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Abstract

Communicating Sequential Processes (CSP) is a paradigm for communication

and synchronization among distributed processes. The alternative construct is a

key feature of CSP which allows nondeterministic se]ection of one among several

possible communicants. Previous algorithms for this construct assume a message

passing architecture and are not appropriate for multiprocessor systems which fea-

ture shared memory. The first part of this thesis describes a distributed algorithm

for the alternative construct which exploits the capabilities of a parallel computer

with shared memory. The algorithm assumes a generalized version of Hoare's orig-

inal alternative construct which allows output commands to be included in guards.

A correctness proof of the proposed algorithm is presented to show that the algo-

rithm conforms to some safety and liveness criteria. Extensions to allow termination

of processes and to explore fairness in guard selection are given. The second part

of this thesis reports an implementation of the algorithm as part of a CSP system

on the BBN Butterfly Parallel ProcessorTM. The performance is measured and a

method to fine-tune it is illustrated.
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Chapter 1

Introduction

1.1 The CSP Model
-A

Communicating Sequential Processes (CSP) is a well known paradigm for com-

munication and synchronization of a parallel computation1l7,18]. A CSP program

consists of a collection of processes P1, P2, ... , PN that interact by exchanging

messages. These message passing primitives, called input and output commands.

are synchronous - a process attempting to output (input) a message to (from)

another process must wait until the second process has executed the corresponding

input (output) primitive. -7 " _--, . t -

An important feature of CSP is the alternative construct which is based on

Dijkstra's guarded command[9J. This construct enables a process to nondetermin-

istically select one communicant among many. Each alternative operation specifies

a list of guards that identify the individual communicants. Each guard has a set

of actions associated with it which cannot be executed until the value of the cor-

responding guard becomes TRUE. Each guard consists of a sequence of boolean

expressions and an optional input command (output guards were not allowed in

the original specification of CSP). A guard is said to be enabled if each of the

boolean expressions preceding the input command evaluates to TRUE. The value

of a guard is TRUE if the guard is enabled and its input action has successfully

completed.

,1

"------ at I ii llillU/ i /
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An alternative operation can be executed repeatedly in a repetitive construct

which terminates when all the guards in the alternative operation have been dis-

abled. A guard can be considered as "disabled" when the communicant identified

by the guard terminates. Therefore, the termination of the repetitive construct

can be caused by a combination of explicit disabling actions of the local process

and termination of its communicants. This property is referred to as the automatic

termination of the repetitive commands in [18].

1.2 Previous Works

Implementation of the alternative construct on a multiple processor computer

has been the subject of much research 11,3,5,7,8,21,24,34]. It has been argued that

the exclusion of output guards in the original definition of CSP is too restrictive.

Examples in [5,11,24] show the lack of output guards forces the user to program

unnecessary communications in situations where the action of an output guard

is really needed, resulting in degradation of performance as well as an awkward

program. The importance of output guard has been considered and treated by

many researchers. Automatic termination is also important. It provides a clean

semantics for terminating the repetitive construct. Lack of automatic termination

ma\ require the user to develop a complicated protocol between processes in order

to determine the termination condition, which again can lead to subtle errors and

awkward programs.

Algorithms that allow output guards in the alternative construct have been

proposed[1,3,7]. Others suggest schemes that impose restrictions on possible com-

municants[36] or do not p!ace upper bound on the time a process may spend in

reaching communication agreements with its communicants[5,33. However, none

of them address the automatic termination problem. In fact, to the author's

knowledge, none of these algorithms have ever been implemented and evaluated

on a real machine. Occam [21] is a CSP based language developed for the Inmos
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Transputer[20,30]. A very efficient implementation utilizing hardware support has

been developed for it. At present, it is the only commercially available CSP system.

However, it does not provide as primitives output guards or automatic termination.

1.3 Motivation Of Research

Most of the algorithms mentioned in the last section assume a message-based

computer architecture; no shared memory is assumed. This is natural because CSP

does not assume shared memory between constituent processes. One might ask why

implementation of CSP on a shared memory machine is an issue. It is important

for several reasons: . .

* CSP has clean semantics which simplifies proving the correctness of programs.

It is a worthwhile programming paradigm in its own right, independent of the

underlying machine architecture.

* The message passing paradigm is a natural means of expressing programs in

many applications areas that are well suitable for shared memory machines.

For example, distributed discrete event simulation algorithms are usually de-

scribed in terms of message passing paradigms [22,26], and implementations

on shared memory architectures have been described [32]. Similarly, message

passing is used extensively in object-oriented programming.

@ Shared memory machines are widely available. Multiprocessors such as the

BBN ButterflyTM [2] and Sequent BalanceTM are available from the commer-

cial sector, and numerous shared memory research machines such as IBM's

RP3 [15] and the University of Illinois's Cedar [16] have also been developed.

* Shared memory architectures provide fast interprocessor communications. A

complete interconnection among processors is provided, avoiding costly store-

and-forward communication software in message-based architectures such as



4

the Intel iPSCTM [31]. At present, multiprocessors are more appropriate for

applications requiring frequent communication among the constituent pro-

cesses.

Although one can clearly "retrofit" any message-based algorithm to a shared

memory architecture by building a suitable interface, this will often lead to an

inappropriate and awkward implementation. Existing message-based algorithms

for the alternative construct are not appropriate for a shared memory machine

because (1) they do not exploit the facilities affqrded by shared memory, leading

to an inefficient implementation; and (2) they require additional "system" pro-

cesses to respond to incoming messages (e.g., requests for rendezvous) resulting

in unnecessary context switching overhead. We will describe an algorithm for the

CSP alternative construct that exploits the facilities afforded by shared memory

and avoids the aforementioned system processes. This algorithm implements the

"generalized" alternative construct that allows output guards, and also handles the

automatic termination of repetitive commands.

The proposed algorithm uses the notion of total ordering among processes [5

to prevent deadlock, but applies this principle dynamically on transactions (defined

later) rather than statically as originally proposed. The shared memory architec-

ture simplifies the task of maintaining globally unique IDs. The status of a remote

process can be interrogated directly, in contrast to the message-based algorithms

where message handshake and context switching overheads reduce the efficiency of

the implementation. However, because processes in the proposed algorithm con-

currently access shared data, great care must be taken to avoid race conditions.

Therefore, we provide a proof of the correctness of the algorithm according to safrty

and liveness criteria [23]. Modifications are also suggested to achieve fairness [14].

Finally, the algorithm does not contain any inherent communication hot spot.,

[29]. Only one global variable is required, and is not accessed with sufficient fre-
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quency to constitute a hot spot. With the exception of this variable, the algorithm

is fully distributed and does not rely on any centralized controller.

1.4 Thesis Work

The principal contributions of this thesis are (1) to present an algorithm for

implementing the generalized alternative construct on a shared memory multipro-

cessor which handles both output guards and automatic termination, (2) to prove

its correctness in the sense of safety and liveness, (3) to realize a CSP system based

on the proposed algorithm on a shared memory multiprocessor testbed, and (4) to

evaluate the performance of the system. The thesis is organized as follows.

In Chapter 2, semantics of the generalized alternative construct is first discussed.

followed by a description of the machine architecture on which it is based. The

proposed algorithm and a discussion of its operation are presented next as well as

other important issues related to the algorithm.

Chapter 3 develops a proof of the correctness of the algorithm according to some

saffty and fivness criteria. The fairness of the algorithm is also discussed.

Chapter 4 describes an implementation of CSP on the Butterfly Parallel Proces-

sor in detail. A brief introduction to the Butterfly architecture is presented, followed

by the CSP language interface and the internal workings of the implementatior..

Chapter 5 discusses the performance results of the Butterfly implementation and

describes work to fine tune the alternative algorithm to maximize performance.

Chapter 6 summarizes the important results that have been achieved and sug-

gests some future enhancements.



Chapter 2

The Alternative Algorithm

2.1 The Alternative Construct

A guard of the alternative construct can appear in one of two possible forms.

The first, called the pure boolean form, contains no I/O command. For example, in

(x=landy>5) --+ z:=z*3;

the predicate to the left of the '--+' operator is a pure boolean guard. The second

form, called the 1/0 guard form, contains an 1/O command as well as an (optional)

boolean part. For example, in

POX + z:=z+1;

the input guard P1?x requests input from process P1. The received data is assigned

to the variable x. Guards such as this which do not contain a boolean part are

referred to as pure I/O guards. In effect, the boolean part is the constant TRUE.

An I/O guard is said to be enabled if the boolean part is TRUE, so a pure I/O

guard is permanently enabled.

Consider the following alternative construct:

[Gi(iePB) --+ Si o) G1 (,EIo) -- 4

Where PB stands for the set of indices of all of the pure boolean guards and 10

the set of indices of all of the i/O guards. Whenever this alternative construct is
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executed, exactly one guard is selected and the corresponding action (S or S,) is

executed. The selection is made according to the availability of the guards. For pure

boolean guards, the guard is said to be available if it is enabled, i.e., if the boolean

value evaluates to TRUE. For I/O guards, the guard is available if it is enabled

and the process associated with the guard is also ready to communicate using the

complementary I/O command. Because we assume I/O commands only appear

in guards of alternative operations, this implies the remote process is executing

an alternative operation in which the corresponding I/O operation is part of an

enabled guard. If more than one guard is available, one is chosen arbitrarily. The

application program cannot control this selection.

Pure boolean guards can be resolved without any interaction with other pro-

cesses. Therefore, to simplify the discussion which follows, we will restrict attention

to the resolution of I/O guards.

2.2 The Machine Architecture

The machine is assumed to be a shared memory multiprocessor. The algorithm

is well suited for machines such as BBN's Butterfly or Sequent's Balance, among

others. Several primitives are used in the algorithm. None are unusual in a multi-

processor environment, and all can be easily constructed using a test-and-set and

standard scheduling primitives.

The CSP program contains processes P1, P 2, .-- , PN. Process P, is assigned

the unique process ID i to distinguish it from others.

We will assume the following:

* Communications are reliable. An error free communication mechanism exists

so that two distinct processes can communicate by exchanging a message. In

particular, Send(M, R) and Recv(R): Message provide the same seman-

tics as CSP's output and input commands, respectively. M is the message
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which is transmitted and R is the ID of the remote process with which com-

munications is to t.ke place. Recv returns the received message (of type

Message). In accordance with CSP semantics, we assume the process invok-

ing the primitive blocks until process PR executes the complementary I/0

primitive.

" Read and write accesses to shared memory are atomic, as is normally the

case with a shared memory multiprocessor. AtomicAdd(X): INTEGER

atomically increments the integer variable X and returns the original value

of X.

* WaitForSignal and Signal primitives are available to block and unblock the

process, respectively. A signal contains a single, user defined integer value.

WaitForSignal(): INTEGER causes the process invoking the primitive

to block until a signal becomes available to it from any other process and

returns the integer value stored within the signal. Signal(R, i) sends a

signal containing integer i to process PR. The Signal primitive wakes up

the signaled process if it is blocked on WlailForSignal. Otherwise, the signal

remains in effect until PR executes a WaitForSignal primitive. If a second

signal is sent to PR before the first is received, the first signal is discarded.

" Lock and Unlock primitives provide exclusive access to shared data struc-

tures. Lock (L) will block until the lock L becomes zero, at which time L

is set to one. The "test-and-set" operation must be atomic. Unlock (L)

sets the lock L to one. Further, we assume the Lock primitive is fair, i.e.,

if a process is blocked while attempting to obtain a lock, it does not remain

blocked for an unbounded amount of time unless the lock is not unlocked for

an unbounded amount of time.

" Sleep(T) causes the process invoking it to block for at least T time units. A
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process will always be eventually awoken after calling Sleep.

o The amount of time between memory reads to a shared memory location by

successive machine instructions of a program executing on a single processor

can be bounded. This may require disabling interrupts for a short period of

time.

The final assumption listed above is the strongest requirement of the proposed

algorithm. It is not necessary to ensure the safety of the algorithm, i.e., if it were

relaxed, no "invalid" rendezvous will result. However, it is necessary to prove the

liveness of the algorithm. In particular, it is necessary to avoid an, albeit unlikely,

scenario in which one process P, is in a "busy wait" loop polling a variable of another

process P,, and P. (1) modifies the variable, (2) invokes the Sleep primitive, and

then after awakening (3) restores the variable to its original value before step (1).

All of this must occur without P, noticing the variable had been modified, i.e., these

events must occur between sucessive samples of the variable by Pi's polling loop.

Further, this scenario must repeat an unbounded number of times in succession to

compromise the liveness of the algorithm. Therefore, it is a rather mild requirement

of the proposed algorithm that can be relaxed in practical situtations.

It is assumed that all input and output commands occur within guards of the

alternative construct. Simple CSP input and output primitives are special cases of

the alternative construct. We also assume that the variables used in the alternative

algorithm are not modified by processes except as indicated in the algorithm. Fi-

nally, it is assumed that processes do not terminate. The algorithm can be extended

to handle termination, as will be discussed later.

2.3 The Alternative Algorithm

Each invocation of an alternative operation is referred to as a transaction. A

transaction begins when an alternative operation is initiated and ends when a suc-
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cessful communication has been completed. A process will usually engage in many

transactions during its execution. A total ordering is imposed among all transac-

tions entered by all processes of a given CSP program. A unique sequence number,

referred to here as a transaction ID, is associated with each transaction.

