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1. Technical Project Summary

Knowledge base refinement is the modification of an existing expert system knowledge base
with the goals of localizing specific weaknesses in a knowledge base and improving an expert
system's performarice. Systems that automate some aspects of knowledge base refinement can
have a significant impact on the related problems of knowledge base acquisition, maintenance,
verification, and learning from experience. The SEEK system was the first expert system
framework to integrate large-scale performance information into all phases of knowledge base
development and to provide automatic information about rule refinement. A recently developed
successor system, SEEK2 [Ginsberg, Weiss, and Politakis 881 significantly expands the scope of the
original system in terms of generality and automated capabilities. The investigators expect to
make significant progress in automating empirical expert system techniques for knowledge
acquisition, knowledge base refinement, maintenance, and verification.

2. Principal Expected Innovations

The investigators will demonstrate a rule refinement system in an application ot the diagnosis of
complex equipment failure: computer network troubleshooting. The expert system should
demonstrate the following advanced capabilities:

* automatic localization of knowledge base weaknesses

* automatic repair (refinement) of poorly performing rules

* automatic verification of new knowledge base rules

e automatic learning capabilities

3. Objectives for FY89

These are our objectives for the current year, Fiscal year 89:

* full demonstration of refinement system, using subset of DEC's Network
Troubleshooting Consultant (NTC). System will automatically recover from many
forms of damage to knowledge base.

* full demonstration of system with capabilities for automatic refinement, and
verification of knowledge base consistency. Empirical experiments will be performed
and results will be reported.

e demonstration of significant automated rule learning capabilities.

* demonstration of extended system capabilities for alternative control strategies and
representations.
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0 completed comparative studies of empirical techniques for machine learning, statistical
pattern recognition, and neural nets.

4. Summary of Progress

During the previous year the following was accomplished:

" initial functioning equipment diagnosis and repair knowledge base, suitable for
refinement. This is a subset of DEC's Network Troubleshooting Consultant (NTC).

* initial demonstration of functioning equipment diagnostic system with capabilities of

localization of weak rules, automatic refinement, automatic verification.

" demonstration of initial rule learning capabilities.

" development of case generation simulator and randomized rule modifier.

" initial comparative studies demonstrating superiority of PVO rule induction procedure.

This work is the basis for further progress in developing an automated refinement system. We
are pursuing the refinement and learning tasks from both an expert system rule-based perspective
and a machine learning rule induction perspective. In order to develop the strongest form of
refinement system, we have examined numerous techniques for empirical rule induction. We have
also developed a procedure, Predictive Value Maximization, that shows strong results for
induction of single relatively short rules. Our fundamental objective is to mix the best rule
induction procedures with a rule-based expert system to achieve the strongest empirical results.

Here are the highlights of progress in meeting our stated objectives for the first quarter of fiscal
year 89:

" We have completed an extensive empirical comparison of machine learning rule
induction techniques with statistical pattern recognition techniques, and neural nets.
Four real-world data sets were analyzed using different techniques. The study required
over 6 months of Sun 4 CPU time. The results should be reported in the next quarterly
report.

" We have begun adding a procedure to the refinement system that uses rule induction i
techniques. These results should be available during the next quarter.

" We have developed models for measuring and comparing the results of rule-based
expert systems. A preliminary report is attached to this quarterly report. " .
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5. Financial Review

1. Basic contract dollar amount: $536,919 (9/1/87-8/31/89)

2. Dollar amounts and purposes of options: None

3. Total spending authority received to date: $475,000 through 1/31/89

4. Total spending to date: $225,526 through 11/30/88

5. Monthly expenditure rate: We have charged very little in salaries over the first
academic year in anticipation of funding larger amounts in summer salaries (when we
are able to devote major efforts to the research project). We have also brought on
board one more graduate assistant to assist in this research, resulting in higher salary
expenditures anticipated throughout the current (1988-89) academic year.

6. We have funded a total of approximately $225,526 to date. This would, therefore,
result in an average monthly expenditure rate of $15,035.

