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i. Introduction.

Spectral element methods are high order methods that combine the flexibility of finite

element methods with the "infinite order accuracy" of spectral methods. The domain of computation

is decomposed into some subdomains - the elements - (generally these are deformed

parallelotopes), and the exact solution is approximated by a piecewise polynomial of high degree.

The spectral element method differs from other spectral methods using domain decomposition

techniques (patching methods) by the way the matching conditions are handled. These are, like in

the finite element method, implicitly taken into account by the variationnal statement of the

discrete problem. This allows for more flexibility with no loss of the spectral accuracy ( see, e.g.,

[P], [M.P. ] and [F]). When the algebraic equations resulting from this kind of discretization are

obtained, the problem that remains is to solve, in an efficient way, the algebraic system.

The interest of domain decomposition technique is to fraction the computational task so as to

yield smaller problems and to use parallel computers for instance. If the value of the approximate

solution were known on the various interfaces, the problem would be very simple since it would

results into the resolution of as many disconnected problems as the number of elements. The main

difficulty is that this value is not known; hence a technique known as the iteration per subdomains

has been proposed in the literature [F.Q.Z.] [Q.Sl] to discover this value iteratively. Another

approach is to try to invert the whole problem by not working iteratively on each subdomain. This

method, (M.P.] (F.R.D.P.] (R], consists in reducing iteratively the residue at the same time on

every subdomain. The global method used can be based on a conjugate gradient algorithm or another

iterative procedure,

In the first part of this paper, E. M. Ronquist and A. T. Patera [R.P.] have presented some

results concerning a new multigrid method for the resolution of the algebraic system resulting

from the approximation of a second order P.D.E. by spectral or spectral element method in the

one-dimensional domains. The very simple idea of using the Jacobi preconditioner as a smoother

for the iterative multigrid algorithm appears to be a very good one. Indeed, the numerical

properties of this smoother seems to surpass all expectations; the reduction rate of each V-cycle

appears numerically to be independent of the discretization parameters.
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When iterative techniques are used, it is important to understand why these methods

converge in order to foresee the generalization and the ability of the methods to be adapted to more

than test problems. Here we propose an analysis of this phenomenon and provide the justification

of these very good properties. Many general convergence proofs exist in the literature for the

numerical analysis of the multigrid technique; among them let us cite [M.M. ], (B.D.]. We use here

the abstract framework developed by R. E. Bank and C. C. Douglas [B.D.] that fits exactly the

numerical conclusion of [R.P. ] concerning the optimal choice of the smoothing operations.

To our knowledge, the numerical analysis of the convergence for' the multigrid algorithms

used in spectral type techniques is somehow empty. The main reason is certainly that the nice

analysis that can be done requires a variational framework and the awareness that the spectral

methods are, exactly or very close to, variational approach is not so old. The other reason,

perhaps, is that the previous multigrid techniques applied to spectral type methods [Z.W.H. 1 ,2]

used a finite difference preconditioner as a smoother and a Chebyshev framework. The

convergence, in this case, is not so brillant as in the present approach and a priori more related to

the good properties of preconditioner of the finite difference operator. Besides the variational

formulation involves a nonsymmetric form that makes the analysis much more involved.

The paper is organized as follows; in section II, we recall the theory of [B.D.] in a form

adapted to our analysis. In section III, we first explain on the test example of the Galerkin spectral

approximation of the homogeneous Poisson problem the fundamental reasons of optimal properties

of this multigrid method. The tools are based on Jackson inequality and some refined version of the

approximation properties of the L 2-projection operator. In section IV, we generalize the analysis

to the case of the spectral element approximation. We compare in each section the results obtained

by the theory with the numerical results presented in [R.P.]. The last section V deals with the one

domain multigrid technique when applied to a non constant second order problem.

The generalization of these results to multidimensional problems will be presented in a

future paper.
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II. Position of the oroblem and abstract theorem.

11.1 Generalities on variational multigrid techniques.

In this subsection, we first recall the theory developed by R. Bank and C. Douglas to analyze

the convergence rate of the multigrid algorithm for solving the linear algebraic system that arises

from the numerical approximation of elliptic partial differential equations. We present it in a

version that we shall use afterwards. First of all, let X be a Hilbert space, a be a continuous,

elliptic, symmetric, bilinear form and g be a continuous linear form, both defined over X. The

problem to be solved is: Find u E X such that

(11.1) VvE3 , a(u,v)=g(v) .

For the numerical resolution of this problem, we first introduce a sequence of finite dimensional

subspaces At1 c JA 2 c ... c dA't of 3 ; then consider the problem : Find u. E Ajf. such that

(11.2)j V v E Aj , a(uj,v) = g(v) .

The basic idea for solving problem (11.2) with a multigrid algorithm consists in first

defining a simple problem over the largest spaces GA. and solving it, then correcting the residual

derived from the solution of this simpler problem when plugged into problem (1l.2 )j by solving

problem (I 1.2)k for lower values of k < j. The first step is the most important one and relies on

the good choice of continuous, elliptic, symmetric, bilinear form b, called smoother, that

represents a in some sense and is easier to invert. Let us suppose that we have only two grids, the

coarse one (i.e., A,.1 ) and the fine one (i.e., JA2 , and j = 2). The two-grid procedure consists in

1 - m/2 steps of smoothing where we solve m/2 times a problem like the following one : Find

Si in AN. 2 such that

(11.3) V v E A 2 , b(SO-0,v) = g(v) - a(,,v)

2- one step of coarse grid correction where we solve only once a problem like the following one:

Find p in A. such that

(11.4) V v E rt , a(iv) = g(v) - a(pv)

and define 0i = I + $.

3- m/2 steps of smoothing as in (11.3).