Two processes which each initiate an alternative operation that results in a

communication between them are said to rendezvous. More precise definitions of

rendezvous and other terminology introduced in this section will be presented later.

Each rendezvous always involves exactly two distinct processes. In a typical ren-

dezvous, the first process to enter the alternative will block, waiting for a signal

from the second. When the second process enters the alternative, it will commit to

the first in order to obtain "permission" to rendezvous; the "committing" process

will then signal and exchange a message with the blocked process, and both will

complete their respective alternative operations.

A commit operation is. in effect, a request for rendezvous. It will be shown that

a rendezvous will occur only after a successful commit operation has taken place,

and every successful commit results in a rendezvous. A process will not attempt to

commit until it has determined that the process with which it is committing is a

suitable candidate for rendezvous, i.e., each lists the other in their respective guard

lists, and the two processes are not both trying to execute the same 1/0 operation

(send or receive). The commit operation resolves conflicts when two different pro-

cesses attempt to simultaneously rendezvous with a third. The algorithm uses an

"abort/retry" mechanism to avoid race conditions when two potential communi-

cants simultaneously enter the alternative command.

2.3.1 Process States

Each process can be in one of the following states:
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" WAITING. The process is blocked on a WaitForSignal operation, waiting

for another process to rendezvous with it.

" ALT. The process has begun an alternative operation, and is scanning through

its list of guards to find a process with which it can rendezvous.

" SLEEPING. The process was forced to abort an alternative operation. After

aborting, the process goes to sleep for some predetermined period of time

before retrying. While blocked in this way, the process is in the SLEEPING

state. This state differs from the WAITING state because a process may

remain in the latter for an unbounded amount of time.

" RUNNING. The process is executing user or system code not related to

the alternative operation. The process is in the RUNNING state if it is not in

any of the other states listed above. Once the process initiates an alternative

operation it can only be in the VVAITING, ALT, or SLEEPING state until the

alternative operation completes with a rendezvous.

It is possible to combine the RUNNING and SLEEPING states into a single state.

Two states are used to simplify the description of the algorithm and its proof.

A state transition diagram for each process is shown in figure 2.1. Initially. a

process is in the RUNNING state. Once the process initiates an alternative operation.

it enters the ALT state. If the process is forced to abort the alternative it switches

to the SLEEPING state, and returns to the ALT state when it retries. If the process

is able to commit and rendezvous with another process, it returns to the RUNNING

state. Otherwise, the process moves to the WAITING state until some other process

commits to it, at which time it rendezvous and returns to the RUNNING state.

The ALT and SLEEPING states should be viewed as "transitory" states through

which a process must pass while trying to commit or move into the WVAITING state.
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Figure 2.1: The State Diagram of a Process

It will be shown that a process cannot remain in either the ALT or the SLEEPING

state for an unbounded amount of time on a single transaction.

2.3.2 Shared Variables

Each process P, maintains a number of variables which may be examined, and

in some cases modified, by other processes:

* AltListj lists the guards associated with the last alternative operation initi-

ated by P1 that caused 1% to enter the W~AITING state.

* AltLockj is a lock used to control access to AltListj. It is initialized to 0

(unlocked).

* States holds the current state of P%. It may be set to WAAITING, ALT.

SLEEPING, or RUNNING, and is initialized to RUNNING.

* WakeUpj is initialized to 1 and is set to zero by 1% whenever it enters the

\VAITING state. It is incremented (atomically) by processes trying to commit

... .. ' ' , i I I I I
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to P. This variable prevents two processes from both successfully committing

to a third on a single transaction.

There is also one system wide global variable used by the algorithm:

e NextTransID is initialized to zero and is incremented each time a process

initiates an alternative operation. This variable ensures a unique transaction

ID can be generated for each instance of an alternative operation.

One procedure merits special attention. CheckAndCommit(AltListr, gi):

INTEGER is called by process P to check that "valid" communications can take

place between P using guard g, and P,, and if so, to attempt to commit to P,. If

a commit was attempted and succeeded, then CheckAndCommit returns a positive

integer indicating the corresponding guard in the remote process P,. Otherwise.

Check.4ndCommit returns a non-positive integer, denoted by the constant FAILED.

This procedure is shown in figure 2.2.

Check.4ndCommit uses a procedure CheckGuard(AltList,, gi): INTEGER

that scans the remote alternative list AltList, looking for a matching and corn-

patible guard g, to the local guard g,. By matching we mean gj contains an I/O

operation with P. By compatible we mean g, and gj do not both contain input

(output) commands. CheckGuard returns j, the number of a matching and com-

patible guard if one was found, and FAILED otherwise. If such a guard is found. P,

attempts to commit to P, by testing if WakeUp, is zero, and if so, incrementing

it. An ordinary addition is used rather than the AtomicAdd primitive to increment

Wake Up,. because A itLock, guarantees atomicity - every "test-and-set" operation

performed on WakeUp, occurs while AltLock, is set. If P is the first process to

commit to P,, i.e., if WakeUp, was previously zero, then P successfully commits.

CheckAndCommit returns the number of the corresponding guard, and rendezvous

is imminent. Otherwise, CheckAndCommit returns FAILED. AltLock, ensures serial
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/* r is the remote process */
PROCEDURE CheckAndCormit(r, gi): INTEGER;
VAR

INTEGER GuardNumber; /* number of matching guard 5/

BEGIN
Lock (AltLockr);
/* check if guard matches and in compatible */
GuardNumber : CheckGuard(AltListr, gi);
IF (GuardNumber a FAILED) THEN

Unlock (AltLock.);
RETURN (FAILED);

/* try to commit */
ELSEIF (WakeUpr- 0) THEN

WakeUp m WakeU + 1;
Unlock (AltLockr);
RETURN (GuardNumber);

ELSE
Unlock (AltLockr);
RETURN (FAILED);
END;

END CheckAndCommit;

Figure 2.2: Procedure to check for potential communication and to commit.

access to AltList,. As will be demonstrated later, it is crucial that this loc.k is not

released until after the commit operation is attempted (if it is attempted) in order

to avoid race conditions. This would be the case even if an AtornicAdd operation

were used to increment the Wake Up variable.

2.3.3 Other Notation

For notational convenience, other variables and predefined functions are defined

that are used in the algorithm. These include:

" TransIDI is a variable that contains the ID of the current transaction in

which process P is engaged.

" CommunicantID(gi) is a function that returns the ID of the process listed

in the J/0 command portion of guard g,.

" Communicate(gi) executes the 1/0 command in guard g,.
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M are enabled I/O guards *l
PROCEDURE Alternative(gi, .... gn): INTEGER;
VAR

INTEGER ReturnValue; /* indicates guard vhich rendezvoused */
BEGIN

/* 1 is the local process id */
TransID1 :- AtomicAdd(NextTransID);
ReturnValue :- FAILED;
WHILE (ReturnValue = FAILED) DO

ReturnValue := TryAlternative (gi, ... ,

IF (ReturnValue - FAILED) THEN Sleep (TimeOut); END;
END;

RETURN (ReturnValue);
END Alternative;

Figure 2.3: The "front end" procedure.

o TimeOut is a constant indicating the number of time units a process should

sleep after an aborted attempt. More will be said about this later.

2.3.4 Description Of The Algorithm

The alternative algorithm is shown in figures 2.3 and 2.4. The Altfrnatit'f

procedure shown in figure 2.3 is a "front end" which is responsible for retrying

aborted attempts. The heart of the algorithm lies in the TryAlternative procedure

shown in figure 2.4. The parameters passed to both procedures are n enabled I/O

guards 91, g2, ... , g,. Each guard contains either a single output or a single input

primitive. The Alternative procedure is only called after non I/O guards have been

evaluated and are found to be FALSE. This procedure does not return until a

rendezvous has been completed, at which time it returns an integer indicating the

guard (91, 92, ... , 9n) that was eventually satisfied.

The Alternative procedure obtains a unique transaction ID by performing an

AtomicAdd operation on the global NextTmnslD variable. It then attempts to

rendezvous by calling Try.4lternative. TryAlternative either returns the number

of the guard on which a rendezvous occurred, or the FAILED flag indicating the
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PROCEDURE TryAlternative(gi, ... , gn): INTEGER;
VAR

BOOLEAN flag;
INTEGER GuardNumber; /* corresponding guard of Pr */
INTEGER i, r;

BEGIN
State, :" ALT;
/* look for rendezvous with a waiting process. */
FOR i:=1 TO n DO

r :- CommunicantlD(gi);
W la:-TRUE;

(ILE flag) DO
CASE Stater DO /* The remote process state. */
SLEEPING: flag := FALSE;
RUNNING: flag :a FALSE; /* try next guard */
WAITING: GuardNumber :a CheckAndCommit(r, gi);

IF (GuardNumber a FAILED) THEN
flag :- FALSE; /* try next guard */

ELSE /* Wake up Pr */
Statel :a RUNNING;
Signal(r, GuardNumber);
Communicate (gi);
RETURN (13;

END;
ALT: IF (TransID1 > TransIDr) THEN

State, :a SLEEPING;
RETURN (FAILED); /* abort... */

ELSE /* busy wait loop. */
WHILE ((Stater = ALT) DO END

END; I* if-then-else */
END; /* case statement */

END; /* while loop */
END; /* for statement */
/* couldn't find guard to rendezvous */
Lock(AltListl); AltList1 :a (gi, ... , gn); Unlock(AltListj);
WakeUpj :a 0; /* first to commit gets rendezvous */
Statel := WAITING;
i :- WaitForSianal(); /* Blocks */
State, := RUNNING;
Communicate(g1)
RETURN (i);

END TryAlternative;

Figure 2.4: TryAlternative attempts rendezvous with communicants.
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attempt must be retried. Each time TryAlternative fails, the process enters the

SLEEPING state for at least TimeOut time units before retrying. The same trans-

action ID remains in use despite one of more failed attempts. It will be shown that

TryAlternative cannot fail an unbounded number of times within a single transac-

tion.

The heart of the alternative algorithm is embodied in the TryAlternative pro-

cedure (figure 2.4). In this procedure, I refers to the local process P1, and r refers

to the remote process P, associated with the guard that is being scanned.

After setting the state of the process to ALT, P examines each guard listed

in the alternative operation one after the other. Some action is then performed

depending on the state of P,.

If P, is in the RUNNING state, P, simply advances to the next guard. In this

case, P, has not yet entered a transaction and is not yet ready to rendezvous.

If P, is in the SLEEPING state, P again advances to the next guard. P advances

because the Alternative procedure guarantees that the SLEEPING process (P,) will

eventually retry its alternative operation. If P and P, are destined to eventually

rendezvous on this transaction, P, will typically proceed to the WAITING state, and

P, will later retry, commit, and rendezvous with P1.

If P, is WAITING, then P, has already reached the rendezvous point so P,

attempts to rendezvous. AltList, is examined to make sure a valid communication

can take place, and if so, P attempts to commit. If successful, P will awaken P.

(by sending a signal) and rendezvous. Otherwise, P advances to the next guard.

Finally, if P, is in the ALT state, some special precautions must be taken to avoid

race conditions. This situation could result, for example, when P and P, initiate

an alternative operation at approximately the same time. The two processes may

or may not be destined to rendezvous, however. In fact, P,'s alternative operation

may not even contain a guard with P1 as a communicant.
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If two processes see each other in the ALT state, one will be forced to abort and

retry the alternative, while the other pauses within the current operation until the

first aborts. The transaction IDs of the two processes are used to determine the

process that will abort and the process that will proceed. A process with a smaller,

i.e., older, transaction ID is given higher priority. This protocol avoids deadlock

situations in which two processes attempting to communicate with each other both

advance to the WAITING state.

If the process does not abort, it pauses in a busy wait loop until the remote

process moves out of the ALT state. The remote process will either abort, changing

to the SLEEPING state, or rendezvous, changing to the RUNNING state. Later, it

will be shown that one of these two possibilities must eventually occur. Although

the busy wait loop and abort retry scenario might initially appear to cause wasted

time that could be better spent pursuing other activities, it is anticipated that

this situation will arise infrequently in practice. Performance evaluations using

empirical techniques will be described in a later chapter.

It is interesting to note that the state of P, may change immediately after P,

examines State,. It will be proven that the algorithm operates correctly despite

this potential inconsistency. In fact, it will be shown that the only locking that

must be performed in the entire algorithm is that associated with AltLock.

If P goes through its entire guard list without rendezvousing with another

process, P enters the WAITING state and calls WaitForSignal to block until an-

other process commits to it. Before calling WaitForSignal, however, P also sets

AltList, to contain the current guard list and "activates" Wake Up, by setting it to

zero. After some process later commits to P1, a signal is received, a communica-

tion takes place, and TryAlternative returns the identity of the (local) guard that

rendezvoused. This information is sent to P in the signal that awakened it.

We should emphasize at this point that it is crucial that the operations listed
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in figures 2.2, 2.3, and 2.4 be performed in exactly the order in which they appear.

Seemingly minor changes such as swapping the order of the statements

WakeUpl:= 0;

State,:= WAITING;

introduces a race condition that invalidates the correctness proof.