7. Major non-salary expenditures planned within this increment of funding: None

8. Date next increment of funds is needed: January, 1989.

I. Technical Report

A preliminary technical report, Models for Measuring Expert System Performance, is enclosed with
this quarterly report.
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Models for Measuring Expert System Performance

Nitin Indurkhya and Sholom M. Weiss
Department of Computer Science, Rutgers University, New Brunswick, NJ 08903

Abstract P-

Scoring schemes for measuring expert system performance are rejriewed. Rule-based classifi-
cation systems and their error rates on sample data are considered. We present several models of

measurement that are categorixed by four characteristics - mutual exclusivity of classes, unique
answers provided by the system, known correct conclusions for each case and use of confidence

factors to weight the system's conclusions. An underlying model of performance measurement

is critical in determining which scoring strate is a propriate for a system and whether a
comparison of different systems can be made. (y,)

1 Introduction

Although many expert systems have been developed, relatively few have been formally evaluated
r8 , 12, 19]. Different methods of measuring performance can be used for each system, making

it difficult to compare their performance. In this report several underlying models of measuring

performance are considered. Here performance refers to the error rates of systems on sample data.

A survey of strategies for measuring performance of expert systems can be found in [12]. Rather

than surveying performance measurement strategies in existing systems, the focus, in this paper,

is on underlying models. Classification type rule-based expert systems [2, 18] are considered,

although the results can be carried over to other classification systems [7]. The discussion is

confined to scoring and measuring performance, as opposed to techniques (such as train and test)

for estimating bias in the measured error rates [4]. A review of performance measurement models is

critical in determining which scoring strategy is appropriate for a system and whether a comparison

of different systems can be made.

2 Measurement Models For Classifiers

A performance measurement model for a classification expert system requires several basic elements.

Figure 1 illustrates the components of a standard performance measurement model. In Figure 1, the

scoring of a case depends on the system's conclusion and the expert's conclusion. The structure

of the classifier is not critical - it could be a set of rules, a decision tree or even a procedural

algorithm. The only thing that is of concern is that the classifier takes case-data as input and

outputs an answer. Thus, for evaluation purposes, the expert classifier is treated as a black box. In



Set of cases Expert System

case data expert classifier

Expert's system's

conclusions conlmusions

Corrctness classifir

correct incorrect

Figure 1: Measuring Expert System Performance

fact the view taken is that of an examiner who is given a system and told to measure its performance.

The examiner does not care how the system is designed internally and focuses on the output of the

system for a given set of input values.

For the purposes of measuring performance, the following characteristics are of interest:

Unique Answer This attribute refers to whether the system's conclusion for a case is unique.

Thus, if a classifier always outputs a single class as its conclusion for all the test cases, the

system is said to be UA restricted. Otherwise, the system is Not-UA restricted. As an

example, consider the following conclusions of two systems classifying among (class), class2,

class3) over the same set of cases:

Case System A System B

casel classl class), clas2

case2 class3 class2

case3 class) classf, class$

For the given set of cases, System A is UA restricted and System B is Not-UA restricted.

This will affect what kind of scoring strategy is best suited for evaluating these systems. The

scoring scheme for System A will be different from that for System B.

Mutual Exclusive Classes This attribute refers to whether, for a given case, only one class can

be satisfied. This will be true if the classes considered are mutually exclusive. It is assumed
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that the classes span the space of alternatives1 . Thus, if every case can be classified in one and
only one of the classes, then we say that the domain is ME restricted. If there are cases that

can be classified in more than one class, then we say that the domain is Not-ME restricted.

Known Case Conclusion This attribute refers to whether the correct conclusion for a case is

known and undisputed. The correct conclusion can be obtained from an expert or the true

conclusion can be obtained by observation over time until the event is over. Thus, for a
system which predicts rain for the next day, the true conclusion can be obtained by waiting

until the next day and observing whether it rains or not. This will be the correct conclusion

for the case. If the true conclusion is obtainable, then it is also undisputed. However, if the

correct conclusion is obtained from an expert, then it may be disputable. For a case, two
different experts may diagnose differently.

Weighted Answers This attribute refers to whether the system's answers are classified by un-

certainty factors. If the system gives unweighted answers without any certainty factors, its
answers are considered definite. For example, given a three class situation of classl, class2

and class3, an expert system with unweighted answers might give the following output -
(class2, clasa3). This will be taken to mean that the case can be classified as both class2
and class3 and that both the classifications are equally definite. A system gives weighted

answers if it makes use of an uncertainty model in its reasoning. Such a system typically

provides a likelihood measure or a Confidence Factor (CF) with each class - the CF reflecting
how strongly the system supports this class as an answer. For example, for the three class

situation described above, an expert system with weighted answers might have the following

output:

classl 0.7
c/ass2 0.5

cl[as 0.0

Thus, the system has no confidence that the case can be classified as ca883 and has a higher

confidence in classifying the case as classi than as class2. In the above example, note that the

confidence factors do not sum up to 1.0. This means that the uncertainty model is not based

on probability theory. This is not unusual. Many systems use non-probabilistic uncertainty

models. For purposes of measuring performance, the theory underlying the uncertainty model

is not significant.

