gne e TNeY . @
NASA Contractor Report 181761

ICASE REPORT NO. 88-73

[ICASE

SPECTRAL ELEMENT MULTIGRID
PART 2: THEORETICAL JUSTIFICATION

AD-A203 560

Yvon Maday

Rafael Munoz

Contract Nos. NAS1-18107 and NAS1-18605
December 1988

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENCINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

DTIC

ELECTE

NASA

National Aeronautics and OE
Lanaiey A ne e pebiie sulouse end e} BB

Hampton, Virginia 23665+ Gumiveties b ' -

89 1 13 147




Spectral Element Multigrid
Part 2 : Theoretical Justification*

by

Yvon MADAY
Université Paris XII and
Laboratoire d'Analyse Numérique - Université Pierre et Marie Curie (France).

and

Rafael MUNOZ
LN.R.I.LA. Domaine de Voluceau - Rocquencourt (France) and
Departamento de Matemitica Aplicada, Universidad de Santiago de Compostela (Spain).

Abstract : We analyze here a multigrid algorithm used for solving iteratively the algebraic system
resulting from the approximation of a second order problem by spectral or spectral element methods.
The analysis, performed here in the one dimensional case, justifies the good smoothing properties of
the Jacobi preconditioner that has been presented in the part 1 of this paper. accession For

NTIS GRA&I

DTIC TAB %
Unannounced O
Justification _ __ __ |

By.
Distribution/

Avallability Codes

Avafl and/or
Dist Special

A/
*  This research was supported in part by AFOSR Grant No. 850303 whil. the first author was visiting
the Division of Applied Mathematics at Brown University. Additional support was provided by the Nationai
Aeronautics and Space Administration under NASA Contract Nos. NAS1-18107 and NAS1-18605 while the

first author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE),
NASA Langley Research Center, Hampton, VA 23665.




L. _introduction,

Spectral element methods are high order methods that combine the flexibility of finite
element methods with the "infinite order accuracy” of spectral methods. The domain of computation
is decomposed into some subdomains - the elements - (generally these are deformed
parallelotopes), and the exact solution is approximated by a piecewise polynomial of high degree.
The spectral element method differs from other spectral methods using domain decomposition
techniques (patching methods) by the way the matching conditions are handled. These are, like in
the finite element method, implicitly taken into account by the variationnal statement of the
discrete problem. This allows for more flexibility with no loss of the spectral accuracy ( see, e.g.,
[P], [M.P.] and [F]). When the algebraic equations resuiting from this kind of discretization are
obtained, the problem that remains is to soive, in an efficient way, the algebraic system.

The interest of domain decomposition technique is to fraction the computational task so as to
yield smaller problems and to use parallel computers for instance. |f the value of the approximate
solution were known on the various interfaces, the problem would be very simple since it would
results into the resolution of as many disconnected problems as the number of elements. The main
difficulty is that this value is not known; hence a technique known as the iteration per subdomains
has been proposed in the literature [F.Q.Z.] [Q.51] to discover this value iteratively. Another
approach is to try to invert the whole problem by not working iteratively on each subdomain. This
method, [M.P.] [F.R.D.P.] [R], consists in reducing iteratively the residue at the same time on
every subdomain. The global method used can be based on a conjugate gradient algorithm or another

iterative procedure.

in the first part of this paper, E. M. Ronquist and A. T. Patera [R.P.] have presented some
results concerning a new multigrid method for the resolution of the aigebraic system resulting
from the approximation of a second order P.D.E. by spectral or spectral element method in the
one-dimensional domains. The very simple idea of using the Jacobi preconditioner as a smoother
for the iterative multigrid algorithm appears to be a very good one. Indeed, the numerical
properties of this smoother seems to surpass all expectations; the reduction rate of each V-cycle
appears numerically to be independent of the discretization parameters.
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When iterative techniques are used, it is important to understand why these methods
converge in order to foresee the generalization and the ability of the methods to be adapted to more
than test problems. Here we propose an analysis of this phenomenon and provide the justification
of these very good properties. Many general convergence proofs exist in the literature for the
numerical analysis of the multigrid technique; among them let us cite [M.M.], [B.D.]. We use here
the abstract framework developed by R. E. Bank and C. C. Douglas [B.D.] that fits exactly the
numerical conclusion of {R.P.] concerning the optimal choice of the smoothing operations.

To our knowledge, the numerical analysis of the convergence for the multigrid algorithms
used in spectral type techniques is somehow empty. The main reason is certainly that the nice
analysis that can be done requires a variational framework and the awareness that the spectral
methods are, exactly or very close to, variational approach is not so old. The other reason,
perhaps, is that the previous multigrid techniques applied to spectral type methods [Z.W.H.1,2]
used a finite difference preconditioner as a smoother and a Chebyshev framework. The
convergence, in this case, is not so brillant as in the present approach and a priori more related to
the good properties of preconditioner of the finite difference operator. Besides the variational
formulation involves a nonsymmetric form that makes the analysis much more involved.

The paper is organized as follows; in section |1, we recall the theory of [B.D.] in a form
adapted to our analysis. In section 111, we first explain on the test example of the Galerkin spectral
approximation of the homogeneous Poisson problem the fundamental reasons of optimal properties
of this multigrid method. The tools are based on Jackson inequality and some refined version of the
approximation properties of the Lz-projection operator. In section 1Y, we generalize the analysis
to the case of the spectral element approximation. We compare in each section the results obtained
by the theory with the numerical resuits presented in [R.P.]. The last section Y deals with the one
domain multigrid technique when applied to a non constant second order problem.

The generalization of these results to multidimensional problems will be presented in a

future paper.
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I1.1 Generalities on variational multigrid techniques.

In this subsection, we first recall the theory developed by R. Bank and C. Douglas to analyze
the convergence rate of the multigrid algorithm for solving the linear algebraic system that arises
from the numerical approximation of elliptic partial differential equations. We present it in a
version that we shall use afterwards, First of all, let 3 be a Hilbert space, a be a continuous,
elliptic, symmetric, bilinear form and g be a continuous linear form, both defined over 3. The
problem to be solved is: Find u € ¥ such that
(.1)  Vvve®, aluyv)=glv) .

For the numerical resolution of this problem, we first introduce a sequence of finite dimensional
subspaces M, < M, < ... € M, of ®; then consider the problem : Find u; € M, such that
(11.2); Vve J"(,j , auy,v) = glv) .