We consider here just two grid levels, the only reason is for sake of simplicity of the

notations, but as in (B.D.], we could consider the whole W-cycles based on more than two levels. If
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the initial guess for the exact solution u is u0 , after one V-cycle like the one described previously

by the three steps 1 - 2- 3-, the resulting solution is ul and can be expressed like a function of u0

as follows

(11.5) uI = T/ 2 (rI 2(u0)

so that, after the rth Y-cycles, the solution is

(11.6) ur [ Sm/ 20n1 2]r(U0)

Moreover, it is very simple to note that if u is the exact solution, then

eu=u and Su=u,

so that, if er denotes the error after the rth V-cycle, we derive from (11.6) that

(11.7) er = ESr/ 2Cem/ 2 ]r(eo) .

Note that the equations (11.3) (11.4) define affine operators e and S but in (11.7) we can consider

these operators as linear ones since they operate on differences e° and er; from now on, we shall

consider these operator as linear ones while keeping the same notation.

As noted in [B.D.], of importance is the analysis of the spectrum of the following eigenvalue

problem : Find IV in AN' 2 and X in R such that

(11.8) Vv E AJ2 , a(Qv)= Xb(Pv) ,

where b has been scaled so that the maximum eigenvalue Xm x is equal to 1. Let us order the

eigenvalues in increasing order 0 < XI < X2 < .< XP = >'Ma x = 1, (where P is the dimension of

A'2 ) and choose relative eigenfunctions Y1 , I2 ...,qjp I Of equal importance in the analysis is
also the compatibility between the coarse space Art and the space spanned by the first

eigenvectors.

More precisely, under the following hypothesis

H the space l 1 coincides with span (IV,, Y2 .... ), (where p is the dimension of At1 )

then one can prove the following theorem

Theorem I. LI : Under the hypothesis H the error after the first V-cycle verifies

a(e,ef) < ( -xp rl )2M a(e ,ee).

Proof : First of all, let us recall that the eigenfunctions YnY n = 1 ,... ,P, form a basis of A.{, that



is orthogonal for both the forms a and b. Let us span e° in this basis; we get

then, due to (11.3) and (11.8), we derive that 8m/ 2 (e°) satisfies

(11.9) Sm/(eo) = 1 (1-X o j n

From hypothesis H, we then derive that the operatore truncates the previous spectrum so that
OOM/(e°) =2 Nz=. ( X)m/2 -0 P .

n 1 I)-Xn en- n

then the smoothing procedure diminishes once more the spectrum of the error as follows

eI = /2e0 / 2 (eO) = N 1 )m ;0-- ,P+1 (1-Xn) n n

We deduce now from the orthogonality of the Pn that

a(e',e') = np+1 ( 1 -n en nn np"0,.2 en n n-)N= n0)2 a( , e) 1 _X ) 2m )

<1 X ) -,n ( 1 - (1 -nX) a(e°,e ° )

Remark II. 1 : Note that the previous theorem is very simple and is a trivial extension of the

analysis of the multigrid procedure in the Fourier space. Note also that if the space A,.1 is not so

well chosen, for instance if it coincides with span {YN - p' 1 - p. 21 "' N), then the multigrid

procedure would not converge rapidly since, after the first Y-cycle, we obtain
(m/00) = ZN-p ~ ~8~ ~~~e 1'e n2e 1x

and the error remains important since X, can be veru small. In fact, the method has exactly the

same properties as the plain Jacobi algorithm.

It turns out from the previous analysis that the multigrid procedure, when applied under

hypothesis H, is degenerated since only one Y-cycle is needed and m is the only important factor of

convergence. So in the non trivial applications where the hypothesis H is not verified, we have to

measure the actual situation between the hypothesis H and the situation explained in remark 11.1.

This can be explained as follow : the "rough" eigenmodes ( [B.D.] denotes this way the qn . with X.

close to 1) are damped during the smoothing procedure (their components are multiplied by a

factor ( 1 -X n) ) while the "smooth" modes ( corresponding to small X) remain almost constant.

Under the hypothesis H these are completely erased during the correction procedure, but if we are

not in this optimal situation, they can only be damped also during this step.
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The general analysis proposed in [B.D] allows for measuring the position with respect to

both hypotheses. Let us recall the basis of their proof since we shall extend it in section V. To this

purpose, they introduce the various norms, defined for any real index 8, as follows
(JJ~~~lo)~ ' ' II e[TNl~ 2 ]1/2

(11.10) V 'p E AP2 B1~11.= E = I Xnjt On

They introduce also the function f

(1. 1) f(a,b) = aa bb (a+b)(a+b) = SUpx e 1o1] ( -x)x xb

Then we derive that
,E , < t < =N e 2 V /2

(11.12) V' 2 ,E A o X=e ^l (1X)mXg 2

< f(m/2,(B-T.)/2)II II

let us write now

111 "" e ll2 11 = a( em/12 ' egm/20) a( Ogm1/ 2 0' C$"%i- / ) a esg' 2, m/20)

(sup e,*= II_ III I"= III2
<lI A8up2, _0I/, Ir/III O1 1 1+II

so that we derive

(11.13) 111lOS W (plll1 <[SUP,*f 2 1110* 1111_0/lle 110*1ll 1  lS W2 lllII,+,

which is valid for any > 0; we deduce from (11.12) that
III fml2egm/2 11 I1 i< Km/2,6/2) III em 21P II1._

< fm/2,1/2) III e~m/20 III, [sup, , 2I e2 I III e11 iii ]
< 1(m/2,§/2) [sup , , 2 I I I I I I ",j ITI1+2

< A~m ,) [supC A 2 I e ,. 1111_0/ 1110 111, ]2 I I1

Defining At' as follows

A 1 1 = ( 'E APt2 , such that V %p crt. , a(,*) = 0 ,

(that coincides with the range of () and by minimizing the right-hand side over , they state the

following

.h, .oem.L : Assume there exists a constant K > 1 and ( > 0 such that for any fp c 't 1
"

then

(11.14) a(ehee) < Yo(e°e
)

where
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(11.1) ( [(K-1)/K]2m if m <oC (K-l)

SKf(m,(X))2  if m > 0 (K-1).

