equation (D-3) is

implemented to determine the lateral dispersion parameter S, as a function

y
of distance. (When the central horizontally-homogeneous section disappears

(b =0), oy = Sy/Jf.) Due to the assumed profile of the area release in
DEGADIS, the initial value of sy is zero. Downwind of the source, the
growth of sy satisfies the diffusion equation and a lateral dispersion
coefficient consistent with the specification of Oy given by Equation
(D-3). The rate of growth of the effective plume half-width Bogg Is
determined by lateral gravity spreading when b is nonzero. (The value of b
is actually determined by b = Begg - Jx Sy/2.) At some distance downwind
of the source (x.), b goes to zero, then, Begf = I Sy/Z; the effective

plume width is, thereafter, determined using Equation (D-3), the value of
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sy(xt), and a virtual source distance (x,) determined from Sy(xt) =-J25
(xy - ‘v)ﬂ° Since the lateral gravity spreading is treated as being
independent of the plume meander, the only consideration of averaging time
for the steady DEGADIS downwind dispersion phase is the appropriate choice
of the constants to be used in Equation (D-3). In DEGADIS, the default
value for 8 is 0.894; the default value for § is chosen based on an
averaging time of 20 seconds or less.

For transient releases, DEGADIS uses an observer scheme to analyze the
release. (A release is considered transient when the release duration is
less than the time required for the gas to travel to the position of
interest. When considering the effect of averaging time, a release is also
considered transient when the release duration is less than the averaging
time.) A series of observers which travel with the (approximate) mean
advection velocity of the gas are released upwind of the source and travel
downwind. As each observer travels over the source, time averages of the
pertinent source parameters are determined. With this averaged source, a
steady downwind dispersion phase calculation is performed for each
observer. Since the (approximate) observer velocity is known, the observer
position as a function of time can then be determined, and then, concentra-
tion as a function of distance and time can be determined. For transient
releases, it is necessary to average the predicted concentration over time

with the integral

t
1
c(x,y,z,t;t - c(x,y,z,t) dt D-4
(x,y a) "% (x,5,2,t) (D-4)
av
t-t
av

where t,, is the averaging time.
The following methodology is recommended for using different averaging
times in DEGADIS:
(1) To account for the effect of plume meander on time-averaged
concentration, the appropriate value of § from Table D-1 should be
used in the simulation whether the release can be considered steady

or not.
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(2) If the release cannot be considered steady due to either considera-
tion outlined above, then the release must be simulated as a
transient release and the resulting concentrations averaged as in
Equation (D-4).
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