The basic idea for solving problem (11.2) with a multigrid algorithm consists in first
defining a simple problem over the largest spaces J"Lj and solving it, then correcting the residual
derived from the solution of this simpler problem when plugged into problem (II.2)j by solving
problem (11.2), for lower values of k < j. The first step is the most important one and relies on
the good choice of continuous, elliptic, symmetric, bilinear form b, called smoother, that
represents a in some sense and is easier to invert. Let us suppose that we have only two grids, the
coarse one (i.e., M, ) and the fine one (i.e., M, , and j = 2). The two-grid procedure consists in
1-  m/2 steps of smoothing where we solve m/2 times a problem like the following one : Find
8¢ in M, such that
(11.3) VveM,, b(Sp-9,v)=9(v)-alg,v) ,

2- one step of coarse grid correction where we solve only once a problem like the following one:
Find ¢ in M., such that

(1.4) VveM,, aov)=gv)-alpy) ,

and define Cp = ¢ + ¢.

3- m/2 steps of smoothing as in (11.3).

We consider here just two grid levels, the only reason is for sake of simplicity of the
notations, but as in [B.D.], we could consider the whole W -cycles based on more than two levels. if
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the initial guess for the exact solution u is u® , after one Y-cycle like the one described previously
by the three steps 1- 2- 3-, the resulting solution is u' and can be expressed like a function of u®
as follows
(11.5)  u'= §™2RS™3(0)
so that, after the r'" Y-cycles, the solution is
(1.6)  u" = [8™2CS™21 (W) |
Moreover, it is very simple to note that if u is the exact solution, then

Cu=zu and Su=u,
so that, if e" denotes the error after the r' V-cycle, we derive from (11.6) that
(I.7) e = [8™2C8™2]7(e?) .
Note that the equations (11.3) (11.4) define affine operators C and § but in (11.7) we can consider
these operators as linear ones since they operate on differences e and ¢"; from now on, we shall
consider these operator as linegar ones while keeping the same notation.

As noted in [B.D.], of importance is the analysis of the spectrum of the following eigenvalue
problem : Find W in M, and X in R* such that
(1.8) VvedM, ,a¥ v)=xb¥,yv),
where b has been scaled so that the maximum eigenvalue Nmex 15 €qual to 1. Let us order the
eigenvalues in increasingorder 0 < Xy <X, € ... € Xp = X, = 1, (where P is the dimension of
M, ) and choose relative eigenfunctions W, , ¥, ,..., ¥, . Of equal importance in the analysis is
also the compatibility between the coarse space J"L, and the space spanned by the first
eigenvectors .

More precisely, under the following hypothesis

H the space M., coincides with span {¥,, ¥,, .. ,\Pp}. (where p is the dimension of M, ) ;
then one can prove the following theorem

Iheorem 1.1 : Under the hypothesis H the error after the first Y-cycle verifies

ae'e") < (1-1,, )%™ a(e e).

Proof : First of all, let us recall that the eigenfunctions ¥, ,n = 1,...,P, form a basis of M, that
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is orthogonat for both the forms a and b. Let us span e’ in this basis; we get
0 N 20
e = nz1 en \pn ,
then, due to (11.3) and (11.8), we derive that §™2(e%) satisfies
/2,0 N /2 20
(1.9) 8% =L, ., (1-2)"8 v
From hypothesis H, we then derive that the operator G truncates the previous spectrum so that
/2,0 N /2 20
C8™E(e”) = Lo oy (1N 8] W
then the smoothing procedure diminishes once more the spectrum of the error as follows
o' = 8™ = TN, (1-x )" e v,
We deduce now from the orthogonality of the ¥ that
a(e’ @) = TN, (108D % alw W) < (1-0, )P TN, (8% a(y, )
<=2, )TN, (8%, W) = (1=, )" a(e® 6°) .

n 1]

p+l

Remark 11,1 : Note that the previous theorem is very simple and is a trivial extension of the
analysis of the multigrid procedure in the Fourier space. Note also that if the space J"L, is not so
well chosen, for instance if it coincides with span {Wy _, 1, Wy _p, 2, ¥y}, then the multigrid
procedure would not converge rapidly since, after the first Y-cycle, we obtain

S™RE™ ) = TNP (1 )"y,
and the error remains important since X\, can be veru small. In fact, the method has exactly the

same properties as the plain Jacobi algorithm.

It turns out from the previous analysis that the multigrid procedure, when applied under
hypothesis H, is degenerated since only one Y -cycle is needed and m is the only important factor of
convergence. So in the non trivial applications where the hypothesis H is not verified, we have to
measure the actual situation between the hypothesis H and the situation explained in remark 1.1,
This can be explained as follow : the "rough" eigenmodes ( [B.D.] denotes this way the Wowith )\,
close to 1) are damped during the smoothing procedure ( their components are multiplied by a
factor (1-X\,) ) while the "smooth” modes ( corresponding to small ) remain almost constant.
Under the hypothesis H these are completely erased during the correction procedure, but if we are

not in this optimal situation, they can only be damped also during this step.
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The general analysis proposed in [B.D] allows for measuring the position with respect to
both hypotheses. Let us recall the basis of their proof since we shall extend it in section V. To this
purpose, they introduce the various norms, defined for any real index 8, as follows
(1100 VeeM,, Nollg=(Zh, 205212,

They introduce also the function f
(L11)  flab) =a"b® (a+b)™*® = sup, g 1) (1-%)*x" .
Then we derive that
(11.12) VeeM, VT, 0<t<8 , 1820l = [T, (12 )" 205212
< Am/2,8-0)/2) o ll, ;

let us write now
Il GS™ 2 |12 = a( RG8™2¢, CS™2p) = a( CE™29, CE™2¢ - ) = o C8™2p, S™29)
<11 CS™ g ll, p Il S™2 lly,
<{sUpye Il Co lly_g/ Ml Co By TN CS™20 Uy 1 8™ 20 My,
so that we derive
(113) N CS™2gl, < [supyc p, Il Colly_y N Cully 111 8™ llp -
which is valid for any 8 > 0; we deduce from (11.12) that
Il 8™2G8™ 2y |I, < Km/2,8/2) || CE™2¢ I,
< Am/2,8/2) || C8™g |, [sup, . M, I Cy My_g/ M Collly )

< AM/2.8/2) [supy g I Colly_g? W Cu Ml N S™0 I,
< Am &) [supy g, I Co o/ I Coll, T2 o W

Defining Mt as follows

Mt ={9eM,, suchthatVyeM, aloy)=0} ,
( that coincides with the range of C ) and by minimizing the right-hand side over 8, they state the
following

Iheorem 1l.1: Assume there exists a constant x 2 1 and o > O such that for any ¢ € J"L,l

Mo, <x*Woll, .
then

(11.14) a(e'e') < ya(e®e?) ,

where
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[(k=-1)/k]?™ if m <o (k-1)
(K*f(m,o))? if m>o(k-1).