11.2 Formulation of the spectral element discretization.

Let us turn now to the position of the problem. We consider here the simple test problem

over the interval A ]- I , 1 [ : Find u such that

(11.16) -uX = f , over A

provided with homogeneous Dirichlet boundary conditions

(II.17) u(-1) = u(1) = O.

where f is a given force. This problem is very simple, but it allows a statement of the basic

features of the multigrid algorithm and an understanding of why the method works.

The spectral element method for approximating the solution of (11.16) consists in

discretizing the space of acceptable functions by a subspace of piecewise polynomials. More

precisely, given a pair h = (K,N), we first break the interval A into K disjoint subintervals of

comparable sizes
K

=Uk=IAk , Ak-]a,Iak +bk[;

then, we choose for space of approximate functions a subspace X" of H'(A) consisting of all

piecewise polynomials of degree < N,
(II.18) " N nH'(A),
(I, 8) h  h 0Nr

where
(II.18b) Yh = ( such that PIAk E l>N(Ak) )

and PN(Ak) denotes the space of all polynomials of degree < N on Ak . We remind that contrarily to

the finite element approximation, the convergence is achieved by increasing the degree of the

polynomials N and not refining the mesh.

The discrete problem starts from the variational formulation of problem (II. 16)(II. 17)

that is: Find u in H'(A) such that

(11.19) V v e H'(A), a(u,v) =(f,v)

where (.,.) denotes the L2(A)-scalar product and a(.,.) denotes the following bilinear form defined

over H1(A) as follows

.... ... I IIIII lm m m ] I l0l
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V p,4EH'(A) , p~ p,~

Then we construct the numerical scheme by discretizing with Gauss-Lobatto quadrature formulas

the various integrals present in (II. 19) and restricting the space of test functions to X '

NThis results in the following problem Find uh E XN , such that

(11.20) V vh EhX ah.L(Uh ,vh) = (f,vh),GL

where the discrete forms are defined as follows
yN OqN K TNz @N

V ,4 E Yh h , h,GL = Ek=I bk! 2 .nO On 0(n,k) 1(nk ) I
N N , N, E Xh h hG ,0 = ("' , x'h,.GL

N N
Here, the )n , and the EN are the weights and nodes of the Gauss Lobatto-Legendre formula with

N+ 1 points and the collocation points n,k are defined by tn,k = ak + n+ . W recall here
N

that the integration formula is exact on P2N-I so that, contrary to the appearances, ah,GL does not
N

depend on h nor N since ahL = a ( see e.g. [M.P.]).

The algebraic system that has to be solved is derived by choosing the values of the unknown

function uh on the collocation points and representing uh in the basis of the interpolant basis hkfn

defined by : hkfn is the only element of yN such that

(11.21) V tm , hkon(tt,m) = St nm

The matrix system that has to be solved can be written as follows: Find u = (uh' ) such that

(11.22) Au=g

where A is the stiffness matrix with entries equal to
K _IN.2 )x (2/ b ) % '  I

(11.23) (2/bk)y. k n=0 Qn,k [dhi,,/dx dhjm/dx]

with Qn,k = g) bk/ 2 and E denotes the direct "stiffness summation" , while g is related to the

forcing term. We refer to [R.P.] so as to (M.P.] for more details on the derivation of this matrix.

This numerical method is proved to work ve-y well in a great number of interesting

problems that include, for instance, the full Navier-Stokes problem (see for instance [M.P.],

[M.P.R. I], [M.P.R.2] or [R]) and is numericaly competitive and implementable on a parallel

medium grain paradigm (see for instance [F.R.DP.]).

Let us turn now to the multigrid algorithm for solving iteratively problem (11.22). As
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explained in [R.P.], nested spaces are related to spaces of polynomials with lower degree X.' (say

M = N/2) and the smoother is simply the Jacobi preconditioner B that is proportional to the

diagonal part of the matrix A and normalized in such a way that the highest eigenvalue of B'1A is 1.

We shall analyze in the two following sections the properties of this preconditioner and explain

why the numerical method works so well as presented in [R.P.].

In this paper, we shall use two grids only though the analysis can be performed with no

extra difficulty than the one of comprehension, and we shall use

t1
= XN/2 and '2 = XhN

The problem enters in the general theory of [B.D.] since the numerical problem involves bilinear

forms and matrices that do not depend on h.
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11. Analusis of the convergence of the multigrid algorithm in the

case of one element.

As announced in the title, we shall assume for the moment that the discretization is applied

on only one domain to problem (11.16). For sake of simplicity, we shall drop out the second index

that corresponds to the subelement characterization in the notations. The situation is simple here

as soon as we have explained the properties of the diagonal matrix, but this simple example

permits enhancement of the main features that allow for a rapid convergence of the algorithm. The

problem can be written as a pure collocation scheme as already noted in (M.P.]. Indeed, by taking

vh = hn for n = 1 .. ,N-I, in (11.20) and using twice the exactness of the Gauss-Lobatto formula,

we derive

ahGL(Uhh) = a(uh'hn) = -A uh(x) hn(x) dx = - ( uh , hn)h.GL = Uh(Qn) n,

besides we note that
)N(f, hn h ,6L : (- n n,

so that the problem actually verified by uh is: Find uh in X N such that

V n,n= .. ,N- , f() .

This consists in a pure collocation procedure to solve the initial problem.

In order to analyze the multigrid algorithm, let us first compute exactly the diagonal part of

the stiffness matrix; that is here simply to the matrix with entries equal to
=oo h'( ") h'( ") ,for i,j = 1 ...,N- 1

Aoj= ANj = 0.

Due to the exactness of the Gauss Lobatto formula, we easily obtain that, for i = 1 ... , N- 1,

Aii = fA (h (x)] 2 dx = - fA h '(x) hi(x) dx ,

and here again, by using the exactness of the Gauss Lobatto formula, we derive from (11.21)
A.. h - ) n h( = -p, h'

As already derived in (OHO, formula (7.4)]

Lemma.III.I: The diagonal of the stiffness matrix verifies

(111.?) Aii =@ N (N+ 1)/[3( 1 -( j?)2)].