We note that the Lock operation preceding the statement that modifies AltList

must remain even if modification can be done atomically. The locking protocol

in this and the CheckAndCommit procedure are carefully designed to avoid race

conditions. Finally, it is noteworthy that the statement that sets WakeUp, to

zero need not be executed while AltLockj is locked. The correctness proof only

requires that two processes do not both read a zero value from Wave Up, during

a single transaction of P. This is guaranteed by the locking protocol used in

CheckAndCommit.

2.4 Discussion

Several aspects of the alternative algorithm presented above merit further dis-

cussion. These will be discussed next.

2.4.1 Transaction IDs

The algorithm uses dynamically assigned transaction IDs to determine the "win-

ner" when a process finds another in the ALT state. Dynamic IDs are used rather

than static, process IDs to ensure liveness. Intuitively, liveness means that two

processes that "should" rendezvous eventually will, while safety means that any

rendezvous that occurs is valid. The proposed approach avoids scenarios in which

a process is repeatedly forced to abort and retry its alternative operation an un-

bounded number of times; this is because the priority of a transaction automnatica':,
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increases with time as other transactions are allowed to complete and new ones,

with higher IDs and correspondingly lower priorities, are initiated. Dynamic trans-

action IDs guarantee this property while static IDs do not. It is important that a

new transaction ID is only allocated when an alternative is first initiated, as is done

in figure 2.3, and not when an existing operation is retried. The use of dynamic

transaction IDs is further justified by the fact that global variables are relatively

inexpensive in shared memory architectures, and the NextTranslD variable is not

referenced with sufficient frequency to become a hot spot.

A second concern is overflow of the NextTranslD variable. Overflow invalidates

the liveness property of the algorithm because a transaction's priority does not

necessarily increase with time. Also, because transaction IDs cannot be guaranteed

to be unique after overflow has occurred, the arbitration protocol could fail (this

could be circumvented by appending the process ID to the least significant portion

of the transaction ID, however). In any event, overflow can be easily avoided by

using a variable of large precision. For example, a 64 bit variable will not overflow

with 1000 processes, each initiating a new alternative construct every microsecond.

in over 500 years!

2.4.2 The Timing Assumption

We earlier required the following assumption to ensure liveness:

The amount of time between successive samples of a shared memory

location by a busy wait loop (which does nothing but sample and test

the value stored in this location for inequality) can be bounded, and

is shorter than the time required to invoke either the Send or Recr

primitives.

This assumption is necessary because the algorithm uses a polling loop to detect

another process leaving the ALT state. Suppose P, is waiting for P, to change to a
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new state. It is possible, albeit unlikely, that P (1) modifies State, (2) rendezvous

and resumes execution of user code or goes to sleep for TimeOut units of time, and

(3) reenters TryAlternative and changes State, back to ALT; all of this must occur

without P, noticing State, had been modified, so this activity must occur between

successive samples of State, by Pi's polling loop. While it is true that this might

occasionally occur if Pi is interrupted during its polling loop, it is necessary that

this scenario be repeated an unbounded number of times within a single execution

of the polling loop to compromise the liveness of the algorithm. We conjecture

that it is highly improbable that such a scenario will occur even a few times within

a single transaction. Further, we emphasize that safety remains guaranteed even

if the above assumption is relaxed, so no ill effects, other than delays, will result

should this scenario occur some (finite) number of times.

As can be seen from figure 2.4, P, must execute either the Sleep, Send, or

Recv primitive after the state of Pj is changed (to SLEEPING or RUNNING), i.e.,

during step (2) above. Therefore, as stated in the above assumption, ensuring that

the minimum execution time of each of these primitives exceeds the time between

successive samples of P,'s polling loop is sufficient to avoid the above scenario

(actually,. the Sleep primitive is excluded because its minimum execution time is

trivially set). If the time between successive samples of the polling loop can be

bounded, the minimum amount of time required by the Send and Recv primitives

can be easily modified to adhere to the timing assumption through the introduction

of a timed delay (e.g., by calling Sleep). However, one would not expect introduction

of such a delay to be necessary in most practical situations.

Assuming the time required by a remote memory reference is bounded, the time

between successive samples by the busy wait loop can be bounded by disabling

interrupts during the polling loop. If this is not a viable alternative, one can reduce

the likelihood of entering the above scenario by introducing randomness into the
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program's temporal behavior. For example, a random sleeping period may be

selected (with some minimum value, as described below) when a process is forced

to abort. This will reduce the likelihood of excessive delays caused by synchronized

behavior between processes.

2.4.3 Setting the Sleeping Period

The "sleep period" before a retry is attempted, i.e., TimeOut in figure 2.4, must

be sufficiently long to allow the "winning" process to observe that the sleeping

process is indeed in the SLEEPING state. In particular, TimeOut cannot be shorter

than the interval between successive samples in the busy wait loop executed by the

winner. This is the reason we earlier assumed the time between successive samples

could be bounded. Relaxing this constraint, e.g., to allow either process to be

descheduled during this busy wait loop, could in principle jeopardize liveness (but

not safety). However it is unlikely that unbounded abort and retry scenarios will

occur in practical situations.

On the other hand, an excessively long sleeping period will lead to an inefficient

implementation. A method of fine-tuning the sleeping period for better performance

will be discussed in a later chapter.

2.4.4 Channel I/O

In many CSP implementations, interprocess communication is based on pre-

allocated channels. Each channel is an unilateral link between two communicating

processes. The channel model facilitates modularity, reusability, and hierarchical

construction of programs since a program can be "constructed" by interconnecting

a group of constituent processes. The algorithm presented above can be easily

adapted to the channel I/O model by modifying the Send and Recv primitives and

translating port identifiers to process IDs. The channel model is adopted in the
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implementation described later.

2.4.5 Termination

Termination is another issue facing real implementations. This was not treated

in the previous discussion because it complicates the proof and obscures the de-

scription. The termination semantics play an interesting role in CSP because it

is the basis of the termination of the repetitive command [18]. However, it is not

found in the semantics -)f Occam[21]. A repetitive construct terminates if in its

enclosed alternative operation all of the guards are either disabled or contain an

I/0 operation with a terminated task.

The algorithm can be extended to handle termination by adding a shared

variable called GuardCount, to each process Pi and a new process state called

TERMINATED. GuardCount, indicates the number of I/O guards on which P,

might eventually rendezvous when P, is in the WAITING state. It is set by P, beforE

P, sets State, to WAITING. The GuardCounti variable is used to detect situa-

tions in which P, cannot rendezvous because all of the processes in its guards have

terminated. In this case, we say the alternative operation in P, fails.

Whenever a process P, terminates, it marks its state as TERMINATED and

then examines the state of each of its neighboring processes, i.e., those processes

which might communicate with P,. If Pj finds another process Pi in the WAITING

state and AltListj contains a guard listing P as a communicant, then PF atom-

ically decrements GuardCounti to indicate that one fewer guard is available for

rendezvous. No further action is taken unless the decrement operation causes

GuardCounti to become zero, i.e., the atomic decrement operation returned one.

the value before the decrement. In this case, the terminating process must send P,

a special signal to indicate Pi's alternative operation can never rendezvous. Upon

receiving this signal. P, will return a special flag to the process indicating the al-
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PROCEDURE Termination()
VAR

BOOLEAN flag;
INTEGER r;

BEGIN
State, :- TERMINATED;
FOR gi E Neighborsi DO

r :- CommunicantID(gi);
flag:=TRUE;
WILE (flag) DO

CASE Statex DO /* The remote process state. */
TERMINATED: flag : FALSE;
SLEEPING: flag :- FALSE;
RUNNING: flag :- FALSE; /* never mind */
ALT: WHILE ((Stater - ALT) DO END
WAITING: CheckAndSignal(r, gi);

flag :- FALSE;
END; /* case statement */

END; /* vhile loop */
END; /* for statement */
EXIT 0; /* Really terminate */

END Termination;

Figure 2.5: Termination procedure executed by terminating processes.

ternative operation completed without rendezvous. Figure 2.5 shows the algorithm

that a process executes when it terminates. The variable Neighbors, represents

the lst of all guards that process P can have during its life time. CheckAndSignal

is similar to CheckAndCommit and is shown in figure 2.6.

NN'hen scanning the status of neighboring processes in the TryAlternative pro-

cedure, an 1/O guard corresponding to a terminated process is skipped in the same

way processes in the RUNNING or SLEEPING state are skipped. If all I/O guards

correspond to terminated processes, the alternative construct similarly returns a

flag indicating the operation completed without rendezvous.
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/* r is the remote process */
PROCEDURE CheckAndSignal(r, gi)
VAR

INTEGER GuardNumber; /* number of matching guard */
BEGIN

Lock (AltLockr);
/* obtain guard number */
GuardNumber :- CheckGuard(AltListr, gi);
IF (GuardNumber = FAILED) THEN

Unlock (AltLockr);
ELSELF (GuardCountr - 1) THEN

Unlock (AltLockr);
signal(r, SpecialSignai);

ELSE
Unlock (AltLockr);
END;

END CheckAndCommit;

Figure 2.6: Procedure to check for potential repetition exit and to signal.



Chapter 3

Proof Of Correctness Of The Algorithm

The correctness of the algorithm is established by proving that during the (po-

tentially) infinite execution sequence, all processes and the interplay between them

maintain invariant properties known as safety and liveness [23,28]. As described

above, safety means that any rendezvous which occurs is correct. For example, it

is not possible for two processes to rendezvous which do not each list the other

in some guard of their respective alternative lists. Liveness ensures that two pro-

cesses which should rendezvous eventually will, provided of course each does not

first rendezvous with some other process. These terms are defined more formally in

theorems 2 and 3. Intuitively, the safety property ensures that nothing "bad" will

happen, while liveness ensures something "good" will eventually happen. Together

they guarantee correct operation of the algorithm.

Before beginning the proof, terminology which has been used informally until

now will be defined more precisely. These definitions are in terms of the alternative

algorithm shown in figures 2.3 and 2.4. It is assumed throughout that the CSP

program consists of a collection of processes, P1, 2, ... , PN.

3.1 Definitions

1. A process P is said to enter a transaction T, when it calls the Alternativ,

function. It exits transaction T, when it returns from the function call. P,(T)

denotes that fact that P, is in T,. Each transaction has a unique ID associated
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with it (r for transaction T,) that is used to form a total ordering among all

transactions. A transaction need not terminate. For example, the application

program may contain deadlock situations.

2. A Process P in transaction T, is said to commit to process P if P(T,) incre-

ments WakeUPj from zero to one.

3. A transaction T, executed by process Pi is said to rendezvous with transaction

7', for process P if either (a) Pi is in the WAITING state and receives a signal

from P, or (b) P signals Pj after committing to P. It will be shown that

once a process rendezvous, it will exchange a message, complete the current

transaction and return to the RUNNING state.

4. A signal sent by P to P is said to be pending if (1) it was sent but has not yet

been received by P,, or (2) if it was received, but has not yet been absorbed

by P, through a call to WaitForSignal.

5. A communication between P, and P is compatible if one process wishes to

send, and the other wishes to receive. Otherwise, the communication is said

to be incompatible.

6. VAR,(T,) denotes the value of state variable VAR of process Pi during trans-

action 7',. For example, AltList,(T,) is the alternative list of Pi during trans-

action T,. If significant, the point in time during the transaction that is

referred to will be stated explicitly.

7. The function prev(T,) returns the ID of the transaction executed by the pro-

cess which immediately preceded T,.. The existence of T, implies the termina-

tion of prev(T,). Also, pret,°(T,) refers to T, itself and prev"(T,) corresponds

to the rnth previous transaction entered by P,.
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8. GuardListi(Tr) lists the guards that are passed as parameters to the alter-

native operation executed by Pj on transaction T,. We will take the liberty

of giving GuardList a dual meaning - it either refers to a list of guards or a

list of process that are designated in the I/O commands of these guards. The

particular meaning that is intended will be clear from the context.

3.2 The Safety Property

Lemmas 1 through 5 lead to theorem 1 which states that no race conditions

arise that might cause a process to mistakenly rendezvous with a second process

that does not wish to rendezvous with the first. Theorem 2 subsumes theorem 1

and ensures that the algorithm obeys the safety property.

Lemma I P,(T,) signals P', iff P,(T,) commits to P.

Proof: This follows immediately from examination of the algorithm.

A process only sends a signal after it commits, and always sends a signal

after it commits. I

This lemma implies that Wake.pj must be set to 0 before a signal can be sent

to P. In addition, at most one signal is sent to P each time WakeUpj is set to 0.

Lemma 2 At the beginning and at the end of each transaction entered by Pj, tlj'

following conditions must hold:

(a) No signals sent to P, are pending.

(b) WakeUp, is nonzero.

Proof: Use induction on m, the number of transactions entered by P.

Consider the first transaction (m = 1) executed by PF. Wake Up, is

initialized to 1. Because W'akeUp. can only be set to 0 by P during a

transaction. Wake Up, must remain nonzero up to at least the beginning
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of P3 's first alternative operation. No process can commit to Pi until

WakeUp, becomes 0, so by lemma 1, no signals can be sent to P before

its first transaction, and therefore none can be pending. Thus, (a) and

(b) are both true at the beginning of Pi's first transaction.