(r1s)y  y

ol
1

1.2 Formulation of the spectral element discretization.

Let us turn now to the position of the problem. We consider here the simple test problem
over the interval A = ]-1,1[ : Find u such that
(11.16) -y, =1 , over A
provided with homogeneous Dirichlet boundary conditions
(17)  u(-1)=u(1)=0.
where f is a given force. This problem is very simple, but it allows a statement of the basic
features of the multigrid algorithm and an understanding of why the method works.

The spectral element method for approximating the solution of (I1.16) consists in
discretizing the space of acceptable functions by a subspace of piecewise polynomials. More
precisely, given a pair h = (K,N), we first break the interval A into K disjoint subintervals of
comparable sizes

A =UkK=1 Ao A=la .8 +b [
then, we choose for space of approximate functions a subspace x,"‘ of H;(/\) consisting of all
piecewise polynomials of degree < N,

(1.182) XY =YV NHJA) ,

where

(11.18b) Yy = { ¢ such that g, € Py(A,) )

and Py(A,) denotes the space of all polynomials of degree < N on A, . We remind that contrarily to
the finite element approximation, the convergence is achieved by increasing the degree of the
polynomials N and not refining the mesh.

The discrete problem starts from the variational formulation of problem (11.16)(11.17)
that is : Find u in Hg(A) such that
(11.19) Vv eH)A), aluy) =(fy) ,
where (.,.) denotes the L( A )-scalar product and a(.,.) denotes the following bilinear form defined

over Hy(A) as follows

——'—'—




V. € Hy(A), alow) = (9, .4,)
Then we construct the numerical scheme by discretizing with Gauss-Lobatto quadrature formulas
the various integrals present in (11.19) and restricting the space of test functions to X: .
This results in the following probliem : Find u, € X: , such that
(1.20)  Yv,eXy , a g (u, v = (vl
where the discrete forms are defined as follows

Vouw e 0wl = L b2 T oh 0k, 6E,,) |

VouweXy , al oo =(o, , ung -
Here, the g: , and the E: are the weights and nodes of the Gauss Lobatto-Legendre formula with
N+1 points and the collocation points £ | are defined by £, = a, + (:: + 1)b, /2 . W recall here
that the integration formula is exact on P,,_, so that, contrary to the appearances, a: 6L does not

depend on h nor N since a:_c,_ =a(seeeg [M.P.]).

The algebraic system that has to be solved is derived by choosing the values of the unknown
function u, on the collocation points and representing u, in the basis of the interpolant basis h, ,
defined by : h, | is the only element of Y} such that
(1.21) V& b o(Egm) = By B
The matrix system that has to be solved can be written as follows: Findu = (u,‘,"") such that
(1.22) Au=g ,
where A is the stiffness matrix with entries equal to
(1.23) (/00T 5.y Zio Oy LN p/dx dny 7dx] (5, )
with o,, = 0,0,/2 and T denotes the direct "stiffness summation” , while g is related to the

forcing term. We refer to [R.P.] so as to [M.P.] for more details on the derivation of this matrix.

This numerical method is proved to work ve~y well in a great number of interesting
problems that include, for instance, the full Navier-Stokes problem (see for instance [M.P.],
[M.P.R.1], [M.P.R.2] or [R]) and is numericaly competitive and implementable on a paralle

medium grain paradigm (see for instance {F.R.D.P.]).

Let us turn now to the multigrid algorithm for solving iteratively problem (11.22). As
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explained in [R.P.] , nested spaces are related to spaces of polynomials with lower degree X:‘ (say
M = N/2) and the smoother is simply the Jacobi preconditioner B that is proportional to the
diagonal part of the matrix A and normalized in such a way that the highest eigenvalue of B-'Ais 1.
We shall analyze in the two following sections the properties of this preconditioner and explain
why the numerical method works so well as presented in [R.P.] .

In this paper, we shall use two grids only though the analysis can be performed with no
extra difficulty than the one of comprehension, and we shall use

M, =XV% and M, = XN .
The problem enters in the general theory of [B.D.] since the numerical problem involves bilinear

forms and matrices that do not depend on h.
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Ll Analusis of il £ 4 Itigrid algorithm in i1
case of one element,

As announced in the title, we shall assume for the moment that the discretization is applied
on only one domain to problem (11.16). For sake of simplicity, we shall drop out the second index
that corresponds to the subelement characterization in the notations. The situation is simple here
as soon as we have explained the properties of the diagonal matrix, but this simple example
permits enhancement of the main features that allow for a rajid convergence of the algorithm, The
problem can be written as a pure collocation scheme as already noted in [M.P.]. indeed, by taking
v, =h, for n=1,.,N=1,1in (11.20) and using twice the exactness of the Gauss-Lobatto formula,
we derive

al g (Upuhy) = aCuh) = = [ urG) b dx = = Cuy L by = - Ui (ED o,
besides we note that

(f, hdn o1 = T(E) €
s0 that the problem actually verified by u, is: Find u, in X:' such that

Vin,n=t, o N=T, —ui(E)=1() .

This consists in a pure collocation procedure to solve the initial problem.

In order to analyze the multigrid algorithm, let us first compute exactly the diagonal part of
the stiffness matrix; that is here simply to the matrix with entries equal to

Ay = Do 0N (EY)  for i,j = 1,.N=1

Ag; = Ay; = 0.

Due to the exactness of the Gauss Lobatto formula, we easily obtain that, for i = 1,... N-1,

A= [0OOTRdx = - [, hr(x) h(x) dx
and here again, by using the exactness of the Gauss Lobatto formula, we derive from (11.21)

A== T oo hr(EM h(EY) = o hrEM

As already derived in [GHO, formula (7.4)]

Lemma 11,1 : The diagonal of the stiffness matrix verifies
(1) A= g NIN+D/[301-(EDD)].
Proof : Let us drop out in this proof, the superscript N. First of all, we note that, from the

definition (11.21) of h, , we have




Mo, (-EDOE-1) »
h(x) = __ 3 = o T (x=E) (1-x7)

Moy (Eg)(ER=1) b
joi

where o, is a non zero constant. It is well known (see, e.g [D.R.]) that the internal nodes of the
Gauss Lobatto fomula verify
(11.2) L0 =, Ty (x=E)
where ¢ is a non 2ero constant. Hence, we can write

(x=5) h(x) = 5" o (1=x7) Ly () = &, (1-%3) Ly (x),
and after taking the derivative of both sides, we obtain

(x=E) hi(x) + h(x) = &; (d/dx)[(1-x%) L ()] .
Let us recall now the eigenfunctions property verified by the Legendre polynomials (see, e.g.
(DR
(H1.3) (@)1 -x3) L 00 = ~(N(N+ 1) Ly(x)
we derive that
(111.4)  (x=E) hi(x) + h(x) = = o, N(N+1) Ly(x) ;
plugging now x = &, in this equation yields
(HES) 1= -0 NIN+T) L(E) .
Besides, by taking the derivative of (I111.4), we obtain
(11.6)  (x=E) h/(x) + 2h(x) = = o¢; N (N+1) Ly(x) ,
plugging also here x = E, in this equality and using (111.2), we get
(HL.7)  hi(g) =0 .
Let us multiply now (111.6) by (1 -x?) and take the derivative of the resulting equation, we deduce

(x=£) (d/d)[(1-xD) b7 ()] + 3(1-x%) h(x) = 4xhi(x) = & N2 (N+1)2 Ly(x) .
Finally, plugging one more time x = ¥, , we derive from (111.5)

3= h(E) = - N(N+1) ,
and the lemma follows from the value of A, .