Proof : Let us drop out in this proof, the superscript N. First of all, we note that, from the

definition (11.21) of hi, we have
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N-I

h1(x) = 0(i______ Jc j =Ij (x-y~ ( 1 -x)
N -) a

where ci is a non zero constant. It is well known (see, e.g [DR.]) that the internal nodes of the

Gauss Lobatto fomula verify
N-1(111.2) Ll(x) = ON TTj=1 (x- j)

where ON is a non zero constant. Hence, we can write
(x- i) hi(x) = ON 1 ( i ( 1 -X' ) L Wx = &i _ X2)  W(x,

and after taking the derivative of both sides, we obtain

(x- ) h;(x) + h(x) = & (d/dx)[(1 -x 2 ) L (x)]

Let us recall now the eigenfunctions property verified by the Legendre polynomials (see, e.g.

[D.R.])

(111.3) (d/dx)[(I-x 2) L (x)] -(N)(N+l) LN(X)

we derive that

(111.4) (x- 1) h'(x) + hi(x) =- &iN (N+l) LN(x)

plugging now x =. in this equation yields

(111.5) I =- &i N (N+ I) LN( )

Besides, by taking the derivative of (111.4), we obtain

(111.6) (x- 1 ) hi'(x) + 2 h(x) = -&iN (N+1) L(x)

plugging also here x = i in this equality and using (I11.2), we get

(111.7) h;(Q1) = 0

Let us multiply now (111.6) by ( I -x 2) and take the derivative of the resulting equation, we deduce

(x- i) (d/dx)[( 1 -x 2) h"(x)] + 3(0 -x 2) h:'(x) - 4xh'(x) = &i N2 (N+I )2 LN(X)

Finally, plugging one more time x = i , we derive from (111.5)
_t (II) h"'(Q~)  N (N + I)

and the lemma follows from the value of AR.

emarkLLI.L. 1: Note that, as a consequence of (111.7), we have proved here that the Lagrangian at

point t ihas its maximum at ti.
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Associated with the matrix A is the bilinear form a, and in the same way, associated with B,

the normalized diagonal of A can be defined a bilinear form bN6L .This will be the smoother of the

multigrid algorithm. Lemma III. I proves that the smoother we have introduced is proportional to

the bilinear form bhNL defined for any i0 and in Xh (which here is simply PN(A) fl H'(A))

(111.8) h bhL(p 1 , i) 0~ Pi (P(tj) 41((i)(1t)

It is interesting to note that, due to the exactness of the Gauss-Lobatto formula, we can rewrite

bhGL in a continuous way since for any (p and %p in X , the function [ ( 1 -x2) - 1 ] is Still a

polynomial and belongs to P2N_2(A), so that we have

(111.9) 6NGL(0,qs) = b(t0, ) 0 J ' (x) 4s(X) (I-x 2)- I dx.

Let us now analyze the eigenvalue problem (11.8) or more precisely the eigenvalue problem

associated to 6. The situation is here very simple since we have an exact expression for the

solution to this problem

Lem .. 2: Let us define for any integer n, 1 < n < N- 1

(111.10) '4'n(x) (1-x 2 ) L' (x)

then we have

(111.11) Vv EX N , a(,v)=n(nI) 6 ( q n v)

Proof : Let us first remind the following standard formula on the Legendre polynomial (see, e.g.

(D.R., Chap 2, §7] )

(111.12) V n 4E IN , ((1-x 2) L,(x))' + n (n+I) Ln(x) = 0.

Let us compute, for any v in X N

a( n ,v) (JA P(X) v'(x) dx = 1A ((1 -x 2 ) L,(x))' v'(x) dx

using (I1. 12) and integrating by parts, we obtain

a(ky',v) = - n(n+1) JALn(x)v'(x)dx =n(n+1) JAL4,(x)v(x)dx

= n(n+l) JA (1-x 2) L'.(x) v(x) (I-x 2 ) "1 dx = n(n+1) B(qf,v);

this ends the proof of Lemma 111.2.

It is important to note that in this simple example the eigenvalues are well known and,

moreover, that the first M of them span exactly the space PM+,(A) fl H'(A). As a first

consequence, we can state that the normalized form that will be used as a smoother is defined as
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follows

(111.13) V P, EX , b(,4)= N(N-I) b(,) = N(N-1)JA O(x) U(x)/(1-x 2) dx

We demonstrate the case where the simple hypothesis H of section II is valid, and we can state now

Theorem 111.1 :Let u0 denote the initial guess in the multigrid algorithm applied to problem

(11.20) in the case of one element, and u1 denotes the solution obtained in the after m smoothing

and one correction. This solution converges to the exact solution u as follows,

a(u-u 1, u-u 1 ) = (I - (N+2)/4(N-1)] 2ma(u-uO, u-u°) .

Proof : This is a simple corollary of Theorem 11.1 and lemma 111.2 since the first (N/2)-1

eigenvectors Yr span the coarse space =-y / = it follows that the eigenvalues of problem

(11.8) are n(n+ I)/(N-I)N.

Remark 111.2 : Note here that the correction on the coarse grid needs only be done once and that

there is no optimal choice for the number of smoothings since the convergence is proportional to

this number. This is actually in accordance with the numerical simulation of [R.P. ] as appears in

table I of that paper.

Remark 111.3 : Let us point out the fundamental reasons that give this rapidity to the algorithm.

They are hidden here due to the simplicity of the eigenvalue problem. First of all, even if this is

not of major importance, the matrix B is a good preconditioner of the matrix A. Indeed, the
12 3

condition number of B'SA is order N as opposed to the condition number of A which is order N

This will be also the case for other problems and has already been noticed by [H.] in a different

context for an application to conjugate gradient algorithms. This can be viewed as an inverse

inequality or a Jackson type one since the weighted L2 -type norm associated to the bilinear form 6

is compared to the H1(A)-norm as follows

(111.14) V EPN(A) fH'(A) , 111112 .N(N-1)b(V,0)

Secondly, the other property that is very important in the multigrid algorithm is that the factor K

as defined in Theorem 11. 1 is also bounded by two constants independent of N. Indeed, we can state
N that NN/2V N X such that aGL(q ,v) = 0 for any v in X.

we have

(11. IS) b(,ep) 4 K112 a(WO)
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where the constant K is bounded by 4(N- 1 )/(N+2) as can be derived from lemma 111.2.

