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A DAMAGE MODEL FOR UNIAXIALLY REINFORCED COMPOSITES

Abstract

This report concerns a continuum damage model for uni-directionally

reinforced composites that contain a multitude of micro cracks. Consideration

is given to the coupling between mechanical and thermal effects. Damage is

introduced by two symmetric, second-rank, tensor-valued internal state

variables which represent the total area of open and closed micro-cracks

contained within a representative material volume element.

Constitutive relations are formulated from basic principles of

irreversible thermodynamics and continuum mechanics. It is shown that both

mechanical compliances and thermal conductivities are affected by damage, and

that the material symmetry is influenced by damage orientation.

The derivation of damage growth relations is motivated by meso-level

fracture behavior. A specific example exhibits the dependence of damage

growth on the detailed mechanical properties of matrix and fibrous materials

and on the statistics of flaw positions and sizes. It is shown that

mechanical loads tend to orient damage perpendicularly to the load direction,

thereby introducing a degree of order to an initially random configuration.
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1. INTRODUCTION

Continuum damage theory is a rapidly growing endeavor at the present

time. A recent review [1], which contains a partial list of about fifty

publications, is probably outdated already. Most applications concerned the

response of concrete [2] and, to a somewhat lesser extent - of polycrystalline

metals. In several recent papers the methodology of continuum damage was

applied to fibrous and laminated composites [3 1-[8 . Although a critical and

comprehensive literature review goes beyond the scope of this report, the view

taken here is that to be useful a damage theory must contain two essential

ingredients:

(1) It should be amenable to rational development of damage growth relations

("kinetic" laws), and

(2) It should enable a comprehensive correlation between material

properties, such as compliances and diffusivities, and damage.

It follows that "damage" should be endowed with an obvious physical

meaning, because only under such circumstance it is possible to formulate

rationally its growth and relationship with other physical quantities.

Typically, continuum damage theory applies to brittle materials which

develop a profusion of micro-cracks prior to failure. It is then reasonable

to associate "damage" with these micro-cracks - at least approximately.

Approximations are necessary because a complete accounting for all micro-

cracks poses an intractable and unsurmountable problem. In addition to the

intricacies involved in solving the circumstance of a multi-cracked geometry

in the presence of many inclusions, all realistic configurations of composite

materials lack order and require statistical descriptions. It is therefore

advisable to study damage in composites by highlighting its main features and

ranking the relative importance of various factors, such as crack/crack and
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crack/inclusion interactions, crack and inclusion spacings, etc. Such studies

would lead to the construction of a useful continuum level damage theory with

a quantitive understanding of the approximations involved therein.

In the present work, the construction of the damage parameters employed

several approximations. These were: (i) on the micro-level, all damage was

assumed to correspond to flat cracks, and (ii) on the macro-level, "damage"

corresponded to the totality of micro-crack surfaces contained within a

representative volume element.

The assumption of flat micro-cracks enabled the representation of their

areas by vectors, say D. However, since every crack possesses two equal and

opposite areas, a representation which is invariant to the choice of any one

of those two areas was given by the dyadic product D D. The macro-level

assumption states that the damage variable is represented by I L D D, hence

by a symmetric second rank tensor. Upon division by an inherent material -

scale, e.g. the size of the representative volume, it is possible to construct

the non-dimensional damage parameter a.

The micro-level assumption of flat cracks is mainly matter of

mathematical expediency, which leads to the dyadic representation. The macro-

level assumption involves a rather severe approximation, since it obliterates

the distinction between small and large micro-cracks and disregards their

relative spacings. Nevertheless, it will be suggested below that by allowing

quantities like compliances to depend non-linearly on damage, it is possible

to retain some measure of distinction between micro-level details.

Furthermore, to account for thermal and diffusion processes it has been

suggested to include a second continuum-level variable £, which represents the

total area of closed ("passive") micro-cracks within the representative volume

element. In the case of heat conduction, the heat generated through friction

'_I



occurs mostly at those passive surfaces while the process of molecular

diffusion is most likely affected by the capillary paths available in the

presence of c.

A qualitative tabulation of the roles of the active and passive damage

parameters is shown below

Phenomenon Active Cracks Passive Cracks
(parameter a) (parameter c)

Mechanical Response Important Unimportant

Heat conduction Unimportant Important

Molecular Diffusion Important Important

Table 1: The roles of active and passive damage in various
physical phenomena.