The above features will be used to categorize scoring strategies and describe models for measuring

performance.

'If the classes do not span a complete set of possibilities, then an additional class None-%' the-above can be added

to the list of classes.

3
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Figure 2: Systems Restricted To Unique Answers And Mutual Exclusivity

IModels For Systems Restricted To M utual- Exclusivity And

Unique Answers

The simplest situation occurs when the correct conclusion for the case is undisputed and known,

the classes are mutually exclusive and span the possibilities, and the system's conclusion is unique.
A classifier for a ME-restricted domain, usually gives a unique answer for any input data2. Thus

for a ME-restricted problem, most classifiers would be UA-restricted and for any input data would

give a unique answer. In a rule-based system, where no rules or multiple rules can be satisfied,
a unique answer is equivalent to conflict resolution in which a single answer is selected by some

criteria such as highest confidence factor, etc. These criteria can be encapsulated into a unique
answer generator. Because of this, it does not matter whether the answers are weighted or not. The

situation for UA-restricted classifiers in ME-restricted domains is shown is Figure 2. Performance

measurement models for such systems are examined in the rest of this section.

3.1 The Correctness Model

The most common measurement strategies are based on measuring the total number of correct

decisions made by a system. This measure is popular among machine learning systems [9] where
2 When classifiers for ME-restricted domains are not UA-restricted, this leads to analytical difficulties. This issue

will be discussed later on in this report.
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performance improvement is demonstrated by counting the number of correct responses before and

after learning. The underlying model is one in which the number of correct/incorrect responses are

being noted. Thus, for example, for a two class situation (mutually exclusive classes):

System's response =C,,t.

Correct response = C,,.

A case is classified as correct or incorrect using the following table:

C.yten
C ,,..t C 51s Class2

ClassI Correct Incorrect

Class2 n Correct

Using this information, the following table is filled up:

Correct Incorrect

The metric of percentage of errors is calculated as:
of errors = Inect - X 100.

Corr.ect+ act~e I0

Alternatively, one could use a confusion matriz [7]. A confusion matrix is a NxN table of actual

class against classified class where N is the number of classes. This is illustrated by the following
example. Suppose for a three class situation, a classifier produces the following confusion matrix

in scoring a set of 50 cases:

caystem

Cco,,d Classl Class2 Class3

Classi 13 2 5

Class2 2 14 1

Class3 3 1 9

Note that each entry in the confusion matrix refers to the number of cases having the corresponding

C,,,t,. and Cco,.d. Thus, for example, the entry in the first row and second column means that

in 2 cases CV, was Class2 and C,,e.d was Clas41. Correctly classified cases fall on the diagonal

moving from the upper left to the lower right. Based on the the confusion matrix, the overall error

rate can be determined:
Correct Incorrect

36 14

This gives the following result for the system:

% of errors = 14 x 100 = 23%

This model is the simplest measurement model and compares performance at a coarse level. It

does not distinguish between different types of errors.
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3.2 The Positive/Negative Correctness Model

Some systems use a more detailed model than the correctness model described above. Instead

of classifying a case as correct, it is now classified as True Positive or True Negative. Instead
of classifying a case as incorrect, it is now classified as False Positive or False Negative. This

classification is done with respect to a class.

As an example, the tables involved for a two class situation are shown below. Note that the
tables are with respect to classi:

Cayatern

C..,rec Class1 Class2

Class1 True Positive False Negative

Class2 False Positive True Negative

For N classes, the table with respect to Classi would be as follows:

_Cayatem

CC".,ea Classi Class2 Class3 ... ClassN

Classi TP FN FN ... FN
Chass2 FP TN FN ... FN

Class3 FP FN TN ... FN

ClassN FP FN FN ... TN

Using the above classification for each case, the following table is calculated for each class:

T+ T-

H+ TP FN

H- FP TN

For each table, H+ and H- add up to the total number of cases as do T+ and T-. The tables for
the classes are related. A FP case for classl will be a FN case for class2. The sum of all the TP's
and FN's from all the classes equals the total number of cases. Since FN's for a class are FP's for

other classes, it is enough to report TP and FP values for each class.
A number of metrics are possible using this model. Some of them are:

Sensitivity TP/H+

Specificity TN/H-

Predictive value(+) TP/T+

Predictive value(-) TN/T-

Accuracy (TP+TN)/TOTAL

A system which uses this model is described in [5]. The metrics specificity and sensitivity are
commonly used in scoring laboratory tests in medicine. It is important to note that there are two
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kinds of errors being distinguished: false positive errors and false negative errors. They could be
considered of unequal importance.