Let us generalize now the results obtained we have obtained in this very simple situation to

the case of a multielement discretization.
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IV. Analusis of the convergence of the multlorid algorithm in the

case of several elements.

We begin here also by analyzing the properties of the diagonal of the stiffness matrix A. We

immediately note that there are two kinds of diagonal elements in this matrix : those that

correspond to internal points, i.e. that involve the scalar product

(IV. 1) AL"I -  n 0 Ok , [dh.t/dx dhIt/dx](t.l.k)

with i = 1 .. , N- 1, and those that correspond to interface points, i.e., that involve the scalar

product (IV. 1) for i = 0 or N. The first kind of diagonal elements are the same as those involved in

the previous section. Indeed, the corresponding Lagrangian interpolants vanish at the interfaces

and also on any subinterval that does not contain the point te ; therefore, from Lemma I11.1, we

can state that

Vi,i = I ,..,N-1 , V R , R 1 ...,K , Ajt =( 2 /bt) @j N(N+ 1)/[3 (1 - ( )2 )]

or again, thanks to a simple change of variable

(IV.2) V i, i = 1 .. ,N-1 , V k , R = 1 ... ,K , e =OltN(N+ 1 ) /[3(t,-a)(aR.l-ti)]

For the interface terms we have

LemaIVL.I : For i = 0 and any R = 2,..,K we have

(IV.3) Aij = [(b. 1)-1 +(bt)-'] (N2 + N + 1)/3

Proof : As already used, the exactness of the Gauss-Lobatto formula gives, for i = 0 and R 2,.. ,K

( or i = N andR = I ,.. ,N- 1 , due to the direct stiffness summation)

(IV.4) A, = JAr-1 [dhNf-I/dx] 2(t) dt + 1A [dho,t/dx] 2(t) dt

A simple change of variables and the use of the symmetry of hN and ho yields
(1¥.5) A=.j = [(2/bt,.t)+(2/bf)] JA^ [dh,/dx ]2(t ) dt .

Let us compute the integral on the right-hand side of this equation. First we have

N-1

h N (X ) = - -
2 "'= ( I-,)

From (111.13) we then get that

hN(X) = (x+ 1 )L(x)/2L( 1)

so that, after integration by parts, we obtain
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fA [dhN/dx] 2 (x) dx = -(2 L (1))- 2 [IfA (x+1) L (x) (d2/dx2)((x+1) L (x)) dx

- 2 L (1) (d/dx)((x+1) LW(x))(1)

here again, the use of the exactness of the Gauss-Lobatto formula to compute the integral on the

right-hand side yields

(IV.6) fA [dhN/dx] 2 (x) dx = - (2 L4( 1)) "1 [(d/dx2)((x+ 1) L4(x))( I

- (d/dx)((x+ ) L(x))(1)]

It is an easy matter to note that

(d/dx)((x+l) L (x)) = (x+I) LN (x) + L(x)

(d2/dx2)((x+ 1) L (x)) = (x+ 1) L " (x) + 2 L (x)

from (111.12) writen in the form

(1-x 2 ) L (x) - 2xL (x) + N(N+1) LN(X) = 0

we derive that

L(1) N(N+ 1)/2
L (1 I (N-1I)N(N+ I)(N+2)/8,

LW" (1) = (N-2)(N- I)N(N+ 1 )(N+2)(N+3)/48

this gives
(d/dx) ((x + I1) L (x))(1) N N2(N+1)2=/4,

(d2 /dx 2)((x+ 1) L(x))( 1) = (N-1 )N2(N+l) 2(N+2)/24

Plugging this in (IV.6) and using the relation (see ID.R.])

(IV.7) QN = 2 /(N+)N

we derive

(lV.8) IA [dhN/dx] 2(x) dx = (N2 + N + 1)/6.

The lemma follows then from (IY,5).

From (V.2) (IY.3) and (Y.7), we derive that the bilinear form bhNL that defines the

smoother and is associated to the normalized diagonal part of A is proportional to the bilinear form
NbhGL defined for any I and q In Xh as follows (remind (111.8))

-N
(w.9) 6N Tre 1  ,

where
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+ oSf (poy) o [(N 2+ N + 1) (b 1)2 ] + QNoI (N., I 'C'.,) [(N 2+ N + 1)/ (b1)2 ].

N

In the two next lemmas, we shall analyze the eigenvalue problem between a and Sh,6L that
N BN

will allow first to estimate the normalization factor between bhOL and 5 h.GL.

jImml.a f Y,2: For any 0 in XN , we havehN

(IV. 100) A S 2 (X) dx 4 (4N 3 +2N2 +3N-1)N/3(N2 +N+ 1) 5hGL N

Proof : To any V in XN let us associate the element V0 defined as follows
_ K('V. 11 0 = V} -1 z2 I (a,) [ ho., + hN.4-1 I

so that S0 and (p coincide on the interior collocation points. Using the inequality

(a+b) 2 (1+ ( "- ) a2 +(0+o)b 2

we deduce from (IV. I 1),

(IV. 12) fA, ip'(X) dx < (1 +0('1) JAt P 2 (X) dx + (1 ( JA, [(at)ho, + ;(a,+,)h%.1 ] 2(x) dx.

It is an easy matter to note that the restriction of Sop to any A, belongs to PN(A,) fl H'(Al) so

that the lemma 111.2 and a simple change of variables yields
J (1 spe2(X) d ( -) Z4', 0 2(ti,)[C- af)(a 1+b1-t t) ]_'

TN1
N(N- I) ,i I

Besides, from (IV.8), we derive that

JAI [h;.1]2 (x) dx = JA [h.J 2(x) dx = (N2+ N + 1)/3b,

as following the same lines as in the proof of lemma IV. 1; we get, for any N ;0 2

fAI h;.thNt (x) dx 4 1/3b,

From (IV. 12) we then deduce

JAt 10' 2 (x) dx < (1 +0x')N(N- I) T, N-i

+ ( +o)[(N2 +N+2)/3b j[ I(a)12 + I+(a1,,)l 2],

choosing now c = 3(N- 1 )(N2 +N+ I )/(N+ 1 )(N 2 +N+2); it follows from (IY.7) and (IV.9) that

J 0' 2(X) dx < (4N 3 +2N2 +3N-I)N/3(N
2+N+1) .6LN(9,')

and the lemma follows.