During any transaction, and in particular the first, Pi will either reset

WakeUp, to 0 exactly once (just before entering the WAITING state),

or not at all. If Pi does not reset Wake Up, then obviously Wake Up, is

still nonzero at the end of the alternative operation. No signal can be

sent to Pj because no process can commit, so none are pending.

If P, does reset Wake Up, to 0, then at most one process can commit

(and send a signal) to Pj during this transaction. This is because (1)

i'akeUp, is set to 0 at most one time during this transaction; (2) each

process must obtain the lock AitLockj before it can examine WakeUp,

(see the CheckAndCommit procedure); (3) as soon as one process reads

a zero in WakeUp,, it increments it before releasing AltLock,; so (4)

two processes cannot both read a zero value from WakeUp, during a

single transaction in P. Because no two processes can see a zero value

in WakeUp, during a single transaction, no two processes can commit

to Pj during this (or any) transaction. Therefore, according to lemma

1, at most one signal will be sent to P during this transaction.

P always calls WaitForSignal after setting Wake Up, to zero. Therefore,

the only signal that could have been sent to P, must have been absorbed

by the WaitForSignaloperation, so none can be pending when the trans-

action completes (if it completes) satisfying condition (a). Condition (b)

must also be satisfied at the end of the transaction because a process

must commit before sending a signal to P,, so 1'Uake Up, must be nonzero
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before the process can resume execution after calling WaitForSignal.

Therefore, (a) and (b) are again true at the end of the first alternative

operation as well as at the beginning.

Inductive step: Assume lemma 2 is true on the mth transaction entered

by P. We will now show it is also true on the m + 1st transaction.

According to the inductive hypothesis, no signals are pending at the

end of the mth operation, and WakeUp, is nonzero. Therefore, these

conditions will remain true until the beginning of the m+ 1st transaction

because no process can commit to Pj until W4akeUp, becomes 0. As

noted in the proof for m = 1, if (a) and (b) are true at the beginning

of any transaction, they will be true at the end of the transaction if it

terminates. Therefore, (a) and (b) are true at the end of the m + 1st

transaction entered by P. I

Lemma 3 Two processes, Pi and Pj, cannot both commit to a third process Pk

during a single transaction T entered by Pk.

This lemma was actually proven as part of the proof of lemma 2, but we include

it as a separate lemma for future reference. The proof relies on the fact that

l1'akeUp is not zero at the beginning of the alternative operation and can be

set to zero at most one time during a single transaction. The atomicity of the

commit operation (i.e., two read-modify-write sequences cannot be inappropriately

interleaved) guarantees that only a single process can commit to P during T,.

Lemma 4 If P,(T,) commits to P., then P, must have been in the WAITING state

when P, committed to P., and P must remain in the WAITING state until P, receives

the signal sent by P, that results from this commitment.

Proof: According to the algorithm, P, checks that P, is in the WAITING

state before trying to commit to P,. Let us assume P. is in transaction
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T, when Pi sees P in the WAITING state. Therefore, it only remains

to be shown that P is still in the WAITING state when Pi commits, as

well as when the signal is received. This must be the case, however,

because once P enters the WAITING state, it cannot change state until

it first receives a signal. By lemma 2a, there were no signals pending

when transaction T. began. By lemma 3 no process other than P, will

commit to PF during this transaction, so no signal other than Pi's are

sent to, or received by Pj during this transaction. Therefore, P cannot

unblock from the WaitForignal operation and therefore cannot change

state until receiving the signal sent by P. I

The preceding lemma shows that arbitrarily long delays may occur from the

time P, observes that P, is in the WAITING state until P,'s signal actually arrives

at P,. If the commit succeeded, this lemma guarantees that nothing "interesting-

w-ill happen at P, from the time Pi found it to be waiting until the signal was

received.

Lemma 5 No signals are lost in the alternative algorithm.

Proof: By lemma 2a, no signals are pending at the beginning of each

transaction. By lemma 3. at most one process can commit during a

transaction, so at most one signal is sent (and therefore received) during

a transaction. Thus, a signal can never arrive during a transaction while

another has already been received but is still pending, so no signals are

ever lost during a transaction.

No signals destined for a process P, are lost between successive trans-

actions of Pj because none can be sent to Pj while it is in the RUNNING

state. This is true because (1) a signal is only sent to P, following a

commit operation (lemma 1), (2) Pj must have been in the \WAITING
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state when the commit occurred (lemma 4), and (3) Pj must remain

in the WAITING state until the signal is received and absorbed by a

WaitForSignal operation (lemma 4). I

Theorem 1 If Pj(T,) signals (rendezvous) P, then Pj must be in some transaction

T, both when the signal is sent and when it is received. Further, Pj(To) rendezvous

P,(T,).

Proof: , By lemma 4, P, must be in a transaction when the signal is

sent and when it is received, and remain in the WAITING state during

this period. By lemma 5, P,'s signal cannot be lost. By lemmas 1,

2a and 3, this is the only signal received by P during transaction T.,

eliminating the possibility of P. accepting another signal instead of P,'s.

Because P, always executes WaitForSignal when in the VAITING state,

the signal from Pi must be received, implying P, rendezvous with P,.

I

Theorem 2 (Safety) If P,(Tr) commits to P,(To), then the following properties

must be true:

1. (Mutual consent) P,(T,) rendezvous P,(T.) and P,(T.) rendezvous P,(T,). In

other words, the two communicating parties agree each is rendezvousing with

the other.

2. P, E GuardList,(T,) and P, E GuardList(To).

3. Communications between Pi(T,) and Pj(T.) are compatible.

4. P, and P, will eventually communicate, complete their transaction, and return

to the RUNNING state.
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5. There does not exist a third process P (k 6 i and k 9 j) such that Pk(Tt)

rendezvous with P,(T,) or Pk(T) rendezvous with Pj(T.).

Proof:

1. P,(T,) commits to Pj(T.), implying P,(T,) signals P(T°) (lemma

1). This in turn implies the mutual rendezvous according to theo-

rem 1.

2. The first part, showing PF E GuardListi(T,), can be proved by

contradiction. Suppose Pi V GuardListi(T,). Then P would not

have committed to P because P, only scans those processes in

GuardListi(T,) (see the FOR loop in the TryAlternative proce-

dure), contradicting our original assumption that Pi committed to

It only remains to be proven that Pi E GuardListj(T). It is seen

from the algorithm that P, checks AltList, just before committing

to P, and AltListj is set to hold GuardListj(T) just before P

enters the W'AITING state, and therefore before the commit. How-

ever, an arbitrarily long delay may elapse from the time Pi checked

AitListj to the time it committed. We therefore need to confirm

that the value of.4ltList, that P, checked is GuardList,(T) rather

than GuardList(prev'(T,)) for some m > 0. This will be proven

by contradiction.

Suppose P, checked GuardListj(prev(To)). This would imply that

the following sequence of events must have occurred:

(a) P,(T,) checks GuardList(prev(To)) (stored in AltList,);

(b) P,(T,) modifies AltList, so that it becomes GuardListj(T);

(c) P,(T,) sets liakfUpJ(T,) to 0: and
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(d) P,(T,) commits to Pi(T.).

Event (a) must take place by the aforementioned assumption, and

event (d) must take place by our original assumption that P,(T.)

commits P,(T.). Event (c) must precede (d) because Wake Up,(T.)

must be reset to 0 before any commitment to Pj(T,) can occur

(see definition of commit). Event (b) must precede (c) accord-

ing to the order in which operations are performed in the algo-

rithm. Event (b) must follow (a) in order to satisfy our supposition

that Pi checked GuardListj(prev(T)). However, this sequence of

events is not possible because the locking protocol of the procedure

CheckAndCommit (used by P when checking AltListj) ensures

that AltList, is not modified after Pi checks it (event (a) above),

but before Pi commits (event (d)). Therefore, event (b) could not

have occurred between (a) and (d), so our assumption that Pj(T,)

examined GuardListj(prev(T,)) must be incorrect. Similarly, it is

not possible that Pj(T) examined GuardListj(prev"(T,)) for an,.

rn >0.

3. Compatibility is checked when P(T,) checks that it is in AltListj(T).

Similarly. this information is implicitly updated whenever AltListj

is updated. Therefore, this condition is satisfied using the same

proof as was used in (2) to show Pi is in GuardListj(To).

4. Once rendezvous occurs between P(T,) and Pj(T.), each process

initiates a communication with the other. Properties (2) and (3)

above and the reliability assumption regarding the communication

mechanism guarantee that the communication succeeds. Once this

occurs, completion of the alternative operation immediately fol-

lows.

! .I II III=min
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5. Suppose Pk(T) rendezvoused with either P(T,) or P3(T.). Recall

a rendezvous occurs by either sending or receiving a signal to or

from another process (definition of rendezvous), so there are four

possibilities:

(a) Pk(Tt) received a signal from P(T,);

(b) Pk(Tt) received a signal from P(T);

(c) .Pk(T t) sent a signal to P,(T,); or

(d) Pk(Tt) sent a signal to Pi(T).

We need not consider signals sent before T,, To, or Tt but received

during these respective transactions because none can be pending

when the transaction begins (lemma 2a).

(a) Suppose Pk(T) rendezvoused because it received a signal from

P, during T, (signals generated by P, outside T, are not relevant).

This implies P,(T,) sent signals to two processes because our orig-

inal assumption is that P,(T) committed to (and therefore sig-

naled according to lemma 1) P,(T.). It is clear from the algorithm

that a process can signal at most one other process on any given

transaction because any time a signal is generated, the transaction

always completes without calling the Signal procedure again (see

figure 2.4). Therefore, Pk(Tt) could not have received a signal from

P,(TI).

(b) Suppose Pk(Tt) received a signal from P during T. (signals

generated by P outside T', are not relevant). This implies Pa(T.)

both sent a signal to Pk and received a signal from P, within a

single transaction. If Pj(T.) sent a signal, then, according to the

algorithm in figure 2.4, Pj must have rendezvoused and completed
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the transaction without ever entering the WAITING state or setting

WakeUpi(T,) to zero. This contradicts our original assumption

that Pi(T,) committed to Pi(T.).

(c) Suppose Pk(Tt) signaled P(T,). This implies P(T,) both sent

a signal to P and received a signal from Pk within a single trans-

action. This latter signal must have been preceded by Pk( T t) com-

mitting to P (lemma 1). This commit must have occurred during

or before T. But, Pk(Tt) could not have committed to Pi during T'

because 14akeUpi is never equal to zero during T,. This is because,

by assumption, P,(T) commits to P,(T.), so P,(T) never enters

the WAITING state (It is only then that the WakeUp variable is

set to 0.) Also, Pk(T) could not have committed to P, before

T, and signaled P, during T, because this would violate lemma 4.

Therefore Pk( T t) could not have sent a signal to P(T).

(d) Finally, Pk( T t) could not have committed (and therefore could

not have signaled) Pj during T, because this would imply both

Pk and P, committed to P within a single transaction, violating

lemma 3. Pk(Tt) could not have committed to P, before T, and

signaled P during T, because this would again violate lemma 4.

Thus, Pk( T t) could not have signaled P,(T) either. Therefore,

Pk(T t) could not have rendezvoused with either Pi(T.) or Pj(T.),

so the proof is complete. I

Note from the proof of (2) in the Safety theorem that it is crucial that accesses

to AltList are controlled by locks, and that the act of checking the AltList and

committing is atomic to ensure correct operation. Also note that the status of

P, may change immediately after P, checks it. The algorithm operates correctly

despite this inconsistency.
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3.3 The Liveness Property

The liveness property guarantees that no deadlock or livelock situations can

arise within the alternative algorithm. Such situations can only be caused by an

erroneous application program. Lemmas 6 through 11 and theorem 3 prove that

the liveness property is maintained by the proposed algorithm.

Lemma 6 A process Pi will never return to the RUNNING state after entering a

transaction unless a rendezvous occurred.

Proof: By inspection of the alternative algorithm, the process only

returns to the RUNNING state when either: (a) Pi(T,) signals Pj(T.)

or (b) after Pi(T,) receives a signal from Pj(To). In either case, P,(T,)

rendezvoused with P,(T.). I

Lemma 7 A process P cannot remain blocked on a Lock operation in the alterna-

tive algorithm for an unbounded amount of time.

Proof: The only Lock operation performed by the algorithm is to

serialize accesses to A itList. However, once any process obtains a lock on

any AltList. it must eventually release that lock because no unbounded

loop or blocking primitive is executed before the corresponding Unlock is

performed. Therefore, the lock cannot remain in place for an unbounded

amount of time. No process will remain blocked attempting to obtain a

lock for an unbounded amount of time because every lock will eventually

be unlocked, and the the Lock primitive is assumed to be fair. I

Lemma 8 Suppose P, E GuardListj(T) and P E GuardList(T), and their re-

spective I/0 guards are compatible. P and Pj cannot both enter the WAITING sla!f

during transactions 7, and To, respectively.
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Proof: Proof by contradiction. Suppose both P and P enter the

WAITING state on T7, and T0, respectively. Because Pi reached the

WAITING state, it must be the case that the last time P scanned the

state of Pj before Pi entered the WArrING state, Statej was either (1)

RUNNING, (2) SLEEPING, or (3) WAITING but Pi failed to commit to P

(If Pi successfully committed, they would have rendezvoused and com-

pleted the transaction according to theorem 2.) Consider the third case.