Turning to damage growth relations, the main thesis of this research has

been that such mechanisms cannot be derived from macro-level theories. The

basic reason for this argument is that damage growth is inherently a micro-

level phenomenon which depends on meso-level geometric details. Consequently,

the proposed approach is to solve, exactly or approximately, suitable meso-

level boundary value problems and distill their essential features for

incorporation in the coarser, continuum-level formulation. In this manner the

statistical characteristics of the meso-level geometry will "filter" into the

continuum model. An example for meso-level statistical effects on crack

growth is provided in section 3 below.

In multi-phased composite materials, the presence of initial

imperfections must be assumed as an inherent component of the material's

structure. These flaws occur due to non-uniformities in the fiber positions

which cause localizations in stress concentrations during the manufacturing

process. In addition, flaws may be present due to nonuniformities in the



curing process, incomplete interfacial bondings or impurities. In glass/epoxy

composites the positions of initial cracks correlated reasonably well with the

locations of closest distances between adjacent fibers(9 1, where the residual

stresses due to processing are highest. Since it is reasonable to assume that

the energy necessary for crack initiation exceeds the energy required for

crack growth, it follows that the major effect of external loads is to bring

about the extension of the initial cracks rather than trigger new flaws.

Consequently, the statistics of flaw location will remain, by and large,

fixed, and only the flaw sizes (and shapes) will change under stresses. If

the above hypothesis is correct then, once the statistics of initial flaws is

prescribed, all crack interactions will depend mainly on a (and perhaps c).

Although the form of this dependence is unknown at the present time, the above

hypothesis suggests that such dependence is likely to exist. For this reason,

the continuum damage model developed herein retained a dependence of

compliances and conductivities on functions of (the appropriate invariants of)

a and c and a linearization in those parameters was deliberately avoided.

The representation of damage by symmetric, second-rank, tensor-valued

parameters was employed by other investigators 10 ]-[14], to mention but a

few, although their cho.ces were derived from somewhat different physical

considerations. In most of those cases damage was given by the symmetric

tensor

d. S(u.In + [u In.)ds
ij 2 S ]nj i

c

where Sc denotes crack surface with normal n and [ui ] expresses the jump in

displacement across Sc.
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The above choice is conceptually useful since dij expresses the

contribution of the crack opening displacements to the softening of the

material moduli. In principle di, can be related to the eigen strains eij

associated with cracks. However, in actual computations any advantage of the

above choice is diminished by the fact that expressions for eij are either

very complicated or non-existent. Furthermore, in all current publications,

effects of crack interactions are handled only through an iterative

application of the self-consistent scheme. This scheme accounts for the

moduli-softening effects of the surrounding cracks on the growth of a specific

crack, but cannot handle the effects of inter-crack proximity or remoteness.

Regarding damage growth relations, some authors [11], [15] concurred with

the premise that damage growth relations should derive from meso-level

fracture behavior. However, no such mechanisms were thus far analyzed for

composites. A rudimentary attempt to express damage growth in concrete was

performed recently [15] (see also [16]), where a meso-level crack arrest

mechanism within the aggregate/paste assemblage was described by an infinite-

energy barrier spaced at some distance D which was related to the size of an

aggregate's facet. Interactions among many cracks within an extended medium

were considered only for homogeneous, isotropic materials[1 7] No formulation

exists at the present time for crack interactions in inhomogeneous materials.

2. THE DAMAGE MODEL

The detailed development of the model was given elsewhere (8]. For the

sake of both clarity and brevity, we will provide in this section a two-

dimensional version of the expressions listed in [8].

Fundamental considerations of continuum mechanics and irreversible

thermodynamics yield the following expressions for energy balance and non-

negative entropy production:



7

00 -q- 0 sp T- o0 T s - Cij £ij

and
0 0

Pc- s T - ij Eij - (qi/T)gi ? 0 (2)

In eqns. (1) and (2), where infinitesimal deformation was assumed

(E 1), 00 denotes the constant mass density, s is entropy density, T is

temperature, qi and aij are components of the heat-flux vector and the Cauchy

stress-tensor, respectively, and o is the Gibbs free energy, given by

P0 : = ° u 0 T s - oij 'ij (3)

where u is the internal energy density.

Also, in eqns. (1) and (2), dot denotes derivative with respect to time

and gi = aT/@xi where xi are Cartesian coordinates.

Assume a constitutive response given by

* (oij, aij, cij, T) (4)

where aij and cij are the active and passive damage variables described in

section 1.