Remark {{{.1: Note that, as a consequence of (111.7), we have proved here that the Lagrangian at
point £, has its maximum at §, .
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Associated with the matrix A is the bilinear form a, and in the same way, associated with B,
the normalized diagonal of A can be defined a bilinear form b:,sL .This will be the smoother of the
multigrid algorithm. Lemma I11.1 proves that the smoother we have introduced is proportional to
the bilinear form B} ;, defined for any ¢ and y in X, (which here is simply Py(A) N Hy(A))
(H1.8) Bl g (0.) =T 0 0, 0(E) w(E) (1-ED)".

It is interesting to note that, due to the exactness of the Gauss-Lobatto formula, we can rewrite

B:'GL in a continuous way since for any ¢ and ¥ in X,': , the function [¢ v (l-xz)"] is still a

polynomial and belongs to P,,_,(A), so that we have
(1.9) B g (o) = BCou) = [ 900 w(x) (1-x3)7" .

Let us now analyze the eigenvalue problem (11.8) or more precisely the eigenvalue problem
associated to b. The situation is here very simple since we have an exact expression for the
solution to this problem
Lemma I11.2: Let us define for any integer n, 1 € n < N-1
U11.10) W, 00 = (1) L3
then we have
(L.11) VveXy, a(w, v) =nlne1) b, v) .

Proof : Let us first remind the following standard formula on the Legendre polynomial (see, e.g.
[D.R.,Chap 2, 8§7])

(111.12) ¥nelN, ((1-x3) L)) +nlns 1) L(x) = 0.

Let us compute, for any v in xN ,

alW, ,v) = [, Wi 0) vi(x) dx = [, ((1=x®) L, (%)) v'(x) dx ;
using (111.12) and integrating by parts, we obtain

a(W, v) =-n(n+1) [, L) v(x)dx =nnet) [, LX) v(x) dx

=n(n+1) [, (1=x®) L, 00 v (1=x3)™" dx = n(n+ 1) By, , v);
this ends the proof of Lemma {11.2 .

It is important to note that in this simple example the eigenvalues are well known and,

moreover, that the first M of them span exactly the space Py, ,(A) N Hg(A). As a first
consequence, we can state that the normalized form that will be used as a smoother is defined as
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follows
O.12) Vg, yeX , blo,y) = NIN=1)B@.w) = NIN-1)] 4 00) w(x)/(1-x2) dx .
We demonstrate the case where the simple hypothesis H of section || is valid, and we can state now
Iheorem 1i1.1: (et u® denote the initial guess in the multigrid algorithm applied to problem
(11.20) in the case of one element, and u' denotes the solution obtained in the after m smoothing
and one correction. This solution converges to the exact solution u as follows,

a(u-u', u-u") = [1 - (N+2)74(N-1)]* a(u-u®, u-u®) .
Proof : This is a simple corollary of Theorem 11.1 and lemma 111.2 since the first (N/2)-1
eigenvectors W span the coarse space J"L, = X:’z ; it follows that the eigenvalues of probiem

(11.8) are n(n+1)/(N-1)N.

Remark |11.2 : Note here that the correction on the coarse grid needs only be done once and that
there is no optimal choice for the number of smoothings since the convergence is proportional to
this number. This is actually in accordance with the numerical simulation of {R.P.] as appears in

table 1 of that paper.

Remark 111.3 : Let us point out the fundamental reasons that give this rapidity to the algorithm.
They are hidden here due to the simplicity of the eigenvalue problem. First of all, even if this is
not of major importance, the matrix B is a good preconditioner of the matrix A. indeed, the
condition number of B™'A is order N? as opposed to the condition number of A which is order N3,
This will be also the case for other problems and has already been noticed by [H.] in a different
context for an application to conjugate gradient algorithms. This can be viewed as an inverse
inequality or a Jackson type one since the weighted L’-tgpe norm associated to the bilinear form b
is compared to the H'(A)-norm as follows
(11.14) ¥ ¢ € PUA) NHIA) , Il l2, < NN-1) B(g,0)
Secondly, the other property that is very important in the multigrid algorithm is that the factor k
as defined in Theorem |1.1 is also bounded by two constants independent of N. Indeed, we can state

V ¢ € X, such that a ¢, (9,v) = 0 for any v in X'
we have

(11.15) ble,9) < k"% ale.0) ,
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where the constant k is bounded by 4(N-1)/(N+2) as can be derived from lemma 111.2 .

Let us generalize now the results obtained we have obtained in this very simple situation to

the case of a multielement discretization.
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Y. Analusis of t] [ 1 Itigrid algorithm in tt
case of several elements.

We begin here also by analyzing the properties of the diagonal of the stiffness matrix A. We
immediately note that there are two kinds of diagonal elements in this matrix : those that
correspond to internal points, i.e. that involve the scalar product
(V1) A= T T o 0y, [dh; /ax dh, JdX(E, )
with i = 1,..,N~1, and those that correspond to interface points, i.e., that involve the scalar
product (IV.1) for i = O or N. The first kind of diagonal elements are the same as those involved in
the previous section. indeed, the corresponding Lagrangian interpolants vanish at the interfaces
and also on any subinterval that does not contain the point 8o therefore, from Lemma 1l.1, we
can state that

Vii=1,0N=1, V8 ,221,.K, Ay=(2/b) o NIN+D/[3 (1-(6)D)],
or again, thanks to a simple change of variable
(Iv.2) Vii=1,.N-1,V¥VeQ 2=1,.K, A“ = 0;¢ N(N+I)/[3(Eu- a,)(a,,,-Eu)] .

For the interface terms we have
LemmalY.l:For i=0 aendany £ =2,.K we have
(V.3) A= [(by ) +(b) T (N?+ N + 1)/3
Proof : As already used, the exactness of the Gauss-Lobatto formula gives, for i = O and€ = 2,.. K
(ori=Nand? = 1,.,N-1, due to the direct stiffness summation)

(IV.4) A= p, , [dhy, ZdxI2(E) dE + [, [dng 7dx]3(E) dE

A simple change of variables and the use of the symmetry of hy and h, yields
(V.5) A= [(2/b, ) +(2/b)] [, [dhy/dx12(E) dE .