We will now show that P must have been in a transaction preceding T

for this case to apply. WakeUpj(T.) is set to 0 before Statej is set to

VAITING. Therefore, if P saw P, in the WAITING state while Pj was

in transaction T,, and P failed when it tried to commit, then it must

be that some third process must have committed to P, during T, (after

W1'ake Up,(T.) is set to 0 but before Pi attempted to commit). But this

successful commit must have resulted in a rendezvous, contradicting

our original assumption that P, blocked indefinitely in the WAITING

state while in T,. Therefore, if case (3) applies, P, must have been in

a transaction previous to T, when P; observed it to be in the WVAITING

state.

Similarly, Pj also reached the WAITING state, so Pj must have been in

the RUNNING, SLEEPING, or WAITING state for a previous transaction

the last time P, scanned P before P entered the WAITING state. P,

and P could not have both scanned each other at the same instant

because each would have found each other in the ALT state. Therefore,

one scanned the other first. Without loss of generality, let us assume

Pi scanned P, first. P(T,) was in the ALT state when it scanned Pj,

and because it did not rendezvous or abort (the latter would require P,

to be scanned again, making this not the last time P scanned P,), P



39

must have remained in the ALT state until it changed to the WAITING

state and blocked indefinitely. Therefore, when Pj later scanned P for

the last time, Pj must have seen Pi in either the ALT or the WAITING

state for transaction T,. However, this contradicts the fact that P

saw Pj in the RUNNING, SLEEPING, or WAITING state for a previous

transaction. Therefore, the original hypothesis that P and P both

entered the WAITING state must be false. I

Lemma 9 A process P, cannot remain continuously in the ALT state during a

single transaction T, for an unbounded amount of time.

Proof: A process remains in the ALT state while it is scanning the pro-

cesses in its GuardList trying to find one which is ready to rendezvous.

If none is found, the process proceeds to the WAITING state. Because

GuardList is necessarily bounded in length, we must show that a pro-

cess does not spend an unlimited amount of time scanning a particular

guard.

Pi moves on to the next GuardList entry or eventually changes state

when it finds the process corresponding to the current guard is in

either the SLEEPING, RUNNING, or WAITING state. Therefore, we

only need to consider scanning a process Pj which is also in the ALT

state. If TransiDj < TransIDi, then P, aborts TryAlternative and

changes to the SLEEPING state. Thus we need only examine the case

TranslD, < TransID, (both cannot have the same ID). In this case,

Pi enters a loop waiting for State, to change. In order for P, to remain

in this loop an unbounded amount of time, P, must continually sample

P, while Statej is ALT. There are three ways P,'s samples can indicate

Pj remains in the ALT state for an unbounded amount of time: (1) Pj is
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also locked into the ALT state for an unbounded amount of time; (2) Pj

repeatedly aborts TryAlternative, changes to the SLEEPING state, and

then retries TryAlternative (changing back to the ALT state) in perfect

synchrony with Pi's samples of Statej; or (3) P repeatedly rendezvous,

changes to the RUNNING state, and then initiates a new alternative

operation in perfect synchrony with Pi's samples of State. These are

exhaustive because a process can only return from TryAltemative af-

ter a rendezvous or after an aborted attempt. Case (2) cannot occur,

however, because the sleep period is set to a time sufficiently large that

successive samples by Pi will detect that P is in the SLEEPING state.

Similarly, case (3) cannot occur because the minimum execution time

of the Send and Recr primitives are assumed to be larger than the time

between successive samples of the polling loop. Therefore, only case (1)

remains.

The previous discussion shows that P, can only remain in the ALT state

scanning P, an unbounded amount of time if the following conditions

hold: (1) TranslD, < TranslD., and (2) P remains continuously in

the ALT state on the same transaction an unbounded amount of time.

By the same argument presented above, P, will only remain in the ALT

state on a single transaction an unbounded amount of time if some

other process Pk is in P,'s GuardList, TranslD, < TranslDk, and Pk

remains continuously in the ALT state an unbounded amount of time.

Continuing this logic, because the number of processes is bounded, the

original process P will only remain in the ALT state for an unbounded

time if a cycle of processes exists such that each is waiting for the next

process in the cycle to leave the ALT state. This would require that

TransID, < TranslD, < TranslDk < ... < TransID,. which is
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clearly not possible. Therefore, no such cycle can exist, so Pi cannot

remain continually in the ALT state for an unbounded amount of time.

I

Lemma 10 The TryAlternative procedure cannot return FAILED an unbounded

number of times during a single transaction T, in some process Pi.

Proof: TrjAlternative returns FAILED if and only if Pi scans another

process Pj and finds Pj, is also in the ALT state, and TranslDj <

TranslDi. The number of guards in GuardList is finite, so if procedure

TryAlternative fails an unbounded number of times, it must be that

for some process P,, the conditions State, = ALT and Trans1D, <

TranslD, persist for an unbounded amount of time.

P, cannot remain continually in the ALT state for an unbounded amount

of time in a single transaction (lemma 9). Therefore, it must be the case

that either (1) P, finds Pj in the ALT state for a different transaction

an unbounded number of times; or (2) within a single transaction, P

repeatedly switches back and forth between the ALT and SLEEPING

states for an unbounded number of times, and it so happens that every

time P, retries TryAlternative and scans P, P, finds that P, is in the

ALT state. In case (2), TryAlternative must fail an unbounded number

of times in P as well as P.

Case (1): This is not possible because each new transaction ID is larger

than all previous IDs. If Pj finds Pj in the ALT state for a new trans-

action an unbounded number of times, this would imply there are an

unbounded number of transaction IDs less than TransiD,. This cannot

be the case because transaction IDs are positive integers.
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Case (2): An argument similar to that used in lemma 9 can be used

here. Summarizing the arguments presented thus far in this lemma,

TryAlternative in P will only fail an unbounded number of times if it

also fails an unbounded number of times in some other process P, where

TransIDi < TransIDi. Similarly, Pi will only continue to fail if some

other process Pk exists which also continues to fail, and TransIDI, <

TransIDj. Because the number of processes is bounded, a cycle of

processes must exist such that TransIDi > TranslD, > TranslDk >

... > TransIDi, which of course, cannot occur. Therefore, a process

cannot fail the TryAlternative procedure an unbounded number of times.

I

Lemma 11 For each alternative operation initiated by Pi, P, eventually either ren-

dezvous with some other process PF and returns to the RUNNING state, or moves to

the WVAITING state. In other words, a process cannot remain in the ALT state in

the same transaction for an unbounded amount of time.

Proof: The only way a process can not reach the WAITING state or

rendezvous is to remain continually in the ALT state, or switch back and

forth between ALT and SLEEPING an unbounded number of times. The

latter case implies TryAlternative fails an unbounded number of times

within a single transaction. Neither is possible according to lemmas 9

and 10. 1

Theorem 3 (Liveness) Suppose two processes P and P each initiate an alterna-

tive operation and Pj E GuardList(T) and Pi E GuardListj(T) and their com-

munication requests are compatible. If neither P nor Pj rendezvous with another

process during their respective transactions, P, and P, will eventually rendezrous

wuh each other during T, and T,, respectively.
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Proof: According to lemma 11, P, and P, must each eventually either

rendezvous or enter the WAITING state. They both cannot enter the

WAITING state according to lemma 8. Therefore, at least one of the

two processes, say Pi, must rendezvous. By assumption, P, cannot

rendezvous with any process other than Pi, so P, must rendezvous with

P,. By theorem 2, P, must also rendezvous with P. Therefore, P, and

Pj must eventually rendezvous with each other. 1

3.4 The Termination Protocol

As mentioned in section 2.4.5, a terminating process must perform some "clean-

up" work before it exits. It is vital that the termination protocol (1) not interfere

with non-terminating tasks. and (2) guarantee that all repetitive contructs that

should terminate eventually do. The first criterion is analagous to the safety re-

quirement and the second to the liveness requirement.

The termination protocol employs a special signal distinct from the rendezvous

signals sent between the processes. The first requirement above is met based on the

Iollowing intuition. A special signal is sent by a terminating process to a process

in the WAITING state only when the terminating process has decided that no other

processes will ever send, or have sent, the WAITING process a similar special signal.

Therefore, the special signal will always be received and absorbed.

The lemma below validates that a terminating process has made the correctly

sends special signals.

Lemma 12 If a terminating process P. finds, in its cleanup phase described in

section 2.4.5, that GuardCount, of a WAITING process P, in transaction T, equals

0 after P, has atomically decrmented it by 1, then none of the possible communicants

of P,(T) other than P, will send a signal to P,(T,).

Proof: There are two ways that GuardCounti(T,) can be decre-
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mented. (1) By P(T) itself, when it finds some communicants in

the TERMINATED state during transaction T. (2) By some terminat-

ing communicant of Pi(T) in cleanup phase. GuardCountj(T) can

notbe decremented twice due to the termination of a single communi-

cant. When GuardCount(T,) is decremented by P itself, it excludes

the communicant in AItList(T,). Because the decrement is done with

Statei(T,) remaining in the ALT state, it effectively prohibits the corn-

muiicant from decrementing GuardCount(T,). On the other hand,

if the communicant successfully finds itself in AItList(T,) and decre-

ment GuardCount,(T.), then P,(T,) must have seen the communicant

in a state other than TERMINATED and could not have decremented

GuardCount,(T,) itself.

According to the above argument, the communicant P, under the pred-

icated condition, must be the only possible communicant to send the

special signal to Pi(T,).

An argument similar to that in the Lemma can be developed to guarantee

that, if P,(Tr) finds GuardCount,(T,) has been decremented down to 0 before it

enters the WAITING state. then it must have excluded all the communicants in

A1tLis1,(T,), effectively prohibiting all its communicants from sending signals. It.

then, correctly exits the repetitive construct without leaving any signals pending

in the last transaction.

The proof of satisfaction of the second requirement described earlier is straight-

forward. Intuitively; if a process could not determine itself when it should exit the

repetitive construct during the "last" transaction, then one and exactly one of its

communicants of this last transaction will make this determination. This point can

be clearly asserted given the arguments above.
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A Butterfly Implementation

4.1 Overview

The implementation of A CSP system, based on the algorithm described earlier,

has been carried out on an 18 nodes BBN Butterfly Parallel ProcessorTM. A CSP

program consists of several C procedures, each representing a CSP process. A

distinct C procedure is identified as the "root" process and the entry point of

the user program. This procedure typically spawns the other processes. Each

process can invoke the parallel, alternative or repetitive operations using a C syntax

that will be described later. The features mentioned in chapter 2 such as I/O

guards and automatic termination of repetitive commands are provided As will be

seen later, processes can be created dynamically, as contrast to Hoare's original

definition in which processes are static. This property is due to the fact that

processes communicate using explicit channels, which can be created dynamically.

All application programs are created, complied and linked on a front end ma-

chine, usually a VAX, and then downloaded to the Butterfly for execution. The

user need only learn the C language interface described in section 4.3. Some ex-

amples are shown in Appendix A and B. The Butterfly allows a user to declare

exclusive access to a group of processors nodes, called the user cluster, in a session.

The CSP system distributes the "processes" to any subset of the user cluster that

is specified in each run.
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4.2 The BBN Butterfly Parallel ProcessorThl

The BBN Butterfly Parallel ProcessorTM is a MIMD, shared memory multi-

processor that uses an Omega network to interconnect its processor nodes. Each

processor node contains a micro-coded controller called the PNC which controls

all the memory references from either the local processor (a Motorola 68020) or

from the Butterfly switch(the Omega network). The PNC also facilitates atomic

operations. Typical operations include atomic arithmetic manipulations on a given

memory address, event posting/receiving, and queue operations. All of these oper-

ations are defined relative to processes instead of processors, so intra-processor and

inter-processor interactions appear the same.

Remote memory references in the Butterfl3 are 6 to 7 times longer than that of

a local access under light system load. In contrast,message-based architectures such

as the hypercube requires many milliseconds for interprocessor communication.

A Butterfly may contain up to 256 processor nodes, each with up to 4 Mega

bytes of memory. The curreiL ttah configuration contains 17 nodes, 15 with 1

Mega byte of memory, the other 2 with 4 mega bytes. The shared memory scheme

is achieved through the used of Segment Attribute Registers(SARs) which map

virtual addresses into physical memory locations. Each processor node is equipped

with 512 such SARs and each SAR is capable of addressing up to 64 Kilo bytes

of memory. The 24 bits virtual address now being used restricts any process to

having at most 256 segments(256 SARs) mapped in its address space at one time.

allowing the process to address 16M bytes of memory without dynamically swapping

SARs. The restriction is due to the need of compatability to the older 68000 based

processor nodes, which uses 24 bit virtual addresses. Newer versions of the Butterfly

will use the 32 bit address bus of the 68020, providing a 4 Giga bytes address space.

The programming language C is used for this implementation. Butterfi:: C is

identical to Unix C with a few extensions. It has an enumerate data type similar
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to that in Pascal. It also provides an exception handling mechanism similar to the

Lisp catch/throw construct. This construct allows nonlocal go-to that proved to

be useful in the CSP implementation. The catch/throw construct is defined as a

macro and expanded at compile time by the language pre-processor.