Remark IV. 1 : The estimate in the previous lemma provides a less precise characterization of the

elgenvalue problem than the one we could get In lemma 11. 1, but we note that the highest



-18-

eigenvalue involves the same asymptotic order as in the previous section and this will be enough

for our purpose. The important fact is that the result is independent of K and of the ratios between

the various subinterval length b, . As we shall see in what follows, this will result in a multigrid

algorithm that will work as well in any case of number of subelements. Besides, note that the

smallest eigenvalue of problem (11.8) scales like K-2 (independently of N) such that the condition

number of B'1 A behaves like (KN) 2 , in accordance with the finite element equivalent (when N is

order 1 ) and proves that the conjugate gradient algorithm, when preconditioned by B, has a rate of

convergence which behaves like 1 - c/KN and depends on both K and N!!! This is of importance when

we compare the preconditioned conjugate gradient with the multigrid algorithm. We refer to the

thesis of E. M. RONQUIST [R] for numerical evidences.

N
It is an easy matter to derive from lemma IV.2 that the normalized form bh ,L is defined~N

from bhL by multiplication by a factor of order (4/3)N2 . The other property that is important

for the analysis of the multigrid algorithm deals with the space XN121 of those elements P of XN

that verify

N/2 a ON(2,,(IV. 13) V p E h , .

L mm..LY. : For any p in Xh1 2 1 we have
N 3 2

I. 1 4) bh R(I ,0) 4 4(4N +2N +3N- 1)/3(N2 +N+ I )(N+2) a(ip,p)

Proof : Let p belong to Xh/ 21 , and let us define for R = 2,.., K the element 1P of XN1 by
X V k = I, ... ,K K+I, $W,(a )  6 tk

It is an easy matter to compute that

I I/b1_1 , for x In AW-
(x) -I l/b,1 , forxinA, I

SO, for x in Ak, k x fandk ;e-I.

Using this function in (IY. 13), we derive that

V e = 2,..,K , (I/b1. 1)(O(at) - O(a_ 1))+(I/b,)(ip(at) - 9(a,, 1)) = 0

recalling now that 1(a) = O(aK 1) = 0, we deduce that in fact 9 vanishes at any interface so that

$It is an element of PN(A,) n H'(A,). The use of (I11.15) over each At proves that-NK
ih ,OL.(91,$) = -81 ftq , 4IN(N+2) e($,o).
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N
and the lemma follows by recalling the normalization factor of bh,6L.

As a simple consequence of the previous lemmas and (11.1 1)(11.14) we derive that the

multigrid algorithm converges toward the numerical solution with a speed independent of both N

and K, indeed, we have

Theorem IV. I : The multigrid algorithm based on the Jacobi preconditioner converges, end at any

V-cycle with m smoothing as detailed in section II , the rate of convergence is given by

J^ e;2 (x) dx < X f e62 (x) dx

where

I = [(K-t)/K] 2m , form (K-I)

and

= (Kf(m,1))2 , for m > (K-l)

with

K = 4(4N 3+2N2 +3N- I)/3(N 2 N+l)(N+2) (16/3) (1+a(N-))

Remark IV.2 : Let us note that the convergence rate that we have theoretically obtained is

independent of K and the sizes of the subintervals and does not deteriorate when N increases; this is

in accordance with what is numerically observed in part one of this paper [R.P.]. However, the

rather rough estimate we gave for the highest eigenvalue in (IV. 10) provides a rather too high

estimate for the convergence parameter ( close to 0.81 when N is large enough ). Note also that the

optimal choice of parameter 4 < m < 5 is close to what can be observed numerically. As in the

analysis of the multigrid algorithm when a finite element method is used, this optimal parameter

is lower than the actual one. By using negative order of the norms defined from b and a, we could fit

more closely to the experiments for this last result. This would be obtained, however, at the price

of a much more technical proof and would not really be worthy since the main conclusion is the

independence of the convergence rate with respect to the parameters of the discretzation.
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V. Analusis of the converoence of the multigrid algorithm in the

case of non constant coefficients.

The previous chapter was devoted to the analysis of the multigrid algorithm when applied to

the very simple equation -uNX = f. Of interest of course is to know that the same conclusions hold

true in more complicated situations. We shall extend here the analysis to the case of the equation

(v. I) -(ocut) x = f ,

where (x is a function of x such that there exists two constants (x- and oc with

(V,2) VxEA, 0< oc(x)(oc* ,

and also such that oc is in the Sobolev space W 2.(A). We shall assume here that the domain is not

decomposed into subdomains, leaving this analysis to a forthcoming paper as well as the analysis of

the multidimensional case. The analysis provided here is inspired from the reference [B.V.].