Let us compute the integral on the right-hand side of this equation. First we have

(e 1) T, -y (x=E)
211, (-8

From (H1.13) we then get that
() = (e L () 720, (1)
so that, after integration by parts, we obtain
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[ 5 Ldny/adxJ20x) dx = = (2 L (1))72 [ 4 (x# 1) Ly(x) (d?/ax®)((x+1) Ly(x)) dx
= 2 L(1) (/) ((x+ 1) LyOOXD) ]
here again, the use of the exactness of the Gauss-Lobatto formula to compute the integral on the
right-hand side yields
(IV.6) [ [Ohy/dxJ2(x) dx = = (2 Ly(1))™" [(d®/ax®)((x+1) Ly(x))(1) gy
= (d/7dx)((x+1) Ly(x))(1)] .
It is an easy matter to note that
(d/dx)((x+1) Ly(x)) = (x+1) Ly (x) + Ly(x) ,
(/) ((x+1) L)) = (x+ 1) Ly 0 + 2 L3 (x)
from (I111.12) writen in the form
(1=%%) Ly (x) = 2xLy(x) + N(N+1) Ly(x) = 0 ;
we derive that
Ly(1) = N(N+1)/2
Ly (1) = (N=TIN(N+T)(N+2)/8 ,
Ly (1) = (N=2)(N-1IN(N+1)(N+2)(N+3)/48 ;
this gives
(/) ((x+1) Ly00)(1) = N3N+ 1)2/4
(/) ((x+ 1) L 00X(1) = (N=1INA(N+ 1)3(N+2) /24 .
Plugging this in (1¥.6) and using the relation (see [D.R.])
(IV.7)  gy=2/(N+1N ,
we derive
(1V.8) [, [dhy/dx]2(x) dx = (N?+ N + 1)/6.

The lemma follows then from (1V.5).

From (1Y.2) (1V.3) and (IV.7), we derive that the bilinear form b:m that defines the
smoother and is associated to the normalized diagonal part of A is proportional to the bilinear form
B:M defined for any ¢ and y in X,': as follows (remind (111.8))

(IV.9) By (09) = Ty Bylow)
where
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bylo.w) = {ZiN:I‘ 0ie 0(E; o) W(E;p) [(E;,- 8)(8y,4-5; )]
+ 00 ¢ 9(Eq ) W(Eq ) [(N?+ N + 1)/ (b)%] + 0y, 9(Ey o) WlEy ) [(N24 N + 1)/ (b))}

In the two next lemmas, we shall analyze the eigenvalue problem between a and B: 6L that
will allow first to estimate the normalization factor between b: 6L and B: 6L
Lemma 1Y.2: For any ¢ in xN | we have
(V.10) [, 9°2(x) dx < (4N®+2N243N-1IN/B(NZ+N+ 1) By o, (9.9) .
Proof: Toany ¢ in X,’,‘ let us associate the element ¢, defined as follows
V11) 9=0 - Ty 008 (g * Pt
so that ¢, and ¢ coincide on the interior collocation points. Using the inequality

(a+b)2 < (1+oc') 8% + (1+) b2,
we deduce from (IV.11),
(IV.12) [, 0200 dx < (1) [, 05200) dx + (1400 [, [9Caphg 5 + 9oy, Iy (J200) O
It is an easy matter to note that the restriction of ¢, to any A, belongs to Py(A,) NHJ(A,) so
that the lemma 111.2 and a simple change of variables yields

Jag ®620x) dx < N(N-1) ) , 0,0 P2k, I(E; 4= 8)(8y+by=E P17

<SNIN=1) 71 0, 028, (K, - 8)(8peby=E, 01",

Besides, from (1V.8), we derive that

Sne [ a]2 00 dx =[5, Thy (J20x) dx = (N*+ N+ 1)/3b,
as following the same lines as in the proof of lemma IV.1; we get, for any N > 2

JAePoaye (X) dx < 1/3b, .
From (1V.12) we then deduce

frg 9200 dx < (140 INN=1) )71 0, 02(E 1 (€ 8 (aysby=E, 01"

+ (140)[(N?+N+2) /30,1 loCap)l” + [oCa,, )P,

choosing now o = 3(N-1)(N2+N+1 )/(N+1)(N24N+2); it follows from (1¥.7) and (1V.9) that

[ 920x) dx < (4N®+2NZ43N=1IN/3(N2+N+ 1) By 5 (9.0)
and the lemma follows.

Remark IV.1 : The estimate in the previous lemma provides a less precise characterization of the
eigenvalue problem than the one we could get in lemma I11.1, but we note that the highest
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eigenvalue involves the same asymptotic order as in the previous section and this will be enough
for our purpose. The important fact is that the result is independent of K and of the ratios between
the various subinterval length b, . As we shall see in what follows, this will result in a multigrid
algorithm that will work as well in any case of number of subelements. Besides, note that the
smallest eigenvalue of problem (11.8) scales like K~2 (independently of N) such that the condition
number of B~ 'A behaves like (KN)? , in accordance with the finite element equivalent (when N is
order 1) and proves that the conjugate gradient algorithm, when preconditioned by B, has a rate of
convergence which behaves like 1- ¢/KN and depends on both K and N!!! This is of importance when
we compare the preconditioned conjugate gradient with the multigrid algorithm. We refer to the
thesis of £. M. RONQUIST [R] for numerical evidences.

It is an easy matter to derive from lemma IV.2 that the normalized form b:m is defined
from 5: oL By multiplication by a factor of order (4/3)N?. The other property that is important

Xp’2L of those elements ¢ of X!

for the analysis of the multigrid algorithm deals with the space
that verify

(V.13) VyeX)? a (e, v)=0 .

Lemma ¥.3: For any ¢ in X\'** we have

(IV.14)  b) (,(9.,0) < 4(4N°+2N243N=1)/3(N2oN+ 1)(N+2) al9.0) .