Currently, the Butterfly serves as a back-end processor. A 10 MB Ethernet link

connects it to the host (VAX 8600) Therefore, when a command is issued to run a

user program, Chrysalis searches a specific directory on the host machine for the

program 'template'(executable image) and loads it across the network for execution

on the Butterfly. All program development, compilation and linkage are done on

the host machine. Other technical information can be found in [2,4,6,25,271

4.3 Language interface

The programming language C was chosen, since it is the language in which most

of the operating system is written. C is also well know and widely used.

The environment needed for correct CSP operations is set up automatically

before the user program is entered, i.e., the user does not need to invoke any sys-

tem initialization routine. Although this is desirable, it does necessitate a smaller

discrepancy from ordinary C programming style. The "main" procedure of the ap-

plication program must be a C procedure named "cspUser" linked with the system

object files.

The various CSP constructs are available to the application programs through

a collection of C procedure and macro calls. A system header file "cspUsr.h'" must

be included at the beginning of each user source file. Figure 4.1 summarizes the

syntax of these calls.

4.3.1 The Parallel Construct

The "CSPPARALLEL.BEGIN(n)" and "CSPPARALLELEND" macre P re

used in conjunction with the procedure CreateP() to create CSP processes. i
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/* alloc port ids for channel *I

PROC VOID AllocChannel(&chnl)

CHANNEL chnl;

/* a 'co-begin' 'co-end' pair */

MACRO VOID CSPPARALLELBEGIN (n)

int n;

MACRO VOID CSPPARALLELEND

/* create a process vithin PARALLEL */

PROC VOID CreateP(fPtr, fmtStr, param, ... )

PROC VOID *fPtro;
char *fmtStr;
int param;

/* The alternative entry call */

PROC int Alternative(argblk)

int **argblk;

/* The repetitive construct */

MACRO VOID CSPREPEAT.BEGIN

MACRO VOID CSP.REPEATEND

Figure 4.1: Interface of The CSP Procedure Calls
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parent process, i.e., the process that calls the CSP..PARALLEL constructs, will

suspend execution until all of its children have completed and terminated. The

parameter n to the macro CSP.PARALLELBEGIN is the number of processes to

be created in this call, and should match the number of times that the procedure

CreateP() is called between the BEGIN and END statements.

Each call to the procedure CreateP() causes the creation of a process that ex-

ecutes (at least potentially) in parallel with others created in the same parallel

construct. The first parameter is a function pointer which points to a C procedure

constituting the process body. The second parameter is a "format" string with each

character indicating the type of a parameter passed to the process. This string also

implicitly specifies the total number of parameters that are passed. The third and

subsequent parameters are the values passed to the process, in the order specified

by the format string. Any C looping constructs such as FOR and WHILE can

be used to repeatedly generate calls to CreatePo, providing convenient ways of

instantiating a process many times with different parameters. The processes com-

municate with each other through unilateral channels. Though technically different

from Hoare's[18] direct naming scheme, these two communication models are log-

ically equivalent. The channel model provides more flexibility in the hierarchical

composition of smaller systems into larger ones. Figure 4.2 shows an example of

how the construct is used.

A channel is a point to point communication link that connects exactly two

processes. Each end point is called a port. A channel is unilateral in that one of

its ports can only receive messages while the other can only transmit. Each port is

represented by a unique number and each channel is represented by a pair of ports.

In C, the channels are defined as a "CHANNEL" structure whose components are

two "PORT"s, named "in" and "out". A process can receive ports az parameters

as well as arrays of ports. The latter is a convenient way of passing a variable
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cspUser() /* The root process.. */
{

CHANNEL ch;

AllocChannel(&ch);
CSPPARALLELBEGIN (2)

CreateP(procl, "p'" ch.in);
CreateP(proc2, "p", ch.out);

CSP.PARALLELEND

}

PROC VOID procl(inport) { PORT inport; .... }

PFOC VOID proc2(outport) { PORT outport; ....

Figure 4.2: An Example of Calling the Parallel Command

number of ports to a process. A port is specified in the format string of createP()

by a character 'p', while a NULL terminated array of ports is specified by an 'a'.

Other parameters that are not concerned with the channel connections are denoted

by an 'o'. Channels are allocated using the procedure AllocChannel(), whose only

parameter is a pointer to a CHANNEL structure. Upon return from a call. the

"in" and "out" component of the channel is ready to be passed to the children. In

this paradigm, all ports used in a process for communication are allocated by its

parent and passed to the process as parameters when it is created.

4.3.2 The Alternative Construct

To invoke an alternative operation, a process calls the procedure Alternative()

and passes to it a pointer to an argument block that specifies the ports involved in

the operation, along with their respective modes, message size and buffer address.

Figure 4.3 shows the structure of the argument block.
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argblk

port ist mode

choice 1 port 1 INPUT 6(bytes) inter WI 16 byte buffer
choice 21 port 2 32(bytes) inter lo 32 byte buffer

SCANP pti to list of &vs

iptr to list o v-an

N getd,%f,OS

"put %d /6c %d'

Figure 4.3: The Argument Passed to Alternative

The modes associated with each port can be "CSPJNPUT", "CSPSCANP".

"CSPOUTPUT", and "CSP.PRINTP". The first two modes are only allowed on

input ports, and the last two only on output ports. The INPUT and OUTPUT

modes are block transfer modes and the size of the communication is in bytes. The

SCANP and PRINTP modes are "formatted" transfer modes similar to the C scanf

and printf functions. In this case, the size of the communication is implied in the

format string, and the buffer is a list of variables(pointers in the SCANP case).

as in the C scanf and printf functions. The mode CSPJNPUT is compatible only

to CSPOUTPUT and CSP.SCANP only to CSPPRINTP. An error will result

if two processes connected by a channel use incompatible modes on the ports in

an alternative operation. A simple communication command that does not involve

any alternatives is in fact a special case of the alternative operation. For the sake

of consistency and integrity, it must be done using an alternative call with only one

"alternative".
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The ports involved in an alternative operation are passed to the procedure

Alternative() in the form of a list. Each port in the list is tagged with a non-

negative number which will be returned by the procedure if the corresponding port

has been selected by the alternative operation to perform the communication. This

number can be used in a case statement to dispatch control to the appropriate

code. However, if the tag associated with a port is negative, the port is disabled

and will not be considered for selection in this alternative operation. The procedure

Alternative() will raise an exception when all of the ports passed to it are disabled.

This exception will be interpreted by the underlying system as an error signal

unless the application program turns it off by means of the repetitive construct

described in the next section. Note that a port is also disabled when the process

that owns the other port of the channel has terminated. This is the automatic

termination semantics of CSP[18] and is useful in some applications(see examples

in the Appendix).

In the current implementation the CSPPRINTP and CSP.SCANP operations

are not available, but they can be easily added.

4.3.3 The Repetitive Construct

The "CSPREPEATBEGIN" and "CSPREPEATEND" are macros used to

capture and handle the exception raised by the Alternative() procedure. When this

construct surrounds an alternative construct, it specifies the indefinite repetition

of the alternative operation. The repetition is completed when all of the ports

passed to it are disabled either explicitly by the process itself or implicitly because

the communicants have terminated. Control is then transferred to the statement

immediately following the CSP.REPEATEND. It is important to note that errors

due to incompatible I/O attempts, as described in the previous section, cannot

be caught by the repetitive construct because they indicate an error condition.
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SomeProcess(..ports..)

PORT ..ports..;
int choice;

... set up ArguaentBlk

CSPREPEATBEGIN
choice a Alternative(ArgumentBlk);

switch (choice) f

case CASE_: { .... Action 1 ....
case CASE_2 : {.... Action 2 ....

} /* end svitch statement */
CSPPARALLELEND

}

Figure 4.4: An Example of Calling the Repetitive Command

An application program cannot specify the number of times a repetitive construct

should make the alternative operation execute. However, the program can disable

all of the ports when it wants to terminate the repetitive construct. Figure 4.4

shows an example of its usage.

4.4 Implementation Issues

4.4.1 Some Considerations

The most fundamental entities in CSP are processes. On the Butterfly, Chrysalis

provides a mechanism for creating processes from a user program, but it has several

drawbacks.

First, Chrysalis processes are best suited for large-grain computations, whereas

CSP processes can be quite small. The overhead of creating a Chrysalis process for

each CSP process is excessive. For example, in Appendix B, the producer process
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in the bounded-buffer example repeatedly generates a datum and sends it to the

buffer process in a loop. Defining each such simple operations as a C procedure

and create a Chrysalis process for each one will be very inefficient.

Secondly, there may exist a large amount of communication between the CSP

processes. However, each Chrysalis process has it own virtual address space The

Map-Obj and Unmap-Obj system calls provides a way of attaching memory seg-

ments that are globally sharable to a process's address space. However this scheme

is quite costly and is not feasible on a per-communication basis. Furthermore.

since there are only a limited number of SARs on each processor node, and each

Chrysalis process requires a certain minimum number of SARs even if it does not

do any memory object Mapping/Unmapping, only a few processes can co-exist on

a processor node at a time.

An efficient means of creating light-weight processes is required in which each

process, upon creation, shares part of its virtual address space with common, global

area. Coroutines[12,37] seem a suitable solution for implementing CSP processes.

Coroutines are multiple threads of control within one Chrysalis process that relin-

quish execution voluntarily to others by calling a procedure that saves, restores and

switches between contexts of the threads. This scheme requires a stack for each

thread, and the ability to create and transfer of control from one thread to another.

Here coroutines will be called tasks to avoid confusion with the Chrysalis processes.

This implementation hides peculiarities such as the coroutine mechanism from

the application as much as possible. Otherwise, the application programmers would

be required to call certain "system" procedures at the right time, in order to set

up environments or to do necessary cleanup work.
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4.4.2 System Startup

When the system is initiated, a Chrysalis process is loaded and run on one

processor node selected by the user. This node is called the master node. The

Chrysalis process running on the master node is called the master process. The

master process determines the set of processor nodes(the user cluster) available to

the application program, and creates a Chrysalis process on each of the nodes in

the cluster, except the master node itself. Those processes are instances of the

master template and will be called the slave processes. Each slave process is only

slightly different code the master process. All processes will behave the same after

a suitable environment has been established. Since globally sharable memory is

distributed over all nodes, each process needs to allocate enough memory space on

its node to accommodate

" a stack area for local coroutines(stack pool),

" a heap area for temporary buffers(local heap), and

" a heap area for globally shared memory (global heap).

The combined global heaps of all of the nodes forms a region that is accessible to

all the processes. after they have all mapped the region into their individual virtual

address spaces in exactly the same way. This region is called the globally shared

region. The result of this mapping is that the virtual address space of each process

is constituted of several logical segments:

1. The code segment, residing physically on the local node.

2. The data segment, residing physically on the local node.

3. The coroutine stack pool, residing physically on the local node.

4. The local heap, residing physically on the local node.
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5. The globally shared region, with components scattered among the nodes of

the user cluster.

Since all the processes map the shared memory region into exactly the same virtual

location in their own address spaces, an address that is within the shared memory

region in one process's space can be passed to another process and used there to

access the same physical location. Figure 4.5 shows the addressing space as seen

by the processes.

4.4.3 The Cooperating Schedulers

Once initialization is completed, each process is ready to schedule coroutines to

run on the local node in much the same way a simple operating system schedules

its user processes. The master scheduler then creates a task for the "main- user

procedure on the local node, which usually spawns children task using the CSP

parallel command (Refer to the Appendix for examples). In this implementation.

the children are sent to other nodes for creation in a round-robin fashion. For

example, if the N nodes in the user cluster are numbered from 0 to N-i, then the

children are sent to 0, 1, 2, an so on. Each task is capable of spawning tasks

using the parallel construct, and the round-robin dispatching is handled by the

local scheduler. Upon creation of each task, the scheduler allocates a stack from

the stack pool area and associates it with the task. It also allocates a block to

hold various control information such as the task state, the alternative list, the

GuardCount variable, etc. Since this block must be accessible by any other tasks,

it is allocated from the globally shared region. The address of this block in global

space can therefore be used as the "ID" that uniquely identifies the task associated

with it. Figure 4.6 shows the contents of the task control block.

In the alternative algorithm presented earlier, tasks need to synchronize each

other through a signal/wait mechanism. The synchronization between tasks on the
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Figure 4.5: Address Space of The Processes
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Figure 4.6: Structure of The Task Control Block

same node can be handled by the local scheduler alone, whereas synchronization

between two tasks on different nodes requires the cooperation of the two sched-

ulers involved. Therefore, each scheduler(process) has a queue associated with it to

buffer synchronization signals from other schedulers. The queues are implemented

using Chrysalis dual queues, whose operations are guaranteed to be atomic in this

multiprocessor environment. Currently there are two kinds of interactions between

schedulers: (1) Task creation requests, sent when new tasks are spawned and dis-

patched. (2) Signal requests, sent when tasks attempt to wake up tasks on other

nodes. In the alternative algorithm the Lock/Unlock mechanism is used by the

tasks to gain exclusive access to certain data structures. The time each task spends

in the critical section is sufficiently short that a context switch is not desirable.