The computations can be done easily using a confusion matrix similar to the example given for

the correctness model. The tables described above can provide useful information for improving

the performance of the classifier. For example, it might indicate that the classifier does very well

on all the classes but one - thereby indicating that the performance can be improved by trying to

improve the results for this one class. SEEK2 [61 is an example of a system that uses the matrix of
True Positives, False Negatives, False Positives and True Negatives as a source of information for

improving performauice which it measures using the correctness model.

3.2.1 The Correctness And Cost Model

This is a generalization of the positive/negative correctness model There is now a cost factor

associated with making a FP or FN judgment. This kind of model is useful when it is known that

the cost of making a FP decision is different from making a FN decision. For example, in a situation

of approving credit card requests, the cost of a FN decision (not approving a good applicant) is

relatively low (the annual card fee and interest payments) while the cost of a FP decision (approving

an applicant who is unable to pay his bills) is high (the average annual purchases of a credit card

holder). Thus one calculates the following table:

T+ T-

H+ TP FN x FNcost

H- FP x FPcost TN

The positive/negative correctness model is a special case of this model with FNcost = FPcost = 1.
Note that the cost function need not be linear. For example, if it is important that the number

of FN's be not more than 50% of the FP's, then the non-linear cost function which needs to be

calculated would be f(FP, FN) = FP/FN. The same set of metrics as used with the positive/ne'ative

correctness model are relevant here.

* A number of optimality measures for classifiers can be understood as special cases of this model.

Thus, the criteria described in [7, Pg 63] - Minimum cost, Minimaz error and Fized error rate can

be all seen to be within the scope of this model. The reader is referred to [7] for details.

* 4 Models For Systems Restricted To Mutual-Exclusivity And

Non-Unique Answers

In all the models discussed so far, three important assumptions have been made:

Known Case Conclusirn: The correct conclusion was known and undisputed.

ME Restricted Domain: The classes were mutually exclusive.

7



UA Restricted Classifier: The expert system incorporated a unique answer generator thereby

ensuring that for any input data, the system always gave a unique answer.

These assumptions simplify considerably the factors affecting measurement. We now relax the

third of the abovementioned constraints and consider Not-UA restricted expert systems. So the

situation is that the classes are mutually exclusive and the classifier can give more than one class
as its conclusion3.

It was mentioned earlier that when a classifier for a ME restricted domain is not UA restricted,

this leads to analytical difficulties. The reason for this is that having non-unique answers when
only one of the classes can be a correct answer leads to difficulties in evaluation. The strategies for
dealing with these problems can be categorized on the basis of whether the answers are unweighted

or weighted".

4.1 Models For Systems With Unweighted Answers

In this situation non-unique answers arise because rules for more than one class are satisfied and
the system does not have a strategy for picking among the classes. Sometimes, this indicates that
the system is not properly constructed. For the purposes of evaluating such a system, the system

designers must provide schemes for picking one of the multiple answers as the answer to be used in

scoring the system. In effect, the system must be augmented with methods which act as fiters to
the system output and make it UA-restricted. A good example of this can be found in AQ15 [11].
In reporting performance of AQ15, Michalski and his colleagues describe the use of special routines
of the kind mentioned above which force the system to be UA-restricted,

There are situations, however, when one could measure performance in the presence of multiple
answers. For example, let there be 100 classes and for a particular case, suppose system A narrows
its diagnosis down to 3 classes while system B narrows its diagnosis down to 20 classes. Let the

correct conclusion be among the multiple answers of system A as well as those of system B. Clearly,

system A has done better than system B. Such an evaluation is reported by Spackman [16] who
compares the performance of his learning system CRLS with AQ15. Refer to Section 5.1.2 where

the technique is discussed. However, when there are only two mutually exclusive classes, accepting

multiple answers is awkward.

4.2 Models For Systems With Weighted Answers

When the system provides weighted answers, this can give rise to non-unique answers if the system

itself does not select one of the classes as a conclusion. There are two main strategies for dealing

with this situation.

"The conclusion for each case is still known and undisputed.
'Because the systems being considered are Not-UA restricted, confidence factors do make a difference now, as

compared to the previous section where UA restricted systems were considered.