Proof : Let ¢ belong to X}’ , and let us define for £ = 2,.. K the element y, of X\'Z by
Ve € Xy L Vk=1,.Kel, yy(a) =64 .
It is an easy matter to compute that
[ 170, forxinA,, .
yolx) = | =1/by, forxin A, ,
[ 0, forxinA ,k=loandk z0-~1.
Using this function in (1¥.13), we derive that
Ve=2,.K, (1/b,,)(¢(a,) - 9(a,_ 4))+(1/b,)(0(a,) - 9(a,,,)) =0 ;
recalling now that ¢(a,) = ¢(a,,) = O, we deduce that in fact ¢ vanishes at any interface so that
91n, 1S an element of Py(A ) N Ho(A ). The use of (I11.15) over each A, proves that

E:m(m) = Z,',(,, D(9.9) € 4/N(N+2) a(9,9) .
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and the lemma follows by recalling the normalization factor of b: oL

As a simple consequence of the previous lemmas and (11.11)(11.14) we derive that the
multigrid algorithm converges toward the numerical solution with a speed independent of both N
and K, indeed, we have
Ihsorem 1Y.1: The multigrid algorithm based on the Jacobi preconditioner converges, and at any
V-cycle with m smoothing as detailed in section |l , the rate of convergence is given by

[ r €200 dx < ¥ [ 5 6200 dx
where

¥ = [(k=1)/k]P™, form < (k-1),

and
¥ = (kFm AN% , for m > (k-1),
with
K = 4(4NS+2N2+3N=1)/73(N2eN+1)(N+2) = (16/3) (1+0(N""))

Remark 1V.2 : Let us note that the convergence rate that we have theoretically obtained is
independent of K and the sizes of the subintervals and does not deteriorate when N increases; this is
in accordance with what is numerically observed in part one of this paper [R.P.]. However, the
rather rough estimate we gave for the highest eigenvalue in (1Y.10) provides a rather too high
estimate for the convergence parameter ( close to 0.81 when N is large enough ). Note aiso that the
optimal choice of parameter 4 < m < S is close to what can be observed numerically. As in the
analysis of the multigrid algorithm when a finite element method is used, this optimal parameter
is lower than the actual one. By using negative order of the norms defined from b and a, we could fit
more closely to the experiments for this last result. This would be obtained, however, at the price
of a much more technical proof and would not really be worthy since the main conclusion is the
independence of the convergence rate with respect to the parameters of the discretization.




—

Y. Analysis of it [ 1 Itigrid algoritt in tt
case of non constant coefficients.

The previous chapter was devoted to the analysis of the multigrid algorithm when applied to

the very simple equation ~u,, = f. Of interest of course is to know that the same conclusions hold

true in more complicated situations. We shall extend here the analysis to the case of the equation
(v.1) (o), =1,
where o is a function of x such that there exists two constants o™ and * with
(V2)VxeA, O<o” sa(x) s’
and also such that « is in the Sobolev space W2*(A). We shall assume here that the domain is not
decom posed into subdomains, leaving this analysis to a forthcoming paper as well as the analysis of
the multidimensional case. The analysis provided here is inspired from the reference [B.V.}.

It is standard to note here that problem (V. 1) can also be stated in a variational formulation
like (11.19) with now a defined as follows
(v.3) Y o.u € HI(A) , ale ) = [, o(x) 9'(x) ¢'(x) dx .
It is rather well known also that the general spectral(element) discretization of the equation
consists in first choosing a discretization parameter n € IN*, then : Findu, € X" = P (A) N H;(/\)
such that
(V.4) Vv, eX" ,a%u,v,)=(fv), ,
where the discrete form a" is defined here by
(V.5) Vo, peX", a'(o.p) =(x9,,¥,),
The nested spaces for the multigrid algorithm are exactly the same as in the previous sections, i.e.,
M, =XV and M, = X", and the strategy also based on the use of the Jacobi preconditioner as a
smoother. The corresponding bilinear form b" is deduced from the following 6" after normalization
of the maximum eigenvalue of problem (11.7): b" is defined by
(v.6) Vag,yex", Mo =N A oM o
where A corresponds to the diagonal entry of the stiffness matrix A, equal to

A, =" A,
and we recall that h,',' is the Lagrangian interpolant at the point t,': .From hypothesis (V.2) and the
exactness of the Gauss-Lobatto quadrature formula, it is simple to derive that

—_—_
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V.7 veex", de.9)< o alg,9) <o N(N-1) B (g,9)

< (3ot /7Y (N=1)7(N+1) BN (9,0),
where we recall that b(g,y) = ]A 9(x) w(x)/(1-x%) dx. As a result, we derive that the
normalization of b" satifies
(v.8) b= (3o /) N=1)/(N+1) BY.
From the eigenvalue problem : Find ¥ in XY and X in R* such that
v.9)  vvex', v =avMyy
that possess N-1 eigenvalues 0 < A, < X, € ..< N\y_; < 1, the eigenvectors of which are chosen
normalized with respect to the norm derived from b" we define, as in (11.10) the | . li, norms for
any8 € R by
(v.10)  ¥vex, IvIZ, = Zao aE v w2
Here the bilinear forms associated to the definition of the system and to the smoothing depend on N.
The definitions of the smoothing operatorS" and the correction operator @ have to be precised. Let
us do this in the simple case where only two grids are used. Instead of (i1.3), the smoothing
procedure consists in: Find 8¢ in XV such that
(V.11 vvex, V(8% -9 =g'v)-d'tev) .
while the correction procedure consists in: Find ¢ in x"/2 such that
v.12)  vvexV MGv) =d'tv-aew) |
and define CNg = ¢ + §. Then as explained in the general case, during a V-cycle with m/2
smoothings down and up the error e is changed in e' as follows

(v 1 3) e1 = (SN)M/Z GN(SN)mfz eO .

Before entering in the details of the analysis of the decay rate of the error, let us state some
results of general interest. First of, let y be in IP:(/\) be given, r(y) and r(y) in IPS(/\) be such
that
(V.14) ¥y € PUA)Y, blr(x).e) = BNry(w) ) = a'(n,w)
where b is defined in (111.13). 1t is a simple consequence of (V.9) to derive that

I PR 3 = BP0 ,r () = 8RR < IR B ) Mo
whence

M) Mo n < M %l -
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Besides, from (V.7) and (V.14), we have

b(r(x),F(%)) = bN(ry(R) F (D) < [BM(ry () r(x)) BMP(R) r(w)) ]2

< (0*2/700) 2 [BM(ry () Py (R)) BCr(R) (]2

finally, we derive that the solution r(y) of (Y.14) has the following stability property
(v.15)  b(r(w),r(x)) <cll wlll,y -
Then let us state some approximation result the proof of which will be presented in the appendix.
LemmaV,1:Let p defined over A and such that
(V.16) [, 2)/(1-xD dx < o0
and n be a positive integer. The solutions ¢(p) € H;(A), ¢,(0) € lP:(A) defined by
(V.17) ¥ veHIA), algle)v) =bloy)
(V.18) ¥ vePXA), a%e,(0).v) =bloV) ;
then the following approximation results holds
(V.19)  19(0) - 9,(0) > <cn?B(0,0)
(v.20)  B(g(0) - 9,(0).0(0) - 9,(0)) <cn~*B(p,0) .