Therefore, a simple busy wait loop that utilizes the Butterfly "test and set" prim-

itive to determine the exit condition is employed. No queue operation is involved

since it does not concern local scheduling and interactions between schedulers. Also

the 'Sleep' mechanism can be handled by the local scheduler, so it does not con-

cern cooperation with the others. However, whether a context switch should be

performed when a sleep operation is executed depends on the length of the sleep

period, and a decision can be made accordingly. For example, if the specified p- 1

is far greater than the coroutine transfer time, which is about 200 micro seconds



59

vhile(TRUE) {
While(message queue not empty)

switch (message type) {

case MAE. _TASK :
Allocate stack from local stack pool;

Initialize stack; /* Push parameters, etc.. */
Allocate task control block from global shared region;

Initialize task control block;
Register task to the port table;

Put task in ready list;

case SIGNALTASK :
find waiting task and put it in ready list;

} /* end of switch */

Wake up expired sleeping tasks(put back in ready list)
Transfer control to first ready task;
/* control will be back when task waits or sleeps... */

} /* End while TRUE */

Figure 4.7: The Algorithm Executed by A Scheduler

in this implementation, the task can actually be de-scheduled. Otherwise, a busy

wait loop suffices. A later chapter on fine tuning the performance will discuss how

the sleep period is set for a wide range of workload conditions.

Figure 4.7 describes the algorithm executed by a scheduler. It polls its queue

and processes all pending signals from the other schedulers, puts awaken tasks back

into a list of 'ready' tasks, and transfers control to the first task in the ready list.

The task that has regained control will eventually execute the alternative algorithm

to communicate with other tasks and therefore may have to wait for a signal from

other tasks(either on the same or a different node), at which time it relinquishes

control back to the scheduler. The scheduler then polls its queue again and refpeAts

the above steps.
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When the "root" task terminates, the entire program also terminates. The

master scheduler, which executes the root task, is the parent Chrysalis process of

all other schedulers. When a Chrysalis process exits, the operating system will

automatically kills all of its children process(perhaps running on other nodes) and

releases all resources by the killed processes. Therefore, the identity of the master

scheduler is retained from system startup, though it is not meaningful during the

computation.

4.4.4 The Global Port Table

As described in previous sections, the channel and port model is used by the

application program as the communication mechanism. The alternative algorithm

must be able to locate a "remote" task on the other side of a channel, given the

local port ID. The state and control information of the remote task can then be

inspected and a decision can be made as to whether or not a rendezvous is possible.

The problem of locating tasks through port connections is greatly simplified

on the Butterfly through the use of shared memory. It is sufficient to allocate a

piece of global shared memory which can reside on an arbitrarily selected node.

that records all the port-task associations. Figure 4.8 depicts such a port table in

globally shared space. Port IDs are short integers where input and output ports

are distinguished as taking on odd or even values. The reasons for this distinction

are (1) it is easy to detect illegal operations on ports, e.g., output operations on

input ports. (2) adjacent integers can be specified as the two ports of a channel.

simplifying easy the location of one given the other. A channel allocation routine

is available to application programs which need to allocate channels and pass the

ports to their children. Upon request, this routine simply atomically increments a

usage counter associated with the port table to allocate 2 adjacent entries.

It should be noted that, before a group of tasks can communicate with each
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other through the alternative operation, each of them must make sure that all its

possible communicants have completed putting their task IDs into the entries of the

port table. This is very important because the result of relying on an inconsistent

port table in an alternative operation can be disastrous. In this implementation the

problem is resolved by having each task take responsibility for consistencies among

it children. Every time a task spawns children tasks using the parallel construct.

it waits for a signal returned by each of the children indicating all the them have

finished registration with the port table. When this condition is true, it sends a "go-

ahead" signal to them. This protocol is built into the schedulers and is transparent

to application programs.

4.4.5 Automatic Termination

The termination protocol mentioned above has been incorporated in the alter-

native algorithm. There are two ways that a task in the alternative operation can

determined when the termination condition is met, and the surrounding repeti-

tive construct should exit. To emulate the behavior of a repetitive construct after

the termination condition is satisfied, the alternative algorithm could return to

the caller with a special value indicating such a situation and let the application

program determine what to do afterwards. However, a better scheme would be to
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utilize a nonlocal go-to mechanism like the LISP catch/throw. This scheme works as

follows. Whenever a repetitive construct is encountered in the application program,

a "catch" is executed. The alternative construct "throws" when the termination

condition is satisfied, which is caught by the enclosing repetitive construct that has

executed a "catch" earlier. The advantage of this scheme is that if a catch had not

been executed earlier, then a throw by the alternative operation would cause an

error according to the catch/throw semantics. In CSP, this indeed is an erroneous

situation.

The Butterfly C language provides such a catch/throw mechanism. When a

catch statement is executed in a procedure, a marker is placed into the current

stack frame in the run time stack so that when the procedure returns the marker

can be popped off the stack along with the rest of the procedure's frame. The

marker can be thought of as a "continuation" where control is to go when a throw

is caught by the catch. As the procedure makes further procedure calls that again

execute catch statements, more markers are placed into the stack, and all these

"outstanding" markers form a linked list according to the time they are created

and placed. A pointer to the most recent outstanding marker is kept in a well

known location, called the "catch pointer", so that whenever there is a throw by

some procedure deep in the stack, the most recent marker can be found and used

as the continuation. The catch pointer is then updated as the second most recent

marker in the link. In the Butterfly environment, each Chrysalis process has exactly

one catch pointer. Therefore, it is necessary to save the catch pointer as part of the

status when context switching is performed between coroutines, since each coroutine

represents a CSP process and may execute its own catch statements.

As manifested in the beginning of this chapter, the coroutine approach facilitates

automatic system control that hides application programs from implementation

details. Figure 4.9 summarizes the stages a coroutine experiences during its lifetime.
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Phase 1: Created by the scheduler.
Registered to global port table.

Phase 2: Notify parent registration done..
Wait for ''go-ahead'' signal from parent.

Phase 3: Running, or
de-scheduled vaiting for synchronization, or

sleeping.
Phase 4: Finished computation.

Execute termination protocol.
Phase 5: Inform parent of demise.

Do-scheduled permanently.

NOTE: Only phase 3 is specified by application
program. All others are done by the system
upon creation or termination transparently.

Figure 4.9: The Phases of A Coroutine's Lifetime

4.4.6 Fairness

One issue regarding the alternative construct which has received considerable

attention is fairness. In particular, two types of fairness, weak and strong fairness.

have been defined [14,38]. We call an implementation of the alternative construct

weakly fair if it can be guaranteed that during the infinitely repetitive execution of

an alternative command, a guard that remains continuously available (i.e., enabled

and the neighboring process is ready to communicate) will eventually rendezvous.

An implementation is said to be strongly fair if the implementation guarantees that

any guard which is available infinitely often (though not necessarily continuously

as is the case in weak fairness) will eventually rendezvous.

The algorithm shown in figures 2.3 and 2.4 is not fair in either the weak or

strong sense. However, weak fairness can be achieved by modifying the algorithm

so that the order in which the TryAlternative procedure scans guards, which im-
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plies a certain prioritization of the guards, varies from one call to the next so that

each guard is eventually scanned first. More precisely, the alternative algorithm

is modified so that it assumes there is a distinct integer variable associated with

each alternative construct in a given CSP program, e.g., with the rnth alternative

construct in process Pi there is the variable Alti,,,,. Initially set to 0, this variable

is incremented each time this particular alternative construct is executed. It there-

fore indicates the number of times P has invoked the corresponding alternative

construct.

Also, the FOR loop in the TryAlternative procedure is modified to begin scan-

ning guard (Alti,, mod n) + 1 rather than the first guard, where n is the number of

guards in the alternative construct. Note the FOR loop skips disabled guards, as

indicated in the argument block shown in Figure 4.3. It executes up to n iterations,

and the index variable of the FOR loop "wraps around" to 1 after scanning the

nth guard. The number n can be included in the argument block so that algorithm

won't have to calculate it every time.

These variables could be defined by the compiler or pre-processor. However.

in this implementation the application program must define them. The example

programs in the appendices show these "fair seed" variables. Note the algorithm

has access to a globally defined variable called .fairSeed_, which should be set to

the fair seed Alt, before entering a specific alternative operation i. The application

programs are also responsible for incrementing the respective fair seed after each

repetition of the alternative operations.

It is not difficult to see that the algorithm is weakly fair. For instance, a process

waiting to be served by another process will be granted the service within a finite

number of times that the possible servers reach rendezvous. It is not strongly fair,

however.
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Communicate(theOtherTask, mode, size, data)

if (size is 0) return; /* do nothing */
else

if (mode is input) {
Wait for data to be available;;
Copy data;
Acknovledge to theOtherTask;

}
else { /* mode must be output */

Send data;
Indicate data available;
Wait for acknovledge;

Figure 4.10: The Communicate routine

4.4.7 Communication

When two tasks have reached rendezvous in their respective alternative oper-

ations, i.e., one sends a signal to the other, they exchange a message (or nothing

but the synchronization effect) and exit the alternative operation. The routine

Communicate shown in figure 2.4 does this for the local task, given the ID of the

other task with which it is communicating, and other information such as I/O

mode. data and size. Figure 4.10 outlines the Communicate routine.

The CSP model requires that all communication be synchronous, i.e., the send-

ing party must not resume its computation until it is confirmed that the receiving

party has received and digested the message. There are two cases to be considered.

First, the size of communication is zero, i.e., the two parties are interested only

in synchronization, but not in data transfer. Second, there is data transferred in

addition to synchronization.

The first case is very simple, since the task originally in WAITING state is

waken up by exactly one task which later communicates with it (rcfcr to the proof
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in chapter 3.) Therefore, the synchronization effect has been achieved when the

awakening signal is sent to the WAITING task. The Communicate routine needs do

nothing. The Dining Philosophers shown in Appendix B is an example of this kind

of communication.

The second case is more complicated because the receiving party has to wait for

the data to become available, and the sending party has to wait for an acknowledge

from the receiving party once the data has been sent. These operations may cause

context switching between tasks.

It should be noted that private data of user tasks can reside in the same log-

ical address but physically distinct, if they are on different processor nodes. The

only way to transfer private data is to use buffers in the shared memory between

Chrysalis processes. The actions "Send data" and "Copy data" in figure 4.10 there-

fore indicate copying to and from the shared memory buffer, respectively.

4.5 Discussion

This section describes possible alternatives to the current implementation. How-

ever, they are not included in the current implementation.

4.5.1 Dynamic Load Balancing

The current implementation is based on a strictly static task allocation policy.

i.e., each task (coroutine) stays on the same processor node and runs to its com-

pletion. One may argue a worker/task model is better for the sake of dynamic

load balancing. This model, as employed by the Uniform System[35], uses only one

global task queue among the workers(processors), and each worker obtains a task

from the queue, completes it and obtains another task. There is a task generator

that generates all the tasks to be done and puts them into the queue. Each worker

is always busy as long as there are tasks left in the queue.
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The worker/task model is desirable if all the tasks are independent identities,

i.e., any conventional "sequential" programs that do not have interactions with

others. In our case, each coroutine is a task that synchronizes and communicates

with many other coroutines. Therefore, a new task in the queue may be a previously

suspended task that has a history associated with it. As a result, the task allocation

can no longer be done transparently to the workers and extra effort is necessary to

obtain the history of a given task and to check if the history can be restored under

the local condition of a particular worker. It may be interesting to implement the

CSP system based on this model and compare with the static one.

4.5.2 Distributed Port Table

Another interesting point concerns the location of the global port table. Cur-

rently it resides on a single node. The disadvantage of this central table scheme is

that it may lead to contention. A port table that is distributed across many nodes

could avoid this problem, but the difficulty in maintaining and locating desired

entries is higher.



Chapter 5

Tuning the Algorithm for Better Performance

5.1 Factors and Metrics

In this chapter we discuss the performance of the algorithm described in Chapter

2 and its implementation described in Chapter 4. The time that a process spends

in a specific alternative operation is affected by many factors. For example, the

number of alternatives, i.e., guards, affects the amount of time required to scan

the guard list. The amount of computation that a process conducts between two

consecutive alternative operations also influences performance. Intuitively, the more

frequently processes enter the alternative operation, the more likely collisions are

to take place, potentially increasing the number of aborted operations.

The sleeping period, i.e., the amount of time a process waits after an alternative

operation aborts, is the only parameter of the algorithm that has yet to be specified.

Chapter 2 contained some qualitative discussion as to how this period should be

set in order to avoid adverse situations. In particular, a very short sleep period

could lead to an improbable but theoretically possible scenario which invalidates

the liveness of the algorithm. The argument against a short sleep period is further

reinforced from a performance standpoint, because it may cause a process to wake

up when its neighbors are still in the ALT state, leading to additional aborted

attempts. other hand, a sleeping period too long could lead to an unnecessarily

long time spent in the SLEEPING state. Techniques must be devised to determine

good values for the sleeping period under different conditions.

68
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5.2 Test programs

A set of parameterized programs, representing different workloads, was designed

for collection of statistics. The parameters are

topology The channel connection pattern among the processes. This determines

the size of guard list in the alternative operation.

"interval" computation The amount of time each process spent in the RUNNING

state between consecutive alternative operations. Each process executes the

alternative operation in a repetitive loop.

sleep period The time a process spends in the SLEEPING state when it aborts.