Since the inequality (2) cannot be violated for any process it follows

that

S-pc (5)
0 0 3ij

s - _ (6)

and

-rij aij - nij c ij - (qi /T)gi ? 0 (7)

*Familiar arguments rule out dependence of a on gi.
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In eqn. (7) r and n.. are the "affinities" given by

ij o 3a ' ij i o  cij

The above affinities can be interpreted as "macro level" energy release

rates and energy dissipation rates associated with the growth of the total

area of the active microcracks, and the closure of the passive flaws,

contained within the RVE.

Substitution of eqns. (5) and (6) into eqn. (1) leads to the coupled heat

conduction equation

-qj k• =I~ (r •jT)' + (1k

aT ij ij - T 8T ij aT Oij

+ 0oC T (8)

In eqn. (8) C -T 312 denotes specific heat at constant stress and
aT2

damage.

Consider a uni-axially reinforced composite with all fibers parallel to

the x3 axis and all damage oriented in the xl-x 2 plane (no cracks cutting

across fibers), whereby a13 = a2 3 = a33 = 0. In addition, confine attention

to the case of plane strain so that all dependencies on x3 vanish. In this

case, the expressions listed in [8] reduce to the following forms:

Two dimensional compliances:

$11 = 2L2 + 2L2 2 + 2L3(a11 - a2 2 )
2 + 2L12 (a11 - a22 )

S12 = 2L2 - 2L2 2 - 2L3(a11 - a2 2 )
2

S22 = 2L2 + 2L22 + 2L3(a22 - a11 )
2 + 2L12 (a22 - a11 ) (9)

S26 = 8L3(a22 - a 11 )a 1 2 + 4L 12 a 12
2

S66 = 2L22 + 32L3 a 12



In the above L2 and L22 are "classical" compliances while L3 and L12 are

"new", non-classical, terms.

Two-dimensional conductivities:

k 11 - k, + k3(a11 - a2 2 )

k12 : 2k3a12  (10)

k22 =: k + k3(a2 2 - a11 )

where k1 and k3 art a "classical" and a "new" term, respectively.

Material symmetry considerations state that L2 , L L12, L22 as well as

kI and k3 may depend on functions of the transversely isotropic invariants of

aij and cij. In two dimensions these invariants are:

-a22)2 12 N3  c11c2 M4 =(c I -c22
)2:N 1 :all.a22, N2 z (a11 - a) 2 + 4a12, N: = 11+c22 , N: c11- 2

+ 4c 2 and N=(l-
12' N5  (all-a 2 2 ) (c11-c22 ) + 4a 12c12.

The specific functional dependence of L2, L3 , L12, L22, kl, and k3 on N1,

* N2 , N, and N5 cannot be inferred from continuum level formalisms or from

symmetry requirements.

Note that damage induces changes in the material symmetry (through the

* "non-classical" quantities L3 , L12 and k3 ) as well as affects the magnitudes

of all compliances and diffusivities (through the invariants NI - N5 ).

As noted earlier, linearization in aij and cij was deliberately avoided

in eqns. (9) and (10). Such linearization would imply that aij and cij are

infinitesimally small, thus restricting the model to sparse damage and

discarding crack-interaction effects. It is worth noting that linearization

was indeed performed in refs. [3]-[6]. A

To accentuate the coupling effects between damage and heat-conduction

assume, for simplicity, that neither compliances nor diffusivities depend on

temperature. Under this circumstance the coupled damage-heat-conduction

equation reads:

Ii
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CT a2T 32T 12T)

---(k1 - + 2k + k + D (11)0at 11a 2 12 ax Iax 2 22 ax2 D()ax1  2x 2

where the dissipation term D is given by

as11 12 S a12
2Dz 3a 11 +11)a0 + 2 _ a + 12c ~1)0 1- a11 )12 12  22

a22as 2
($2 2  + 2 2

+ a T "12BT l 2 aT k223T (2
ax I+ -x2 12)x21 1x112 +2 1 2

A specific expression for D requires a detailed knowledge of the

dependence of all compliances and diffusivities on the damage invariants.

Note also that terms like al1 1 /ax 1 are expressible by the chain-rule as

(ak11/aa11)( aa1 1,'ax 1 (ak11/aa12 )(aa12 / x) + ... , etc.