4.2.1 Using Models Restricted To Mutual-Exclusivity And Unique Answers

Given the standard interpretation of confidence factors and given the knowledge that the classes

are mutually exclusive, for purposes of scoring the system, the class in which the system has highest

confidence can be picked as the C.,,t.ms . This makes the system UA-restricted and so the ME/UA

restricted models can be used to score the system. For example, if a system gives the following

output for a case:

cljasl 0.7
clo882 0.5

cla s 0.0

Then, for the purposes of scoring the system over the case, clasal will be picked as Ctt.

4.2.2 Measurement By Averaging Weights

By picking the most certain answer, in effect, the uncertainty in the answers is being ignored. A

situation where the correct conclusion has second-highest confidence may be better than a situation

where the correct conclusion has fourth-highest confidence. By picking the class with highest

confidence, both the above situations are marked as wrong and classified equivalently. This may

not be desirable. The solution is to use techniques which measure partial correctness in these

situations by averaging over the weights. Two such techniques are described below:

Measurement Using Distance Metrics

One way of measuring partial correctness is to use a closeness measure rather than forcing the

system to choose between correct and incorrect classification. For N diagnoses, consider an n-

dimensional space. Each axis is the confidence factor of a diagnosis (hence it is scaled from 0 to

1). The expert's conclusion is a point in this space and so is the system's conclusion. Consider an

appropriate distance metric between these two points in this space. The mean or variation over all

cases could be taken as a performance metric.

Thus, for example, consider the case of the earlier section. Let C.,,d for the case be class2.

Since there are 3 classes, points in 3-dimensional space need be considered. Let classl lie along the

z-azis, clasa2 along the y-axia and clasS along the z-azia. Then, C,,.,t can be represented by the

point (0,1,0). Similarly, Cytni is the point (0.7,0.5,0.0). If the squared distance is taken as a

metric, then the case is assigned a score of 0.74.6 Once scores are calculated for a number of cases,

the average squared distance can be reported as a performance metric. This kind of performance

measurement using a distance metric is popular among neural net systems [151.

'There is the problem of how to handle lies - more than one clas having the highest confidence, but this

complication shall be ignored for the moment.
"The smaller this score, the better the performance on the case.
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Measurement Using ROC Curves

This measurement strategy, described in [17], is useful in the two class situation. An ROC curve
is a plot of sensitivity against 1-specificity. The values of specificity and sensitivity are calculated

for various levels of decision confidence of the system. These levels are chosen along the confidence

range. The area under the ROC curve is calculated as an performance metric. A 100% accurate

system having 100% sensitivity and 0% specificity, has an area of 1.0. This measure is independent
of the occurrence of class members in the test data as well as of the decision bias of the system.

The strategy can be best illustrated by an example. Consider the following data obtained from

an expert system that classifies patients as having Rheumatoid Arthritis (RA) or not. 121 cases
are classified by the system in four different categories. These categories are obtained by dividing
the confidence range into four intervals and classifying cases into these four categories instead of

the original two categories (RA or not-RA)'. This gives us the results of columns 2 and 3.

Rating category C,.,, = RA CG,,.e $ RA Sensitivity 1 - Specificity

definitely RA 21 4 0.50 0.05

probably RA 10 5 0.74 0.11
possibly RA 7 13 0.90 0.28

definitely not RA 4 57 1.0 1.0
total 42 79

The sensitivity and specificity are calculated by the "rating procedure". This involves viewing
each rating category as representing a threshold. All cases in higher categories are viewed as positive

decisions. Thus, viewing Possibly RA as representing a threshold, we compute the following-

Number of true positive decisions = 21 + 10 + 7 = 38

Total number of positive decisions = 42
Number of false positive decisions = 4 + 5 + 13 = 22

Total number of negative decisions = 79
Sensitivity = True Positive decisions/Total Positive decisions = 0.90

1 - Specificity = False Positive decisions/Total negative decisions = 0.28

The other values in columns 4 and 5 are calculated similarly. Thus rating information is used as
though decision thresholds were being used instead. Once we the results of columns 4 and 5, we

now have enough information to plot five points. The resulting ROC curve is shown in Figure 3

with an area of 0.87.

5 Relaxing Mutual Exclusivity Of Classes

In the previous section, it was shown that relaxing the UA restriction while keeping the ME
restriction leads to problems. Now the ME restriction is relaxed while still keeping the constraint

of having a known undisputed conclusion for each case.

'The choice of four categories is arbitrary. It could have been anything else.

10
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Figure 3: An ROC Curve

If the classes are not mutually exclusive, multiple classes may apply to the same case data.

For example, a patient may have a bad throat, fever, diabetes and lung cancer at the same time.