It is standard to note here that problem (V. 1) can also be stated in a variational formulation

like (11.19) with now a defined as follows

(V.3) V 0p,*s E H'(A) , a(o,*) = A oc (x) x) '(x) dx

It is rather well known also that the general spectral(element) discretization of the equation

consists in first choosing a discretization parameter n IN*, then : Find u, E Xn = Pn(A) n H'(A)

such that

(V.4) V vn E X, , an(unVn) = (f,Vn) n

where the discrete form an is defined here by
(Y. 5) V 0, *J E Xe , aP( O'4F) = (( ON , #N, )n

The nested spaces for the multigrid algorithm are exactly the same as in the previous sections, i.e.,

A,(. = XN/ 2 and AN. 2 = XN , and the strategy also based on the use of the Jacobi preconditloner as a

smoother. The corresponding bilinear form bN is deduced from the following 6N after normalization

of the maximum elgenvalue of problem (11.7): 6N is defined by

(V.6) V 0 xN &N(O,) = L:.N(o NQN

where A., corresponds to the diagonal entry of the stiffness matrix A, equal to

Ann = a(h:", h ,)NN

and we recall that hN is the Lagranglan interpolant at the point t,.1 .From hypothesis (V.2) and the

exactness of the Gauss-Lobatto quadrature formula, It is simple to derive that
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(V.7) VvEXN , aN(O,€)< OC*a(0,0) < 0N(N-1) 5(0,0)
< (3oc'loc')(N - I )/(N+ I) SN (( , ),

where we recall that b(o,qs) = JA O(x) *(x)/(l-x 2 ) dx. As a result, we derive that the

normalization of bN satifies

(Y.8) bN = (3oc*/o()(N-I)/(N l) SN

From the eigenvalue problem : Find Y in XN and X in P+ such that

(V.9) V v E XN , aN(,V) = X bN(vy)

that possess N-I eigenvalues 0 < X 1< X.2< ...<< XN i < I, the eigenvectors of which are chosen

normalized with respect to the norm derived from bN we define, as in (I1. 10) the III. IIe, norms for

any 8 E P by
(V. 10) V v E XN , III v III. N-= X 0 bN(v,qj.) 2,

Here the bilinear forms associated to the definition of the system and to the smoothing depend on N.

The definitions of the smoothing operatorSN and the correction operator eN have to be precised. Let

us do this in the simple case where only two grids are used. Instead of (11.3), the smoothing

procedure consists in : Find ^''t in XN such that

(y. 11 ) V V E XN bN (NN -O,V) = g(V)-N(Vpv)

while the correction procedure consists in: Find T in XN/2 such that

(V. 12) V V E XN/ 2 , aN/ 2(TV) = gN(v)-aN(OV) ,

and define ?N tp = + T. Then as explained in the general case, during a V-cycle with m/2

smoothings down and up the error e° is changed in el as follows
(Y 1 3) el = (SN)1n2 e (SN)m/2 e0

Before entering in the details of the analysis of the decay rate of the error, let us state some

results of general interest. First of, let X be in P(A) be given, r(X) and rN(X) in IPN(A) be such

that
(Y. 14) V*EO(A) , b(r(x),*) = bN(rN),, )N,

where b is defined in ( 11. 13). It is a simple consequence of (V.9) to derive that
III rN(X) 11oN A bN(rN(R),rN(X)) = aNeXrN(X)) III x W1, I rN(X) IIioN

whence

III rN(X) III.0N < III X 1112,N
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Besides, from (V.7) and (V. 14), we have

b(r(X),r(x)) = bN(rN(X) ,r(x)) < [bN(rN(X) ,rN(X)) bN(r(Q) ,r(x))]' 1 2

4(((X+2/( ) 1/ 2  [b N ( N(X),rN(X)) b(r(X) r( X))]1/ 2 ;

finally, we derive that the solution r(R) of (V. 14) has the following stability property

(V.15) b(r(X),r(x)) <C lII X 1112,N .

Then let us state some approximation result the proof of which will be presented in the appendix.

Lem ma V. I : Let p defined over A and such that

(v. 16) fA 2(x)( I -x2 )dx<oe ,

and n be a positive integer. The solutions ;o(Q) E H'(A), Ven(O) -E U'(() defined by

(V. 17) V v E H(A) , a(o(g),v) = b(,v)
(v, 18) V Y E PO(^) a"( .(o),v) = eta,v);

then the following approximation results holds

(V. 19) I 1(@) - O(p) 112 c n2 (,p)

(V.20) 6('p(p) - (),P({)) - iOn(Q)) 4 c n- 4 ({p)

Let us denote by c the term (SN)m/ 2eO ; derive now as in (11.12) that,

(V.21 ) III e' I'.N 4 (m/2,1/2) III e" 11I.,

(Y.22) III C 012,N f(m/2,1/2)111 eO 1,.N

From the definition of , we derive that, for any ) in PO(A)
III e~X 1110,N =III 1110,I~oN 4 111X N(N-1I)Il(r(x))I1I1o, + II1I N(N-1I),;(P(X))I1110,N

hence

III eX 110N < (=2/X-)[ b(X - N(N- 1)q(r(X), X - N(N- I)v(r(X)) 1/ 2

+ b( - N(N-1)E r(),j- N(N-1)fp(r())1/2]

With the previous notations (see (. 14) and (V. 18)) and recalling that the normalization factor

between the forms b and 5 Is N(N-1) (see (111.14)), It Is simple to derive that

X = N(N- 1 )jN(r(X)), while (defined in (V. 12)) satisfies j = N(N-1 )ON/ 2(r(X)); we derive

III eX 111o.N < ((x* 2/(x)(N(N- 1))[ b(VN(r(X)) - W(r(x), ON(r(X)) - q(r(X)) 1/ 2

+ b( VN,2(r(x)) - V(r(R), *,, 2 (r(R)) - W(r(x)" 2 I
applying next (V.20) for n = N and n = N/2, then (. 15), we obtain
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Lemmala: There exists a constant c independent of both N and K such that

(V. 2 3) V X EP(^) III e 11o1,N < c III X 1112.N

Plugging (V.23) in (V21 ) and using (V.22) give now the following

Theorem VA .1 : The muitigrid algorithm based on the Jacobi preconditioner converges, and at any

V-cycle with m smooth ings as detailed in section II , the rate of convergence is given by

(V.24) JA e;2 (x) dx < c Am, 1) JA e62(x) dx

RemrkV.I: The decay rate of multigrid algorithm is independent of N, and it is interesting to

note that its asymptotic behavior is 0( 1 /m).

Remar.kV.2 : The analysis of the case of non constant coefficients requires some regularity (i.e.,

W2,oo ) of the coefficient ( this is required for lemma V. I ). We do not know to what extend the lack

of regularity of ox deteriorates the actual convergence. Note however that the local regularity is

just required, i.e., cx can be non smooth through the interfaces. The multigrid procedure proposed

in [ZWH 1.2], and that is based on another approach of smoothing, is numerically proved to be very

robust with respect to the irregularity of o( [*].