Let us denote by € the term (S¥)™2e% ; derive now as in (11.12) that,
v.21) e,y < Am/2,172) [l el
(v.22) ey < Am/2,172) e’ llyy -
From the definition of C", we derive that, for any y in PJ(A)
MC" %oy =M% =X Moy <l % = NCN=1)Cr()) gy + Il X = NCON=1)@(r(x)) llg y
hence
€% Mg < (x*27a™)[ b(y - N(N=1)@(r(x), x = N(N-1)g(r(yx))'"2
+ b(X = N(N=1)a(r(x), ¥ = N(N=1g(r(x))'* ]
With the previous notations (see (V.14) and (V.18)) and recalling that the normalization factor
between the forms b and b is N(N-1) (see (l11.14)), it is simple to derive that
% = N(N=1)g)(r(x)), while ¥ (defined in (V.12)) satisfies ¥ = N(N-1)g,,,(r(%)); we derive
I C*% Mo < (x*2/0)NIN=1D)[ bay(r(R)) = 9Cr(R), By(r(R)) = @(r(x))'?
+ B0 @y/2(r(R)) = 9(r(R), By (r(R)) = (P2,
applying next (¥.20) for n = Nand n = N/2, then (V.15), we obtain
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Lemma V¥.2 : There exists a constant ¢ independent of both N and K such that
(v.23) V3 ePA) , IIC gy <cllxil,y -

Plugging (V.23) in (V.21) and using (V.22) give now the following

Iheorem Y. 1: The multigrid algorithm based on the Jacobi preconditioner converges, and at any
Y-cycle with m smoothings as detailed in section |l , the rate of convergence is given by

(v.24) [, e2(x) dx <c Am,1) [, 8:2(x) dx

Remark Y.1 : The decay rate of multigrid algorithm is independent of N, and it is interesting to
note that its asymptotic behavior is O(1/m).

Remark Y.2 : The analysis of the case of non constant coefficients requires some regularity (i.e.,
W2 ) of the coefficient  this is required for lemmaV.1). We do not know to what extend the lack
of regularity of « deteriorates the actual convergence. Note however that the local regularity is
just required, i.e., & can be non smooth through the interfaces. The multigrid procedure proposed
in [ZWH1.2], and that is based on another approach of smoothing, is numerically proved to be very
robust with respect to the irregularity of o« [*].

A, APPENDIX

The main purpose of this appendix is to provide the proof of lemma V.1, Let us first recall
the following result of the approximation theory (see [D])
LemmaA.l: Let n, denote the orthogonal projection operator from L3(A) onto P,(A). The
following approximation results hold
(A1) VueH™A), flu-muully<ctm)M™ [ [, u™20x) (1xH)™ ax])'? .
Proof : Let us recall that the Legendre polynomials constitute a total system of orthogonai
functions of L2(A) that verifies
(A2) AL L (x)dx =8, 2/(2n+1) .

* T.A.ZANG- personnal communication.
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Let us use this basis to span the function u; we arrive at
U= 0L, .
so that the L2(/\)-pr0jection of uonto P, (A) is equal to
My U =Zr=o a,L,
and the error
(A.3) U=Tyu=2 L .
Let us recall now that the Legendre polynomials satisfy the following relation
(=P L) =-ntne) L, .
From (A.2) we conclude that
(A4) AL L) (1=x®) dx = 8 2n(n+1)/(2n+1) .
From (A.2) and (A.3) we get
hu-myully= X0y 282 /(20+1)
while, from (A.4), we derive that
JAu200 (1-x®) dx = 2 2n(n+1) a2 /(2n+1)
and (A.1) is then just a simple consequence of these two equalities in the case m = 1. The general

case is handled by recursion.

As a consequence, we derive that
Corollary A.1: Let rt,]' denote the orthogonal projection operator from Hg(/\) onto IPSI(A).
The following approximation results hold
(A5) Y ueH™A)NHYA), lu=-mpull; clm) M™ [ [, u™20x) (1-x®)™ dx)'2 |
Proof : It has already been noted that for any u in Hg(A)

[rgul(x) = [2) (U dt
so that (A.S) is an easy consequence of lemmaA.1.

Proof of lemma V.1 : It is an easy matter to note that the solution ¢(p) of problem (V.17)
satisfies
vxeA, -[(«le€@]),]J00) = 00x)/(1-x?)
From (V.2) and (V.16), we derive
(A.6) [, [0€@)120x) dx + [, [9(0)12,00) (1-x®) dx < ¢ [, 02(x)7(1-x?) dx < ¢ B(p,0) .
From corollary A.1, we know that there exists an element y, of P°,,(A), such that

|
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| 9(0) =y, <en™' f5 [0@12,00 (1-x%) dx
and
Ly by <l o],
so that
(A.7) 1 9(0) - v}, <en”' B(p,0) .
From the ellipticity of the form a" , we derive that there exists a constant 8, such that
B19,0) -, 12 <a™o () - v, 0,(0) - y,)
using (V.17) and (V.18) we derive that
Blon0) -y, I
or again

< a(p(0), 9,(0) - w,) -a"(y,,9,(0) -y,) ,

(A.8)  Blo,(0) - v, 12 <ale(e) - v, 0,(0) - w,) +alw, , 9,(0) - w,) - 8%y, . 9,(0) ~ ¥,) .
Let us note now that from the exactness of the Gauss Lobatto quadrature formula we get that
(A.9) Vo, € Po(A), (aw, (0,(0) = w)) = (o, (0,$0) = w))pgy
so that
aly, » 9,(0)-y,) - 3"y, , 0, (0)-y,) = ((x~x )y, (9,(0)-v,)) - ((x-ax )y, (9, (0)-v,)), -

and using now (A.8) yields
(A10)  1e,(0) = woly <cClo€e) - woly +loc =yl oo nylugly ).
It is standard to note that there exists an element « such that

o - oyl oo py s o™ EiglaPlminy
hence, from (A.10) and (A.7), we derive that

lo(0) - 0,0 Iy o™ (6(0,0)"2 + (TF o 1P | oo py) T0(@)1y)
and (¥.19) is an easy consequence of (A.6).

Let us turn now to the proof of (V.20). We shall use a standard duality technique and first
define an element y in Hg(/\) as follows
(A11) Vv eH(A), alx,v)=b(e(e) ~ 9,(0), V) .
It is an easy matter to derive

b(9(0) ~ ¢,(0),0(0) - 9,(0)) =a(x, v(0) - ¢9,(0))

zaly-m), %, 900) - 9,(0)) +alm,),, %, 9(e) - 9,(0))
za(y =), %, 9(0) - ¢,(0)) + (&"~ )7}, %, 9,(0)) .