3. DAMAGE GROWTH RELATIONS - An Illustration.

To demonstrate the correlation between meso-level fracture behavior and

macro-level damage parameters consider the two dimensional case of interfacial

debondings between fiber and matrix materials. Two drastic simplifying

assumptions are employed: (W) all meso-level fracturing is confined to the

fiber/matrix interfaces (namely - the critical energy release rate for

debonding is smaller than the critical energies for all other failure

mechanisms), and (ii) it suffices to consider a single crack-fiber-matrix

system (namely the medium is sparsely reinforced and all other interactions

are negligble).

Consequently, the problem is reduced to the consideration of a single arc

crack growing along the interface between a single cylindrical inclusion and

an extended homogeneous region, as shown in Fig. 1. The computations employed

the analytical solution developed by Toya [18] which contains detailed

expressions for stresses, displacements and energy release rates for the

present problem.



11 -

A computational scheme was developed where, for given material

properties, crack configuration, and external loads the energy release rates

were evaluated by Toya's expression [Ref. 18, eqn. (4.7)] of the form

p2 R F[v 1 ,  V2 , U1/ I w,B) G (13)

In (13) p denotes the magnitude of the remote uniaxial tensile stress

ax, V2 and '2 are the Poisson's ratio and shear modulus of the inclusion,

V and UI1 are the analogous values for the homogeneous exterior, and C is the

energy release rate for interfacial debonding (combining modes I and II).

Also, R denotes the radius of the inclusion, w- the crack orientation and B

half its arc size as shown in Fig. 1.

If for a given initial crack configuration G exceeds the critical value

Gc, an iterative scheme is employed to determine values of w and B that yield

G=G c. These values, w = wf and a = 8f, are subject to the requirement that no

interpentration occurs along the crack surface. This requirement can be

inferred from Toya's expression for the opening displacement [Ref. 8, Eqn.

(3.57)), which takes the form

= U(V I  V 2 8, W) (14)

Obviously, if Aur< 0 anywhere along the arc crack described by wf and

8f9 the latter values are inacceptable. Unfortunately, Toya's solution (and

all other available solutions to this problem) fails whenever crack closure

occurs. Such closures do in fact happen for interfacial cracks that are

approximately parallel to the direction of a uni-axially applied tension. In

the absence of an exact solution, an approximate iterative scheme was employed

to handle cases of crack closure. The iteration proceeds as follows: (i) for

a given crack geometry and an applied load the location of crack closure was
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* *

estimated from the condition ur  0 0, yielding values B and w which fall

within the range of the initial crack. (ii) Modifying the initial
* *

configuration to have one crack tip at 8 and w employ eqn. (13), with G=G,

to locate final crack positions 0f and wf (iii) check if and where

according to eqn. (14) aur = 0 within the final crack positions that were
* U

evaluated by the previous step. (iv) Repeat iterations until a , w and

Oft wf converge.

Similarly, for sufficiently small loads, when G < Go, closure may occur

over portions of a stationary initial crack. In such cases too, employment of

the condition Au r 0 as prescribed by eqn. (14) provides an estimate of the

closed portion. If Aur > 0 over the entire stationary initial crack, then it

is fully open.

Note that the above procedure gives inexact results, because it treats

the contact region as a perfectly re-welded crack, albeit with compressive

normal stresses. In the absence of a better alternative, this approximation

is employed in the present work.

To focus attention on statistical aspects, it was assumed that cracks may

occur with equal probability anywhere along the boundary r:R of the inclusion

and that their size was normally distributed, rather tightly, about a mean

value.

In our computations we employed values similar to those of Toya [18],

namely: v = 0.346 msi, v1 = 0.35, P2 = 6.41 msi, v2 = 0.22, and R = 0.19 x

10-3 in. Although not stated explicitely in ref. [18], it was implied therein

that GC = 0.284 x l0
-5 in.-lb./in.

The distribution of crack sizes was assumed Gaussian ("Normal"), with a

mean half-arc angle of 5° and a standard deviation of 0.50. The positions

around the circumference were assumed to be uniformly distributed.
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The number of crack-fiber samples, N, within a hypothetical

representative volume element was taken as N=40 and N=80 to assess the

sensitivity of the results to this parameter. The magnitude of the remote

load was varied from 100 to 3000 psi in steps of 100 psi. No further crack

growth at the fiber/matrix interfaces occurred for a > 3000 psi.

The variation and distributions of crack sizes with load are shown in

Figs. 2(a), (b), (c), (d) for four random sets of initial cracks with N=40 and

in Fig. 2(e) for N=80. The differences between the results shown in Figs.