A. APPENDIX

The main purpose of this appendix is to provide the proof of lemma V. 1. Let us first recall

the following result of the approximation theory (see [D])

Lemma A-.I: Let rnM denote the orthogonal projection operator from L2 (A) onto IP(A). The

following approximation results hold

(A. 1 ) V u Hm(A) , f u - flMU 110 < c(m) M_' I JA u(M) 2(x) (o x2)m dx)l /2

Proof : Let us recall that the Legendre polynomials constitute a total system of orthogonal

functions of L2(A) that verifies

(A.2) JA L,(x) Lm(x) x = 6, 2/(2n+1)

T.A.ZANG- personnal communication.



-24-

Let us use this basis to span the function u; we arrive at

U = :n= an Ln '

so that the L2 (A)-projection of u onto GPM(A) is equal to

flMU-n an Ln ,
and the error

(A.3) u -nMu =En-. +, an L.

Let us recall now that the Legendre polgnomials satisfy the following relation(-X ) L
n ) ' = - n( n + lI) Ln

From (A.2) we conclude that

(A.4) 1A Ln(x) L(x) (l-x2) dx = 8n 2n(n+1)/(2n+1)

From (A.2) and (A.3) we get
IU~TMUII=~M, 2 (2n+)1I u - n u 110 = Z.., .m,1 2 a2,(n

while, from (A.4), we derive that

IA U(x ( x) dx = En 2n(n+ 1)a~n+)
and (A. I ) is then just a simple consequence of these two equalities in the case m = 1. The general

case is handled by recursion.

As a consequence, we derive that
10

CorolntruA..I: Let Tm denote the orthogonal projection operator from H'(A) onto DP(A).

The following approximation results hold

(A.5) V uE Hm(A) nHo(A) ,u - rn uII1 
< c(m) M' m I^ u(ml)=(x) (1-x 2 )m dx]" 2

Proof : It has already been noted that for any u in H'(A)
[nlu](x) = f,1 nm.1(u)(t) dt

so that (A.5) is an easy consequence of lemmaA. 1.

Proof of lemma V. I : It is an easy matter to note that the solution V(0) of problem (V. 1 7)

satisfies

V x A , - @(x(.( ])J ](x) = (x)/( 1 -x 2)

From (V.2) and (V. 16), we derive

(A.6) IA [i0(0)]2(x) dx + IA [1 (0)]2(x) (1 -x 2) dx c IA @2(X)/( 1 -X2 ) dx < c 6(0,0)
From corollary A. 1, we know that there exists an element *, of P°, 2(A), such that
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I (g) - .1, c n"-' [1(0)]2 '(x) (I _X2) dx ,

and

so that
(A. 7) 1 (0 - .I <c n"-600

From the ellipticity of the form a", we derive that there exists a constant 8, such that
I On(Q) - ,.n 1' < a"(O.(P) - 4, , (P) - 41n)

using (V. 17) and (V.1 8) we derive that

'1€(@) - I -< a((), O.(P) - 4) - a ,(is (0) - *)

or again
(A. 8) (1 n(() I ,.12- a(O(P) - t ., On(P) - *n) + 0(*, , (Q) - *n) - e"(,. , 0A) -*.)

Let us note now that from the exactness of the Gauss Lobatto quadrature form ula we get that
(A 9 ) v C% E IP /2(A ), (c y. n. ,(n)' ) ( O n ,( O ( @) - )') n.oL ,

so that

a(41, , (Q)-t) - a"(t , On(Q)-*) = ((G-O) ,(p(g)-,))) - ((o(-on)*' ,(O(()-4n))n

and using now (A.8) yields
(A. 10) 1 I(P) -,.n11 1 C( 1I(Q) -*n 11 + 1I( - c(n IL-(A) I,.11 )1

It is standard to note that there exists an element o(, such that
I o( _ Ocn IL*O(^) < c n k EkzI (X(j) ''A

hence, from (A. 10) and (A.7), we derive that

I (01() - iv.(0) !, c n"1 (b(0,0)112 + (Ljo 0(j) IL"(A)) I 1(@) I)

and (V. 19) is an easy consequence of (A.6).

Let us turn now to the proof of (Y.20). We shall use a standard duality technique and first

define an element X in H'(A) as follows
i (A. 11 ) V v 4E H'(A) , a(X,v) = b(lP(@) - on.(@), v)

It is an easy matter to derive

b(p(0) - ) - (g)) : a(X, 'P(Q) - (Q))

= a(- , i(p) I(,)) + a(Trt, 2  , p(g) -

n/2- rr 2 X q(Q) - q(Q)) + (a" - a)(n/, 2 X 01(0),

Let us examine the last term on the right-hand side of this last equality; using (A.9) one more time
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we write

W - a)(Trn/ 2  V (0)) = ((( - (n)( nn/ 2 0), Vn(O))n

+ ((oc - oc)( n, 2 X)'. 'n())

so that

V(q) - On(0),o(o) - In(p)) = a(x - nTn/ 2 Xq(g) - n(0)) + ((( - c)(rn / 2 ), On(9)')
+ ((( - 0(n)( ff,1 2

hence
b( (o - ,o1 On (@)) < CI X - Tl,/2X 111 O(0) - V,(0) 11

+ c n- 2 Z2o I (xiL'(A) I TIn/ 2 X I1I 4n(Q) I1,

c Ir - rI/ 2 X 1I1 q(Q) - On(Q) I1
+ n"  =o ( (j) IL-O(^ ) I R '/2 X 11 1 0,A) I1

Using now corollary A. 1 and (A. 1 1), we derive (after bounding T-,=o 1 o (J) IL-(A) by a constant)

[V(() - nW(),ip(Q) - 0n(@))1/2< c (W"1 I' (9) - On(@) I + n-21 On(@) 11

thanks to the stability of on(g) with respect to @, we derive (V.20) from (V. 19).
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