Any system that diagnoses this set of health disorders cannot make assumptions about mutual
exclusivity of these classes. Thus, from Figure 2, the unique answer generator can be removed.

The new situation is depicted in Figure 4.

It is immediately clear that a large part of performance measurement now rests with the cor-

rectness classifier. In the earlier models, since there was only one expert conclusion and one system
conclusion for each case, the correctness classification was trivial - just check to see if expert's

conclusion was equal to the system's conclusion or not. Now, however, the problem is complicated
because there are multiple classes for the conclusions of both the expert system and the expert.

How does one score a case for which the expert system and the expert agree of some conclusions
and disagree on some others ? Any model that deals with measuring performance of such systems

must necessarily address this problem and have a scheme for resolving it.

5.1 Models For Systems With Unweighted Answers

As before, the simplest situation is considered first. Assume that the correct conclusions are known

and undisputed and that the system's conclusions are unweighted answers Note that C,,d and

C,yot m are sets of classes. Thus for a case one could have Ce,. = (clasal, class3) and Copo t,,, =

(classl, class2). The models described below are proposed as possible ways of scoring such systems.

11
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Figure 4:' Measurement With Multiple Diagnoses

.1 The Case Correctness Model

The simplest measure of performance is to measure how many caaes are incorrect. The definition
of an incorrect case may not be domain-independent. Consider the following examples:

1. If the domain is medicine and we are dealing with a set of diseases all of which are very

expensive to test and at the same time all the diseases are life threatening, then for a case
in question, the system must match the expert exactly in its conclusions. If it guesses more

disease classes than the expert, then the further testing required to weed out the false positives
would make the system not very cost effective. On the other hand, if the system does not

guess all the diseases, then the patient will not have much confidence in the system. These

criteria translate into the following correctness classifier:

If cc,,c and C,.,. match exactly, then the case is correct or else it is incorrect.

2. Again consider a set of diseases which are extremely expensive to test for precisely. Assume

that an expert system is being installed for checking the presence of these diseases during
regular medical examinations. For the system to be effective and useful, the system must not

raise false alarms which would necessitate the expensive testing. For such a situation, the

following correctness criteria would be appropriate:

If Cevyt., is a subset of CC,,.d then the case is correct or else it is incorrect.

12



Given that the correctness classifier classifies each case as correct or incorrect (possibly by some
domain-dependent scheme), the percentage of errors can be computed as a measure of the system

performance. The metric of percentage of errors is calculated as before:

% of errors = rnewrrc d X 100.

In many situations it is often important to determine the degree of error. Otherwise one cannot

distinguish between the performance of systems such as follows:

Conclusions

System Case A Case B

Expert claul, claaa2 clas2, clanS

System M claaa2 clasal, clasa2, clasa

System N class3 class l

Assume the correctness criteria is exact match. Although, both systems M and N got the cases

wrong, it seems, intuitively, that System M did better than System N. This is not reflected at all

in the measurement by case correctness.

5.1.2 The Partial Correctness Model

It was seen above that the case correctness model was relatively coarse. Another way of measuring

correctness would be to employ some kind of closeness measure rather than to force the system

to choose between correct and incorrect classification. This can be achieved by allowing partial

correctness of cases. The following example illustrates this strategy. Suppose that a system reports

the following performance on two cases:

Case CWed Cjoete,

Casel class1, claas2 classS, clasaS

Case2 class2, class classl, claa2, class$

Thus for Casel, Cr,. contained 2 classes and the system got 1 of them right, so it is given a score

of 1/2 on correctness. While this handles the case of partial correctness on cases, it is inadequate

unless it is coupled with some measure on how precise the system was. One such measure is the

positive predictive value'. Thus, for the above example, we get the following two measures:

Accuracy = -2 = 0.75
Predictive Value (+) = - 0.60

These metrics were in fact used in [11] to measure performance of AQ15 for cases with multiple

diagnoses.

$The ratio of the number of classes correctly identified by the total number of classes in C.,...

13



5.1.3 The Diagnostic Performance Model

The case correctness model does not specify a system's performance relative to a class. This may

be important for a rule-based system, for example, to determine the performance of the rules for
a particular class (so that they can be refined). One way of measuring performance by diagnostic

class is as follows:

Split each case into p-cases corresponding to the number of correct classes for that case. Thus,
each p-case has one conclusion from the C ,.,d's for the case which generated it. This is the

C,.,t of the p-case. Now we measure performance for each p-case. The system classifies a p-case

as correct if the CW,. of the p-case is among the system's conclusions. The notions of False

Positive and True Negative can be defined similarly.