2(a)-(d) are due to the different realizations in the initial values of the

random variables w and 6 that occurred in those sets of samples. These

realizations were selected through d computer-aided random number generator

(Program "IMSL").

The most interesting feature to emerge from Figs. 2(a)-2(e) is that under

increasing loads crack growth divides into four distinct categories. These

categories are denoted by A,B,C, and D, with typical configurations sketched

within Figs. 2(a)-2(e). The percentage of cracks within each category is

indicated by the lengths of the vertical bars drawn above curves A,B,C, and 0.

Cracks in category A remain inert to the load ax= p. For sufficiently

small loads, when no growth occurs, this category contains all cracks. Note

that some of the A-cracks contain closed ("passive") segments, of magnitudes

indicated by the shaded parts of the vertical bars.

Curves marked with the letter B give the average size of cracks where the

far tips remain stationary and whose entire growths were caused by their near

tips growing towards the line-of-action of the remote load.

Curves C correspond to a fixed magnitude (half arc angle) of af = 57.3"

and orientation w f = 0, namely all cracks in this category are aligned
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symmetrically about the load's line-of-action. It can be noted that as the

Icad increases higher percentages of initial cracks snap into the

configuration of category C. Note that cracks in this category are entirely

open and that configuration C is reached by growth at both remote and near

crack-tips.

Finally, cracks in category 0 correspond to final configurations which

nearly circumscribe the entire fiber/matrix interface. For any given value of

remote load all the cracks in this category have the same final geometrical

shape, although - unlike in category C - this shape varies with the load.

Cracks in category D are symmetric about the load's line-of-action, with open

and closed segments as sketched within Figs. 2(a)-2(e). The percentage of the

closed ("passive") portions can be inferred from the shaded portions of the

vertical bars above curves D.

It should be noted that all the closed portions of the cracks (in

categories A and D) occur along segments that are farthest from the line of

action of the applied load. The statistical scatter among the results shown

in Figs. 2(a) -2(e) is demonstrated by the histograms exhibited in Fig. 2(f).

The re-orientation of the micro-cracks about the load line-of-

action, w, is shown in Figs. 3(a), (b), (c), and (d) for N = 40 and in Fig. 3

(e) for N = 80 for increasing load amplitudes. Since this effect is even in

the angle , the plotted results treated cracks centered at (-W) as equivalent

to those centered about the angle w itself. In Figs. 3(a)-3(e) the results

for categories A,B,C,D are shown separately and distinction is made between

angles wc for the closed cracks and wa for the open cracks. Note that since

all cracks in category C, and all the active cracks in category D, are

oriented at w = 0 for all load levels, their plots coincide with the horizonal
a.
axes in figs. 3(a) - (e).
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The strong influence of loading on the size and orientation of the

microcracks is further demonstrated by the phase diagrams shown in figs.

4(a),(b), and (c).

In Figure 4(a), trajectories of average size and average location of the

active and passive cracks in category A are shown under increasing loads, for

five randomly selected distributions of initial cracks. Values at distinct

load levels are marked off by various symbols, and trends under increasing

loads are noted by arrows along the trajectories. Open symbols correspond to

active cracks and closed symbols to passive cracks. Note that, with increas-

ing loads, all active-crack values converge to a common location while the

passive cracks retain their statistically dispersed character. However, in

view of figs. 2(a)-2(e), and as will be seen in Fig.5, the comparative sizes

of all cracks in Category A are very small and their contributions to the

damage parameters as loads increase can be neglected.

Figs. 4(b) and 4(c) provide phase diagrams for the sizes and positions of

the active and passive microcracks in Category D under increasing load

levels. As noted earlier, in this category both size and position do not

depend on the statistics of the initial microcracks. The arrows in Figs, 4(b)

and 4(c) point the direction of the trajectories under increasing load.

Figures 5(a) - 5(e) give values of the continuum-damage parameters axx,

cxx, and cyy with increasing loads. Values of ayy, axy, and cxy are omitted

since they turned out to be negligibly small. These figures also show the

contributions of the microcracks in categories C and D to the total values of

a cx, and cyy. Note that as the load increases, the micro-cracks in

categories C and D dominate the entire damage phenomenon. In fact,

comparisons among Figs. 5(a) through 5(e) show that the statistics of initial

flaws has a much stonger influence on the damage parameters than does the

retention of the complete listing of micro-crack categories.
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4. CONCLUSIONS

A continuum damage model was formulated for uni-axially reinforced

composites with two tensor-valued damage variables, aij and cij, that

corresponded to the totality of open and closed micro-crack surfaces contained

within a representative volume element. Following the basic premises of

continuum damage, it was hypothesized here that all the essential features of

damage-affected material response can be described - to within a reasonable

approximation - with the variables aij and cij.