Let us examine the last term on the right-hand side of this last equality; using (A.9) one more time
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we write

(@ - (1, ,, %, 9,(0)) = (ot - o)1), %), 0,00)),

s ((a-o)(m) 0 e,00))

so that

b(9(0) - ¢,(0),8(0) - 9,(0)) =a(x - 1), %,0(0) - 9,(0)) + (ot = (W, 5, ¥)', @,(0)),

T NG AP IR (DI

hence

b(9(0) - 9,(0).0(0) - 9,(0)) <cly -y, xl 100 - 0,0,

con? I o laP e ay Mo k1 100,

<clg-n),xl e -9
22
+Ch 2 Zj=olu(j) IL“(/\) I “:‘/2 X || IQ’"(Q) l| .
Using now corollary A.1 and (A.11), we derive (after bounding ij:o | o |L°°( A)bya constant)

[6(eC0) - 9,(0),9(0) - 9,012 c(n"'190) -9, + n2l o @], ) ;

thanks to the stability of ¢ (0) with respect to o, we derive (V.20) from (V.19).
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the proof of section V.




r—————— —
! -27-

References

(BD] R. E. BANK & C. C. DOUGLAS - Sharp estimates for multigrid rates of
convergence with general smoothing and acceleration, SINUM 22, 4 (198S), pp. 617,633.

[BV] D.BRAESS & R.VERFURTH - A note on multigrid methods for nonconforming
finite element methods, Stochastische Mathematische Modelle,number 453, Mars 1988.
Preprint Universitiit Heildelberg.

[DR] P.J. DAVIS & P. RABINOWITZ - Methods of Numerical Integration, Academic
Press (1985).

[D] M. R. DOOR - The approximation theory for the p-version of the finite element
method, SINUM, 18, 3 (1984), pp.1180, 1207.

[FRDP] P. FISCHER, E. M. RONQUIST, D. DEWEY & A. T. PATERA - Spectral element
methods, algorithm and architecture. In Proceedings of the first international conference on
domain decomposition methods for P.D.E.,Paris, R. Glowinski, G. Golub, G. Meurant &
J. Periaux eds. SIAM (Philadelphia) 1988.

D. FUNARO -A multidomain spectral approximation of elliptic equations. Numer.
Math.PDEs, 2 (1986),pp 187-205.

[FQZ] D. FUNARO, A. QUARTERONI & P. ZANOLLI - An iterative procedure with
interface relaxation for domain decomposition methods, to appear in SINUM.

[GHO) D. GOTTLIEB, M. Y. HUSSAINI & S.A. ORSZAG - Introduction, Theory and
applications of spectral methods, in Spectral Methods for Partial Diffrential Equations, R.
G. VOIGT, D. GOTTLIEB& M. Y. HUSSAINI eds, Society of Industrial and Applied
Mathematics, Philadelphia, PA, 1984.

(H] W. HEINRICHS - Improved condition number for spectral methods, to appear in
Math. of Comp.

[MP] Y.MADAY & A. T. PATERA - Spectral element methods for the incompressible
Ngvier—Stokcs equations, in State of the art surveys in Comp. Mechanics, A. K. Noor ed,,
ASME (1988).

(MPR1] Y. MADAY, A. T. PATERA & E. M. RONQUIST - A well posed optimal spectral
cs:lcml?nt approximation for the Stokes problem . Icase report no 87-48, to appear in
INUM.

[MPR2] Y. MADAY, A. T. PATERA & E. M. RONQUIST - A spectral element
approximation for the 2-D Stokes problem . To be submitted to SIAM J. Numer. Anal.

(MM] J. F. MAITRE & F. MUSY - Multigrid methods : Convergence theory in a
variational framework, SINUM 21, 4,(1984) pp. 657-671.

[P) A.T.PATERA, A Spectral Element Method for Fluid Dynamics : Laminar Flow ina
Channel Expansion, J. of Comp. Phys. 54 (1984), pp.468-488.

[QSl] A. QUARTERONI & G. SACCHI LANDRIANI - Domain decomposition
preconditioners for the spectral collocation method, submitted to J. Scient. Comput.

‘-“




N

-28-

[R] E. M. RONQUIST - "Optimal spectral element methods for the unsteady
three-dimensional incompressible Navier-Stokes equations™ Ph.D. Thesis, Massachusetts
Institute of Technology, June 1988.

[RP] E. M. RONQUIST & A.T. PATERA - Spectral element mu}ggid. part 1
Formulation and numerical results, J. of Scient. Comp. 2, 2 (1987) pp.389-406.

[VGH] R.G. VOIGT, D. GOTTLIEB & M.Y. HUSSAINI, editors, "Spectral Methods for
Partial Differential Equations”, SIAM (1984).

[ZWH1] T.A. ZANG, Y. S. WONG & M.Y. HUSSAINI - Spectral multigrid methods for
elliptic equations, J.C.P. 48,(1982) pp485-501.

[ZWH2] T.A. ZANG, Y. S. WONG & M.Y. HUSSAINI - Spectral multigrid methods for
elliptic equations I, J.C.P. 52,(1984) pp489-507.




ﬁ—-——’f

Report Documentation Page

Pt S RIS AT
SRS I S

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR-181761
ICASE Report No. 88-73
4. Title and Subtitle 5. Report Date
SPECTRAL ELEMENT MULTIGRID December 1988
PART 2: THEORETICAL JUSTIFICATION 6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
Yvon Maday and Rafael Munoz 88-73
10. Work Unit No.
9. Performing Organization Name and Address 505-90-21-01
Institute for Computer Applications in Science 1. Contract or Grant No.
and Engineering NAS1-18107, NAS1-18605
Mail Stop 132C, NASA Langley Research Center _
Hampton, VA 23665-5225 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration
Langley Research Center 14. Sponsoring Agency Code
Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor: Submitted to J. Sci. Comput.
Richard W. Barnwell

Final Report

16. Abstract

-~ We analyze here a wnultigrid algorithm used for solving iteratively the
algebraic system resulting from the approximation of a second order problea by
spectral or spectral element methods. The analysis, performed here in the one
dimensional case, justifies the good smoothing properties of the Jacobi
preconditioner, that has been presented in part 1 of this paper.

5 V'ﬁ womp‘.'

-

17. Key Words fSugoosmd by Author(s) 18. Distribution Statement

;_#spectral,’ spectral element,’ nultigrid; 77| 64 D Numerical Analysis, ‘(/[&)ﬁ_;_,_

19. Security Classif. (of this report) 20. Security Clessif. (of this page) 2. Price
Unclasseified Unclassified 30 AO3
NASA FORM 1628 OCT 88
NASA-Langley, 1008

_ \