Thus for example, consider a domain where there are three classes: class, class2 and class3.

Consider the following two cases:

case number C.',, Cytem

1 classi, class2 classi, class3

2 classi, class3 class2, class3

The following performance measurement by diagnostic class is obtained:

class TP/H+ False Positives

classi 1/2 0
class2 0/1 1

class3 1/1 1
total 2/4 2

What has been done, effectively, is that the system is being viewed as a ME/UA restricted system.

For each p-case, each of the C,v,t,'s is the system's answer and is either equal to the one and

only one C,,. for that p-case or not. Thus, all the metrics discussed earlier for such systems
are applicable here. Costs can be attached to the various false positive and false negative errors of

each class in order to get a metric which measures performance more accurately. SEEK2 [6] uses
this model for handling cases with multiple diagnoses.

The drawback of this model is that it cannot be used to estimate the performance of the system
over cases. If one tries to do so, the performance measures will be biased towards cases with more

multiple conclusions.

5.2 Measurement Models For Handling Weighted Answers

So far non-ME restricted systems without uncertainty have been examined. This simplifies the in-

terpretation of system output. Any class that gets fired by the system rules, is a part of C,,tem,. In

this section scoring of systems with weighted answers for non-mutually exclusive classes is consid-
ered. In an earlier section, the effects of adding an uncertainty model to systems classifying among

mutually exclusive classes were analyzed. The main problem had been in defining what should
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be considered as C,,t.. The same problem is encountered when the classes are not mutually
exclusive. It is assumed that the expert's conclusions are undisputed and definite, and the system
produces an ordered list of classes (ordered by some measure like confidence factor CF). The CF
attached to a class reflects the system's belief that the case can be classified in the class. For exam-

ple, consider a case for which the expert's conclusions are (claasl, clan2). Let the system produce
the following list of classes ordered by confidence factors: ((ciaaal, 0.9) (clsa3, 0.7) (claaa2, 0.4)

(ciass4, 0.3)). Leaving aside Co,,t for the moment, the dilffculty is in assigning an interpretation
to C,,,t,,. There are several strategies that can be used here, each giving rise to a different scoring

scheme:

1. One strategy might be to ignore certainty factors for performance measurement. Thus, for
the above example, one would determine Ca,,,t,, - (classi, class2, class3, class4). All classes
with non-zero CF's would be considered as the system's answers. This strategy ignores the

reasoning under uncertainty employed by the system and is thus not a very precise measure

of performance.

2. Another alternative would be to ask the domain expert to define what an answer should be in

terms of the confidence factors of the system. This would depend on how the confidence factors
are being interpreted by the domain experts. Thus, one could decide to treat every class with
a CF greater than 0.5 as a part of C,,,,. For the example, we get Ca,t,, = ((classi,

0.9) (class3, 0.7)). Having used the CF's to determine what should be the answer, they are
ignored for scoring the system response. In general, there can be no domain-independent
way of using CF's to fix thresholds for answers because the confidence factors have different

interpretations in different domains. Thus, by this strategy, the system can use uncertainty

models for reasoning but is obligated to also provide a mechanism for determining acceptable
answers for performance measurement.

3. Another strategy might be to thrust the responsibility of interpreting the system's output to
the correctness classifier. Thus the correctness classifier looks at the system output (which

is a list of classes with confidence factors) and the C,,Wed (which is a set of classes) and
determines whether the system's output is acceptable as an answer or not. One way the
correctness classifier might do so is to count the number of classes in C,,.., and accept an

equal number of classes from the system's output as Cytn and then do the performance
measurement using any of the schemes described for the situation when C,,t.,, is definite.

Thus, for the example, since C,..,,d contains two classes, the two classes with highest CF
would be assumed to be the system's answer and C,,tn would be taken to be (class1,

class3). This is the strategy used by SEEK2 in scoring cases with multiple diagnoses for the
AI/RHEUM knowledge base which uses an uncertainty model

4. Another way of measuring correctness would be some kind of closeness measure rather than

to force the system to choose between correct and incorrect classification. This has been
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discussed earlier for systems with mutual exclusivity and non-unique answers. The technique
is applicable even when the classes are not mutually exclusive.

6 Measurement When True Case Conclusion Not Known

In the preceding sections, techniques for measuring performance were described for conclusions

that are undisputed and known. In some domains the answer for each case is not truely known.