It has been argued that damage growth relations should be derived from

meso-level fracture mechanics solutions. These detailed results should be

then re-cast in terms of the fewer macro-level, continuum variables and

parameters. Statistical aspects of meso-level micro-structure should also be

reflected in the continuum level predictions.

The development of damage growth relations was demonstrated by means of

an idealized example. In that example all micro-cracks were assumed to be

confined to the fiber/matrix interfaces, and all interactions with other

cracks and fibers were discarded.

The above example showed that under increasing external load initially

disordered micro-cracks grow into orderly patterns, forming arrays that can

Indeed be described by fewer damage parameters. Specifically, it is shown in

Figs. 5(a)-5(e) that to attain a very satisfactory approximation it sufficed

to focus attention on two highly ordered crack configurations. These figures

showed that sample to sample variations caused by the random nature of the

initial flaws affected a scatter in the values of the damage parameters which

was much larger than the contributions of the unpatterned cracks in categories



17

A and B. This indicated that the approximation inherent in describing the

actual multi-cracking process by means of the macro-level damage parameters

aij and cij is pragmatically useful.

Although much more work must be done to address the more realistic cases

of cracks that deviate from the fiber/matrix interfaces and incorporate the

effects of crack interactions, the present report indicates that the proposed

continuum damage model possesses the essential features which are necessary to

describe the damage process.
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Figure Titles

U
Fig. 1: A crack at the interface of a cylindrical inclusion and an extended

exterior region (r = R, - < e < w + 6), which is subjected to a remote

uniaxial tension ox =

Figs. 2(a), (b), (c), (d): Crack sizes s (degrees) vs. load p (psi) for four

randomly selected distributions of initial flaws. Number of sample members N

= 40. Cracks divide into four categories A, B, C, and D as sketched in

insert. (In those sketches, arc between arrows corresponds to the initial

|- crack and locations of active and passive final cracks are also outlined).

Percentage of cracks in each category indicated by lengths of vertical bars

above curves. Shaded portion corresponds to passive cracks. Curves A and B

provide average values of . Curves C and D provide common s values.

Fig. 2(e): Same as Figs. 2(a) - 2(d), but N = 80.

Fig. 2(f): Histograms of crack angles z in categories A,B,C, and D at five

selected values of the applied load, exhibiting the average values and the

scatter among Figs. 2(a)-2(e).
r

Figs. 3(a), (b). (c), (d): Crack orientation w (degrees) vs. load p (psi)

for four randomly selected distributions of initial flaws with N =

40. corresponds to the active cracks in category A, - to the

passive cracks in category A,- - to category B, and -.-.- . to the

passive cracks in category D. Note that for all loads = o for all cracks

in category C and for the active cracks in category D.
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Fig. 3(e): Same as figs. 3(a)-3(d), but N = 80.

Fig. 4(a): Phase diagram showing trajectories for the average size a and

average orientation w of cracks in category A under increasing loads. Active

portions with open symbols and passive portions with filled symbols. The five

pairs of curves correspond to five random selections of inital cracks.

Symbols 0 0 correspond to N - 80. All others to N = 40. Trends with

increasing loads indicated by arrows. Angles in degrees.

Fig. 4(b): Phase diagram for the active portion of cracks in category D under

increasing loads. Direction of trajectory indicated by arrow. Note that

trajectory reverses sense at s = 25.350 and = 0.0246c.

Fig. 4(c): Phase diagram for the passive portion of cracks in category 0

under increasing loads. Direction of trajectory indicated by arrow.

Figs. 5 (a), (b), (c), (d): Components of damage variables (All magnitudes

relative. Not scaled by size of RVE). Vs. load, corresponding to four

randomly chosen samples of initial cracks, with N = 40.

Curve I gives cxx due to cracks in category D.

Curve 2 gives cxx due to cracks in all categories.

Curve 3 gives cyy due to cracks in category 0.

Curve 4 gives cyy due to cracks in all categories.

Curve 5 gives axx due to cracks in category C.

Curve 6 gives axx due to cracks in category 0.

Curve 7 gives the combined values of axx due to cracks in both C and D

categories.

Curve 8 gives axx due to all categories.

Fig. 5(e): Same as Figs. 5(a) - 5(d), but with N = 80.

-=
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