One may argue that the size of messages exchanged between pairs of processes

should also be considered. It is not considered here because the communication

takes place after the rendezvous is reached, so it is in fact not part of the alternative

operation. Also, in figure 2.4 the state is set to RUNNING before the communication

routine is called, suggesting that communication is part of the interval computation.

Each of the test programs simulates a lattice of 16 communicating processes.

Each process communicates with some numbcr of its neighboring processes(referred

to as the degree. Figure 5.1 shows the connection patterns of the meshes with de-

grees 4, 8, 10, and 12 respectively. The actual set of programs contains meshes

with degree 4, 6, 8, 10, 12, and a full connection pattern, i.e., degree 15. Wrap

around connections are used at the edges at the mesh to maintain symmetry. Each

of the 16 processes repetitively executes an alternative operation, attempting ren-

dezvous with one of its neighbors. When executed on the Butterfly, 16 processors

are used so that each element of the mesh is created and run on a separate proces-

sor. The reason for this arrangement is that the coroutine implementation of the

alternative algorithm guarantees that two neighboring CSP processes would never

see each other in the ALT state, thereby reducing the possibility of abortion and
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retry. Therefore, this arrangement is to analyze the worst case behavior of the

alternative operation under different parameter settings.

The mesh connection pattern is chosen because it is symmetric, so that all the

processes in a particular program have the same number of I/O guards listed in their

respective alternative operations, conforming to the parameterized model. The

symmetry of this topology also avoids bottlenecks that can influence the reliability

of the result. Moreover, the mesh is full of cycles that can lead to deadlocks if

the system is implemented incorrectly, which provides a challenging environment

for testing the implementation. Appendix A shows the C code for the degree 4

program.

Each of the three parameters is independent of the others. The length of interval

computation is chosen from an exponential distribution with a mean ranging from

500 microseconds to 16 milliseconds. The sleep period ranges from 100 microseconds

to 12.8 milliseconds. The interested measures from those experiments are (1) the

average transaction time. and (2) the abortion rate, i.e., the average number of

abortions per transaction.

The two measures are calculated mean values from a normally distributed ran-

dom space, each sample taken from recordings of individual transactions. The result

shows that, in all of the topologies, with 100 repetitions of the alternative opera-

tion executed by each CSP process, the 95 percent confidence interval about the

calculated mean value is less than 4 percent. In other words, the probability that

the true mean value is within 4 percent of the calculated mean is 0.95. Therefore.

100 repetitions are sufficient.

It should be noted that all of the time measurements are derived from recordings

of the real time clocks which have a resolution of 62.5 microseconds. The record-

ings include the operating system overhead, contain some truncation error. The

truncation error, in theory, is 31.25 microseconds for each measurement. Therefore.
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Figure 5.1: The Connection Patterns Of Various Degreed Meshes
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for large values, e.g., several milliseconds, the truncation error can be ignored. The

overhead is approximately 5 percent of the computation time and does not affect

the relative relationships that are described later, nor the results that follow.

5.3 Results

Figure 5.2 shows the abortion rates when the interval computation is zero. The

zero interval computation presents the worst case situation because any computa-

tion reduces abortion as mentioned earlier. It is observed that in all of the topolo-

gies, longer sleeping periods lead to smaller abortion rates. Intuitively, longer sleep-

ing periods reduce the possibility that processes see each other in the ALT state,

thereby reducing the probability of further abortions. Note in topologies with small

degrees, e.g., 4 and 6, the abortion rate is not affected as dramatically as it is for

large degree topologies as the sleeping period is varied. This is because the prob-

ability of seeing each other in the ALT state is already small for topologies with

small degree.

Figure 5.3 shows the mean transaction times with zero interval computation.

It is noted that each topology has a "best" sleeping period. This best period

increases with the degree of the topology. When the list of guards becomes longer.

the alternative algorithm tends to spend more time scanning the list, and therefore

spends more time in the ALT state. As a result, a longer sleeping period is needed

to avoid excessive abortions. However, an excessively long period is undesirable as

well.

Table 5.1 shows the approximate "best" sleeping periods in each topology in

milliseconds, along with the average abortion rate. Those values are approximate

because the curves are drawn from only a few sample points. Also, the percentage

in parentheses indicate the standard deviations of the respective mean values. They

suggest that topologies with large degree have very large variances.

Table 5.2 shows the average time that each transaction spends in the SLEEPING
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Table 5.1: "best" Sleeping Periods under No Interval Computation

Degree Avg. Abort Rate Avg. Tran. Time Sleep Period
4 (10%) 0.9 (25%) 2.0 0.6
6 (8%) 1.0 (58%) 3.3 1.2
8 (6%) 1.6 (67%) 5.1 2.4

10 (6%) 1.7 (75%) 7.2 3.2
12 ( 4%) 1.8 (78%) 10.4 4.8
fc ( 5%) 1.5 (92%) 17.2 9.6

state for the "-best" selection sleep periods shown in figure 5.1. The average time

is calculated by multiplying average abortion rates by the sleeping periods. These

figures are not precise due to the large variance. However, the tendency is clear:

topologies with larger degrees spend a much larger portion of their time in the

SLEEPING state.

Table 5.3 shows the proportion of time transactions spend in activities other

than sleeping. The major activities are (1) the Lock operation, in the alterna-

tive algorithm (figure 2.4) before entering the WAITING state, and in procedure

CheckAndCommit(figure 2.2), (2) the CheckGuard operation described in figure 2.2.

(3) the busy wait loop used to scan the remote process if it is in the ALT state. and

(4) the time sent in the WAITING state, if the process does not rendezvous during

scanning. Other parts of the alternative algorithm are irrelevant to the interactions

between the processes and do not spend much time in them. All numbers are in

milliseconds. No time is spent in the Communicate procedure in this experiment

because no data is transferred.

It is seen that the time spent in CheckGuard increases as the degree becomes

larger because the guard list is longer. The time in the busy wait loop increases

because processes spend more time in ALT. Similarly, the processes spend more

time waiting for a signal in the WAITING state when there are more conflicts in

high degree topologies. The time measurements of the Lock operation appear not
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Table 5.2: Percentage Spent In the SLEEPING state

Degree Ab. Rate xSlp Prd Avg. Trans. Time Percentage
4 0.48 2.0 24%
6 1.08 3.3 33%
8 3.20 5.1 62%

10 4.76 7.2 66%
12 8.64 10.4 83%
fc 14.4 17.2 84%

Table 5.3: Time Spent Other Than Slee ing
Degree Locking CheckGuard BusyWait WAITING

4 0.137 0.077 0.33 1.31
6 0.141 0.093 0.46 1.35
8 0.143 0.110 0.66 1.49

10 0.148 0.119 0.79 1.60
12 0.136 0.145 0.97 1.82
fc 0.135 0.154 0.91 1.80

is not as closely related to the degree of the topology.

Figure 5.4 shows the average transaction time when there are different amounts

of interval computation and the sleep period is set to the "best" value for each

topology. The length of interval computation shown in the figure is the mean of an

exponential distribution. Intuitively, the interval computation spreads alternative

operations attempts by processes over a longer period of time, thereby reducing the

frequency of conflicts. Since its purpose is the same as the sleep period, a similar

relationship between the interval computation and the performance of the algorithm

is expected. In particular, in order for the algorithm to achieve a performance close

to the optimum, i.e., no abortion enforced, a longer interval computation is needed

for topologies with larger degrees. This behavior suggests that the more sparsely an

application executes the alternative operation, the closer the performance of each

operation is to the optimum.
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Figure 5.4: Transaction Times with Interval Computation

It is interesting to note that the least amount of interval computation necessary

to achieve optimal performance., i.e,. zero abortion, is comparable to the "best" sleep

period in the fixed sleep period scheme. This coincidence is expected because these

two quantities are handled the same way in the alternative algorithm (the Rut\ N'ING

state and the SLEEPING state) and therefore should have the same influence on the

performance. If the interval computation is too long, however, processes will be

spending the extra time in the WAITING state waiting for their communicants to

execute the alternative operation. This factor depends totally on the application

program and cannot controlled by any alternative algorithm. The sleep period, on

the other hand, must be optimized.

5.4 An Adaptive Approach To Setting The Sleeping Period

The result of previous section suggests that a sleeping period set to favor a

particular configuration may induce undesirable performance under other circum-
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stances. Unfortunately, one can not expect uniform communication patterns like

those in the test programs in many situations. Furthermore, the large deviation

from the mean transaction time implies that even in large degree and symmetric

topologies a fix sleeping period may be excessive in many transactions.

To accommodate these circumstances, an adaptive approach of setting the sleep-

ing period is necessary. In particular, one measure of ,h.*her the sleeping period

should be reset is the number of abortions the current transaction has committed

so far. Intuitively, any additional abortion in a given transaction may mean the

current sleeping period is not long enough. This gives rise to the following scheme

that dynamically sets the sle,-ping period.

The sleeping period is initially set to a small value on each transaction. Dur-

ing the lifetime of this transaction, the occurrence of any additional abortion is an

indication of insufficient sleeping period. Therefore, the period is doubled, i.e.. the

process sleeps for a time twice as long as it did last time when it aborted. This

scheme should adapt to the particular circumstance of an alternative operation

quickly. It is clear that a large degree topology may take several abortions before

it accumulates a suitable period, thereby introducing some overhead. However,

some alternative operations that could have been completed using shorter sleeping

period will not incur further abortions, and if they did need longer sleeping peri-

ods, the exponential approximation should quickly converge to the correct value.

Table 5.4 validates this argument by showing the performance of such an adaptive

scheme with the sleeping period set to 400 microseconds in the beginning of each

transaction. Note that in topologies with large degrees the improvement is appar-

ent because many transactions now spend much less time sleeping, while in small

degree topologies the spared time is compromised by the overhead of additional

abortion.

Table 5.5 shows the participation in the activities other than SLEEPINGin the

I m n !I ! |
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Table 5.4: Performance of the Adaptive Scheme

degree abortion/tran time(ms)/trans
4 0.3 1.8
6 1.6 3.3
8 1.9 4.8

10 2.5 6.9
12 2.9 9.7
fc 3.5 12.9

Table 5.5: Time Spent Other Than Sleeping for Adaptive Scheme

Degree Lock CheckGuard Busy Wait WAITING
4 0.100 0.069 0.23 1.45
6 0.164 0.099 0.57 1.26
8 0.158 0.115 0.80 1.33

10 0.166 0.130 0.96 1.39
12 0.170 0.155 1.07 1.41
fc 0.173 0.169 1.23 1.35

adaptive algorithm.

The performance of the adaptive algorithm when there is interval computation

is very close to what was shown in figure 5.4. The reason is that as the algorithm

seldom aborts. so it is not very important how the sleep period is set.

5.5 Conclusion

In this chapter, the performance of the implementation of the alternative algo-

rithm is investigated. It is observed that in a symmetric topology an alternative

operation with a longer guard list to scan needs a longer sleep period to achieve

better performance. However, an adaptive scheme is found to be more suitable

than the fixed sleep period approach, and is expected to perform well in highly

irregular topologies. Also, the experiment result suggests that application pro-

grams would suffer serious performance degradation if the alternative operation is

executed repetitively with very little interval computation.



Chapter 6

Conclusion

This chapter summarizes the thesis work reported here as well as the possible

extension.

6.1 Thesis Work Summary

In this thesis, a shared memory implementation scheme of the generalized alter-

native algorithm, which is of principle interest in CSP, is proposed. A CSP process

executing the algorithm exercises an abort/retry protocol in cooperation with other

processes to achieve rendezvous with exactly one of them, and exchange messages

with it.

The correctness of this algorithm is proven based on some safety and lireness

properties which are generally required by many distributed computing paradignis.

The properties guarantee that an application program, will never experience dead-

locks due to flawed internal operations of the algorithm.

The scheme has been realized and tested on a Butterfly Parallel ProcessorT

The features of the implementation includes the following:

* The C language is used for programming applications, and a library of pro-

cedures and macros is used for invoking CSP primitives.

@ The port mode] is employed to provide communication capability (through

alternative construct) to the application programs.

79
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9 An application can run on any number of processors with the constituent

processes statically allocated to one of the available processors.

A set of programs is devised to test the implementation, as well as to produce

some statistics to help tune the system for better performance. In particular,

the "sleeping" period during which a process should stay aborted, in the context

of the abort/retry mechanism, is found to have major impact on performance.

An adaptive method is devised and proves satisfactory in dynamically setting the

sleeping period suitable for a wide range of workload configurations facing the

alternative algorithm.

6.2 Possible Extensions

There are plenty of rooms for optimization in this rudimentary, albeit legitimate.

implementation before it can be put into practice.

From the application programmer's point of view, the interface to the system

can be made much more friendly. For example, the current implementation is built

on top of an existing language through procedure calls. Therefore Only a limited

amount of compile-time checks are possible. It is desirable that a preprocessor

be introduced which does all of the static checking at compile time and generates

information invisible to the users but necessary to the "back end" system described

in this thesis. The interface can be made more friendly by providing a syntax that

is more concise and rigorous, avoiding the awkwardness of procedure calls.

Othe- issues that have yet to be explored include implementation of strategies

for dynamic load balancing which migrates, tasks among processor nodes according

to some heuristics and run time information, or alternatively, according to explicit

user control.
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