The expert himself may be wrong and so his conclusion may not be the true conclusion. Also, two

expert may give differing conclusions for the same case data. The problem here is how does one

find the gold standard, the conclusion against which to compare performance of the system. Several

methods for solving this problem can been used:

Find the true conclusion This means that the expert opinion is ignored and an attempt is made
to get the real answer by observing real-world events. For example, if one is building a system
which forecasts the next day's weather, then the true conclusion can be found by waiting until

the next day and observing the weather. As another example, consider a system trying to

determine life expectancy of cancer patients.

Compare with human expert's performance Sometimes it may not be possible to obtain the
true conclusion. In such situations, the strategy used is to measure the performance by

comparing with the performance of human experts.

This strategy was used to validate a version of MYCIN in the domain of meningitis [19]. For
each of ten cases, six treatment recommendations were obtaiied - one was obtained using

MYCIN, one was the actual therapy used in treating the patient and the other four were
obtained from experts at four different experience levels. For each case, the six recommen-

dations were randomly ordered and presented to eight outside experts. Each outside expert

gave his own recommendation and rated the six recommendations as identical to his own,

acceptable or unacceptable. A majority of the evaluators approved MYCIN's choice 70% of
the time. None of the other four experts achieved better approval than MYCIN.

Allow experts to attach confidence factors What if the expert refuses to commit himself ?
Or if he cannot commit himself ? The strategy here is to allow the expert to attach confidence

factors to his conclusions. This strategy is particularly useful if the performance data is not

very extensive, and the expert attaches confidence factors which are known to be compatible

with the confidence ratings assigned by the system." For each case, one obtains the conclusions

from the expert with confidence factors for each class. For each class the signed difference

between the CF value of system and the expert is computed. For a case, the average difference

is computed over all classes to obtain a metric of performance over a case. Alternatively, the

'This would be the situation if a model of expert reasoning was being accurately designed and it was known that
the expert can give indefinite answers. So the uncertainty model being used would have to conform to the uncertainty
model used by the expert himselt
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average difference could be computed for each class over all cases to obtain a metric of

performance with respect to each class. Thus, for example, consider the following data for a

case:

class I CFO,,,t CFyt,. Difference

classi 0.80 0.61 0.19
class2 0.40 0.50 -0.10

class3 0.30 0.30 0.00

The average difference between the confidence values for the above data is 0.03 which is 3%
of the 0 to 1 scale. Such a performance measurement was reported for PROSPECTOR [3].

7 Conclusion

This paper has explored the various issues involved in measuring expert system performance on
the basis of errors made on sample case data. The simplest scenario was considered first: when the
conclusion for each case is known and undisputed, the classes are mutually exclusive and the system

generates a single answer. These assumptions were then relaxed one by one and various approaches
used to the handle the problems arising therein were analyzed. Most of them have been shown

to be efforts to make the assumptions applicable again. From the point of view of performance

measurement, four features of expert systems were identified as interesting: (1) Unique Answer,

(2) Mutual Exclusivity, (3) True Conclusion Known and (4) Weighted Answers. The categorization
of measurement models has been done over these four features. In the table below, some expert

items have been classified on the basis of these features:

System UA ME TCK WA
INTERNIST-I [13] n n y /

MYCIN [191 n n n Y
PROSPECTOR [3] n n n Y

AI/RHEUM [8] n n y Y

AQI5 [11] p p p n

CRLS [16] n t y n
NetTALK [10] y y y y

Decision Trees [1, 14] y y y p

Classical Pattern / p p Y

Recognition i4] 11_11

In the table, ME, UA and TCK and WA refer to the four features. A y refers to the presence of
the feature and a n refers to its absence. Some combinations of these features are awkward. Thus,

it is awkward to consider systems where the classes are not mutually exclusive but the system

always gives a unique answer. Note that some of the systems mentioned in the table have been

designed to handle cases from more than one category. This is because some categories are broader

than others. Thus, systems which handle cases with non-unique answers, can also handle cases
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with unique answers. Systems have been classified into the broader category that covers the cases

over which measurement is likely to be done. Besides specific systems, two classes of systems have

been categorized. The classical pattern recognition algorithms referred to are supervised learning

algorithms. Note that classical pattern recognition algorithms and neural net algorithms tend to

follow the simplest model of measurement. Expert systems, on the other hand, tend to diverge

from the simplest model Consequently, they need a more complex representation and are more

difficult to evaluate.

Given the above categorization of classifiers, one can more readily determine which set of mea-

surement models are appropriate for a given classification system. Determining the underlying

performance measurement model is critical in determining which scoring strategy is appropriate.
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